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Abstract: The article addresses the application of non-
classical operational calculus to approximative solutions 
of engineering problems. The engineering-sound examples 
show that a continuous–discrete problem transformation 
from differential unequivocal problem to a differential 
wildcard problem, triggering a change in solution quality. 
A number of approximative methods are capable to alter 
both quantitative and qualitative solution effects. 
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1  Introduction
The differential elastic deflection line of a beam axis 
is widespread in engineering practice. Non-uniform 
settlement of a tank yields additional stresses in its 
structure, possibly leading to failure, that is deterioration 
or damage, triggering a significant threat to petroleum 
storage tanks. In order to capture these phenomena, the 
tank bottom plate is modelled by a simply supported 
beam resting either on stiff bedding [7] or on elastic 
bedding [18]. Other models are applied to assess internal 
forces in the storage tank structure [7], [17], [18]. The US 
Standard [3] makes use of working out design criteria of 
these models for large storage tanks.

Deflection of a rectangular plate, assumed a 
preliminary small cylindrical curvature [16], is expressed 
by a differential equation:

(1)

where f(x) is a preliminary deflection function and k 
reflects physical (mechanical) properties of the plate.

 Equations of a similar sort are applied to model the 
intercomponent interaction of a vehicle/railway track/
track bed/subsoil system. In railway engineering domain, 
the beam models on elastic foundation are applied in the 
range stated above, see [4], [5], [13], [14], and in railway 
track geometry issues [11]. The differential equation (1) 
is also applied in quantum mechanics to deal with the 
particle vibration in potential well analysis. The relevance 
of this equation is available.

A wide application range makes it reasonable to 
propose a new solution method of the equations, keeping 
in mind critical solution aspects, especially in numerical 
approach.

The modern design engineering practice requires a 
fluent use of CAD (Computer-aided design) methods in 
computational mechanics. Contemporary constitutive 
theories bring about non-linearity in the system of 
differential equations defining the initial boundary value 
problem. The equivalent non-linear equation systems 
require complex numerical procedures.

A widespread use of CAD methods linked with finite 
element method (FEM) or finite difference method (FDM) 
provides a vehicle to develop commercial software. The 
users, however, are frequently banned from numerical 
procedures; thus their interaction with the software is 
limited to operate the so-called black box, that is, they 
enter the input data and receive the final solution. The 
problem appears when the results of the computing 
process are not the ones expected by the designer.
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It is a generally non-trivial task to relevantly interpret 
the computational, discretisation-based results. Whilst 
attention is paid to the finite element dimensions, marking 
the FE (finite element) mesh sensibility, the computational 
results may strongly differ from the observations, for 
example, in the steel plate cyclic load test, involving shear 
degradation [2].

Solution ambiguity may appear in the simplest 
possible cases, for example, beam deflection or other 
engineering issues incorporating similar mathematical 
models. 

Most boundary problems make it extremely difficult 
to fulfil the conditions of a well-stated boundary problem, 
that is, to fulfil Hadamard’s conditions. These conditions 
concern solution existence, uniqueness and stability, the 
second one is the focus of this article.

2  Review of non-classical 
operational calculus 
Non-classical operational calculus is basically aimed at 
creating uniform mathematical methods to solve specified 
forms of differential, difference or integral equations. It 
naturally generalises classified mathematical issues of a 
Heaviside idea or Mikusinski operators.1 Both concepts 
work as a reference to novel generalised theories of 
operational calculus, developed by a vast entirety of 
contributors: S. Bellert, R. Bittner, L. Berg, I. Dimovski, 
V.A. Ditkin, A.P. Prudnikow, D. Przeworska-Rolewicz, M. 
Tasche and W. Slowikowski [9].

The non-classical operational calculus allows to 
uniformly describe and analyse a variety of engineering 
(mechanical) problems concerning continuum or discrete 
fields, including methods to solve differential or difference 
equations and their systems. Three linear operations, S, 
Tq and sq, and two linear spaces, L1 and L0, are defined, 
assuming L1 ⊂ L0, to read as

(2)

The following conditions hold:

(3)

1 In classification of Mathematical Reviews® Mathematical Subject 
Classification (MSC2010), they are described under No. 44 Integ-
ral Transforms, Operational Calculus, and then in detail under No. 
44A40 – Calculus of Mikusinski and other operational calculi.

where q ∈ Q is the index set. The operation characteristics 
S, Tq and sq are included in [8, 9]. 

Note that many operations exist to fulfil the conditions 
stated before; their examples are shown in [8]. In the 
article, it is sufficient to mention two representations only. 

In a continuous field case, the following conditions 
hold: 

(4)

and 

(5)

In a discrete field, that is, the space C(N) of a series 
x={xk}=(x0, x1, x2, ...), it can be considered as: 

(6)

   
(7)

(8)

Whilst there exist an unambiguously defined solution to 
the equation,

(9)

with a condition

(10)

where R is the endomorphism of spaces L1 and L0 
commutative with operations S and sq, the solution may 
be called a generalised exponential function, which is 
defined as

(11)

Whilst the model features an operation , a simple 
exponential function may be eventually obtained. 

In the case of endomorphism  
and a two-variable function f={f(t,x)} with operations 



244    Eligiusz Mieloszyk, Mariusz Wyroślak

, where L0 and L1 are the function 
spaces of relevant classes [9], the character of a generalised 
exponential function is

(12)

It is easy to check that the function

(13)

fulfil the conditions stated by the equation:

(14)

whilst sq x=0 and sq Sx=c. The function (13) is also called 
a generalised trigonometric function, defined as sinRtq c. 

Given a discrete field with the operations,

(see eq. 7, 8, 9) and endomorphism R, which means 
multiplication by a number a and continuous series {x0}, 
the exponential function is a series defined as 

(15)

Figure 1 shows the diagram of series (15) for different 
values of number a. 

The shape and characteristics of a generalised 
exponential function  are predictable. Given a 
complex number domain, a well-known exponential 
function is periodic in contrast to the real domain. 

Equation (13) leads to the following: 

(16)

which is next transformed into the series form:

(17)

which is presented in Figure 2 in a constant sequence case 
{x0}={1}. 

 The diagrams in Figures 1 and 2 mark sequential 
solutions to some equations, possibly to represent stable 

and unstable problems on both modelling and solution 
phases, including the use of approximate methods [1].

3  Numerical analysis of a specific 
mechanics problem
The equation for the deflection of a beam of length l and 
variable cross section is subjected to axial compressive 
force P and distributed lateral load q(x). The differential 
equations of the beam are

(18)

(19)

where M(x) means bending moment and B(x)=EJ(x) is 
a variable beam bending stiffness. This coordination of 
axis direction is accepted in soil mechanics; however, 
considering classical mechanics, the minus sign cannot 
to be omitted, and then B(x) y‘‘= -M(x). The case of the 
operational calculus model with an operation  
makes it possible to redefine the problem: 

(20)

Figure 1: The diagram of the function (15) for {x0}={1} and different 
values of number a.
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(21)

Equations (20) and (21) correspond to equations (18) and 
(19), respectively. Whilst variable stiffness is assumed, 
equation (18) is analysed by operational methods 
described in [11] by applying a chain-type connection of 
two generalised inertial parts of the first order. 

Owing to a specific supporting variant, the equations 
are complemented by relevant boundary conditions. In 
the simply supported case, the following conditions hold:

(22)
It is a considerable task to analytically find a deflection 

function of the beam, thus approximative methods are 
open, however, excluding a ‘blind user’ routine. 

A related case concerns neutral axis definition in the 
cross-sectional plane of a compressed bar, for example, 
a concrete post covered with steel or composite coating 
(reinforced by carbon or glass fibres). The neutral axis 
passes through the cross section of the beam (post); it is 
the locus of zero normal stresses and axial strains, that is, 
the undeflected region. Whilst no axial forces act in a non-
curved bar made of homogeneous material, the neutral 
axis at each cross section intercepts the centroid. The 
presence of cross-sectional axial forces makes the neutral 

axis shift. The location of neutral axis is linked with 
structural state, possibly detected in every time instant 
based on the deformation measurement. 

The application of numerical method to assess 
deflections of bars brings about a number of disadvantages. 
Whilst a differential equation is represented by its 
approximation, for example, a difference ratio, it is 
probable to get quantitatively and qualitatively incorrect 
results even after entering a simple input differential 
equation form. 

Equation (18) or its equivalent form (20) may be 
transformed, assuming

(23)

Here the assumptions are still general. Whilst in 
operational calculus, the operation S can be replaced 
with formulas  and  of operational origin; 
the coefficient at M(x) is unity. A simple equation can be 
written as 

(24)

The derivative  is represented by its finite approximation, 
the difference ratio, by assuming a small h parameter: 

(25)

subsequently, the second derivative  is approximated 
by a doubled  operation, that is, . 

Stating x=kh and M(kh)=Mk, the differential equation 
(24) turns into difference equation (recurrence equation); 
thus a continuous–discrete transformation is conducted 
here: 

(26)

The above equation may be expressed by means of 
operation S stated by (6): 

(27)

including the conditions 

(28)

where k0 is the assumed natural number, fulfilling 
condition l=k0 h, complied with the second condition (22). 

Let l=k0h≠nπ and n=1,2,...,n0, where n0 is assumed. 
Then the equation (24) considered in continuous field 

Figure 2: The diagram of the function (17) for {x0}={1}, a = 1.
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with conditions (22) has one solution, and the solution is 
equal to zero.  

The solution of the recurrence equation (27) with 
condition M0=0 according to (17) can be written as 

(29)

Introducing the second condition Mk0
=0 leads to 

(30)

If it happens, 

(31)

equation (27) with conditions (28) shows an infinity of 
solutions. 

If condition (31) holds, the difference equation 
approximates the differential equation with conditions 
(28) and shows an infinite solution range, keeping in 
mind that the differential equation shows exactly a single 
zero solution. 

The presented numerical methodology brings 
an essential quantitative and qualitative problem 
reclassification, that is, the solution passes from a 
differential unique form to an ambiguous sort. The 
variation between the exact and the approximate solutions 
(the latter presents values at nodes) is larger whilst taking 
a large factor α. 

The work [8] shows the operational calculus model, 
detecting the form S2 M+M=0 without a solution. 

Both Kerr’s model analysis and Winkler–Pasternak 
foundation concept regarded in [15] showed another 
practical application of (27); it used a shear layer (soil) 
with geosynthetic membranes. The presented model 
highly resembles the real geosynthetic-soil systems, 
possible road or railway flexible pavements [10]. 

Kerr introduced a model, even a large spectrum of 
models made of Winkler, Pasternak and Héteny layers. 
The equation of Kerr’s foundation model is similar to the 
form presented in [10] and Figure 3 whilst not regarding a 
geosynthetic layer, that is, Tp=0 and Gt=Gb=G; it is written 
as follows: 

(32)

where q=q(x,y) is a model surface load, w=w(x,y) is a 
total surface deflection, kt, ks  are upper and lower elastic 
foundation constants, and G is the shear modulus.

In a one-dimensional case, the model equation 
(32) modifies the Laplace operator , which becomes 
a common second derivative . Whilst no load occurs, 
the differential equation (24) appears. Whilst a complete 
equation (32) is taken, its numerical solution is possible. 

Sequences (15) are applied to determine responses of 
discrete two-dimensional systems [9]. Whilst discretising 
a continuous system of distributed parameters, the 
sequences can be applied to approximate the system 
response. The systems cover the performance of civil 
engineering plate and shell structures, wave propagation 
in soils and so on [12]. 

Figure 3: The example of a loading (substituted load) of a railway bedding [9].
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4  Conclusions
The presented discrete time signals are relevant to 
approximately determine the response of some class of 
differential problems adjusted to mechanics, for example, 
axially compressed columns. The signals may also be 
used to approximate harmonic and inharmonic signals 
and modulated signals.

The application of properly generalised exponential 
and trigonometric function makes it possible to work 
numerically stable or unstable procedures. A continuous–
discrete engineering problem transformation causes a 
hazard of its quantitative and qualitative re-classification. 
In the course of continuous–discrete re-modelling of an 
engineering system, the initial unique solution turns into 
ambiguous solution or no solution at all. The numerical 
procedure user should be aware of such situations and 
take them into account in the design process.

Even a highly selected constitutive model is not enough 
for the considered boundary problem to relevantly reflect 
the real analysed case. The static or dynamic load feature 
possibly complements the differential equation by inertial 
effects, effects of elastic and shock wave propagation, 
loading rate and so on. Numerical modelling is also 
highly influenced by the specific material instability or 
imperfections, that is, density and temperature variations, 
microcracks showcasing ductile fracture patterns out of 
yield zones.

All the enlisted issues consequently increase the 
algorithm sophistication and computational effort [6]. On 
the other hand, they trigger more complex mathematical 
forms, making the errors in numerical procedures more 
difficult to detect.

The design quality progress is chiefly an effect of 
progress in numerical domain. However, the engineers 
should stay critical to numerical results of the ‘black box’ 
software, excluding the algorithm tracing.
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