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Fourier transform holographic lenses
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I n s t i t u t e  o f  P h y s i c s ,  T e c h n i c a l  U n i v e r s i t y  o f  W r o c ł a w ,  W y b r z e ż e  W y s p i a ń s k i e g o  2 7 ,  5 0 — 3 7 0  W r o c ł a w ,  

P o l a n d .

A  r e v i e w  o f  t h e  p r o b l e m s  i n v o l v e d  in  d e s i g n i n g  o p t i m a l  h o l o g r a p h i c  o p t i c a l  e l e m e n t s  f o r  F o u r i e r  

t r a n s f o r m  r e a l i z a t i o n  is  p r e s e n t e d .  J u s t  l i k e  c o n v e n t i o n a l  le n s e s ,  t h e  F o u r i e r  t r a n s f o r m  h o l o g r a p h i c  

o p t i c a l  e l e m e n t  s h o u l d  c o n v e r t  a  f i n i t e  s e t  o f  i n p u t  p l a n e  w a v e  f r o n t s  i n t o  a  f i n i t e  s e t  o f  o u t p u t  

s p h e r i c a l  w a v e  f r o n t s .

1. Introduction

Holographic optical elements being characterized by a definite structure of the 
interference fringes may be exploited to transform wave fronts, analogically to the 
conventional lenses of the corresponding aperture and the given field angle. In 
particular, such a role is played by an axial hologram of a point source created as 
a result of interference of two spherical waves. Different to the conventional optical 
elements, the holographic lens offers a possibility of aberration correction without 
employing any additional correcting elements in spite of the fact that the influence of 
its substrate geometry on the imaging properties is relatively small. In addition to 
economic aspects, the main advantages of holographic optical elements produced in 
thin layers of the recording medium are offered by their compact structure and small 
weight also in the case of great apertures.

The fundamental difference between the conventional and holographic optics is 
due to the fact that in the first case the basic role is played by refraction (or/and 
reflection) phenomena, while in the other — by diffraction. This means that the 
directions of the rays propagating in the image space depend upon the structure of 
the interference fringes of the hologram, while in the conventional optics — mainly 
upon the shapes of the surfaces and the refractive index of the imaging element 
Consequently, the Snell’s law is replaced by the generalized diffraction grating 
equation. Beside the diffraction efficiency characterizing the diffraction gratings of all 
types an essential role, in the case of holographic optical elements, is played by the 
imaging ability which is defined by the structure of the interference fringes and their 
distribution density.

Figure 1 illustrates the scheme of creation of an optical holographic element with 
the help of two coaxial spherical waves: a divergent wave emitted by the reference 
point source PR and a wave convergent to the object point Po- If the complex 
amplitudes of these waves in the plane of the recording medium are denoted by UK 
and UQ, respectively, the hologram exposure being proportional to the squared 
modulus of the resultant amplitude takes the form
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where <P0 and <PR are the phases of the object and reference waves, respectively, 
determined with respect to the hologram middle point Equation (1) describes the 
distribution of the interference fringes creating the holographic optical element In 
general, the amplitude transmittance of the hologram may be written in the form

where n is the diffraction order. The holographic optical element created in this way 
may be used for the imaging purposes, for instance, of an off-axis point Pc shown in 
Fig. 2. The spherical wave emitted from the point Pc generates, after having been 
diffracted on the hologram plane, the image waves depending on the diffraction 
structure of the holographic optical element

where # c is the phase of the wave incident on the holographic optical element, 
$ In is the phase of the image wave of n-th order immediately behind the holographic 
element

oo

T =  £  r.exp[m(*o—* r)] (2)

I ,  =  r.exp{i[#c +n(<f0 —**)]} =  7 > p ( .·* ,;
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Hence, the phase of the image wave of the first diffraction order has the form

* i =  * c+ (* o- * r)· (3)
On the other hand, if etc denotes the incidence angle of the reconstructing wave 
falling on the holographic optical element, and ar — the diffraction angle of this 
wave, the dependence between these angles is determined by the diffraction grating 
formula

¿(sinac+sinaj) =  nXc. (4)

The grating constant dependent on the structure of the interference fringes of the 
holographic optical element is determined with the help of the angles aQ and aR 
which are created by the object and reference beams with the hologram axis, 
respectively. Thus

d = - ---- ^ -----  (5)
smoo+smaR

Comparing the expression (4) with the formula (5), we obtain the (diffraction grating) 
equation used frequently in holography which for the first order of diffraction takes 
the form

sinaj =  ^  (sinaQ+ s in a j—sinac.
( 6)

It is often used to describe the ray travelling through a holographic setup and to 
calculate the errors of holographic imaging. Representing the wave phases: 
$o, $ R, <PC and as being dependent on the spatial coordinates (x,y) and 
expanding them into power series in Eq. (3), we obtain the dependences determining 
the position of the meridional and sagittal foci with respect to the hologram

1 1 1 1 1 1
Rf>“ /cos2ac Re’ R.P ~  f (7)

where the focal length of the holographic element is defined by the formula

1 _ _ 1_ J_

f ~ R o + R*
( 8)

The magnitudes RQ and RK determine the positions of the object and reference points 
(sources), respectively, with respect to the middle point of the hologram during 
creation of the latter, while Rc defines the position of the point source which is 
imaged by the holographic lens. The angle a determines the slope angle of the chief 
ray of the light emitted from the imaged point (see Fig. 2).

2. Holographic Fourier transform

Holographic lenses may be exploited similarly to the conventional ones to image the 
points from the object to the image space. If the object transmittance is located in the
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Fig. 3. Two equivalent holographic lens systems: a — for imaging an object from infinity to the image 
focal plane, b — for Fourier transform realization

first focal plane of the lens being illuminated by a collimated light beam, then the 
light distribution appearing in the back focal plane is a Fourier transform of the 
complex amplitude of the transmittance at the input of the system (Fig. 3 b):

phenomenon with the help of the Fourier integral (9) is true mainly for small 
diffraction angles. The realization of this kind of Fourier transform operation for 
large apertures and great diffracting angles is still possible in the imaging admitting 
higher values of distortion. This aim is especially easy to achieve in the case when 
the chief rays fulfil the sine condition in the optical system imaging stigmatically 
plane waves into spherical waves focused in the back focal plane of the optical 
system.

Analysing the ray trace in the system realizing the Fourier transform, we see that 
it is not an ordinary process of imaging the object into image points. If, however, the 
Abbe theory of image creation in a microscopic system is taken into account, it is 
possible to transform such a Fourier system into an equivalent one in which the 
known conventional laws of creating the images are applied (Fig. 3 a). Under these 
circumstances the diffraction aperture is positioned in the front focal plane, and the 
off-axial object points located at infinity (the distance of which from the axis
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determines the diffraction angles of the plane diffracted waves) are imaged into the 
back focal plane. This is because all the rays emitted from the light sources situated 
at infinity must pass through the aperture diaphragm deciding about the resolving 
power of the created images. This means that each wave emitted from an off-axial 
object point source localized at infinity corresponds to a diffracted plane wave 
representing a definite value of the spatial frequency of the object amplitude 
transmittance.

The imaging properties of the holographic lens are determined by the shape of 
the wave fronts used to produce that lens by employing the due interference effect 
in the light-sensitive layer of hologram. In general, the phase difference of those 
waves

* h(3£.>’) =  *R(*>y) (1°)

is a phase function characterizing the focusing properties of the holographic element. 
On the other hand, for the light illuminating the holographic lens the phase of the 
wave at its output is

$out(x,y) =  #ia(x>y)+ * h(x, JO (! 1)

where 3>in(x,y) is the phase of the wave incident on the holographic element. Thus, if 
a set of plane waves characterized by the functions <Pin(x,y;a) is given at the input of 
a holographic element and the set of required corresponding spherical waves of 
phases is given at the output of this element, then, according to expression
(11), we have the equation

(12)

where a represents different values of the diffraction angle at the diffraction aperture. 
This means that for a given value of the diffracting angle a, the holographic lens of 
phase function tf>H(x;a) transforms perfectly the plane wave of phase $ in(x;a) into 
spherical wave of phase <Pout(x;a). In general, the function <PH(x;a) changes with the 
parameter a in such a way that the holographic element of function &H(x) =  &h(x'> °0 
images perfectly only for one value of the parameter a, while for the other values 
the imaging is charged with aberrations determined by the phase difference: 
$ H(x)-< iH(x;a). But the Fourier transform may be realized with the aid of the 
equivalent holographic lens, which is characterized by the property of aberration-free 
transformation of a set of plane waves into a corresponding set of spherical waves. 
Thus, the correction of aberration in the focal plane is carried out using, in most 
cases, the method of least squares, which consists in optimizing the holographic 
Fourier lens by minimizing the r.m.s. of the difference: $ H(x )-$ H(x;a) averaged 
within a definite interval of parameter a.

Thus, if a one-dimensional phase function of a holographic optical element 
defined by formula (10) is denoted by 4>H(x) and the desired phase function of the 
examined optical element in accordance with the definition (12), by <PH(x;a) the, r.m.s. 
error between the real and needed wave fronts is defined for an arbitrary value of the 
prameter a by the equation
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E =  JJ W(ct)P(x;u) [# H(x)—d>H(x;a)]2JaJx  (13)

where the pupil function P(x;a) may be used to determine the domain of integration. 
In general, P(x;a) =  1 for all the points of a holographic element illuminated by 
a wave of parameter a, while for remaining points P(x;a) =  0. The function W(a) is 
a weighting function changing the contribution of errors calculated with respect to 
the ideal wave front for waves of different values of parameter a. In all the cases it 
holds that

0 <  W(a) <  1.

The determination of the phase function <PH(x) of the examined holographic element 
requires the usage of the variational method. Namely, if there exists a variation of 
a functional £ [ i H(x)] and it reaches the minimum for <$H =  <Ph(x), then for 
# H = # h(x) occurs 5E =  0. Thus we have

and

J JF(a)P(x;a) [# h(x)—#„(x;a)] da. =  0

for all the values of x. Hence, the optimized phase function of the holographic 
element takes the form

fW(g)P(x;«)j>H(x;g)dg 

hl ’ \W(a)P
(14)

Taking advantage of Eq. (12) and the considerations given above, we obtain for the 
needed ideal wave front #out(x;a) at the output of a holographic element

* M - i  W(a)P(x;a)[ ^ ( x ;« )  -  *„.(*;«)] da 
hW JlP(a)P(x;a)da ' ' J

For the majority of the practical cases # h(x) is a function being continuous across 
the domain, where P(x;a) =  1. If it is assumed that the boundaries of the integration 
domain are functions of the variable x, i.e., =  aA(x) and a2 =  a2(x), respectively,
Eq. (15) takes the form

i kW =  “1-----------«7-----------------------  (16)
J W(u)da

From the investigations reported in [2] — [5], it follows that the phase transfer 
function ^ u(x,y) of the holographic element is optimal in the case when the r.m.s. 
error reaches minimum for all wave fronts at the output representing the particular 
spatial frequencies with the help of parameter a in a fixed interval ax ^  a <  a2. The 
analysis of the function # H(x»y) shows that it is not always possible to achieve small 
values of the r.m.s. error for all the values of parameter a, but in some particular
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cases it is possible to obtain small (admissible) values of spherical aberration, coma, 
and astigmatism allowing relatively large distortion.

In works [2], [5], [9], devoted to the design of a holographic Fourier lens on 
a flat substrate, two kinds of imaging holographic elements are distinguished:

1. Spherical — created with the help of interference of two spherical wave fronts 
emitted from two differently localized point sources; nota bene, the plane wave is here 
considered also as a spherical wave of infinitely great radius of curvature (Fig. 1).

2. Aspherical — created with the help of wave fronts obtained from an auxiliary 
optical system or arbitrary wave fronts determined analytically (Fig. 4a,b).

Fig. 4. Recording geometry of an aspheric HOE with an object aspheric wave front: a — derived from 
an auxiliary optical system, b — defined analytically

The problem of determination of both the phase and the directional cosines of 
the light rays belonging to the wave formed in the auxiliary optical system in order 
to produce a holographic optical element is not that simple for a fixed, in advance, 
trace of the reconstructing rays. The solution of the problem is based on the method 
of iteration and consists in exploitation of an auxiliary optical system to suitably 
direct the light rays in accordance with the ray-trace belonging to the reconstructing 
wave. For this purpose, a HOAD (Holographic Optics Analysis and Design) 
computer program is exploited which allows us to form an arbitrary wavefront 
necessary to record the aspheric holographic optical element For the given 
amplitude of the wave, the task is reduced to recording the phase function of the 
wave front only on the surface of the light sensitive film which may be either of plane 
or curved shape. In general, the phase function of the recording wave is defined in the 
form of a power series

$(x>y) =  Z X c u *V
I J

(17)
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or Legendre polynomial

· ( * * > - £  I W x ^ j i y )  (18)

where the coefficients of the determined polynomial are the optimizing parameters, 
while their number may be as high as 100 for each phase function. Finally, if the 
recording wave is not attenuated its phase satisfies the condition

which is equivalent to the requirement that the sum of the squared directional 
cosines with respect to the x  and y axes, respectively, be not greater than unity for 
X denoting the recording wavelength. Analogically, in order to avoid the attenuation 
of the object wave the sum of its squared directional cosines must be less than unity.

3. H O E  as a Fourier transform lens

The task of a holographic optical element (HOE) employed to realize the Fourier 
transform is to transform the set of plane waves inclined at different angles to the 
axis of the system, into a corresponding set of spherical waves convergent to their 
focal points located in the back focal plane of this element. Obviously, the creation 
of the Fourier holographic lens capable to transform a single plane wave of arbitrary 
inclination into a needed convergent spherical wave is relatively simple. However, in 
the case of a number of plane waves diffracted at different angles by the object 
examined, an optimizing procedure must be applied to the phase function of the 
holographic element (lens). As it was shown in the former section, the problem 
is reduced to the minimization of the r.m.s. between the spherical and the cor­
responding actual wave fronts at the output of the system In general, the object 
transmittance located in the front focal plane of the lens and illuminated by a plane 
wave of coherent light generates an angular spectrum of plane waves, each of which 
represents a corresponding spatial frequency of the transmittance (defined by its 
diffraction angle). All these waves are focused, depending on the diffraction angles, 
by the lens at characteristic points localized in its back focal plane. The object 
transmittance of high spatial frequencies is characterized by the fact that the 
illuminating wave is diffracted at high angles, due to which the focusing of waves 
occurs proportionally at the greater distances from the axis.

Holographic lenses produced initially were spherical lenses created in a conven­
tional way by using the spherical wave fronts. Such lenses can be applied only within 
the region of small diffraction angles. They are often a starting point for recording 
the holographic optical elements applied to examine the spatial frequency spectrum 
in a broader interval. In Figure 4a, a scheme is shown for recording an aspherical 
holographic lens with the help of a plane reference wave and a deformed spherical 
wave emitted from the point source located on the axis perpendicular to the 
recording medium Figure 5 illustrates the creation of an aspheric lens with the
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help of a spherical wave and commonly used plane reference wave to which 
a perturbation is introduced determined by the phase transfer function in the form of 
a polynomial

2tc
^ (x»y) =  [.Cio*2 +  C*ox*+ C6ox6 +  C80x8 +  Cozy2 +  ̂ 04̂ 4 +  C06y6 +  C08y8

+  C22x2/  +  Cu x4/ ] .  (19)

One of the commonly applied methods of producing an aspheric holographic 
element is the recording of the wave front suitably created with the help of 
computer-generated hologram (CGH). The amplitude transmittance of such a holo­
gram is reduced to the form

tA(x,y) =  B-M (x,y)cos[cox+ 4>(x,y)], (20)

where: B s* 0.5 is an averaged value of transmittance,
A{x,y) <  0-5 — amplitude,
to — carrier frequency of the reference wave,
<P(x,y) — phase transfer function defined by formula (19).

CGH SF

Fig. 5. Geometry of recording an aspheric Fourier transform holographic lens by using an aspheric 
reference wave front CGH — computer generated hologram, SF — spatial filter

In Figure 5, the optical system for recording such aspheric Fourier lens known as 
Computer Originated Holographic Optical Element (COHOE) is presented. In this 
system, the wave front diffracted on the CGH and imaged into recording medium 
(COHOE) with the help of a telescope system of unit magnification preserves the 
requested phase relations. The spatial filter is located in the spatial frequency plane 
in such a way that only the first order diffraction wave diffracted by the hologram 
CGH passes through the filter, going next to the plane of the recording medium. The 
planes of CGH and COHOE being inclined are optically conjugated, while their 
inclination assures simultaneously the needed inclination of the reference wave 
during recording. The recording of the optimized holographic Fourier element is 
thus reduced to the exploitation of both the phase of the ideal spherical wave emitted 
from the point source

*o(x>>’) =  y [ ( * 2+ )'2+ /2)1,2]> ( 21)
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and the phase of the corrected wave generated from CGH instead of the plane 
reference wave , as shown in Fig 5. In accordance with the procedure of minimizing 
the r.m.s. error the corresponding changes of the coefficients Ci} lead to optimization 
of the aspheric Fourier lens. The ray-trace calculations carried out by FAIRCHILD 

and F ie n u p  [2] for the rays in two planes perpendicular with respect to each other 
(ten different incidence angles for each) gave the optimized values of the coefficients 
Cy, which are presented in the Table.

Ta b le .  Optimized coefficients of the aspheric Fourier lens

C20- 0.714 C*o -  4.092 C60- 3.150 C„o -  -0 .964
C02 -  1.569 C04 =  1194 C06 =* 4.036 C0§ «  0.502
CM -1 .9 0 8 -  64.619

The recording of the holographic Fourier lens of the focal length/ =  50 cm was 
performed using the light of the wavelength 2 =  514.5 nm. The coefficients in the 
Table were normalized under assumption of unity wavelength and scaling of the 
hologram coordinates within the border of the recording surface - 1  <  (x,y) <  1. 
The quality of the images was compared with the aberrations of spherical 
holographic lens for different incidence angles for chief rays falling on the hologram 
[2]. The analysis of the image qualities showed that the holographic spherical 
element has, in principle, no spherical aberration, while its coma and field curvature 
are high. In spite of this, the aspherical holographic element is characterized by 
a distinctly reduced coma and field curvature which were achieved at the expence of 
introducing some spherical aberration. The maximal value of the r.m.s. error is 
reduced from 0.2972 for the spherical element down to 0.0382 for the aspheric 
holographic element The optimization of the holographic aspheric element carried 
out in this work had no influence on the reduction of distortion which under these 
circumstances was not the subject of investigation.

4. Telecentric setup

One of the optical systems used to reduce efficiently the distortion is the telecentric 
system in which the aperture stop located in the front focal plane of the 
lens is imaged in the exit pupil plane located at infinity. In such systems the chief 
rays passing through the middle of the entrance pupil, in the image space are parallel 
to the optical axis of the system. This means that they are perpendicular to the 
image plane, any shift of which has no influence on the mutual localization of the 
image points representing the spatial frequencies of the examined transmittance. 
The simplest example of such a lens is a Fresnel zone plate or an equivalent 
hologram of the axial point created as a result of interference of a spherical 
wave with the plane one as it is shown in Fig. 6. These waves are emitted from 
two point sources of monochromatic light positioned on the axis of the system: 
the reference source — at infinity, the object source — at the ditance /  from the 
plane of the recording medium. The phase transfer function of the created
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Fig. 6. Recording of a spherical HOE of the focal length /  FP — Fourier plane

holographic element is dependent above all on the recording spherical wave defined 
by Eq. (21).

In Figure 7, the ray trace in a telecentric configuration of the holographic Fourier 
lens is shown. The plane wave falling at an arbitrary angle a may be transformed into 
a spherical wave by the holographic lens characterized by the phase transfer function 
of the following form:

<M*) =  f  { [(x -x .)2+ /2] , 'I -(* -* .)sm a}  (22)

where xa =  /ta n a  is a coordinate of the intersection point of the chief ray with 
the plane of the lens. Comparing Eq. (22) with the one-dimensional equation (21), we 
see that the transformation of the plane waves into the desired ideal wavefronts 
occurs in two particular cases:

1. When a =  0, then xa =  0, i.e., the plane wave falling perpendicularly on the 
Fourier lens is transformed into the spherical wave.

2. If infinitesimally narrow bundle of light rays passes under the angle a ^  0 
through the centre of the entrance pupil, it propagates, after having been trans­
formed, parallelly to the optical axis; it is always represented by its chief ray, which 
passes through the centre of the aperture stop that is identical with the focus of the 
lens in a telecentric system.

F ig 7. Ray tracing in the parallel beam Fourier transform
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Telecentric configuration of rays is, generally, exploited for measurement of 
mutual localization of the image points with high accuracy, and therefore the 
telecentric system realizing the Fourier transform leads to reduction of the position 
error of the image points representing the spatial frequencies of the definite spectrum.

Holographic Fourier lenses creating images of high quality in the Fourier plane 
must fulfil not only the condition for aplanatism and an astigmatism, but and above 
all, the chief rays must satisfy the sine condition for all the field angles. The analysis 
of the ray trace in a holographic optical element produced on a plane substrate 
indicates that the distance from the optical axis of the image point representing the 
spatial frequency is defined by the formula: xa = /tan a , while a is the field angle 
of the given chief ray. But for the holographic Fourier lens fulfilling the Abbe’ sine 
condition we have: xa = /s in a  which can be realized only with the help of 
a holographic element on spherical substrate. In this case, the centre of curvature of 
the spherical substrate covers the focus of the lens which results in a distinct 
reduction of coma.

5. Converging beam Fourier transform

The converging beam Fourier transform lens employs the diffraction of converging 
spherical waves by the transparent object, as shown in Fig. 8. In this case, the object 
is inserted behind the holographic lens that produces a perfectly spherical wave [ 10], 
i.e., it should be corrected for spherical aberration. If the lens is illuminated by 
a normally incident plane wave of amplitude A, then a spherical wave is incident on 
the object which after diffraction gives a field distribution across the focal plane 
described by the Fourier transform of the object transparency

riexp

UF(x2,y2) »]
a d

oo

| | u 0(x„yl)exp^-^(*1x2+j'1)’2)Jjx,Jyl.(23)

Thus, up to a quadratic phase factor the field distribution in the back focal plane 
is the Fourier transform of that portion of the object subtended by the projected

Fig. 8. Ray tracing in the converging beam Fourier transform system. O — object with a frequency 
component
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lens aperture at the spatial frequencies:

(oy
2 tzxf  

Xd ' Xd '
(24)

We see that when increasing the distance d, the spatial size of the transform is 
increased, and when decreasing d the transform size becomes smaller. Independently 
of the corrected spherical wave for an on-axis point, aberrations are induced by this 
wave owing to the diffraction at the object B ut we must remember that the 
following basic conditions must be fulfilled always in the Fourier plane: i) the quality 
of the focused spots at all locations corresponding to different diffraction angles 
should be the same, and ii) the spots should occur at coordinates which are 
proportional to the frequency components of the object Therefore, it is important to 
know quantitatively the induced aberrations in each particular case. If a linear 
holographic grating is inserted in the object plane instead of the object then by using 
the Meier’s formula of the third-order holographic aberrations the wave front 
deviation in 1-D takes the form

A =  ds+ d c+ d A+ dp (25)

where the wave front deviation owing to spherical aberration d s =  0, and:

Ac = - |^ K 3«>s0, *a  =  ^ ¡ K W 0 ,

are the wavefront deviations owing to coma, astigmatism and field curvature, 
respectively. The polar coordinates (R , 0) are determined in the exit pupil of the 
system, where the angle 9 is formed by R  with the positive y-direction. The fifth 
aberration, i.e., distortion yields only a shift of image in the Fourier plane. Analysing 
the aberrations of the converging beam Fourier transform setup it appears that it is 
a better solution especially for the limited range of both spatial frequency and object 
size. Such a system is much simpler than the conventional one, being also easier to 
implement [11] —[13].

6. Conclusions

Beside the aspheric holographic lenses being applied to Fourier transform implemen­
tation, the spherical holographic lenses attract some interest as well Especially 
interesting are relatively simple axial holographic lenses produced on the spherical 
substrate and operating in a telecentric run of the light rays in the image space. 
Solutions of that kind have a significant influence particularly on the reduction of 
distortion and coma, the elimination of which is assured when the sine condition is 
fulfilled. On the other hand, the Fourier transform system based on diffraction of 
spherical wave is a simple and cheap version, and should be applied in a number of 
cases, especially when spatial frequency range is limited.
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