
AMU/i
Prace Naukowe Centrum Obliczeniowego
Politechniki Wrocławskiej

Seria: Studia i Materiały

Zagadnienia oprogramowania systemów komputerowego
wspomagania dydaktyki Wrocław 1980

PRACE NAUKOWE POLITECHNIKI WROCŁAWSKIEJ

Scientific Papers of the Computer Centre
No 1 of Wrocław Technical University No 1
Studies and Research No 1 1980

Problems of software of Systems for computer-aided
teaching process

Contents

Artur KLAJN, Zbigniew SZPUNAR, A concept of program module for use
in conversational procedures.. , . 3

Franciszk KL’USKA, Base des donnees sur les etudiants.. 17
Dariusz KRAJEWSKI, Compiler efficiency testing... 23
Ludwik KUZNIARZ, A project of conversational Fortran compiler ... 37
Andrzej PILAWSKI, On the problem of the difficulty degree of exercises used

in CAI systems..45
Jerzy PISARSKI, Lech TUZINKIEWICZ, Conversational minisystem of

arithmetical expression PT78.. 61
Zbigniew SZPUNAR, Document generation method for use in the process

of data extraction from data bases.. 75

Spis rzeczy

Artur KLAJN, Zbigniew SZPUNAR. Koncepcja modułu obsługi dialogu dla
procedur konwersacyjnych.. 3

Franciszek KL’USKA, Baza danych zawierająca informacje o studentach . . 17
Dariusz KRAJEWSKI, Badanie efektywności kompilatorów..23
Ludwik KUZNIARZ, Projekt konwersacyjnego kompilatora języka Fortran 37
Andrzej PILAWSKI, O zagadnieniu stopnia trudności zadań kontrolnych

w systemach CAI.. 45
Jerzy PISARSKI, Lech TUZINKIEWICZ, Konwersacyjny minisystem wy­

rażeń arytmetycznych PT78...61
Zbigniew SZPUNAR, Metoda generacji dokumentów w procesie wyprowa­

dzania informacji z baz danych systemów informatycznych............................... 75

Prace Naukowe Centrum Obliczeniowego
Politechniki Wrocławskiej

Seria:
Studia i Materiały 1

Zagadnienia oprogramowania systemów
komputerowego wspomagania dydaktyki

Wydawnictwo Politechniki Wrocławskiej • Wrocław 1 980

Redaktor naczelny
Marian KLOZA

Redaktor naukowy
Antoni MAZURKIEWICZ

Opracowanie redakcyjne
Maria KOPEĆ

Korekta
Helena ŚNIEŻYK

WYDAWNICTWO POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

Nakład 200 4- 75 egz. Ark. wyd. 5,75. Ark. druk. 53/s. Papier offset, kl. V, 80 g, B1.
Przekazano do druku w lipcu 1980 r. Druk ukończono we wrześniu 1980 r.
Zakład Graficzny Politechniki Wrocławskiej. Zam. nr 8385/80 - B-10 - Cena zł20,-

Nr 1
Prace Naukowe Centrum Obliczeniowego

Politechniki Wrocławskiej Nr 1
Studia i Materiały Nr 1 1980

Procedura dialogowa,
moduł wejściowy

xx)
Artur KLAJN , Zbigniew SZPUNAR

Koncepcja modułu obsługi dialogu
dla procedur konwersacyjnych

Przedstawiono koncepcję budowy modułu obsługi dialogu dla procedur
konwersacyjnych. Podano opis formalny struktury modułu, opartej na
grafie opisującym funkcje realizowane przez procedurę, oraz opisa­
no algorytm działania modułu wejściowego. Model został wykorzysta­
ny do realizacji programowych procedur Informatycznego Systemu Ob­
sługi Procesu Nauczania DIALOS/MLK, zbudowanego w Centrum Oblicze­
niowym Politechniki Wrocławskiej.

i. wst§p

Wraz z dynamicznym rozwojem systemów konwersacyjnych daje się za­
uważyć wzrost popularności dialogowych procedur programowych, realizu­
jących wiele funkcji systemów informatycznych, pracujących w czasie
rzeczywistym. Specyfika działania tych procedur (realizacja i obsługa
dialogu operator-maszyna cyfrowa, wykonywanie poleceń w trybie natych­
miastowym), rzutuje na metodykę ich projektowania, rodzi wiele istot­
nych i nowych problemów. Na przykład od założonego sposobu komunikacji
operatora zprocedurą zależy zarówno łatwość wykonania procedury, jak
też efektywność jej działania.

Istnieje wiele metod prowadzenia dialogu pomiędzy człowiekiem a
maszyną cyfrową [1j. W większości przypadków należą one do jednego z
następujących typów:

ii 'i
Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wys­

piańskiego 27, 30-370 Wrocław

4 Artur Klajn, ^igniew Sspunar

1. Dialog inicjowany przez operatora - większość par czynności
instrukcja-odpowiedż zapoczątkowuje człowiek (np. netoda prostych py­
tań, wprowadzenie informacji w języku naturalnym).

2. Dialog inicjowany przez maszynę - większość par czynności po-
danych wyżej zapoczątkowuje maszyna (np. metoda prostych instrukcji dla
operatora, wybór s repertuaru).

Istnieją jednak dialogi, w których zasada ta nie obowiązuje i żad~
na ze stron biorących udział w dialogu nie jest przez cały czas stroną
inicjującą. Dialog taki zwany jest dialogiem hybrydowym [Ili wydaje
się najbardziej uniwersalny. W skład procedury wykorzystującej ideę,
dialogu hybrydowego musi wchodzić wygodny język komunikacji człowiek-
-maszyna cyfrowa, moduł wykonawczy realizujący polecenia użytkownika
oraz pewien moduł wejściowy spełniający rolę pośrednika pomiędzy opera­
torem a modułem wykonawczym procedury. Od struktury i sposobu działania
modułu wejściowego zależy w znacznej mierze efektywność procedury oraz
komfort prowadzenia dialogu.

W niniejszej pracy przedstawiono koncepcję budowy modułu wejścio­
wego procedury dialogowej. Podano opis formalny struktury modułu, za­
prezentowano metodologiczne podstawy jago projektowania oraz opisano
algorytm działania.

2. SFORMUŁOWANIE PROBLEMU

Dany jest zbiór informacji C baza danych) oraz zbiór wymagań użyt­
kownika dotyczący obsługi bazy danych. Wymagania użytkownika dają się
przedstawić w postaci grup żądań różnych rodzajów Cnp. zapis informacji
wyprowadzanie informacji), w ramach których można wyodrębnić pewne po­
trzeby elementarne Cnp. zapis pojedynczego rekordu, zapis grupy rekor­
dów). Potrzeby występujące w ramach jednej grupy można przedstawić w
postaci wariantów operacji jednego rodzaju.

Należy zbudować moduł wejściowy dialogowej procedury obsługi bazy
danych, realizujących żądane funkcje, wyposażony w wygodny język komu­
nikacji pomiędzy użytkownikiem a procedurą i zapewniający możliwość
prowadzenia dialogu hybrydowego.

3. KONCEPCJA MODUŁU WEJŚCIOWEGO PROCEDURY DIALOGOWEJ

3.1. Określenia podstawowe

Niech wymagania użytkownika będą określone zbiorem

Koncepcja modułu obsługi...

gdzie

P e {F1,

F1 = {f*.

.A

f1 '• rk.j

__2

(1)

(2)

jest podzbiorem operacji, których wykonanie sprowadza się do uaktyw-
nienia tego samego fragmentu modułu wykonawczego. Operację f* nazwiemy
funkcją elementarną procedury, podzbiór operacji F1 - taakrofunkcją.

Każdą z makrofunkcji C2) można przedstawić w postaci drzewa

gdzie

<3)

(4)

jost zbiorem wierzchołków drzewa, natomiast

U1 n {4, ... ,ui,uJJ C5)

jest zbiorem gałęzi, u^ = ^®j^ , ej,,/1

Zbiór wierzchołków można przedstawić w postaci sumy rozłącznych
podzbiorów

pi = {ei]UEi U Ej, C6^

gdzie
ei =<sym£, int^ > (7)

jest wierzchołkiem początkowym drzewa Csym - symbol wierzchołka, int -
jego interpretacja),
E^ - zbiór wierzchołków końcowych, tzn. wierzchołków drzewa incydent-

nych tylko do jednego innego wierzchołka i nie będących wierzchoł­
kiem początkowym.

- zbiór pozostałych wierzchołków drzewa.
Każdy z wierzchołków drzewa, z wyjątkiem wierzchołka początkowego,

jest opisany uporządkowaną czwórką

-i = <symL intL zbw{, typ{ > ,
u d d J J - (8)

gdzie Kiym - symbol wierzchołka,
int - interpretacja wierzchołka,

6 Artur Kia,jn, Zbigniew Szpuner___

zbw - sbiór wartości przypisanych do wierzchołka,
typ - typ wierzchołka.

Sbiór wierzchołków (4) można przedstawić również w postaci

P
E1 = E^

1=1
C9)

gdzie p - liczba poziomów w drzewie.
Elementami podzbiorów Et , 1=1,2, ... ,p, zbioru E^ są wierzchoł-

ix iki jednego typu w drzewie Dx. Każdy taki podzbiór E^ wyznacza poziom
typu tx wierzchołków w drzewie. Aby podkreślić przynależność poszcze­
gólnych wierzchołków e
zamiast e^

>1,2
będziemy pisać e i

(D j

, m^, drzewa do podzbioru E^,
Zatem

B1 = te<l)1’eCl)2’ (.10)

i
r

Interpretację graficzną powyższego opisu zamieszczono na rysunku 1.
Wierzchołek początkowy w drzewie określa nazwę danej makrofunkcji,
pozostałe zaś wraz z łączącymi je gałęziami definiują poszczególne jej
funkcje elementarne.

Rys.1. Interpretacja graficzna drzewa. D* makrofunkcji F
Fig.1. Graphic interpretation of tree D1 of macrofunction F^-

Koncepcja modułu obsługi..» ~_________ ____2

Każdej z funkcji fg odpowiada uporządkowany ciąg wierzchoł­
ków w drzewie makrofunkcji

’9fk)jk’ »e(qjjq} > fW

rozpoczynający się od wierzchołka początkowego i wyznaczający przejś­
cie do jednego z wierzchołków końcowych, przy czym kolejne dwa wierz­
chołki należą do różnych poziomów i są połączone gałęzią.

^.2, Odwzorowanie struktury modułu w graf

Dokonajmy przekształcenia zbioru drzew makrofunkcji w graf

G =<W, V> , (12}

gdzie W - zbiór wierzchołków grafu,
V - zbiór krawędzi.

Graf ten, zwany dalej grafem struktury modułu, powstaje w wyniku
syntezy drzew wszystkich makrofunkcji według następujących zasad;

1. Zbiór W wierzchołków początkowych grafu zawiera wszystkie
° iiwierzchołki początkowa poszczególnych drzew: eQe E , i = 1,2, ... ,n,

którym, przyporządkowuje się symbole w^0>x

Wo = {w(o)1» wCoj2’ *•* ’ ’(o)i* • w(o)n}'’

2. Zbiór wierzchołków 1-tego poziomu grafu pcwstaje w wyniku
operacji na wierzchołkach typu t^ poszczególnych drzew przez złożenie
wierzchołków mających różne symbole i (lub') interpretację oraz nałoże­
nie wierzchołków mających identyczne symbole i Interpretację z zacho­
waniem związków incydencji nakładanych wierzchołków z pozostałymi
wierzchołkami w postaci krawędzi grafu

W1 = {”(1)1 ,w(l)2’ •” ’w(Dj’ ^(DzJ ’

n
zl< ' ®1-

Z.—J 1
i=1

Funkcję złożenia r i nałożenia fK definiuje się następująco:

8 Artur Kia.jns Zbigniew Szpunar

C1$)

^2]^—ip^a)^5 ^“fekpA
£ int^^j] ,

przy czym

s(i)k1 ’ Mi)^ » ti> ’

(16)
eW2 "<8y^l)k2 ’ ln^l^ ’ ^Dkg’ *!>’

Znaczenia aymboli użytych we wzorach (15) i Cl6) są takie same
jak we wzorze (8).

3. Zbiór wierzchołków końcowych grafu powstaje ze złożenia
wierzchołków końcowych drzew iClub^nałożenia Ich na inne wierzchołki.

Na rysunku 2 zamieszczono dwa drzewa przykładowych makrofunkcji,
a na rysunku 3 graf utworzony w wyniku syntezy tych drzew według po­
danych zasad.

Rys.2. Przykładowe drzewa makrofunkcji
Fig.2. 3xamples of taacrofunction trees

Koncepcja modułu obsługi... 5

Nr, - [, H^iz !

H* ={ .^(1)3, H,S)<, Han ■ /

- { Hun , Hh)z]

Hz = [Hizjt, H,U1, Hri)i j

H) = { Hls>t / H^z, Hl3>5 < H/m }

Ryg.3. Graf struktury modułu wejściowego
Fig.3. Graph of input module structure

Każda ścieżka grafu od jednego z wierzchołków początkowych do od­
powiedniego wierzchołka końcowego odpowiada, podobnie jak w drzewie
tnakrofunkc ji, określonej funkcji elementarnej. W ogólnym przypadku jed­
nak uzyskany graf może zawierać, oprócz zadanych funkcji elementarnych
(1) i (2), pewne funkcje przypadkowe (np. funkcje określone przez ścież­
ki w(o)1’ w(2)2’ w(3)4 1 w(o)2» w(2)2» WC3)3 w PodanyE przykładzie).
W celu wyeliminowania tego niepożądanego przypadku dla każdego wierz­
chołka, z wyjątkiem wierzchołków początkowych, wprowadza się tzw.listę
makrofunkcji. Lista ta zawiera wykaz symboli makrofunkcjl, do których -
- definiując określone ich funkcje elementarne - należy dany węzeł.

Węzły grafu - z wyjątkiem węzłów początkowych - są więc określone
następująco:

"(Di =<sym(lu, lnt(lu, zbwQ)ls typQ)1, Us(1)i> Cl?)

gdzie lis^^ - lista tnakrofunkcji węzła

10 Artur Klajn, Zbigniew Szpunar

W podanym przykładzie węzły WC3)4 s4 o!treślone
przez uporządkowane piątki

(2)2 ~ » {^1 ^2}^ ’

w(3)3 =<E,IE,0,TJ, {F1}>, (18)

”(3)ą »<D,IW,0,T3, {F2}>,

co umożliwia wyeliminowanie przypadkowych funkcji elementarnych opisa­
nych wyżej.

W rasie syntezy rozbudowanych drzew makrofunkcji o dużej liczbie
wspólnych fragmentów, wprowadzenie listy makrofunkcji umożliwia budowę
grafu o minimalnej liczbie węzłów.

Tak uzyskany graf przedstawia wszystkie zadane funkcje elementar­
ne i stanowi model struktury modułu wejściowego procedury dialogowej.

3.3. Model modułu wejściowego

Podstawową funkcją modułu wejściowego procedury dialogowej jest
dokonanie transformacji polecenia użytkownika na postać umożliwiającą
zainicjowanie działania oraz wybór wariantu realizacji odpowiedniego
fragmentu modułu wykonawczego.

Działanie modułu wykonawczego jest związane z wykonaniem określo­
nej funkcji elementarnej i kończone przekazaniem sterowania użytkowni­
kowi, który może sformułować następne polecenie.

Na rysunku 4 przedstawiono ogólny schemat funkcjonalny procedury
dialogowej, działającej w opisany sposób.

Komunikacja pomiędzy użytkownikiem a procedurą o przedstawionej
strukturze odbywa się za pomocą sformalizowanego języka, który powinien
zawierać elementy umożliwiające sprecyzowanie:

- makrofunkcji,
- zbioru parametrów definiujących funkcję elementarną danej makro­

funkcji,
- zbiorów wartości parametrów.
Jedną z możliwych postaci zdań języka, mających wymienione cechy,

jest

makro p1x^,p2x2, ... (19)

gdzie makro - symbol makrofunkcji,
p^ - symbol parametru o określonej interpretacji i typie,

- zbiór wartości parametru p^

Koncepcja modułu obsługi... 11

Rys.4. Schemat funkcjonalny procedury dialogowej
Fig.4. Functional scheme of dialogue procedurę

Zdanie o powyższej postaci, definiujące określoną funkcję elemen­
tarną, ma strukturę ścieżki grafu, której węzłem początkowym jest sym­
bol makrofunkcji, a kolejnymi węzłami symbole parametrów. Zbiór x
wartości parametru odpowiada analogicznemu zbiorowi zbw opisu węzła.
Wobec tego graf jest zbiorem ścieżek odpowiadających funkcjom elemen­
tarnym, z których każda może oyć zdefiniowana prawidłowo skonstruowanym
zdaniem języka (19). Wybór odpowiedniej funkcji elementarnej (odpowied­
niego wariantu wejścia modułu wykonawczego) sprowadza się więc do de-
szyfracji zdania wejściowego i wskazania odpowiedniej ścieżki w grafie.
Wybraną ścieżkę można przedstawić w postaci tzw. maski - uporządkowa­
nego zbioru zawierającego cechy kolejnych węzłów ścieżki. Postać maski
przedstawiono na rysunku 5-

12 Artur Klajn. Zbigniew Szpunar

Rys.5. Graficzne przedstawienie maski
Fig.5. Graphic reprezentation of mask

Wiersz maski, odpowiadający węzłowi początkowemu grafu, określa
wariant wejścia do modułu wykonawczego, pozostałe natomiast precyzują
zadanie oraz dostarczają dane wejściowe dla wybranego fragmentu modułu.

O poprawności postaci utworzonej maski orzeka:
- nieidentyczność typów par węzłów dla wszystkich możliwych par,
- występowanie symbolu danej makrofunkcji na listach wszystkich

węzłów w masce.
Rozmiar pionowy maski musi zapewniać możliwość opisania ścieżki

o największej liczbie węzłów, tzn. nie może być mniejszy niż liczba
poziomów w grafie. Dla ścieżek nie mających węzła w danym poziomie gra­
fu odpowiedni wiersz maski nie jest wykorzystany. Aby zapewnić tworze­
nie maski w sposób systematyczny, opracowano metodę, której algorytm
przedstawiono w punkcie 3.4.

3.4. Algorytm działania modułu wejściowego

Algorytm działania modułu wejściowego można przedstawić w postaci
następujących kroków:

KROK 1. Ustawić stan zerowy maski (wszystkie pola puste).
KROK 2. Pobrać zdanie wejściowe.
KROK 3. Zidentyfikować symbol makrofunkcji w zdaniu wejściowym i

utożsamić go z odpowiednim węzłem początkowym grafu. Jeśli występujący
w zdaniu wejściowym symbol makrofunkcji nie ma swojego odpowiednika w
grafie, przejść do kroku 7. W przeciwnym wypadku przepisać cechy wybra­
nego węzła do pierwszego wiersza maski. Zejść na pierwszy z poziomów
dostępnych z wybranego węzła początkowego.

KROK 4. W zbiorze parametrów makrofunkcji w zdaniu wejściowym zna­
leźć parametr mający swój odpowiednik w postaci węzła na aktualnym po­
ziomie grafu. Węzeł ten musi być incydentny z ostatnio rozpatrywanym
węzłem. Jeśli taki odpowiednik nie występuje, zażądać podania paramet­

Koncepcja modułu obsługi 11
ru określonego typu, umieścić go w udaniu wejściowym i powtórzyć kret
4. Jeśli występuje jedna para parametr-węzeł, to uzupełnić cechy węzła
o zbiór wartości parametru i przejść do kroku 5. W pozostałych przy­
padkach przejść do kroku 7.

KROK 5. Przepisać cechy wybranego węzła do wiersza maski odpowia­
dającego danemu poziomowi grafu. Usunąć rozpatrywany parametr ze zda­
nia wejściowego. Jeśli rozpatrywany poziom jest ostatnim s dostępnych
dla danej makrofunkcji, przejść do kroku 6. W przaciwnym wypadku sejść
na kolejny dostępny poziom grafu i przejść do kroku 4.

KROK 6. Jeśli zbiór parametrów w zdaniu wejściowym jest pusty, to
koniec pracy modułu wejściowego. W przeciwnym wypadku przejść do kro­
ku ?.

KROK 7. Sygnalizować błąd i przejść do kroku 1.

4. PRZYKŁAD DZIAŁANIA MODUŁU WEJŚCIOWEGO

Przedstawmy działanie modułu wejściowego prostej procedury obsłu­
gi bazy danych, zawierającej kartotekę studentów. Kartoteka składa
się z rekordów (zapisów) jednego typu o strukturze jak na rysunku 6.

numer
rekordu

nazwisko
7 /m/ę

dato ur. miejsce
zam.

numer
atbu mu

wydziat rok grupa

I R NI
. ..

DU MZ NA WY RO AR

Rya.6. Postać rekordu studenta •
Fig.6. Form of record of a student

Procedura ma realizować następujące makrofunkcje:
- zapis (Z),
- odczyt (O),
- aktualizacja (*;.
Wprowadźmy trzy poziomy parametrów makrofunkcji:
- przedmiot działania (Tl),
- adre s (T2),
- wartość poprawki (Tj).
Na poziomie Tl mogą wystąpić:
- dana elementarna (DE) - pojedyncze pole informacji w rekordzie

studenta,
• grupa danych (GD) - zbiór danych elementarnych,
- rekord (RE),

'14 Artur Klajn, Zbigniew Szpona?

- grupa rekordów (GR) (z wyjątkiem aktualizacji).
Na poziomie T2 mogą wystąpić:
- wskazanie numeru rekoi‘du (NR),
- żądanie działania na pierwszym wolnym polu kartoteki (PW)(tylko

dla zapisu rekordu lub grupy rekordów).
Poziom T3 (WP) dotyczy jedynie aktualizacji.

Rys.7. Graf struktury przykładowego modułu wejściowego
Fig.7. Structure graph of an example of input module

Na rysunku 7 przedstawiono graf syntezy zadanych makrofunkcji.
Maska dla zbudowanego grafu ma 4 wiersze. Aby zapewnić możliwość okreś­
lenia poszczególnych funkcji elementarnych, wprowadźmy język wejściowy
postaci (19).

Każdemu poziomowi grafu odpowiada zbiór parametrów określonego
typu. Dla wygody symbole makrofunkcji i parametrów w zdaniach języka
będą identyczne z odpowiednimi symbolami w grafie.

Rozważmy działanie modułu wejściowego według podanego algorytmu
(pkt 3.4) dla zdania: "zapisz w rekordzie 20 grupę danych: nazwisko i
imię, numer albumu, wydział".

W sformalizowanym języku wejściowym zdanie to ma postać: Z GD(NI:
KOWALSKI JAN,NA:30893,WI:ELEKTRONIKA),NR(20).

Kolejne kroki algorytmu doprowadzą do następującego zapełniania
maski:

1. Zapisanie cechy makrofunkcji

wCo)1 Z ZAPIS

Koncepcja modułu obsługi...

2. Spośród węzłów poziomu Tl parametrowi GD odpowiada węzeł w^-j2

w(1)2 GD G.DA. NI:KOWALSKI JAN,NA S30893,WY:ELEKTRONIKA Tl Z,O,A

3. Po usunięciu rozpatrywanego parametru zdanie wejściowe ma po­
stać

Z NR(2O)

Poziom Tl nie jest ostatnim z dostępnych poziomów makrofunkcji Z -
następuje zejście na poziom T2. Spośród węzłów tego poziomu wybrany zo-
staje węzeł w^2^.

W(2)1 NR N.REK. 20 T2 Z,O,A

Gdyby np. w zdaniu wejściowym zabrakło parametru NR, wówczas na­
stąpiłoby przekazanie sterowania użytkownikowi z żądaniem wprowadzenia
brakującej informacji. Po usunięciu parametru NR zdanie wejściowe za­
wiera pusty zbiór parametrów, a poziom T2 jest ostatnim z dostępnych
poziomów makroinstrukcji Z. Moduł kończy pracę i utworzona maska ma
postać jak na rysunku 8.

Z Zapis

GD G.DA NI: KOWALSKI JAN. NA : 30693,WY:ELEKTRO-
’ ’ N/KA

Tl Z,a, A

NR N. REK 20 T2 2,0, A

— — — — —

Rys.8. Maska przykładowej funkcji elementarnej
Fig.8. Mask of the example of elementary function

5. UWAGI KOŃCOWE

Zaprezentowana koncepcja budowy modułu wejściowego procedury dia­
logowej jest propozycją rozwiązania problemu obsługi dialogu pomiędzy
użytkownikiem i procedurą. Przedstawienie funkcji realizowanych przez
procedurę w postaci grafu pozwala na rozszerzenie możliwości procedury
zarówno o funkcje elementarne (dołączenie ścieżki), jak też o nowe ma-
krofurkcje przez dołączenie do grafu drzew makrofunkcji. Przyjęty model
modułu wejściowego i postać zdań języka w dostateczny sposób zapewniają
efektywność wykorzystania procedury, elastyczność dialogu i komfort
jego prowadzenia.

16 Artur Klajn, Zbigniew Szpunar

Opisana metoda została zastosowana w konwersacyjnych procedurach
wyprowadzanie, informacji z kartoteki studentów oraz w procedurach za­
kładania, aktualizacji i listowania zadań z kartoteki zadań Informa­
tycznego Systemu Obsługi Procesu Nauczania DIALOS/MLK, eksploatowanych
pod kontrolą systemów operacyjnych George 3 i Minimop.

LITERATURA

[li Martin J., Dialog człowieka z maszyną cyfrową, Warszawa
1976, WNT.

[21 S p r o w 1 s R.C., Management Data Bases, Santa Barbara 1976,
W iley/Hamilt on.

[jl Tourdon E., Projektowanie systemów o działaniu bezpośred­
nim, Warszawa 1976, WNT.

Praca wpłynęła do Redakcji 1.12.1978 r
Po poprawieniu 19.02.1980 r

A CONCEPT OF PROGRAM MODULE FOR USE IN CONYERSATIONAL PROCEDURES

A concept of a module for servicing conversational procedures is
given. Formal description (based on the graph ilustiating the functions
performed in the procedurę), is presented as well as the description
of input module algorithm. The concept of module has been implemented
in procedures programmed for CAI-system DIALOS/MLK. This system has
been built In the Computer Centre of Technical University of Wrocław.

Verified by R. Wiernik

kohuehiw iwojoyjiH oBcuyfflBAHiiH iwoba
W KOHBEPCAIWOHHbK UPOUEW

B paÓOTe npencTawiena KOHuenunH nocTpoeHiiH wo^yAH oÓCAyKHBaHHH
AHaAora aah KOHBepcamioHHHX .ipouenyp. IIpj:B04HTCH top aAhH.oe onucaHne
CTpyKTypH mohmah, ocHOBaHHoił na rpaije, OToOpasaoneM ^yHKipin, ocymecT-
BAHeMHe npoue,nypo!L OnucnBaeTCH ajiropHTM paóoTH BxoAHoro MOAyAH.
KoHiienuMH óioia JicnoAbsoBaHa* b npouecce paapaÓOTKM nporpaMMHHX jpoiie^yp
WH$opMaTMRecKoft cmctsmu oóCAymBaHMH npoyecca oÓyneHMH ,1MAJIO3/MJIK,
C03AaHH0K B BUHHCAMTeALHOM USHTpe BpOHASBCKOTO T0XHHHriCKOrO yHHBepeH-
TeTa.

npoBepan WecnaB uTyROBCKE

Nr 1Nr 1
Prace Naukowe Centrum Obliczeniowego

Politechniki Wrocławskiej
Studia i Materiały Nr 1 1980

Baza danych,
student

Franciszek KL'USKAX^

Base des donnees sur les ^tudiants

La formation et utilisation - effectivement automatiseeę - de
la base des donnees exigent une certaine formalisation d1 elements
et une structure convenable de leur ensemble. Nous voudrions pre-
senter, dana cette contribution, quelques resultats de nos recher-
ches concernant la formation de la base des donnees sur les etu-
diants.

1. FORMALISATION D'ŹLĆMENTS

II est utile d' introduire pour chaąue element 1' identificateur
dit numeriąue ([i] , [3] ,).

Nous avons Introduit, pour un etudiant, l1 identificateur numeriąue
(le') du type

a I n

ou la partie "a" represente par ses deux places decimales une annee
academiąue, au debut de laąuelle 1 etudiant a ete immatricule a une
grandę ecole; la partie "n" a autant de places pour qu'elles rendent
possible de differencier tous les etudiants de 1'anne. F. ex.: Ie 72089

Z O z I X zrepresente le 89 etudiant qui s est inscript a la Faculte au cours

w 1 / •Ecole Slovaque des Etudes, Superieures Tecbniąues, Faculte
d Electrotechnique, Chaire de Cybernetique, Bratislava,Tchecoslovaquie

18 Franciszek Kluska

de l1 annee academiąue 1972/73; ou n^ 999. le ainsi introduit est sim-
ple et economiąue, il ne pose aucun probleme en cas de repetltion
d1 une annee scolalre ou en cas d' interruption des etudes et 11 a aussi
tine signification de ćlassificatlon.

II est preferable de former les identlficateurs numeriąues pour
les branches d'atudes, des specialisations et des matieres d enseigne-
ment par la "methode de Pcrfyrios" Cgenus, species, .II faut,
toutefois - pour faciliter l1 utllisation de la base des donnees a
l1 echelle de l1 Etatles former de la meme faęon et classifier toutes
les possibilites. Schematiąuament:

P. ex. 1' identlficateur ,81,6,07, peut signifier la matiere d enseigne-
ment "tłieorie de ccdage” (07) dans la specialisatlon "machines mathe-
matiąues" [6] dans le cadre de la branche d'etude "cybernetiąue tech-
nląue" (8lX L' ezetnple suppose

J < 99, K<9, T < 99

Les diverses caracteristlgues personnelles, les condltions socia-
les et autres condltions des etudiants jouent aussi un grand role. Nous
pouvons les esprimer par le vecteur p fpar les places de ses parame-
tres):

P = (P-j, Pg» • • • » Pc)

ou
C = nombre maximum des parametres consideres pour chaąue etudiant,

P1V1’ ?2 V2’ ••' ’ PC7C

... , sont les valeurs numeriąues maxima les des para­
metres.

Ba ae des donnees sur lec etud ianta 12

2. STRUCTURE DE L’ENSEMBLE D’ fililMENTS

II est possible d*avoir beaucoup de atructures. Du point de vue
de beaoin de la capacite d'unitę de memoire de 1' ordinateur digital et
du beaoin du temps-machine la atructure optimale est, semble-t-il ([i]

E^J) la suivante.
Ł1 ensemble a quelquea sous-ensembless
a) Pour chaque annee de la Faculte une listę d‘identificateurs

numeriques de branches d‘etudea (Ib), de specialisations (la) et de
matieres d'eneeignement correspondante (im) sous la formę:

Ib,

Is11

Im111 Im112

Is12

Im121 Im^g ... InL|2t^2

Is1fc1

Int1Ł]2

Ib2

IS21

Im211 Im212 ...

Is2k2

Im2k2l Im2k22

IbJ

l8J1

ImJ11 ImJ12 •” ^Jltj.

20 Franciszek Kluska

IsJkT
li

ImJkT1 ImJk12 ••• lBlJkTtTlr
d d U ul

tju^T5 j = 1, 2, ... , J; u = 1, 2, ... k .< K.
d

b) Les resultats d etudes des etudiants de chaque annee de la
Faculte sous la formę:

le^ łba,.

r^ r12 Iti

rN1 rN2 rNtN

Ibs^ = 1'identificateur pour la branche d'etudes et la speciali-
sation, les-guelles suit etudiant ayant 1'identificateur le^ 1=1,
2, ... , N; l1 ordre des etudiants etant comme aub d) et celui de leurs
resultats d'etudes et de matieres d'enaeignesient pour la specialiaa-
tion correspondante Ibs Csub a)) est biunivoquej schematiąuement:

Ia1 r1
Im2 —•- r2

Le resultat d‘etude peut comprendre non seuletnent la mention
obtenue a 1'examen, mais aussi les identificateurs numeriąues d'autres
indices, p. ex. par quelle tentative la mention a ete obtenue, le
tempa de 1'esamen, 1'examinateur, etc.

c) Four chaque annee les valeurs numeriques des vecteurs des etu-
diants sous la formę:

V11 ’ v12» ’ V1C

v2-1‘ v22» **• ’ r2C

Base des donnees sur les etudiants 21

VN1’ VN2 ’ VNC

V = 1, 2, ... , L
A = ncnnbre des annees
Df = sous-ensemblo des donnees correspondantes en accord avec f).

ou N = nombre des etudiants, l‘ordre des vecteurs etant en accord avec
d%

d) Noms et prenoms des etudiants ordonnes alph.abetiquement par le
program ([?]).

e) Denominations des branches d'etudee, des specialisations et
des matieres d‘enseignement en accord avec a).

f} Denominations des parametres du vecteur p.
Les donnees sub d), e), f) ne s emploient que pour la sortie des

donnees de texte de 1*ordinateur digital - pour une comprehension plus
facile par les clients.Pour la communication des informatione avec
1'ordinateur digital on n'emploie que les identificateurs numeriąues.

Toute la base des donnees est precedee par "1‘information prin-
cipale fondamentale" ClFP) signifiante la Faculte correspondante,
1'annee academique et ainsl de suitę. Chaque sous-ensemble est precede
par une Information fondamentale (IF) signifiante p. ex. 1‘annee, la
nombre d'etudiants dans une annee et ainsi de suitę. Schematiquement:

IFP

IFa IFb IFc IPd IFf

IFl ^1 IFl IP. IF, Df

Da1 ^1 Dc1 Dd1 De1

IF2 if2 if2 if2 if2

Da2 °b2 Dc2 Sd2 De2

• • • 0 e

• 0 •
• ® •

IPA IPA ^A

DaA ■%A DcA DdA DeA

Duv = sous-ensemble des donnees
u = a, b, c, e en accord avec a)t > d\ e)

22 Franciszek Kluska

L1Information principale ainsi gue lea autres informations fonda-
mentales sont introduitee pour rendre possible l1 acces des travailleurs
competents dea ensemblee repertories dana l1 ordlnateur digital et elles
ont aussi une certaine signification pour le programmateur.

On peut former a partit des ensemblee de Facultes des ensembles
reduits ainsi que des ensemblee hierarchiguement elargis selon lea
besoins

RŹFŚRENCES

[l]Gvozdjak Ł,, Kluska p., Teoreticke zakłady efek-
tivne automętizoraneho in£ormaęneho systemu o pedagogikom procese
na yysokej skole. Fyskumna sprava c. 14. Katedra matematickych
strojov EF SVST v Bratislave, 1973.,

F2j K 1' u s k a F.4 Algoritmy,a samoćinne poćitaće. Matematika a
fizyka ve skole, c. 6, februar 1975, s. 401-413.

[31 K 1’ u s k a F,, Możności a^ecedneho usporiadania textovych in-
formacii na samocinnom pocitaci. INORGA, c.l, 1970, s. 31-34.

£43 K 1* u s k a 1., Possibilites for Automation of University Ac-
tivitys, Wisa. Z. Techn. Unirews. Dresden, 23 (1974"), H. 5, 1065-
-10^7. , t ,

£5! Kluska F,, Samoćinne pocitace pri riadeni a sprave vyso-
u kych śkol. Fysoka śkpla c. 7, 1973/74, s. 300-311.
Tól K T u s k a F., The Use of Computers in Assessing the Teaching

Proce as. Zb. ĆSAV "Educational Cybemetics”, 1973, s. 155-158.

Praca wpłynęła do Redakcji 1.12.1978 r
Po poprawieniu 19.02.1980 r

BAZA DANYCH ZAWIERAJĄCA INFORMACJE O STUDENTACH

Artykuł przedstawia strukturę zbioru informacji o studentach.
Struktura ta wydaje się optymalna pod względem wielkości zajętej pa­
mięci i czasu pracy maszyny cyfrowej.

EA3A MHHbtt, COWSAiW Jffl$OPMAIIHK) O CTyjJEHTAK

B oTarte npencTaBJieHa cTpyKTypa óaaa AaHHax, cojiepsame? HH^op—
MaijHio o CTyseHTax. IIo sanarocTM naMHTn z BpeMeHM paóOTbi 3BM oaa
npeACTaBJiaeTCH oirmMajiBHog.

IIposepHJi ^łecjiaB UlTyKOBCKH

Nr 1Nr 1
Prace Naukowe Centrum Obliczeniowego

Politechniki Wrocławskiej
Studia i Materiały Nr 1 1980

Niezawodność systemu cyfrowego,
kompilator, przetwarzanie zadań

Dariusz KRAJEWSKI

Badanie efektywności kompilatorów

Opisano metodę porównywania kompilatorów języków programowania
pod względem ich przydatności do translacji różnego typu Badań
Metoda polega na badaniu efektywności wykorzystania systemu cy­
frowego podczas przetwarzania określonego typu zadań, tłumaczo­
nych przez różne translatory języka. Zdefiniowane współczynniki
i miary pozwalają ocenić przydatność danegc translatora do tłu­
maczenia określonych typów zadań. Metodę wykorzystano do przeba­
dania kompilatorów języka Fortran pod kątt>a ich użyteczności w
przetwarzaniu programów studenckich.

1. WPROWADZENIE

Zadania użytkownika, przetwarzane przez system cyfrowy, odznacza­
ją się pewnymi cechami, jak np.: czas przetwarzania, zajętość pamięci,
liczba transmisji między pamięcią operacyjną 1 urządzeniami zewnętrzny­
mi, charakter obliczeń itp. W zależności od tych cech, zadania można
pogrupować na odpowiednie typy.

Istotną sprawą jest dobór odpowiedniego kompilatora do tłumacze­
nia zadania danego typu. Podczas przetwarzania zadania etap tłumacze­
nia może być ważny dla niektórych typów zadań ze względu na takie pa­
rametry, jak; szybkość tłumaczenia programu, wielkość i postać modułu
wynikowego itp.

ir
J Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wys­

piańskiego 27, >0-370 Wrocław

24 Dariusz Krajewski

Przedstawiona w dalszej części analiza efektywności systemu odno­
si się do pracy systemu w reżimie jednoprogramowym.

Zdefiniowano współczynniki i miary określające efektywność wyko-
rzystanift systemu dla pojedynczego zadania i wsadu. Wielkości występu­
jące w definiowanych wzorach w większości są funkcjami czasu.

Metody pozwalające w sposób programowy oszacować czasy wykonania
pojedynczych instrukcji programu oraz średnie czasy przetworzenia za­
dania t wsadu opisano w pracy [3].

Pierwsza metoda polegała na cyklicznym wykonywaniu w programie
badanej instrukcji. Następnie porównano czasy wykonania podobnych pro­
gramów, różniących się jedynie brakiem badanej instrukcji w jednym pro­
gramie i występowaniem jej w drugim. Dokładność szacowania czasu wyko­
nania instrukcji zależała od ilości cyklów. Czasy były odczytywane z
zegara programowego maszyny.

Druga metoda zastosowana do pomiarów wykorzystywała podprogramy
biblioteczne, odczytujące stan zegara maszynowego. Zasada pomiaru cza­
su polegała na wielokrotnym wykonaniu w zadanym czasie wybranych in­
strukcji i zliczaniu powtórzeń cyklu. Podany przykład fragmentu pro­
gramu w języku Fortran ilustruje tę metodę

L,K=O

CALL ITIME (J)
10 K»K+1
20 CALL ITIME (N)
30 IF CJ+T.NE.N) G0TO10

C ZMIENNA T OKREŚLA CZAS POWTARZANIA W CYKLU INSTRUKCJI
C Z ETYKIETAMI 10, 20, 30
40 S=A+B

C POWYŻSZA INSTRUKCJA JEST MIERZONA
50 L=Ih-1
60 CAIL ITIME (M)
70 IF (N+T.NE.M) G0T040

Z=T/L-T/K
C ZMIENNA Z OKREŚLA
C CZAS WYKONANIA INSTRUKCJI Z ETYKIETA 40
Czas odczytywany przez podprogram ITIME jest wyrażony w sekundach

z maksymalnym błędem bezwzględnym, równym okresowi aktualizacji zegara.

Badanie efektywności kompilatorów 25

♦

2. ANALIZA JAKOŚCIOWA KOMPILATORÓW

Zdefiniowane i wyprowadzone niżej współczynniki i miary pozwala­
ją porównywać badane kompilatory pod względem ich zastosowania da
translacji różnego typu zadań.

Wprowadźmy dwa współczynniki Wg i W^, które określają odpowied­
nio stosunek czasu przebiegu translatora lub programu użytkownika do
czasu przetworzenia zadania:

_ TK w T’"k ’ TJ » Ww = » (i)

gdzie Tp - średni czas przetworzenia zadania,
Tg. - średni czas przebiegu translatora w zadaniu,
T^ - średni czas przebiegu programu użytkownika w zadaniu.

Niech oznacza średni czas przetworzenia wsadu. Wówczas

~ TKW + TLW + + TS * To»

gdzie Tgj - średni czas przebiegu translatora dla wsadu,
T^ - średni czas przebiegu programów użytkowych dla wsadu,
TLW ~ czas konsolidacji (przebiegu programu łączącego),
To - średni czas wprowadzenia komend operatora, niezbędnych

podczas przetworzenia wsadu.
Czasy T^, T^ wyznacza się w następujący sposób:

(2)

gdzie TKij’ ^Lij $Wij “ °dPowi®dnio czasy trwania kroku kompilacji,
konsolidacji i wykonania j-tego zadania
w i-tym wsadzie,

26 Dariusz Krajewski

- liczba zadań w i-tym osadzi©,
p - liczba wsadów.

Przez analogię do (1) szary dla wsadu zadań będą następującej

Drugą wprowadzoną miarą, pozwalającą oszacować ilościowo sastoso-
wanle kompilatora do translacji pojedynczych programów. Jest efektyw­
na szybkość przetwarzania przez system określonego typu zadań.

Niech Eg oznacza efektywną szybkość przetwarzania danego typu
zadania w systemie cyfrowym. Dodatkowo załóżmy, że niezawodność syste­
mu równa jest jedności. Wówczas E$ wyrazić można wzorems

SS “ E ’ ^iz’ (4)

gdzie E ~ średnia szybkość systemu,
- współczynnik zmniejszający Eg z powodu występowania w za­

daniu operacji wejścia-wyjścia.
Średnią szybkość systemu E uzależnić można od średniego czasu wy­

konania instrukcji w zadaniu TgK

E = (5)

gdzie Ej - częstość występowania i-tej operacji w zadaniu,
T.j - czas trwania i-tej operacji,
a - liczba różnych operacji w zadaniu.

Wartość współczynnika Kuz w przybliżeniu wyznaczyć można jako
stosunek różnicy średniego czasu wykonania zadania Tw i czasu wykona­
nia operacji wejścia-wyjścia do średniego czasu wykonania za­
dania, tj.

T — T . f6)
Wartość jest zależna od rodzaju operacji wejścia-wyjścia

oraz od liczby występowania tych operacji w programie. Na przykład dla
instrukcji WRITE w Języku Fortran inna będzie wartość w razie

Badanie efektywności kompilatorów 27

przesyłania rekordów niezredagowanych z pamięci operacyjnej do pa­
mięci dyskowej, a inna w razie przesłania rekordów zredagowanych, na
drukarkę wierszową. W razie wielokrotnego występowania różnego typu
operacji wejścia-wyjścia czas będzie wyrażać się jako suma
czasów /wv

1
TWE/WY = kj TWE/WYj* (7)

typów (różnych rodzajów) operacji wej-wyj w progra-

określająca ile razy j-tego typu (rodzaju) operacja
wej-wyj występuje w zadaniu,

TWE/WY ~ średni czas wykonania j-tego typu (rodzaju) operacji wej-
J -wyd«

Wstawiając wartości (5), (6), (7) do wzoru (4) otrzymamy ostatecz­
ny wzór efektywnej szybkości systemu Eg

gdzie 1 - liczba
mie,

k. - liczba

SE
kj TWE/WYj

F (8)

Dotychczasowe rozważania dotyczyły idealnego systemu cyfrowego,
tj. przy założeniu, że niezawodność takiego systemu była równa jednoś­
ci. W dalszej części przyjęto model niezawodnościowy systemu z odnową
o strukturze szeregowej i następujących założeniach:

- procesy awarii w systemie są niezależne,
- proces awarii i odnowy systemu jest opisany procesem Poissona

(urodzin i śmierci),
- jeżeli podczas przetwarzania zadania wystąpi uszkodzenie syste­

mu, to po zakończeniu procesu odnowy zadanie będzie przetwarzane od
początku.

Jeżeli uwzględni się powyższe założenia, to efektywna szybkość
systemu Eg zmniejszy się. Zmianę tę charakteryzować będą współczyn­
niki wynikające z zawodności urządzeń zewnętrznych ą i jednost­
ki centralnej r]jC

SSR “^WE/WI nJC ’ ES* ^9)

Dariusz Krajewski28

Wartości współczynników 1 Rjc określić można w przy­
bliżeniu ze wzorów:

n WWY “ PWE/w/*' * PWE/WY;Tp msx^’

do')
nJC “ PJC^^ ’ WTp max^»

P(t) Jest to prawdopodobieństwo poprawnej pracy urządzenia w chwili t
pod warunkiem. że pracowało ono poprawnie w chwili t « O. Prawdopodo­
bieństwo P(t) jest nazywane funkcją gotowości systemu. W praktyce
przy podanych założeniach określa się wartość graniczną tej funkcji,
nazywaną współczynnikiem gotowości (zob„ np. prace L2J» W X Prawdo­
podobieństwo poprawnej pracy urządzenia przez czas Tp max określa

P(5p Bax). Prawdopodobieństwo to jest nazywane funkcją niezawodności
systemu. T_ mex jest maksymalnym czasem potrzebnym do przetworzenia
zadania określonego typu. Zastępując więc prawdopodobieństwa PjjE/WT^^
i PJC(t) ich wartościami granicznymi ^we/WY i Ayc’ trzymamy:

ESR ~ ES ’ AWE/WX ’ PWE/WY^TP max^ ’ AJC * PJf/Tp max^’

Oznaczamy:

AS = AWE/WI ’ AJC’ PS<Tp majP ~ ^/WI^p maP * PJC^Tp max J’

wówczas wzór efektywnej szybkości systemu przyjmie ostateczną postać:

E™ a Ec • Ao • Pq(TSR S S S p mas Cli)

Przyjmując za miarę efektywności systemu stosunek efektywnej szyb­
kości systemu E™(p(T do efektywnej szybkości Eq(p(T) =

jj uUeIa. m UśaA.

« i), mamy:

E„
E? = ’ AS * PS<Tp maP- <12>

Miara ta pozwala porównywać efektywność tego samego systemu cyfro­
wego, z stosowania® różnych translatorów, do tłumaczenia określonego
zadania.

Podobnie jak dla pojedynczych zadań,, można zdefiniować trzy wiel­
kości, tj. Esw, esRW’ o5tr°ślające efektywne szybkości systemu Eg^ dla
P<Tp maz = 1ł ESRi« dla p(Tp may oraz EV o^lająoą efek­
tywność systemu podczas przetwarzania wsadu zadań.

Badanie efektywności kompilatorów 22

Dla pierwszej z tych wielkości mamy:

ESW ~ SW ‘ SzW* (13)

gdzie - średnia szybkość systemu dla wsadu,
^UZW ~ zmniejszający s powodu występowania a

programach operacji we-wy,
przy czym

Użyte symbole we wzorach (14) 1 (15) oznaczają:
m
XSRW
T*j

Toj

rij
“j
Z

twe/wy
kij

TWWXij

- średni czas trwania operacji we wsadzie,
- czas wykonania programów systemowych, koniecznych do reali­

zacji j-tego zadania,
- czas wprowadzania komend z monitora (przez operatox-a), nie­

zbędnych do realizacji j-tego zadania,
- czas trwania i-tej operacji w j-tym zadaniu,
- częstość występowania i-tej operacji w j-tym zadaniu,
- liczbę operacji w j-tym zadaniu,
- liczbę zadań we wsadzie,
- średni czas przebiegu programów użytkowych dla wsadu,
- średni czas wykonanie operacji we-wy dla wsadu,
- liczbę określającą częstość występowania i-tego typu operacji

we-wy w j-tym zadaniu,
- średni czas wykonania j-tego rodzaju operacji ®e-wy w i-tym

zadaniu.
1, - liczbę rodzajów operacji we-wy w j-tym zadaniu.

Ponieważ czas trwania i-tego rodzaju (i-tej) operacji jest taki
sam w każdym zadaniu, więc Tij = Ti’ a 'rWE/WY ij = TWE/WY i* Wzory
i (15) przyjmą zatem postać:

Dariusz Krajewski

(16)

TWE/WY i (17)^ZW = 1 “

Bezpośrednie korzystanie $ zależności (16) jest dość kłopotliwe,
dlatego wprowadzono pewne uproszczenia, które umożliwiają w prosty spo­
sób obliczanie wielkości E#.

Niech M oznacza liczbę wszystkich operacji we wsadzie, T^ - czas
zajętości jednostki centralnej na czas wykonania programów, Tg^ - sumę
czasów Tq 1 Tg dla wsadu. Wówczas wzór (16) można napisać w postaci*

M

M = TWW
+ TSW 1 +-■“

Tw

Dla. tej samej klasy zadań stosunek M i oznaczać będzie w przy­
bliżeniu średnią szybkość systemu E (dla pojedynczego zadania p. (5)) •
Ostateczna postać wzoru (16) będzie następująca:

EE = --------------——
1 + 7’ss/Tw

(18)

Z zależności tej, widać bezpośrednio jaki wpływ na wartość E^ ma
czas Tg^. Jeżeli średnia szybkość systemu dla wsadu zadań zmaleje o
ponad 50% * porównaniu z tą samą szybkością dla pojedynczego zadania,
oznaczać to będzie, że czas przetwarzania programów użytkownika jest
krótszy od czasu wykonania programów systemowych i czasu traconego na
wykonanie czynności operatorskich, niezbędnych do realizacji zadań.

Efektywna szybkość systemu dla wsadu EgRW jest wyrażona zależ­
nością:

SSRW 3 ESW ’ AS * PS ^Tp max w) *

Badanie efektywności kompilatorów .21

PS<Tp mas W) jest to prawdopodobieństwo poprawnej pracy systemu
przez maksymalny czas przetwarzania wsadu. Jeżeli wsad składać się bę­
dzie z s zadań oraz czas przetwarzania i-tego zadania oznaczyć przez
Tp^, to efektywnS szybkość systemu SSR® obliczyć można a następują­
cej zależności:

z

bsrw ■ esh ' As ’ ps<Ts) * W * n i«i x
C 20)

Ps(Tg), Ps^o) 1 PS^TPp określają odpowiednio prawdopodobieństwa po-
prawnej pracy systemu w

Miarą efektywności
czasie Tg, To i Tp*„
systemu dla wsadu będzie stosunek efektywnych

szybkości Eg^ i Eg^.

EF a Ac • PoCl m).w P ?nax w ' C 21)

Efektywność systemu EF,„ wyrazić można również przez efektywność
EF^ dla każdego zadania we wsadzie fpatrz zależność (12)) . Korzysta­
jąc z zależności (12) i (20), otrzymamy:

EF, = Ag - Ps(Tpi)

Ł

EPW = AS * PS<TS + To> ’ n rs(T) =
i=1

z
= AS + V * n PS<V • AS = (22'

i='l

= P(TS + To)

Z
n

i=-.i

Prawdopodobieństwo Pfl) poprawnej pracy systemu w przedziale
czasu I sprowadza się do postaci wykładniczego prawa niezawodności
przy założeniu, że intensywność uszkodzeń systemu jest stała, Ag(t) =
= Ag = const([2] , [h]).

Dariusz Krajewski52

Uwzględniając zawodność systemu i wykorzystując wykładniczą fun­
kcję niezawodności, zależności (9), (12), (19) i (21) przyjmą ostatecz­
nie postaćj

ESR “ ES ’ AS ’ exp (" XS Tp max)»

EF - Ag exp (-Ag Tp max),

Z
esrw = ESW ' AS * exP {■ xs^Ts + 6xp (“ XS TPŁ)

1=1

EFW = Ag • exp |- Ag (^?Tp + ®s + To

1=1

3. PODSUMOWANIE

Przedstawiona analiza kompilatorów nie ujmuje wszystkich możli­
wych przypadków przetwarzania zadań w systemie. Nie rozpatrywano mo­
delu systemu wieloprogramowego. Nie uwzględniono również przypadków
przetwarzania zadania, podczas którego następuje uszkodzenie systemu.
Przyjęto najprostsze rozwiązanie, tj. z chwilą pojawienia się uszko­
dzenia chwilowego (przekłamania) zadanie jest przetwarzane od począt­
ku.

Jednostką miar efektywnych szybkości systemu jest liczba instruk­
cji na jednostkę czasu. Celowe byłoby wprowadzenie miary efektywności
systemu, której jednostką będzie liczba zadań na jednostkę czasu.Wiel­
kość tę można wyznaczyć z zależności

EF a lim Yz (t),
t —«

gdzie Y$(t) jest średnią liczbą zadań zrealizowanych w przedziale
czasu (O,t) (zob. [1]).

Opisane metody badania kompilatorów wykorzystano w pracy [?] do
oceny porównawczej kompilatorów języka Fortran. Ocenę przeprowadzono
pod kątem zastosowania tych kompilatorów w dydaktyce.

Do testowania kompilatorów wykorzystano programy napisane przez
studentów trzeciego roku w ramach przedmiotu Zaawansowane metody pro­

Badanie efektywności kompilatorów 33

gramowania. Dostępne kompilatory języka Fortran 1900, tj. XFAT, XFAE,
XFAM i S0F0R4B, były testowane na maszynie Odra 1305, kompilator
IEIF0RT natomiast na maszynie R-32 Jednolitego Systemu. Testowanie do­
tyczyło między innymi szybkości przetwarzania programów i szybkości
przetwarzania wsadu zadań.

Tabela 1

Miary systemu cyfrowego określone dla pojedynczych zadań

Miara
systemu
(1 /ms)

Odra 1300 R-32

XFAT XFAE XFAM S0F0R4B IEYF0RT “)

E 1.96 1.96 2.00 1.38 4.34

ES 1.84 1.84 1.86 1.36 3.90

esr 1.64 1.64 1.66 1.22 -

EF 0.8966 0.8966 0.8966 0.8966 -

Dla kompilatora IEYFORT nie obliczono wartości E$r i EF,
ponieważ nie dysponowano odpowiednimi wynikami pomiarów,
pozwalającymi obliczyć współczynnik gotowości systemu A„
Wielkość bezwymiarowa .

Tabela 2

Miary systemu cyfrowego określone dla wsadu zadań

'~\^azwa kompilatora
w systemie

Miara
systemu (1/ms)^^^^

Kompilator XFAT
egzekutor

SOFOR
egzekutor

Kompilator
IEYFORT OS/JS

EW 0.133 1.588 0.213

ESW 0.123 1.492 0.202

esrw 0.111 1.338 -

EFW 0.8947 0.8965 -

Dla kompilatora IEYFORT nie obliczono wartości Eg^ i EF^, ponie­
waż nie dysponowano odpowiednimi wynikami pomiarów pozwalającymi
obliczyć intensywność uszkodzeń systemu A i współczynnik go­
towości systemu Ag.
Wielkość bezwymiarowa

__________________ ________ Dariusz Krajewski____ ______ ________ „_ _

Na podstawie otrzymanych wyników (tab. 1 i 2) można wytypować
kompilator, który najbardziej będzie się nadawał do tłumaczenia zadań
studenckich.

Duże ilości niewielkich programów najefektywniej są przetwarzane
pod kontrolą, systemu Sofor. Efektywna szybkość przetwarzania pojedyn­
czego zadania w systemie Sofor jest 1,4 razy mniejsza od tej samej,
wielkości dla egzektura i 3 razy mniejsza niż w systemie OS/JS.Efek-
tywność systemu cyfrowego dla zadania o krótkim czasie przetwarzania,
zarówno dla egzekutora jak i systemu Sofor, jest taka sama i równa w
przybliżeniu współczynnikowi gotowości Ag. Związane jest to ze śred­
nim czasem międzyawaryjnym, nieporównywalnie dłuższym od czasu wyko­
nania zadania.

Za stosowaniem systemu Sofor do grupowej kompilacji i wykonania
krótkich programów przemawiają wyniki uzyskane dla wsadu zadań. Mimo,
że efektywna szybkość systemu zmalała o 20%, jest ona jednak
12 razy większa od ESRW e6se)ltura i 7 razy większa od Eg^ dla
systemu OS/JS. Efektywne szybkości Eg^ i dla systemu egze­
kutor zmalały 14-krotnie w stosunku do odpowiednich wielkości Eg i
EgR, a dla systemu OS/JS prawie 20-krotnie. Oznacza to, że czasy wyko­
nania programów systemowych i ewentualnie komend operatorskich, zwią­
zane z przetwarzaniem wsadu, są wielokrotnie dłuższe niż czasy wykona­
nia programów użytkowych.

Jedynie w systemie Sofor czasy te są krótsze niż czasy wykonania
programów użytkownika. Większa wartość współczynnika efektywności sys­
temu cyfrowego EFyj dla systemu Sofor wiąże się z krótszym czasem
przetwarzania wsadu.

LITERATURA

[ijBerlow R. E.,Proschan F., Mathematical theory of
reliability, New York 1970.

[2] Kopociński B., Zarys teorii odnowy i niezawodności,
Warszawa 1973, PWN.

[3] Krajewski D., Metody porównywania kompilatorów z punktu
widzenia ich użyteczności w dydaktyce, Komunikaty Centrum Oblicze­
niowego Politechniki Wrocławskiej nr 46, Wrocław 1978.

1 Z a m o j s k i W., Teoria i technika niezawodności, Wrocław
1976- Wyd. PWr.

Praca wpłynęła do Redakcji 6.03.1979 r.
Po poprawieniu 19.02.1980 r.

Badanie efektywności kompilatorów

COMP1LER EFFICLENCI TESTING

Łiethods for comparing different compilers are described. These
methods have been used for the analysis of five chosen Fortran compi-
lers. The results obtained are presented and discussed from the point
of view of their utility in the teaching process. Coefficients and
measures of system effectiveness for different types of tasks are de-
fined.

Yerified by R. Wiernik

MCCJIĘHOBAHHE 3WEKTMBH0CTM KOMILIJIHTOPOB

B cTaTte npej,CTaB^eH MeToa cpaBnenuH KOMnnjwropos bbhkob nporpaM-
MIipOBaHHH C TOHKk 3peHHH HX nOJieSHOCTU 7W riepeBOJja pa3JEIYHHX TMOB
sauannił. Mbtoa coctomt b nccjie.iOBaHMM 3$$sktmbhoctii MCiiojitsoBaniffl
BHHKCjiMTe^BHO^ 'chctsmłi bo BpeMH paspaóoTKa onpe^ejieHHoro TMna 33-
4aY, nepeBO»iMHx c HCiiojitsoBaHneM pa3JiMHHHx TpancjiBTopoB. BLsneHMe
KO3$$MIIHeHTH JI MepH JjaiOT B03M0JKH0CTB OIjeHKM HOJieSHOCTH KOHKpeTHOrO
TpancjiHTopa am -iepeBOAa onperj,ejieHHtix tmjiob sanaRiifi. MeToj óm nc-
iiojiBsoBan jw KccjienoBaniiH KOMnnjiaTopos B3HKa ‘SopTpaH c torkm spenjiH
KX nOJieSHOCTH B OCpaÓOTKS CTypeHHOCKMX nporpaMM.

npOBepiIJI 'C^aB IliTyKOBCKH

Nr 1
Studia i Materiały

, W)
Ludwik KUŹNIARZ

Prace Naukowe Centrum Obliczeniowego
Politechniki Wrocławskiej

Nr 1

Nr 1
1980

Kompilator konwersacyjny,
język programowania,

analiza gramatyczna

Projekt konwersacyjnego kompilatora języka Fortran

Przedstawiono projekt konwersacyjnego kompilatora języka Fortran,
opracowanego w celu zwiększenia efektywności nauczania programo­
wania prowadzonego w pracowni wielodostępu. Opisano sposób dzia­
łania kompilatora, zasady budowy jego składowych oraz ogólną struk­
turę danych wykorzystywanych przez te składowe.

1. WSTĘP

Jednym z elementów nauczania informatyki w Politechnice Wrocław­
skiej są zajęcia prowadzone w pracowni wielodostępu. Studenci podczas
tych zajęć mają nauczyć się prasować pod kontrolą systemu Winimy,wpro­
wadzać informacje do zbiorów i aktualizować je oraz uruchomić kilka
prostych programów. Zajęcia te mają za zadanie zapoznać studentów z
pracą pod kontrolą systemu wielodostępnego. Nauka programowania albo
nie jest na nich prowadzona wcale, albo jest prowadzona w bardzo wąs­
kim zakresie. Przyczyną tego stanu jest między innymi fakt, iż nie ma
dostępnych wygodnych konwersacyjnych kompilatorów języków programowa­
nia (wyjątkiem jest interpreter języka Jean, lecz język ten nie jest
przeznaczony do obliczeń naukowo-technicznych i nie jest językiem o-
becnie powszechnie stosowanym). Za pomocą obecnie dostępnych kompila­
torów języka Fortran czy Algol można tłumaczyć jedynie kompletne pro-

Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wys­
piańskiego 27, 50-370 Wrocław

38 Ludwik Kuźniara

grany, co wymaga od uczących, się wcześniejszego opanowania często dość
obszernego materiału. Jeśli ponadto program jest kilkakrotnie popra­
wiany, co u początkujących programistów zdarza się często, to taki spo­
sób kompilacji jest mało efektywny zarówno ze względu na uczącego się,
jak i Systems

W celu zwiększenia efektywności zajęć prowadzonych w laboratorium
podjęto liczne działania, określone jako projekt LABOR [23. Jednym z
zadań, realizowanych w jego ramach jest opracowanie konwersacyjnego
kompilatora języka Fortran oraz programu interpretującego kod wyniko­
wy. Idea pierwszego z nich zostanie przedstawiona w niniejszej pracy.

W pracy są używane dwa terminy: wiersz programu źródłowego oraz
elementarny fragment programu. Znaczenie tych terminów wyjaśnione jest
poniżej.

Wiersz programu źródłowego jest to informacja, która potencjalnie
może być dyrektywą lub instrukcją w języku. Jest to ciąg fizycznych
(tzn. zapisanych w podzbiorze, na kartach lub czytanych z konsoli)
wierszy programu, połączonych znakiem kontynuacji.

Elementarny fragment programu jest to taki ciąg wierszy programu
źródłowego, który po uzupełnieniu brakującymi dyrektywami i ewentual­
nie instrukcjami tworzy poprawny formalnie program w języku Fortran.
Mówiąc poglądowo, jest to dowolny z fragmentów programu, jaki można
wyciąć jednym lub dwoma poziomymi cięciami z kompletnego, poprawnego
formalnie programu.

Jeśli np. przyjmiemy, że programem jest segment główny w języku
Fortran, to formalnie syntaktykę elementarnego fragmentu programu moż­
na zdefiniować w następujący sposób:
<^nagłówek segmentu> :: = MASTER | MASTER <^nazwa>
•^początek segmentu> :: = <^nagłówek segmentu> | Cdeklaracja> |

<^początek segmentu> <^deklaracja> |
<^puste>

<^koniec segmentuj :: = END | <^instrukcja> | <^instrukcja>
<;koniec segmentu>|<^puste>

•^elementarny fragment programu> :: = <^początek segmentu>
koniec segmentu>

Przyjęte tutaj zostało, iż definicja klas: <^nazwa)> ,<^deklara-
cja>,<^lnstrukcja> ,<^puste> jest oczywista.

Ogólne zasady uzupełniania fragmentów programu do kompletnego
programu są następujące:

1. Dopisuje się deklaracje tablic ze standardowymi rozmiarami i
liczbą wskaźników, zgouną z ich pierwszym użyciem,

2. Dopisuje się standardowy wiersz MASTER, jeśli fragment roz­
poczyna się od deklaracji lub instrukcji,

 Projekt konwersacyjnego kompilatora... 39

3. Wszystkie nieprzyporządkowane numery programowe urządzeń wejś­
cia przypisuje się do CR0, a wyjścia do LP0,

4. Jeśli segment nie został zakończony,, to dopisuje się wiersz
PAUSE lub RETURN, w zależności od tego czy był to segment główny, czy
też podprogram lub funkcja, oraz END i FINISH,

5. Jeśli został użyty niezdefiniowany podprogram, to dopisuje się
definicję tego segmentu, zgodną ze sposobem pierwszego odwołania się
do niego i z treścią "nic nie rób".

2. PRZEBIEG PRACY KOMPILATORA

Na rysunku 1 pokazano schemat działania kompilatora z punktu
widzenia użytkownika. Schemat ten wymaga kilku wyjaśnień i uzupełnień.

Nazwy poprzedzone znakiem * oznaczają pewne zmienne, których
wartości ustala użytkownik przed rozpoczęciem, właściwego procesu tłu­
maczenia.

Wartości zmiennych * WEJŚCIE, * PROGRAM WYNIKOWY, * RODZAJ SYG­
NALIZACJI BŁĘDU określają odpowiednio skąd będą wczytywane wiersze
programu wynikowego, czy ma być wytwarzany program wynikowy oraz w
jaki sposób mają być sygnalizowane błędy wykryte podczas tłumaczenia.

Wielkimi literami napisano pytania, na które odpowiada sam kompi­
lator, a małymi te, na które odpowiada użytkownik (sam proces zadania
pytania i otrzymania odpowiedzi nie został zaznaczony).

W bloku decyzyjnym zawierającym zmienną * RODZAJ SYGNALIZACJI
BŁĘDU nie opisano wyjść. Opisują je dokładnie bloki funkcyjne, zwią­
zane z odpowiednimi wyjściami.

Przez pojęcie ANALIZA rozumie się tutaj sprawdzenie poprawności
syntaktycznej i semantycznej. Sposób jej przeprowadzenia zostanie do­
kładniej opisany w rozdz. 3.

Znaczenie rodzajów sygnalizacji błędów jest następujące:
1. SYGNALIZACJA SKRÓCONA - podaje jedynie informację o tym, że w

odpowiednim wierszu wystąpił błąd.
2. SYGNALIZACJA NORMALNA - podaje dodatkowo rodzaj błędu, jaki

wystąpił.
3. SYGNALIZACJA PEŁNA - podaje dodatkowo (do SYGNALIZACJI NOR­

MALNEJ) miejsce, w którym został wykryty odpowiedni błąd.
4. SYGNALIZACJA STOPNIOWA - podaje sygnalizację skróconą, a nas­

tępnie na żądanie użytkownika kolejną sygnalizację normalną i pełną.
Użytkownik może na dowolnym poziomie zażądać zakończenia sygnalizacji
i wtedy następuje przejście do następnego bloku w schemacie. Proces
ten także nie został jawnie zaznaczony na schemacie.

40 Ludwik Kuźniara

Rys.1. Schemat działania kompilatora
Fig.1. Compiler operation scheme

Wiersze programu źródłowego są numerowane i przechowywane w spec­
jalnej tablicy roboczej. Użytkownik może zażądać wydrukowania dotych­
czas przetworzonej treści programu i może poprawić dowolny wiersz pro­
gramu.

Kod wynikowy jest generowany dla wszystkich poprawnych wierszy
programu, niezależnie od tego czy w poprzednich wierszach były błędy
czy też nie. Przyczyny przyjęcia takiego rozwiązania podane zostaną
w rozdz. 4.

Projekt konweraacyjnego kompilatora... 41

3. BUDOWA KOMPILATORA

Zaprojektowany kompilator jest kompilatorem jednoprzebiegowym i
zgodnie z ogólnie przyjętą koncepcją takich kompilatorów [1], składa
się z trzech głównych części:

1. skanera,
2. analizatora,
3. generatora.
Skaner dokonuje wstępnej analizy tekstu - tłumaczy go na postać

wewnętrzną i rozpoznaje Jaką instrukcję może on potencjalnie reprezen­
tować.

Analizator sprawdza formalną poprawność wiersza programu oraz to
czy analizowany ciąg wierszy tworzy elementarny fragment programu. Jest
on dwupoziomowy. Poziom pierwszy (A1) sprawdza poprawność poszczegól­
nych wierszy, a poziom drugi sprawdza poprawność analizowanego ciągu
wierszy jako całości.

Prezentacja elementów analizatora zostanie przedstawiona na pod­
stawie konstrukcji dostępnej w języku Pascal, z-tym że w wywołaniach
procedur wyraźnie zostaną zaznaczone parametry wejściowe poprzedzone
IN, oraz parametry wyjściowe poprzedzone OUT.

Pracę analizatora i skanera można przedstawić następująco:
SKANER IN (WIERSZ ZRODłOWY)

OUT (NR INSTRUKCJI, WIERSZ WEWNĘTRZNY, KONIEC);
while not KONIEC do

begin
Al IN (NR INSTRUKCJI, WIERSZ WEWNĘTRZNY)

OUT (KOD WYNIKOWY, SYMBOL);
A2 IN (SYMBOL, STAN)

OUT (STAN);
SKANER IN (WIERSZ ZRODLOWY)

OUT (NR INSTRUKCJI, WIERSZ WEWNĘTRZNY, KONIEC)'
end

Analizator A2 jest to automat deterministyczny. Jeśli ponownie
jak w rozdz. 1 ograniczymy się do segmentu głównego w języku Fortran,
to można go przedstawić w postaci grafu (rys.2). Oznaczenia na tym ry­
sunku są następujące:

m - nagłówek segmentu,
d - deklaracja,
i ~ instrukcja,
k - koniec programu (END lub koniec tekstu źródłowego).

42 Ludwik Kuźniara

Rys.2. Graf analizatora Al
Fig.2. Graph of Al analyser

Analizator A2 działa jak następuje
case NR INSTRUKCJI of

INSTRUKCJA NR 1 : A21;
INSTRUKCJA NR 2 : A22;

INSTRUKCJA NR n : A2n
end

gdzie A21,...,A2n są analizatorami poszczególnych rodzajów instruk­
cji. Są to analizatory sterowane przez składnię. Algorytm analizy uży­
ty we wszystkich analizatorach jest taki sam, operuje jedynie na róż­
nych danych (gramatykach). Pozwala to w bardzo oszczędny sposób gospo­
darować pamięcią. Taki analizator można dowolnie również rozbudować
czy aktualizować.

Generator tworzy ciąg wywołań podprogramów (nazywany tutaj kodem
wynikowym), symulujących działanie danej instrukcji. W istocie pracuje
on jednocześnie z analizatorem, a działanie jego można również opisać
za pomocą przełącznika, podobnie jak to zrobiono dla analizatora A2,
lecz sterowanego regułami gramatyki.

4. STRUKTURA DANYCH KOMPILATORA

Przedstawiony tu zostanie jedynie ten fragment struktury danych,
który jest istotny dla objaśnienia jego własności użytkowych. Są to
trzy tablice przedstawione na rysunku 3. Zawartość ich jest następu­
jąca;

TEKST - zapamiętane znakowo wiersze programu źródłowego,
KOD - zapamiętana informacja o wywołaniach podprogramów symulują­

cych działanie instrukcji,

Projekt konwersacyjnegn kompilatora...

ODSYŁACZE - pary odsyłaczy Ct^, k^); t^ - wskazuje na początek
i-tego wiersza w tablicy
kodu dla i-tego wiersza w

TEKST, a - na początek
tablicy KOD.

TEKST

Rys.3. Tablice kompilatora
Fig.3. Compiler tables

W każdej z tablic jest pewien nie wykorzystany do danego momentu
pracy kompilatora obszar, do którego są przesyłane informacje napły­
wające podczas procesu tłumaczenia.

Sposób, w jaki jest tutaj pamiętana informacja wejściowa i wyni­
kowa jest wygodny do poprawienia programu. Usunięcie wiersza z
programu wymaga jedynie aktualizacji odsyłaczy. Dołączenie lub zamia­
na wiersza wymaga dopisania go w nie wykorzystanym obszarze tablicy
TEKST, a następnie sprawdza się czy wiersz może być przetłumaczony od­
dzielnie. Jeśli tak, to tłumaczy się go, odpowiednie wywołania umiesz­
cza się w wolnym obszarze tablicy KOD i ustala odpowiednio odsyłacze,
w przeciwnym przypadku tłumaczy się pewien fragment programu. Taka me­
toda aktualizacji opiera się na obserwacji, iż w wielu przypadkach wy­
miana lub dopisanie wiersza do programu w języku Fortran nie wymaga
powtórnej analizy całego programu,aby taki wiersz poprawnie przetłuma­
czyć. Postępowanie tutaj zaprezentowane zwiększa w istotny sposób efek­
tywność procesu kompilacji.

5. UWAGI KOŃCOWE

Kompilator, którego zarys konstrukcji został tutaj przedstawiony
jest przystosowany do nauczania programowania. W prosty sposób można
go modyfikować. Można mianowicie zmienić definicję pewnych instrukcji,
jak również dodać nowe instrukcje. W rezultacie można otrzymać kompi­

U4 Ludwik Kuźniarz

lator nowego języka typu Fortran, tzn. języka bez struktury blokowej
1 o strukturze wierszowej (1 wiersz = 1 instrukcja)., Językami takimi
są np. Basic i Jean.

LITERATURA

[1] G r i e s D,, Compiler Construction for Digital Computers, New
York 1971.

L2J Kuźniarz L.Pisarski J.,Rychlikowski
E.,Tuzinkiewioz L., System KONFORT. Założenia projek­
towe i opis ogólny. Raport Centrum Obliczeniowego Politechniki
Wrocławskiej,, Nr 105, Wrocław 1977.

Praca wpłynęła do Redakcji 1.12.1978 r
Po poprawieniu 19.02.1980 r

A PROJECT OF A CONVERSATIONAL FORTRAN COMPILER

A project of a conversational Fortran compiler is described. The
compiler was designed to improve the efficiency of using terminala for
teaching the programming. The facilities the compiler provides and
also its main modules and the most important data structures are pre-
sented.

Ferified by R. Wiernik

IIPOEKT ńOHBEPCAUMOHHOrO KOMIMJIOTOPA 'X)PTPAHA

B paóOTe npejiCTaBiien iipoeKT KOHBepcaipfOHHoro KOM.miLHTopa topipana.
Kentio paspaóoTKk HBjiHeTCH noBumenne 3$$eKTJiBH0CT’j McnojiBBOBaHUH Tep-
MHHajioB b odyneHUM nporpaMMiipoBaHMH. Orracan cnocod paóOTU KOMJiMHTopa,
l-pMHUHlIH nOCTpoeHM SPO K0MH0H6HT0B, a T3KMe CTpyKTypti iaHHHX, MCIIOJIŁ-
3yeMMHX B 3THX K0MlI0HeHT3X.

IlpoBepM Hecjias 'Jtykoboku

Prace Naukowe Centrum Obliczeniowego
Nr 1 Politechniki Wrocławskiej Nr 1
Studia i Materiały Nr 1 1980

Zadanie kontrolne, odpowiedź
konstruowana, sprawność

funkcjonalna, komputerowe
wspomaganie dydaktyki

Andrzej PI LAWSKI

O zagadnieniu stopnia trudności zadań kontrolnych
w systemach GAI

Dla pewnej klasy zadań, stosowanych w systemach komputerowego
wspomagania dydaktyki CAI, podano metodę oszacowania stopnia
trudności zadania z odpowiedzią konstruowaną. Przedstawiono także
metodę oceny intelektualnej sprawności funkcjonalnej studenta oraz
metodę oceny dopasowania stopnia trudności zadania do średniej in­
telektualnej sprawności funkcjonalnej testowanych studentów. Nas­
tępnie sformułowano i zweryfikowano hipotezę dotyczącą wpływu, spo­
sobu sformułowanie zadani® na jego stopień trudności.

1. WSTĘP

Zadania służące do kontroli wiadomości dużej liczby studentów po­
winny być opracowane szczególnie starannie pod względem, treści. Postu­
lat ten odnosi się również do zadań opracowanych dla systemu kompute-
nowego wspomagania dydaktyki DLALOS/MLK . System ten obsługuje od
kilku lat sprawdziany programowania w języku Fortran, przeprowadzane
dla ponad 2000 studentów rocznie.

W toku prac dotyczących zadań z języka Fortran dla systemu
DIALOS/MLK pojawiło się pytanie, w jakiej mierze sam sposób zredago­
wania zadania wpływa na stopień jego trudności, tj. trudności jego
rozwiązania. Zbadanie tego wpływu ma istotne znaczenie dla określenia,
w jakim stopniu przeprowadzony sprawdzian informuje o rzeczywistych

Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wys­
piańskiego 27, JO-370 Wrocław

Dokładni®j mówiąc, dla podsystemu DIALOS/MLK w systemie DIALOS

Andrzej Pilawski

umiejętnościach studentów z programowania. Również porównanie wyników
sprawdzianów, dokonywanych w różnych grupach za pomocą różnych zadań,
powinno uwzględniać ten wpływ.

Zasadniczy® problemem, jaki tu wystąpił, było zdefiniowanie i o-
szacowanie stopnia trudności zadania z tzw. odpowiedzią konstruowaną,
brak jest bowiem dostępnej literatury na ten temat.

W niniejszej pracy do określenia stopnia trudności zadania z od­
powiedzią konstruowaną zaproponowano metodę opartą na znanych metodach
statystycznych. Metodami statystycznymi posłużono się również w okreś­
laniu dostosowania stopnia trudności zadania do średniej intelektual­
nej sprawności funkcjonalnej testowanej grupy studentów oraz w badaniu
wpływu sposobu zredagowania zadania na jego stopień trudności.

Przeprowadzone badania objęły zadania kontrolne z odpowiedzią
konstruowaną, stosowane w systemie DIALOS/MLK, ale wnioski mają cha­
rakter ogólniejszy.

2. STOPIEŃ TRUDNOŚCI ZADANIA

Stopień trudności zadania określa się zwykle na podstawie analizy
odpowiedzi udzielonych (na to zadanie) przez odpowiednio liczną grupę
studentów. Ustalenie uniwersalnej metody oceny stopnia trudności za­
dania jest niemożliwe, ponieważ zadania testowe stosowane w systemach
CAI mogą (w zależności od celu sprawdzianu) zakładać różnorodne, częs­
to nieporównywalne postacie odpowiedzi.

2. 1, Klasyfikacja zadań testowych stosowanych w systemach CAI

Sposób analizowania odpowiedzi przez system CAI zależy od przyję­
tej przez projektanta zadania formy udzielania odpowiedzi. W klasyfi­
kacji zadań testowych pod względem formy udzielanej odpowiedzi przy­
jęto następujące 4 kryteria klasyfikacji zadań testowych:
(Zł) Przedmiot testu; kryterium to umożliwia podział na:

(Z1.1) testy umiejętności rozwiązywania problemów,
(Zł.2) testy wiadomości (zasobu wiedzy);

(Z2) Struktura odpowiedzi - umożliwia podział na zadania, w których:
(Z2.ł) odpowiedź można podzielić na ciąg odpowiedzi elementarnych;

podczas oceniania całości odpowiedzi,odpowiedziom elemen­
tarnym przypisuje się zazwyczaj tę samą wagę, co pozwala
na wystawienie oceny binarnej (ocena za odpowiedź popraw­
ną wynosi ł, a za błędną - 0) za każdą odpowiedź elemen­
tarną; gdy odpowiedzi elementarne mają różne wagi, ocena

O zagadnieniu stopnia trudnutct _ ać 4?

binarna za każdą odpowiedź mnożona jest przez jej wagę;
łączna ocena za wykonanie zadania jest sumą ocen za odpo­
wiedzi elementarne;

(Z2.2) odpowiedź stanowi niepodzielną całość, ocenianą binarnie.
(Z3) Kryterium czasu - umożliwiające podział na:

(Z3.1) zadania, w których czas odpowiedzi jest mierzony i wpływa
na ocenę,

(3 3.2) zadania, dla których odpowiedzi powinny się zmieścić w za­
danym czasie.

(Z4) Krotność odpowiedzi; to kryterium umożliwia podział zadań na ta­
kie, w których odpowiedź jest podawana:
(Z4.l) jednorazowo,
(Z4.2) wielokrotnie Cw toku kolejnych powtórzeń w zadanych odstę­

pach czasowych).
W zadaniach klasy (Z3.1) ocena jest funkcją czasu i może być mia­

rą intensywności wysiłku umysłowego podczas rozwiązywania zadania. 0-
cena za zadania klasy (Z4.2) w każdym odcinku czasowym jest określona
identycznie jak w zadaniach klaay (Z4.1); ostateczna ocena jest funkcją
czasu i w zależności od przedmiotu testu może określać parametry tzw.
krzywej uczenia, krzywej pamięci, krzywej zapominania itp.

Podana klasyfikacja wskazuje nauczycielowi na różnorodność form
odpowiedzi i związane z tym duże możliwości projektowania zadań. Jed­
nakże przyjęta forma odpowiedzi musi uwzględniać możliwości systemu
CAI pod względem automatycznej analizy odpowiedzi. Należy dokonać
jeszcze klasyfikacji systemów CAI pod względem sposobu anality odpo­
wiedzi. Klasyfikację tę można oprzeć na dv;óch - jak się wydaje najważ­
niejszych - kryteriach:
(SI) Kryterium przedmiotu analizy; stosując to kryterium dzielimy sys­

temy na takie, które:
(81.1) prowadzą bieżącą analizę toku rozumowania studenta i ewen­

tualną korektę błędów,
(Sl.S) dokonują analizy i oceny tylko końcowej postaci rozwiąza­

nia.
(S2) Kryterium języka odpowiedzi; językiem tym może być:

(S2.1) podzbiór języka naturalnego,
(S2.2) język sformalizowany.
Z porównania obydwu klasyfikacji widać, że np. zadania klasy

CZ1 .2 Z2.2) wymagają systemu klasy (SI .2 82.2) , zadania klasy
(Z1.1OZ2.1) muszą być realizowane w bardziej skomplikowanym systemie
klasy (SI .1 O 8.2,2), zadania klasy (Zł .2 <">32,-1) natomiast wymagają
najczęściej zastosowania najbardziej rozbudowanego systemu C SI ,1<~>S2.-|) .

48 Andrzej Pilarek!

Do najpopularniejszych typów zadań, stosowanych w systemach CAI
klasy (S2.2), można zaliczyć

a) zadania z uzupełnianiem luk,
b) zadania z wielowyborem (repertuarem odpowiedzi),
a) zadania z odpowiedzią konstruowaną.
W systemie DIALOS/MLK wykorzystuje się wszystkie trzy typy za­

dań.
Zadania z uzupełnianiem luk oraz zadania z wielowyborem można

zakwalifikować do klasy (Z1.2 OZ2.2), a zadania z odpowiedzią konstru­
owaną do klasy (Zł .1 ^Z2.1).

Najbardziej popularną formą zadań testowych, oceniających zasób
wiedzy, są zadania oparte na zasadzie wielowyboru. Zadania tego typu
są oceniane binarnie (co znacznie upraszcza analizę wyników) i w związ­
ku s tym mogą być przetwarzane w najprostszych systemach CAI, a nawet
w maszynach egzaminacyjnych bez wspomagania komputerowego.

Powszechne stosowanie zadań z wielowyborem wpłynęło na znaczny
postęp w pracach teoretycznych dotyczących analizy odpowiedzi zadań
klasy CZ1.2^Z2.2)„ Do najciekawszych prac z teg dziedziny można za­
liczyć metrologiczną teorię egzaminatora liniowego Jadwigi Muciek
(p, [8], a. 527-532) oraz fizyczną teorię pomiaru funkcji intelektu­
alnych Zygmunta Zimnego (p. [7] , s. 195-273).

2 .2, Stopień trudności zadania w świetle teorii pomiarów funkcji
Intelektualnych

Teoria pomiarów funkcji intelektualnych Zimnego dotyczy między
innymi oceny trudności zadania testowego (wykorzystywanego powszechnie
w diagnostyce psychologicznej i pedagogicznej) na podstawie pośrednie­
go- pomiaru pracy umysłowej, niezbędnej do wykonania zadania. W zależ­
ności od klasy zadania, określonej na podstawie przyjętej przez siebie
klasyfikacji.([7]» s. 212),Zimny proponuje różne metody obliczania in­
telektualnej sprawności funkcjonalnej osoby testowanej oraz obliczania
stopnia trudności zadania.

Zadania z odpowiedzią konstruowaną można traktować jako zadania,
w których odpowiedź jest ciągiem odpowiedzi elementarnych (patrz pkt
2.3); w przypadku równych wag będzie to zadanie I rodzaju według kla­
syfikacji Zimnego. Klasa (Z2.1) obejmuje także zadania z odpowiedzią
konstruowaną, dopuszczając przy tym różne wagi odpowiedzi elementar­
nych. Na tej podstawie rozszerzymy metodę Zimnego obliczania stopnia
trudności zadań na zadania klasy (Z2.1).

Wyniki badań, cytowane przez Zimnego, potwierdzają słuszność za­
łożenia, że miarą efektywnej pracy umysłowej Le> włożonej w rozwiąza­

 O zagadnieniu stopnia trudności Badań... 49

nie zadania I rodzaju jest liczba P poprawnie rozwiązanych elementów,
a miarą umysłowej pracy nieefektywnej L__ jest liczba B błędnie roz- uc
wiązanych elementów.

Tak więc ocena postaci P/CP+B) za zadanie I rodzaju jest miarą
intelektualnej sprawności funkcjonalnej osoby testowanej [7], s.209,
218

Indywidualna trudność D zadania jest funkcją sprawności funkcjo­
nalnej; dla zadań I rodzaju można przyjąć, że D = 1 - 8 = B/^P+B).

Interindywidualna trudność zadania35 \ zwana najczęściej stopniem

trudności zadania, jest średnią arytmetyczną rozkładu indywidualnych
trudności w grupie testowanych studentów.

2 .j. Metoda oszacowania stopnia trudności zadania z odpowiedzią
konstruowaną oraz sprawności funkcjonalnej studenta

Zajmiemy się tu zadaniami z odpowiedzią konstruowaną, w których
rozwiązaniem układanym przez studenta jest k-elementowy ciąg U =
= (b,c,d ...) tzw. bloków, należących do znanego studentowi zbioru
n-elementowego B, n^sk. Zbiór B może być np. zbiorem wyrazów, zbiorem
liczb lub zbiorem zdań. Parę uporządkowaną ą = (blok be B, numer blo­
ku b w rozwiązaniu £) możemy traktować jako odpowiedź elementarną
i tym samym odpowiedź studenta - jako ciąg Cg.,,... ,0^) odpowiedzi e-
lementarnych. W tym ujęciu zadanie z odpowiedzią konstruowaną staje
się zadaniem klasy (Z2.1).

2.3.1. Przypisywanie wag odpowiedziom elementarnym.

Przypisywanie wag odpowiedziom elementarnym jest łatwe wówczas,
gdy możemy przypisać je wszystkim blokom zbioru B. Ale na ogół tak nie
jest; waga odpowiedzi elementarnej zależy nie tylko od merytorycznej
treści bloku, ale i od jego funkcji w rozwiązaniu (od numeru w ciągu
b \

W zadaniach kontrolnych systemu DIAL0S/M1K rozwiązanie zadania
(czyli ciąg b) jest zapisem pewnego algorytmu. Dla każdego zadania
nauczyciel wyznacza zbiór tzw. algorytmów dopuszczalnych (a więc zbiór
rozwiązań dopuszczalnych), któi'e są przez system analizowane i oce­
niane.

—_——,—_
Pojęcie interindywidualnej trudności zadania wprowadził Zimny

w pracy [7j, s. 243.

Andrzej Pilawski52
Przypisywanie wag odpowiedziom elementarnym powinno przebiegać w

specyficzny sposób.
Algorytm a, należący do zbioru algorytmów dopuszczalnych, przed­

stawimy w postaci ciągu a = (a1,...,aIn) kroków. Kroki te są na ogół
opisami czynności nieelementarnych, realizujących algorytm (np. "wy­
znacz sumę dodatnich wyrazów ciągu"). Wspomniane rozbicie algorytmów
na kroki powinno być wykonane w ten sposób, aby można było określić
wagę każdego kroku w zbiorze A, którego elementami są kroki wszystkich
algorytmów dopuszczalnych Cdla określonej klasy zadań systemu). Przy­
pisywanie wag krokom algorytmów nie jest trudne - określa się je. według
roli, jaką zdaniem nauczyciela gra znajomość kroków w nauce programowa­
nia lub algorytmizacji zagadnień.

Każdemu algorytmowi dopuszczalnemu Ca^,...,ao) odpowiada rozwią­
zanie dopuszczalne (b^c^d*,...) lub inaczej mówiąc - odpowiedź do­
puszczalna (q^,. ..,q*h Każdy krok algorytmu jest realizowany za pomo­
cą jednego lub kilku bloków. Znając wagę kroku przypisujemy wagę rea­
lizującym go blokom i tym samym wszystkim odpowiedziom elementarnym

Opisywaną metodę przypisywania wag odpowiedziom elementarnym moż­
na zatem zapisać następująco:

1° każdemu krokowi a £ A przypisujemy wagę g(a) = w£N, g: A—*-N,
2° dla każdego kroku aćA przypisujemy wagi blokom b€B, rea­

lizującym ten krok,
3° korzystając z wag bloków, realizujących kroki algorytmu

(,...,am), przypisujemy wagę w^ każdej odpowiedzi elementarnej q®
z odpowiedzi dopuszczalnej Cq*,.«.q®).

Podane przez studenta rozwiązanie Cb,c,d,...), czyli odpowiedź
(q^»•••.qk), jsst przez system porównywane kolejno ze wszystkimi odpo­
wiedziami dopuszczalnymi ze zbioru Q q*,...,q*

Gdy porównujemy odpowiedzi studenta (q,j,... ,qk) z ustaloną odpo­
wiedzią dopuszczalną Cq*,... ,q*), wówczas tworzymy ciąg ocen elemen­
tarnych, tzn. ciąg (h^,....h^) liczb określonych następująco:

'"i , gdy qx =
hi = « ’

.o . gdy qŁ / qt

a następnie obliczamy sumę 52 h. ocen elementarnych. Po wykonaniu
i=1 1

tych czynności dla wszystkich odpowiedzi dopuszczalnych przyjmujemy g
jako ocenę h odpowiedzi studenta - największą z otrzymanych sum.

s Uzyskana w ten sposob ocena h wymaga jeszcze punktu odniesienia,

O zagadnieniu stopnia trudności zadań...

umożliwiającego porównanie jej z innymi ocenami za to zadanie. Tym pun­
ktem odniesienia może być waga zadania, zdefiniowana jako liczba w,
równa maksymalnej ocenie ha, jaką może otrzymać student za rozwiąza­
nie zadania.

Opisany sposób określania oceny studenta przez porównywanie ze
wszystkimi odpowiedziami dopuszczalnymi jest bardzo czasochłonny C i pa-
mięciochłonny) i niezbędne jest poszukiwanie bardziej efektywnych me­
tod. W systemie DIALOS/MLK problem ten rozwiązano zastępując zbiór Q
tzw. grafem analizy rozwiązania £2,9]. Węzłami tego grafu są wszystkie
niejednakowe odpowiedzi elementarne ze wszystkich odpowiedzi dopusz­
czalnych, a ścieżki odwzorowują wszystkie odpowiedzi dopuszczalne.

2.3.2. Statystyczna analiza wyników sprawdzianu

Przeprowadzając sprawdzian dysponujemy zbiorem U = [u^ ,... ,u^ j
testowanych studentów oraz zbiorem Z = {z^,...zrJ zadań kontrolnych
i każdemu studentowi ze zbioru U zadajemy wybrany zestaw zadań ze zbio­
ru Z.

Aby przedstawić metodę określania trudności zadania oraz sprawnoś­
ci funkcjonalnej studenta, wyodrębnimy trzy sytuacje, w których zacho­
dzą relacje między elementami zbioru U a elementami zbioru Z:

rozwiązuje zadanie
studentów rozwiązuje
rozwiązuje podzbiór

Zj£Z,
zadanie z^ £ Z
Yc Z zadań.

Po analizie rozwiązania j-tego zadania zostaje wystawiona i-temu
studentowi ocena obliczona ze wzoru:Pij’

gdzie h
ocena h3

1) student u^ £ U
2) podzbiór XcU
3) student u^ £ U
Sytuacja 1

ij oraz w. są to J
i-tego studenta za

określone, w sposób podany w pkcie 2.3.1,
j-te zadanie oraz waga j-tego zadania.

Ocenę P^j można uznać za miarę trudności, jaką sprawia i-temu
studentowi rozwiązanie j-tego zadania. Jest to tzw. trudność indywidu­
alna j-tego zadania. Przyjmiemy, zgodnie z pktem 2.2, że D
jest stopniem trudności indywidualnej j-tego zadania.

= 1 " Pijij

Sytuacja 2
Trudnością interindywidualną j-tego zadania będziemy nazywali

średnią arytmetyczną S^ stopni trudności indywidualnych j-tego za-
dania w grupie studentów XcU, liczącej k-osób:

Andrzej Pilawski

Jeżeli rozkład ocen w grupie studentów X jest normalny, to trud­
ność interindywidualną S* można odnieść do całej badanej populacji
studentów U. Interindywidualną trudność zadania nazywać będziemy odtąd
stopniem trudności zadania.

Sytuacja g
Sprawność funkcjonalną i-tego studenta określać będziemy jako

średnią arytmetyczną S? ocen, otrzymanych przez i-tego studenta, za
rozwiązanie zestawu zadań icZ, liczącego t zadańs

t
S tu

Średnią sprawność funkcjonalną Su badanej populacji studentów U
możemy oszacować, w przypadku normalności rozkłada indywidualnych
sprawności funkcjonalnych w grupie studentów XcU liczącej k osób,
w następujący sposób?

Oprócz stopnia trudności zadania i sprawności funkcjonalnej stu­
denta, organizatora procesu dydaktycznego interesuje odpowiedź na py­
tanie, czy stopień trudności zadania jest dostosowany do średniej
sprawności funkcjonalnej testowanej grupy studentów.

Guilford, jako miarę dostosowania trudności zadania do średniej
sprawności funkcjonalnej populacji studentów, proponuje współczynnik
asymetrii rozkładu w próbie, określony przez Pearsona [6j, s. 129 i n.

. „ x - Mo As =

gdzie x - średnia arytmetyczna,
Mo - wartość modalna,
s - odchylenie standardowe.

Jednakże miara Pearsona jest niewygodna w obliczeniach ze wzglę­
du na konieczność określania dodatkowego parametru rozkładu - wartości

O zagadnieniu stopnia trudności zadań...

modalnej. Dlatego proponuję przyjęcie jako miary dostosowania stopnia
trudności zadania do średniej sprawności funkcjonalnej tzw. współczyn­
nika skośności rozkładu w populacji. Współczynnik ten, oznaczany zwy­
kle jako y » jest określony wzorem [1], s. 19:

O

gdzie - trzeci moment centralnys
o - dyspersja.

Dla rozkładów symetrycznych C buin. dla rozkładu normalnego) para­
metr y - 0'

Analogicznie współczynnik skośności w próbie można obliczyć ze
wzoru

s _ 3 - 7 »

gdzie oraz s są odpowiednio estymatorami p$ i o w próbie.
Dla j~tego zadania współczynnik skośności w próbie liczącej k-stu-

dentów będzie określony wzorem

gdzie p. - średnia wartość ocen w próbie. ■J
Jeżeli g_| = 0, to przyjmujemyźe trudność j-tego zadania została

trafnie dobrana do średniej sprawności funkcjonalnej grupy studentów.
Gdy
- za

6j> °» wówczas możemy uznać zadanie za zbyt łatwe, a gdy
zbyt trudne.

Sj<0 -

WPŁYW SPOSOBU SFORMUŁOWANIA TEMATU NA STOPIEŃ TRUDNOŚCI ZaDANIA

3.1. Hipoteza robocza

Przyjęto następującą hipotezę roboczą Hs Na zmniejszenie stopnia
trudności zadani? wpływają istotnie dwa czynniki:

HI - sformułowania treści zadania w sposób sugerujący plan roz­
wiązania ,

54 Andrzej Pilawski_____________________________

H2 - osadzenie tematyki zadania w typowej problematyce technicz­
nej.

Czynniki wymienione w tej hipotezie zostały uwzględnione w istot­
ny sposób w tematach zadań, będących przedmiotem eksperymentu dydak-
tyc znego.

Opracowując tematy tych zadań, wyodrębniono w treści zadania dwa
zasadnicze elementy:

1. Przedstawienie zagadnienia obejmujące opis słowny lub matema­
tyczny problemu,

2. Informacje dotyczące kolejności wykonywania czynności, niezbęd­
nych do ułożenia programu.

5.2. Tematy zadań eksperymentalnych

Z katalogu zadań systemu DIALOS/MLK wybrano zadanie 34 o typowo
sformułowanym temacie i należące do kategorii przeciętnie trudnych za­
dań. Treść tego zadania zawiera wskazówki dotyczące ułożenia programu,
są one jednak włączone w opis problemu.

Do zadania 34 ułożono dwa nowe tematy, otrzymując w ten sposób
trzy różne zadania z identycznym rozwiązaniem. Pierwszy z nowo opraco-
wanych tematów, oznaczony numerem 34/1 spełnia obydwa postulaty zawar­
te w hipotezie H; drugi temat, 34/2, pomija zupełnie słowny opis za­
gadnienia, a zawarte w treści sugestie dotyczące sposobu ułożenia pro­
gramu są podobne jak w zadaniu 34/1.

Można powiedzieć, że temat 34/1 jest "tematem dla inżyniera" (a
temat 34/2 jest "dla programisty".

34
28/09/76

Napisać fragment programu, w którym wczytane są wartości średnie
temperatury dla kolejnych dwunastu miesięcy dla 100 różnych miej­
scowości. Wartości te są umieszczone w macierzy TEMP o rozmiarach
100»12. Dla każdej miejscowości należy wyznaczyć średnią wartość
temperatury w ciągu dwunastu miesięcy. Obliczone wartości średnie
należy umieścić w tablicy jednowymiarowej DTEMP. Należy wypisać
wartość średnią temperatury wraz z numerem kolejnych miejscowości
dla wszystkich 100 miejscowości.

zał. 12 bil.

Temat zadania 34

O zagadnieniu stopnia trudności zadań,..

34/1
28/09/76

W laboratorium podzespołów elektronicznych, dla tranzystorów dużej
mocy, zbadano zdolność odprowadzania ciepła do otoczenia. Badania
przeprowadzono na próbce liczącej 100 tranzystorów, mierząc w od­
stępach godzinowych przez czas 12 godzin temperaturę każdego tran- I
zystora. Ułożyć fragment programu, który:

1) wczytuje wartości pomiarów do tablicy TEMP(i,j),
i£<1,100>, j6<1,12>,

2) oblicza średnią arytmetyczną temperatur każdego tranzysto­
ra w czasie 12 godzin,

3) obliczone wartości średnie umieszcza w tablicy DTEMP(k),
kf <1 ,100> ,

4) drukuje wartość średnią temperatury tranzystora wraz z
jego numerem - dla wszystkich 100 tranzystorów

zał. 12 bil.

Temat zadania 34/1

34/2
28/09/76

Ułożyć fragment programu, który:
1? wczytuje dane do tablicy TEMP (i, j), ig<1,100>, j6<1,12>,

2) oblicza średnią arytmetyczną elementów każdego wiersza,
3) obliczane wartości średnie umieszcza w tablicy DTEMP(k),

kg <1 ,100> ,
4) drukuje wartości kolejnych elementów tablicy DTEMP wraz

z numerem tego elementu

zał. 12 bil.

lemat zadania 34/2

kudrzei Pilawski

4. .EKSPERYMENT I JEGO WYNIKI

4,1. Opis eksperymentu

Na wyniki zadania kontrolnego z języka Fortran wpływają również
inne czynniki, nie wymienione w hipotezie H, Ważniejsze z nich tos

1, Zrozumienie problemu przedstawionego w zadaniu i umiejętność
jego rozwiązania.

2. Poziom opanowania materiału z programowania w języku Fortran.
3. Zaznajomienie się z rozwiązywaniem zadań w systemie DIALOS/MLK.
Ponieważ celem pracy było zbadanie zależności między sposobem

sformułowania treści zadania kontrolnego z języka Fortran a stopniem
trudności tego zadania, więc przez odpowiedni dobór grup studenckich
uczestniczących w eksperymencie ograniczono do minimum wpływ ostatnie­
go czynnika na ocenę i wyrównano wpływ dwóch pierwszych czynników.

Ułożone przez studentów rozwiązania zadań zostały poddane anali­
zie w systemie DIALOS/MLK i w wyniku analizy studenci otrzymali proto­
koły analizy rozwiązania. Protokół taki zawiera między innymi ocenę
punktową składającą się z dwóch liczb? liczby punktów otrzymanej przez
studenta oraz maksymalnej liczby punktów, które za to zadanie student
może otrzymać fp. [2,3]).

Uzyskane przez studentów oceny punktowe przedstawiono na histo­
gramach w pracy [10] .

4.2. Hipoteza statystyczna i jej weryfikacja

Przyjęcie hipotezy H, sformułowanej w pkcie 3*1, należy uznać za
uzasadnione, jeżeli stopień trudności zadań o numerach 34/1 i 34/2 bę­
dzie mniejszy niż stopień trudności zadania 34 (hipoteza H1) oraz, gdy
stopień trudności zadania 34/1 będzie mniejszy niż stopień trudności
zadania 34/2 (hipoteza H2)„

Hipoteza H stanowi podstawę do sformułowania trzech hipotez sta­
tystycznych H' , H" i H"' :

: m2> m^ przy : m2< ,

H'J : m3>m1 przy H!j : m?< m1 ,

H'0' : ®2 >m3 Przy Hl" ! ®2<tn3 ’

gdzie BU) - wartość oczekiwana stopnia trudności zadania 34,
m2 - wartość oczekiwana stopnia trudności zadania 34/1,
Ej - wartość oczekiwana stopnia trudności zadania 34/2.

_ O zagadnieniu stopnia trudności zadań..._ _ 57

Hipotezę H należy uznać za prawdziwą w razi® odrzucenia hipotez
zerowych H” i H”;,

Do zweryfikowania hipotez H1, H" i H”' posłużono się testami
t-Studenta [1j, s. 111 i v~Welcha i Aspin [4J, s. 97. Wybór jednego
z tych testów jest uzależniony od weryfikacji pomocniczej hipotezy Hp
o równości wariancji w dwóch badanych populacjach. Hipoteza Hp ma na­
stępującą postać:

2 2 2 2Hpo : =o2 przy Hp^ : o,, /Og ,

2 2gdzie - wariancje w porównywanych zbiorowościach.
Do zweryfikowania hipotezy Hp wykorzystano test H-Snedecora p],

s. 108.
Jeżeli wariancje w badanych populacjach są równe, to stosuje się

test t-Studenta. W przeciwnym razie należy wykorzystać test v-Welcha
i Aspin.

Wspomniane testy są parametryczne i wymagają znajomości funkcji
rozkładu. Najczęściej przyjmuje się założenie o normalności rozkładu,
gdyż ułatwia to w znacznej mierze obliczenia i pozwala korzystać z
opracowanych i powszechnie dostępnych tablic.

Mimo, że rozkład normalny jest zjawiskiem częstym, nie ma pewnoś­
ci, że rozkład stopni trudności indywidualnych zadania kontrolnego w
testowanej grupie studentów jest również normalny. Dlatego, jeżeli
niezbędne jest przeprowadzenie szczegółowej analizy statystycznej, w
której istotne jest założenie o rozkładzie normalnym badanej populacji
należy sprawdzić czy oceniany rozkład jest dobrze przybliżony przez
x’ozkład noi’malny, W niniejszej pracy wykorzystano do tego celu test
zgodności A-Kołmogorowa [5], s. 245.

Weryfikacji hipotezy o zgodności rozkładu stopni trudności indy­
widualnych z rozkładem normalnym, jak również weryfikacji hipotez Hps
H1, H" i H"’ dokonano za pomocą (specjalnie do tego celu napisanych
przez autora) programów o nazwach API2 i API3. Opisy algorytmów pro­
gramów API2 i API3 oraz wydruki wyników obliczeń przedstawiono w
pracy [10].

Wyniki obliczeń programu API2 potwierdziły założenie o normalnoś­
ci rozkładu stopni trudności indywidualnych wszystkich trzech zadań.
W pracy [10] zamieszczono zbiorcze wyniki testu zgodności X-Kołmogo-
rowa oraz wyniki testów F-Snedecora, t-Studenta i v-Welcha i Aspin.

Wyniki obliczeń programu API3 dały podstawę do odrzucenia hipotez
H^, Hg oraz nie dały podstawy do odrzucenia hipotezy Hg', gdyż sto­
pień trudności zadania 34 był większy niż stopnie trudności zadań 34/1
i 34/2 (> mg i a stopnie trudności zadań 34/1 i 34/2 nie
różniły się Istotnie (mg = m^).

Andrzej Pilawski

5. PODSUMOWANIE

W punkcie 3.1 sformułowano hipotezę dotyczącą wpływu zredagowa­
nia tematu zadania na jego stopień trudności (określony według metody
zaproponowanej w pierwszej części pracy w rozda. 2). Zbadanie tej hi­
potezy mięło dostarczyć informacji do określenia zasad opracowywania
tematów zadań kontrolnych z języka Fortran.

Analiza statystyczna wyników eksperymentu dydaktycznego nie dała
podstaw do odrzucenia pierwszego punktu hipotezy oraz odrzuciła punkt
drugi. Wyniki analizy statystycznej stanowiły ponadto podstawę do wy­
ciągnięcia następujących wniosków, dotyczących zarówno analizy stopni
trudności zadań, jak i metody przedstawiania treści zadania;

1. Ściślejsze związanie tematu zadania z typowymi zagadnieniami
technicznymi konkretnego kierunku studiów nie ma istotnego wpływu na
stopień trudności tego zadania.

2. Istotny wpływ na stopień trudności zadania ma taki sposób zre­
dagowania tematu zadania; w którym wyraźnie są wypunktowane kolejne
elementy, mające się znaleźć w rozwiązaniu. Sugerowanie kolejności
tych elementów w sposób opisowy jest istotnym utrudnieniem zadania.

3. Rozkłady stopni trudności indywidualnych porównywanych zadań
aą w przybliżeniu normalne, co nie wyklucza wykorzystania współczynni­
ka skośności jaku miary dopasowtmia stopnia trudności zadania do śred­
nie sprawności funkcjonalnej populacji studentów. Wyniki analizy skoś­
ności rozkładów ocen otrzymanych przez studentów pokrywają się z wyni­
kami testów istotności różnic; zadanie 34 było zbyt trudne (g^a
a zadania .34/1 i 34/2 - zbyt łatwe = 0,295, = 0,269).

Przedstawione wnioski należy uzupełnić uwagą ogólniejszą: Mimo,że
osadzenie tematu zadania w realiach technicznych nie wpływa istotnie
na stopień trudności zadania, nie należy automatycznie preferować za­
dań o tematach oderwanych od -konkretnych zastosowań. Opracowywanie zadań
zawierających konkretny problem techniczny jest bez wątpienia bardziej
kłopotliwe. Ze względów dydaktycznych należy jednak rozpowszechniać
takie właśnie zadania.

LITERATURA

[i] Brandt S., Metody statystyczne i obliczeniowe analizy da­
nych, Warszawa 1976, PWN.

[2j Cieślik A., Informatyczny system obsługi procesu nauczania
DIALOS/MLK, Podsystem KONTROLA, Komunikaty Centrum Obliczeniowego
PWr. Nr 26, Wrocław 1977.

O zagadnieniu stopnia trudności zadań... 52
[j] C i e ś 1 i k A.,Pilawski A., Zasady przygotowania i

realizacji zajęć sprawdzających z wykorzystaniem wspomagania kom­
puterowego (na przykładzie systemu MLK), Komunikaty Centrum Obli­
czeniowego PWr. Nr 1?, Wrocław 1976.

[4j Czermiński I. i in., Metody statystyczne w doświadczal­
nictwie chemicznym, Warszawa 1974, PWN.

(51 F i s z M., Rachunek prawdopodobieństwa i statystyka matematycz-
J na, Warszawa 196?, PWN.

[6j Guilford J.P., Podstawowe metody statystyczne w psycholo-
gii i pedagogice, Warszawa 1964, PWN.

[71 Praca zbiorowa pod red. Kozieleckiego J., Problemy
psychologii matematycznej, Warszawa 1971, PWN.

[81 Muciek J., Model metrologiczny zautomatyzowanego systemu
kontroli i oceny wiedzy, Technologia Kształcenia, Zbiór referatów
XI międzynarodowego sympozjum, Z. 13, Poznań, 21-23 września 1978.

[9jPilawski A., Informatyczny system obsługi procesu nau­
czania DIALOS/MLK. Metoda opracowania zadań kontrolnych z języka
FORTRAN, Komunikaty Centrum Obliczeniowego PWr. Nr 28, Wrocław
1977.

pOj Pilawski A., Informatyczny system obsługi procesu naucza-
L nia DIALOS/MLK. Wpływ sposobu sformułowania treści zadania na oce­

nę, Komunikaty Centrum Obliczeniowego PWr. Nr 27, Wrocław 1978.

Praca wpłynęła do Redakcji 9.03.1979 r.
Po poprawieniu 19.02.1980 r.

ON THE PROBLEM OF THE DIFFICULTY DEGREE OF EXERCISES
USED IN CAI SYSTEMS

A method of the exarcise difficulty degree estimation for certain
class of exercises with constructed answer us»d In CAI systems is pre-
sented. The method of estimation of student’s intellectual-functional
efficiency, as well as the method of estimation of exercise difficulty
degree fitting to the mean intellectual-functional efficiency of tested
students are presented. The hypothesis about the influence of the exer-
cise theme formulation upon the exercise difficulty degree is madę and
verified.

Yerified by R. Wiernik

0 IIFOEJIEMAK jTOBHH TP71IH00TM 3A^, PEUlAEMbK B CMOTEMAX ACO

HeKOToporo Kjiacca Banan, p(.inaeMŁix b cncTewax ACO, upencTasjieH
M6TOL OIjeHKM ypOBHH TpyAHOCTU 3aHaHX C IIOCTpOeHHHM 0TB6T0M. KpOMS
Toro, o.moHBaeTCH mstol. oughkk HHTeJUieKTyajiBHOi* - byHwi0HajiŁH0“'
BĆbpeKTłlBHOCTU H M6TOH OUSHKH a.ianTaUH3 ypOBHH TpyUHOCTH sanaRii K Cpe,4-
Hei! 0HTejDieKTyajiJ>Hoit - $yHKiinoHaAŁHO0 3$$eKTMBH0CTH npoBepaeMtix ciy-
A6HT0B. npe.icTaEjieK;- TaKace h npoBepcHa nraoTesa, KacamnaHca bjimhhhh
Merona ^pMyjrapoBhHKH sawann na ypoBeHt ee cjiokhoctii.

Ipoiep-M lecjas UlTyKOBCK'

Nr 1Nr 1
Prace Naukowe Centrum Obliczeniowego

Politechniki Wrocławskiej

Studia i Materiały Nr 1 1980

System konwersacyjny, język
programowania, wyrażenie

arytmetyczne

Jerzy PISARSKIEJ Lech TUZINKIEWICZ**)

Konwersacyjny minisystem wyrażeń arytmetycznych PT78

W ramach prac prowadzonych w Centrum Obliczeniowym Politechniki
Wrocławskiej nad systemem komputerowego wspomagania dydaktyki
powstała potrzeba wykonania "kalkulatora" do obliczenia wartości
prostych wyrażeń arytmetycznych! Stało się to podstawą opracowa­
nia minisystemu wyrażeń arytmetycznych. Praca zawiera formalny
opis koncepcji takiego minisystemu oraz przykład zrealizowanej
przez autorów wersji praktycznej.

1. WSTĘP

Prezentowany tu minisystem PT78 do obliczania wartości wyrażeń
arytmetycznych może pracować na dowolnej maszynie cyfrowej serii
Odra 130G, nie obciążając zbytnio pamięci operacyjnej. Minisystem ten
jest systemem otwartym, tzn. użytkownik z łatwością może rozszerzać
zakres wykonywanych przez system czynności przez dołączenie własnej
biblioteki podprogramów lub wykorzystanie oprogramowania standardowego
m.c., na której pracuje (szczegóły są podane w rozdz. 4). Minisystem
został zbudowany jako jeden z modułów komputerowego systemu wspomaga­
nia dydaktyki Labor [i], jest on jednak od tego systemu niezależny i
może być wykorzystywany oddzielnie, np. aby umożliwić studentom (lub
innym użytkownikom nie mającym, doświadczenia w programowaniu) oblicza-

Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wys­
piańskiego 27, 50-370 Wrocław

3,08 Instytut Snergoelektryki Politechniki Wrocławskiej, Wybrzeże
Wyspiańskiego 27, 50-370 Wrocław

Jerzy Pisarski, Lech Tuzinkiewics

Rys.1. Struktura minisystetnłj FT78
Fig.1. PT78 minisystem structure

Konwersacyjny minisystem 63

nia za pomocą tn.c. wartości wyrażeń arytmetycznych o dużym repertuarze
działań. Zamieszczony w pracy opis systemu 1=178 ma charakter sformali­
zowany. Pewne pojęcia jednak zostały przedstawione w sposób nieformal­
ny w celu zwiększenia czytelności. Ogólną strukturę minisystemu przed­
stawiono na rysunku 1«

2. KONCEPCJA SYSTEMU PT?8

2.1. Założenia

Założeniem systemu PT78 jest struktura modułowa, przedstawiona na
rys., 2. Poszczególne moduły są autonomiczne i ich zadaniem jest w spo­
sób optymalny realizować kolejne etapy obliczania wartości wyrażeń
arytmetycznych. Taka struktura umożliwia dokonywanie zmian wewnątrz
poszczególnych modułów lub wymisny całych modułów. Dokonując najogól­
niejszego podziału funkcjonalnego można w minisystemie wyróżnić:

- analizator wyrażenia arytmetycznego,
- egzekutor zdekodowanego wyrażenia arytmetycznego.

\Anal/ i oter mj
'wyrażeń orytmet.'

I---““
Biblioteka

Rys.2. Modułowa struktura minisystemu
Fig.2. Module structure of the minisystem

Definicja 1. Gramatykę generacyjną będziemy określali
jako uporządkowaną czwórkę

GG 3 CAk » A , R , WYR AR) ,

gdzie A^ - alfabet końcowy gramatyki Gc,
Ap - alfabet pomocniczy gramatyki Gg,
R - skończony zbiór reguł generacyjnych gramatyki Gg,
WYR AR - cel gramatyki Gg.

Definicja 2. Językiem generowanym przez gramatykę Gg
będziemy nazywali zbiór słów utworzonych na podstawie tej gramatyki.

64 Jerzy Pisarski, Lech Tuzinkiewicz

Definicja 3. Wyrażeniem arytmetycznym będziemy nazywa­
li ciąg symboli należących do alfabetu języka wyrażeń arytmetycznych,
którego poprawność formalną można sprawdzić za pomocą reguł generacyj­
nych języka.

Ponieważ celem gramatyki Gę jest wyrażenie arytmetyczne, będzie­
my dalej nazywali język generowany przez GG językiem wyrażeń arytme­
tycznych.

2,2, Język wyrażeń arytmetycznych

2.2.1. Alfabet języka. Znaki alfabetu

1. Litery alfabetu łacińskiego od A do Z.
2. Cyfry dziesiętne od O do 9.
3. Operatory arytmetyczne + - / * * *
4. Ograniczniki () . a

*) <jA^> :: = B| C oznacza, że <A> może przyjąć znaczenie B lub C
**) Element z gwiazdką określa ciąg danego typu; w szczególnym

przypadku może to być ciąg pusty.

Alfabet pomocniczy:
Ap ={<Zn> , <L>,<C>,<OP>,<OPa> , <0PB> , <PUN >, < Zm> , <LIT> ,

<OPERAND> , <TERM> , <WYR AR>,<F>] .

Alfabet końcowy:
A^ - słowa generowane przez gramatykę, nie należące do A$»
Ak Ap = 0.

2.3.2. Reguły gramatyczne GG

<Zn> :: =<L>I<C>|<OP>I<OG>
<L> :: = A I B I ... I X I Z
<C> :: = O I 1 I 2 l ... | 9
<0P> :: =<OPA>I<OPB>
<OPA>:: = + l -
<OPB> :: = x | /
<FUN>:: = SIN I COS I ... I LOG e
<Zm> :: =<L>l<Zm> <L’>|<Zm> <C’>‘ ?

<LIT>:s =<C><C*>I . <C><C*>I<C><C >.<C>
,<OPERAND>:: = <LIT>I <Zm>l <WAR AR> I <OPERAND> x * <WYR AR>
<TERM> :: = <OPERAND> I <TERM> <0PB> <OPERAND>
<F> :: =<FUN>(l<F><WYR AR>)
<NEG> :: = -<WYR AR>
<WYR AR> :: = <TERM>|<F>|<WYR AR> <0PA> <TERM>|<NEG>

Konwersacyjny minisystem... 65

R”S. J. Schemat analizatora wyrażeń arytmetycznych
Fig. J. Scheme of arithmetic expression analyser

66 Jerzy Pisarski, Lech Tuzinkiewicz

2.5, Analizator wyrażeń arytmetycznych

Analizator wyrażeń arytmetycznych pełni rolę filtru przepuszcza­
jącego tylko taki ciąg znaków, który może być wyprowadzony przez gra­
matykę Gg języka wyrażeń arytmetycznych. Każda niezgodność jest wy­
szukiwana, a następnie jest przekazywana informacja o rodzaju błędu
z podaniem pozycji w ciągu znaków. Gdy kontrola poprawności zostanie
przeprowadzona do końca bez wykrycia błędu, wówczas ciąg znaków jest
interpretowany jako wyrażenie arytmetyczne i jest obliczana jego war­
tość.

Analizator składa się z trzech podstawowych części:
- analizatora leksykalnego, którego zadaniem jeet wyodrębnienie

poszczególnych jednostek leksykalnych (słów' z całości,
- analizatora syntaktycznego - sprawdzającego poprawność zdanie

pod względem reguł konstrukcji wyrażeń arytmetycznych,
- analizatora semantycznego interpretującego zdanie (określające­

go sens zdania).
Cały proces analizy od strony ideowej jest przedstawiony na rysun

ku 3.

ST WPZMSTOS

tablica
stałych

wyrażenie
w formie
końcowej

tablica
zmiennych

tablica
pomocnicza
wartości

Rys. 4. Tablice robocze egzekutora
Fig. 4. Erecutor operational tables

Analizator syntaktyczny jest wywoływany każdorazowo po ustaleniu
kolejnej jednostki leksykalnej. Jest to istotne z tego względu,że szyb
kość ustalenia ewentualnego błędu decyduje o czasie reakcji użytkowni­
ka, a tym samym o czasie pracy całego systemu.

Poprawnie podane wyrażenie jest zapisane po zdekodowaniu w posta­
ci stosu, na którym jest ustalona kolejność wykonywanych operacji i
adresy argumentów działań.

Konwersacyjny minisystem ... 67

.2.4. Egzekutor zakodowanego wyrażenia arytmetycznego

Obliczenie wartości wyrażenia arytmetycznego, rozłożonego na ciąg
elementów i umieszczonego w tablicy STOS (.patrz rys. 4), odbywa się
zgodnie z algorytmem przedstawionym na rys.5. Tablica ta zawiera, jak
wspomniano wyżej, kody operacji i funkcji oraz adresy argumentów. Same
zaś argumenty są umieszczone w tablicy zmiennych (ZM), tablicy stałych
(ST) oraz - podczas przetwarzania - w tablicy pomocniczej (WP). Pod­
stawowe operacje arytmetyczne są działaniami dwuargumentowymi, funkcje
natomiast są traktowane jako działania jednoargumentowe, podobnie jak
to się dzieje z operacją negacji.

Algorytm realizacji stosu - jak to pokazano na rysunku 5 - polega
na wybraniu z tablicy STOS pary argumentów i następującego po nich ko­
du operacji, a następnie wykonaniu wskazanego działania z jednoczesną
redukcją stosu. Dzieje się tak w przypadku podstawowych działań aryt­
metycznych, w przypadku funkcji natomiast jest pobierany jej argument
oraz kod identyfikacyjny, a następnie argument jest przekazany do seg­
mentu realizującego funkcję. Wynik zostaje umieszczony w tablicy WP,
a jego adres w tablicy STOS, zarazem jest dokonywana odpowiednia reduk­
cja stosu. W trakcie wykonywania kolejnych działań i obliczania wartoś­
ci funkcji są testowane wyniki operacji ze względu na dopuszczalną
wielkość liczb (nadmiar). W razie przekroczenia dopuszczalnego z^jtresu
jest wyprowadzany komunikat błędu i realizacja obliczania wartości wy­
rażenia zostaje przerwana.

Objaśnienia do rysunku 5s
n - liczba elementów stosu,
k - bieżący wskaźnik wierzchołka stosu,
arg - adres argumentu,
XI, X2, X3 - zmienne pomocnicze, zawierające elementy stosu (adres ar­

gumentu lub kod działania),
(XI), (X2) - wartości o adresach XI, X2,
NEG - negacja,
= - podstawienie,
O - podstawowe operacje arytmetyczne.

68 Jera,7 Pisarski, Lech Tuzinkiewj.cz

XI = STOS(k^,

X2 = arg
T I fj

X3-STOSU<+2'\

X3=arg

Realizacjo
funkcji

W=Fun<ÓX1j)

NEG\Fun

Wykonanie okr
przez X3 dzia­
łania
W<X1)o (X2)

Wykonanie
oper NEG

W—(XI)

NADMIAR
~TTT~T~

NADMIAR
T I N"

Redukcja STOSn.
o 2 jednostki

\Komunika\ Redukcja
\ btędu\ 0 j jedno

STOS-u
o 1 jednostkę

n = 1
N | T

(STÓP)

STOS(k) = W/

Rys.5. Algorytm realizacji wyrażenia arytmetycznego
Fig.5» Algorithtn for arithmetic expression realization

Tuzinkiewj.cz

Konwersacyjny minisystem... Ś2

5. REALIZACJA I OPIS UŻYTKOWY FT?8

g.1. Opis użytkowy

Sposób korzystania z minisystemu FT?8 jest niezależny od tego,esy
program jest uruchamiany w trybie wsadowym czy konwersacyjnym Con-line).
Różnice polegają jedynie na aktywacji minisystemu.

Wyrażenia arytmetyczne, podawane przez użytkownika, muszą mieć
strukturę wyrażeń języków wyższego poziomu, a postać ich musi być taka
sama jak postać wyrażeń języka Fortran. Wyrażenia realizowane w mini-
systemie mogą zawierać stałe, zmienne bądź funkcje jednoargumentowe.
Niedopuszczalne jest używanie zmiennych ze wskaźnikami oraz funkcji
wieloargumeatowych. Zmienne, który® nie nadano wartości, przyjmują war­
tość zero. Po obliczeniu wartości wyrażenia użytkownik otrzymuje wynik
liczbowy, którego typ jest zależny od podanych argumentów według zasad
przyjętych w języku Fortran dla zmiennych typu integer oraz real.

W razie niepoprawnego zapisu wyrażenia, analiza zostaje przerwana,
a użytkownik otrzymuje komunikat informujący o miejscu i rodzaju popeł-
nionego błędu •

Dyrektywy minisystemu muszą być poprzedzone standardowym znakiem
ostrzeżenia : . W przeciwnym przypadku słowo dyrektywy zostanie zin­
terpretowane jako nazwa zmiennej. Liczba wykonywanych obliczeń po u-
ruchomieniu minisystemu jest dowolna, a o zakończeniu pracy informuje
użytkownik podaniem dyrektywy KONIEC.

Użytkownik ma do dyspozycji następujące działania i funkcje:
- dodawanie, odejmowanie, mnożenie, dzielenie, potęgowani-,;,
- podstawienie,
- funkcje i wyrażenia własne,
- funkcje standardowe; są to w zasadzie używane w dydaktyce fun­

kcje standardowe języków wyższego poziomu.
Możliwość zadawania własnych funkcji pozwala na rozszerzenie za­

kresu zastosowania minisystemu. Sposób korzystania z tych funkcji jest
identyczny jak dla funkcji bibliotecznych ('standardowych).

Funkcje własne użytkownika zadaje się w postaci

'FUN(xyf(x)

gdzie FUN - nazwa funkcji (max. czteroznakowa),
X - argument,
f(x) - wyrażenie definiujące funkcję.

Poprawność wyrażenia w dalszym ciągu nie jest sprawdzana

?0 Jerzy PiBaraki, Lech Tuzinkiewicz___

Przykład« 'ROTCY) ' (A+B> *KXP(X)
Podczas pracy minisystemu można korzystać z następujących dyrek­

tyw, dotyczących funkcji użytkownika:
sUSUN POT -- kasowanie poprzednio zdefiniowanej funkcji,
:DRUKUJ POT - wydruk zdefiniowanej funkcji.
Minisystem stwarza również możliwość zapamiętania dowolnego wyra­

żenia arytmetycznego Ctzw. wyrażenia własnego), nie mającego jednak
własności funkcji. Wyrażenie takie przyjmuje postać: 'nr' wa
gdzie nr - numer identyfikacyjny (0 - 9),

wa - wyrażenie arytmetyczne lub instrukcja podstawienia arytme­
tycznego.

Przykład: '5' SIN(x) + COS(Y).
W przykładzie tym pod zmienne Ził można podstawiać dowolne

wartości i za pomocą dyrektywy WYKONAJ żądać podania wartości danego
wyrażenia. Stwarza to możliwość pośredniej realizacji funkcji wieloar-
gumentowej oraz wygodniejszego tablicowania wartości wyrażenia. Patrz
również przykład 3. w pkcie 3.1.1. Dyrektywami używanymi w tym przypad­
ku aą:

:WYKONAJ i - wykonanie wyrażenia o numerze i,
sUSUN i - kasowanie wyrażenia o numerze i,
:DRUKUJ i - wydruk postaci wyrażenia i.

3.1.1. Przykłady

1. Wprowadzenie zmiennej
— A » 34.5

O.345OOOOOOOE 02
— B - 1 + A

O.355OOOOOOOE 02
2. Obliczenie wyrażenia

- prostego
—SQRT(1O24)

O.32OOOOOOOOE 02
Uwaga. Argument funkcji może być liczbą całkowitą; w takim przy­

padku jest dokonywana konwersja automatyczna.
- złożonego

—C1 + 2)/(2. + 4.) + AL0GC10.)
0.2802585093® 02

3. Wyrażenia własne
—'1' X = X + 2

— X = 3
—:WYKONAJ 1

5
:WYKONAJ 1

7
itd.

Konwe rs acyjny minisystem.«._______ _ 71

4. Funkcje własne
—’SC(X)' SIN(X)/COS<X)

-•—TAN(1 ,2)
0.2572151622E 01

—SC(1.2) + 1
0.3572151622E 01

itp.
Uwaga. Słowo dyrektywy można podawać w postaci skróconej, np.

2
8DRUK FUN

3.1.2. Komunikaty

1. BŁĄD NADMIARU
2. BRAK OPERATORA
3. BRAK LICZBY
4. ZA DUŻA LICZBA
5. NIEPOPRAWNA POSTAĆ WYKŁADNIKA LICZBY
6. ZLE UŻYTY OPERATOR, OGRANICZNIK LUB NAWIAS
7. BRAK NAWIASU OTWIERAJĄCEGO
8. BRAK NAWIASU ZAMYKAJĄCEGO
9. NIEPOPRAWNA POSTAĆ FUNKCJI
10. NIEROZPOZNANA FUNKCJA
11. NIEPOPRAWNY ARGUMENT FUNKCJI ALSG.A X,SQRT
12. NIEPOPRAWNY ARGUMENT FUNKCJI ASIN, ACOS
13. BRAK WYRAŻENIA
14. BRAK FUNKCJI
15. WYRAŻENIE nr ZOSTAŁO ZDEFINIOWANE
16. FUNKCJA fun ZOSTAŁA ZDEFINIOWANA
17. NIEPOPRAWNY NUMER WYRAŻENIA

3.2. Możliwości wykorzystania

Minisystem PT78 jest z założenia programem konwersacyjnym, dosto­
sowanym do pracy w systemach wielodostępnych. Uruchomienie i wstępna
eksploatacja była przeprowadzona w systemie Minimcp. PT78 może być im­
plementowany w Innych systemach wielodostępnych, pracujących na maszy­
nach serii Odra 1300, jak np. Georg 3 itp. Można także wykorzystywać
program PT78 do pracy wsadowej i to bez jakichkolwiek zmian. Tak sze­
rokie możliwości wykorzystania minisystemu zostały osiągnięte dzięki
odpowiednio zorganizowanej strukturze danych i gospodarce pamięcią.
Minisystem zawiera wszystkie niezbędne obszary (tablice) do przecho­
wywania przetwarzanych wyrażeń oraz własną bibliotekę funkcji standar­

^2 Jerzy Pisarski, Lech Tuzinkiewicz

dowych, nie zachodzi więc konieczność korzystania z zasobów pamięci
zewnętrznych, których organizacja jest odmienna w różnych systemach.

PP/o nie nastręcza praktycznie żadnych kłopotów podczas korzysta­
nia z systemu dzięki niewielkiej liczbie dyrektyw potrzebnych-do pracy
z systemem oraz standardowej postaci wyrażeń arytmetycznych, wzorowa­
nych na wyrażeniach języka Fortran. Ułatwia to znacznie pracę użytko­
wnikowi, mającemu podstawowe wiadomości z programowania w językach wyż­
szego poziomu.

Podczas pracy w trybie wsadowym można używać gotowych kart perfo­
rowanych z zapisem wyrażeń arytmetycznych, stosowanych w programach
Fortranowskich. Ograniczeniem jest tu brak wierszy kontynuacyjnych.

Udogodnieniem w każdym reżimie pracy jest możliwość przechowywa­
nia, a następnie wykorzystania (w dalszych zdaniach} wcześniej obliczo­
nych wielkości, przechowywanych w odpowiednich tablicach (patrz pkt
2.4) oraz definiowanie wyrażeń i funkcji własnych. Daje to możliwość
pisania miniprogramów, realizujących proste algorytmy obliczeniowe.

4. PROPOZYCJE MODYFIKACJI SYSTEMU

Propozycje, które zostaną przedstawione mają na celu zasygnalizo­
wanie użytkownikom możliwości dokonywania zmian, które doprowadzą do
znacznego rozszerzenia zakresu zastosowania minisystemu.

1. Rozbudowa biblioteki funkcji standardowych przez dołączanie
funkcji języków wyższego poziomu.

2. Dołączenie funkcji wieloargumentowych (forma podobna do reali­
zacji segmentów SUBROUTINE języka Fortran).

3. Przechowywanie (składowanie) i wykonywanie ciągu wyrażeń, co
umożliwi budowę programów własnych.

4. Zastosowanie wielokrotnej instrukcji podstawienia.
5. Zwiększenie dokładności obliczeń (liczby podwójnej dokładności).
6. Inne formy wyniku, np. postać ułamkowa liczby.
7. Dokładniejsza diagnostyka podczas wykonywania działań - tzw.

śledzenie obliczeń.
Naturalnie system można też rozbudowywać w innych kierunkach w za­

leżności od warunków eksploatacyjnych oraz potrzeb użytkownika. Za je­
go rozbudową przemawiają następujące argumenty:

- prostota obsługi i łatwość eksploatacji (jak dla typowego kal­
kulatora),

- standardowa postać wyrażeń,
- zadowalająca dokładność (10 cyfr znaczących),
- czytelna postać wydruków oraz dokładna informacja o błędach.

Konwersacyjny minisystem... 22

LITERATURA

FljKużniarz L. .Pisarski J.,Rychlikowski
E.,Tuzinkiewicz L., System KONFORT. Założenia projek­
towe i opis ogólny, Raporty Centrum Obliczeniowego IWr. nr 105,Wro­
cław 1977.

C2j Battek J.,Rudakowa B., R u d a k B., System o-
peracyjny MINIMOP, Wrocław 1975, Wyd. TWr.

DJ Turski W., Podstawy użytkowania maszyn cyfrowych w ośrodkach
naukowo-technicznych, Warszawa 1973« PWN.

F4] L e b a d e v V.N., Vvedenie v sistemy programirovanija, Moskva
1975, Statistika.

Praca wpłynęła do Redakcji 10.12.1978 r
Po poprawieniu 19.02.1980 r

CONYERSATIONAL MINISISTEM OF ARITHMETICAL EXPRESSION PT78

The need of constructing a "calculator" for computing simple a-
rithmetical expressions arose in the course of realization of the
KONFORT system. It constituted the basis for the presented minisystem
for arithmetical expression computing. Short description of both the
concepts and the data referring to the practical version presented by
the authors of the Wrocław Technical University Computer Center is in-
cluded.

Yerified by R. Wiernik

MAJIOrOBAH ^™^CMCTEMA APM^METMHECKffi BHPAKEHUi! HT78

Upił peajiMsamiM cucTeMu KOHOOPT B03HHKJia noTpeÓHocTŁ b cosjiaHifH
"yoTpoftCTBa" am PHBHCJieHM npocTM apn$MeTMHecKM BnpaxeHMft. 3to
cTajio ocHOBanneM am M3JioxeHHoJł HMe MMHMCMCTeMH peuieHHH apu^eTHnec.-
km BHpajKeHMffi. KpaTKo onKcaHH KOHuenmiH u paraue, KacawiecH npaKTM-
lecKoft sepcira, nsroTOBjieHHo^ aBTopam b BiraicjniTejibHOM iieHTpe Bpop-
jiaBCKoro TexHMHecKoro yHżiBepcnTeTa.

IIpoBepiM Uecjias UlTyKOBCKM

Prace Naukowe Centrum Obliczeniowego
Nr 1 Politechniki Wrocławskiej Nr 1
Studia i Materiały Nr 1 1980

System informatyczny, baza
danych, wyprowadzanie informacji

Zbigniew SZPUNAR*1

Metoda generacji dokumentów
w procesie wyprowadzania informacji

z baz danych systemów informatycznych

Opisana w pracy metoda generacji dokumentów umożliwia wyprowadza­
nie informacji wyszukiwanych w bazie danych w formie tabelarycz­
nych dokumentów. Postać tych dokumentów jest dostosowywana do
treści wyprowadzonej informacji. Metoda może być stosowana w dia­
logowych procedurach obsługi baz danych.

-i. wstęp

Wyszukiwanie i wyprowadzanie informacji ze zbiorów informacji w
pamięci zewnętrznej maszyny cyfrowej jest jedną z najistotniejszych
funkcji systemów zarządzania basami danych, decydującą przede wszyst­
kim o ich użyteczności. Operacje te są realizowane zazwyczaj przez zes­
pół procedur programowych, wykorzystujących zdefiniowany dla danego
systemu język manipulacji danymi, za pomocą którego określa się zespół
żądań użytkownika dotyczących cech wyszukiwanej informacji [13• Spre­
cyzowanie takiego żądania powoduje zazwyczaj wyprowadzenie określonych
treści w pewnym stałym formacie, w niezmiennym układzie graficznym.

Możność wpływania za pomocą zewnętrznego języka na zawartość i
układ graficzny dokumentu grupującego wyszukaną informację wydaje się
problemem szczególnie istotnym w systemach dialogowych, gdzie nierzad­
ko selektywny wybór treści do wyprowadzenia decyduje nie tylko o przej­
rzystości dokumentu, lecz również o szybkości uzyskania 'odpowiedzi

Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wys­
piańskiego 27, 50-570 Wrocław

76 Zbigniew Szpunar

[3, 5]. Sytuacja taka występuje np. w informatycznych systemach obsłu­
gi dydaktyki.

W niniejszej pracy podjęto próbę przedstawienia metody, która nie
określając sposobu przeglądania zbioru w procesie wyszukiwania infor­
macji, rozwija elementy parametryzacji i automatyzacji edycji dokumen­
tów. Przedstawiono próbę formalnego opisu modelu systemu edycji doku­
mentów o zadanej postaci graficznej oraz podano odpowiednią metodę,któ­
re. została z powodzeniem zastosowana i przetestowana w procedurach pro­
gramowych informatycznego systemu Obsługi Procesu Nauczania DIALOS/MLK,
zbudowanego w Centrum Obliczeniowym Politechniki Wrocławskiej.

2. SFORifUŁCWANIE PROBLEMU

Dany jest zbiór 2 informacji, zapisanych w e rekordach logicz-
*1 P « inych jednego typu z , z , z . Każdy z rekordów z, i sl, 2, a

zawiera n danych elementarnych r^1, j = 1, 2, ..., n

= <Vj’

gdzie jest nazwą
treścią informacji.

(1)

Dana elementarna jest parą uporządkowaną

(2)

danej elementarnej, w i
j jest jej wartością,tzn.

Przez R.j oznaczymy zbiór danych elementarnych o tej samej naz-
wie v-, znajdujących się we wszystkich rekordach J

„1 O2
2 I Z z8

- w O)

Przyjmujemy, że dany jest system wyszukiwania informacji, który
pozwala wybrać ze zbioru Z informacje żądane przez użytkownika. W
pracy tej zajmujemy się metodą wyprowadzania żądanych informacji w po­
staci tabelarycznego dokumentu o określanej oddzielnie postaci graficz­
nej.

Metoda generacji dokumentów... 22

3. PARAMETRYZACJA DOKUMENTU

W dokumencie zawierającym wyprowadzone informacje można wyróżnić
treść, składającą się z wyprowadzonych informacji oraz układ graficzny
dokumentu (formularz) organizujący tę treść i objaśniający ją w okreś­
lony sposób (np. w postaci oddzielonych kreskami wierszy lub kolumn o
dobranych odpowiednio nagłówkach). Postać formularza jest dostosowywa­
na zazwyczaj do treści, która ma zostać umieszczona w odpowiednich jego
rubrykach. Istnieje zatem potrzeba określenia maksymalnego formatu for­
mularza na podstawie znajomości cech treści do wyprowadzenia. Przyjmu­
jemy tu, że w celu wyprowadzenia wartości danych elementarnych, nale­
żących do R^, należy określić postać graficzną kolumny Club grupy koT
lumn) w formularzu, prsez podanie sformalizowanych opisów poszczegól­
nych, funkcjonalnie wyodrębnionych, fragmentów formularza tworzących
kolumnę. Takim fragmentem może być np. nagłówek o ustalonej treści, nr
kolumny, miejsce na umieszczenie treści informacji, linie oddzielające,
itp. Fragment formularza, mający swój własny opis, jest traktowany jako
najmniejsza, niepodzielna część dokumentu i jest nazywany w dalszej
części modułem elementarnym formularza. W ogólnym przypadku moduł ele­
mentarny może zawierać fragmenty wielu wierszy dokumentu.

Formularz dokumentu, w swym maksymalnym formacie powinien zawierać
co najmniej tyle kolumn (lub grup kolumn), ile grup danych R^ zawie­
ra zbiór informacji Z. W celu określenia postaci graficznej dokumentu
wprowadza się zbiór F opisów modułów elementarnych, wchodzących w
skład formularza. Zbiorowi temu nadaje się pewną strukturę, grupując
w podzbiory F

...... fkmb f4)
opisy modułów elementarnych f^, i = 1, 2, ..., m, tworzących kolejne
kolumny Club grupy kolumn), z których każda jest przeznaczona do przed­
stawienia informacji należących do grupy danych Rfc, k = 1, 2, ..., n.
Zbiór modułów elementarnych, opisanych za pomocą podzbioru F^, nazywa­
my modułem pionowym dokumentu. Wartość m określa liczbę modułów ele­
mentarnych, wyodrębnionych w pojedynczym module pionowym.

Za pomocą podzbiorów F^, można przedstawić zbiór F w postaci

? = U <5)
k=1

78 Zbigniew Szpunar

Moduły elementarne, tworzące układ graficzny dokumentu, można po­
dzielić na dwie klasy:

- moduły elementarne typu 0 - są to moduły o stałej postaci, nie
zawierające pól przeznaczonych do wyprowadzenia treści informacji (np.
linie oddzielające, nagłówki o stałej treści, symbole kolumn),

~ moduły elementarne typu 1 - są to moduły zawierające pola prze­
znaczone do wyprowadzenia treści informacji.

Znajomość typów modułów elementarnych ułatwia interpretację opi­
sów zawartych w zbiorze F. W tym celu wprowadza się zbiór P, którego
elementy p^1 odpowiadają elementom f E F i wyrażają typy modułów,
opisanych za pomocą elementów f^. Podobnie jak w zbiorze F, w zbio­
rze P można wydzielić podzbiory P^

— f 1 2 i mlFk = [5k ’ pk ’ ’* *’ pk ’ *"*’ pk j ’ 6

określające typy poszczególnych elementów k-tego modułu pionowego do­
kumentu, opisanego za pomocą elementów zbioru F^. Za pomocą podzbiorów
P^ można przedstawić zbiór P jako

P = U pk
k=1

(7)

W redagowanym dokumencie, oprócz modułów pionowych z treścią in­
formacji, mogą wystąpić moduły pionowe o charakterze pomocniczym, nie
zawierające wartości grup danych (np. pionowe linie, Identyfikatory
wierszy, itp.). Takie moduły pionowe składają się wyłącznie z modułów
elementarnych typu O.

Opisy poszczególnych modułów elementarnych f^1E F^, tworzą opis
i-tego wiersza (lub i-tej grupy wierszy) w redagowanym dokumencie. Ko­
lejne wiersza (lub ich grupy) są tworzone na podstawie podzbiorów opi­
sów F^c F,

F1 = [f11, fg1............f^, ..., f^J (8)

i zawierają w ogólnym przypadku moduły elementarne różnych typów. Two­
rzą one kolejne moduły poziomy dokumentu. Należy podkreślić, że o wza­
jemnej kolejności kolumn w dokumencie decyduje porządek występowania
opisów modułów elementarnych w zbiorze F^".

Aby określić liczbę wierszy w dokumencie, wprowadza się zbiór G

G = [g , g, g , g (9)

Metoda generacji dokumentów.«. n
którego elementy są liczbami wierszy w kolejnych,i-tych modułach
poziomych, opisanych za pomocą podzbiorów F1. Wartości elementów g1,
odpowiadające modułom poziomym, złożonym wyłącznie z modułów elementar­
nych typu 0, muszą być z góry określone. W odniesieniu do modułów pozio­
mych, zawierających moduły elementarne typu 1,wartości wCg1^ elementów

są określane podczas tworzenia dokumentu na podstawie bieżących in­
formacji o liczbie rekordów z treścią do wyprowadzenia. Przy założeniu,
że treść pojedynczego rekordu ze zbioru informacji jest wyprowadzana w
jednym wierszu dokumentu i zbiór informacji Z zawiera n rekordów,
wartości elementów g^, odpowiadających modułom poziomym typu 1 muszą
spełnić warunek

---------------- -j

X -J wCg1) = n . (10)
i£ {l,2,...,m}

Opisana metoda nie narzuca sposobu określania wartości wymienio­
nych elementów w zależności od n, pozostawiając określenie "pio­
nowych" rozmiarów poszczególnych modułów poziomych dokumentu potrzebom
użytkownika.

Zbiory F, P oraz G określają układ graficzny dokumentu o mak­
symalnym formacie "poziomym" oraz w sposób parametryczny opisują jego
format "pionowy".

4. FORMUŁOWANIE POLECEŃ UŻYTKOWNIKA

W omawianym procesie wyprowadzania informacji ze zbioru Z użyt­
kownik formułuje polecenie, zawierające dwa elementy:

- pytanie A służące do wydzielenia z Z pewnego podzbioru Z*,
zawierającego odpowiedź na pytanie,

- żądanie B, określające postać formularza tabelarycznego doku­
mentu.

Pytanie A ma postać koniunkcji warunków elementarnych

A = a^ A A ... A aj^ A ... A a^ , p A n • (1-1)

Warunek
w którym ó .U

elementarny a., jest określony jako para a. =<5.,c.> , J ' J J V
jest relacją, zdefiniowaną w systemie wyszukiwania infor-

macji, i dotyczy wartości
nych r.^GR., c

U J
grupy danych R^

i£{l, 2 s] , danych elementar-
jest natomiast stałą. Relacją 6 ., w odniesieniu do U

zawierającej dane liczbowe, może byc np. relacja po-

80 Zbigniew Szpunar

równania wartości llczbcułych, w odniesieniu do grupy danych zawierają-
cej teksty - relacja
wiedzieć, że relacja
zł6 Z.

Podzbiór £ Z

porównania ciągów znaków, itp. Można również po-
6^ dotyczy j-tych danych elementarnych r^1S z1,

jest tworzony za pomocą systemu wyszukiwania in-
fortaacji i
go warunku
relacje

zawiera rekordy z1, ig {1, 2, ..., s], w których dla każde-
elementarnego a^, = 1,2, ..., p zachodzą jednocześnie

(12)

oznacza wartość danej elementarnej rj^g z1.gdzie w-jl
Żądanie B ma postać uporządkowanego zbioru

i » V1 »12 ij, ...» (13)

utworzonego z nazw
ij£{1,2,..., n}. Zbiór
kowanego podzbioru F*.

danych elementarnych ij-tych grup danych,
B służy do wydzielenia ze zbiox-u F uporząd-

F*
’1

Fi ’ x2
(14.)

% 6ók ’

4

którego kolejne elementy Fp
pionowych dokumentu (kolumn)

mają postać (4) i tworzą opisy modułów
przeznaczonych do przedstawienia infor-

macji należących do grup danych Ri^, j = 1, 2, ..., ą, wskazanych za
pomocą nazw vpj £ B. Kolejność elementów F^ podzbioru F* wyznacza
porządek występowania wybranych kolumn w dokumencie tabelarycznym. 0-

Ir
pisy poszczególnych modułów elementarnych fi^gFi^ tworzą opis k-tego
wiersza (lub k-tej grupy wierszy) w dokumencie. Kolejne wiersze (lub

♦ kich grupy) są tworzone na podstawie podzbiorów opisów F

F*k k p k
ii’

c F*. k = 1, 2, ..., m. (15)
4

5. OPIS METODY

Zastosowanie metody automatycznego generowania tabelarycznego do­
kumentu wymaga wcześniejszego określenia zbioru informacji Z oraz
zbiorów F, P i G. Zbiory te wyznaczają klasę dokumentów, które mogą
zostać utworzone na polecenie użytkownika.

Metoda generacji dokumentów,. t.81

W celu wygenerowania dokumentu, przedstawiającego wybraną infor­
mację w określonym przez użytkownika układzie graficznym, należy wyko­
nać następujące czynności:
1° Wczytać pytanie A = aj^ A a^A .. .A aj . Wykorzystując posiadany

system wyszukiwania informacji utworzy? podzbiór Z*S Z. Jeśli zbiór

Z* jest pusty - wyprowadzić komunikat o braku odpowiednich infor­
macji w Z, przejść do 9°. W przeciwnym przypadku wczytać żądanie

. Na podstawie elementów
t = 1, 2, q utworzyć podzbiór F*£F. Przejść do utworzenia
pierwszego modułu poziomego, występującego w dokumencie (k-»—1).

o * Ic2 Na podstawie zbioru F utworzyć podzbiór F* <= F*. Przejść do dru­
kowania pierwszego wiersze (j»-1) w k-tym module poziomym dokumentu.

3° Zbudować opis j-tego wiersza w k-tym module poziomym na podstawie
F*k.

4° Jeśli pŁk = O dla każdego 16 ^1^, ig, ..., i - przejść do pktu
5°. W przeciwnym wypadku przejść do pktu 6°.

5° Utworzyć wiersz dokumentu na podstawie opisu zbudowanego dla j-tego
wiersza w k-tym module poziomym. Przejść do pktu 7°.

6° Pobrać ze zbioru Z* pierwszy dostępny rekord z1. Na podstawie B
“1 d f 'I *1 d *1 •» *1

oraz z zbudować rekord x = rig» rit’ •••» ri]-
taki, że r^ = <vit, *1^, t = 2, ••• Utworzyć wiersz do­
kumentu na podstawie wartości wj! kolejnych danych elementarnych

"I d *
r< x na podstawie opisu utworzonego dla j-tego wiersza w k-tym V z Z]
module poziomym.. Usunąć rekord z ze zbioru Z* ęz*—-Z,’\z).

7° Jeśli j-ty wiersz był ostatnim wierszem w k-tym module poziomym
(tzn. jeśli j = gk 6 G) - przejść do pktu 8°. W przeciwnym przypad­
ku: j—-j+1, przejść do pktu 3°.

8° Jeśli k-ty moduł poziomy był ostatnim modułem dokumentu - przejść
do pktu 9°. ® przeciwnym wypadku: k—k+1, przejść do pktu 2°.

9° Koniec drukowania tabelarycznego dokumentu.

6. PRZYKŁAD DZIAŁANIA METODY

Aby zilustrować metodę opracowano podany niżej przykład.
Zbiór informacji Z zawiera s rekordów. Każdy rekord ma 4 dane

elementarne r^ =<v. , w^^ o następującej strukturze:
r^ = : SYMBOL, w,": "tekst 8-znakowy"^>,
tg^ =<v2: NUMER, Wg^: "liczba naturalna z przedziału [1, 99999]">,

= <v^: NAZWA, w,^: "tekst 24-znakowy"J>,
r^ = <v^s CENA, w^J: "liczba rzeczywista z przedziału [O, 1O$]
j = ^ « 2 , ..., s.

82 Zbigniew Szpunar

5
F^

F3

F2 13Fi

SYM90L NUMER NAZWA CENA

V777777A
('ZZZZZ
V/7/A

\zmznj2Lm
IZJ21LLLLL7j2

F^

\7777X X777777777777777//77m LLLLLUILLUA

Rys.1. Założony w przykładzie maksymalny układ graficzny dokumentu f za-
kreskowane pola przeznaczone są do wyprowadzenia treści informacji)

Fig.1. Maximum graphica.1 layout of a document assutaed In the esample
(dashed area is designed to contain the information extracted)

Niech założony, maksymalny
jak przedstawiono na rysunku 1.

układ graficzny dokumentu będzie taki.
Dokonujemy podziału dokumentu na modu­

ły pionowe oraz poziome (rys.1). Budujemy
elementów f6 F w języku programowania
w tabeli '1.

zbiory F, P oraz G. Postacie
Fortran 1900 przedstawiono

Tabela 1

f 6 FPostacie elementów

3- \
1 2 3 4 5

i mdH-') 8(1H-) 27(1H-) 17(1H-) ■1H-
2 11H! SYMBOL 8H! NUMER 1H!,10X,5HNAZWA,11X 1H!,6X,4HCENA,6X 1H!
3 1H! .10C1H-) 1E!S7!?.H-) 1H!,26(1H-) 1H!,16(1H-) 1H!
4 2Hi,A8,1S 1H!,K,1X 2H!, 3A8JY 1H1,E15.6„1X 1H!
5 11 (1H-) 8(1 H-) 27(1H-) 170H-) 1H-

Zbiór P ma postać:
pll ~ Of p2~ ~ °’ = °» p4p ~ °* P% = °’
p< = O, p/ - O, p^ = O, p/ = O, p^ = O,
p.3 = O, Pp3 = O, p,3 = O, p 3 = O, p53 = O,

Zł *"Zł -'Zł ^zł •✓Zł
Pl^ - 11 P2- = 1’ P3c = 1’ P4c = 1» p5r = °’
P-] — O, pg ~ O, pj — O, = O, p^ ~

Zbiór G ma postać:
K-j — 1 » Sg ~ 1» ~ s g/j, = i* j Sc, = 3 ,
gdzie r ma przyjąć wartość równą liczbie rekordów w zbiorze Z*.

 Metoda generacji dokumentów... 85

1° Pytanie A = a^ A a4, gdzie
a^ =<5^; "c^ identyczne z w^^", ci! MERCEDESA,

a4 =<S4; "c4 c4: 15OOOOO> , j = 1, 2, ..., s.
Niech utworzony zbiór Z* zawiera 7 rekordów. Zbiór G przyjmuje

więc postać: G = (1, 'I, 1, 7, i}.
Żądanie B = (NAZWA, SYMBOL, CENA} = {v?, , v4}. Postacie ele­

mentów f .A £ P*c p przedstawiono w tabeli 2. Elementy fc € F,ie u 2
= 1, 2, ..., 5 tworzą moduł pionowy o charakterze pomocniczym, jakim
jest linia pionowa.

Tabele 2
Postacie elementów fAcP*G p

U

i \ 5 1 4 5

1 27(1H-) II(IH-) 17(1H-) 1H!
2 W ,-1OX,5HNAZWA,11X 11H! SYMBOL 1H!,6X,4HCENA,6X 1H!
3 1H!,26C1H/) 1HJ ,1O(1H-) 1H! ,160H-) 1H!
4 2HI ,3A8,1X 2H! ,A8,1X 1H!,E15.6,1X 1H!
5 270H-) II(IF-) 170H-) 1H-

Przechodzimy do utworzenia pierwszego modułu poziomego, występu­
jącego w dokumencie (k—— 1).
2° P’1 c — 27(1H-), -* 11(1E-)

— 17 (i h~) , f 51 — i a-]
Przejść do drukowania pierwszego wiersza dokumentu (j— 1 j w '1.

module poziomym.
5° Opis i. wiersza w 1. module ma postać:

(IX, 27(1 H~) ,11(1H-) ,170H-) ,1H~) .
4° Warunek p^ = 0 jest spełniony dla każdego is{j,1,4,5}.
5° Wydrukować wiersz (na rys.2 oznaczony numerem 1).
7° Warunek j = g^ 6 G jest spełniony.
8° Pierwszy moduł poziomy nie był ostatnim modułem poziomym dokumentu,

więc k-«- k+1 i powrót do pktu 2°.
2° F*2 = { f 2—1H! ,1OX,5HNAZWA,11X, f.2—11H! SYMBOL,

o Pi
f4 — 1H! ,6X,4HCENA,6X, — 1H!]

Przejść do drukowania pierwszego wiersza dokumentu (j—1) w 2.
module poziomym, itd.

Po wydrukowaniu wierszy o numerach 1, 2 i J (rys.2), k-»~4 i ko­
lejny powrót do pktu 2°.
2° F** = {f^4—2H’ ,5A8,1X, f^4—2H! ,A8,1X,

f44—111!,El5.6,IX, f54—1H!]

34 Zbigniew Szpunar..

Przejść do drukowania pierwszego wiersza dokumentu (3-“— 1) w 4.
module poziomym..
3° Opis 1. wiersza w 4. module poziomym ma postać:

(1X,2H! ,3A8,1X,2H! ,A8,1X,1H! ,E15.7,1X,1H!)
4° Warunek p^ = 0 dla i 6(3, 1, 4, 5] nie jest spełniony.
6° Niech z1£ Z* ma postać:

r11 =<SYMBOL,MERCEDES>

r21 =< NUMER, ?931>

r^1 = < NAZWA, KABRIOLET 280 SEL (1977)>

rJ = <CENA,1200000>
*T ,ł -1 A -1

Rekord x = [r^ , r^ , r^ j. Wydrukować wiersz Cna rys.2 oznaczo­
ny numerem 4). Usunąć rekord z^ ze zbioru Z*.
7° Warunek j = g4 6 G nie jest spełniony, j-^2 i powrót do pktu 3°.
3° Opis 2. wiersza w 4. module poziomym ma postać identyczną jak po­

przednio.
4° Warunek p^ = O dla i 6 {3, 1, 4, 5} nie jest spełniony. Powtarza­

jąc czynności 3, 4, 6, 7 drukujemy dalsze wiersze dokumentu (5r10
na rys.2), k— 5 i kolejny powrót do pktu 2°.

2° F*5 = 27(ih-), ^5— 11(1H-),

f45— 17(1H-), f55 — 1H-]

Przejść do drukowania pierwszego wiersza (j-«— 1) w 5. module po­
ziomym.
3° Opis 1. wiersza w 5« module ma postać:

(1X,27(1H-),11(1H—),17(1H—),1H-)
4° Warunek p^ - o jest spełniony dla każdego 12 [3, 1, 4, 5].
5° Wydrukować wiersz (na rys.2 oznaczony numerem 11).
7° Warunek j = g^ 6 G jest spełniony.
8° Piąty moduł poziomy był ostatnim modułem poziomym dokumentu.
9° Koniec drukowania dokumentu (rys.2).

NAZWA SYMBOL CENA

KABRIOLET 280 SEL (1977) MERCEDES 0.120000E 07
1_______________________________ 1

i-- 1

1_______________________________ i

1_______________________________ 1

1
2
3

6
7
8
9
W
11

Rys.2. Utworzony w przykładzie tabelaryczny dokument
Fig.2. Tabulated document generated in the example

Metoda generacji dokumentów.. . 85

7. UWAGI KOŃCOWE

Przedstawiona metoda może być wykorzysiana w wersji programowej
jako uniwersalna procedura wyprowadzania informacji z baz danych sys­
temów informatycznych. Wówczas zbiory Z, F, P oraz G są wprowadza­
ne jako dane parametryczne procedury, wyznaczając klasę dokumentów,
jakie można uzyskać w dowolnym momencie procesu przetwarzania. Zmiana
treści zbiorów Z, F, P oraz G może być dokonywana praktycznie w
dowolnym memencie na życzenie użytkownika i nie wymaga naruszania
struktury programu.

Opisana metoda została zastosowana w konwereacyjnych procedurach
wyprowadzania informacji z bazy danych informatycznego systemu Obsługi
Procesu Nauczania DIALOS/MLK, eksploatowanych w trybie konwersacyjnym
pod kontrolą systemów Georga 3 i Minimop. Aby ułatwić obsługę procedu­
ry, zdefiniowano prosty język komunikacji użytkownika z systemem, umoż­
liwiający wygodne wprowadzanie poleceń.

Możliwość wpływania na rozmiar "poziomy" dokumentu (długość posz­
czególnych wierszy) okazała się bardzo istotna - zwłaszcza ze względu
na szybkość uzyskiwania informacji, pozwala ona na znaczne skrócenie
czasu przetwarzania.,

Istotną zaletą stosowania opisów f^ € F wydzielonych fragmen­

tów dokumentu (modułów elementarnych) jest możliwość dokonywania de­
kompozycji, uwzględniającej powtarzalność opisów wyodrębnionych modu­
łów, co umożliwia minimalizację zajętości pamięci niezbęcnej do prze­
chowywania zbioru opisów F.

Eksploatacja procedury programowej, wykorzystującej opisaną meto­
dę, umożliwia uzyskanie dokumentów zawierających treść tylko żądanych
informacji, co czyni wydruki bardziej czytelnymi i komunikatywnymi.
Jest to również ważne wówczas, gdy chodzi o celowe pomijanie w doku­
mencie pewnych danych, zawartych w rekordach zawierających odpowiedź
na pytanie użytkownika.

LITERATURA

[1j C a g a n C., Data Management System, Los Angeles 197.5, Melwille
' Publishing Company.

[21 J u d d D.R., Use of Files, London and American Elsewier Inc.,
' New York 1973.

[31 Martin J., Dialog człowieka z maszyną cyfrową,Warszawa 1976,
' WNT.

86 Zbigniew Sapmar

[4] Sproś Is R.C., Management Data Bases, Santa Barbara 1978,
Wiley/Hamilton.

[5j Y o u r d o n K,, Projektowanie systemów o działaniu bezpośred­
nim, Warszawa 1976, WNT.

Praca wpłynęła do Redakcji 10.12.1978 r.
Po poprawieniu 19.02.1980 r.

DOCUMENT GENERATION METHOD FOR USE IN THE PROCESS OF DATA KZTRACTION
FROM DATA BASES

A method of automatic generation of documents during Information
extraction from data base of information retrieval Systems, as well
as formal description of information output module is presented. This
method makes it possible to extract selected data groups, as well as
their representation in the form of tabulated documents having separa-
tly specified graphical layout. The method oan be applied in the con-
versational procedures of informatic system data base servicing.

Yerified by R. Wiernik

MEW FEHEPHPOBAHi-iH ^OKTMEHTOB B UPOUECCE BbIBOM Jffi^OPMAW
MS BAS AAHHbtt MHFOPMATMHECKKK CMCTEM

b paóoTe npencTasjieH MeTOB aBTOMaTH^ecKoro pe^aKTnpoBaHiiH noity-
M9HTOB B npopecce BHBOBa MH$OpMam™ M3 (5a3 ,HaHHHX HH$OpMaTKHeCKHX cuc-
T3M. npwBojmTCH Tarate $opMaKBHoe onwcanne Moayjia BHBOna MH^opMamm.
OmicaHHMił mstob aaeT bosmojkhoctb BHBOBa 3Ha^eHMił M3ÓpaHHHx rpyn
BaHHHx h npejjCTaBJieHUH ax B BMjie TaOyjmpoBaHHHX AOKyMeHTOB. Bmb stm
BOKyweHTOB, npucnocoÓJieHHHił k conepKaHHio bhbobhmhx b8hhhx, oapeaejiHeT-
ch OTBeJiBHo. MeTOA MoateT HaftTM npMMeHeHue b jj«aAoroBHX apopexypax
oicjiyoBaHM óas B,aHHax MH$opMaTM’iecKMx cncTew.

Hpoiepnji ^ecjiaB BlTyKOBCKM

Bank account number: NBP, VIII OM Nr 1550-6-81574 Warszawa/Poland
Wydawnictwa Politechniki Wrocławskiej

ma stale na składzie Księgarnia Wr 49
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

oraa Wojewódzka Księgarnia Techniczna
ul. Świdnicka 8, 50-067 Wrocław

Raport dostępności

		Nazwa pliku:

		PN_PWr_CO_01_SM_01_1980.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

