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“There is no any mathematical abstraction which
would not be applicable at an earlier time or later
time in practice”.

Nikolai Ivanovich Lobachevsky (1792 — 1856)

Preface

Discrete mathematical structures (in short: discrete structures), in particular such as mathematical logic and set
theory, algebraic systems, formal languages, automata theory, graphs, number theory, coding theory, combinatorial
analysis, discrete probability theory, Petri nets and so on, underpin a large amount of modern computer science.
Discrete structures became a very large and dynamic science. Unfortunately, the speedy developments and
knowledge in this area makes impossible the presentation of all notions, definitions and applications used here.
This part is an extension of the previous one (i.e. a supplement / a separate work) and it is related to algebraic systems
(considered as discrete mathematical structures).

Some basic notions concerning: operations and algebraic systems, lattices, multiple valued and fuzzy algebras,
homomorphisms of algebraic systems (i.e. epimorphism, monomorphism, isomorphism, endomorphism and
automorphism), congruencies, quotient algebraic systems, finite direct products of algebraic systems and free
algebraic systems, grammars and sequential machines, algorithms, computability, recursion, graph theory and Petri
nets, combinatorial analysis, probability theory, Markov’s chains, number theory, information, coding and
algorithm complexity, are briefly considered in this part”.

Several parts of this work were presented during my lectures at the Institute for Mechanical and Electrical
Engineering in Sofia, now known as TU Sofia, Bulgaria and also at the Wroclaw University of Technology in
Wroclaw, Poland. A preliminary version of this study was realised in accordance with some research projects, e.g.
such as 70802-331557-W0800, Z0802-341763-w0800, etc., during my stay in Wroclaw.

I would like to thank my wife for her countless patience and love during the writing of the manuscript of this
book.

This open access work is firstly addresses to the (advanced) computer science students, but may be useful for
any researcher who is interested in the above given area. Any suggestions or other comments related to this work
are well come. To all such remarks I would be grateful.

Iwan.G.Tabakow (retd. Professor)

" “The problem-solving emphasis of computer science borrows heavily from the areas of mathematics and logic. Faced with a problem,
computer scientists must first formulate a solution. This method of solution, or algorithm as it is often called in computer science, must be
thoroughly understood before the computer scientists make any attempt’.






The used designations

The used names for the primitive and/or derived rules given below are in accordance with the Lukasiewicz’s
symbols of negation, conjunction, disjunction implication, and equivalence denoted by N, K, A, C, and E,
respectively (introduced in the parenthesis-free notation called also Polish notation: Jan Lukasiewicz 1878 —
1956). Some commonly used symbols are given in parentheses. Other designations and/or abbreviations are the

same as in (Stupecki J. and Borkowski L. 1967)".

{a,b, ..., z}

(X,y), (X1,X2, ... . Xn)

* Stupecki Jerzy (1904 — 1987), Borkowski Ludwik (1914 — 1993).

symbol of negation, called also logical inversion or logical
(called also e.g.
‘orthocomplement’ in quantum logic systems or ‘/inear
negation’ in linear logic systems, etc.). Another used
designations: —, ", , 1 (e.g. pt), Not, etc. The used symbol
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not ‘quantum  negation’, 1i.e.

"’ may be also used as a citation of designations or formulae,
e.g. '~ to denote the set equinumerosity relation or ‘A N B’
etc., depending on the context ;

symbol of conjunction (logical multiplication, logical and: &
, -, M, N, And) or weak conjunction (many-valued logics) ;

symbol of disjunction (logical sum, logical alternative, join:
+,U,l,/,U, Or) or weak disjunction (many-valued logics)
symbol of (the material) implication (— ,>,1);

symbol of equivalence (co-implication, =, iff,~, < E: °
=’ may also denote the congruence modulo m relation on the
set of integers or a linear logic equivalence or also symmetric

(called also  symmetrical} set difference operation
depending on the context ;

the set union (set sum), set intersection, set difference and
symmetric ( or: symmetrical ) set difference operations
(another designation for set difference: "\ ' ,e.g. X\Y,
instead of X — Y), provided there is no ambiguity by X’
is denoted the complement of X (another designation: X ):
in a similar way and for convenience  “ * may be also used
to denote some element, e.g. X" or algebraic operation, e.g.
0’ (depending on the context) ;

Cartesian product of sets, X" =¢¢ X x X x ... x X, n times,
n > 2 (René Descartes 1596 — 1650, Latinised: Renatus
Cartesius) ;

the membership relation’is element of* : a is element of A
(orbelongsto A), aisnotan element of A ;

empty (or null) set ;

the set inclusion, equality and nonequality, respectively ;
a finite set of elements: a, b, ..., z;

ordered pair, having as a first element x and as a second
element y and ordered system having (more than two but) a
finite number of elements ;
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{fai/ 1 el}, {Ai/ 1 el}

{x/ o0}
3 o), V o(x)
N, Ng, No, Z, Z+,Q, R, R+, R+, C

| X|

wrt, iff

‘text’

For any other designations, see Part I of this book.

" Usually 1 coincides with the set of natural numbers. And hence, for convenience, e.g. instead of Ux,-

a set of elements ai and a family of sets Ai (i €1);

the set of all x satisfying the propositional function ¢(x) ;

the existential and the universal quantifiers related to @(x) ;

the sets of natural numbers N =4 {1, 2, ...}, the subsets of

even and odd natural numbers, integer numbers, nonnegative
integer numbers, rational numbers, real numbers,
nonnegative real numbers , positive real numbers and
complex numbers ;

the cardinality of set X (denoted also by: X (Cantor’s
designation: G.F.L.P. Cantor 1845 — 1918) , card(X), nc(X),
#(X) or #X;

the cardinality of N ;

a binary operation and some mapping ;

the generalised set union and set intersection operations,
respectively” .
proper inclusion between two algebraic systems ;

the set inclusion and the proper set inclusion (or strict set
inclusion, denoted also by ') binary relations. X € Y <t
~X < Y)yif X < Y then X is a subset of Y or
equivalently, Y is a superset of X ;

an ordered pair (2-tuple in short “couple”: means “pair”),
denoted also by <x,y>, Kuratowski K. (1896 — 1980) ;

‘end of proof °~ (of an example, algorithm, or another
formalised text) ;

with respect to, if and only if ;

citation of a text, e.g. ‘a variety of problems that can be solved
by...*

it is also used Ux,;
i

iel

(assuming that 1 is known) . And hence, provided there is no ambiguity and for simplicity, it is assumed that the used index i e I < N (iin

asimilar way: M x,)-

T This set operation may also denote usual set inclusion, e.g. see (Stupecki J. and Borkowski L. 1967).
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. Operations and algebraic systems

The used below basic notions and definitions are mainly under (Kerntopf P.” 1967). Some other considerations
are also presented, in particuar concerning Boolean, multiple valued and fuzzy algebraic systems. The notion of an
operation is first presented.

1. Operations

Any mathematical operation is considered as a function taking zero or more input values (known as operands) to
a well-defined output value. The notion of an n-argument operation is first given. Some properties concerning
binary operations are next presented.

1.1. Two-argument operations

Let A be agivenset. The following definition is introduced (Kerntopf P. 1967).

Definition 1.1 (n-argument algebraic operation)
An n-argument algebraic operation defined in A (where n is an arbitrary cardinal number) is the mapping
o: A" - AL

The following notation was also used: ®: <aj, a, ... ,an> — ®(ay, az, ... ,an), where aj, as, ... ,an € A
and o(ar, ay, ...,a,) € A (i.e. A isclosed® under ®). As an example, the set of natural numbers N is closed
wrt the usual operations of addition and multiplication.

Below we shall assume mainly fwo-argument (provided there is no ambiguity and for simplicity called below binary)
algebraic operations.
Definition 1.2 (commutative binary operation)

Let o be a binary operation defined in A (i.e. n = 2). We shall say that o is a commutative binary

operation if:

* Pawet Kerntopf, born 1938.
T The Free Encyclopaedia, The Wikimedia Foundation, Inc.

““Historically, the concepts of binary (n = 2) and unary (n = 1) were the first to be considered. Nullary (n = 0) operations are fixed
elements of the set A ; they are also known as distinguished elements or constants. In the 20th century the concept of an infinitary operation
appeared, i.e. a mapping o : A* — A, where o is an arbitrary cardinal number.” Encyclopedia of Mathematics, Springer:
https://encyclopediaofmath.org/wiki/Algebraic_operation

¢ Performing that operation on members of the set A always produces a member of that set.
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Vv (o(ab) = o(b,a)).
abeA

Definition 1.3 (associative binary operation)

The binary operation ® defined in A is an associative binary operation if:

vV  (o(o(a,b),c) = o(a,on(b,c))).

abce A

Equivalently, the following additive and multiplicative notasions are also used (for any a,b,c € A):

property \ multiplicative notion additive notion
commutativity | a-b = b-a a+b=>b+a
associativity (a-b)-c=a-{b-c} (a+tb)+c=a+{b+c}
Figure 1.1

As an example, commutative and associative are the following operations: addition and multiplication defined
in N,Z,Q,Rand C.

Example 1.1

Let a + ib and ¢ + id be two complex numbers, where ab,c,d € R and i is the imaginary unit (> = —
1)". We have:

(@a+ib)+(c+id)=a+c+ib + d)
and
(c+tid+(@+ib)=c+a+id+b)=a+c +ib+ d).
In a similar way, we can obtain:
(a + ib) - (¢ + id) = ac +iad + ibc + i’bd = ac + iad + ibc — bd
and
(¢ +1id) - (a + ib) = ca + icb + iad + i’bd = ca + icb + iad— bd = ac + iad + ibc — bd. s

It can be observed that the subtraction operation defined in Z, R and C is not associative. Moreover, there

are operations which are not commutative or associative: the following example operation was given  (Kerntopf
P.1967): h: <n,m> — n™ (n,m € N).

Definition 1.4 (left-sided and right-sided separate operations)

Let ®; and m, be two binary operations defined in A. We shall say that w; lefi-sided separate operation
wrt o, if:

vV (oi1(a, ma(b,c)) = w2(wi(a,b), mi(a,c)))

abce A

And we shall say that ®; right-sided separate operation wrt ; if:

* As an example: (x +1iy)> = x> + 2xyi — y*
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vV  (oi(o2Ab,c),a) = m(wi(b,a), ®i(c,a))).
abce A

Example 1.2 (lefi-sided and right-sided separate operations)

Let ®; and ®> be the two arithmetic operations of multiplication and addition, denoted by: “-° and “+ °,
respectively. And so, the corresponding left-sided and right-sided separate operations are illustrated below (for
any a,b,c € A):

a-b+c) =a-bta-c

(b+c)a

b-a+c-a
Since arithmetical multiplication is commutative, the obtained last two lines are equivalent. o

There were presented in (Kerntopf P. 1967) various examples concerning the above distributivity property. In
particular, the following one.
Example 1.3

Consider the following two binary operations definedin R: a*b =¢ a+ b+ 1 and aob =4 a

+ b + a - b. It was shown that the last binary operation is distributive wrt the first one, but not vice versa: left to
the reader. o

Definition 1.5 (operation closed on a subset of A)*
Let ® be ak-argument operation defined in A. We shall say that © is closedin B < A if:
v o(ai,...,a) €B.

al,...,ak € B
The following example was given.

Example 1.4

Let Ng,No < N be the subsets of even and odd natural numbers. The arithmetic operation of addition in Ng
is closed one (but not in No) whereas the arithmetic multiplication is closed in the above both subsets. o

Definition 1.6 (lefi-, right identity elements)

The elements ep,er € A are said to be left - and right identity elements wrt to the binary operation ® defined
in A if:
vV ((o(er,a) = a) A (o(a,er) = a)).
ae A

Theorem 1.1

Let o be a binary operation defined in A . Assume this operation has at the same time as identity elements e,
and egr . Then we have: e = exr.

Proof:

We have: w(er, er) = er and (e, er) = €L .o

In accordance with the last theorem: er = eL = e (the identity element). Moreover, it follows that any binary
operation defined in a given set may have at most one identity element.

" Equivalently: a subset of A closed under an operation.
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Example 1.5

Let N, Z, R and C be the sets of natural numbers, integer numbers, real numbers and complex numbers.
The identity elements wrt addition and multiplication are 0 and 1: for Z, R, C and N, Z, R, C, respectively.

o

Definition 1.7 (lefi-, right zero elements, zero element)

The elements z ,zr € A are said to be left - and right zero elements wrt to the binary operation ® defined in
A if:
V(@) = z) A (0 z) = ).
ae A

Definition 1.8 (idempotent element)”

The element a € A is said to be an idempotent one wrt to the binary operation ® defined in A if: ®(a, a) =

1.2. Boolean, multiple valued and fuzzy-logic operations

‘There are only two values, 0 and 1, unlike elementary algebra that deals with an infinity of values, the real
numbers. Since there are only two values, a truth table is very useful tool for working with Boolean algebra™
(Plantz R.G.F 2021): here Raspberry Pi is ‘a tiny and affordable computer’ that can be used ‘to learn programming
through fun, practical projects’. Some considerations related to Boolean algebra operations are cited below. A truth
table lists all possible combinations of the values of the corresponding elementary Boolean variables. ‘The resulting
value of the Boolean operation(s) for each variable is shown on the respective row. Elementary algebra has four
operations (addition, subtraction, multiplication and division), but Boolean algebra has only the following three
operations (Plantz R.G. 2021):

AND A binary operator. The result is 1 iff both
operands are 1, othervise the resultis 0.

OR A binary operator. The result is 1 iff at least one
of the two operands is 1, othervise the result is 0.

NOT A unary operator. The result is 1 if the operand
is 0, and vice versa.

Precedence rules: Corresponding symbols:

NOT, AND, OR ", -, + (denotedalso e.g. by: ~, A, Vv respectively).

Figure 1.2 Basic Boolean operations and precedence rules

‘There is a duality between the AND and OR operators, i.e. in any equality, the interchange of AND and
OR along with the constants 0 and 1 do not change this equality’ (as an example, in particular, the interchange of
AND and OR in De Morgan’s laws®).

* There exist some operations such that they can be applied multiple times without changing the result beyond the initial application. The
notion of idempotence was first introduced by Benjamin Peirce (1809 — 1880). See: The Free Encyclopaedia, The Wikimedia Foundation, Inc.

T George Boole (1815 — 1864)
f Robert G. Plantz, born 19309.
$ Augustus De Morgan (1806 — 1871)
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Some basic Boolean algebra properties for manipulating Boolean expressions were also considered (Plantz R.G.
2021). According to the last work, the considered here properties are presented as theorems and easily proved by
using truth tables. The associativity properties and commutativity properties related to AND and OR were first
presented.

Let x,y,z € {0,1}. The associativity and commutativity properties related to the AND and OR operators are
presented as follows (for any x,y,z € {0,1})":

The associativity:

X-(y-2 = (x-y) -z
Xt (y+tz = x+y *z

The commutativity:
Xy =Yy X
Xty = y+x

The used precedence rules are given in Figure 1.3 below.

Operation Symbol Precedence
NOT ' Highest
AND . Middle

OR + Lowest

Figure 1.3 Precedence rules of Boolean algebra operators

Another properties, also considered in (Plantz R.G. 2021) are resumed in Figure 1.4 given below below.

Logical operations Property

AND and OR Each have identity value: x - 1= x and x + 0 = x

AND and OR Each have an annulment value: x - 0= 0 and x + 1 =1

AND and OR Each have a complement value: x-x'= 0 and x + x' = 1

AND and OR Each of them is_idempotent: X -x= x and x + X = x

AND and OR They are distributive: x - (y+z)=x-y + X -z, xty-z= (x+y)-(x+2)
AND and OR Duality: (x-y) = x'+y' and (x+y) =x'-y (DeMorgan’s laws)

" We have three variables each of them assuming two values and hence: 2°,i.e. 8 0 -1- combinations to be checked. As an example see
the proof of the following De Morgan’s law given in the next considerations: (x +y)’ = x' -y’ (there are now 2> =4 0 -1- combinations to
be checked).



16

NOT Shows involution: (x')' = x

Figure 1.4 Basic properties of Boolean algebra operators

Example 1.6 (distributivity of OR wrt AND)

The proof of the following equality: x+y-z = (x +y)-(x+z) isillustrated in Figure 1.5 below. It can be
observed that the left and the right sides of this equality coincides in any of the 2° = 8, 0 -1- combinations related
to x,y and z. o

X y z Xty | xtz |y-z | (xty)-(xtz) | X+y-z
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1
Figure 1.5

Example 1.7 (DeMorgan’s laws)

The proof of DeMorgan’s law: (x +y) ' = x' -y’ is given in Figure 1.6 below. The proof of the second
DeMorgan’s law,i.e. (x-y)' = x'+y' issimilar: left to the reader. o
X |y | x|y | xby |Gy
0 1 1 0 1 1
0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 1 0 0 1 0 0
Figure 1.6

And finally, we have the following values, called identity and annulment ones, related to the above two AND
and OR operators: x-1 = x, x+0 =x and x-0 =0, x+1 = 1. Itcan be observed that only some of
above cited properties are similar as in the elementary algebra.

In general, the above two Boolean operations AND and OR can be interpreted as a particular case of the
following (more general) two operations: minimum and maximum respectively. Some considerations related to
multiple valued operations are given below.

Many-valued logics are non-classical logics. But they are similar to classical logic because they accept the
principle of truth-functionality, i.e. the truth of a compound proposition is determined by the truth-values of its
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component propositions (and so remains unaffected when one of its component propositions is replaced by another
having the same truth-value). Here a fundamental fact is that the above logics do not restrict the number of truth-
values to only two, The main systems of many-valued logic often come as families, which comprise uniformly
defined finite-valued as well as infinite-valued systems such as: Lukasiewicz’s logics, Gddel’s logics, t-norm
related systems, 3-valued systems, product systems, Dunn/Belnap’s 4-valued system, etc. (Gottwald S. 2000)". As
an example, Lukasiewicz’s systems L, and L. were introduced by means of the following two truth degree

m-—1

sets: W =gdr {L/ kel{0l,...m—1},m=> 2} and Wo =¢ [0,1] = R+ (the set of all nonnegative real numbers),

& strong conjunction: p & q =¢r max{0,p+q—1}
A weak conjunction: p A q =4t min {p,q}
v strong disjunction: p ¥ q =4¢ min{l.p+q}

v weak disjunction: p v q =d¢r max{p,q}

~ negation: ~p =4t 1 — p

= implication: p = q =4¢r min{l,1 - p +q}

Figure 1.7 Logical connectives

The equality relations between the strong and weak conjunction are illustrated in the next figure below.

p&q=parq |[for p=0 or q=0
p&q=pnaq | for p+q >1 and max{p,q} = 1
p&q#paq |for p+qg <1

Figure 1.8 The strong and weak conjunction relations
Example 1.8 (equality relations)

Let L =4 max{0,p+q—1} and R =4 min {p,q}. where p,q < [0,1]. We have:

(1) Assumethat: p = 0 or q = 0. Asanexample, for p =¢ 0 (since ¢ < 1) we can obtain: L = 0
R. Andhence: p&q = paq .

(2) Let pq>0,p+q>1 and max{p,q} = 1. Wehave: L = R. Asanexample, for p = 1 and q
0.6 we can obtain: L = 0.6 = R..

(3) Assumenow p +q < 1:eg p=0.5, q= 04 Wehave: L = max{0,05+04—-1} = max {0,
—0.1} =0 and R = 04. Andhence: L # R.o

It is assumed that the symbol of negation binds more strongly than the remaining symbols. As an example, an
algebraic interpretation of De Morgan's laws is given below (the corresponding proofs are left to the reader: here
the equals sign is used to denote equality between the corresponding left and right sides).

(i) ~(p&q =~p ¥~q,

* See Part I of this book.

T Jan Lukasiewicz (1878 — 1956). The first Lukasiewicz’s system (a ternary logic system with W3 =g {0, 1/2, 1}) was given in 1918: usually
0, 1/2 and 1 are denoted by the logical constants F, U (unknown) and T, respectively.
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(i1) ~(p ¥ q=~p&~q,
(ii1) ~(pArqQ =~pv~q and
(iv)  ~(pvag=~pAr~q.

“The basic fuzzy propositional logic is a relatively young discipline, both serving as a foundation for the fuzzy
logic in a broad sense and of independent logical interest, since it turns out that strictly logical investigation of this
kind of logical calculus can go rather far (Hajek P. 1998). It is broadly accepted that t-norms (dually, t-conorms)
are possible truth functions of fizzy conjunction (of fuzzy disjunction). The best-known candidate for fiizzy negation
is the Lukasiewicz’s negation x' =4 1 — xX. However, some other notions, e.g. such as Sugeno’s fuzzy negation
or Yager’s fuzzy negation are also applicable (Bronstein I.N. et al. 2001). The fuzzy implication connective is
sometimes disregarded but is of fundamental importance for fuzzy logic in the narrow sense. A straightforward but
logically less interesting possibility is to define implication from disjunction and negation or conjunction and
negation using the corresponding theses of classical logic T 1.15 and T 1.19, respectively (see Subsection 1.3).
Such implications are called S-implications”. In fact, more useful and interesting are the so-called R-implications
(any such implication is specified as a residuum with respect to the used t-norm)’. A more formal treatment is
omitted: see Part I of this book: Fuzzy logic, p.72.

2. Algebraic systems

The notion of an algebraic system is ‘one of the basic mathematical concepts and its general theory has been
developed in depth. This was done in the 1950s, and the work took place on the interface between algebra and
mathematical logic’.” This notion is first presented. Systems with one binary operation are next considered. The
law of deletion is also given. And finally, such algebraic systems as: Boolean, multiple valued and fuzzy algebraic
systems are also considered.

2.1. Algebraic system definition

The notion of an algebraic system is defined as follows (Kerntopf P. 1967).

Definition 2.1 (algebraic system)

Algebraic system is an ordered system Ol =4 (A ; aj, a2, ... ,an ; 01, 02, ..., Om), Where: A is an arbitrary set,
known as the set of system elements; aj, a,, ... ,a, are some distinguished elements of A, i.c. the so-called constants
of the above algebraic system (the last set of constants may be empty) and oj: A% —» A (j=1,2, ..., m) are the

system operations.

The above algebraic system @ is said to be finite if the set of system elements A is finite?.

Definition 2.2 (algebraic system type)

" In accordance with T 1.19 and CE (the law of transposition or contraposition of equivalence) we have: p = q < ~(p A ~q). Let
e.g. X' =¢ 1 — x be the Lukasiewicz’s fuzzy negationand x ® y =¢ min{x,y} be the Zadeh’s t-norm. Hence, the following S-implication
can be obtained: x = y =41 — min{x, 1 — y} = max{l —x,y} (the logical value of this implication: the proof of the last equality is left to
the reader). Obviously, it is possible also the use of other fuzzy negations and / or t-norms. It can be observed that sometimes the above two S-
and R-implications may coincide, e.g. in £,-BL (and hence in £-BL, assuming Yager’s fuzzy negation: see Corollary 2.4 of this subsection).

" Encyclopedia of Mathematics: https://encyclopediaofmath.org/wiki/Algebraic_system.

£ The above distinguished elements are sometime treated as 0 - argument operations. Moreover, there are sometime introduced also relations
defined in A or partial operations: left to the reader;
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The type of A , in short T(Q), is defined as follows: (0,0, ..., 0, ni, no, ..., ny).

In accordance with the last definition: the number of 0’s corresponds to the number of constants and n; - to
the number of arguments of o; j=1, 2, ..., m).

Let T(o) be thetype of @ and B be another algebraic system. We shall say that o0 and P are similar
algebraic systems iff T(o) = T(B).

Definition 2.3 (algebraic subsystem)

Let o= (A;ai,a...,an;01,0...,0m) begiven and P =4 (B:aj, a, ...,a.;01', 07, ...,0m'} beanother
algebraic system. The system B is said to be a subsystem of O, if: B < A, oj' are restricted to (the subset)” B
c A and o areclosedin B (foranyj € {1,2,...,m}).

It can be observed that any subsystem of @ is similar to Ot and having the same constants as in ol . By R
=¢r {Ol}kea we shall denote below the family of all algebraic subsystems related to O . The following two

definitions were also introduced (Kerntopf P. 1967).

Definition 2.4 (algebraic system inclusion)
Let O, 0 € R .We shall say that the subsystem Qs is included in O ,ie. Os C O if As < A.

Definition 2.5 (algebraic subsystem intersection)

Let B # @ and Rp =¢ {Op} pcrca < R be the family of all subsystems of @ such that B < A, .

The intersection of the subsystems belonging to Rp is defined as follows:

(N Apsana,...,8150,00...,0m) € R .
pel

For simplicity, the last intersection was denoted by M @, : is the smallest subsystem of O. whose set of

. pel
elements contains B (the set of generators).

Example 2.1 (algebraic subsystems)

Consider the following algebraic system O =4 ({a, b, c}; 0), where ° 0 ’ is a binary operation defined in
accordance with Figure 2.1 given below.

oo |o
IS ESES E
o |o|o |
oo o

Figure 2.1 An example algebraic system

Subsystems of o are the following ones (fork=0, 1, ..., 7}: Ok =ar (Ax;0®), where: Ay = @, A =
{a}, As = {b}, A3 = {c}, As = {a,b}, As = {ac}, As = {b,c} and A; = {ab,c}: corresponds to the sum

"i.e: dom(of) =¢ dom(o)) N B



In accordance with Example 2.1, e.g. the algebraic subsystem Qs =4t (Aq ; 0®) is illustrated in Figure 2.2
below: by 0® it is denoted the truncation of ‘0’ to As.Obviously: Ol — O .

o® b ¢
b b b
[ b ¢

Figure 2.2 The algebraic subsystem Ol .

2.2. Algebraic systems with one binary operation

Definition 2.6 (groupoid)
Let Q. be an algebraic system. This system is said to be a groupoid if T(Q) = (2)".

Definition 2.7 (semigroup)

A groupoid with an associative binary operation.

Definition 2.8 (monoid)

A semigroup with an identity element’.

Definition 2.9 (inverse element)

Let o be a binary operation defined in A , having an identity element ¢ and a € A. We shall say that a' is
an inverse element to a wrt o if':

3 (aoa'=e=2aoa).
a'ceA
Theorem 2.1

Let o be a binary operation defined in A , having an identity element e . Assume that o is an associative
operation. Then, there is no an element of A having more than one inverse element.

Proof:

The proof is indirect. Let a' and a" (a' # a") be two different elements of A. Since o is associative, we
can obtain: (a'oa)oa" = eoa" = a" and a'o(aoa") = a'oe = a'. And hence: a' = a". Thisisa
contradiction with our assumption. o

Theorem 2.2

Let o be an associative binary operation defined in A , having an identity element ¢ . Assume that a',b'e
A are the corresponding inverse elements to a and b in A wrt o. Then b'oa' is the inverse elementto aob

B}

In accordance wich T 2.2, it is necessary to be proved the following implication:

" As an example, a groupoid is the system (R , +), where © + ¢ denotes the usual operation of addition (in fact, the last grupoid is a group:
having an associative binary operation, identity and inverse elements).

T Called also ‘neutral element’ of a binary operation: an element of the set, leaving unchanged any other element of this set under operation
with the firstone,e.g. x +0 = x =0+ x or x-1 =x =1 -x (here “+’ and ‘-’ denotes arithmetical addition and multiplication,
respectively).
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(aoa'=e =2aoa)a(bob'=e =Db0b) = (boa)o(aob) =e¢ = (aob)o(b' oa'))
The proof of the last implication is based on Definition 2.9: left to the reader.

Definition 2.10 (group)”

Monoid having an inverse element a' for any a € A .

Definition 2.11 (inverse operation)

A 3! 3! ((aox =b) A (yoa = b)) = (o hasaninverse operationin A).
a,be A x y

The notion of a group can be equivalently introduced by means of one of the next two definitions (Kerntopf P.
1967).
Definition 2.12 (group)

Monoid with a binary operation having an inverse operation.

Definition 2.13 (group)

An algebraic system O =4 (A ;e;01,02) having atype T(a) = (0, 1,2) and satisfying the following two
conditions:

(1) The system (A;e;o02) isamonoid and

(i) V (02(x,01(x)) = ¢ = 02(01(X),x)).
XxeA

The above considered algebraic systems (see: Definitions: 2.6, 2.7, 2.8 and 2.10) are said to be abelian’ ones if the
corresponding binary operation used here is commutative.

2.3. Deletion rule

Definition 2.14 (left-sided deletion rule)

¥V ((aob =aoc) = (b =¢))
ab,ce A

In a similar way there is introduced the notion of a right-sided deletion rule and a two-sided deletion rule (in
short: deletion rule). Obviously, if o is a commutative binary operation, the one-sided deletion rule becomes two-
sided onet.

Theorem 2.3

Let o be an associative binary operation defined in A , having an identity element ¢ . Then, the two-sided
deletion rule is satisfied for any a € A having (as an inverse element) a', i.e:

V ((aob =aoc) v ((boa=coa)) = (b =¢)).
bece A

* The notion of a group was first introduced by Evariste Galois (1811 — 1832).

T Niels Henrik Abel (1802 — 1829): abelian group, also called a commutative group, is a group in which the result of applying the
group operation to two group elements does not depend on the order in which they are written. The concept of an abelian group underlies many
fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. In general, any group is isomorphic to a group of
permutations (Arthur Cayley 1821 — 1895).

i As an example, this rule is satisfied in (R ,+),butnot in (R, -): zero cannot be abbreviated.
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Proof:

Let aob = aoc. Then: a'o(aob) =

a'o(aoc). And hence: (a'oa)ob = (a'oa)oc.Since a'oa = ¢
then: eob =

e o c. And so: b =c. The remaining proof (assuming: boa = coa) is left to the reader. o

Corollary 2.1

The two-sided deletion rule is satisfied in any group. o {T 2.3}

2.4. Lattices

Definition 2.15 (lattice”)

Lattice is an algebraic system £ =4 (L ; 01, 02) having atype T(L)

= (2,2) and satisfying the following
three conditions:

(1) o1 and o0y are commutative binary operations,

(i) o1 and o, are associative and
(iii) o1 and o> satisfy the laws of absorption, i.e:

Vo (0i(x, 02(x,y)) = x = 02X, 01(x,y)) ) -
X,y € L

Usually, the above two binary operations are denoted by: u =¢ o and n =¢ 02, respectively. And

hence: £ =4 (L;u,n).Moreover, the above three conditions: (i), (ii) and (iii) are represented as follows:

V((Xuy=yux) A (Xn y=yn X))
X,y € L

V (xu(yuz) =(xXuyuz)a (xn(ynz) = (xny)nz)
x,y,z € L

V (xXnEuy)=x=xu((Xny).
X,y € L

Example 2.2 (powerset diagram)'

Let A =4 {a,b,c}. The power set diagram of A (ordered by ‘<’

{a,b ,CJ\B
QC} {b.c}
a} { {C/

N

Figure 2.3

) is illustrated in Figure 2.3 below. o

~—

* Also known as ‘structure’: Here, for any pair of elements in L there exist a smallest upper and a largest lower bounds.

T Another interesting examples were also presented (Kerntopf P. 1967): left to the reader.
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Theorem 2.4

VvV (x is an idempotent element wrt u and n).
xel

Proof:

Consider the above condition (iii),i.e: X n (xuy) = X = X u (x ny). Since X,y € L may be arbitrary, let
y =4t X n y.Inaccordance with (iii): x = x n (xuy) = x n (xu (X ny)) = x n x.Ina similar way by
assuming y =¢f Xuy wecanobtain: x = x u (X ny)= xu (XnXuy)) =XuUX.o

Theorem 2.5
Let £ =4 (L;u,n) bealattice. Forany x,y eL: xuy =y < xny=Xx.
Proof:
Assume that xuy =y. Then: x ny =xn (Xuy) = x.Letnow x ny = x. Then: xuy = (x
ny)uy =Yy.o
Theorem 2.6

Let £ =4 (L;u,n) bealattice and ‘< ‘ be a binary relation defined in L as follows:

V x<yer (xuy=y v xny=x))).
xy € L

Then ‘< ° is a partial order relation defined in L such that: L {x,y} = x uy and M {xy} =xny .

3

And vice versa, if ‘< © is a partial order relation defined in L such that: any two-element subset {x,y} of L

have as a smallest upper bound x u y and a largest lower bound x n vy, then £ is a lattice.

Proof (part1):

Let £ =4 (L;u,n) bealattice and ‘< ‘ be a binary relation defined in L as follows:

V x<yea (xXuy=y).
X,y € L

In accordance with Theorem 2.4, forany x € L: x u x = x. And hence, ‘5 ° reflexive. i.e: V (X < X).

xel
Assumenow: x X y and y < x,where: X,y € L.Then: x u y =y and y u x = x. Since ‘" is
commutative then: x = y. Hence, ‘< ‘ is weak antisymmetric’. Letnow x < y and y < z (X,y,z €L).
Hence: x uy =y and y u z = z Since ‘v “isassociative: z=yuz=Xuy)uz=xu(yuz =

‘

X u z. Then: x < z.Andso, ‘< “iS transitive.

In accordance with the last considerations, the above binary relation ‘=< ° is at the same time reflexive, weak
antisymmetric and transitive. And hence, this relation is a partial order on L. Next, it is necessary to show the
existence of a smallest upper bound and a largest lower bound for any pair of elements belonging to L.

Wehave: X uy =xu (Xuy) and X uy=yu (Xuy)Hence: x < xuy,y=<xuy and X
u y is the upper bound of {x,y}. Letnow z € L be another upper bound for {x,y}. Then: x < z and y <

" The used here designations correspond to the notions of supremum and infimum (from latin: supremus and infimus, respectively).
T This proof consists of two parts: see (Kerntopf P. 1967).

' In general, a binary relation p defined in X is weak antisymmetric if:

¥V ((xpy) A (ypx) = (x=y)): See Definition 5.25 of Part I.
xy € X
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z.Hence: (X u y)uz = x u(yuz) =xuz=zHence: x uy =<z and x u y isthe smallest upper
bound for {x,y}.

In a similar way it can be shown that x n y isthe largest lower bound for {x,y}. In accordance with T 2.5: x
Uy =y & Xny=X.

Proof (part 1):
Letnow L be a given set, * be a partial order defined in L. Assume that for any two element subset {x,y}
of L thereexist x u y and X n 'y (i.e. the smallest upper and the largest lower bounds, respectively) wrt ‘<N

Andhence: x u y=yux and X ny =y nXx

Assumethat s =¢¢ y uz and t =¢¢ X us = x u (y u z). Andhence: s>y, s>z, t> X and
t> s.Then: t >y and t > z. Andso, t is an upper bound for {x,y, z}. If r is another upper bound for
{X,y,z},then r > X, r > y,r > z Hence, r is an upper bound for {y, z}. Since s is the smallest upper bound
for {y,z} then r > s. Then r is an upper bound for {x, s}. However t is the smallest upper bound for {x, s},
hence: r > t. And so, we have: t = x u (y u z) is the smallest upper bound for {Xx,y,z}.In a similar way, it
can be shown that (x u y) u z is the smallest upper bound for {x,y, z}. Since the smallest upper bound is
unambiguously determined then: x u (y u z) = (X u y) u z In a similar way it can be shown that: x n (y n

z)=(Xny)n z

Assumenow p =¢¢ x uy and q =¢¢ X np= xn (Xuy)Then: p =x,p >y, q=<X q= p.Since
x ¥ x  then x is alower bound of {x,p}. However q is the largest lower bound of {x,p}. And hence, X
< q. By assumption q < x andhence:x = q = x n (x u y). Ina similar way, it can be shown that: X u
(x n y) = x. This way, it was shown that in a partial ordered set L, such that for any two-clement subset {x,y}
of L there exist a smallest upper and a largest lower bounds, the above three conditions: (i), (ii) and (iii), given

in Definition 2.15 are satisfied. And hence, £ is a lattice. o

In accordance with the last theorem, lattices can be presented graphically by Hasse’s diagrams' as it is shown
in the above Figure 2.3 (or e.g. in Figure 5.5 of Part I of this book).

Definition 2.16 (sublattice)

An arbitrary algebraic subsystem? of &£ .

In general, sublattices can be generated only by some subsets of L such that: along with each pair of elements
x and y they also include: X ur y and x ng y.

Example 2.3 (sublattice)

An example of a sublattice (wrt the lattice of Figure 2.3) is given in Figure 2.4 below (shown by read colour). o

{a,b ,c]\
l({c} {bic}
{a} { {C/

Figure 2.4

3

“The partial order relation ‘< ‘ defined in L is at the same time reflexive, weak antisymmetric and transitive.

T Helmut Hasse (1898 — 1979)

¥ See Definition 2.3.
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Theorem 2.7"

Let £ =4 (L;u,n;3>) bealattice’. The following semidistributivity rules are satisfied:

i) V (xn(yuz) > (xny)u(xnz) and

x,y,z € L
(i) V (xu(ynz) < xXuy) n Xu 2).
x,y,z € L
Proof:
Since yuz >y and yuz > z then xn (yuz) > xny and xn (yuz) > xn z And hence X

n (yuz) isanupper bound for {xn y,xn z}. Then: xn (yuz) > (xny) u (xn z). The proof of (ii) is
similar: left to the reader. o

We shall say that £ is semimodular if the following condition is satisfied:
V (x 22 = xn(yuz) > Xny)uz).

X,y,z € L

Corollary 2.2

The last condition is satisfied in any lattice £ = (L;u,n;>).o

Definition 2.17 (modular lattice)

L = (L;u,n;*) isamodular ( Dedekind’s* ) lattice if:
V(x>z = xn(yuz)=xny)uz).
X,y,z € L
Example 2.4 (modular lattice)

Consider lattice given in the above Figure 2.3. For example, let x =4 {b,c}, y =ar @ and z =4r {b}. Assume
that n and u correspond to the set operations: n and u , respectively. Since {b,c} > {b} then {b,c} n (@
v {b}) = {b} = ({bc}n T} U {b}.o
Theorem 2.8 (lattice distributivity)

Let £ = (L;u,n) bealattice. The following property is satisfied (for any x,y,z € L):
xn(yuz)=xny) u (xnz) iff Xu(ynz) = Xuy) n (Xuz).

Proof:

Assume that: xn (yuz) = (xn y) u (xn z). Then, in accordance with Definition 2.15 (i — iii) we can obtain
(for any x,y,z € L):

xu (ynz) (xXu(xnz))u(ynz)

= Xu({(xnz)u(ynz))

= xXxu{(znx)u (zny))

= X u(zn Xuy))

(xn (xuy) u (zn (xuy))

" The most of the considerations given below are under (Kerntopf P. 1967).
T Prowided there is no ambiguity and for simplicity, the partial order relation is some time also introduced in the lattice definition.

 Julius Wilhelm Richard Dedekind (1831 — 1916)
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(xuy) nx)u (xuy) n z)
= (Xuy)n (Xuz).o
The proof of the opposite implication is similar: left to the reader. In accordance with T 2.8, the following
definition is introduced.

Definition 2.18 (distributive lattice)

L is distributive if it is distributive wrt the one of its wo binary operations (i.e. u or n . respectively).

Corollary 2.3

If £ is distributive then &£ is modular.

Proof:

Foranyx,y,z € L: xn (yuz) = (Xny)u(xnz). Let x > z. Then xn z = z And hence, in accordance
with Definition 2.17, forany x,y,z € L: xn (yuz) = Xny)uz.o

Theorem 2.9
L isdistributive < V (xny =xn2z) A (Xuy = xXuz) = (y = 2)).
x,y,z€ L

Proof T 2.9a:

Let £ be distributive, xny = xn z and xuy = xuz (forany x,y,z € L). We have:

y = yu(ynx)
= yu (znx)
= (Yyuz)n(yux)
= (Yyuz)n(Xuz
= zn (Xuy)
= zn (zux)
= Z.o

Proof T 2.9b:

Assume now x,y,z € L suchthat: xny = xnz xuy = xuz and y=#z {aip}". If £ was distributive

then: (xny)uz = xXuz)n(yuz) and (Xny)uz = (Xn z)uz = z Onthe otherhand: (xuz)n(yuz) =
= (xXuy)n(yuz) = Xuy)n(zuy) = (xnz)uy = (xny)uy = y.And hence:y=z.- {contr’.}

Let £ = (L;u,n;>) bealattice. The smallest upper and largest lower bounds for L (if they exist) we shall
denote by Az and Ve or by A and V (if £ is known) , respectively. The last lattice is then denoted by: £ =
(L;A,V;u,n;»). If £ isfinite,ie.|L | e N then A and V always exist. In general, if A and V exist

then forany x e L: A < x < V. Andhence: xu/AN=x, xuV =V, xnA=A and xnV =x. Moreover,
if xuy = /A then x =y = A.Inasimilar way,if xny = V then x =y = V.

Definition 2.19 (complete lattice)

£ = (L;u,n;*) iscomplete < V F(Uul=a) A(Ml=b)).
@#1cL abel

Corollary 2.4

" assumption(s) of indirect proof

T contradiction
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If &£ is finite then £ is complete. If £ is complete then A and V always exist. o

It can be shown (proof by induction) that the following two properties are satisfied in any distributive lattice
£:
n n

xu (My) = N (xuyi)
i=1 i=1

n n

xn(Hy) = U (xnyi).
i=1 i=1
The last two rules are said to be nonfinite ones if instead of n € N it is used the symbol ‘o0’.
Definition 2.20 (element’s complement)
Some element ¢ € L is said to be a complementof ae L in £ iff auc=V and anc=A\.
In general, a given element of L may have not a complement, may have exactly one complement or also may

have many complements. Obviously, if ¢ is a complement of a then a is a complement of c. Moreover, V is

the exactly one complement wrt /A and vice versa.

Theorem 2.10

If £ =(@L;A,V;u,n) isdistributive then for any x € L there exists at most one complement x'.

Proof:

Let x and y be two different complements for a e L: aux =V, anx=A and auwuy=V,
any= A {aip}. Thenwecanobtain: y =ynV =yn(@ux)=(ynau(ynx)=Au(ynx)=
xnauGxny)=xn(auvy)=xnV = x.o {contr}

In general, in a given distributive lattice some elements of L may not have complements. According to the last
theorem, any a € L may have no more than one complement a'." Moreover some elements may not have
complements.

Let a' be a complement of a € L. Then a jest the complement of a". Since £ is distributive then a is the
only one such complement. And hence, the following theorem is satisfied.

Theorem 2.11
If £ =@L;A,V; u,n) isdistributive and a' is complement of a then there exists a" and a"= a.o

Theorem 2.12

Let £ be distributive and a, b e L. If there exist the complements a' and b' then there exist also the
complements (a u b)' and (a n b)' suchthat: (aub)'=a"nb'and (anb)'=2aub'

" Provided there is no ambiguity and for simplicity, e.g. the complement of a instead of @ is denoted by a', i.e. a' =¢ @ . In particular:
A' = V (and vice versa).



Proof:
We have:

@ub)n@nb)=(ananb)ubnanb)=Anb)uAna)=AuA=A,

@ubu@nb)=(ubua)n (@ubub)=NMub)nMua)=Vn V=V,

The proof for: (a n b)' = a' u b' is similar (left to the reader). o

According to T 2.12, the above two equalities,i.e. (a u b)' =a'nb'and (anb)'=a u b' areknown
as De Morgan’s laws".

Corollary 2.5

The subset of all elements of £ = (L; /A, V; u,n) having complements together with u and n truncated

to this subset is a sublattice of £ . o

Theorem 2.13

Let £ be distributive and x,y € L have complements x'and y'. Then:
i x<ye&ex >y and
(i) x<xyoexny'=N o xXuy=V.

Proof:
i x<y & XxXuy =y
@X'ny'=y'
s X =yl
(i) x <y = xny'=xEny)ny'=xn(yny)=xn/A=A,
xny = A = x=xnV=xnuy)=Eny)uExny)= Xny)uA =xny.
And hence: x < y.o

Definition 2.21 (complemented lattice)

We shall say that £ = (L; A, V; u,n) is complemented if every element of L has a complement.

Definition 2.22 (Boolean lattice / Boolean algebra)

A distributive lattice which at the same time is complemented.

In accordance with the last definition: since £ is distributive then every element may have at most one
complement. Since £ is also complemented then every element may have at least one complement. As a
consequence, in Boolean algebra every element has exactly one complement. And hence, the complement in
Boolean algebra is accepted as one argument operation. Moreover, by definition, the elements A and V are also
included in any such algebra. The last algebra is denoted as follows: B =4 (B; A,V ;u , n;"). Another.
equivalent definition is the next one.

Definition 2.23 (Boolean algebra’)

An algebraic system (B; A,V ;u, n;") oftype (0,0,2,2,1) such that:

* Augustus De Morgan (1806 — 1871)
T George Boole (1815 — 1864)
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(1)  (B; u, n) isadistributive lattice,
(i) A (V) is the identity element for u (n) and zero element for n (u),

(i) V (bub =V)A (bnb =A)
beB

The following properties are satisfied in any Boolean algebra :

N =V V= A ()]
au V =V an /A=A )
au N =a anV =a @3)
aua =V ana =A )

a'' = a 5)
aua=a ana=a ©6)
(aub)y'=anb (anb)'=aub @)
aub ="Dbua anb =">bbna ®)
au®uc =(@ub uc anodnec =(@nb nc )

au®dnec =(@ubnuwuc an®uc=(@nbu@nec (10)

The above equalities are usually accepted as axioms of a Boolean algebra (described as in Definition 2.23). A complete
axiomatic system is also the following one: {(3), 4), (8), (10)}. However, the corresponding proofs should be more
difficult. As an example, (2%, @,A;u,n,") isa Boolean algebra” (Kerntopf P. 1967).

2.5. Multiple valued and fuzzy algebraic systems

Multiple valued and fuzzy algebraic systems were introduced as generalisations of the concept of Boolean
algebra. Some informations concerning these two systems are given below. Multiple valued systems are first briefly
presented.

Multiple valued systems

The notion of a multiple valued algebra was first introduced by Chang C.C." (1958): ‘So because of my own
shortcomings in following proofs in Polish notation during a seminar held by Rosser on the completeness of
Lukasiewicz! axioms for infinite valued propositional logic, MV — algebras came to be ... It occurred to me that
the approach used in the proof of completeness of the two valued propositional logic via the Boolean (Lindenbaum
/ cnown also as: Lindenbaum — Tarski®) algebra of equivalence classes of formulas and the Boolean maximal
ideal theorem might be another way to do what Rosser did, but avoiding syntactical manipulations of formulae in
Polish notation. This was the beginning of MV - algebras. Chang found a proof of the completeness of the ¥, -
valued logic (developed by Lukasiewicz and Tarski). See also: (Rose A. 1956). Since then MV - algebras have
found increasing interest. There were also introduced finitely additive measures (called states) on MV - algebras
with the intent of capturing the notion of ‘average degree of truth’ of a proposition Mundici D. (1995). In
particular, the following definition was introduced in (Barbieri G. and Weber H. 2002).

Definition 2.24 (MV- algebra)

* See Part I of this work.

T Chen Chung Chang (1927 — 2014): https://www.ams.org/journals/tran/1958-088-02/S0002-9947-1958-0094302-9/S0002-9947-1958-
0094302-9.pdf

f Jan Lukasiewicz (1878 — 1956)
$ Adolf Lindenbaum (1904 — 1941), Alfred Tarski (1901 — 1983)
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An MV-algebra (L,+,,0,1) is a commutative semigroup with 0,1 and a unary operation ’:L — L
which satisfies the following axioms:

L) x+1=1

(L2) )’ = x

L3) 0 = 1

L4) x+y)+y = (x+y) + forevery x,y € L.

The following definitions were also introduced: x <y iff x>+ y =1 and yAx =4 (x + y’). And hence,
whenewer x < y the following axioms were used:

Pl x<x+y

P2) x<y<z+x = yAx <z
(P3) y = yAx + x whenever x <y
P4) x =x.

In general, any MV - algebra ‘is an algebraic structure with a binary operation @, a unary operation — , and
the constant 0, satisfying certain axioms. MV - algebras are the algebraic semantics of Lukasiewicz’s logic; the
letters MYV refer to the many-valued logic of FLukasiewicz. MV - algebras” coincide to the class of bounded
commutative BCK algebras’ . In accordance with the last considerations, the following definition was also
introduced.

Definition 2.25 (MV- algebra)*

An MYV - algebra is an algebraic structure (L, ®,— , 0), where: L # @ isaset, @ is a binary operation on
L, — 1is aunary operation on L and 0 is a constant denoting a fixed element on L , such that the following
identities are satisfied (for any x.y,z € L):

1) x@y)y®z = x @ (y @ 2)

2 x®0 = x

B) x@y =y dx

4 - —=x =x

S x® -0 ==0

6 ~(~x®NOyY = ~(~y O Ox,

An MV — algebra can be equivalently defined as a ‘prelinear commutative bounded integral residuated lattice

(L,A,V,®,=,0, 1) satisfying the following additional equivalence: x vy < (x = y) = y' (Hajek P™.
1998): the last equivalence corresponds to the following thesis: pvq < (p = q) = q (the corresponding two

" Known also as Lukasiewicz - Moisil algebras: However, in 1956 Alan Rose discovered that for n > 5, the Lukasiewicz-Moisil algebra
does not model the Lukasiewicz logic

T https://en.wikipedia.org/wiki/MV-algebra. BCI and BCK algebras are algebraic structures, introduced by Imai Y., Iséki K. and Tanaka S.
in 1966, e.g. see: Iséki K. and Tanaka S., An introduction to the theory of BCK-algebras. Mathematica Japonica, Japanese Association of
Mathematical Sciences, vol. 23 (1978) 1 —26.

https://en.wikipedia.org/wiki/MV-algebra: provided there is no ambiguity instead of A, for convenience, the set of elements is here denoted
by L.

¥ The implication binds more strongly that equivalence.

** Petr Hajek (1940 — 2016)
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proofs are indirect: left to the reader). According to the first three axioms (L, @, 0) is a commutative monoid (see
Definition 2.8).

Example 2.5 (two-element MV — algebra)

The two - element Boolean algebra {0,1}, with @ coinciding with Boolean disjunction and — with Boolean
negation. By adding (as an axiom): x @ x = x we can obtain the axiomatisation of Boolean algebra”. o

Another algebraic system was introduced in the 1940s by Moisil?, now known as Lukasiewicz-Moisil algebra
(“in the hope of giving algebraic semantics for the n-valued Zukasiewicz logic’). However, it was discovered that for n
> 5, the last algebra does not model the Lukasiewicz logic. ‘For the axiomatically more complicated (finite) n-
valued Lukasiewicz logics, suitable algebras were published in 1977 by Revaz Grigolia and called MV,-
algebras. MV ,-algebras are a subclass of LM,-algebras, and the inclusion is strict for » > 5. In 1982 Roberto
Cignoli published some additional constraints that added to LM,-algebras to produce proper models for n-valued
Fukasiewicz logic. Cignoli called his discovery proper Lukasiewicz algebras’ (Cignoli R. 1982). There were next
introduced ‘two chains of unary operations, as a key in establishing many connections between these algebras and
n-valued Lukasiewicz-Moisil algebras’ (Iorgulescu A. 1999).

Fuzzy algebraic systems

Fuzzy algebra is an important chapter of fuzzy set theory. As an example, some properties of fuzzy algebraic
systems, e.g. such as: Lie algebras and superalgebras, interval-valued fuzzy Lie ideals, etc., were studied in
(Akram M. 2018). In particular, a Lie algebra’ is ‘a vector space g together with an operation called the Lie
bracket, an alternating bilinearmap g x g — g , (xy) — [x,y] that satisfies the Jacobi® identity (a property of a
binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result
of operation: ‘map’ is an abbreviation of mapping)’.

The Smarandache function w(n) is ‘the function first considered by Lucas E. (1883), Neuberg J. (1887) and
Kemper A.J. (1918), and subsequently rediscovered by Smarandache™ (1980) that gives the smallest value for a
given n € N atwhich n/p(n!) (i.e. n divides p(n!), e.g. 8 is the smallest natural number that divides 4!

(= 1-2-3-4)"". Smarandache fuzzy algebra is briefly presented below.

‘Smarandache algebra, like its predecessor, fuzzy algebra, arose from the need to define structures which were
more compatible with the real world where the grey areas mattered. Lofti A Zadeh®®, the father of fuzzy sets,
remarked that: "So, this whole thing started because of my perception at that time, that the world of classical
mathematics - was a little too much of a black and white world, that the principle of the 'excluded middle' meant
that every proposition must be either true or false. There was no allowance for the fact that classes do not have
sharply defined boundaries." So, here is this book, which is an amalgamation of alternatives’ (Vasantha Kandasamy
W.B. 2003). There was studied in the last book ‘the subject of Smarandache Fuzzy Algebra. Originally, the
revolutionary theory of Smarandache notions was born as a paradoxist movement that challenged the status quo of
existing mathematics. The genesis of Smarandache Notions, a field founded by Florentin Smarandache, is alike to
that of Fuzzy Theory: both the fields imperatively questioned the dogmas of classical mathematics. Despite the fact
that Fuzzy Algebra has been studied for over fifty years, there are only two books on fuzzy algebra. But both the
books do not cover topics related to fuzzy semirings, fuzzy near-rings etc. so we have in this book, two parts: In
Part 1 we have recalled all the definitions and properties of fuzzy algebra. In Part II we give Smarandache fuzzy

* https://en.wikipedia.org/wiki/%C5%8 lukasiewicz%E2%80%93Moisil_algebra
 Grigore Constantin Moisil (1906 — 1973)

f Marius Sophus Lie (1842 — 1899)

$ Carl Gustav Jakob Jacobi (1804 — 1851)

** Florentin Smarandache, born 1954

"t Wolfram Math World (https:/mathworld.wolfram.com/SmarandacheFunction.html)

¥ Lotfi Aliasker Zadeh (1921 —2017)
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algebraic notions. This is the first book in fuzzy algebra which covers the notions of fuzzy semirings and fuzzy
near-rings though there are several papers on these two concepts’.

Some applications of Smarandache fuzzy algebraic structures were given in the last Chapter 7 of this work
(Sections 7.1 and 7.2). And finally, some research problems (i.e. 25 problems) related to the applications of
Smarandache fuzzy algebraic structures were also presented (Section 7.3). In particular: ‘the applications of
Smarandache algebraic structures viz. Smarandache groupoids, Smarandache near-rings and Smarandache
semirings in automaton theory, in error correcting codes and in the construction of S-subbiautomaton which are
given in about forty definitions’. The notions of ‘semi-automaton and automaton’ were introduced by using such
fundamental algebraic structures as semigroups (i.e. groupoids having associative binary operations: see Definition 2.7).
The chapter starts with the notion of Smarandache free groupoid (in short: S-free groupoid), see: (Vasantha
Kandasamy W.B. 2003 / Chapter seven: Applications of Smarandache fuzzy algebraic structures ).

Definition 2.26 (S-free groupoid)

Let S be non empty set. Generate a free groupoid using S and denote it by (S). Clearly the free semigroup
generated by the set S is properly contained in (S); as in (S) we may or may not have the associative law to be true.

In accordance with the last definition, the associativity property is not assumed (as e,g. in a free semigroup”). The
following property was also presented.

Theorem 2.14

Every free groupoid is a S-free groupoid. o

The (classical) definitions of semi automaton and automaton are given as follows (Vasantha Kandasamy W.B.
2002, Mordeson J. N. and Malik D.S. 2002).

Definition 2.27 (semi automaton)

A semi-automaton is a triple Y =4 (Z, A, 3) consisting of two non - empty sets Z and A and a function )
1 Zx A — Z,where Z is called the sef of states, A the input alphabet and o the next state function of Y.

Definition 2.28 (automaton)

An automaton is a quintuple K = (Z, A, B, 3, A) where (Z, A, ) is a semi automaton, B is a non-empty set
called the output alphabet and A:Z x A — B is the output function.

Any automaton (or also semi automaton) can be described e.g. using next state table or graph. In the case of
automaton it is needed also an output table. Some applications of fuzzy algebraic structures and Smarandache fuzzy
algebraic structures were also given (Vasantha Kandasamy W.B. 2003 / see: Part Two, Chapter 7, Section 7.2, p.426):
‘The application of fuzzy algebra is mainly found in finite machines or which we choose to call as Smarandache
fuzzy automaton. Apart from this we see that there is no direct application of Fuzzy algebra. When we say Fuzzy
algebraic structures we mean only fuzzy groupoids, fuzzy semigroups, fuzzy groups, fuzzy rings, fuzzy nearrings,
fuzzy seminear-rings, fuzzy semirings and fuzzy vector spaces. We don't mix up the concepts of fuzzy logic with
fuzzy algebraic structures’. Some notions related to the algebraic fuzzy automaton theory were also given (“directly
helpful to us in constructing Smarandache algebraic fuzzy automatons’).

The notion of Smarandache free groupoid and its application to automaton or linked automatons was also
studied in (Vasantha W.B. and Chetry M,K. 2004): ‘The study of free groupoids is very new and we see that the
free groupoids have its application to the theory of automaton provided they satisfy a special condition namely

" Free monoid on a set A (usually denoted by A* ) is ‘the monoid whose elements are all the finite sequences (or strings) of zero or more
elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty
string (denoted by & or A as the identity element). The free semigroup on A (usually denoted by A™) is the subsemigroup of A* containing
all elements except the empty string’: https://en.wikipedia.org/wiki/Wikipedia
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these free groupoids should contain at least a subset which is a free semigroup. Thus motivated by this property we
define in this paper the notion of Smarandache free groupoid, these Smarandache free groupoids by their very
definition contains at least one free semigroup. It may happen that these Smarandache free groupoids may have
more than one free semigroup in which case we see still it has more applications, for we can define several
automatons which can be easily linked for a free given groupoid. Thus we in this paper define Smarandache free
groupoids and give its application to automaton or linked automatons, which we choose to call as New
Smarandache Automaton or New Smarandache Linked Automaton’.

There exist many algebraic systems corresponding to multi-valued logic and using various logical, arithmetic,
set-theoretical or other operations (Lu and Lee 1985). In particular, (the multi-valued) M-algebra (Lu 1983) was
introduced as the system M =4 (M ; 0, m— 1; +, - , —), where for any multi-valued variables of M =g {0, 1, ...
,m—1} ¢ N u {0} the basic (two logical and one arithmetic) operations MAX(x,y), MIN(x.y), and SUB(X,y)

(denoted by +, -, and — ,respectively) are specified as follows: x +y = MAX(x,y) = the larger value of {x,y},

x -y = Xy = MIN(x,y) = the smaller value of (x,y),and x —y = SUB(x,y) = subtract y from x (only if x
> y). The NOT operation (denoted by “ ' ) is defined as x’ = SUB((m — 1),x) = (m— 1) — x. The operation
x — y is undefined. If x < y. So, an improved version of the above system, also called M-algebra (and also
denoted by M ) was proposed (Lu and Lee 1985). Instead of (the partial operation) SUB a new arithmetic
operation. called truncated subtraction and denoted by TSUB, was introduced, i.e. x © y = TSUB(x,y) = if x >
y then SUB(x,y) else 0. It has been shown that {MAX,TSUB} and {MIN,TSUB} are two minimal functionally
complete sets of basic operations. The last two sets can be implemented using only digital circuits.

A multi-valued algebraic system by using the above notion of M-algebra was introduced in (Tabakow 1.G.
1993). The system, called D-algebra”, in short D ,was represented as an isomorphic image of the direct product of
two M-algebras, i.e.the following theorem was sown.

Theorem 2.15
D = (M xM),ie. D isanisomorphic image of the direct product of two M-algebras wrt @. o

Next this D-algebra was used to generate tests for m-logic combinational circuits (i.e. circuits which realize m-
valued logic functions, m > 2). The test generation was a fault oriented process (tests are derived for specific faults).
This process was illustrated by means of an informal modification of the classical Roth’s D-algorithm' (a more
formal treatment is omitted). For simplicity, only the s-a-fault model was considered and several examples were
given. An example ternary lattice (related to the corresponding D-algebra) is shown in Figure 2.5 below.

Figure 2.5

" The composite multi-valued algebraic system, called D-algebra, is the system D =4 (D;0,m—1;+,, *, , — ), where D is the set of
composite value symbols (the elements of the algebra), 0 and m — 1 (i.e. doo and dim - 1ym-1y ) are the minimal and maximal elements of the
corresponding lattice and for any d;j, dw € D the last three operations are defined as follows: dj; +; dy = DMAX(dyj, diu) = dii+1G+1)» dj

*1 dkl = DMIN(dij, dkl) = d(i‘ kG- 1) and dij -1 dkl = DTSUB(dij, dkl) = d(ifk}(jfl)-
 John Paul Roth, born: 1922
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Il. Homomorphisms, direct products and free algebraic system

Below are first considered various kinds of homomorphisms concerning algebraic systems. Such notions as
direct products of two algebraic systems and free algebraic systems are also considered. The most of the used below
basic notions and definitions are mainly under (Kerntopf P. 1967)

3. Homomorphisms’

The notion of homomorphism, i.e. considered as a ‘structure-preserving map between two algebraic systems
of the same type’ was early used by Felix Klein®. Some kinds of homomorphisms are considered below?.

3.1. Epi-, mono-, iso-, endo- and automorphisms

Definition 3.1 (homomorphism)

Let oL =4 (A;a,a,...,4n;01,02...,0m) and P =4 (B;bi, ba ... ,bn;01",00, ..., 0m") betwo algebraic

systems of the same type’. We shall say that ¢ : A — B is a homomorphism of O in B if the following two
condisions are satisfied (known as: preservation of constants and operations, respectively):

(1) Vo (e(ai) = bi).
ie{l, .. n}

(2) v V(@ (05 (X1, oo Xni)) = 0/(@(X1), - ,0(Xnj)))
je{l,...m} X1, ..., Xnj € A
The system (@(A) ; by, by, ... ,ba; 01"/0(A), 02'/@(A), ..., om'/@(A)) is said to be a homomorphic image of O
wrt @. Moreover, we shall say that & homomorphically maps™ to B if there is a mapping such that it is a

homomorphism of oL in B.

Let : A —»> B be ahomomorphism of O in B . In particular, if ¢ is surjective mapping (i.e. onto) then
the above homomorphism is said to be epimorphism. In a similar way, if ¢ is injective mapping (i.e. one — to —
one) we have monomorphism.

“This term (gr. dpotog, homoios —podobny; popem, morphé — shape, form) is different from the notion of ‘homeomorphism’ used in graph
theory (a mapping between two graphs that respects their structure).

f Christian Felix Klein (1849 — 1925)
* https://en.wikipedia.org/wiki/Homomorphism
S And hence, o and B are two similar algebraic systems, i.e. of the same type: see Definition 2.2 of Subsection 2.1.

" The used term ‘map’ is an abbreviation of ‘mapping’.
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The above homomorphism is an isomorphism if it is at the same time surjective and injective mapping”. The
homomorphism of O in O is said to be endomorphism and the isomorphism of O in O is defined as
automorphism.

The following two properties are satisfied (in accordance with Definition 3.1).

(i) Let o0, B and Y be three algebraic systems of the same type. Assume that ¢ is a homomorphism of
o in B and y isahomomorphism of B in Y, then the superposition of homomorphisms @y is a homomorphism
of o in Y.

(i1) Let @ be a homomorphism of O in P . Then, the homomorphic image of O. wrt ¢ isasubsystem  of
B.

By @ = B itis denoted below the fact that: ‘O maps isomorphically to B wrt ¢’.The identity map is here
denoted by ‘e’. Obviously, the last binary relation ‘=’ is an equivalence one, i.e. reflexive, symmetric and transitive
. And hence we have: L=y O, Ol=o P = Pre-10 and (A=eB)APB=yY) = (A =gy Y), 1e:

e

oa—-> o,
hom
o 0!
o—->p = P—-o 0o and
hom hom
¢ v oy
a->pB A B>y = oa->Y.
hom hom hom

Here oy (or more formally: ¢-y) denotes the composition (or equivalently: superpositiom) of the last two
mappings. The next examples are under (Kerntopf P. 1967).

Example 3.1 (algebraic system homomorphism)

Consider the following two algebraic systems: O =¢r (Z;0;+) and B =4 ({—1,1};1;-),where ‘“+ and

3

- ¢ denote the usual arithmetical addition and multiplication, respectively. Since T(ot) = T(B) = (1,2) the
last two algebraic systems are similar. And hence, themap ¢: Z — {-1, 1} such that:

VY (if z is even then 1 else -1)
zel

is an epimorphism between the last two algebraic systems. s
Example 3.2 (algebraic system homomorphism)

Let a0 =¢r (R;0;+) and B =4 (C- {0};1;-) be two algebraic systems of type )1,2). Consider the map
¢: R - C- {0} suchthat: ¢(a) = e*f Wehave: @0) = e =¢e’=1 and o¢a+b) = ei@* b =
eir. e® = @(a) - @(b). o

Example 3.3 (algebraic system homomorphism)

* A bijection (bijective function: in general bijective map or one-to-one correspondence) isamap f: X — Y which is at the same time
one-to-one (injective, i.e. X; # X, = f(x;) # f(xp), forany x;,x, € X) and onto (i.e. surjective): https://en.wikipedia.org/wiki/Bijection

" Let 9: Z — {—1,1} suchthat: ¢(z) =4 if z/2 then 1 else — 1. Since ‘0’ is even,i.e. (0) = 1, then it is sufficient to show the
following equality: @(a+b) = @(a) - @(b) (for any 2> =4 even/odd combinations: left to the reader).

fe=cos(x) + i- sin(x) (Leonhard Euler 1707 - 1783)



Consider the following two Boolean algebras: O =g (B; N,V ;u ,n;) and B =¢s B;V , A;n,u;’).
Let ¢: B —» B suchthat ¢(b) =4 b’ (for any b € B). We have:

O oM =V, oV) = A
(i) o(biuby) = (biub)’ = bi'nby = b)) n oba),
(iii) @(bin b)) = (bin b))’ = by'u by = obr) u o),
(iv) o) =b"= ob)"

And so, we have an automorphism (i.e. a bijective homomorphism of an object with itself). o

Obviously, an isomorphism between two algebraic systems can be considered as an equivalence relation. And
hence, all isomorphic algebraic systems have the same algebraic properties. In particular, the notion of a
homomorphism of two partial ordered sets is defined in a similar way (by >a and B are denoted below the partial
order relations corresponding to the sets A and B, respectively).

Definition 3.2 (homomorphism: partially ordered sets)
Let A and B be two partially ordered sets. The map ¢ : A — B is said to be a homomorphism’ of A
in B iff:
V (azab — o) =8 @(b))
abeA

Theorem 3.1

Let @ be a homomorphism of @ in B such that it maps the set of generators of OL onto the set of generators
of B.Then ¢ is an epimorphism. o

Theorem 3.2

Let Ao be the set of generators of O =4 (A ; aj, @, ... ,an; 01, 02, ..., 0m) and let @; and @> be two

homomorphisms of @ in P =4 (B;bi, by, ... ,baj;01',02, ..., 0m"). Then:

Vo o(ei(d) = ,(a)) = VYV (0i(a) = ¢Aa)),
ae Ao aeA

ie.if g: A9 —> B canbe extended to a homomorphism of O in P then any such extension is uniquely defined.

Proof:

In accordance with the notion of a homomorphism (see Definition 3.1), it follows that {a €A/ @i(a) = @2(a)} is
a subsystem of O, containing the same set of generators as in O . o

3.2. Congruences and quotient algebraic systems

The notion of congruence is defined as follows (Kerntopf P. 1967):

Definition 3.3 (congruence)

" Of the same type: (0, 0,2, 2, 1): the complement of a, instead of @, is here denoted by a', i.e.a' =4 a.

"The above homomorphism is an isomorphism if it is at the same time surjective and injective mapping.
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Let & =4¢r (A;ai, as, ... ,an0; 01, 02, ..., Om) be an algebraic system. The congruence of O is an equivalence
relation p definedin A and satisfying the following condition:

YV ((x1py1) A (X2py2) A oo A (XnjPYni) = 0j(X1, ... Xnj) P O(Y1s --- 5Yni)) -
jed{l,...,m}

The last condition is said to be a substitution property”. The partition generated by the above congruence is
called a regular one (or partition with a substitution property).
Definition 3.4 (quotient algebraic system)
Let p be a congruence of the above algebraic system O (see: Definition 3.3). The quotient system associated
with O wrt p is defined as follows: OL/p =ar (AP ; [ailp, [a2]ps --- s[an]p ; O, 02/, ..., Om'), Where:
v V(o ((xidp s «ov s [Xnlp) =ar [0§(X1, «.os Xni)]p -

jefl,....m} X, ....Xp €A

Obviously, the above operations are well defined. In accordance with the last cited work, two examples are
illustrated below.

Example 3.4 (congruence)

Consider the monoid" o =4r (Z;0;+). Let p € Z x Z be abinary relation defined in Z as follows: apb
iff (a — b) is an even number. The quotient algebraic system O./p = ({E,O};E; ® ), where E and O

denote the subsets of even and odd numbers, respectively. The binary operation ° @ ° is defined as it is shown in
Figure 3.1 below. o

® E O

E| E O

Ol O E
Figure 3.1

Example 3.5 (congruence)

Consider the Boolean algebra* o =4 (2V; @, N;u,n,’). Let p © 2N x 2N be defined as follows: A
pB <4 | A+ B |< X, (alefzero). Then p is a congruence.t In fact, the last binary relation is at the same time a

13

left and a right invariant ones wrt the above two operations: ‘v’ and ‘~’, i.e. forany A, B, C € 2V

(CuA) + (CuB) = (AuC(C) + BUO)
(AvO)'n Bul) U(AuC) n BUO))

* In accordance with the last property, congruencies are also said to be equivalence relations with the substitution property.
T See Definition 2.8.

f See Definition 2.23.

3

S A+B =¢ (A - B) U (B — A): symmetric set difference (known also as disjunctive union operation) is here denoted by * +

3

(instead of ‘@’ used in the original work and also ¢ p * instead of ‘= ).
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= AAnBnC)HYUANBANC
= (AAnB)uAnB) nC’
= (A +B)nC".

In a similar way we can obtain:

(CnA) + (C~AB) = (AnC) =+ (BnO)

= (AnCO)'nBnC) u((AnC) n (BNO)")

= (A'uC)Ynn BNnC) Uu((ANC) n (B UCY)

= AnBnCuCn"nBACUANCAB UANC A C’
AnBnC U C"BACUANRCABUANC A~ C’
AnBnCuU 3UANCAABUT
AAnBnCUANC N B
(AA~nB UA nB)nC
= (A +B)nC.

And hence, if A + B is finite then the above twosets (A + B) n C’' and (A + B) n C are also finite.
And hence, we can obtain:

ApB = (Cu A)p(CUBNA(AU O pBU CYA(CA A)p(Cn BYA(A N C)p(Bn O)).
Since A+ B = A’ + B’ then: ApB = A'pB".

And hence, p is a congruence wrt the above considered Boolean algebra. o
The following two theorems were given (Kerntopf P. 1967).

Theorem 3.3

For any algebraic system O =4r (A ; ai, a2, ... ,an ; 01, 02, ..., O0m) and any congruence p in O there exists
an epimorphism from Q. to Ol/p.
Proof:

Considerthemap ¢: A — A/p suchthat: ¢: x — [x].This map preserves constants and operations.
Moreover ¢ (A) = A/p.And hence, ¢ is an epimorphism from O to O/p. o

The map ¢ defined in the last proof is said to be a natural homomorphism (epimorphism). In general, it can be
shown that the quotient systems associated with a given algebraic system (wrt the all its congruences) are
exhaustive to isomorphism of all its homomorphic images.

Theorem 3.4

Let B =4t (B;bi,ba, ... ,bn; 01,00, ...,0n") be an arbitrary homomorphic image of the algebraic system O
=4t (A;a,a,...,a,;01,02...,0m) and ¢@: A — B be an epimorphism of O to B. Then there is such a
congruence p of O, that the system [ isisomorphicto Q/p = (A/p;[ai], ..., [an]; 01", ..., Om"").

Proof:
Let p ¢ A x A be defined as follows:
Voo (xipx2 <a 0x1) = ¢(x2) ).

X1,X2 € A
In accordance with the last definition and the notion of a homomorphism (see Definition 3.1) we can obtain:

Vo (xipxi) A px) A AP Xni)) = 0/ (@(X1) 5 ..., 9(Xnj)) =
jed{l,...,m}
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= 0/'(p(X1), ..., P(Xni"))). Then: @(0j(x1, ..., Xqj)) = @(0j(X1, ... , Xni')). We have: 0j(x1,
.o., Xnj) P 0i(X1', ..., Xni'). And hence, p is congruence.

Consider the map y assigning to each element y € B the class of equivalence of the congruence p consisting
of counter images of y. The last map y is one-to-one (any two different yi, y» € B are related to different
elements of A/p). Moreover for any y € B there exists at least one counterimage (¢ is an epimorphism). It is
shown below that B is isomorphic to O/p . We have:

Vo o (e(a) =bi = wbi) = [alp),

ie{l,...,n}

v Vo (((ex1) = yD) Ao A (0(Xn) = Yni) A (9(0i(X1, ..., Xnj))) =
je{l,....m} y,....yn€B

= 0/(@(x1), oo, 0xa)))) = W (0 (Y1, oo Yni)) = (05X, oo Xni))p =

= YO/, . ya) = o (Xl s oo, [Xnile) = W (0§ (Y1, -on 5 Yi)) =
= 0" (W(y1), --- » W(¥nj)- o

3.3. Finite direct products

Definition 3.5 (direct product)

Let o =4t (A;ai,ay...,an;01,02...,0m) and P =4 (B;bi, b, ....ba; 01,00, ..., 0m") betwo similar
algebraic systems”. The direct product (or simply the product) of o and B, denoted by @ x B, is defined as
follows: O x B =4 (A x B ; (a1,b1), ..., (an,bn) ; 01", 02", ..., om""), where:

v v v (0" ((x1,y1), - s Knps¥ni)) = (0i(X1, ... Xnj), 0§ (Y1, - ,¥ni))-
je(, ... m} X1, ... )Xo € A yi,....yn €B

In accordance with the last definition, the direct product of two similar algebraic systems is a new algebraic
system belonging to the same category, e.g. the direct product of two groups is a group.

Example 3.6 (direct product)

1 +bi
a ay b2
a3z b3
2 k)
(a)

(a4,b3)

" i.e. of the same #ype: see Definition 2.2.
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Figure 3.2 (a) Two lattices: % and % (b) Hasse" diagram for % x %

Theorem 3.5

Let % =4 (B;:A,V;u, n;") bea finite Boolean algebra’ such that | B| > 2. Then % is isomorphic
to some nonegative power of the two-element Boolean algebra. o

Definition 3.6 (atom)

Let £ =4 (L;u,n;>) bealattice having as an element /A« . Any other element of L immediately after Az
is said to be an atom, i.e:
a isan atom of L iff (a # Ne)A~T (Nz < x < a).

xel

The proof of the above Theorem 3.5 is based on the following six lemmas given below (on atoms of finite Boolean
algebras: the corresponding proofs are omitted. For any x € B, by A(x) =dr{a1, a2, ..., ak} itis denoted the set of all atoms
‘a’ of the Boolean algebra & =4t (B; A,V ;u , n;') suchthat:a < x )

Lemma 3.1

x # N = 3J(a<x x)o
a € A(x)

Lemma 3.2

(ae AX)A(xeB) = (@< x) X (anx =A).g

Lemma 3.3

Axoy) = A(X) o A(y) ,where: 0 € {u,n}.o
Lemma 3.4
AXY = AV) - ARX) .o

Lemma 3.5

AX) = A(y) iff x =y.o0

Lemma 3.6

Let ai,as, ..., ax be arbitrary and at the same time different atoms. Then: A(aju a; u ...u ay) = {ai,
a, ... ,a}. o
Proof of theorem 3.5

Let A =4 {ai, a, ..., an} be the set of all atoms of the above Boolean algebra % =4 (B;A,V;u , n;") and
f: B > 2% beamap such that f: x — A(x). Since % is finite, by Lemma 5 it follows that f is injective
(i.e one-to-one) and by Lemma 6 it follows that f is surjective (i.e. onto). Then f is bijective. And hence, f is an

* Helmut Hasse (1898 — 1979)
T See Definition 2.23
# (Kerntopf P. 1967)

$ By ‘ V¢ it is denoted the exclusive disjunction logical operation: is true iff arguments differ: one is true and the other false.
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isomorphism of # to (2%;@,A;u,n, - ), ie. the corresponding operations are preserved (Lemmas 3 and 4).

Moreover: f(A) = @ and f(V) = A (the constant preservation).

But the last system (2*;@, A ;u,n,-) isisomorphic to the following one: ({A,V};A,V;u , n;", e.g.
wrt the following map ( forany A' € A): @(A") =ar (@1(A"), ..., ea(A"), where @i: 24 — {A,V} (for any
ie {1,2,...,n}) and @i(A") =4 if aje A' then V else A.o

The following two corollaries are satisfied (in accordance with Theorem 3.5).

Corollary 3.1

The number of elements in any finite Boolean algebra is a non negative power of 2. o

Corollary 3.2

Any two finite Boolean algebras are isomorphic iff they have the same number of elements. o

3.4. Free algebraic systems

Definition 3.7 (free algebraic system)

Let S be a class of algebraic systems of the same type and O =4 (A ; ai, a2, ... ,an; 01, 02, ..., Om). We shall
say that QU is a free algebraic system in the S class if:
3 V (any map f:Ao — B can be extended to a homomorphism of O to B),
Acof @ P €S
where: B =4 (B;bi, b, ... ,bn; 01,02, ..., 0m") and Ao is said to be the set of S-firee generators for o .

In accordance with Theorem 3.2, the above extention given by Definition 3.7 is uniquely defined. As an
example, if a semigroup is free in any class of semigroups then any such semigroup is said to be a free semigroup
(in a similar way for: groups, lattices, Boolean algebras, etc.). There are given in the next example some basic
notions used in automata theory and mathematical linguistics (Kerntopf P. 1967).

Example 3.7 (free semigroup)

Let X # @ be an arbitrary nonempty set, called here: alphabet. The elements of ¥ are said to be letters. Any
word is defined as an arbitrary sequence of letters belonging to X . The word’s length is the number of the
corresponding letters. The set of all finite words in ¥ is denoted by X . The operation of linking two words X;xa
... Xn and y1y2 ... ym written side by side is said to be concatency (or concatenation) The concatency of words u

and v is denoted by u-v (inshort: uv). Obviously, the last binary operation is associative but not commutative.
The following semigroup” ( £, - ) is generated by £ ( T is the smallest set containing all words formed from
the letters of X ). It is shown below that ( T, - ) is a fiee semigroup.
Letnow (A, +) be an arbitrary semigroup and f: ¥ — A be an arbitrary map. The last map can be extended
as follows:
Vo (U =xix2..xa > fu) = f(xi) + f(x2) +...+1(Xn)

uezx

It can be also shown that each semigroup free in any class of semigroups is isomorphic to ( X, - ), for a certain
alphabet X . Usually, the last alphabet is extended by the so-called empty word, denoted by A, where:

V (u*A =xu=u)
uesou

* See Definition 2.7
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Let =% =¢ X u {A}. The following free monoid is obtained: (X" ;A ;-).

In accordance with the last considerations, any subset of X* (including the empty set} is said to be an event over

Y . The system (22*; @,X;u,n,") isafree Boolean algebra. The following two operations, defined in 22*,
were also introduced.

The concatenation of two events P, Q € P2l (denoted by P - Q or PQ) istheset {uv/(u € P) A (v e Q)}.

This operation is associative but not commutative. We have: P* = { L } and P"!= Pi-P for i > 0.

The iteration P* of an event P e 2%" is defined as the following event: P* =¢ {A} o P u P2 L P30y ... =

= upi.

i=0
Definition 3.8 (algebra of events)

The following algebraic system is said to be an algebra of events: (2= 2,550, , 7).

Definition 3.9 (set of regular events)

The smallest subset R of the set 2% containing X* and such that:
vV (PuQ,PQ,P*e R)
P.Q € R
Any element of R is said to be a regular event.

The above notion of a regular event introduced by Kleene" is one of the most important notions used in automata
theory.

4. Applications

Some applications , e.g. such as: grammars, sequential machines, computability, etc. are briefly presented
below..

4.1. Grammars and sequential machinest

Some introductory notions related to the last work are cited below. Here, any alphabet is considered as a finite
set of symbols, e.g. {a, b, ¢, ..., z} oralso e.g. as abinary alphabet {0, 1}. Any string over an alphabet is defined
as a finite sequence of symbols drawn from the considered alphabet, e.g. happybirthdaytoyou or e.g. the binary
string: 101100101, etc. It is generally omitted > ** from strings unless doing so would lead to confusion. The set
of all possible strings over an alphabet ¥ is written by Y*. The length of a string is defined as the number of symbols in
it. As an example, we have: the length(101100101) = 9. Some operations on strings are cited below.

Concatenation of two strings x and y: appending the string y to the string x.

* Stephen Cole Kleene (1909 — 1994)

Thttps://docest.com/grammars-languages-and-machines
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Replication: for each string w and each natural number i, the string w' is defined as follows:

wl = ¢

w = wi-lw, foranyi > 1.

The replication operator has a high precedence (like exponentiation). The notion of string reversal was introduced
in accordance with the following inductive definition.

(1) if |w] =0 then wR = w = ¢

(2) if |w| =1 then Hae Y: w = ua (ais the last character of w) and w& = au®.

The following property was shown.

Theorem

Let w,x be two strings. Then (wx)® = xR wR, 5

The notion of a language is introduced as a ‘(finite or infinite) set of finite length strings of a finite alphabet Y.
The language Y* contains an infinite number strings (including: €, a, b, ab, ... ). Languages can be considered as
sets. And hence, in the next considerations there were presented some techniques for defining languages and also:
‘how large are languages, operations on languages, and finally regular expressions, regular grammars and finite
state machines’: left to the reader.

4.2. Computability and recursiom’

In accordance with the last work, it was considered the informal concept of “computability” or “effective
calculability” and two of the formalisms commonly used to define it: “(Turing) computability” and “(general)
recursiveness.” There were considered their origin, exact technical definition, concepts, history, general English
meanings, how they became fixed in their present roles, how they were first and are now used, their impact on
nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection
to other related areas. After a careful historical and conceptual analysis of computability and recursion there were
maked several recommendations about preserving the intensional differences between the concepts of
“computability” and “recursion.” In particular, it was recommend that: the term “recursive” should no longer carry
the additional meaning of “computable” or “decidable;” functions defined using Turing machines, register
machines, or their variants should be called “computable” rather than “recursive”. Moreover, it was distinguished
the intensional difference between Church’s Thesis and Turing’s Thesis, and use the latter particularly in dealing
with mechanistic questions; the name of the subject should be “Computability Theory” or simply Computability
rather than “Recursive Function Theory.”

4.3. Graph theory and Petri nets

“In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise
relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are
connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link
two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of

“Soare R.1., 10" International congress for logic, methodology and philosophy of science. Section3: Recursion theory and constructivism,
August (1995) 19 — 25: http://www.people.cs.uchicago.edu/~soare/History/compute.pdf

“Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within
mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence
of an algorithm to solve the problem. The most widely studied models of computability are the Turing - computable and p— recursive functions
and the lambda calculus (all having computationally equivalent power): Wikipedia.
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the principal objects of study in discrete mathematics™ . Petri net (also known as a place/transition net) is one of
the several mathematical modelling languages used for description of distributed systems (a class of discrete event
dynamic systems). Any Petri net is introduced as a directed bipartite graph having two types of elements: places
and transitions (depicted by circles and rectangles, respectively): depicted as white circles and rectangles,
respectively. A place can contain any number of tokens, depicted as black circles. A transition is enabled if all
places connected to it as inputs contain at least one token. Petri nets were invented in August 1939 by Carl Adam
Petri”: for the purpose of describing chemical processes.

4.4. Combinatorial analysis and probability theory

The combinatorial analysis is a “branch of mathematics devoted to the solution of problems of choosing and
arranging the elements of certain (usually finite) sets in accordance with prescribed rules. Each such rule defines a
method of constructing some configuration of elements of the given set, called a combinatorial configuration. One
can therefore say that the aim of combinatorial analysis is the study of combinatorial configurations. This study
includes questions of the existence of combinatorial configurations, algorithms and their construction,
optimalisation of such algorithms, as well as the solution of problems of enumeration, in particular the
determination of the number of configurations of a given class.The simplest examples of combinatorial
configurations are permutations, combinations and arrangements.* '

Probability theory is the “branch of mathematics concerned with probability. Although there are several
different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by
expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space,
which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called
the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory
include discrete and continuous random variables, probability distributions, and stochastic processes.**

4.5. Number theory, Markov’s chains, coding

Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted
primarly to the study of the integers and integer-valued functions. Mathematics is the queen of the sciences and
number theory is the queen of mathematics.’ Number theorists study prime numbers as well as the properties of
mathematical objects made out of integers (e.g. rational numbers) or defined as generalisations of integers (e.g.
algebraic integers): Wikipedia.

A Markow’s chain™is ‘a mathematical system that “experiences transitions from one state to another are in
accordance with certain probabilistic rules. The defining characteristic of a Markov chain is that no
matter sow the process arrived at its present state, the possible future states are fixed. In other words, the probability
of transitioning to any particular state is dependent solely on the current state and time elapsed. The state space, or
set of all possible states, can be anything: letters, numbers, weather conditions, baseball scores, or stock
performances. ... Markow’s chains may be modelled by finite state machines, and random walks provide a prolific
example of their usefulness in mathematics. They arise broadly in statistical and information-theoretical contexts
and are widely employed in economics, game theory, queueing (communication) theory, genetics, and finance.

* Carl Adam Petri (1926 —2010)
f https://encyclopediaofmath.org/wiki/Combinatorial analysis
¥ https://en.wikipedia.org/wiki/Probability theory

§ Carl Friedrich Gauss (1777 — 1855)
" https:/brilliant.org/wiki/markov-chains/: Andrey Andreyevich Markow (1856 — 1922)
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While it is possible to discuss Markov’s chains with any size of state space, the initial theory and most applications
are focused on cases with a finite (or countably infinite number of states. *

Coding theory is ‘an important study which attempts to minimize data loss due to errors introduced in
transmission from noise, interference or other forces. With a wide range of theoretical and practical applications
from digital data transmission to modern medical research, coding theory has helped enable much of the growth in
the 20th century. Data encoding is accomplished by adding additional information to each transmitted message to
enable the message to be decoded even if errors occur. In 1948 the optimization of this redundant data was discussed
by Claude Shannon” from Bell Laboratories in the United States, but it wouldn’t be until 1950 that Richard
Hamming' (also from Bell Labs) would publish his work describing a now famous group of optimized linear codes,
the Hamming Codes. It is said he developed this code to help correct errors in punch tape. Around the same time
John Leech from Cambridge was describing similar codes in his work on group theory* (Grossman J. 2008).

4.6. Algorithm complexity

‘Algorithmic complexity is a measure of how long an algorithm would take to complete given an input of size
n. If an algorithm has to scale, it should compute the result within a finite and practical time bound even for large
values of n. For this reason, complexity is calculated asymptotically as n approaches infinity. While complexity is
usually in terms of time, sometimes complexity is also analyzed in terms of space, which translates to the
algorithm's memory requirements. Analysis of an algorithm's complexity is helpful when comparing algorithms or
seeking improvements. Algorithmic complexity falls within a branch of theoretical computer science called
computational complexity theory. It's important to note that we're concerned about the order of an algorithm's
complexity, not the actual execution time in terms of milliseconds. Algorithmic complexity is also
called complexity or running time’*.

‘In algorithmic information theory (a subfield of computer science and mathematics), the Kolmogorov
complexity of an object, such as a piece of text, is the length of a shortest computer program (in a
predetermined programming language) that produces the object as output. It is a measure of
the computational resources ‘needed to specify the object, and is also known as algorithmic
complexity, Solomonoff-Kolmogorov—Chaitin complexity, program-size complexity, descriptive complexity,
or algorithmic entropy. It is named after Andrey Kolmogorov™*, who first published on the subject in 1963.The
notion of Kolmogorov complexity can be used to state and prove impossibility results akin to Cantor's diagonal

argument, Godel's incompleteness theorem, and Turing's™ halting problem‘ii.

* Claude Elwood Shannon (1916 —2001)
 Richard Hamming (1915 — 1998)

1 https://devopedia.org/algorithmic-complexity
™ Andrey Nikolaevich Kolmogorov (1903 — 1987)
7 Alan Turing (1912 — 1954)

# https://en.wikipedia.org/wiki/Algorithmic_complexity
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Conclusions

Discrete mathematical structures underpin a large amount of modern computer science. Unfortunately, the
speedy developments and knowledge in this area makes impossible the presentation of all notions, definitions and
applications used here. This part is an extension of the previous one (i.e. a supplement / a separate work) and it is
related to algebraic systems (considered as discrete mathematical structures). The considered here systems may be

useful for any researcher who is interested in the above given area.
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