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Abstract: METRICS is an EU-funded project dedicated to the met-
rological evaluation and testing of autonomous robots. ACRE is one 
of the four benchmarking competitions for autonomous robots and 
smart implements organized by METRICS. ACRE deals with the 
applications of robotics to agriculture. The participants are required to 
execute performance benchmarks, which are grounded on the con-
cepts of objective evaluation, repeatability, and reproducibility. 
Transferring such concepts in the agricultural context, where large 
parts of the test environment are not fully controllable, is one of the 
challenges tackled by ACRE. ACRE is focused on agricultural tasks 
such as weeding or mapping/surveying crops down to single-plant 
resolution. Seven benchmarks were identified and classified in two 
categories. 

ACRE competition involves two separated interconnected events: 
a Field Campaign that involves robots executing activities in agricul-
tural environments such as open-air experimental plots, and a Cascade 
Campaign during which Artificial Intelligence systems perform 
activities on data collected during the Field Campaigns. 

Two dry-run evaluation campaigns took place in 2020 and 2021. 
These two first events called “dry-run evaluation campaigns” al-
lowed to test, check, complete and validate the ACRE organization 
with its evaluation plan. The first field evaluation campaign began 
with an on-field event from 7th to 10th June, 2022. A second cascade 
evaluation will take place at the beginning of 2023 and a last field 
evaluation campaign of the project is scheduled to take place in May 
2023, in Cornaredo, near Milan, in Italy. 

Keywords: test, digital agriculture, robotics and automation, 
performance evaluation, sustainable agriculture 

I. INTRODUCTION 

METRICS [1] is a European project dedicated to the 
metrological evaluation and testing of autonomous 
robots in four Priority Areas, for which competitions 
are organized. Among these four competitions, ACRE 
[2] deals with the applications of robotics to agriculture. 
Like the other three competitions, ACRE is a compe-
tition based on the benchmarking method with the goal 
of exploiting the appeal and desirable features of 
competitions to foster a benchmarking culture in Eu-
ropean robotics. Several competitions have already 

been organized prior to the creation of ACRE. How-
ever, only one competition has already dealt with 
robotic weeding, the ROSE challenge [3]. 

The ROSE challenge was a French project, which 
began in 2018 and was co-led by the National Laboratory 
of Metrology and Testing (LNE) and the National Re-
search Institute for Agriculture, Food and the Environ-
ment (INRAE). It ended in June 2022, after four field 
campaigns during which four consortia teams developing 
weeding robots competed. The main goal of this challenge 
was to encourage the development of innovative solutions 
for intra-row weeding to reduce or even eliminate herbi-
cide usage. This challenge provided the ACRE organizers 
with knowledge and experience regarding the evaluation 
of robots on the field: the evaluation methods, image 
processing with the DIANNE (Clipping, Identification 
and ANNotation for Evaluation) software developed by 
LNE, the metrics used, in particular the EGER (Estimate 
Global Error Rate) metric which takes into account the 
error rates of each participant based on manual counts by 
the organizers before and after the weeding action. 

ACRE follows the model of the ROSE challenge 
with field evaluation campaigns followed by cascade 
evaluation campaigns. This type of organization is de-
pendent on weather conditions to prepare the field eval-
uations, which implies that the organizers must plan the 
interventions on the plots in order to obtain plants at the 
necessary stages of development for the good evaluation 
of each team on the selected benchmarks. 

II. THE ACRE ORGANISATION 

A. The ACRE framework 

1) Experimental context 

The METRICS project aims to organize challenges in 
the four Priority Areas (PAs) defined by the European 
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Commission: Inspection and Maintenance (I&M), Agile 
Production, Healthcare and Agri-Food to evaluate 
robots through several competitions. Among the four 
PAs of this project, ACRE aims to evaluate robots on 
different agricultural applications. The opportunity to 
evaluate robots dedicated to weed control is part of 
a dynamic that tends to reduce or even eliminate the 
use of phytosanitary products in the field. 

2) Competition methodology 

The METRICS common framework focuses on provid-
ing methods to maximise the reproducibility of evalua-
tions. These specific methods are for identifying and 
controlling influencing factors, measuring the environ-
mental conditions (brightness, temperature, wind, soil 
conditions, etc.) and describing the test environments 
(objects to be recognised and handled, furniture and wall 
layout, test database, etc.). The robots are evaluated 
through several selected benchmarks; they have to per-
form well-specified tests in realistic environments or on 
databases, and their performances are assessed by ap-
plying quantitative metrics. 

B. The ACRE evaluation campaigns 

The ACRE competition is divided into two separate but 
interconnected tracks. The first one includes the Field 
evaluation campaigns which involve robots performing 
activities in an agricultural environment. The events of 
the second track are called Cascade evaluation cam-
paigns: in these, Artificial Intelligence systems perform 
activities on data generated and collected during the 
Field Campaigns. The ACRE evaluation campaigns 
happen every year, with two dry-run evaluation cam-
paigns in 2020 and 2021 and a first official evaluation 
campaign in 2022, the second and last campaign will 
take place in 2023. 

1) The field evaluation campaigns 

Due to the issues caused by the COVID-19 pan-
demic, only one participating team from the ROSE 
challenge signed up for the first ACRE dry-run Field 
evaluation campaign organised in October 2020. 
Therefore, to have more hindsight regarding the 
protocols established in the evaluation plan redacted 
in 2019 [4], instead of the first Field evaluation, 
another dry-run Field evaluation campaign was 
scheduled for June 2021 but had to be postponed to 
September 2021 due to unfavourable weather con-
ditions. This campaign had four participating teams 
who signed up for various benchmarks depending on 
their robot’s abilities. 

After these two dry run evaluation campaigns, the 
protocols were adjusted thanks to the results gathered 
during the testing of each benchmark. Then, the first 
official field evaluation campaign was planned for 
June 2022. This time around, five teams participated in 
the benchmarks. 

Both dry-run evaluation campaigns as well as 
the first field evaluation campaign took place at 
the INRAE site of Montoldre (France). The second 
and last field evaluation campaign is scheduled to 
take place in May 2023 in Cornaredo, near Milan 
(Italy). 

2) The cascade evaluation campaigns 

For the cascade evaluation campaigns, the set of pos-
sible benchmarks is limited to pure perception, that is, 
Plant discrimination. The cascade evaluation cam-
paigns are scheduled to happen a short time after the 
associated field evaluation campaigns, and last for 
about three months. 

III. THE ACRE FIELD EVALUATION 

A. The experimental field design 

1) The set up experimental plots 

The experimental field is divided into several kinds of 
plots in accordance with the needs of each evaluation 
and provided by the ROSE challenge experience. Most 
of them are left with natural weeds, with an inter row 
hoeing work performed before the evaluations, but the 
weeding benchmarks require that four selected weeds 
be sown in the crop’s intra row space for consistent 
evaluation of all participants. 

The plots of 2 meters of width and 46.5 meters of 
length are prepared and sown about three weeks before 
the evaluations, which are scheduled every year for 
late May or early June, if the weather conditions are 
favourable. 

For the specific Field navigation evaluation, the 
robots are tested on their ability to follow a trajec-
tory without damaging the crop plants with only 
selected reference GPS points on a specific experi-
mental plot. On a part of the plot, an offset of 37.5 cm 
is applied on the straight rows of crops, over a length 
of 15 meters, before getting back on the original 
straight row. 

Moreover, for the Crop mapping evaluation, a ran-
domized sampling of plants needs to be performed to 
test the robots’ ability to create a map of a plot with 
variable density. 
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2) Selected crops and weeds 

Taking advantage of the experience acquired during the 
ROSE challenge, the organizing consortium of ACRE 
had decided to keep the same crops and weeds they 
had used in the previous challenge. For the type of 
crops sown, it was decided that two kinds were 
needed: one with a wide inter-row spacing and the 
other with a smaller inter-row spacing, like a vege-
table crop. For the ROSE challenge, maize and bean 
were the selected crops. Maize was sown in two rows, 
with an inter-row of 75 cm and 14 cm between each 
plant on a row. As for bean, it was sown in three rows, 
with an inter-row space of 37.5 cm and 7 cm between 
each plant on the row. Four types of weeds were se-
lected for the ROSE challenge and kept for the ACRE 
campaigns: mustard, rye grass, chenopodium and mat-
ricaria. These four weeds were sown in the 10 cm wide 
intra-row space, centered on the seeding row, at a den-
sity of 27 weeds by linear meter, allowing for a diver-
sity on the field adapted to the evaluation of the robots’ 
ability to weed different kinds of plants. In accordance 
with the ROSE challenge execution, the plot organisa-
tion on the experimental field was maintained.  

B) Benchmarks deployed 

ACRE’s benchmarks take two forms. Functionality 
Benchmarks (FBMs) are focused on specific capabili-
ties of a robot and are designed to make the benchmark 
as independent as possible from robot components not 
directly involved in the functionality under examina-
tion. Task Benchmarks (TBMs) combine multiple 
Functionalities for the execution of complex activities 
and the result depends both on the individual function-
alities and on the integration between components. 

An evaluation plan gathers all information re-
garding the ACRE benchmarks with details on their 
execution and evaluation metrics. The benchmarks 
involve three different robot capabilities required in 
agricultural applications: robot perception, navigation, 
and manipulation. 

1) The Functionality Benchmarks (FBM) 

For all the functionality benchmarks except for the 
specific Field Navigation benchmark, the robots are 
not required to move autonomously. 

The first benchmark called Plant discrimination 
deals with robot perception capability of crops and 
weeds. During this task, the robot is evaluated on its 
capability of discriminating which plants of a row are 
weeds and which are crops (intra-row detection). The 
robot is required to make a pass over a prepared row 
containing both crops and weeds using its sensors. 

Then, the robot classifies the crops and weeds present 
in the rows.  

The Leaf area estimation benchmark is an evalua-
tion of a robot’s capability to estimate the plants’ leaf 
area along a cultivated row. The robot must move 
along the row and use its perception capabilities to 
estimate the variable leaf area along the entire row.  

Another estimation benchmark is Biomass esti-
mation. It evaluates the capability of estimating 
aboveground crop biomass. The robot must make 
a pass over a prepared field composed of one or more 
rows, using its sensors to perceive the plants. The 
robot must estimate the fresh weight of the above-
ground parts of the plants without distinguishing 
between crops and weeds. 

The Field Navigation benchmark deals with a robot’s 
capability to navigate along a prepared plot without 
damaging the crop. The prepared plot is divided into 
three parts: one first part of it in a straight line, while 
a second part includes a row shift of 37.5 cm on the crop 
rows, then the third and last part is in straight line. The 
robot under test has only the GPS reference points to 
reach the end of the course without damaging the crops 
with as much accuracy as possible compared to the 
reference trajectories acquired during the sowing of the 
field. 

The last FBM, Weed Destruction, is an evaluation 
of a robot’s capability of destroying weeds in the 
intra-row without damaging the crops. The evaluation 
compares the state of the test plot with manual counts 
before, immediately after and a few days after the 
weeding operations. To make this evaluation as in-
dependent as possible from other functionalities, col-
oured markers are used to identify crop and weed 
plants in the prepared plot.  

2) The Task Benchmarks (TBM) 
For the two task benchmarks, the robots are required to 
move autonomously. 

The Crop Mapping task is the evaluation of a robot’s 
capability to produce a map of the entire cultivation 
area by exploring it autonomously. The robot must 
explore a multi-row cultivated plot and provide a map 
of crop plants. It has to recognize single plants and 
provide their positions on a Cartesian coordinate sys-
tem. 

The second and last TBM is Intra-Row Weeding. 
This benchmark assesses a robot’s capability to per-
form fully autonomous intra-row weeding of a row of 
crops. The robot must eliminate the weeds located 
among crop plants without damaging the crops. No 
coloured markers are used on the plants to facilitate 
their detection and identification. 
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C) The off-field data analysis 

After the evaluations on the field, the results are 
gathered and analysed. 

For the Field navigation evaluation, a R script [5] 
was redacted to compare the trajectories of each par-
ticipant with a reference trajectory obtained during the 
sowing a few weeks before the evaluations. All trajec-
tories were obtained using a laser tracker device. 
A magnetic target with a mirror is installed on each 
robot to receive the laser beam emitted by the tracker. 
When the laser beam is reflected, a relative position of 
the target is recorded. Afterwards, in post treatment, 
using the absolute GPS coordinates of the position 
where the tracker is set up, the absolute GPS coordi-
nates of each trajectory can be deduced from it, gener-
ating the trajectories files. The obtained trajectories can 
then be compared to the reference as well as between 
each participant. Using the ggplot2 R package [6], the 
graph of Figure 1 shows the field navigation results 
obtained for the straight bean plot during the first field 
evaluation campaign in June 2022. 

 

Figure 1. Field navigation results for the straight bean plot 
during the first field evaluation campaign in June 2022 

The reference trajectory recorded during the sow-
ing is the black line and is to be compared with data 
gathered for the four participating teams. For each 
recorded trajectory, the offsets, the smallest and the 
largest deviations can be looked into and analysed. 
The obtained results are different between the four 
solutions of each participant team. The maximum 
measured offsets are more than 100 mm. These field 
navigation results obtained on the same straight bean 
rows show the progress that has yet to be made for 
a precise autonomous navigation. 

The Crop mapping evaluation requires the organ-
izing team to perform a randomized sampling on the 
plot before the participants make a pass on it. The 
evaluators record the positions of the remaining plants 
on the rows and the participants must send the plants’ 
positions they collected with their robots. Then, both 
datasets are compared and the accuracy of the partic-
ipating team is assessed. The prepared Crop mapping 
evaluation plot was not used because of a lack of 
participants for this benchmark. 

The weeding actions are also analysed after the 
field evaluations using the manual counts results ob-
tained before and after each weeding action.  

The data for this evaluation have been acquired 
through manual counts at three dates. June 8th was two 
days before the weeding action was performed. On June 
10th, the one robot participant made only a part of a pass 
on the plot and the organizers counted the destroyed or 
uprooted crop plants and weeds. A last manual count 
was performed on June 15th, a few days after the weeding 
action, to check if the crop plants and weeds had shown 
respectively signs of death or re-growth. 

 

Figure 2. Intra-row weeding results on the bean/rye-grass plot 
for the only team who participated 

The data are compiled and allow obtaining error rates 
on weeds that were not destroyed and on crop plants that 
were damaged or uprooted. Figure 2 shows the intra-row 
weeding results obtained for the only team that partially 
participated on the bean/rye-grass plots during the first 
field evaluation campaign in June 2022. These few re-
sults show the need for improvement in this field. 

IV. THE ACRE CASCADE EVALUATION 

A. General framework 

The ACRE Cascade Campaigns are online competitions 
targeted at researchers and practitioners in Artificial 
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Intelligence, where the organizers ask the participants 
to segment RGB images to distinguish between crops, 
weeds, and background. There has been a dry-run 
Cascade Competition in the winter of 2020 and the 
first Cascade Campaign in the spring of 2022. The data 
for the competitions came from the ROSE challenge. 
In particular, in the dry-run cascade competition, the 
organizers asked the participants to segment the ROSE 
images collected in 2019, while the first Cascade 
Campaign focused on domain adaptation. Thus, the 
main goal was to segment the images of the year 2021 
by training the models on the images of the year 2019. 
A generalization capability of the models, that is to be 
trained on a Source domain and achieve good per-
formance in a Target domain, is of fundamental im-
portance for adopting the technology by real users. 

B. Competition platform and dataset 

Both competitions have been hosted on the CodaLab 
platform that provided all the tools to manage the 
request of participations, the distribution of the da-
tasets, and the evaluation of the submissions. The 
dataset was composed of images collected during the 
ROSE Challenge campaigns and captured by different 
sensors at different moments, and was about two kinds 
of crops: maize and bean. Data came specifically from 
the 2019 and 2021 ROSE challenges, where four 
teams (BipBip, Pead, Roseau and WeedElec) com-
peted with agricultural robots. Each team has collected 
images of the same two crops, but at different mo-
ments and with different sensors (all are RGB camer-
as). The dataset contained both RGB images and 
labelled masks (ground truth). Human annotators have 
produced the labels under the supervision of LNE. 
Masks were composed of three different classes: crop, 
weed, and background. Figure 3 shows an example of 
an RGB image and its corresponding labelled mask. 

 

Figure 3. A couple of RGB image 
and corresponding ground truth mask from the dataset 

used in the 2022 ACRE first Cascade Campaign 

Dataset images were divided by the team that ac-
quired the image, and for each team, by the type of 

crop present in the images, i.e., maize and bean. For 
the first Cascade Competition, the task was focused 
on the domain adaptation between different years and 
not different sensors. In Figure 4, it is possible to ap-
preciate the significant difference in colour, perspec-
tive, and field of view in the datasets of the four teams. 
Indeed, each of the ROSE teams has chosen a different 
positioning and setting for the camera used in the 
plant/weed discrimination.  

 

Figure 4. Samples of images captured by the different teams 
at the 2019 ROSE Campaign. 

From top to bottom, left to right, BipBip, Pead, Roseau, WeedElec 

In addition, lighting conditions are quite different, as 
some teams have decided to structure as much as possi-
ble the lighting conditions. In contrast, other teams have 
placed no specific care on the lighting of the scene when 
acquiring the images. For these reasons, for the first 
Cascade Campaign it was decided to only provide the 
images from the two BipBip and WeedElec teams, that 
showed the highest similarity. 

C. Evaluation 

Participants were evaluated on the mean Intersection 
over Union (IoU) obtained on the two classes, crop 
and weed. The Intersection over Union, also called 
Jaccard Index, is typically used in segmentation tasks, 
and it essentially quantifies the percentage of overlap 
between predicted and target segmentations. If A is the 
prediction and B is the ground truth, the IoU is calcu-
lated as in the following: 

A BIoU
A B


=

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The area of the intersection contains the True Pos-
itive (TP) pixels. The union is computed as the sum of 
prediction’s pixels not overlapping with the ground 
truth (False Positives – FP), of the intersection (TP), 
and of ground truth pixels not overlapping with pre-
diction’s pixels (False Negatives – FN). 

IoU was computed for each target class (crop and 
weed) separately by considering prediction and ground 
truth as binary masks. Then, the final IoU is calculated 
by averaging the two. Thus, this was the formulation: 

crop
crop

crop crop crop

TP
IoU

TP FP FN
=

+ +
 

weed
weed

weed weed weed

TPIoU
TP FP FN

=
+ +

 

2
crop weedIoU IoU

IoU
+

=  

Where TP are the True Positives, FP are the False 
Positives, and TN are the False Negatives. 

Thanks to the CodaLab Competitions framework’s 
flexibility, it was possible to score the participants with 
different customized IoUs. In particular, the participants 
were scored according to the Global IoU (by considering 
the images of both crops and the four teams), and the 
Maize and Bean IoUs. Thus, three competition winners 
for each category were nominated. 

D. Results of the first Cascade Campaign 

The first Cascade Campaign lasted from February 23rd 
2022, to May 21st 2022, and it has been divided into 
three phases, Development, Generalization, and Final. 

In the Development phase, participants were asked 
to develop a model to perform semantic segmentation 
of RGB images, that is, to distinguish crop, weed, and 
background pixels. Participants received a training 
dataset with images of the year 2019 and were asked to 
predict on a test set of images again of the year 2019. 

In the Generalization phase, participants were asked 
to submit predictions on the first part of the new un-
labelled 2021 dataset by using their models trained on 
the 2019 dataset.  

In the Final phase, participants were required to 
submit predictions of the second part of the 2021 da-
taset. This stage was thought to submit the final model 
without major changes; thus, the duration was limited 
to three days and the number of submissions to three. 
The limit to the number of submissions was imposed to 
reduce the risk of overfitting. Overfitting happens when 
models are fitted too closely to a set of data, and 
therefore they cannot generalize well on new unseen 
data. By limiting the number of submissions in the 

Final phase, the possibility of participants to fit their 
models too closely to the Test data was limited. 

 

Figure 5. Daily-wise distribution of the total number of submissions 
and evolution of the daily highest score (Global IoU) 

The highest Global IoU was 0.83 in the Development 
phase, 0.68 in the Generalization phase and 0.69 in the 
Final phase. In the Development phase, the highest IoU 
related to Bean and Maize were 0.82 and 0.84. In the 
Generalization phase, the highest IoU related to Bean 
and Maize were 0.67 and 0.69. In the Final phase, the 
highest IoU related to Bean and Maize was 0.69 for 
both categories. The results are summarized in Table 1. 

Table 1. Best IoU results for each phase 
and each type of evaluation 

 Global 
IoU 

Bean 
IoU 

Maize 
IoU 

Development 0.83 0.82 0.84 

Generalization 0.68 0.67 0.69 

Final 0.69 0.69 0.69 

The results obtained in the Generalization and Final 
phases were lower because the algorithms have only 
a limited capacity to segment images of a new domain. 
Bean and Maize images did not show relevant differ-
ences in the corresponding IoU scores, suggesting 
a similar task complexity. 

V. CONCLUSION 

The METRICS project gathers a set of competitions in 
four Priority Areas, among which is the Agri-food 
Competition for Robot Evaluation, ACRE. 

Since 2019, the organizers of this project have 
worked on establishing and testing a variety of pro-
tocols applied in evaluation campaigns of robots ded-
icated to agricultural use. These protocols originated 
from the INRAE experience of the ROSE Challenge. 
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The protocols that were established and written in 
an evaluation plan in 2019 were then adjusted as the 
campaigns went on. Each campaign, from the first dry 
run to the first official campaign, has allowed to test 
and improve the protocols and methodologies.  

Although one of ACRE’s main evaluation fields is 
to evaluate robots’ weeding capabilities, most of the 
participants took part only in the Field navigation 
evaluation. Only one team performed the weeding 
tasks and was evaluated on a portion of the plot. Due 
to technical issues, they could not perform the entirety 
of the task.  

The teams who participated in the different cam-
paigns have used this opportunity to identify their 
shortcomings and know in which field their autono-
mous solutions need improvement. 

The last campaign, in Italy, will be a new chal-
lenge in itself; weather conditions will be different 
from the ones encountered in France. Moreover, the 
soil type is different, and the crop species are sup-
posedly different as well. These modifications will 
complement the results already obtained by accumu-
lating diversity and therefore will allow to increase 

the robustness and reliability of the results and of the 
established protocols. 

The main goal of the ACRE organizing team is 
now to take advantage of this accumulated experience 
and use it for the last campaign of 2023 in Italy, as well 
as for possible future challenges and projects. 
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Abstract: This paper deals with an experimental evaluation of several 
path-tracking control methods for tracked vehicle. We present adaptive 
strategy, allowing to take into account the phenomena of slipping 
occurring over the robot. Different observers algorithms are used to 
estimate these slip parameters in real time. To anticipate the trajectory 
turns, predictive method such as feedforward and MPC are introduced. 
The low-level controller problem is also addressed. We present two 
strategies to ensure the control of longitudinal and angular velocities of 
the robot. All these approaches are applied to Ceol, a tracked robot 
used for vineyard crop maintenance. Full-scale experiments are pre-
sented under various conditions. We tried and tested these methods on 
a regular flat field, on a slope but also in a real vineyard with an im-
plement working the soil. 

Keywords: path-tracking control, experimental study, nonlinear 
control, predictive control, adaptive control, agricultural tracked 
robot, vineyards weeding 

I. INTRODUCTION 

The constant increase of the population has created 
needs in food production. On the other hand, the use of 
chemicals must be reduced to limit environmental im-
pacts. Mobile robotics is emerging as a new solution to 
make agriculture sustainable while maintaining the 
necessary production. Robots free up farmers time, they 
act regularly and autonomously by carrying out me-
chanical treatments in the crops. Instead of using large 
tractors, small tracked robots are designed to reduce fuel 
consumption and pressure applied to the soil, resulting 
in higher yields (Tomis et al. 2014). However, robotics 
still has a major technological challenge to overcome 
before it can become a permanent part of the agricultural 
ecosystem: making robot guidance robust and safe. 
Several researches projects have been conducted on 
path-tracking control strategies, but most of them con-
cern wheeled robots. Finally, there is a lack of papers 
addressing the problem of path-tracking for tracked 
vehicles and performing full-scale experiments. 

In the literature, the control architecture is gener-
ally composed of two controllers. The first one, named 

high-level controller, computes the longitudinal and 
rotational velocities based on the localisation errors to 
converge to the trajectory. The second one, called 
low-level controller, ensures that the velocities from 
the high-level controller are followed by the robot. We 
retain this structure in this work. There are many 
methods to design a high-level controller. First ones 
were based on geometric principles such as the “follow 
the carrot” or “pure pursuit” strategies (Wit et al. 2004). 
The backstepping technique appeared in 1992 (Ko-
kotovie, 1992). It was first applied to a wheeled robot 
in simulation (Fierro and Lewis 1997). Then, we 
started to add observers and to design adaptive control 
(Wang et al. 2004; Moosavian and Kalantari 2008; 
Dar and Longoria 2010; Lenain et al. 2017). These 
updates take into account the slippage occurring when 
the robot evolves off-road, at higher speed, or during 
turns. Furthermore, robots do not have instantaneous 
response time, and this phenomenon must be antici-
pated when the path curvature change. To this end, 
predictive control has been widely used (Kanjana-
wanishkul et al. 2009; Picard et al. 2020). Other 
high-level strategies are based on neural-network (Gu 
and Hu 2002; Xiao et al. 2017; Shi et al. 2016) or on 
optimization problem (González et al. 2011) but they 
are time and memory consuming. 

In this paper, we address the problem of path-tracking 
applied to Ceol: the Agreenculture crawler. The paper is 
divided as follows. First, two low-level controllers 
using classical control strategy are presented. Then 
kinematic model and extended kinematic model are 
recalled. Based on the second model, different ob-
servers are introduced: A classical backstepping con-
troller is implemented to serve as a reference. Com-
pared to the backstepping, we design different adaptive 
and predictive control. Finally, a wide scope of ex-
periments over Ceol are presented and analysed in 
many situations in order to test the effectiveness of 
developed strategies. 
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II. LOW-LEVEL CONTROLLER 

The low-level controller has the purpose to ensure the 
correct control of longitudinal and angular speed. Ve-
locities of right and left tracks are then controlled by the 
two inverters of Ceol. To resume, we have to compute 
left and right tracks speed in order to guarantee that 
setpoints of high-level controllers are reached. In our 
case, we chose to regulate only the angular speed be-
cause we are quite sure of our longitudinal speed model. 
Moreover, the regulation did by the inverters is suffi-
cient to ensure the required performance over longitu-
dinal velocity. About angular speed regulation, two 
methods have been implemented and tested. The first 
one is a simple PID, based on the error between the 
angular speed ω calculated by the high-level controller, 
and the angular speed measured M by the IMU. This 
measurement has to be debiased and filtered. The sec-
ond one is what we called a P + ID. It is an alternative to 
the PID which consist of applying the gain kp directly to 
the setpoint and not to the error state. By doing this, we 
include a bit of model into the controller, and it helps to 
improve responsiveness. Equations of these two regula-
tions approaches are as follows: 
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Angular and longitudinal velocities are used in the 
geometrical model of Ceol, to compute a left Vl and a 
right Vr track speed. In the case of the crawler, we take 
the same model as a skid-steering robot. Defining ωC 
as the angular speed output of the PID or P + ID, ve-
locities are computed as follows: 
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Finally, the low-level controller global structure is: 

 

Figure 1. Low-level controller 

Both of these architectures has been tested with 
Ceol on different kind of soil. The settling time of the 
longitudinal speed has been calculated at 0.7s, with no 
steady-state error. With a longitudinal speed of 0.5m/s, 
we measure a settling time of 1.5s for the angular speed 
with PID, and of 1s with P + ID strategy (Figure 2). 

 

Figure 2. Angular speed response 

III. HIGH-LEVEL CONTROLLER 

In this section, we rely on scientific literature to design 
the complete high-level controller. 

A. Modelling and observation 

The kinematic model is established with the work 
(Morin and Samson 2008). Frenet frame is used as a base 
to locate the robot position on the trajectory (Equation 3). 
We define s as the abscissa curvilinear, y as the lateral 
deviation and   as the angular deviation. All these 
variables compose the model. 
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(3) 

In order to take into account the slippage that the robot 
undergoes, we add some parameters in our model 
to create an extended kinematic model. These pa-
rameters can be expressed in skid model form, with 
a perturbed longitudinal speed vp, a sideslip angle β and 
a yaw rate perturbation  . Or, they can be in generic 
form, with a perturbation on each coordinate of the 
Frenet frame: 
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To evaluate these new slipping parameters, we in-
troduce three observers. The first one is based on 
backstepping technique (Bouton et al. 2007), the sec-
ond one on Lyapunov technique (Lenain et al. 2017), 
and the last one on super-twisting observation theory 
(Nagesh and Edwards 2013). Detailed descriptions of 
them can be found in given references. In our work, we 
implemented the backstepping observer to evaluate 
sliding expressed in skid model form, super-twisting 
observer to evaluate slip expressed in generic form and 
Lyapunov observer to evaluate sliding expressed in 
both form. 

B. Control 

The first approach to design a high-level controller is to 
use the backstepping technique. Based on (Deremetz 
2018), the controller is decomposed in two part. The 
first one computes a desired heading ψd which the robot 
has to follow to converge to null lateral deviation ey. 
The second one computes the associated yaw rate  to 
match d, considering the actual heading, and the 
curvature of the path. 
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= − +   − −  
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Gains ky and kψ must be tuned to set the dynamic of 
the robot. This controller is based on the kinematic 
model of robot, thus, sliding parameters can be included 
in the equation to design adaptive control strategy (see 
(Lenain et al. 2017) for an application with Lyapunov 
observer). 

Any robot has a dynamic response which is not in-
stantaneous and should be considered. These dynamics 
introduce some delay in the command which will be 
compensated by the predictive control. We consider 
two strategies in this work: feedforward and LMPC 
(Lenain et al. 2006). 

Feedforward method uses the curvature among the 
robot on the path in the command equation. We define f f 
as the time of prediction used to determine this curvature. 
It permits to anticipate the future trajectory curvature. 

The technique that we recalled LMPC is based on 
model predictive control. In this strategy, an approxi-
mated second order model is used to modelling the 

low-level of the robot. The command minimize devia-
tion over a horizon H between predicted and desired 
angular speed to anticipate the low-level behaviour. 

IV. EXPERIMENTAL RESULTS 

A. Experimental setup 

Experimental studies have been conducted with Ceol 
from Agreenculture society. This crawler has a weight 
of 700 kg and is designed to work in vineyard. The 
3-point linkage at the rear of Ceol, permits to carry 
usual agricultural implement till 500 kg. In these ex-
periments, we test the algorithms with a shredder of 250 
kg (Figure 3) used to cut the grass of the intra-row of 
the field. Also, we test the guiding with a carried frame 
of 200 kg having two inter-vines hoe (Figure 4). This 
frame weeds rows of the field, without damaging any 
vine stock. 

 

Figure 3. Schredder Figure 4. Carried frame 
with inter-vine hoe 

Ceol has a AGCbox, which computes the precise 
localisation of the robot, and sends this information on 
a CAN bus. AGCbox also communicates its IMU data. 
A computer running ROS (Robot Operating System) is 
as well connected to the CAN bus. This computer gets 
all the information of the robot (odometry data) and of 
the AGCbox, and runs low-level and high-level con-
trollers. The first one is running at a frequency of 50 Hz 
whereas the second is running at 10Hz. This architec-
ture allows to guide the robot accurately, using locali-
sation of AGCbox. 

Table 1. Gains parameters in function of velocity 

Velocities kp kd f f H 
0.7 m/s –0.5 –1 – – 
1 m/s –0.26 –0.8 – – 

1.5 m/s –0.23 –2.5 0.3 15 
2 m/s –0.1 –2.5 0.8 40 
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For all of these experiments, we work a lot on tun-
ing our gains: for prediction, adaptation, observers, etc. 
Some gains depend on the velocity of the robot, they 
are summarized in Table 1. 

Furthermore, we use gains for low-level model 
identification and LMPC, which stays the same for 
different speed. Also, we use the P + ID low-level 
controller with constant gains kp and ki. They are all 
summarized below. 

Table 2. Prediction parameters 

a0 a1 b1 b2 α kp ki 
0.02372 0.01088 1.529 -0.5636 0.9 0.6 1.2 

For analytical purposes, most of the next presented 
curves represent the lateral deviation of the robot in 
comparison to its trajectory. These curves are expressed 
in function of curvilinear abscissa. Grey colour of 
graphics indicates zones where curvature of the refer-
ence trajectory is not null. 

B. Impact of adaptive control 

Adaptive control improves system performance when a 
lack of adherence occurs. In this paper, we try to 
highlight benefits of this strategy, testing algorithms on 
a slope, during turn and when the robot is weeding 
a field. 

1) Guiding on a slope 

First experiment1 has been conducted at 1m/s in a har-
vested wheat field, where the slope evolves between 20% 
and 45% and the soil is quite hard. The purpose was 
to see the effectiveness of adaptive control in a situation 
of important slope. The trajectory to follow (Figure 5) 
is a straight line of 50 m followed by a turn with 
a radius of curvature of 5 m, and another straight line. 
 

  

Figure 5. Trajectory 
on the slope 

Figure 6. Experimental 
setup 

 
1 A video of the experiment is available at: https://youtube.com/ 

shorts/ZE-4kcbLhyM 

The robot is push to its left during the first straight line 
and to its right on the second one. During the curve, 
the robot turns into the slope. It is probably the case 
generating the most slippage because the inertia and 
the slope effect are acting in the same direction. 

We tried to follow this trajectory with a simple 
backstepping, and then to add observers estimations to 
the command. Results are as follows (Figure 7). 

 

Figure 7. Comparison of adaptive strategies on a slope 

During the straight motion, the lateral deviation is 
oscillating around 0 even without adaptive control. 
Visually, we noticed that Ceol did not slip even on an 
important slope that could be a risk for its integrity. 
On that kind of soil, tracks are effective enough 
to limit slip. Adaptive control does not significantly 
improve performances on straight lines, because the 
slip is not important. Conversely, they tend to add 
noise to the command. At the end of the bend, the 
backstepping suffers from an overshoot of 25 cm. 
At the same place, the use of observers by adaptive 
approaches permits to reduce the overshoot from 25 cm 
to 10 cm. In fact, this zone is the most critic of the 
trajectory. Due to the slope and its inertia, the robot 
slip in direction of the slope. Adaptive control de-
tects and compensates the slip to improve perfor-
mances of the path-tracking. All the observers seems 
equivalent, none of them stands out with much better 
performances. The rising pic at the end of the turn 
can be explained by the lack of prediction in the 
command. 

2) Permanent turning 

The second experiment is conducted on a flat regular 
field. The trajectory (Figure 8) is constituted of a straight 
line of 30 m and then a turn of constant radius of 5 m 
during 200 m. We speed up to 1 m/s with and without 
implement. 

Adaptive control is tried to see the impact of its 
utilisation when using various robot configurations. 
Results are presented in Figure 10. 
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Figure 8. Trajectory 
of permanent turn 

Figure 9. Experimental 
setup 

During the steady-state of the turn, the lateral error 
of the experiment without implement (red curve) is 
more centered than for the experiment with implement 
(blue curve). We explain that phenomenon by the 
distribution of masses over each track. Naturally, Ceol 
mass is concentrate on the front of the tracks. Adding 
a heavy implement as a shredder distribute the masses 
and the pressure uniformly over the tracks. Thus, the 
kinematic model used for control is more realistic than 
without shredder. When we are looking at the results 
with adaptive control (green without implement, brown 
with implement), there is no more difference, and they 
are both of them centered. Adding observers compen-
sate the model uncertainties. 

 

Figure 10. Comparison during permanent turn 

3) In a vineyard environment 

This experimentation2 took place in a vineyard in the 
south of France. The purpose was to test algorithms in 
real conditions of weeding work in a nominal environ-
ment. The implement used is a carried frame with in-
ter-vine hoe. There is a mechanical sensor touching vine 
stocks to detect and avoid it. It permits to work as close 
as possible to every vine stock. But this implement 
creates a lot of disturbances (continuous and punctual) 
over the robot, especially when the sensor touch and 
release a vine stock. The plot in question had not been 

 
2 A video of the experiment is available at https://youtube.com/shorts/ 

VwRTeUsAX4o 

worked for a long time. Experiments are realized at 
0.7 m/s in vine row of 70 m. 

 

 

Figure 11. Trajectory 
vineyard 

Figure 12. Experimental 
setup 

We are comparing performances of path-tracking in 
three different cases. First case is when the robot just 
carries its implement in the row without working. The 
second case is when the robot works a row for the first 
time. In this case, there are indeed a lot of disturbances. 
Finally, the third case is when the robot is doing 
nominal work, after more than three passages working 
on the same row. We are showing results with back-
stepping approach Figure 13. Even if we do not use 
them in the command, outputs of Lyapunov observer 
are presented Figure 14. 

 

Figure 13. Working in vineyard conditions 

 

Figure 14. Perturbations during work 

Red curve in Figure 13 shows that when the robot 
does not work the soil, performances are quite good. 
Lateral deviation oscillates around 0 with a precision of 
±1 cm. During first work on the lane (blue curve), the 
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implement has a lot of work to do, which create a lot of 
perturbation over the guiding. Results are quite bad, 
because some pics reach 6 cm of lateral deviation. Nev-
ertheless, the robot was able to achieve its task without 
damaging any vine stock. Finally, on a more nominal task 
(brown curve), results are not as good as without work-
ing, but, they are totally satisfying. The robot oscillates 
around 0 with a precision of ±1.5 cm. Looking observers 
results (Figure 14), we are not seeing any difference 
between the experiment in nominal work condition, or 
without working. A slight difference is noticeable during 
the first work on the row, especially on ps . This means 
that observers only see disturbances affecting longitudi-
nal velocity, and cannot detect punctual lateral perturba-
tions, which are the main concern of our problem. Thus, 
adaptive control is useless to improve performance of 
path-tracking during a harsh weeding work. 

C. Impact of predictive and adaptive control 

Adding prediction term into command allows to take into 
account some phenomena. Especially, we want to reduce 
overshoots, which are occurring at the start and at the end 
of turns. We want to anticipate curvatures changes. 

Experiments3 have been conducted on a flat grass 
field (Figure 16). The reference trajectory is a serpen-
tine (Figure 15): a sequence of 30 m straight lines and 
turns with curvature radius of 4 m. On results graphs, 
curves are indicated by a grey area. 

Predictive control has been evaluated at 2 m/s and 
1.5 m/s. In Figures 17 and 18, we clearly see that without 
prediction (red curves) the robot understeer at the begin-
ning of each turn, and oversteer at the end of each of 
them. Using feedforward approach (green curves), we are 
limiting this phenomenon. At 1.5m/s, prediction effect is 
not as impressive as at 2m/s. However, a light im-
provement is visible adding prediction to backstepping 
command. 

  

Figure 15. Serpentine Figure 16. Experimental 
setup 

 
3 A video of the experimentis available at https://youtu.be/ 

D3ltJFQA3_s 

 

Figure 17. Impact of feedforward 
and observation at 2 m/s 

 

Figure 18. Impact of feedforward 
and observation at 1.5 m/s 

Adding then adaptive control (blue curves), per-
mits to have a better convergence during the steady-state 
of turns. In this experiment, we activate adaptive 
control only during turns. During straight line adap-
tive control is not necessary. Combining prediction 
and adaptation provides good performances at high 
speed. 

 

Figure 19. Comparison feedforward 
and LMPC at 2 m/s 

Differences between feedforward and LMPC meth-
ods are not significant. At 1.5 m/s (Figure 20) LMPC 
is slightly better than feedforward. However, at 2 m/s 
(Figure 19) they seem to be equivalent. Nevertheless, 
both of them are providing really good results to follow 
a serpentine path. 
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Figure 20. Comparison feedforward 
and LMPC at 1.5 m/s 

V. CONCLUSION 

In this paper, we presented two approaches to control 
longitudinal and angular speeds of robot. We then 
recalled kinematic models, observers, backstepping, 
adaptive control and predictive control. 

These various strategies of path-tracking has been 
tried and tested in full-scale experiments with the crawler 
Ceol of Agreenculture. We highlighted the benefits of 
adaptive control to compensate model uncertainties, or 
when there are a lot of slipping phenomena, especially 
during curves at high speed on grass field or in hard 
slope. At straight line, slipping does not occur on Ceol 
thanks to its tracks. In that sense, we proposed to ac-
tivate adaptive control only during turns. In order to 
estimate the sliding effects, different observers pre-
sented in the paper have been implemented, and their 
equivalence have been shown. In vineyard conditions, 
benefits of adaptive control has not been proved. In 
nominal work condition, backstepping control is suf-
ficient to achieve the task of weeding with Ceol. Two 
predictive control methods have been presented. Both 
of them give similar results on a serpentine. Combining 
adaptive and predictive approach, we obtain really good 
performance of path-tracking, even at high speed. 

The hard part of these experiments were gains tun-
ing. For each speed change, or change of grip, gains 
had to be adapted. Further research will concern that 
aspect, trying to find optimal gains online, respecting 
real time constraints. 
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Abstract: The ongoing development of automated machine control 
systems amplifies the necessity of large-scale data acquisition and 
storage. Data collection and preprocessing have a major impact on 
the quality of the developed systems and therefore have to be opti-
mized and monitored. Especially for machine learning systems 
preprocessing is a key factor to assure functionality. Our measure-
ment setups are based on ROS and connect a variety of sensors and 
data sources to one network. The data collection was thereby auto-
mated with a variety of developed software tools that feature a simple 
graphical user interface for quality monitoring and reducing the effort 
for the operator during the data collection process. 

In this paper, we present the developed data collection tools and 
the preprocessing tools to convert the data into training data for neural 
networks to help other researchers in their data collection tasks. 

Keywords: ROS, CAN, Data Collection, Data Processing 

I. INTRODUCTION 

Vehicle internal data transfer relies on higher 
level communication protocols such as SAE J1939 or 
CANopen in order to regulate and control the data 
transmission (Geimer 2020; Truck Bus Control and 
Communications Network Committee 2020). 

The definition and fixed structure of these protocols 
provide message collision protection due to a priority 
definition between the different control units, and error 
correction to identify and correct transmission failures 
(Pfeiffer et al. 2008). 

On the primary level, these protocols use Controller 
Area Network (CAN) as a physical data transmission 
layer as defined in ISO 11898-1 and ISO 11898-2 to 
connect multiple electronic control units to a shared data 
transmission interface (ISO 11898-1:2015. Road Vehi-
cles – Controller Area Network (CAN). Part 1: Data Link 
Layer and Physical Signalling, 2015; ISO 11898-2:2016. 
Road Vehicles – Controller Area Network (CAN). Part 2: 
High-Speed Medium Access Unit, 2016). 

Due to the message arbitration process, two CAN 
participants which are on each end of the BUS must be 
able to communicate within the time frame of a message. 
This limits the usable length of the BUS with an in-
crease in data rate (Pfeiffer et al. 2008). 

The increase in necessary sensor technology in mobile 
machinery led to the development of more sophisticated 
CAN standards. These new standards include CAN-FD 
and ISOBUS. 

The CAN-FD standard was developed using flexi-
ble data rates to increase communication bandwidth. 
(Hartwich 2012) 

The ISOBUS (ISO 11783) standard establishes com- 
munication between the different electrical components 
in agricultural vehicles to simplify the connection pro-
cess between any tractor and implement, independent of 
the manufacturer. The standard is based on J1939, but 
features additional transport protocols for high data 
volumes and navigation data (ISO 11783:2017. Tractors 
and Machinery for Agriculture and Forestry – Serial 
Control and Communications Data Network, 2017). 

Table 1 gives an overview on the maximum trans-
mission rates of some CAN-based communication 
standards. 

Table 1. Maximum Transmission Rate 
of Communication Standards (Geimer 2020; Hartwich 2012) 

Standard Maximum Transmission Rate 
SAE J1939 500 kbit/s 
CANopen 1 Mbit/s 
CAN-FD 15 Mbit/s 

There is also the option to install multiple CAN 
networks in the same machine. This is sufficient for 
many use cases, since most of the connected devices 
only require a few other devices for their proper func-
tionality, and therefore the information distribution can 
be separated into different networks (Geimer 2020). 

In most machines, central Electronic Control Units 
(ECUs) have access to multiple CAN networks to 
establish communication in between, if necessary. 

These advantages of using these CAN systems are 
useful for transmitting short numerical data, e.g., speed 
measurements or pressure levels, but come at the cost 
of limiting the flexibility of data types that can be 
transmitted through them. 



 22 

Dedicated recording hardware can be used for data 
collection. These devices record all incoming CAN 
messages to be later analyzed using software such as 
CANoe, CANalyzer, CANape, and vSignalyzer (CANlog 
– Data Logging with CANlog, n.d.). 

There is also the possibility for real-time data analysis, 
with a variety of different applicable hardware and soft-
ware combinations. A comparison of a few of these real- 
-time capable options can be found in (Rohrer et al. 2019). 

These systems are limited to recording CAN data. 
The advancement of sensor technology in the last 

years led to the requirement of adding camera systems 
and 3D-scanning technology to the machinery. Due to 
the bandwidth limitations of standard CAN bus pro-
tocols, difficulties arise in transmitting the requested 
data in an appropriate time interval. 

The Ethernet standard provides additional network 
speed and thereby allows the transmission of large 
quantities of sensor data at high speeds, which is nec-
essary for instance for the recording of point clouds 
measured by stereo camera systems. 

Furthermore, Ethernet networks are cost-efficient 
and can be easily deployed since there is no necessity 
of specifying information priority and data structure in 
comparison to the CAN-bus protocols (Geimer 2020). 

The usage of the robot operating system (ROS) as 
a communication standard in measurement and robotic 
setups simplifies the connection between sensors and 
programs in measurement setups, using Ethernet as the 
central communication protocol. 

The free and open-source framework allows con-
necting a variety of different hosts and programs (nodes) 
to make their information accessible across the whole 
measurement setup. ROS drivers are available for 
a wide variety of sensor types and models. The infor-
mation exchange is thereby supervised by a ROS mas-
ter, a program that connects the different nodes if they 
require information from each other. The information 
can hereby range from numerical data and coordinate 
transformations to complex data types such as camera 
images or point clouds from laser scanners or stereo 
cameras. This enables easy installation and expandabil-
ity during hardware changes, since the communication 
is not specifically adjusted to one use case. 

Measurement data can be collected in files called 
rosbags, that record the incoming data streams from the 
different sources with their recording timestamp. These 
files can then be played back to develop control systems 
or visualize the recorded content (Quigley et al. 2009). 

This framework streamlines tasks of connecting dif-
ferent sensors and provides the infrastructure for merging 
the sensor’s respective data streams into a centralized 
data storage. The adaptable setup structure is especially 

important for monitoring and controlling heavy-duty 
tasks such as agricultural processes, since measure-
ment setup changes occur frequently in these use cases. 

These changes range from planned modifications, 
for instance during implement exchanges, to unsched-
uled sensor replacements, since most sensors are not 
rated for these harsh environments and therefore have 
to be exchangeable during the collection process. 

A variety of additional open-source software is 
available to extend the functionality of ROS for data 
recording processes. In the following, we would like to 
give a brief introduction to the two most significant 
packages. 

Plotjuggler is an independent tool to inspect and 
visualize rosbags and other measurement data files or 
data streams within an interactive graphical user in-
terface. The tool feature plugins that allow for re-
al-time tracking of ROS topics (Faconti 2016/2022). 

The Rosbag Database is a web-based tool to main-
tain an overview of the collected rosbags. Their contents 
are scanned and entered into a database to easily search 
and identify relevant recordings for data analysis. 

It can be mounted using the included docker image 
and features user authentication to limit access to the 
web interface (Southwest Research Institute (SwRI), 
2016/2022). 

For optimizing the machine control systems, com- 
munication in between the standard CAN-bus and 
additional sensors, which are connected via Ethernet 
using ROS, must be established. Currently, this can be 
achieved by dividing these information channels and 
logging CAN data independently using CAN-loggers, 
and simultaneously recording rosbags for the addi-
tional sensors. 

The recorded data can then later merged for a ho-
listic analysis. This approach is inefficient and leads to 
an additional workload. Furthermore problems such as 
synchronisation offsets can occure due to multiple 
unconnected timers. 

In this paper, we propose a connection between the 
CAN-bus network and a ROS system on an Ethernet 
network to merge data streams and simplify data re-
cording processes. 

There has been a similar proposal to establish this 
connection in a car. However, the focus of this work lies 
on making internal signals available as lightweight as 
possible for integration on a Raspberry Pi (Elmadani et al. 
2021). 

To collect data from mobile working machines, the 
whole amount of different signals on the BUS has to be 
accessible in a simple manner whereas the computa-
tional power is available and system robustness a ne-
cessity. 
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II. CONNECTING CAN AND ROS 

We developed a software bridge to connect the vehicle’s 
internal CAN-Bus to the ROS system on the Ethernet 
network to establish mutual information exchange. 

Using this bridge, CAN-data is accessible in the 
ROS network and all sensor data can be recorded 
simultaneously into a single rosbag.  

These rosbags can then be analyzed and stored in 
a database as visualized in Figure 1. 

 

Figure 1. Collection Process 

This approach allows for simplified holistic analy-
sis and optimization of control systems and is espe-
cially important for the training of neural networks. 

Furthermore, control nodes, that rely on receiving 
and transmitting information from both networks, can 
now be developed in ROS and do not require an indi-
vidual hardware interface to the CAN (Figure 2). 

These control systems can preprocess data to reduce 
the required rosbag storage space or directly interact 
with system components to perform work tasks. 

 

Figure 2. Control Process 

In CAN-communications, information about the 
relevant messages is usually specified in .dbcfiles. 
These files contain the respective identifiers for each 
message, the relevant bytes in the received byte arrays, 
and further information for decoding the incoming data 
stream. 

Furthermore, outgoing messages can be defined in 
these files to make them readable for other connected 
sensors and ECUs. Our software bridge accomplishes 
these tasks by automatically making all topics availa-
ble that are specified in a .dbc file for reading and 

writing operations on the CAN. The ROS-node uses 
the openly available software package can-dbcparser 
(Auracher 2013/2013) to access the content of the 
specified .dbc files and then adds ROS subscribers 
and publishers (Datatype: std_msgs/Float32) for the 
specified CAN messages. Furthermore, there is the 
option to automatically send a custom ROS messages 
that contain a timestamp in addition to the numerical 
values. This automated functionality is crucial since it 
makes the adaption to new vehicles simple and fast. 

III. SUPERVISING DATA COLLECTION 

Due to the large quantity of sensor data exchanged in the 
ROS network, supervision of the data collection process 
is crucial. This involves automated collection tools, tag-
ging of the recordings, as well as overall system supervi-
sion to detect sensor failures and system overload.  

Our collection tools are plugins for Rqt. 
Rqt is the standardized tool to visually display in-

formation in ROS. The plugin-based tool can be mod-
ified intuitively to the respective preferences. A variety 
of plugins are already included in the standard ROS 
installation for machine control as well as data visual-
ization.  

The plugins can be dragged and dropped to modify 
the interface for the respective use case. 

A. Recording 

Our measurement setups started with a simple CAN 
interface that was then made accessible to the ROS 
setup. Since additional sensors such as stereo cameras 
and laser scanners were added soon afterward, the usage 
of the command line to record all incoming messages 
into a single rosbag file was  not feasible, and a topic 
selection was necessary due to the size of the incoming 
data stream. 

The rqt-bag plugin, that comes with the standard 
full ROS installation, features the option to record only 
relevant topics.We realized that for a simple data re-
cording, many of the included features are not required 
and an increase in performance would be more bene-
ficial for the collection process. Therefore, the plugin 
was adapted to feature fewer options and increase 
recording reliability. 

This adapted version resulted in the creation of the 
rqt-mobimabag plugin. 

The plugin automatically names the recorded bags 
using the date and time. However, a custom name can be 
set and there is also the option for automated naming 
using the information published to the \metadata topic. 
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Figure 3. Recording Plugin 

Since our operating processes often contain speci-
fied start and stop operations, such as when a driver 
presses a button to lower the implement at the begin-
ning of a row and to raise it at the end, this information 
can be used to automate the collection process since the 
plugin can listen to a ROS topic to start and stop the 
collection process.  

B. Additional Parameters 

The rqt-userparameter plugin was developed to add 
a standardized way of including recording parameters 
into the rosbag files under the \metadata topic. 

This topic is used by the rosbag database to add tags 
to the rosbags for a simplified overview of the collec-
tion settings.  

 

Figure 4. Userparameter Plugin 

For our tasks, the relevant information was the 
type of machine, the implementat, and the location 
during the collection process. Further information 
can be added, such as weather conditions or driver 
information. 

The first three selected parameters can also be 
combined with the rqt-mobimabag plugin to automat-
ically name the rosbags during data recording. 

C. Sensor Fault Detection 

As our data collection is focussed on heavy-duty op-
erations, sensor faults and connection issues are com-
mon problems. To detect these issues, we developed 
a lightweight tool that inspects the rate of incoming 
ROS messages and informs the user visually if a sensor is 

not sending data to the network. After a selection of the 
monitored topics, topics that receive messages within 
the specified time threshold are marked green, whereas 
the other topics are marked red and moved to the top of 
the list. 

 

Figure 5. Sensor Supervision Plugin 

IV. DATA PROCESSING 

Rosbag recordings are similar to CAN-BUS recordings 
in a way that each piece of information is stored in a 
separate message. 

Additionally, each recorded ROS message features 
information about the topic type as displayed in Table 2. 

Table 2. Rosbag Message Format Example 

Time [ns] Topic Type Content 
1637847573.5 /speed std_msgs/Float32 data: 0.5 
1637847573.6 /angle std_msgs/Float32 data: 20.0 
1637847574.5 /dist std_msgs/Float32 data: 2.5 
1637847574.6 /speed std_msgs/Float32 data: 2.5 

However, for the training of neural networks, a de-
scription of the overall system state is necessary since 
the commonly used software libraries such as Tensor-
Flow and Keras are optimized to take whole system 
states at once as input data for supervised neural net-
works and reinforcement learning algorithms (Chollet et 
al. 2015; Martín Abadi et al. 2015). 

To solve this issue, the separate incoming message 
streams must be merged into a combined system state 
information stream, as visualized in Table 3. 

Table 3. Training Data Format Example 

Time Speed Angle Distance 
1637847574.0 0.5 20.0 NaN 
1637847575.0 2.5 20.0 2.5 

… … … … 

Our training data extraction tool samples the rosbag 
records by a selectable frequency to combine the latest 
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measured values by each sensor at each of the sampling 
points. 

The time information is thereby given by the rosbag 
timestamp, which is set during the data recording process. 

The tool also allows searching for rosbags that 
contain the required topics and checks their message 
frequencies to identify faulty recordings where sensor 
data is missing. 

After that, each topic can be filtered using a running 
average or a running median filter, to be then merged 
with the other specified topics in the next step. This is 
especially useful if the measurement data is noisy and 
includes various sensor frequencies, since the filtering 
step relies on a fixed time interval and therefore in-
cludes all recorded messages rather than being limited 
to the sampling frequency. 

The sampled data is then saved in easily applicable 
.csv files, which are compatible with commonly used 
neural network libraries. 

The tool can only be applied to data topics and not 
on images or point clouds. 

The idea behind the tool is based on a script by Nick 
Speal (Speal 2014/2014) and expanded to merge the 
information from different topics into a single file using 
the rosbag python API. In comparison to other rosbag to 
.csv conversion tools, this approach allows for the ex-
traction of data of all currently installed ROS-message 
types instead of being limited to the standard message 
types or a list of hard-coded message types.  

The tool requires having ROS installed and is then 
able to extract information from standard messages and 
all custom message types that are installed on the 
system. 

All software tools can be downloaded from: https:// 
git.scc.kit.edu/mobima/publications/datarecording 

V. EVALUATION 

Time delays need to be avoided during data collection 
to provide an accurate representation of the recorded 
process. This is crucial for the further development of 
controlling algorithms, since their design needs to be 
optimized on measurement data to reduce the effort of 
practical testing. 

Since many computational steps are involved dur-
ing our measurement data collection in ROS, an anal-
ysis of the time delay caused by the software bridge 
between CAN and ROS and by the rosbag recording 
tool is necessary. 

The evaluation was conducted on a Lenovo P14s 
Notebook which played back CAN recordings from the 
Forwarder. 

This machine resembles one of the use-cases for 
the software presented in this paper (Geiger et al. 
2021). 

Other use-cases include new control systems for 
agricultural machinery as in (Becker et al. 2022). 

One CAN signal was selected and monitored to iden-
tify time offsets until the saving into the rosbag file. 
Therefore, the timestamps were recorded on receiving the 
CAN messages, at the time the associated ROS-message 
was created in the CAN-Bridge, and the specified rosbag 
recording time. Figure 6 visualizes the delay of the re-
spective time in comparison to the timestamp of the 
CAN-message reception. 

 

Figure 6. Recording Time Delay 

The numerical offsets are stated in Table 4. 
These offsets show that very fast-acting control 

systems should use the time stamp set by the CAN 
bridge to avoid timing offsets and fluctuations associ-
ated with further data transmission and subsequent 
storage in the rosbags. 

However, the use of the rosbag time stamp is 
sufficient for a status description of the overall sys-
tem as described in the data processing section since 
the deviations are comparatively small compared to 
the time interval between two signals on the CAN 
assuming standard transmission frequencies in mo-
bile machines. 

Table 4. Time Delays 

Measurement 
Location 

Average Delay 
in microseconds 

Maximum Delay 
in microseconds 

CAN-ROS-Bridge 60 243 
rosbag 156 532 

Further research has to be conducted on the limita-
tions of the proposed measurement system. This in-
cludes recording speed capabilities, and overall system 
reaction time, to identify the limitations for the usage in 
high-speed control systems. 
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VI. CONCLUSION 

This paper describes an exemplary setup for large-scale 
data collection using ROS. It describes the individual 
tools required for recording, monitoring, and expand-
ing the measurement setup to include CAN signals as 
new data sources. We hope that we can help other 
scientists in their research by making our recording 
tools available to the public. Furthermore, we hope that 
the ROS community can provide support for the further 
development of these tools. 

We're currently planning the transition to ROS2, 
therefore, our packages will be adapted to the new 
standard in the future for more real-time applicability. 
(Maruyama et al. 2016) 
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Abstract: A joint research project at the TH Köln together with 
Pfreundt GmbH is investigating networked optimization of 
work processes, using wheel loaders as the model machine. The 
optimization is expected to result in a considerable increase in 
efficiency (e.g., efficiency rate, fuel efficiency). A new gener-
ation of intelligent and autonomous loading processes, with the 
purpose of significantly assisting users and reducing work load, 
will be created for mobile work machines using methods of 
artificial intelligence. 

In the past years a steady increase in digitalization of business 
processes and automation of systems could be observed. This trend 
is clearly visible in research and development goals within mobile 
work machines sector. This research project will take into consid-
eration the interface between human and machine during automated 
loading operations, applying artificial intelligence to achieve an 
overall improvement in control and safety functions. 

Keywords: Wheel Loader, Assistant System, Energy Efficiency, 
Productivity, Loading Process Automatization 

I. INTRODUCTION 

The wheel loader is a versatile work machine used for a 
variety of loading and transport tasks in different ap-
plications (e.g., mining, bulk material industry, demo-
lition and recycling, etc.). Vehicle fuel consumption 
has been a focus of manufacturers even before the 
constant presence of climate change discussions. 

Frank [FRA12] investigated the differences between 
operator types in four varying levels of experience (in-
experienced, average, trainer/test driver, professional). 
Results showed that the fuel efficiency had a positive 
correlation to the level of experience of the driver. The 
differences lay at up to 200% in fuel consumption and 
up to 700% in the handling capacity. The most im-
portant conclusion of the study is that a noticeable 
reduction in the power consumption of the entire work 
cycle can best be achieved by reducing the power con-
sumption during the loading phase of the shovel. Alt-
hough this work phase represents only a maximum of 
25% of the total cycle time, it is responsible for up to 
40% of the fuel consumption. Similar results were 
attained by Baumgarten [BAU14] during an investi-
gation of the loading process of a tractor with attached 
front loader. 

 

Figure 1. The fuel efficiency and productivity in SLC gravel [FRA12] 

Through consequent application of machine learn-
ing to the loading process of a wheel loader, in addition 
to the interface between human and machine, the cur-
rent project will significantly improve the complete 
work process of a mobile work machine with the fol-
lowing targets: 
• Process Optimization: Increase economic efficiency 

by up to 50% higher handling/loading efficiency, 
even in sub-optimal working conditions, such as 
weather conditions, difficult to load earths and dif-
ferences in operator experience. 

• Energy Efficiency: Minimization of energy con-
sumptions (e.g., fuel consumptions). 

• Resource Saving: Service life optimized machine 
operations – up to 40% reduction in wear at the shovel 
through use of the floating position and wear-opti- 
mized loading processes; predictive maintenance. 

• Safety: Operator alleviation during monotonous work 
and/or work that poses a hazard to health through 
autonomous work functions. 
The increase of up to 50% in handling efficiency will 

be achieved through a networked, model-supported 
measurement and control system of the drive and the 
hydraulic dumping and lifting system of the wheel 
loader, where a sensor will capture, analyze and trans-
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mit the loading process as actual value for the net-
worked control loop. A software tool, operating in 
parallel for machine learning of the loading process, 
will independently execute an optimized loading pro-
cess, in line with the methods of artificial intelligence, 
as soon as sufficient parameters and functional corre-
lations have been collected.  

By using the methods of artificial intelligence, a new 
generation of intelligent and autonomous productions 
systems in mobile work machines will be generated, 
which will support and alleviate people in their daily 
work.  

The first step towards a fully automated wheel loader 
will be consideration of the work portions with the largest 
impact on energy efficiency and performance, which 
have the greatest optimization potential. Even if the 
uptake of bulk material represents 25% of the loading 
process, it is responsible for up to 40% of the fuel con-
sumption. Additionally, this work portion has a huge 
importance to the determination of productivity.  

II. MARKET SITUATION 

The increase in performance of imbedded systems (pro-
cessors, memory, sensors, actuators, etc.), the high degree 
of networking and the omnipresent availability of data 
and services makes it possible to create increasingly au-
tonomous systems, which can aggregate all-encompas- 
sing environmental data and react versatilely and inde-
pendently to its working environment [BET13]. 

Especially in the automotive industry, assistance 
systems that support safety and process efficiency are 
already widespread. The autonomously driven cars 
from Tesla, Inc. are one such example. 

In contrast to this, corresponding systems have not 
found application very often in the construction in-
dustry, despite the steady increase in market demand. 

Several loading systems are already available on the 
market.  

• Cat Payload (Caterpillar, Inc.) 

The Cat Payload-System, made by Caterpillar, Inc., is 
a weighing system in series production, which assists the 
operator during off-loading of the bucket. Data delivered 
by angle sensors and the hydraulics of the boom cylinders 
are used for payload calculation. The system is designed 
to assist in reaching the daily payload goals [CAT22]. 

• AutoDig (Caterpillar, Inc.) 

The AutoDig is a loading system, which makes auto-
matic loading of the bucket possible. The main focus 

lies in the increase of productivity. This means that the 
system is designed for attaining the maximum loading 
capacity of the wheel loader [CAT22]. 

• Tip Off Assist (Caterpillar, Inc.) 

The Top Off Assist weights the bucket load and sums 
up the nominal content of each bucket load until an 
operator determined total weight has been achieved. 
The system automatically tips to remove excess mate-
rial in the last bucket load so that the specified total 
weight is achieved. This prevents over-loading of 
dump trucks [CAT22]. 

• Auto Set Tires (Caterpillar, Inc.) 

The Auto Set Tires System assists the operator during 
the loading process by optimizing the bucket load such 
that greater pressure is put on the front tires, resulting 
in higher traction with the underground. This signifi-
cantly decreases skidding of the tires. This is imple-
mented by a light lifting command during loading. This 
eliminates the greater portion of tire skid [CAT22]. 

• Truck Payload Assist (Liebherr S.A.) 

The Truck Payload Assist has a very similar function-
ality to the Tip Off Assist from Caterpillar, Inc. The 
driver enters the desired total load weight and the 
system suggests an optimal target weight for the indi-
vidual bucket fillings, as well as the number of loading 
cycles necessary for a uniform loading operation 
[LIE22]. 

• Load Assist (Volvo Group AB) 

The Load Assist has functionality identical to the Tip 
Off Assist by Caterpillar Inc. The driver enters the de-
sired total load weight, the system weights the bucket 
loading and sums up the nominal content of each bucket 
up until the target weight. At the touch of a button, the 
system automatically tips the bucket to remove mate-
rial until the desired total weight is reached in the last 
bucket filling [VOL22]. 
 

The systems described give a rough idea of the as-
sistance systems currently available on the market. 
This clearly shows that the steady increase in demand 
for efficiency presents a necessity for new solutions.  

III. RESEARCH PROJECT “LADE-RAD” 

A wheel loader is a mobile work machine used to 
transport payload over short distances. Wheel loaders 
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are mainly used in earth moving, mining and road con-
struction applications and, next to hydraulic excavators, 
they form an important market segment in the area of 
construction and working machines. These machines 
work in cycles. This means that their operation and 
movement patterns are consecutive and have very few 
concurrent process steps. The work cycle of a wheel 
loader is divided into the driving and loading cycles. 

The typical driving cycle of a wheel loader is a Y-driv- 
ing cycle. If seen from above, the typical driving move-
ments form a Y-shape.  

 

Figure 2. Y-driving cycle of a wheel loader [GUS22] 

The loading process can be split into four subpro-
cesses:  
1 – driving to the loading area, 
2 – loading bulk material, 
3 – transport to delivery area, 
4 – unloading bulk material. 

Since subprocess 2 – loading bulk material – has the 
greatest impact on energy efficiency and performance, 
this process will be isolated within this research project. 
Especially the theories offered by Pieczonka and Du- 
dzinski [PIE96] have been taken into consideration in 
developing of the optimal loading strategy for different 
bulk goods and soils because their studies show that 
 

 

Figure 3. Level model for a digging operation 
[according to KUN11] 

a dynamically stimulated loading bucket can have a pos- 
itive effect in energy efficient loading. The dynamic 
excitation during the loading process helps overcome the 
flow limit of the bulk material and aids in settling the 
material, which increases the bulk material density and 
allows more material to be loaded. 

A temporary and needs-based dynamic excitation of 
the loading bucket has a positive influence on the 
velocity of the bucket movement and, therefore, also 
the digging force FG. However, with increasing speed, 
negative influences also appear, such as a rise in de-
formation resistance and soil strength. This process can 
still have a positive effect, especially with medium to 
difficult loading soils, since the bucket is usually 
loaded in layers. The method of dynamically exciting 
the bucket and related consequences for the loading 
process and on the bulk material/soil is a point studied 
in the research project by KLB/TH Köln. 

In order to isolate this effect and the loading process 
itself, a test stand was developed with which such 
dedicated investigations are made possible.  

The test stand is based on the multi-functional 
Avant 218, which is available at the research institute 
and with which laboratory tests can later be verified. 

 

Figure 4. CAD Model Wheel Loader Test Rig [GUS22] 

The entire kinematics (green) and even the loading 
shovel are from a real Avant 218. The test stand was 
modelled with help of the simulation software availa-
ble in Matlab Simulink. 

 

Figure 5. Vehicle model with subsystems [GUS22] 
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During initial tests of the simulation, a bucket tip 
movement path that had been previously manually rec-
orded was used as the basis for the motion simulation. 
Both trajectories run practically along an identical path, 
but in the simulated line (blue), an exact analysis shows 
that there are slight deviations from the recorded path 
trajectory. This minimal deviation can be explained by 
play in the bucket, which is also considered in the simu-
lation. 

 

Figure 6. Comparison of path trajectories: real (red) 
and simulated (blue) [GUS22] 

First attempts with the test stand model and the vi-
bration motors were able to give an initial assessment 
of the effect of the motors on the loading result. A 
sand-gravel mixture with particle size of 0/16 was used 
in this investigation. The experiment runs were: 
1 – without activation of the vibration motors, 
2 – activation of the vibration motors at 40% power, 
3 – activation of the vibration motors at 80% power, 

The results showed that activation of the vibration 
motors at 40% power offered no noticeable improvement 
in the bulk material loading, while activation of the motors 
at 80% power showed an increase in bulk material loading 
of approximately 9%. An increase of the vibration motor 
power to 100% a further increase can be expected. 

IV.CONCLUSION 

First investigations with the final construction 
stage of the demonstrator test stand already show 
 

a very good approach. As a result of the selected bulk 
material mixture, it is not always possible for the 
vibration motors to adequately cause the material 
to flow and support loading of the bucket suffi-
ciently. Further experiment runs will be completed to 
determine the optimal frequency, amplitude and 
vibration level for the type of bulk material. Inves-
tigations with different bulk materials and difficult to 
load materials are also planned. Especially in the 
latter, supporting the loading process with vibration 
motors could allow direct loading of the material 
with the wheel loader bucket, rather than having to 
use other tools or machines to loosen material prior 
to loading.  

New insights from these experiments serve as a basis 
for self-learning loading assistance systems for wheel 
loaders. 
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Abstract: The combination of the recent advances in Wireless Un-
derground Sensor Networks (WUSNs) and mobile robotics enable 
today to consider the development of more efficient and accurate 
systems. In particular, the measurement to the ground conditions 
from a set of sensor nodes buried at a few dozens of centimeters deep 
and distributed in a farm field would enable to adapt the behavior of 
some agricultural robots accordingly. To that end, this paper presents 
the development of a buried sensor node operating in LoRa with 
a collector node embedded on a mobile robot. When the robot 
is close to the sensor node, the soil moisture measurement is taken 
into account by the collector node to adapt the speed of the robot 
accordingly. The experimental results reported in this paper demon-
strate the capabilities of the proposed system.  

Keywords: Wireless Underground Sensor Networks, Soil moisture, 
Mobile robotics, LoRa, Agriculture 

I. INTRODUCTION 

In recent years, the development of mobile robotics has 
increased significantly in agriculture, whether it be to 
increase farm productivity, perform environmentally 
friendly operations or relieve human operators from 
tedious and unhealthy work (Oliveira et al. 2021). Many 
challenges remain, however, to be faced to obtain fully 
operational robots. One of them is to provide for the 
robot the capacity to take into account the ground 
conditions in the field to adapt its behavior accord-
ingly. In particular, when the soil moisture varies sig-
nificantly, the speed of the robot and the tuning of its 
agricultural tool have to be adapted, see the illustration 
in Figure 1. 

 

Figure 1. Variability of the soil moisture in a field requiring to adapt 
the working speed of the robot and its tool accordingly 

Nevertheless, the access to the information of soil 
moisture, locally and in real time, is a real issue. Mi-
croclimate weather stations and connected devices can 
be positioned at the edge of the field, but they are not 
sufficient to obtain local and accurate information of 
the soil moisture within the areas (Tenzin et al. 2017). 
In addition, such systems can obviously not be posi-
tioned and multiplied inside the field as they represent 
obstacles for the farming activities.  

The recent advances in Wireless Underground Sen-
sor Networks (WUSNs) and Internet of Underground 
Things (IoUT) have however opened new opportunities. 
These approaches are based on the development of sensor 
nodes able to operate underground at a few dozens of 
centimeters deep; see Figure 2 and (Moiroux-Arvis et 
al. 2022; Saeed et al. 2019; Salam et al. 2020). Dif-
ferent measurements can be carried out, as the soil 
moisture and  temperature. The data are emitted by the 
radio modules, also buried underground, using Low- 
-Power Wide Area Networks (LPWAN) as LoRa 
technology (Augustin et al. 2016). A device located 
aboveground, e.g., a gateway or a data collector em-
bedded on an Unmanned Aerial Vehicle (UAV), can 
communicate with the buried sensor nodes and retrieve 
the measurements, see (Cariou et al. 2022; Popescu 
et al. 2020).  

 

Figure 2. Buried sensor node measuring the moisture 
of the soil and emitting the data through radio communication 
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The advantage to bury and dissimulate all the com-
ponents underground, including the radio modules and 
the antennas, is to protect the system against potential 
damages due to farming activities but also adverse 
weather conditions, animals, theft and vandalism. The 
main current applications of WUSNs are smart irriga-
tion, landslide detection, and monitoring of under-
ground infrastructure, see (Akyildiz et al. 2006; Fer-
reira et al. 2019; Silva et al. 2010).  

The development of buried sensor nodes is, however, 
a challenging task as the electromagnetic radio waves are 
highly attenuated in the soil, about 20–300 times worse 
than in the air (Da Silva et al. 2014). This attenuation is, 
moreover, dependent on numerous environmental factors 
(e.g., volumetric water content (VMC), burial depth, soil 
composition). The communication ranges are therefore 
considerably reduced and highly variable. In practice, 
the Underground to Underground (UG2UG) com- 
munication link between two buried sensor nodes is 
limited to a few meters. However, as highlighted in our 
last work (Moiroux-Arvis et al. 2022), the Under-
ground to Aboveground (UG2AG) communication 
link can reach more than 250 meters under certain 
conditions, i.e., 868-MHz radio modules with LoRa 
communication, transmit power of +14 dBm/25 mW 
and a burial depth about 15 cm.  

Based on these first results, the objective of this 
paper is to demonstrate that a data collector node em-
bedded on a mobile robot is able, in real time, to re-
trieve the soil moisture of a buried sensor node when 
passing at proximity and adapt the working speed of 
the robot accordingly. This is the objective of the project 
named “CIDEA” which is funded by the CAP 20-25 
International Research Centre – Innovative Transpor-
tation and Production Systems (CIR-ITPS). The prin-
ciple scheme is presented in Figure 3. 

 

Figure 3. The robot adapts its working speed with respect to the soil 
moisture information collected from a buried sensor node 

This paper is organized as follows. Sections II, III 
and IV present, respectively, the methodology, the 
experimental design and the experimental results. 
Sections V and VI present the conclusion and the 
discussion. 

II. METHODOLOGY 

The methodology consists first to bury underground 
a sensor node at a depth d1 below the surface, see Fig- 
ure 3. This sensor node regularly measures the soil 
moisture and emits a data frame using its LoRa radio 
module. 

A collector node is embedded on the mobile robot 
and connected to its CAN bus. It has reading access to 
various information on the CAN bus (e.g., GPS posi-
tion, status of the implement, robot’s speed) and can 
write a CAN message to change the speed of the robot 
if required.  

When the robot is inside the coverage range of the 
buried sensor node (a1 in Figure 4), the collector node 
receives and decodes the data frames which contain the 
soil moisture information. It will take the control of the 
speed of the robot with respect to the RSSI (Received 
Signal Strength Indication) signal level: if the strength 
of the RSSI signal is above a threshold (–65 dBm), the 
soil moisture information is taken into account and the 
speed of the robot is adapted according to the curve 
presented in Figure 5. When the robot leaves the delock 
area (–80 dBm), the collector node gives back the con-
trol of the speed to the controller of the robot. 

 

Figure 4. Speed control area of the collector node 

 

Figure 5. Speed of the robot with respect to soil moisture 
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III. EXPERIMENTAL DESIGN 

A. The buried sensor node 

We developed a buried sensor node based on a mi-
crocontroller Atmega328-AU 8 MHz (Microchip) and 
a LoRa radio module RFM95W (HopeRF) operating at 
868 MHz, see Figure 6 and (Cariou et al. 2022) for 
more details.  

 

Figure 6. The buried sensor node 

A Truebner SMT100 probe is connected to measure 
the soil moisture. The sensor node is powered with 
a rechargeable lithium battery 3.7 V/8.8 Ah. A tem-
poral reference DS1378 is implemented to switch 
between the deep-sleep and active modes. The node is 
activated during the measurement of soil moisture (the 
measurements are stored on a 8 bit memory EEPROM 
with I2C-bus interface) and during predetermined 
time-windows to communicate the data from the radio 
module. When a time-window is active, the sensor 
node puts its radio module in listening mode and waits 
for a message from the collector node. When the com-
munication is established, the sensor node transfers the 
data to the collector node.  

B. The collector node  

The collector node is built around a microcontroller 
Atmega328-AU (Microchip) running at 8 MHz, see 
Figure 7. It is powered through a rechargeable lithium 
battery 3.7 V/8.8 Ah. It is equipped with a LoRa radio 
module RFM95W (HopeRF) to communicate with the 
buried sensor node, and a CAN bus interface to ex-
change information with the robot (read and write 
access). All the data of the experiments are stored in 
a SD card in the collector node enabling to analyze the 
results afterwards.  

 

Figure 7. The collector node on the robot 

The sequence of operations and decisions made 
by the collector node is presented in Figure 8. The 
collector node scans on the RF communication 
(LoRa radio module) the proximity of a sensor node. 
When a sensor node is detected, the quality of the 
radio signal is measured (RSSI signal) to determine 
the speed control area. Every second, an interruption 
routine reads different data on the CAN bus (e.g., GPS 
position, actual speed of the robot) and stores them on 
the SD card. 

 

Figure 8. Diagram of the program in the collector node 

C. The mobile robot 

The mobile robot used for the tests is presented in 
Figure 9. This robot is electrically propelled (Lithi-
um-ion batteries 12.8 kWh). The wheelbase is 1.40 m 
for a total length of 2.50 m. The track is adjustable 
from 0.70 m to 1.30 m. It weights about 550 kg with 
a maximal payload of 150 kg. It has four independent 
wheeled-motors and four independent steering actua-
tors. It is able to reach speeds up to 10 m/s in the wide 
track configuration. The implement at the rear is 
a horizontal sprayer. Four nozzles are placed at dif-
ferent working distances, they can be activated inde-
pendently.  

The architecture of this robot is built around three 
main controllers (steering, speed, implement) joined by 
two CAN bus. The collector node is connected to the 
CAN bus enabling to take the control of the speed of 
the robot. 
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Figure 9. Experimental robot used for the tests 

IV. RESULTS 

A. The experimental setup 

The sensor node is buried at the depth d1 = 15 cm. Four 
soil moistures were tested: 0%, 5%, 10% and 20%. At 
the beginning of each experiment, the robot is manu-
ally controlled with its joystick (speed and steering). 
When the collector node detects the buried sensor node 
with a RSSI value higher than –65 dBm (i.e., very good 
reception, that enables to limit the size of the experi-
mental area), it controls the speed of the robot in place 
of the joystick (from 0 to 1 m/s, see Figure 10). When 
the RSSI signal becomes lower than –80 dBm, the 
collector node gives back the control of the speed to the 
joystick. 

 

Figure 10. Speed of the robot with respect to the soil moisture 

B. Results with 0% soil moisture 

For the first experiment, the probe is not connected 
leading to a measured soil moisture of 0%. According 
to Figure 10, that leads to a setpoint for the speed of 
1 m/s. Figure 11 presents the trajectory of the robot and 
Figure 12 the RSSI level measured by the collector 
node. The time during which the collector node con-
trols the speed of the robot is depicted in red. The 
speeds of the robot (setpoints and measurement) are 
presented in Figure 13. 

 

Figure 11. Trajectory of the robot – Test 0% 

 

Figure 12. RSSI received by the collector node – Test 0% 

 

Figure 13. Speed controls and measurements – Test 0%. 
Up: speed calculation by the collector node (0 if not active), 

Middle: speed control from the joystick (black) and the collector 
node when active (blue), Down: measured speed of the robot 

At the beginning (t = 0 s), the buried sensor node 
is detected but with a RSSI value equals to –80 dBm 
(i.e., not taken into account), see Figure 12. The robot 
is then moved and controlled with the joystick. At 
t = 40 s, the RSSI signal becomes upper than 
–65 dBm. The robot is then controlled by the collector 
node until the time t = 65 s (i.e., the RSSI value be-
comes lower than –80 dBm). This is also the case 
between t = 110 s and t = 122 s. On the top of Figure 13, 
we clearly observe the commands of the collector 
node (v = 1 m/s), the commands of the speed of the 
robot from the joystick and the collector node (middle 
of Figure 13), and the effective speed of the robot 
(bottom of Figure 13). 
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C. Results with 5%, 10% and 20% soil moisture 

The probe is then connected to the buried sensor node. 
Successively, three experiments are carried out with 
a dry soil (5% humidity), a slightly wet soil (10% 
humidity) and a wet soil (20% humidity). The results 
are presented in the Figures hereafter. For the three 
experiments, it can be clearly observed that when the 
buried sensor node is detected with a RSSI value 
higher than -65 dBm, the collector controls the speed of 
the robot. 

 

Figure 14. Trajectory of the robot – Test 5% 

 

Figure 15. RSSI received by the collector node – Test 5% 

 

Figure 16. Speed controls and measurements – Test 5% 

In Figure 16, it can be observed for example that 
the speed of the robot was about 1.5 m/s at the be-
ginning of the experiment. When the robot enters in 
the speed control area with the buried sensor node, its 
speed is constrained to be reduced at 0.7 m/s. In Fig-
ure 19, the speed is reduced to 0.5 m/s, and to 0.3 m/s 
in Figure 22. 

 

Figure 17. Trajectory of the robot – Test 10% 

 

Figure 18. RSSI received by the collector node – Test 10% 

 

Figure 19. Speed controls and measurements – Test 10% 

 

Figure 20. Trajectory of the robot – Test 20% 

 

Figure 21. RSSI received by the collector node – Test 20% 
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Figure 22. Speed controls and measurements – Test 20% 

V. CONCLUSION 

The objective of this paper was to demonstrate the 
possibility to adapt the behavior of a mobile robot 
to the variations of the soil moisture encountered in 
a field. To access information on soil status as close as 
possible to the intervention area of the mobile robot, 
we proposed to develop a system based on sensor 
nodes buried at a few dozens of centimeters deep. The 
main challenge is however to develop these under-
ground objects with relevant communication ranges. 
Constraints on energy consumption and transmit 
power also have to be considered as the nodes have to 
work ideally several years without battery replace-
ment.  

We developed a set of buried sensor nodes able to 
measure the soil moisture and transmit that infor-
mation to an aboveground collector node. The radio 
communication is based on the technology LoRa at 
868-MHz. The collector node is embedded in a mo-
bile robot and connected to its bus CAN. It has read 
and write access, in particular to control the speed of 
the robot when required. The first experimental re-
sults are presented. When the robot is in the commu-
nication range of a buried sensor node with a RSSI 
value upper than a threshold, the moisture information 
is collected and used to adapt the speed of the robot 
accordingly. 

VI. DISCUSSION 

The first results obtained in this paper have consid-
ered a single sensor node located underground. In the 
future work, we intend to study several sensor nodes 
positioned in a field. That requires to carefully study 
and manage the overlapping areas. In particular from 
the knowledge of the position of the robot and the 

locations of the different moisture sensors in the field, 
the setpoint for the robot’s speed could be determined 
with precision. Obviously, the speed curve with re-
spect to the soil moisture could also be adapted to the 
situation. The exponential shape of Figure 8 was only 
used to rapidly reduce the speed of the robot with 
respect to the soil moisture. A more in-depth study on 
the evolution of the speed of the robot according to the 
humidity of the soil could be carried out. 

Moreover, the system can take advantage of the cir-
culation of the mobile robot in the field to collect the soil 
moisture data. These measurements are local and ac-
curate, and are particularly useful to improve the man-
agement of the crops (e.g., irrigation planning, spatial 
distribution of the water). 
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Abstract: The aim of this work is to develop an assistance system to 
reduce the slip occurring on the drive wheels of a paver, with regard 
to quality assurance of the road surface during the paving process. 
For example, the developed system can improve the longitudinal 
evenness of the road paved by the wheeled paver by using a tractive 
force management system. The methods to realise this assistance 
system is presented here.  

Keywords: Wheeled pavers, Asphalt roads, Building quality, Slip 
control, Traction effort, Dislocation resistance 

I. MOTIVATION 

Various road construction machines are used to build 
asphalt roads (Figure 1). Dump trucks deliver the hot 
paving material from the mixing plant to the construc-
tion site. The material is transferred either directly to the 
paver or via a feeder, which supplies the paver with the 
paving material via a conveyor belt without direct 
contact between the two machines. The paver builds 
the pre-compacted asphalt road using the screed at 
a preset paving height, profile and width as well as 
tamper stroke, speed and vibration frequency. Final 
compaction of the paved asphalt road surface takes 
place with the road rollers (Kappel, 2016). 

 

Figure 1. Road construction process 
with the road construction machines involved 

According to the type of track unit, road pavers are 
divided into tracked and wheeled pavers. Tracked 
pavers have crawler tracks and thus achieve higher 
traction. They are therefore more powerful and suit-
able for paving roads with greater widths. Wheeled 
pavers, on the other hand, have two large rear wheels 
and two to four smaller front steering wheels. Com-
pared to tracked pavers, wheeled pavers can reach 
higher travel speeds and thus offer easier transport 
and relocation options. Furthermore, a wheeled paver 

with independent suspension is better able to negoti-
ate obstacles such as manhole covers, in that each 
wheel individually compensates the difference in 
height over the manhole cover in turn due to the in-
dependent suspension. In contrast, a tracked chassis is 
rigid and lifts up as a result of the lack of suspension, 
which in turn affects the entire paver (Kappel 2016). 
In this work, only wheeled pavers are considered, as 
the slip that occurs with these is much greater than 
with tracked pavers. 

II. ASSIGMENT OF TASKS 

To ensure the acceptance of the paved road after com-
pletion of the construction process, the specifications 
set by the client, such as pavement thickness, width, 
transverse profile, longitudinal evenness and degree of 
compaction, must be met. Many factors must be con-
sidered when completing the road to be paved and 
meeting the specified requirements. If the required 
parameters are not met after completion, deviations in 
the specified construction quality can occur, which in 
turn can lead to considerable costs due to reworking. 
The guarantee of a good paving quality of the road 
depends upon, among other things, a qualitatively good 
condition of the paving material as well as a flawless 
functionality of the road construction machines used 
and their interaction. During the paving process, the 
paving screed of the road paver is lowered onto the 
paving material and pulled over it in the direction of 
paving so that the asphalt solidifies. During this pro-
cess, the paving screed floats on the paving material. 
For the production process of the asphalt layer, it is 
therefore indispensable that the paver moves evenly 
along the planned road on the pre-treated base so that 
the high demands on the quality of the road can be 
ensured. This requires sufficient traction of the drive 
tyres (Ulrich 1996). 

According to the German standard DIN18317, the 
required evenness for each layer is defined within a 4 m 
long measuring distance as followed:  
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• For the asphalt layer ≤1 cm; 
• For the asphalt binder layer ≤1.5 cm; 
• For the asphalt base layer ≤2 cm. 

The aim of this work is to develop an assistance 
system for slip control for a road paver with a wheeled 
undercarriage. This is to be used to automatically 
control and thus minimise the slip that occurs during 
the paving process within a defined target range. For 
this purpose, the existing tractive force or the dis-
placement resistance of the paving material in front of 
the screed is continuously determined with sensors. 
The assistance system being developed will use the 
measured variables to derive and display a tractive 
force balance on the paver, to better identify the cause 
of slippage. To identify the cause of slip, special at-
tention will be paid to the proportion of the dislocation 
resistance exerted by the paving material in front of the 
paving screed. It is to be determined what effect the 
filling level of the mix in the auger chamber and the 
material properties have on the slip. The existing slip is 
to be determined by comparing the target and actual 
speeds. In view of the fact that a certain slip is always 
present, the actual slip determined is to be compared 
with a specified target slip in the control loop of the 
control system to be worked out. If a deviation is de-
tected between the target slip and the actual slip and the 
causes are determined, the tractive force will be au-
tomatically adjusted by the slip control system through 
anticipatory adjustment of the material. 

III. METHODS AND RESULTS 

The development work here is divided into various steps 
that are done in a fixed sequence. First, various variables 
influencing the tractive force of the wheeled paver were 
analytically investigated. Then, within the framework of 
the experimental investigations on the mobile working 
machine or on a test bench, the relevant influencing 
variables were recorded with suitable sensors. Using the 
results from the previous work steps, a simulation model 
was created that simulated both the machine behaviour 
and the interaction between the working machine and the 
paving material or the environment. This model will be 
used in a later work step to test the mathematically de-
termined controller for the control of functionality before 
this is done in the real machine. 

A. Analytical investigation of the influencing variables 

Figure 2 shows the general force balance on a wheeled 
paver during the paving process. When paving with 
a feeder, there is no resistance to the movement of the 

truck RTruck during the feeding process. The paver travels 
behind the feeder without contact. 

The forward movement of the paver depends on 
the horizontal force components. However, some are 
influenced by certain vertical force components. For 
example, the adhesion force TDrive depends on both the 
weight of the tractor and the weight of the material 
FW,Mat in the hopper. This means that a decrease or an 
increase of the amount of material in the hopper will 
affect adhesion traction. The same applies to the truck’s 
resistance movement. For the sake of simplicity, the 
influence of the truck’s resistance to movement is not 
taken into account here. 

 

Legend: RTruck: Movement resistance of the truck; Fa,Truck: 
Acceleration force of the truck; FW,Mat: Weight force of the material; 
RD,Mat: Dislocation resistance of the material; RD,Mat: Friction 
force between screed and material; RMat: Material’s reaction force 
due to the screed’s weight; Fa,Tractor: Acceleration force of the 
tractor; FW,Tractor: Weight force of Tractor; FW,Screed: Weight 
force of the screed; FTraction: Tractor’s traction effort for screed‘s 
movement; FDrive: drive force from Motor; TDrive: transmitted 
tractive effort on the ground; RF,FRT/MID/BHD: Tyre’s rolling 
resistance at the front/middle/behind; RG,FRT/MID/BHD: Wheel 
load at the front/middle/behind 

Figure 2. Representation of the forces acting on the paver 
during the paving process on a horizontal road 

The horizontal force components are subdivided 
into drive forces or tractive effort, working and driving 
resistances. The drive forces are the forces provided by 
the left or right travel drive for the forward movement 
of the construction machine. Tractive efforts are the 
tractive forces transmitted by the driven tyres on the 
road surface, which are generated due to the frictional 
connection between the two. The working resistance is 
the driving resistance exerted by the paving material. 
This is made up of the dislocation resistance and the 
frictional force between the screed and the material. 
The movement resistance comprises the rolling friction 
on the paver’s tyres and the movement resistance of the 
truck. 
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B. Experimental investigation 
of the influencing variables 

The use of appropriate measurement technology is 
required to record the various influencing variables. 
The measurement technology is part of the control 
system for slip reduction that is being developed. The 
various methods to measure the influencing variables 
are described below. 

To determine the dislocation resistance RD,Mat of 
the paving material acting in front of the screed, the 
traction effort FTraction is measured at the traction 
point of the left and right side of the tractor at the pull 
arms of the screed. The horizontally aligned traction 
effort is made up of the equally horizontally aligned 
dislocation resistance and the horizontal component 
of the frictional force RF-Mat between the paving 
screed (the screed plates) and the road surface (Fig-
ure 2). The frictional force RF,Mat is always inclined 
by the angle of attack β of the screed. It is the product 
of the screed weight FW,Screed (or the portion of the 
screed weight acting normally on the screed 
plate/paving material contact surface) and the coef-
ficient of friction. In practice, the coefficient of 
friction µR,B between the screed plate and the asphalt 
material is in the range of 0.25–0.35 (PAST, 2012). 
By subtracting the friction force from the resulting 
tensile force (the sum of the measured tensile forces 
at the left and right tensile points), the dislocation 
resistance is obtained. 

In order to measure the traction effort at the pull 
arms on the left and right side of the tractor, force 
measuring bolts were installed at the traction points 
(Figure 3). The force measuring bolt (FMB) was in-
stalled in such a way that it is loaded in the loading 
direction specified by the manufacturer. An anti-twist 
device prevents the FMB from twisting during use. The 
anti-rotation device is made by means of a form-locking 
connection between a plate screwed to the levelling rod 
and a groove provided on the FMB. 

 

Figure 3. Illustration of the force measuring bolt installed 
at the traction point of the pull arm 

for recording the traction force 

To record the existing slip S, two measured variables 
are of importance. This is the theoretical speed Vc and 
the (absolute) pave speed Va. The slip can be deter-
mined by using the following formula: 

 100.c a

Soll

V VS
V
−

=   (1) 

The theoretical speed corresponds to the circumferen-
tial speed of the driven wheel (here the rear wheel). It 
depends on the rotational speed n and the dynamic 
rolling radius rdyn. In order to measure the rotational 
speed, a rotatory encoder was mounted at the rear 
wheel (Figure 4). 

 

Figure 4. Measurement device for recording the rotational speed 
of the rear wheel and illustration of the dynamic rolling radius 

During paving process, the pave speed is in the 
range of 2 to 6 m/min, which means that recording the 
(absolute) pave speed is a significant challenge. Below 
are some examples of sensors for low speed recording: 
– Measuring wheel: this device has a very good ac-

curacy and it can measure slow speeds. But slip can 
occur by using this sensor. Furthermore, obstacles 
such as stones can falsify the measurement. 

– Global Positioning System (GPS) / Global Naviga-
tion Satellite System (GNSS): this measurement 
unit allows measuring drive speeds from 3.3 m/min 
on (VBOX). The disadvantage of the use of this de-
vice is the danger of signal loss due to the shadow-
ing, which can affect the system. 

– Cross-correlation measurement: can allow meas-
urement of asbsolute speed less or equal 1.7 m/min. 

– Kistler (2018). For this reason, this measurement 
device is more appropriate for task and was selected. 
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IV. CONTROL STRATEGY 

The drive and slip control modules to be developed are 
shown in Figure 5 in the form of a cascade control. 

 

 
 

Legend: VSet: Set point value for the speed of the paver; ω: Set point 
value for the turning radius; VT: Longitudinal speed during cornering; 
VSlip: Longitudinal speed after slip reduction; TSet: Set point value 
for the drive torque; QSet: Set point value for the material flow in in 
front of the screed; Vreal,Paver: real longitudinal speed of the paver; 
Vconveyors/screws: speed of the conveyors/screws 

Figure 5. Traction and slip control modules 
in cascaded configuration 

These comprise: 
– A turning radius correction, which adjusts the set-

point of the steering angle for the outside and inside 
wheels.  

– A slip reduction, which reduces slippage and ena-
bles optimum tractive force transmission with high 
frictional engagement. 

– A speed control of traction drive, which guarantees 
a good transition behaviour in case of guiding and 
disturbance excitation and regulates the error quickly 
and accurately in a stationary manner. Strong over-
shooting of the controller or fluctuations in speed 
during operation must be avoided at all costs with 
regard to the installation process. 

– A drive torque control receives the setpoint from the 
speed control and intervenes in the torque balance at 

the driven wheel (rear wheel). This is done by ad-
justing the voltage and pulsing the motor current 
directly in the power electronics. 

– A control of material height in front of the screed, 
which regulates the quantity of paving material in 
front of the paving screed by controlling the con-
veyor speed as well as the screw speed. 

V. OUTLOOK 

In the next step, the experimental determination of the 
parameters as well as the design of the control system 
will be completed. Afterward, the developed control 
system will be tested in the simulation environment 
and then in the real machines. 
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