
R E SE A R C H PAPERS OF TH E W RO CŁAW U N IV E R SIT Y OF E C O N O M IC S
No. 8 (1208) --- 2008

Advanced Information Technologies for Management - AITM 2007

Cezary Hołub, Mieczysław L. Owoc
W rocław University o f Econom ics, Poland

ASPECT ORIENTED PROGRAMMING
AS A NEW APPROACH TO SOFTWARE ENGINEERING

Abstract: The main goal of this article is to present new technology software engineering which
expands Object Oriented Programming. This technology is called Aspect Oriented Programming
(AOP). In generał aspect programming is a paradigm of software engineering which assists the sepa­
ration of concerns and helps to divide software in independent functional parts. This approach gave us
better business reąuirements mapping development phase in software. Gregor Kiczales and his team
at Xerox Corporation originated the concept of AOP in 1996. This team also developed the first and
most popular AOP language, AspectJ in 2001. AOP was introduced to address crosscutting concems
such as security, logging, persistence, debugging, tracing, distribution, performance monitoring, and
exception handling in a morę effective manner. Unlike conventional development techniąues, which
scatter the implementation of each concern into multiple classes, aspect-oriented programming loca-
lizes them. AOP attempts to aid programmers in the separation of concems, specifically cross-cutting
concems, as an advance in modularization. AOP improves the modularity of programmes, making the
codę much closer to the design. It can dramatically reduce the time taken to implement common
features and functions, improve ąuality, and integrate old Solutions with our product. AOP can give us
better and cheaper Computer systems. Such IT Solutions are needed for the growing information
society. Specific to this kind of society is the central position information technology has for pro­
duction, economy, and society at large. Information technology AOP’s core idea is to separating the
business logie in an application from the common services that support it. Aspect programming will
be probably so important technology as object programming is now.

1. Introduction

There is still in software engineering a need to develop morę and morę flexible
technologies. They are able to support changing business challenges. The main
goal of this paper is to present a relatively new technology which expands Object
Oriented Programming. This technology is called Aspect Oriented Programming
(AOP). Generally speaking, aspect programming is a paradigm of software engi­
neering which assists separation of concerns and helps to divide software in inde­
pendent functional components. This approach gives users better business reąuire­
ments mapping in software development phase. Gregor Kiczales and his team at
Xerox Corporation originated the concept of AOP in 1996. This team also deve-

72 Cezary Hołub, Mieczysław L. Owoc

loped the first and most popular AOP language, AspectJ five years later. AOP was
introduced to address crosscutting concems such as security, logging, persistence,
debugging, tracing, distribution, performance monitoring, and exception handling
in a morę effective manner. Unlike conventional development techniąues, which
scatter the implementation of each concem into multiple classes, aspect-oriented
programming localizes them. AOP attempts to aid programmers in the separation
of concems, specifically cross-cutting concems, as an advance in modularization.
AOP improves the modularity of programmes, making the codę much closer to the
design. It can dramatically reduce the time taken to implement common features
and functions, improve ąuality, and integrate old Solutions with our product. AOP
can give us better and cheaper Computer systems. Such IT Solutions are needed for
the growing expectations of information society. Specific to this kind of society is
the central position information technology has for production, economy, and
society at large. Information technology AOP’s core idea is to separating the
business logie in an application from the common services that support it. Aspect
programming will be probably so important technology as object programming is
no w.

The crucial problem presented in the paper is focused on stressing the essential
features of the approach and its confrontation with chosen software engineering
streams of progress. The paper consists of the following sections. The first one
presents the history and the background of the whole idea. The main reason of
AOP usability is the separation of functionally independent components called
aspects. The next part of this article shows a typical model of aspect programming
and its implementation as Java “sub-parts” No doubts, the same generał concepts
of object oriented programming can be achieved. The third section gives some
examples of usability of the described approach in practice. Banking and marketing
applications confirm the specialty of this philosophy and prove new potential
ąuality effects in such a context. The fourth part is devoted to setting AOP as a real
supportive branch in software engineering progress. The analysis of current
research in this domain and comparison of Solutions in object-oriented approach is
presented. The finał conclusions end the paper.

2. Genesis of Aspect Oriented Programming

Information society - the term meaning such society that information becomes
the basie market product morę valuable even from materiał goods. The evolution of
informative society is based on information technologies. Information technologies
make possible processing and storing information across development of Computer
systems. The ąuality of used information technologies has a key impact on ąuality
of information. Information systems “from always” played very important part in
management of organisation. Their significance is proved by projects devoted to
the development of usability information technologies models which in majority

Aspect oriented programming as a new approach to software engineering 73

information technology is not only Computer infrastructure supporting making
decision processes but also the necessary condition of formation of long-wave
strategy of organization development.

The paper presents one of these information technologies, namely Aspect
Oriented Programming, AOP. In 2001 the editors of January/February “MIT
Tech-nology Review” chose ten newly formed areas of technology, which soon -
according to the authors - will have essential influence on economy as well as a
way that people live and work. Aspect oriented programming was selected as one
of such areas apart from biometrics, data mining, robotics or natural language
Processing. According to the authors, we need about 15 years to implement AOP as
a standard in the commercial production of software.

We tend to expect Computer systems should be morę and morę effective. They
should less and less fail and be morę simple from the constructing point of view
and to solve complex problems of the real world. We may observe the tendencies
of larger sizing of software produets. With this inereasing software complexity
grows dramatically. It refers to all aspects of their functionality including mana­
gement of resources, security or recording the events. From an economic point of
view, system’s division on several computers acting independent seems to be ratio-
nal. Ideally, particular parts would communicate one with another using interface
only, however, each would be treated as a black box. This is very difficult to
produce large business systems in practice. We can reach just some level of sy­
stem’s modularisation. The higher level of system's modularisation assures fewer
emergencies which are easier in maintenance and morę transparent. Enlarging the
level of system's modularity in design phase simplifies the cost of evaluation and
time necessary to perform the system. Certainly, a system produced in such a way
will be morę useful for customers.

In systems with the Iow degree of modularisation all potential changes in
software impact huge risk of generating new errors, not saying about costs of such
changes. Nowadays the considerable majority of software is implemented with
supporting object-oriented languages. Object-oriented approach helps to under-
stand better the considered problem (objects reflect the elements of the real world).
Created elements can be used many times and they can be adapted in new environ-
ments. Unfortunately, such an approach has also some disadvantages. In case of
large applications created programming codę is not quite transparent and well
understood. On base the procedural and object-oriented programming, assuring the
large modularity of projects, the concept of aspect-oriented programming is still
developing. Its main goal is the improvement of so-called “separation of the con-
cerns” that is distributing of certain aspects of programmes functionality (for
example: the synchronisation of accessing the resources or tracing the programme
execution) using separate, independent modules. It seems to be desirable that
modularity of a system should better reflect what we think about a problem than
how to solve it via Computer tools. In case of complex systems the object-oriented

74 Cezary Hołub, Mieczysław L. Owoc

programming does not allow for the modularisation of all system's ąuests. Some
problems will always crosscut boundaries of different modules.

The idea of aspect-oriented programming is the delivering of mechanisms
permitting on fuli system's modularisation. It should simplify a programming codę,
enlarge the speed of its creation and make development understanding, preserva-
tion and reuse easier. Modularised crosscutting concems are called aspects [Słowi­
kowski 2007],

A lot of decades were devoted to searching panacea on the perfect modula­
risation of Computer systems. The aspect-oriented approach is a result of a lot of
research in the fields of new methods programming which concems on the limi-
tations of analysis, design and programming of complex problems. One should be
stressed in AOP methods of separation of problems’ result of modularisation level
growing and the same information systems could be cheaper and morę reliable.
Professor Gregor Kiczales from the university in Vancouver is “a father” of AOP
thanks to his research in the 90s conceming an essence and principles of aspect
oriented programming. The term Aspect Oriented Programming was introduced in
1996 during his work in the Xerox Corporation. The concept was accepted by a lot
of people. Several investigations devoted to its applications in many areas started
that time and the first conference on that subject took place in parallel [Walter
2007]. The paper “Aspect - Oriented Programming” [Kiczales 1997] written by
Gregor Kiczales in 1997 is recognised as the first publication about aspect pro­
gramming.

3. Aspect Model and Programming Language AspectJ

Aspect-oriented approach gives us new possibilities of modularisation. This is
very important in large complex systems where insufficient level of modularisation
is quite difficult. Like structural and objects techniąues give a software developer
a bigger level of modularization and a possibility of keeping big systems, AOP
goes further in this matter. A Computer system created with aspect techniąues is
friendlier for sudden changes in architecture or in creating a new linę of product.
Moreover, this makes possible cost and error reduction, good cohesion of long life
cycle of product. Each support for better concems separation in Computer systems
is measurable profit for a company. These advantages have important meaning for
an organisation which applies complex Computer systems and because of that the
problem of crosscutting concems is very popular there. A company from finance
sector like banks or insurance companies are classical customers for new techno­
logies because of their specificity [Bodkin 2003].

In the beginning phase a lot of applications of aspect approach were mainly
created by innovative developers or system engineers which persuade this solution
at management. However, for commercial success this technology is necessary that
management should see advantages and needs for using it. We might assume that

Aspect oriented programming as a new approach to software engineering 75

following reąuirements should fulftl to AOP on good settled in Computer systems
[Bodkin 2003]:
- business must know that this technology gives big advantage according to

alternative Solutions,
- business should precisely present reports from the application of this techno­

logy in already working systems,
- business must present elear futurę of this technology and companion techno­

logy to invest in AOP,
- business should be supported in IT industry for the part of software vendors,

consultants and system integrator vendors.
Probably each software developer comes across a certain problem. His appli­

cation consists not only in the implementation of its main target, but also other
companion issues (we might say: orthogonal according to the main target). For
example: the source of business application does not consist only in logie (e.g. they
calculate the sum for shopping in an Internet shop) but also in implementation
additional functionalities which are mentioned before logging or authorization
should be applied. This is obvious normal behaviour which is the implication of the
concerns of complexity of client reąuirements to design a system. A customer for
surę does not accept an application which reąuired orthogonal issues not to be
implemented. This situation as described before is natural. The problem is in anot­
her issue: in the way how to transmit the number of orthogonal aspects of client
reąuirements to make implementation concrete (or to design in a previous phase of
software development).

The example of such a situation is also the part of banking system (showed at
Fig. 1). The object Bank holds the collection of bank produets: Accounts, Credits,
and Deposits. Further Bank holds the objects of Report class which work on bank
produets: It is easy to see that every method of these classes needs common
properties which are not connected with functional object division e.g. transact
methods invocation. The trial of implementation of such a feature by invokes in all
classes to source codę which realized it might conduct to the mess and might
reduce the codę of maintenance [Walter 2007].

An object-oriented programme, where this problem is implemented, for surę
will invoke in many places the methods to perform individual system aspects. In
result it looks like spaghetti (see Fig. 2), in which the idea of modularisation is
completely unclear. An aspect-oriented programming can solve this problem in
morę transparent and smart way. For a typical object mechanisms add the idea of
aspect which grouping issues cut another fragment of codę. Thanks to this it is
possible to divide them logically in a separate modularised unit without touching
the original separation giving legibility codę, encapsulation etc. Classes repre-
senting business issues still cover only what they are responsible for. Aspects using
classes make possible better multi-criteria decomposition Computer system than
using classes only [Walter 2007].

76 Cezary Hołub, Mieczysław L. Owoc

Object program Aspect program

Figurę 2. Spaghetti codę and codę well modularized on functional part
Source: [Walter 2007],

Aspect oriented programming as a new approach to software engineering 77

The authors of aspect approach notice that software design process and pro­
gramming language are closely connection. As far as design process might be
perceived as the process of extraction from the system of smaller and smaller
modules, the programming language is a mechanism which makes possible to
connect them and create morę complex subsystems. The object and procedural pro­
gramming have a common futurę that in a design phase we extract autonomous
part from, and leave a developer how to join them. Aspect programming depends
on extract templates called aspects. Aspect might be e.g. standard error handling,
matrix representation or memory allocation. Trying to write an aspect in object re-
presentation is very inconvenient because self value (concrete instance of an
aspect) depends on elements (components) on which it works. The connection
aspects with components give us something which might be object or function
according to object or structural approach. In result aspect approach gives us the
elear representation of orthogonal aspects of client reąuirements on an orthogonal
aspect of implementation [Stochmiałek 2007],

As we described above in developing programmes we should use better and
better technologies for creating software. New technologies allow to save time and
money and they also allow to pass competition. Computer systems become better
and better for growing information society.

4. Aspect Oriented Programming yersus Object Oriented
Programming

The paradigm that dominated the world market of software is object-oriented
programming. The difference among programming object-oriented (OOP) and
aspect-oriented programming (AOP) does not rely on different aims (in both cases
is about assembling the similar concepts and the separation differences), but in
different selection of tools. A concept of class, encapsulation and heritance are
basie tools in object-oriented programming. Typically, they permit to apply the
assembling according to one criterion conception, which in some cases seems to be
sufficient. It is the advantage of object-oriented programming which strengthens it
and ensures its position on the market, as well as supports in wide scalę its popular
programming languages. The aspect programming, therefore, does neither stand in
contradicdon with foundations nor the tools of object-oriented programming. We
can say that aspect-oriented approach is the super-set of object-oriented approach
[Walter 2007],

The main assumptions of object-oriented paradigm are:
- the assembling of similar concepts and heritance,
- a class is a basie individual modularisation category,
- encapsulation allows for hiding the implementation of behaviour object imple­

mentation as well as it guarantees that a change of State of object can happen
in result of revoking object method only,

78 Cezary Hołub, Mieczysław L. Owoc

- polymorphism - makes the development of particular behaviour for given
object possible, (hidden under references),

- heritance - simplifies the process of defining class hierarchy. In new classes
(subclasses) we may recall data and behaviour definition from superior classes.
Additionally, aspect programming offers new features:

- assembling of similar concepts in unrelated classes,
- specific mechanism of modularisation, namely aspect.

As a result aspects are responsible for:
- connection of assembling behaviour with defined crosscutting problem,
- ąualification of principles of applying this behaviour in applications,
- suitable actions and circumstance of their executing,
- separation of crosscutting problems from business logie.

Object-Oriented programming is morę maturę technology and formally defined.
A lot of tools were created (for example Microsoft Visual Studio, Eclipse, Borland
Together) supporting in object-oriented languages the development of information
systems. Unified Modelling Language (UML) was defined as a standard that faci-
litates the building of modem information systems. An object-oriented paradigm is
widely implemented and well documented. But this approach has also weak points.
As technology existing over thirty-years it creates some problems in certain
circumstances and additional efforts should be performed. Some examples where
object-oriented paradigm does not fit the modularisation of user reąuirements in an
easy way are [Szala 2006]:
- durability of data,
- authorization,
- authentication,
- transactional cohesion,
- recording events in joumal information,
- multithreaded synchronisation,
- remembering (caching) the results of long-lasting operations for example,
- pooling (e.g. connection to a database),
- the assurance of correctness of data (checking the arguments of function for

example).
They are typically sectional problems that occur at the same time in many

modules of a programme and in extreme cases even in all (exposed in Fig. 1). The-
refore, this approach can be evaluated very high - there are morę and morę maturę
Solutions representing this technology.

5. Conclusions

The finał findings of the paper can be expressed in the following way:
1) object-oriented programming apart from many advantages is not free from

weak points, especially in modularisation,

Aspect oriented programming as a new approach to software engineering 79

2) aspect-oriented programming offers new features that overcome difficulties
existing in the object oriented approach,

3) morę flexible way of software engineering deveIopment proposed in AOP
meet information society reąuirements; new dimensions of projects can be served
better [Wyrwał 2007],

Aspect oriented programming as a new trend in software engineering will be
intensively implemented and on the other hand some challenges can be observed. It
is worth stressing that AOP fills the main expectations of software engineering in
morę flexible and efficient way and this approach can be regarded as a very
important step in the production of software. This is most probable that this
technology will stand up for some time so popular as an object-oriented approach
is today.

References

Bieniasz S. Programowanie aspektowe AOP, retrieved February 20, 2008 from
https://home.agh.edu.pl/~olekb/ wyklady/aop.pdf.

Bodkin R. Commercialization ofAOSD: The Road Ahead, retrieved February 20, 2008 from
http://www.jpmdesign.de/conferences/aosd/2003/papers/AOSD_CommerciaIization_Position_20
03_ finał. pdf.

Carver L. Next steps for Commercializing AOP, retrieved February 20, 2008 from
http://www.jpmdesign.de/ conferences/aosd/2003/papers/Carver.pdf.

Colyer A., Andy Clement A., Harley G., Webster M. (2004), Eclipse AspectJ: Aspect-Oriented Pro­
gramming with AspectJ and the Eclipse AspectJ Development Tool. Addison Wesley Pro­
fessional.

Jacobson I., Ng P.W. (2004), Aspect-Oriented Software Development with Use Casus. Addison
Wesley Professional.

Kiczales G. AspectJ Overview, retrieved February 20, 2008 from
http://www.cs.ubc.ca/~gregor/papers/kiczales-ECOOP2001-AspectJ.pdf

Kiczales G. Aspect-Oriented Programming, retrieved February 20, 2008 from
http://www.parc.com/research/projects/aspectj/downloads/ECOOP1997-AOP.pdf.

Maciaszek L.A., Liong B.L. (2004), Practical Software Engineering. Addison-Wesley.
Massaro A., Rosendahl J. Agile Programming, retrieved February 20, 2008 from

http://www.idt.mdh.se/kurser/cd5130/msl/20051p4/downloads/reports/agile_programming.pdf.
Miles R. (2005), AspectJ Cookbook. 0 ’Reilly.
MIT Technology Review, retrieved February 20, 2008 from, http://www.technologyreview.com/

magazine/toc/58/.
Parnas D. On the Criteria to Be Used in Decomposing Systems into Module, retrieved February 20,

2008 from http://www.acm.org/classics/may96.
Słowikowski P. Programowanie aspektowe, retrieved February 20, 2008 from

http://portal.ics.agh.edu.pl:8001/ papers/TR-01-l.pdf.
Stochmiałek M. Wprowadzenie do programowania aspektowego, retrieved February 20, 2008 from

http://misto.e-informatyka.pl/papers/aop-intro.pdf.
Stochmiałek M. Programowanie aspektowe: studium empiryczne, retrieved February 20, 2008 from

http://misto.e-informatyka.pl/papers/aop-thesis.pdf.

https://home.agh.edu.pl/~olekb/
http://www.jpmdesign.de/conferences/aosd/2003/papers/AOSD_CommerciaIization_Position_20
http://www.jpmdesign.de/
http://www.cs.ubc.ca/~gregor/papers/kiczales-ECOOP2001-AspectJ.pdf
http://www.parc.com/research/projects/aspectj/downloads/ECOOP1997-AOP.pdf
http://www.idt.mdh.se/kurser/cd5130/msl/20051p4/downloads/reports/agile_programming.pdf
http://www.technologyreview.com/
http://www.acm.org/classics/may96
http://portal.ics.agh.edu.pl:8001/
http://misto.e-informatyka.pl/papers/aop-intro.pdf
http://misto.e-informatyka.pl/papers/aop-thesis.pdf

80 Cezary Hołub, Mieczysław L. Owoc

Szała Ł. Programowanie aspektowe — wpfyw metod testowania na jakość kodu i produktywność
programisty w kontekście programowania aspektowego. Praca magisterska. Politechnika
Wrocławska, Wydział Informatyki i Zarządzania, Wrocław 2006, http://szala.eu/www/pub/aop-
thesis.pdf.

Tworzenie aplikacji J2EE w oparciu o Spring Framework, retrieved February 20, 2008 from
http://www.ploug.org.pl/ szkola/szkola_5/materialy/7_Spring.pdf.

Vanderperren W. Combining aspect-oriented and component-based software engineering, retrieved
February 20, 2008 from, http://ssel.vub.ac.be/Members/wvdperre/thesiswim.pdf.

Walter B. Advanced object design - aspect programming (Polish translation: Zaawansowane
projektowanie obiektowe - programowanie aspektowe), retrieved February 20, 2008 from,
http://wazniak.mimuw.edu.p1/images/e/ea/Zpo-12-wyk.pdf.

Wampler D. The futurę o f aspect oriented programming, retrieved February 20, 2008 from
http://aspect programming.com/papers/The%20Future%20of%20AOP.pdf.

Wampler D. Aspect-Oriented Design Principles: Lessons from Object-Oriented Design, retrieved
February 20, 2008 from, http://www.aosd.net/2007/program/industry/I6-AspectDesignPrincip-
les.pdf.

Wyrwał S. Przy okazji zrób jeszcze to... czyli Programowanie aspektowe i Aspektowo zorientowane
wytwarzanie oprogramowania”, retrieved February 20, 2008 from http://www.ploug.
org.pl/plougtki.php?action=read&p=32&a=8.

http://szala.eu/www/pub/aop-thesis.pdf
http://szala.eu/www/pub/aop-thesis.pdf
http://www.ploug.org.pl/
http://ssel.vub.ac.be/Members/wvdperre/thesiswim.pdf
http://wazniak.mimuw.edu.p1/images/e/ea/Zpo-12-wyk.pdf
http://aspect
http://www.aosd.net/2007/program/industry/I6-AspectDesignPrincip-les.pdf
http://www.aosd.net/2007/program/industry/I6-AspectDesignPrincip-les.pdf
http://www.ploug

	ASPECT ORIENTED PROGRAMMING AS A NEW APPROACH TO SOFTWARE ENGINEERING
	1. Introduction
	2. Genesis of Aspect Oriented Programming
	3. Aspect Model and Programming Language AspectJ
	4. Aspect Oriented Programming yersus Object OrientedProgramming
	5. Conclusions
	References

