
Prace Naukowe Centrum Obliczeniowego
Politechniki Wrocławskiej

Seria: Studia i Materiały

PRACE NAUKOWE POLITECHNIKI WROCŁAWSKIEJ
Scientific Papers of the Computer Centre

No. 6 of the Technical University of Wrocław No. 6

Studies and Research No. 3 1989

The SKJS2 Computer Networks

Prace Naukowe Centrum Obliczeniowego
Politechniki Wrocławskiej 6
Seria:
Studia i Materiały

Sieci komputerowe Jednolitego
Systemu

Wydawnictwo Politechniki Wrocławskiej • Wrocław 1989

Recenzenci
Andrzej BABORSKI
Tadeusz BATYCKI

Redaktor naukowy
Witold KOMOROWSKI

Opracowanie redakcyjne
Maria KOPEĆ

Korekta
Janina GOWIN

© Copyright by Wydawnictwo Politechniki Wrocławskiej, Wrocław 1989

WYDAWNICTWO POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

ISSN 0860-1623

Nakład 200 + 75 egz. Ark. wyd. 7,25. Ark. druk. 6‘/4. Papier offset, kl. IV, 70 g, BI.
Oddano do druku w sierpniu 1989 r. Druk ukończono w październiku 1989 r.
Zakład Graficzny Politechniki Wrocławskiej. Zam. nr 1199 89. Cena zł 440,-

PRZEDMOWA

Prace nad sieciami komputerowymi w Polsce, aczkolwiek z wielo­
letnim opóźnieniem, zostały podjęte w wielu ośrodkach uczelnianych i
przemysłowych, między innymi w ramach problemów resortowych Minister­

stwa Nauki i Szkolnictwa Wyższego, Ministerstwa Hutnictwa i Przemysłu
Maszynowego oraz Ministerstwa Łączności.

Prace nad budowę rozległych sieci komputerowych, zapoczątkowane
w roku 1978 w Politechnice Wrocławskiej, przyniosły liczne konkretne
rozwiązania dotyczące sprzętu i programu. Eksperymentalnie eksploato­
wana Międzyuczelniana Sieć Komputerowa MSK połączyła w 1984 roku
trzy ośrodki naukowe. Jest to sieć heterogeniczna, łącząca komputery
ODRA i Jednolitego Systemu w jedną całość poprzez podsieć komutacji
pakietów.

VJ 1986 roku Politechnika Wrocławska we współpracy z Instytutem
Komputerowych Systemów Automatyki i Pomiarów, opracowała bazowe opro­

gramowanie sieci komputerowej maszyn Jednolitego Systemu SKJS2 wer­
sja 1 . Jest to sieć homogeniczna.

Cechą charakterystyczną procesu budowy i późniejszej eksploatacji
sieci komputerowej staje się duża złożoność pojawiających się proble­
mów. Zakres rozwiązywanych zagadnień nie ogranicza się wyłącznie do
spraw technicznych, lecz obejmuje także problemy organizacyjne, praw­

ne i ekonomiczne.
W oddawanym do rąk Czytelnika niniejszym zeszycie przedstawiono

wybrane zagadnienia tworzenia bazowego oprogramowania sieci SKJS2 wer­

sja 1.
Na niniejszy zeszyt składa się 8 artykułów. W pierwszej pracy

przedstawiono w zarysie strukturę sieci oraz wskazano zagadnienia
omówione w kolejnych pracach. L. Budzianowski, J. Wietrzych i A. Frys
omówili warstwową strukturę sieci. Szczegółowo zaprezentowali algorytm
wyboru drogi. A. Kaliś i A. Huzar przedstawili problemy tworzenia
oprogramowania sieciowego. M. Jacukowicz, A. Janiszewski i J. Kwiatko­
wski poświęcili swoją pracę dostępowi terminalowemu w sieci. 0. Żak

i J. Stańko omówili styki występujące w sieci. A. Huzar i A. Kaliś

4

zaprezentowali model synchronizacji procesów wykorzystywany w sieci,

na przykładzie stacji transferu zbiorów.
Uruchomienie sieci i jej testowanie to najważniejsze etapy two­

rzenia oprogramowania bazoweg. Narzędziem je wspomagającym jest apa­
ratura pomiarowo-diagnostyczna, którą przedstawił Z. Fryżlewicz.
Końcową pracę K. Dyrki, E. Rutkowskiego i P. Kremienowskiego poświę­
cono badaniom i pomiarom wybranych parametrów sieci.

Autorzy prac mają nadzieję, że zaprezentowany materiał przybli­
ży Czytelnikom zagadnienia związane z tworzeniem rozległej sieci kom­
puterowej , której przykładem jest sieć SKDS2 wersja 1.

Andrzej KALlS

Nr 6
Studia i Materiały

Prace Naukowe Centrum Obliczeniowego
Politechniki Wrocławskiej

IN?3
Nr 6
1989

Rozległa sieć komputerowa,
struktura, sprzęt,
o programowan ie

Andrzej HUZAR*
Andrzej KALIŚ*

SIEC KOMPUTEROWA JEDNOLITEGO SYSTEMU SKJS2 WERSJA 1

Praca zawiera podstawowe informacje o sieci komputerowej maszyn
cyfrowych jednolitego Systemu o nazwie SK0S2 wersja 1. Przedsta­
wiono konfigurację sprzętowy i architekturę logicznę sieci. Scha
rakteryzowano pracę podstawowych aplikacji sieciowych: podsyste­
mów TSO i SKOT oraz stacji transferu zbiorów

1, WSTĘP

Stopień rozpowszechnienia sieci komputerowych na świecie jest

tak znaczęcy, że w krajach wysoko rozwiniętych stały się one nieodłą­
cznym elementem środowiska pracy badawczej i naukowej. Chociaż sieci

sę nadal rozwijane i rośnie liczba ich użytkowników, to jednak liczba
sieci funkcjonujących w pełni użytkowym trybie jest cięgle dosyć

ograniczona [5]. 0 użytkowaniu sieci rozstrzygają koszty projektowa-
nia i budowy, a zwłaszcza eksploatacji. Sieci wcięż nie stanowię
jednorodnego, ostatecznie uformowanego obiektu, a raczej prze-

Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wyspiań­
skiego 27, 50-370 Wrocław.

6

ciwnie: ich rozwój ujawnia wciąż nowe problemy i różnorodne propozycje
ich rozwiązań. Wynika to przede wszystkim stąd, że gdy pokonano proble­
my techniczne umożliwiające budowanie sieci o praktycznie nieograniczo­

nej wielkości, wówczas pojawiły się problemy związane z brakiem stan­
dardów mówiących o ich architekturze logicznej. Na przykład w Europie
stosuje się około 10 standardów, w USA - 3, a w Japonii tylko 2 [9].
Dopełnieniem sytuacji jest fakt, że prace dotyczące określenia stan-
dartu prowadzone przez ISO (ang. International Standard Organization)

posuwają się znacznie wolniej niż to przewidywano jeszcze 2-3 lata

temu.
Świadomość, że sieci komputerowe będą w przyszłości stawać się

elementem światowego obiegu i przetwarzania informacji, zrodziła po­
trzebę nowego spojrzenia na różne systemy łączności. Stąd wyłoniła

się koncepcja ISDN <- Zintegrowanego Systemu Usług Komunikacyjnych -
i oparcie na takich systemach wszystkich nowo projektowanych sieci
komputerowych(wielomiliardowe nakłady finansowe w USA),..

Zasadnicze usługi, które są wykorzystywane w sieciach to transfer
zbiorów danych oraz różne formy poczty elektronicznej i dostępu ter­
minalowego. Przykładowo, Europejska Agencja Przestrzeni Kosmicznej udo­
stępnia przez sieci komputerowe ponad 80 banków danych, wśród nich
znane krajowym użytkownikom bazy takie, jak INSPEC, JSMEC, PASCAL,

Statystyki wskazują, że przeciętnie w ciągu godziny odwołuje się do
nich około 7000 użytkowników, w tym około 35% stanowią zapytania w

trybie konwersacyjnym.
W trakcie swego rozwoju wykształciły się wyraźnie trzy typy sieci

komputerowych: lokalne (instytucjonalne), krajowe i regionalne (roz­
ległe) oraz międzynarodowe. Z każdym z tych typów wiążą się różne

problemy techniczne, standaryzacyjne, organizacyjne i prawne. Pierwsze
bazują na prostej podsieci transmisji danych, pozostając całkowicie

w gestii użytkownika, natomiast pozostałe na podsieci transmisji da­
nych, stanowiących wydzielone systemy zarządzane przez poczty.

Niniejszy artykuł dotyczy sieci komputerowej Jednolitego Systemu,
nazwanej SKJS2 wersja 1. Jest to sieć pracująca wyłącznie na sprzęcie
produkowanym lub kompletowanym przez Zakłady Elektroniczne ELWRO we

■frocławiu. Najlepiej nadaje się ona do pracy w rozproszonych teryto­
rialnie przedsiębiorstwach posiadających kilka komputerów Jednolitego
Systemu.

7

2. SIEĆ KOMPUTEROWA SKJS2 WERSJA 1

W roku 1984 Centrum Obliczeniowe Politechniki Wrocławskiej roz­
poczęło realizację umowy na dostarczenie oprogramowania bazowego sie­

ci komputerowej maszyn Jednolitego Systemu. Zespoły wykonawcze pod­
jęły się tego złożonego zadania mimo trwania końcowych prac przy uru­
chamianiu sieci MSK (Międzyuczelniana Sieć Komputerowa). 0 ile pra­

ce nad siecią MSK w znacznym stopniu miały charakter badawczy i ekspe­
rymentalny oraz w swym zamierzeniu dopiero przygotowywały kadry spe­
cjalistów, o tyle sieć SKJS2 jest produktem handlowym. Sieć SKJS2

była już gotowa w końcu 1986 roku, czyli jej realizacja trwała około
3 lat, wliczając w ten okres koncepcję, projekt, kodowanie i testowa­

nie oprogramowania sieciowego. Oprogramowanie to jest oferowane przez
ELWRO-SERVICE , a wyniki prac opisano w raportach [1,2,3,4,7,8] i ar­
tykułach zamieszczonych w niniejszym zeszycie [10,11,12,13,14,15] .

2.1, Geneza projektu

Systemy komputerowe Jednolitego Systemu EC1032 oraz EC1034 ofe­
rują swoim użytkownikom oprogramowanie TELE JS szeroko rozpowszech­
nione w kraju i poza jego granicami. Umożliwia ono dostęp z terminali
do wybranych podsystemów, takich jak System Kontroli i Obsługi Termi­
nali (SKOT) i dalej do baz danych czy do podsystemu wielodostępnego
TSO. Terminale zdalne (podłączone do komputera czołowego EC8371.01)

obsługiwane są przez program emulacyjny (EP) umieszczony w tym kom­

puterze. Terminale lokalne, podłączone bezpośrednio do kanału kompu­

tera obliczeniowego, obsługiwane są na poziomie fizycznym metodą TCAM
lub BTAM (metody telekomunikacyjne). Podstawową wadą oprogramowania

TELE JS jest brak standardów jego wykorzystania. Dlatego, chociaż

jest możliwość łączenia się z terminala z różnymi aplikacjami, rzadko
się z tego korzysta (wygenerowanie takiego programu obsługi terminali

nie jest zresztą proste).

Idąc za przykładem firmy IBM, która rozpowszechniła swoją archi­
tekturę sieci SNA (niezgodnej z modelem ISO) tworząc własne sieci

komputerowe (np. EARN), polski przemysł komputerowy wystąpił z ini­

cjatywą zaprojektowania również własnej sieci komputerowej, zgodnej

z architekturą sieci otwartych.

2.2. Główne wymagania 1 ograniczenia

Przystępując do zaprojektowania sieci SKJS2 wersja 1 zamawiają­
cy przedstawił wymagania i założenia, które były następujące:

a) wymagania użytkowe

8

- zapewnić komunikację między dowolnym terminalem sieci a dowol­

nie wybraną aplikację sieciowę
- zapewnić łęczność między konsolami operatorskimi systemów auto­

nomicznych (komputerów obliczeniowych)

- zapewnić transfer zbiorów sekwencyjnych między dowolnymi kom­

puterami obliczeniowymi sieci,

b) wymagania projektowe

- umożliwić tworzenie dowolnej konfiguracji sieci
- umożliwić rozbudowę sieci o dodatkowe komputery obliczeniowe,

węzły i zasoby (aplikacje, terminale)

- zapewnić prostę organizację własnych systemów użytkowych
- zapewnić obsługę w sieci dosyć szerokiego wachlarza terminali,

c) wymagania dotyczęce sprzętu
- sprzęt wykorzystany do pracy w sieci musi być produkowany lub

kompletowany przez ZE ELWRO
- oprogramowanie dostarczane użytkownikom, pracujęce dotych­

czas pod systemem TELE OS (TSO, SKOT), powinno być dostępne w sieci,

d) wymagania eksploatacyjne

- zapewnić diagnozowanie stanów sieci
- zapewnić łagodzenie skutków awarii sprzętu
- zapewnić raportowanie i pomiary pracy sieci.

Jednocześnie założono, że terminale podłęczone do komputera czo­
łowego będę obsługiwane przez program NCP (ang. NetWork Control Pro­

gram) , co spowodowało konieczność wykorzystania telekomunikacyjnej

metody dostępu TCAMS.

2.3, Struktura sieci

Sieć komputerowa składa się ze środków transmisji danych, kom­
puterów i terminali. Ogólnę strukturę sieci przedstawiono na rys. 1.

Istotnę cechę tej sieci jest połęczenie w jednym komputerze EC8371.01
funkcji komputera czołowego i komputera węzła sieci. Każdy komputer
EC8371.01 umieszczony jest w niewielkiej odległości od komputera obli­
czeniowego (identycznie jak w TELE 3S). Dwa komputery EC8371.01 lub

większa ich liczba połęczone sę między sobę modemami i liniami tele­
fonicznymi.

W sieci można wykorzystywać następujęce komponenty sprzętowe:
a) komputery obliczeniowe OS z systemem OS/DS 5.01 MVT,
b) komputer czołowy i węzła EC8371.01,

9

Rys.l. Przykładowa struktura sieci SK3S2 wersja 1
Fig. 1. The sample structure of the SKOS2 v.1 computer network

c) terminale - stacja abonencka EC8575M, rodzina monitorów
ekranowych EC7900 (7910, 7914, 7915, 7917),

d) środki transmisji - dowolny terminal podłączony jest do

EC8371.01 jak dotychczas. EC8371.01 między sobą łączone są za pomocą
modemów EC8013 i czterodrutu (lub innych modemów pracujących z szyb­
kością do 9600 b/s) .

Cechą charakterystyczną struktury sprzętowej jest’to, że nie
różni się ona praktycznie od tej, jaką użytkownicy posiadają w kon­
figuracjach autonomicznych (potrzebna są tylko dodatkowe modemy i

linie między węzłami) .

2.4, Oprogramowanie sieci

System operacyjny OS/OS 5.01 MVT, telekomunikacyjna metoda do­
stępu TCAM5 oraz program sterujący NCP stanowią środowisko, w którym
umiejscowione jest oprogramowanie sieciowe. Prace w trybie sieciowym
zapewniają moduły programowe, do których należą:

a) Komputer obliczeniowy. Głównym modułem oprogramowania jest
moduł MŁOT (moduł łącznikowy obsługi transmisji), który steruje ter­

minalami oraz tworzy połączenia sieciowe, Moduł komunikuje się z
oprogramowaniem węzła w EC8371.01 przez wydzielony podkanał multiple­

kserowy i z programem MCP realizującym metodę dostępu TCAM5, która
obsługuje między innymi terminale na poziomie fizycznym [111. Pro­

gram MCP wygenerowany do użytku sieciowego stanowi medium, za pomocą
którego następuje przepływ komunikatów między programem MŁOT a apli­

kacjami sieciowymi i terminalami. Moduł MŁOT zakodowano w języku

10

Pascal 360. Aplikacje sieciowe to TSO, SKOT i Stacja Transferu Zbio­
rów (protokół NIFTP Blue Book).

b) Komputer czołowy i węzeł. Oprogramowanie składa się z dwóch

zasadniczych części: programu sterującego obsługę terminali na pozio­
mie fizycznym (nCp) oraz programu WEZEŁ. Program NCP współpracuje

przez wydzielony podkanał z programem MCP, a program WEZEŁ przez dru­
gi podkanał z programem MŁOT. Program WEZEŁ składa się ze stacji sie­
ciowej metody dostępu, stacji transportowej, sieciowej i operator­

skiej [101. Strukturę oprogramowania przedstawiono na rys. 2.

Komputer obliczeniowy Komputer czołowy

EC1032/EC1034/EC1055 EC8371.01

SKOT - system obsługi i kontroli terminali
STZ - stacja transferu zbiorów
TSO - time-sharing option

MŁOT - moduł łęcznikowy obsługi transmisji
NCP - network control program
MCP - message control program

Rys.2. Struktura oprogramowania sieci SK3S2 wersja 1
Fig.2. The SK0S2 v.l Computer network software structure

2.5. Charakterystyka użytkowa sieci

Całość sieci składa się ze sprzętu dostarczanego przez ZE ELWRO
we Wrocławiu. Oprócz modemów nie sę wymagane dodatkowe urzędzenia,
co stanowi jednę z zalet sieci [121.

Podstawowymi zasobami sieciowymi sę:
- System Kontroli i Obsługi Terminali (SKOT)

- podsystem wielodostępu (TSO)

- stacja transferu zbiorów

- prosta poczta elektronicza.
Inne aplikacje można utworzyć zgodnie ze specyficznymi potrzebami

użytkownika lub w wyniku dalszego rozwoju sieci przez producenta. Do­

11

stęp do tych zasobów jest możliwy z każdego terminala sieci. Połącze­
nie z wybraną aplikację następuje po wydaniu z terminala komendy
NETON z odpowiednimi parametrami, rozłączenie po wydaniu komendy
NETOFF. Po rozłączeniu można połączyć się ponownie z dowolną aplika­

cją. Usługi komunikacyjne są realizowane przez oprogramowanie siecio­
we i są niewidoczne dla użytkownika.

Operator konsoli operatorskiej, która jednocześnie pełni funkcję
konsoli sieciowej,ma możliwość prostego diagnozowania połączeń sie­

ciowych, badania ich liczby i stanu oraz może wymieniać informacje
z operatorem innego komputera obliczeniowego sieci.

2.6. Otrzymane wyniki

Całość bazowego oprogramowania sieci została przetestowana na

konfiguracji składającej się z trzech zestawów maszynowych [14]. Pod­
czas pracy terminalowej nie odczuwa się czy współpracuje się z aplika­
cją lokalnego czy zdalnego komputera obliczeniowego (praktycznie nie
odczuwa się opóźnień czasowych [16]).

Krótka charakterystyka pracy z aplikacjami sieciowymi:

a) TSO - wprowadzone zmiany umożliwiają pracę dupleksową, co

wpływa na przyspieszenie wprowadzania danych z terminala, możliwe jest
w każdej chwili wysłanie sygnału przerwania; uzyskano też nowe możli­
wości pracy ze standardowym edytorem TSO - po wyświetleniu na ekranie
tekstu numerowanego można dokonać zmian we wszystkich liniach i prze­
słać poprawiony tekst do edytora przyciskając jeden klawisz [6r 12];

b) SKOT - pracuje tak samo jak dotychczas (niedawno w ramach

prac własnych uruchomiono w sieci SK0S2 wersja 1 pod systemem SKOT
system wyszukiwania danych bibliograficznych ISIS - istnieje zatem
możliwość korzystania z baz danych; baza używana w Politechnice zawie­

ra wszystkie skatalogowane przez Bibliotekę Główną pozycje zwarte ;

c) STZ - jest jedyną aplikacją sieciową utworzoną od podstaw z
myślą o pracy sieciowej; umożliwia ona przesyłanie dowolnych zbiorów
sekwencyjnych (po rozładowaniu można przesyłać zbiory biblioteczne i
indeksowo-sekwencyjne)

LITERATURA

[1] BUDZIANOWSKI I. i in. , Projekt techniczny oprogramowania PTO ja­
ko procesora czołowego i węzła w sieci SKÓS2 wersja 1, Inst.Cybern.
Techn. PWr., Raport SPR 11/84, Wrocław 1984,

12

[21 DUBIEuEWICZ A. i in., Stacja transferu zbiorów w sieci SK3S2
wersja 1, CO PWr., Raport SPR 18/85, Wrocław 1985.

[3] DUBIELEWICZ I. i in. , Aparatura pomiarowo-diagnostyczna dla sieci
SK3S2 wersja 1, CO PWr., Raport SPR 13/86, Wrocław 1986,

[41 DYRKA K. i in, , Zasady tworzenia i udostępniania zasobów w sieci
SK3S2 wersja 1, CO PWr., Raport SPR 14/86, Wrocław 1986,

[5] HARMS 3., La situation Internationale,'SWITCH, no. 1, April 1986,
s. 18-22.

[6] HUZAR A. i in.. Terminal w sieci SK3S2 wersja 1, CO PWr., Raport
SPR 20/86, Wrocław 1986,

l7J HUZAR A. i in., Projekt techniczny oprogramowania EC1032 jako
komputera obliczeniowego w sieci SK3S2 wersja 1, CO PWr., Raport
SPR 24/86, Wrocław 1986,

[8] KREMIENOWSKI P. i in.. Dokumentacja eksploatacyjna zadań kontrol­
nych i pomiarowych do badań sieci SKDS2 wersja 1, IKSAiP, Wrocław
1986,

[9] SADLAK 3,,The futurę of academic networks in Eu ropę.CRE-INFORMATION
No. 26, 4rc* Quarter, 1986, s.163-167.

[101 BUDZIANOWSKI 3., WIETRZYCH 3., FRYS A., Struktura warstwowa a stan­
dardy w sieci SK3S2 wersja 1, (w niniejszym zeszycie

[111 STAŃKO 3., ŻAK D., Styki a sterowanie przepływem w sieci SK3S2
wersja 1 (/s niniejszym zeszycie) .

[121 cACUKOWICZ M. , DANISZEWSKI A., KWIATKOWSKI 3., Dostęp terminalowy
w sieci SK3S2 wersja 1 (w niniejszym zeszycie).

[13] HUZAR A,, KALIS A., Problemy synchronizacji w stacji transferu
zbiorów (w niniejszym zeszycie J.

[14] KALIś A., HUZAR A., Tworzenie oprogramowania bazowego sieci kompu­
terowej SK3S2 wersja 1 (w niniejszym zeszycie).

[15] FRYŹLEWICZ Z., Aparatura pomiarowo-diagnostyczna dla sieci kompute­
rowej (w niniejszym zeszycie).

[16] DYRKA K., KREMIENOWSKI P., RUTKOWSKI E., Charakterystyki czasowe
i przepustowość w sieci SK3S2 wersja 1 (w niniejszym zeszycie).

Praca wpłynęła do Redakcji 1988.03.28

THE COMPUTER NETWORK SK3S2 YERSION 1

The basie information on the network of the unified system celled
SK3Ś2 version 1, are given. The hardware and software network confi-
guration are described. The work of the basie network applications:
subsystems TSO, CICS and file transfer station is characterized..

BHWJIMTEJIHM CETŁ ĘDJ4HCTBEHH0?! CMCWbl SKJS2 BEPCMH 1

B CTaTBe npeflCTaBjieHti ochobhhs HHÓopMannz Ha Te«y BHHJiCJDiTenBHOK
C6TZ KOMIIBIOTepOB eBZHCTBeHHOK CHCT6MH, Ha3HBaeM0H SKJS2 B6pC3H 1. Oó-
cysmeHH oóopynosaHHaH KOHrourroainiH u jiorunecKaH apxiiTeKTypa ceTZ. Wso-
ppaF.ena paóoTa ochobhhx npMMSHeHWH ceTn: noflCMCTeM ISO, SKOT a ctshipim
TpaHcpepa paiijioB.

Prace Naukowe Centrum Obliczeniowego
Nr 6 Politechniki Wrocławskiej Nr 6
Studia i Materiały Nr 3 1989

Sieć komputerowa, węzeł
komutacji pakietów, protokoły,

algorytm wyboru drogi

Lesław BUDZIANOWSKI *
Jerzy WIETRZYCH*
Andrzej FRYŚ*

STRUKTURA WARSTWOWA A STANDARDY W SIECI SKJS2 WERSJA 1

W pracy przedstawiono strukturę logiczną sieci komputerowej
SK3S2 wersja 1. Omówiono poszczególny warstwy i przyjęte proto­
kóły z uwzględnieniem nałożonych ograniczeń. Omówiono przede
wszystkim algorytm wyboru drogi oraz sposoby ochrony przed prze­
ciążeniem podsieci SK0S2 wersja 1. Następnie przedstawiono budo­
wę oprogramowania realizującego cztery dolne warstwy według mo­
delu OSI/ISO, które umieszczono w procesorze EC8371.01.

1. WPROWADZENIE

Budowę sieci komputerowej SK3S2 wersja 1 oparto na maszynach
cyfrowych EC1032 lub innych z serii EC spełniających funkcję kompu­
terów obliczeniowych KO oraz procesorach teleprzetwarzania danych

£08371.01, które pełnię rolę komputerów czołowych .KC i węzłów pod­

sieci komunikacyjnej. W sieci tej jako aplikacje stosuje się oprogra­
mowanie użytkowe współpracujące z metodę dostępu telekomunikacyjnego

TCAM5. Ponadto w komputerze obliczeniowym realizowane sę usługi trans­
feru zbiorów. Natomiast procesor teleprzetwarzania danych spełnia

następujące funkcje:

Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wyspiań­
skiego 27, 50-307 Wrocław.

14

- komputera czołowego do EC1032 i innych,

- koncentratora terminali,
- węzła podsieci komunikacyjnej,
- łęcznika do podsieci zgodnej z zaleceniem X.25.

Z podanych założeń wynika, że sieć SK3S2 wersja 1 ma charakter

sieci homogenicznej.

2. PROTOKOŁY STOSOWANE W SIECI SK0S2 WERSJA 1

W sieci SK0S2 wersja 1 przyjęto układ protokołów zgodny z mode­
lem odniesienia ISO/OSI (do czwartej warstwy włęcznie) . Wynika stęd

następujący podział na warstwy i zawarte w nich protokoły współpracy:
- warstwa fizyczna (protokół X.21 bis według CCITT)

- warstwa liniowa (protokół LAPB według X„25 CCITT)

- warstwa sieciowa (x„25 według CCITT oraz X„75 do współpracy

międzywęzłowej)
- warstwa transportowa (protokół transportowy według ISO)

- warstwa sesji i prezentacji (własny protokół terminalowy umo­

żliwiający negocjację typów terminali oraz protokół transferu zbiorów .

Wyspecyfikowany układ protokołów przedstawiono na rys. 1. Przy­

jęto dodatkowe ustalenie, w myśl którego jedno połęczenie sesyjne jest
odwzorowane w jedno połęczenie transportowe, a to z kolei w jedno

połęczenie sieciowe.

Podsieć Podsieć SK3S2

Rys.l. Układ protokołów wykorzystywany podczas współpracy z podsiecię
Fig.l. Structure protocols used in the Computer network

15

2,1. Warstwa fizyczna

Warstwa fizyczna ma za zadanie umożliwić korzystanie z rzeczy­
wistych fizycznych środków łączności, które są dostępne w formie usług
dla warstwy liniowej. Usługi te polegają na przezroczystej transmisji
strumienia bitów między dwoma stacjami warstwy liniowej z zachowaniem
ich kolejności. Są one realizowane przez protokół określający włas­
ności mechaniczne, elektryczne i funkcjonalne warstwy, niezbędne do
aktywacji, utrzymania i deaktywacji połączenia między dwoma stacjami
warstwy liniowej. W sieci SK0S2 wersja 1 w warstwie fizycznej zastoso­
wano protokół zgodny z X,21 bis CCITT.

2.2. Warstwa liniowa

Warstwa liniowa dostarcza środków proceduralnych i funkcjonal­
nych do ustanowienia, utrzymania i zwalniania połączenia między sta­
cjami warstwy sieciowej oraz do przesyłania jednostek danych,zwanych
ramkami. Warstwa ta wykrywa i usuwa błędy, które mogą powstać w
warstwie fizycznej. Steruje także przepływom danych, dostosowując tem­
po przesyłania ramek do możliwości odbiorczych stacji warstwy siecio­
wej. Błędy, nienaprawialne przez warstwę liniową są sygnalizowane
warstwie sieciowej. Powyższe funkcje są realizowane w warstwie przez
stację protokołu liniowego. W sieci SK3S2 wersja 1 zastosowano proto­
kół LAPB w wersji podstawowej (bez rozszerzonej numeracji i połączeń

wielopunktowych).

2,3, Warstwa sieciowa

Warstwa sieciowa dostarcza środków do ustanowienia, utrzymania
i likwidowania połączeń sieciowych między systemami końcowymi oraz
procedur i środków funkcjonalnych do wymiany sieciowych jednostek

danych, zwanych pakietami. Warstwa ta uniezależnia połączenie od cha­
rakterystyk transmisji w stacjach liniowych oraz dostarcza usług war­

stwie transportowej takich, jak: zawiadamianie o błędach, zachowa­
nie kolejności przesyłanych jednostek danych, zerowanie (usuwanie

wszystkich jednostek danych z połączenia sieciowego). Realizowana są

w niej również funkcje wykrywania i korekty błędów sygnalizowanych
z warstwy liniowej. Powyższe funkcje realizuje w warstwie stacja

protokołu pakietowego.
W sieci SK3S2 wersja 1 zastosowano dwa protokoły pakietowe.

Pierwszy, zgody z zaleceniem X.25 CCITT [4] , wykorzystywany jest tyl­
ko do współpracy komputerów obliczeniowych przez podsieć publiczną.
Natomiast drugi, zgodny z zaleceniem X.75 CCITT L5j, wykorzystywany

16

jest wewnątrz sieci SKDS2 wersja 1 i służy do realizacji własnej
podsieci komunikacyjnej SKDS2. Należy zauważyć, że większość procedur

jest wspólna dla obu protokołów pakietowych.
Dla protokołu pakietowego opartego na zaleceniu X.25 przyjęto

ustalenia, zgodnie z którymi jedyną wykorzystywany usługę będę po­
łączenia typu VIRTUAL GALL (vc). Będę one służyły poszczególnym sta­

cjom transportowym do utrzymania połączeń między systemami aplika­
cyjnymi i terminalami. Dodatkowo założono, że nie dopuszcza się sto­
sowania pakietu REDECT oraz opcji FAST SELECT. Pakiety są numerowa­
ne modulo 8, a ich długość nie przekracza 128 oktetów. Cechą chara­
kterystyczną tego protokołu jest też to, że rozłączanie, zerowanie,
jak i potwierdzanie przesyłanych danych może mieć działanie o chara­
kterze lokalnym lub zdalnym - wymagającym zgody obu współpracujących

stacji końcowych.
Dla protokołu pakietowego międzywęzłowego opartego na X»75,

który definiuje reguły wymiany danych na styku STEX/STEY (gdzie
STEX i STEY są stacjami tej wymiany) założono, że wszystkie reguły

przyjęte w protokole pakietowym typu X,25 obowiązują w protokole
międzywęzłowym. Dodatkowo wykorzystywane są usługi typu bezpołącze-
niowego, w których jednostką danych jest DATAGRAM (DG). Usługi te

są stosowane wyłącznie do komunikacji procesów operatorskich oraz

do sterowania podsiecią.
Ważną funkcją warstwy sieciowej jest sterowanie przepływem da­

nych. Powinno ono chronić zasoby systemów końcowych przed przeciąże­

niem. W tym celu kontrolowane są poszczególne kolejki odebranych pa­
kietów DATA w połączeniach sieciowych. W razie przekroczenia dopusz­
czalnej długości takiej kolejki zostaje wysłany pakiet RNR, nakazu­
jący wstrzymanie wysyłania dalszych pakietów danych. Dodatkowo kon­

trolowana jest liczba wolnych buforów przeznaczonych do przechowy­
wania pakietów DATA. Gdy liczba ta jest mniejsza od zadanej wartości
granicznej, w poszczególnych połączeniach sieciowych wysyłane są pa­

kiety RNR w celu powstrzymania napływających danych. Powrót do stanu
przesyłania danych, osiągany przez wysłanie pakietu RR następuje wte­
dy, gdy długość kolejki otrzymanych pakietów DATA zmaleje do wielko­
ści granicznej minimalnej, a równocześnie liczba wolnych buforów
zwiększy się powyżej wartości progowej. W przypadku kontrolowania
długości kolejek istotny jest problem właściwego doboru wartości gra­

nicznych, których osiągnięcie powoduje wysłanie RNR lub RR, gdyż od
tych wartości zależy przepustowość poszczególnych połączeń siecio­
wych.

Istotną funkcją warstwy sieciowej, a tym samym i protokołu pa­
kietowego międzywęzłowego, jest zestawianie połączenia sieciowego

17

między systemami końcowymi. W tym celu wykorzystuje się odpowiedni
algorytm wyboru drogi.

2.3.1. Wybór drogi w sieci SK3S2 wersja 1

Podstawy działania algorytmu wyboru drogi w sieci SK0S2 wersja 1
jest odpowiednio skonstruowana tablica kierunków. Tablica kierunków
jest strukturę danych umieszczonę w każdym EC8372.01 (węźle) sieci,

decydujęcę o kierunkach przekazywania żędań nawięzania połęczeń i
datagramów. Dotyczy to wszystkich połęczeń zarówno inicjowanych z
lokalnego komputera obliczeniowego, jak i tranzytowych (rozpoczynaję-

cych się w innych węzłach sieci). W tablicy kierunków każdego —

EC8371.01 reprezentowane sę adresy i drogi dojścia do każdeg’o kompu­
tera obliczeniowego w sieci łęcznie z komputerem lokalnym.

Podstawę do utworzenia tablicy kierunków każdego z węzłów jest
określenie dróg pierwotnych i zastępczych wiodęcych z danego węzła
do wszystkich pozostałych. Droga pierwotna będzie używana do tworze­
nia połęczenia między węzłami w sytuacji, gdy wszystkie elementy
sieci sę sprawne. Drogi zastępcze będę wybierane do tworzenia połę­
czenia po wykryciu niesprawności drogi pierwotnej. O kolejności wy­
bierania dróg zastępczych do próby tworzenia połęczeń decyduje kolej­
ność ich wyszczególnienia w tablicy kierunków, Określajęc w tablicy
kierunków drogę między węzłami A i B specyfikujemy w każdym z nich

tylko jej poczętek, tzn. numer wyjścia teleprocesora, przez który

ma być wysłane żędanie ustanowienia połęczenia, tak aby dotarło ono
do celu używajęc drogi pierwotnej lub zastępczej.

Między dowolnymi węzłami A i B musi być określona co najmniej

droga pierwotna i ewentualnie drogi zastępcze w miarę potrzeb i moż­
liwości ich rozróżnienia. Wyszczególnienie tych dróg jest umieszcza­
ne w tablicy kierunków, która jest listę jednokierunkowę, składajęcę

się z elementów określajęcych węzły docelowe w sieci. W każdym z

tych elementów znajduję się następujęce pola:
- wskaźnik (adres) następnego elementu w liście

- sieciowy adres docelowego EC8371.01
- liczba możliwych kierunków prowadzęcych do wskazanego adresu

docelowego
- pierwszy numer wyjścia
- drugi numer wyjścia
- itd.
- n-ty numer wyjścia.
Żędanie ustanowienia połęczenia sieciowego niezależnie od po­

chodzenia (może ono pochodzić od stacji transportowej, gdy jest ini­
cjowane lub od stacji sieciowej, gdy przychodzi z innego węzła) powo­

18

duje wybranie z tablicy kierunków elementu określającego żądany

adres docelowy. Brak takiego elementu powoduje odrzucenie połącze­
nia ze wskazaniem przyczyny - błąd adresacji. Natomiast, gdy istnie­
je możliwość dojścia do systemu końcowego, określonego przez adres
docelowy, wybierane jest odpowiednie wyjście pierwotne lub zastępcze

teleprocesora. Następnie, po sprawdzeniu jego aktywności i możliwości

podjęcia obsługi nowego kanału, w tym wybranym kierunku wysyła się
pakiet CALL REQUEST, który będzie analogicznie rozpatrywany w następ­
nym węźle. Jeżeli dany węzeł okaże się węzłem docelowym, następuje
potwierdzenie połączenia sieciowego pakietem CALL ACCEPTED pod warun­

kiem, że stacja transportowa jest aktywna i zdolna do tworzenia no­
wych połączeń transportowych. Brak aktywnego wyjścia, przez które
można skierować żądanie ustanowienia połączenia w kierunku docelowym

powoduje odesłanie żądania rozłączenia, ze wskazaniem przyczyny "brak
dojścia" do węzła,poprzedzającego.

W celu zabezpieczenia się przed powstaniem pętli każde połącze­
nie sieciowe ma nadany numer identyfikacyjny, unikatowy w całej sieci.
Gdy pakiet CALL REOUEST zgłaszający nowo tworzone połączenie zawiera
numer identyfikacyjny taki sam jak numer jednego z kanałów logicznych

utworzonych wcześniej w danym węźle, wykrywane jest powstanie pętli.
Nowe żądanie jest wtedy odrzucane (za pomocą pakietu CLEAR REQUEST)

ze wskazaniem przyczyny: "powstanie pętli" i propaguje się je dalej
przez sieć, kasując utworzony fragment połączenia. Należy tu wyjaś­
nić, że informacje o poszczególnych połączeniach sieciowych przecho­

dzących przez dany węzeł są przechowywane w powiązanych ze sobą ta­
blicach odzwierciedlających stany kanałów logicznych przypisanych do

odpowiednich wyjść komputera czołowego.
Otrzymane w dowolnym węźle żądanie rozłączenia zgłaszane przez

pakiet CLEAR REQUEST z przyczyną inną niż powstanie pętli lub brak

dojścia jest przekazywane dalej do żądającego ustanowienia połącze­
nia sieciowego, co ostatecznie kończy próby znalezienia drogi do

punktu docelowego. Natomiast w razie powstania pętli lub braku doj­
ścia następuje próba znalezienia innej drogi zastępczej przez prze­
szukiwanie pozostałych kierunków jeszcze w danym węźle nie spraw­
dzonych .

Przykładową próbę zestawienia połączenia przedstawiono na rys. 2.
Pokazano na nim drogę, jaką musi przebyć pakiet CALL REOUEST od sy­
stemu A do B w przypadku, gdy istnieją uszkodzenia niektórych dróg
pierwotnych. Najpierw próbuje się wysłać go z systemu A wyjściem nu-
aer 1. Po otrzymaniu odpowiedzi CLEAR REQUEST z tego kierunku doko­

nywana jest próba wysłania pakietu wyjściem numer 2, a następnie

19

Węzeł

połączenie między węzłami

droga ruchu pakietu

Rys. 2. Przykładowe zestawianie połączenia sieciowego
Fig. 2. Example of network connection establishment

wyjściem numer 3. Dopiero ta trzecia próba okazuje się skuteczna
i w jej wyniku może się pojawić odpowiedź CALL ACCEPTED po uzyska­

niu zgody pozostałych systemów biorących udział w tworzeniu połącze­
nia .

Reguły wyboru drogi podczas przesyłania datagramów opierają się,
podobnie jak w zestawieniu połączeń sieciowych, na zawartości tablicy
kierunków. Cechą charakterystyczną, różniącą pi zasyłanie datagramów
od zestawiania połączenia sieciowego, jest brak śladu w danym węźle
po wysłaniu datagramu. W związku z tym wskaźniki niezbędne do uzyska­

nia poprawnej pracy algorytmu wyboru drogi umieszczane są wewnątrz
datagramu i przesyłane wraz z nim. Dotyczy to wskaźnika kierunków ru­

chu przyjmującego dwie wartości: ruch "do przodu" lub ruch "wstecz"
oraz licznika kroków ruchu"do przodu" , wykorzystywanego do ochrony
przed powstaniem pętli.

20

W calu wysłania datagramu sprawdza się tablicę kierunków, aby
znaleźć element o adresie docelowym zgodnym z podanym w datagramie.

Po znalezieniu takiego elementu następuje wybranie numeru wyjścia,
przez które będzie można wysłać datagram. Dzieje się to pod warun­
kiem, że wybrane wyjście (stacja sieciowa) jest aktywne, a liczba da-

tagramów oczekujących w kolejce na wysłanie nie przekracza zadanego

limitu. W takiej sytuacji datagram jest dołączany do kolejki z zazna­
czeniem w nim, że jest on wysyłany "do przodu* oraz zwiększeniem za­
wartego w nim licznika kroków ruchu "do przodu" o 1.

Gdy w tablicy kierunków nie ma takiego elementu bądź nie ma dos­
tępnego wyjścia, datagram jest odsyłany w tym samym kierunku, z które­
go przyszedł z zaznaczeniem w nim, że jest wysyłany "wstecz". Przyj­
muje się, że datagram dotarł do celu w chwili, gdy wykrywa się zgod­

ność adresu docelowego w datagramie z adresem własnym danego węzła.
W razie otrzymania datagramu ze wskaźnikiem informującym o ruchu

datagramu "wstecz- następuje wybranie następnej nie sprawdzonej drogi
zastępczej. Gdy taka droga istnieje, datagram jest wysyłany z zazna­
czeniem kierunku ruchu "do przodu". Natomiast, gdy nie istnieje inna
droga zastępcza w tym węźle doprowadzająca datagram do celu, dany

datagram wysyłany jest "wstecz" do kolejnego węzła. Osiągnięcie węzła
źródłowego podczas ruchu datagramu "wstecz" powoduje skasowanie data­

gramu z powodu niemożności dotarcia do adresu docelowego. Datagram
jest kasowany także, gdy zawarty w nim wskaźnik liczby prób wyboru
drogi “do przodu", podający liczbę przejść przez węzły sieci, prze­
kroczy zadany limit. Zabezpiecza to przed krążeniem datagramów w sie­

ci i powstawaniem pętli.
Jak można się przekonać, algorytm zastosowany w sieci SKJS2

wersja 1 spełnia w znacznym stopniu postulaty stawiane w literaturze
[6]. Przede wszystkim ma. charakter rozproszony, decyzje o wyborze
drogi podejmowane są w poszczególnych węzłach na tworzonej drodze.
W tablicach kierunków nie jest przechowywana droga z końca do końca,
a jedynie kierunek do najbliższego sąsiada, który może pośredniczyć
w osiągnięciu punktu docelowego. Algorytm zapewnia wykrycie i likwi­
dację powstałej pętli i jest wolny od oscylacji w sieci. Jest przy­
stosowany do ustanawiania logicznych połączeń sieciowych, jak i do
przesyłania informacji bez tworzenia połączeń (zgodnie z X.25 i X.75)

Zalecany w literaturze warunek adaptacyjności algorytmu wyboru drogi

nie jest spełniony. Cecha ta wiąże się z koniecznością użycia dodatko­
wej pamięci zewnętrznej, której wymaga system zbierania,-analizy i
rozsyłania informacji o zmianach w sieci. Procesor EC8371.01 charakte­

ryzuje się brakiem własnej pamięci zewnętrznej o bezpośrednim dostę­
pie, jak i ograniczoną pamięcią operacyjną. Pewne elementy adapta-

21

cyjności zostały uwzględnione przez wprowadzenie mechanizmu aktywacji
poszczególnych kierunków. Gdy brak aktywności danego kierunku, nie
jest on brany pod uwagę w rozważaniach dotyczących wyboru drogi. Ist­
nieje też możliwość interwencji operatorskiej przez włączenie lub wy­

łączenie pewnych kierunków w celu dostrojenia parametrów sieci. Sam
algorytm może pracować przy adaptacyjnym modelu wyboru drogi. Wiąże

się to tylko z dynamiczną zmianą kolejności numerów kierunków w ta­
blicy kierunków. Pewną niedogodnością tego rozwiązania, związaną z
ograniczonymi zasobami pamięci, jest konieczność zmiany tablicy kie­
runków we wszystkich węzłach w razie dołączenia nowego węzła.

Istnieją duże trudności z wykazaniem, że w dowolnym rzeczywis­
tym przypadku dany algorytm jest najlepszy. Niektóre algorytmy górują
nad innymi, gdy jest ustabilizowane natężenie ruchu, ale bardzo słabo
reagują na sytuacje wyjątkowe. Wybór algorytmu powinien uwzględniać
wielkość sieci, niezawodność sprzętu i posiadane zasoby pamięci.

Wydaja się, że zaproponowany algorytm wyboru drogi spełnia żą­
dane wymagania w sieci SK3S2 wersja 1, co też zostało potwierdzone
eksperymentalnie.

2.4. Warstwa transportowa

Warstwa transportowa udostępnia warstwie wyższej środków do
przesyłania danych w sposób minimalizujący koszty i zasoby, gwarantu­

jąc jednocześnie wymaganą jakość.
Warstwa transportowa podnosi jakość usług dostarczonych przez

warstwę sieciową do poziomu wymaganego przez warstwę sesji. Równo­
cześnie warstwa ta odciąża i uniezależnia wyższe warstwy od wszy­
stkich czynności związanych z przesyłaniem informacji.

Protokół transportowy wybrany dla sieci SK3S2 wersja 1 należy
do klasy protokołów zorientowanych połączeniowo i funkcjonalnie od­
powiada propozycji ISO dla protokołu transportowego klasy 1 [3],

Protokół ten opiera się na usługach dostarczanych przez kanały logi­
czne protokołu pakietowego X.25 lub X.75 (tworzących połączenia sie­

ciowe) i przejmuje funkcje dwukierunkowego przesyłania nieinterpre-

towanych danych użytkownika połączeniem transportowym.
Wykorzystując usługi warstwy sieciowej oraz wzbogacając je i

uzupełniając funkcjami własnymi, stacje protokołu transportowego
dostarczają związanym stacjom warstwy wyższej (terminalowym lub

transferu zbiorów) następujących usług transportowych:
- nawiązanie połączenia transportowego wraz z negocjacją warun­

ków przesyłania danych
- przesyłanie potwierdzonych danych nie podlegających mechaniz­

mowi sterowania przepływem na poziomie transportowym

22

mówi sterowania przepływem na poziomie transportowym
- przesyłanie potwierdzonych danych przyśpieszonych
- odtwarzanie połączeń sieciowych i synchronizacji ciągów danych

po sygnalizowanych do warstwy transportowej niesprawnościach w war­

stwie sieciowej
- informowanie użytkownika o nienaprawialnych błędach własnych

protokołu
- uporządkowanego zamykania połączenia transportowego
- informowania o jakości usług transportowych.

Podstawowym powodem, dla którego zaproponowano protokół transpor­
towy, jest zautomatyzowane odtwarzanie dwukierunkowej transmisji da­
nych użytkownika po sygnalizowanych niesprawnościach z warstwy siecio­
wej, jako następstwa warunków CLEAR lub RESET, pojawiających się vi

podsieci komunikacyjnej. W ten sposób naprawiane są wszelkie sygnali­
zowane do warstwy ,transportowej niesprawności podsieci, bez informo­

wania o fakcie warstwy wyższej.
Komunikacja pary stacji transportowych polega na wzajemnej wymia­

nie jednostek danych i jednostek sterujących zwanych komunikatami,
przy czym zarówno komunikaty danych, jak i komunikaty sterujące, prze­

noszone są wyłącznie w pakietach DATA protokołu pakietowego. A zatem
trzy kolejne fazy funkcjonowania protokołu transportowego - nawiąza­
nie połączenia, transmisja danych i zamykanie połączenia, występują

wyłącznie w fazie transmisji danych połączenia sieciowego. Zasady
komunikowania się pary stacji transportowych są zgodne z pracą [l,2j,

przy czym w implementacji protokołu na potrzeby SK0S2 wersja 1 przyj­

muje się, że potwierdzenie komunikatów danych następuje w warstwie
transportowej oraz wykorzystuje się transportową drogę danych przy­
spieszonych. Dodatkowo dopuszczono stosowanie klasy 3 bez opcji

podziału łącza na podkanały. Wersja ta umożliwia sterowanie przepły­
wem komunikatów danych w warstwie transportowej. W sieci SKDS2 wer­
sja 1 wysyła się potwierdzenia AK tylko wtedy, gdy kolejka z odebra­
nymi komunikatami danych nie przekroczyła wartości granicznej. Właś­
ciwość ta jest wykorzystywana do zarządzania zasobami systemu końco­

wego w celu ochrony przed przepełnieniem systemów końcowych.

2.5. Warstwa sesji i prezentacji

W sieci SKDS2 wersja 1 warstwy te są traktowane łącznie, ponie­
waż sieć ta jest siecią homogeniczną. Przyjęto, że w warstwie tej

obowiązują reguły właściwe dla maszyny cyfrowej EC1032. Dlatego też
dla współpracy terminal-aplikacja opracowano własny protokół umożli­

wiający ustalenie typu terminala, który chce współpracować z procesem

23

aplikacyjnym. Natomiast do transferu zbiorów zastosowano protokół,
oparty na zaleceniu NIFTP Blue Book.

W sieci SKJS2 wersja 1 warstwy 1-4 zostały zaimplementowane w
komputerze czołowym i węzła, natomiast warstwy wyższe w komputerze

obliczeniowym.

3. OGÓLNA BUDOWA OPROGRAMOWANIA WĘZŁA

Oprogramowanie EC8371.01 składa się z trzech funkcjonalnych
części:

- sterującej terminalami

- realizującej funkcje sieciowe
- systemu zarządzającego (supervisora).

Oprogramowanie sterujące terminalami stanowi pośrednik między

metodę dostępu telekomunikacyjnego TCAM5 w komputerze obliczeniowym
a terminalami podłączonymi do komputera czołowego. Ta część oprogra­

mowania nie komunikuje się z częścią realizującą funkcje sieciowe.
Obie części korzystają natomiast ze wspólnego systemu zarządzającego
zasobami procesora EC8371.01. Schematycznie przedstawiono to na rys.

Komputer czołowy
Komputer

obliczeniowy

Rys, 3. Ogólna struktura oprogramowania komputera czołowego
i węzła

Fig. 3. The generał structure of the front-end-processor and
node software

Współpraca terminali z siecią odbywa się za pośrednictwem kom­
putera obliczeniowego. Dwa z wymienionych tu elementów, tj. sterowa-

24

wanie terminalami na poziomie fizycznym oraz system zarządzający,

zostały przyjęta ze standardowego oprogramowania o nazwie NCP
(Network Control Program) . Sterowanie funkcjami sieciowymi jest ory­

ginalnym elementem dobudowanym do programu NCP, co daje nowy system

sieciowego oprogramowania procesora EC8371.01, spełniającego rolę
węzła sieci i komputera czołowego do współpracy z siecią i termina­
lami. Oprogramowanie to nie realizuje.natomiast funkcji koncentrato­
ra terminali do celów współpracy z siecią.

Funkcje sieciowe obejmują tworzenie, utrzymanie i likwidowanie
połączeń z komputera obliczeniowego do sieci oraz połączeń tranzy­

towych między elementami składowymi sieci. W zakresie współpracy
komputera obliczeniowego z siecią ta część oprogramowania EC8371.01

jest realizatorem warstw: transportowej, sieciowej, liniowej i fizycz­
nej. Równocześnie oprogramowanie to realizuje funkcje węzła sieci

SK3S2 wersja 1, a więc zawiera omówione wcześniej mechanizmy steru­
jące.

Wyróżnia się następujące moduły programowe realizujące funkcje

sieciowe:
- obsługi styku transparentnego (MITRN) do celów komunikacji

z procesami w komputerze obliczeniowym
- łącznikowy (mł) realizujący usługi warstwy transportowej
- transportowy (MT)

- funkcji węzła (MFW)
- wyjść sieciowych (MWS)

- obsługi łącza LAPB (MLAP)
- obsługi podkanałów skanera (MPS).

Moduły MITRN, MŁ i MT biorą udział w obsłudze połączeń z kompu­

tera obliczeniowego do sieci. Pozostałe moduły biorą udział w obsłu­
dze obu typów połączeń z komputera obliczeniowego do sieci i tran­
zytowych wewnątrz sieci. Przedstawiono to na rys. 4.

25

Proces'' obsługiwane przez moduł MLAP 1 część modułu MITRN reali­

zowane są na trzecim poziomie programowym EC8371.01, procesy obsługi
podkanałów skanera na poziomie drugim i trzecim, a pozostałe na po­
ziomie piątym.

Główne funkcje systemu zarządzającego w systemie obejmuję zarzą­
dzanie zadaniami, zarządzanie kolejkami i buforami. Zarządzanie zada­

niami obejmuje ich uaktywnianie zgodne z priorytetami, zmianę stanów
oraz przekazywanie sterowania między programem a podprogramami.

Zarządzanie kolejkami polega na umieszczaniu nowych elementów
na końcu oraz wybieraniu elementów do obsługi z początku kolejki.

Natomiast zarządzanie buforami polega na: przydzielaniu i zwalnianiu
buforów dla danych, ich dodawaniu i usuwaniu z kolejek buforów,-

umożliwieniu dostępu do określonych pozycji w kolejce oraz odzyski­
waniu buforów w stanach przytłumienia pracy sieci, kiedy to liczba
wolnych buforów jest -mniejsza od minimalnej liczby gwarantującej
poprawną pracę EC8371.01. Wszystkie te elementy sterowania istnieją
w standardowym programie NCP i zostały przejęte do realizacji części
sieciowej oprogramowania.

Przyjęto też z programu NCP sposób organizacji łańcuchów buforów
kolejek danych oraz kolejek zadań. W związku z tym tablice używane
przez część sieciową, reprezentujęce stany takich obiektów, jak

stacje LAPB, sieciowe, transportowe, połączenia transportowe czy
kanały logiczne mają budowę przystosowaną do wymagań programu za­
rządzającego ■(superyisora). Dotyczy to zwłaszcza umieszczenia w
tych tablicach bloków QCB (blok sterowania kolejką) dla kolejek wej­

ściowych, pseudowejściowych i roboczych. Dotyczy to także umieszcze­
nia bloków ECB (blok sterowania zdarzeniem) w przypadku odmierzania

odczekania (time-out) •. Wprowadza się tu jednak zmianę polegającą na

tym, że bloki ECB są umieszczane w tablicach opisujących stan obiektu
a nie w kolejkach przechowujących dane (bCU) jak w przypadku NCP.

W związku z wymaganiami części oprogramowania realizującego fun­
kcje sieciowe dokonano kilku zmian w zarządzaniu buforami. Przyjęto,

że obie części oprogramowania korzystają z tej samej puli buforów,
które pobierane są i zwalniane za pomocą tych samych makroinstru­
kcji. Ze względu na wymagania oprogramowania sieciowego zmieniono
minimalny rozmiar bufora z 44 na 152 bajty. Ponadto wprowadzono me­
chanizm pytania o stan puli wolnych buforów. Na potrzeby tego me­

chanizmu zdefiniowano progi obciążenia określające procent zajętych
buforów puli. Takie pytanie pozwala na ustalenie czy przekroczono
zadany próg. Dzięki temu jest możliwe podejmowanie decyzji o dalszym

przebiegu procesu w zależności od liczby wolnych buforów.

26

LITERATURA

[1] BUDZIANOWSKI L. i in., Projekt techniczny oprogramowania PTD jako
procesora czołowego dla EC1O32 i komputera węzła w sieci SKUS2
■wersja 1. Założenia funkcjonalne, Inst.Cybern.Techn.PWr... Raport
SPR 11/84, Wrocław 1984.

[2] BUDZIANOWSKI L. i in., Projekt techniczny oprogramowania PTD jako
procesora czołowego dla EC1032 i komputera węzła w sieci SKDS2
wersja 1. Opis funkcjonalny. Schematy blokowe. Inst.Cybern .Techn.
PWr., Raport SPR 3/85, Wrocław 1985,

[3] Information processing Systems - Open systems interconnection
- Connection oriented transport protocol specification, Dune 27,
Copenhagen 1984, ISO/DIS 8073 rev.

T4] YELLOW BOOK, Data communication networks services and facilities,
terminal epuipment and interfaces, Recommendation X.25, Vol. VII,
Fascicle 2, CCITT, Geneve 1981,

[5] YELLOW BCOK , Data communication networks transmission , singnaling
and switching., network aspects, maintenance, administrative
arrangements, Recommendation X.75 Vol. VIII, Fascicle 3, CCITT,
Geneve 1981,

1'6] OSSOLA Mo, Routing principles for the eighties: are experience
and theory sufficient to settle for distributed and adaptive
routing ?, Performance of data communication system and their
applications, Pub. Company, North Holland 1981.

Praca wpłynęła do Redakcji 1988.03.28

LAYER STRUCTURE AND STANDARDS IN COMPUTER NETWORK SKJS2

The subject of the paper is the logical structureof the Computer
Network SK0S2 mark 1. Presented are layers, protocols and software
Solutions of the communication controler EC8371.01. Then the main ele
ments of the routing algorithm and its properties are shown.

3TAJICHHAH CTPYKTyPA M CTAHJIABTtJ B BWW.MTEJIBHOii CETM SKJS2

B CTaTŁe npepcTasjiena STajioHHaH cTpyKTypa BiraicjrHTejiŁHoii cera
SKJS2 . B ocHOBHoił nactk cTaTŁM pe^B zpeT o 3TajioHax, npcT0K0Jiax z npo-
rpaMMax KOMntiOTepa y3iia EU8371.01. SaTeM npepcTaBjieHH raasHae ajieweHra
auropuTMa npoKJiapra! MapmpyTa n KpaTKap openKa npaHHTHX pemeHJifi.

Prace Naukowe Centrum Obliczeniowego
Nr 6__________________ Politechniki Wrocławskiej Nr 6
Studia i Matędały Nr 3 1989

Rozległa sieć komputerowa,
oprogramowanie bazowe sieci

Andrzej KALIŚ*
Andrzej HUZAR*

TWORZENIE OPROGRAMOWANIA BAZOWEGO
SIECI KOMPUTEROWEJ SKJS2 WERSJA 1

Przedstawiono poszczególne etapy tworzenia oprogramowania bazo­
wego sieci komputerowej SK0S2 wersja 1. Omówiono kolejne fazy
projektowania oprogramowania bazowego, poruszono problem efekty­
wności prac programistycznych, a przede wszystkim skoncentrowano
się na zagadnieniu testowania i uruchamiania dużego oprogramowa­
nia ,

1, WSTĘP

W początkowym okresie rozwoju maszyn cyfrowych szczególną troską
objęto część sprzętową. Obecnie znacznie większą uwagę zwraca się na
tworzenie oprogramowania, czyli pracę programisty. Jeżeli w końcu lat
pięćdziesiątych 90% kosztów maszyny cyfrowej przeznaczano na sprzęt,
obecnie 90% przeznacza się na rozwój oprogramowania. Zatem koszty wy­
tworzenia oraz niezawodność oprogramowania (patrz .[6])to obecnie głów­

ne problemy ogólnie rozumianego przetwarzania z wykorzystaniem maszyn
cyfrowych. Różnica efektywności programistów może być jak 1:5 lub na­
wet jak 1:100 [10]. Oznacza to, że programiści o jednakowym przygoto­
waniu i zbliżonym wynagrodzeniu mogą poświęcić na realizację tego sa­
mego projektu (oprogramowania) od jednej do stu jednostek czasu. Cho­

ciażby z tego względu sensowne oszacowanie kosztów utworzenia oprogra-

m Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wyspiań­
skiego 27, 50-370 Wrocław.

28

fnowania (nie wspominając o planowaniu prac programistycznych) jest

znacznie utrudnione. Nie wiem jak należy mierzyć wydajność prac pod­

czas tworzenia oprogramowania czy jego projektowania. Jesteśmy skłon­
ni mówić - oprogramowanie "żmudne", "bardzo żmudne", “duże" lub
"ogromne". Oczywiście te.go rodzaju sformułowania nie mogą być pomoc­

ne. Ola pomiaru i ilościowego określenia wydajności prac programistycz
nych, rozumianej jako szybkość wykonania programów całkowicie gotowych
do wykonania, nie istnieje żadna dobra metoda, ponieważ [6]:

- trudno jest oszacować jak duży jest zakres prac

- nie potrafimy oszacować wydajności zespołu
- zazwyczaj nie jesteśmy w stanie stwierdzić, jaką część prac

już wykonaliśmy
- trudno powiedzieć jak daleko się posunęliśmy w tworzeniu opro­

gramowania.
Można w tym miejscu zapytać za autorem pracy[6] -Czy znajdzie

się człowiek, który zajmio się prowadzeniem prac programistycznych
przy tylu niewiadomych? Jest to jeden z kluczowych problemów każdego
rozpoczynającego się przedsięwzięcia programistycznego. Jak to się
jednak dzieje, że pomimo tylu niewiadomych, spora część prac zostaje

ukończona w przyjętym terminie.
Problem dotrzymywania terminu jest jednym z najtrudniejszych as­

pektów zarządzania pracami programistycznymi. Prace programistyczne
są zazwyczaj niepowtarzalne. Tworzenie oprogramowania to autentyczna

praca artystyczna. Tutaj właśnie nabiera znaczenia podstawowa różni­
ca między programowaniem a jakąkolwiek działalnością konstrukcyjną.
Z praktyki wynika jednak, że doświadczone zespoły programistów-pro-
jektantów, których częścią doświadczenia jest umiejętność oceny stop­

nia trudności projektu, dostarczają dosyć złożone oprogramowanie do­
kładnie na czas (zazwyczaj mnożąc tę ocenę przez współczynnik bezpie­
czeństwa większy od 1) [1 1] ,

Opracowywanie oprogramowania to wieloraka działalność nie tylko
związana z pracą na maszynie cyfrowej. Tworzenie dużego oprogramowa­
nia jest przedsięwzięciem kolektywnym, czyli istotne są problemy or­

ganizacji pracy grupy programistów, warunków ich pracy, administrowa­

nia nimi, czy wreszcie wpływu czynników osobowościowych poszczegól­
nych członków grupy na pracę całego zespołu i jego powiązań z innymi
zespołami. Kierowanie to twórczość, którą trudno opanować. Zazwyczaj

główne źródła trudności są odzwierciedleniem złej struktury organi­
zacyjnej [10].

Tworzenie bazowego oprogramowania sieci komputerowej jest dosyć
złożone i kosztowne. Złożoność jest konsekwencją naszkicowanych otwar­
tych problemów przedsięwzięcia programistycznego, co niewątpliwie od­

29

bija się na kosztach. Nie bez znaczenia są także koszty czasu maszyno-
wego kilku zestawów komputerowych.

W artykule niniejszym przedstawiono poszczególne fazy tworzenia

bazowego oprogramowania sieci komputerowej SKJS2 wersja 1. Potrzeba
retrspektywnego spojrzenia na proces projektowo-implementacyjny wyni­
ka z braku podobnych polskich opracowań. Ponowne spojrzenie na orga­
nizacyjną stronę przedsięwzięcia oraz podjęcie próby jego oceny wy­
da je się pożyteczne.

Prace projektowe nad bazowym oprogramowaniem sieci SKJS2 wersja 1
rozpoczęły się na początku roku 1984. Umowa z Instytutem Komputero­
wych Systemów Automatyki i Pomiarów (iKSAiP) we Wrocławiu obejmowała

kilka etapów - założenia, projekt, implementacje oraz testowanie i
uruchomienie na instalacji eksperymentalnej (trzy komputery oblicze­
niowe - 2 x EC1O32 oraz EC1O55). Centrum Obliczeniowe Politechniki

Wrocławskiej wraz z Instytutem Cybernetyki Technicznej 'wykonywało ba­
zowe oprogramowanie sieciowe komputera obliczeniowego (TSO, stacja

transferu zbiorów) oraz w całości oprogramowanie komputera czołowego

i węzła Ll] ; [5] . Zespoły IKSAiP-u realizowały prostą wersję poczty
elektronicznej, narzędzia do pomiaru przepustowości sieci oraz przy­
stosowały podsystem SKOT do pracy sieciowej.

Bazowe oprogramowanie sieci komputerowej nie jest oprogramowa­
niem “zwartym”, tzn. wykonanym na jedną autonomicznie pracującą ma­
szynę cyfrową. Jest to kilka części programowych, umiejscowionych

w różnych maszynach, które mają ze sobą współpracować. Jeżeli oprogra­
mowanie jednej z maszyn sieci ulega załamaniu (awarie sprzętu lub in­
ne przyczyny) • to nie może to spowodować upadku całej sieci czy in­

nych jej komponentów. Dodatkowo w każdej maszynie oprogramowanie jest
podzielone. Między poszczególnymi jego częściami istnieję logiczne
więzi. Również tu upadek jednej części oprogramowania nie może wpły­
wać na pozostałe. Tym samym jawią się nam tutaj dodatkowe problemy
organizacyjne o większej skali złożoności niż przy tworzeniu oprogra­
mowania zwartego. Przede wszystkim dużej staranności wymagała organi­

zacja współpracy między zespołami programistów.

2. PROJEKTOWANIE OPROGRAMOWANIA

2.1, Założenia i wymagania

Początek każdego przedsięwzięcia programistycznego rozpoczyna
się od sformułowania założeń techniczno-ekonomicznych. Jest to pier­
wsza faza uzgadniania warunków między zamawiającym (użytkownikiem),

30

a wykonawcę. Stopień ważności tej fazy jest stosunkowo duży. Warto

przypomnieć za pracę [8]y że jeżeli twórca oprogramowania ma nikłe
lub nie ma żadnego pojęcia o sensownych oczekiwaniach użytkownika, to
całe przedsięwzięcie zakończy się niepowodzeniem. Zdarzają się projek­
tanci systemów zarzędzania bazę danych, którzy nigdy nie wdrożyli te­

go rodzaju systemu. Powoduje to znaczne błędy oprogramowania. Wydaje
się, że w naszym przypadku zamawiajęcy nie żywił obaw wynikajęcych z
tych spostrzeżeń. Należy nawiązać takę współpracę z użytkownikiem, aby

mógł on w sposób istotny wpływać na decyzje podejmowane w fazie okre­
ślania wymagań i celów oraz w fazie powstawania specyfikacji. Oczy­
wiście nie należy jednak angażować użytkownika do podejmowania decy­

zji wykraczających poza jego kompetencje [8] .
Odrębnym problemem jest udział użytkowników w budowie produktów

nie zapowiedzianych na rynku informatycznym. Prawdopodobnie do tej
grupy należy tworzenie bazowego oprogramowania sieci komputerowej w

Polsce. Mimo, ze produkt nie jest adresowany do wyraźnie sprecyzowa­
nego użytkownika, to jednak wykonawca (producent) oprogramowania po­

winien mieć dostateczne wyobrażenie o swych przyszłych klientach.
Przypomnijmy w tym miejscu wymagania postawione wykonawcy przez

zamawiającego oprogramowanie bazowe sieci SKJS2 wersja 1:
- sprzęt wchodzący w skład sieci powinien być produkowany bądź

kompletowany przez ZE ELWRO (dotyczy to EC1032, EC1034 oraz EC8371.01)

- oprogramowanie systemowe powinno być dostarczone przez ZE ELWRO
(zwłaszcza system 0S/MVT 5.01 os)

- należy zachować metodę dostępu telekomunikacyjnego TCAM5 (kom­

puter obliczeniowy) oraz NCP (komputer czołowy i węzła)

- użytkownik powinien mieć możność korzystania z podsystemów TSO
i SKOT oraz przesyłać zbiory sekwencyjne

- nie należy wyodrębniać osobnej podsieci komunikacyjnej.
Podane wymagania stanowiły podstawowe ograniczenia w realizacji.

W znacznym stopniu ograniczyły one pole manewru na etapie projektu

całości oprogramowania oraz w znacznym stopniu wpłynęły na architektu­
rę sieci.

2.2. Organizacja zespołów programistów

Dobrze zorganizowany proces projektowy sprowadza się do coraz
bardziej utrwalonego przekonania, że programiści powinni pracować w
zespołach [81,Eli], gdyż wtedy łatwiej jest utrzymać ciągłość prac,

jeżeli ktoś nieoczekiwanie opuści zespół. Istnieją poza tym jeszcze

trzy inne podstawowe racje przemawiające na rzecz pracy zespołowejCli]:

31

a) pewne problemy są tak trudne, że do ich rozwiązania jest po­

trzebne rozwiązanie wielu podproblemów;
b) pracując zespołowo można rozwiązać cały problem w znacznie

krótszym czasie dzięki jednoczesnemu rozwiązywaniu tych zagadnień;
c) niektóre problemy wymagają ścisłej współpracy wyspecjalizo­

wanych programistów; opanowanie wszystkich potrzebnych umiejętności
może wymagać zbyt wiele czasu [7].

Najczęstszymi wariantami organizacji zespołów programistów są:
- zespól głównego programisty [2,6]
- zespół specjalistów [4]

- zespół demokratyczny [12].

Nie wdając się w omawianie poszczególnych wariantów (patrz li­
teratura), naszkicujemy podział na zespoły pracowników Centrum Obli­

czeniowego, uczestniczących w pracach nad siecią. Otóż, jak już wspo­
mnieliśmy, w momencie przystąpienia do realizacji umowy prajcownicy
Centrum byli zaangażowani w końcową fazę prąc nad siecią MSK, a więc

były już utworzone i sprawdzone zespoły pracowników realizujących wy­
znaczone cele. Wyróżnić można było zespół zajmujący się tylko oprogra­
mowaniem komputera obliczeniowego,komputera czołowego oraz podsieci
komunikacyjnej. Przystępując do prac nad siecią SK3S2 wersja 1, utwo­

rzyliśmy tylko dwa zespoły komputera obliczeniowego oraz jeden zespół
komputera czołowego i węzła. Podstawę zespołów komputera obliczenio­
wego stanowili członkowie zespołu realizującego stację transferu zbio­
rów w sieci MSK. Jeden z tych zespołów zajmował się w dalszym ciągu
tylko stacją transferu zbiorów, drugi natomiast tworzeniem oprogra­
mowania umożliwiającego podłączenie aplikacji do sieci. Zespół zaj­
mujący się oprogramowaniem komputera czołowego w sieci MSK został
powiększony o zespół realizujący oprogramowanie komputera czołowego

dla Odry 1305 sieci MSK. Zespół ten odpowiedzialny był przede wszy­
stkim za oprogramowanie warstwy 4 i 3 modelu odniesienia ISO/OSI.

W każdym zespole dało się wyróżnić wiodącego specjalistę, który
skupiał w swoich rękach wszystkie informacje o postępie prac pozo­
stałych specjalistów. Wybierając wiodącego specjalistę przede wszy­
stkim należy zwrócić uwagę na to, by wcześniej wykonywał już taką pra­
cę. Takiego, który kierował pracami od początku do końca [6], W na­

szym przypadku były to osoby kierujące pracami nad siecią MSK. Nie
oznacza to, że organizacja zespołów była zgodna z drugim podanym wa­

riantem. Raczej było to połączenie wariantu drugiego i trzeciego, po­
nieważ przydziały prac były wewnętrzną sprawą zespołu i zależały

przede wszystkim od zdolności jego członków.
Klamrą spinającą prace obu zespołów były ogólne cotygodniowe

posiedzenia sieciowe (nie licząc seminariów w zespołach)^ na których.

32

podejmowano wiążące ustalenia. Były to spotkania bardziej problemo­
we niż robocze, chociaż relacjonowano również szczegóły. Spotkania by­
ły otwarte dla innych zespołów Centrum Obliczenio’«ego. Oceniając je
z pewnej perspektywy czasu należy uznać, że był to bardzo ważny ele­
ment w całym okresie prac. Nie było to tylko forum, na którym wypra­
cowywano merytoryczne integrację zespołów, lecz spełniało ono także
rolę "koleżeńskiej inspekcji”[6j;L10]. Polegało to na tym, że posz­
czególni programiści przepytywani byli z tego, jak realizuję swoje

zadania. Oczywiście nie należy traktować przepytywania jako przesłu­

chania w negatywnym sensie tego słowa. Robiliśmy to z myślę o kole­
żeńskiej pomocy, wysłuchania propozycji o być może lepszych (spraw­

dzonych) rozwiązaniach. Przepytywanie ma oprócz wymienionych, kolejne
niemniej ważne zalety. Zespół realizujący zadanie (podzadanie) jest

dokładnie zaznajamiany z tym co robi kolega i jak to robi (nieoce­
nione w razie odejścia członka zespołu - taka sytuacja miała miejsce).

Ważny jest także element poznawczy. Członek zespołu uczy się od in­
nych członków grupy przyjmując jego zdaniem lepsze metody programo­
wania, możliwości nowych języków, pozna je niuanse rozwiązywanego te­
matu ("programista powinien mieć możliwość i chęć uczenia się” [10]).

Decyzje podejmowane na spotkaniach były wiążące dla wszystkich biorą-

cych udział w pracach.
Termin tego spotkania wyznaczono w dniu, w którym dokonyv«ana była

cotygodniowa konserwacja sprzętu komputerowego ("nie ma dostępu do ma­

szyny - mogę poświęcić czas na dyskusję") e Dest to niezmiernie ważny

czynnik warunkujący "swobodną" atmosferę na spotkaniach programistów.

2.3. Planowanie prac

Cykl życia oprogramowania możemy podzielić na trzy części: opra­
cowanie, wykorzystanie oraz przedłużone opracowywanie. Zazwyczaj dwie
ostatnie części zachodzą na siebie. W okresie opracowywania musimy
określić wymagania, zaprojektować oprogramowanie, napisać programy,
scalić je, przetestować i zweryfikować, a następnie zdokumentować.

W okresie przedłużonego opracowywania oprogramowanie ulega rozsze­
rzeniu o nowe funkcje i modyfikacje starych, mo-że ulec wymianie sprzęt
oraz poprawia się błędy.

W okresie opracowywania istotne są następujące elementy składo­
we procesu, a więc: czas, kadry, narzędzia oraz pieniądze. W okresie
wykorzystania na pierwszy plan wysuwają się realizowane funkcje,
efektywność i szybkość, zasoby, łatwość wykorzystania oraz brak błę­
dów. Natomiast w okresie przedłużonego opracowywania istotne są: do­
kumentacja użytkowa, modyfikowalność, brak błędów, pieniądze, kadry,
czas oraz narzędzia.

33

Bardzo ważnym okresem cyklu życia oprogramowania jest okres prze­
dłużonego opracowywania, niestety, źle widziany i rozumiany przez pol­
skiego użytkownika (zamawiającego),, przede wszystkim ze względów fi­

nansowych. Powołując się na problem Hume'a [61 należy wyciągnąć nastę­

pujący wniosek - instytucje produkujące oprogramowanie powinny mieć
zapewnione finansowe wsparcie, pozwalające im pielęgnować oraz - co
istotniejsze - rozwijać już eksploatowane oprogramowanie systemowe.

Niestety utarta praktyka zawierania umów w dotychczasowym ich

kształcie, nie pozwala zespołom programistów na kontynuowanie pracy.
System finansowy wyznacza sztywne ramy czasowe przeznaczone na pra­
ce ("od odbioru do odbioru”)c Po sprzedaniu pracy zajmujemy się już

innym problemem, "zapominając" co zrobiliśmy dotychczas.

Dlatego mimo wszystko, przystępując do realizacji zamówienia na
utworzenie dużego systemu należy'zawczasu wkalkulować możliwość jego
przyszłych modyfikacji i wzbogacania, np. o dodatkowe funkcje i usługi.

Okazuje się, że ok. 25-75% prac programistycznych polega na modyfi­
kacji i ulepszaniu istniejącego oprogramowania ElOL Poza tym, pra­
wie zawsze po pewnym czasie eksploatacji oprogramowania zachodzi ko­
nieczność wprowadzenia pewnych zmian. Wystarczy, że zamawiający nie­
precyzyjnie sformułował swoje wymagania. Oczywiście powinniśmy ustrzec
się od tego rodzaju sytuacji, jednak nie ustrzeżemy się od ciągłych
zgłoszeń dodatkowych wymagań od zamawiającego. Ponadto źródłem zmian
mogę być sugerowane poprawki bądź wykrycie błędu. Dlatego doświad­
czony programista zdaje sobie z tego sprawę, projektuje zatem opro­
gramowanie w taki sposób, aby zmiany nie były wstrząsem i nie wpły~
wały na niezawodność produktu. Dednocześnie prostota modyfikacji jest

bardzo ważną charakterystyką jakości programu. Szybkość rozwiązania

zadania modyfikacji może być wykorzystana jako miara rozumienia pro­

gramu iicl.
Przedstawiony problem możemy rozwiązać, jeżeli będziemy starać

się kierować tworzeniem oprogramowania mając na uwadze następujące

zalecenia [6 1 :
1. Należy projektować nasze oprogramowanie tak,aby było ono w

maksymalnym stopniu zmodularyzowane.
2. Moduły należy pogrupować tak, aby zminimalizować wzajemne

oddziaływania na siebie.
3. .Należy wykorzystywać tablicową metodę sterowania programu.

Zmieniając wiersz tablicy, zmieniamy algorytm.
4. Koniecznie należy ustanowić pewien "standard” programowania i

wymagać jego przestrzegania.
5. Należy zorganizować ścisłą i szczegółową kontrolę.

34

6. Zawczasu należy zaplanować przesunięcie niektórych członków
zespołu do prac nad rozpracowywaniem kolejnych wariantów i wersji

oprogramowania.
7. Należy zaplanować przechowanie środowiska testującego.
8. Podane zalecenia należy uwzględnić w kosztach przedsięwzięcia.

W sieci SKÓJS2 wersja 1 planowanie prac było niezwykle utrudnio­
ne. Wynikało to zwłaszcza z tego, że sformułowane wymagania własności
sieci mówiły o tym, iż dotychczasowe aplikacje (TSO, SKOT) maję być

aplikacjami w sieci. To wymaganie połączone z koniecznością wykorzy­
stania telekomunikacyjnej metody dostępu TCAM5 ograniczało możliwości
projektantów struktury oprogramowania. Problemem nie było znalezienie
efektywnej modularnej struktury, lecz takiej, której realizacja speł­

niałaby wymagane funkcje. Wymagało to więc gruntownego zapoznania się
z własnościami tych aplikacji pod kątem ich użytkowania w sieci.
Ponieważ (jak wykazują badania [14) - patrz tab. 1) koszty usunięcia

błędów powstałych na etapie projektu w momencie, gdy już są zaawanso­

wane dalsze prace tworzenia oprogramowania szybko rosną, ten etap
został zakończony dopiero, gdy istniała pewność co do jego poprawności.

Tabela 1

Relatywny koszt wykrycia i usunięcia
błędów

Etap Koszt usunięcia błędu

Projekt 1
Testowanie modułów 4

Testowanie funkcji
systemu 5

Testowanie całego
systemu 15

Eksploatacja 30

Końcowy projekt struktury oprogramowania powstał dopiero wtedy,
gdy zostały sprawdzone wszystkie te elementy, które uważano za kry­
tyczne (własności środowiska - TCAM i system operacyjny). Cóż bowiem

zrobić, gdy na przykład program MCP nie działa zgodnie z opisem, któ­

ry nie jest precyzyjny? Ze względu na brak źródeł tego oprogramowa­
nia, szczupłość zespołów i brak czasu, nie wchodziło w rachubę po­
prawianie oprogramowania systemowego. Stąd też dopiero pó upłynięciu
niemal 2/3 czasu realizacji oprogramowania powstał ostateczny projekt
jego struktury. Oczywiście dysponowano też bogatą biblioteką pod­

35

programów potrzebnych do spełnienia wszystkich funkcji realizowanych
przez środowisko. Również na etapie projektu zwrócono uwagę na te ele­

menty, które umożliwię testowanie i uruchamianie oprogramowania (zmie­
niono początkowo niesymetryczny protokół wymiany komunikatów między
komputerem obliczeniowym a czołowym na symetryczny, po to, by można
oprogramowanie komputera obliczeniowego uruchamiać i testować bez
użycia komputera czołowego - wystarczyło zawracać komunikaty w kom­
puterze obliczeniowym).

3. EFEKTYWNOŚĆ PRAC PROGRAMISTYCZNYCH

Wraz z rozwojem komputerów termin"efektywność prac programisty-
cznych”stał się bardzo niejednoznaczny. Można wyróżnić jednak dwie
różne miary efektywności - szybkość rozwiązywania zadania oraz czas
oczekiwania na rozwiązanie. Dlatego jeżeli mówimy o efektywności, to
należy jasno sobie powiedzieć co będziemy (i jak) mierzyć. Niestety

nie wiemy jednak, jak należy mierzyć efektywność prac podczas pro­
gramowania czy projektowania oprogramowania. Nierozerwalnie z efek­
tywnością prac wiąże się organizacja prac programistycznych (zespoły
programistów). Każdy odpowiedzialny za przedsięwzięcie programisty­

czne powinien wiedzieć, na jakim etapie jest jego praca. Przy czym
wyróżnić można tutaj następujące etapy: euforia, rozczarowanie, szu­
kanie winnych, karanie niewinnych oraz wynagradzanie nieuczestniczą-
cych w pracach (?). Nie należy powyższych etapów traktować w sposób

li tylko humorystyczny! Doświadczenie uczy, że szukanie winnych, w

konsekwencji którego zamieniamy pierwszego odpowiedzialnego drugim
odpowiedzialnym, zazwyczaj kończy się w identyczny sposób. Odpowie­
dzialnego zmienić łatwo, jednak nie zawsze decyzja ta prowadzi do
dobrych wyników. Przede wszystkim ujemnie wpływa ona na wszystkich
pozostałych współpracowników (“stało się to z nimi, może zdarzyć

się i mnie”). Wiadomo, że zestresowany programista .to zły progra­

mista.
Dobry administrator powinien być dostatecznie wymagający, aby

zapewnić właściwą intensywność prac, ale i dostatecznie sympatyczny,
by nie poróżnić pracowników. Administrator powinien być kompetentny,
lecz bardziej konieczną jego cechą jest przenikliwość ("dobry pro­

gramista nie musi być dobrym kierownikiem").

Nagrodą za dużą efektywność powinny być premie i progresywne
wypłaty, przy czym żaden administrator nie może liczyć na więcej niż

entuzjazm podległych mu pracowników.

36

Bardzo ważną rolę z punktu widzenia efektywności odgrywają wa­

runki pracy programie ty[9,13] .
W przypadku sieci SKJS2 wersja 1 była realizowana następująca

zasada: "Nikt nigdy nie może pozostawać bez zajęcia, każdy ma zawsze

coś jeszcze do wykonania". Stosowanie takiej zasady nie jest łatwe,
ponieważ członkowie zespołu pracuję nierównomiernie. Trudno było
(na szczęście!) ocenić, które z prac są bardziej pracochłonne, a któ­

re mniej. Ze względu na dużą uniwersalność członków zespołu można by­

ło wymagać od nich wykonania coraz to nowych prac. Szczególnie ważne
było poczucie współodpowiedzialności każdego z członków zespołów za

całość prac.

4. . TESTOWANIE

Testowaniem nazwiemy działalność, której celem jest pokazanie,

ze oprogramowanie realizuje to, co założono.Jednym z charakterystycz­
nych aspektów testowania jest indukcyjne wnioskowanie na podstawie
dobranego, małego zbioru zachowań, że program zachowa się tak jak po­

winien. Indukcyjne, ponieważ związane jest z problemem - żadna liczba
przypadków potwierdzających poprawność nie może całkowicie wykluczyć

możliwości, iż istnieje nieprzetestowany przypadek podważający tę
poprawność [3], Pojawia się więc zamysł dowiedzenia, iż program za­

wsze zachowa się tak jak powinien przyjąwszy, że dowód jest przeko­
nywającym i trudnym do obalenia argumentem. Jednak dowód matematycz­
ny jest poprawny lub niepoprawny i trudno jest określić , czy poprawny

jest dany konkretny dowód. Stąd najczęstszym sposobem obalenia dowo­
du (twierdzenia) jest znalezienie kont rprzykładu L3] .•

Najlepszym testowaniem dowolnego oprogramowania jest jego nor
malna eksploatacja. Szczególnie odnosi się to do systemów czasu rze­
czywistego. Jednak zanim to nastąpi, zazwyczaj pragniemy znaleźć błę­
dy na najwcześniejszym etapie realizacji projektu (powiemy o tym w
następnym rozdziale).

Przed uświadomieniem sobie na czym polega działalność grupy tes­
tującej, należy przypomnieć, że grupa ta naprawdę powinna być zainte­
resowana wykryciem każdego błędu [8] ("nie powinna usiłować wykazać

poprawności oprogramowania"), zgodnie zresztą z pierwszą zasadą tes­

towania, która mówi - testowanie jest to proces wykonywania programu
(lub jego części) w celu i z intencją wykrycia błędów.

Na czym polega działalność grupy testującej? Otóż polega ona na

[6]:

37

- rozumieniu funkcji, które powinny być realizowane przez system
- wykryciu "wąskich gardeł" systemu: ograniczeń czasowych oraz

niestabilności wynikającej z parametrów wejściowych
- zaprojektowaniu kolejności testów ("ćwiczeń")

- określeniu w testowanym systemie Zarówno sprzętowych, jak i
programowych składowych

- zbudowaniu systemu testującego

- planowaniu rzeczywistego przebiegu testowania oraz umiejętne
nim kierowanie.

Ponadto dobrze jest uświadomić sobie następujące stwierdzenia

urastające do rangi postulatów:
- należy zadbać o to, by testowalność była kluczowym założeniem

projektu oprogramowania
- testowanie musi rozpocząć się od ustalenia celów (podobnie jak

każda działalność)
- nie można testować własnego programu ("daj program wariatowi,

bo w tym względzie wariat jest genialny")
- nigdy nie zmieniaj programu po to, aby ułatwić testowanie.

W literaturze przedmiotu precyzuje się i wprowadza nazewnictwo,

uściślając rozumienie poszczególnych faz procesu testowania. Omówimy
je krótko. Weryfikacją nazwiemy próbę wykrycia błędów przez wykonanie
programu w roboczym środowisku, natomiast konfirmacją analogiczną
próbę, ale wykonaną w danym, rzeczywistym środowisku. Natomiast uru­
chamianie docieka dokładnych przyczyn znanych już błędów i usiłuje

je poprawić.
□ ak zapewne będzie wynikać z następnego rozdziału, tworząc opro­

gramowanie bazowe sieci SKOS2 wersja 1, zrealizowaliśmy wszystkie wy­

mienione fazy procesu testowania.
Oedną z uznanych metod testowania, zapewniających rozwiązanie

kluczowego problemu w "końcowej” fazie procesu testowania, jest zaan­
gażowanie użytkowników do testowania. W przypadku sieci SK3S2 wersja 1
pierwszym uruchomionym podsystemem było TSO, które poddawaliśmy Testo­
wi poligonowemu, używając go po prostu jako narzędzia do budowy pro­
gramów użytkowych. Należy zatem postępować w myśl zasady - używaj włas
nego produktu jako narzędzia, zanim przystąpią do tego inni [8].

5. TESTOWANIE OPROGRAMOWANIA BAZOWEGO SIECI SK0S2 WERSJA 1

Wspomnieliśmy już, że oprogramowywaniem sieci SK0S2 wersja 1,

zajmowały się zespoły raczej doświadczonych programistów i projektan­

38

t ów. Doświadczenie to dotyczyło przede wszystkim merytorycznej stro­
ny zagadnień związanych z sieciowymi zaleceniami standaryzacyjnymi
(protokoły, usługi) oraz wyczuciem zagrożeń, jakie niosę duże przed­
sięwzięcia programistyczne. Niestety oprogramowanie systemowe, na
którym oparliśmy oprogramowanie bazowe sieci, zawsze sprawiało nam
niespodzianki pomimo kilkuletniej z nim współpracy. Z punktu widze­
nia psychologicznego sytuacja ta bardzo ostro wyczuliła nas na pro­
blemy testowania już na najbardziej elementarnym poziomie (np. spraw­

dzenie czy to co napisano w dokumentacji oprogramowania systemu ope­
racyjnego jest prawdę?!). Jeżeli ktoś nie odszedł z zespołu i wy­

trwał do końca prac - znaczy to, że sprawdzał wszystko! Kto próbował
od razu przejść do fazy konfirmacji, ignorując ważność fazy weryfi­
kacji, ten narażony był na duże stresy z własnej winy. Poza tym pra­
cownicy ci nigdy nie mogli udokumentować weryfikowalności założeń
realizacyjnych swoich modułów programowych, czyli po scaleniu i uru­
chomieniu oprogramowania nastręczali oni wielu kłopotów podczas prób
usuwania przyczyn znanych już błędów. Omawiana sytuacja występuje
wtedy, gdy każdy członek zespołu twierdzi, że błąd nie jest związany

z jego modułem. Jeżeli każdy moduł przeszedł fazę weryfikacji, to z
praktycznego punktu widzenia pozostaje tylko analiza więzi między-
modułowej. Nawiasem mówiąc, jeżeli opisana sytuacja występuje, po
prostu oznacza to, że nie przywiązywano szczególnej uwagi do testo­
wania jako kluczowego założenia projektu oprogramowania ("błąd po­

winien wskazywać winnego")..

Za pracą [8] można proces testowania usystematyzować, dzieląc

go na następujące fazy:
- testowanie modułu jest weryfikacją pojedynczego modułu pro­

gramu zazwyczaj w środowisku wyodrębnionym od innych modułów
- testowanie integracyjne jest weryfikacją pośrednictw między

częściami systemu
- testowanie funkcji zewnętrznych polega na weryfikacji zewnę­

trznych funkcji systemu, określonych w specyfikacjach zewnętrznych
- testowanie systemu jest weryfikacją i (lub) konfirmacją sy­

stemu względem jego celów początkowych
" testowanie akceptacyjne jest konfirmacją systemu lub programu

względem wymagań użytkownika
- testowanie instalacyjne jest konfirmacją każdej konkretnej

instalacji systemu w celu wykrycia błędów popełnionych podczas in­
stalowania systemu.

Najpierw zaczęliśmy testować program MCP, a zwłaszcza tę jego

opcję, która umożliwia przekazywanie komunikatu z jednego programu

39

do innego (łączność program - program). Przykładowe i w praktyce

najczęściej stosowane opcja dotyczyły łączności program-terminal.
Ponadto wykorzystana w sieci metoda dostępu telekomunikacyjnego (rea­
lizowana przez program MCp) była z poziomu 5, a więc inna od rozpo­

wszechnionej dotychczas metody TCAM poziomu 4. 'Wykonano wiele genera­
cji programu MCP, sprawdzając jego opcje na prostych programach testo­
wych komunikujących się ze sobą oraz z terminalami(na początek lokal­
nymi).

Program MŁOT, realizujący bardzo bogaty zestaw funkcji, został
napisany w języku Pascal 360. Postąpiono tak, ponieważ łatwiej można
modyfikować i uruchamiać program napisany w języku wysokiego poziomu

przewidując, że w trakcie testowania funkcji zewnętrznych oraz syste­
mu wystąpią dodatkowe wymagania na realizowane funkcje (co oczywiście
miało miejsce). Wybór języka Pascal 360, oprócz wymienionych powo­
dów' został podyktowany jeszcze tym, że powszechnie był wykorzystywa­

ny w innych pracach,.a więc jego środowisko było w wystarczającym
stopniu rozpoznane oraz jest to bardzo przejrzysty i zrozumiały język
(w znacznym stopniu przyjęcie tego języka spełniało postulat łatwej
modyfikowalności oprogramowania). Pozostałą część oprogramowania ba­

zowego, już znacznie mniejszą, zakodowano w języku Assembler 360.
Standardowe operacje wejścia/wyjścia dostępne w języku Pascal

nie obejmują telekomunikacyjnej metody dostępu (ma ją tylko PL 1
optymalizujący). Należało zatem dobudować do środowiska Pascal ope­

racje wejścia-wyjścia, umożliwiające kontaktowanie się z programem
MCP (wysyłanie i odbieranie komunikatów).

Szkieletowe oprogramowanie modułu MŁOT przetestowano w środowisku
identycznym, jakie stworzyliśmy do przetestowania opcji MCP (program
MŁOT-program, program-MŁOT-terminal), Następnie testowaniu poddano

program przesyłający i odbierający dane do/od oprogramowania węzła.
Na początku program ten nie kontaktował się bezpośrednio z oprogra­
mowaniem węzła, a jedynie emulował jego obecność ("zawracanie" na

styku z EC8371.01)., Następnie powtórzono omówiony proces testowa -
nia. Łatwo zauważyć, że taka kolejność weryfikacji niejako w natu­

ralny sposób wskazywała źródło błędów - było nim dołączone oprogra­

mowanie bądź realizacja styk między modułami.
Jednocześnie prowadzono prace nad przystosowaniem podsystemu

TSO do pracy w sieci. V/ystarczyło potraktować podsystem TSO jako je­

szcze jeden program współpracujący z programem MCP, by wykorzystu­
jąc już istniejące środowisko testujące praktycznie "bez problemów",
ud“'tępnić TSO do pracy użytkowej (analogicznie postąpiliśmy z pod­
systemem SKOT, który przystosowywany był poza Politechniką Wrocław­
ską i został włączony bez większych problemów).

40

Udostępniając podsystem TSO do pracy z terminali lokalnych,
zaczęto łęczyc się z oprogramowaniem NCP w celu udostępnienia termi­

nali zdalnych, fizycznie podłączonych do EC8371.01. Na tak przygoto­
wanym oprogramowaniu (TSO, MCP, MŁOT oraz NCp) zaczęto oprogramowy-

wać stację transferu zbiorów (STZJ, prostą pocztę elektroniczną oraz

oprogramowanie węzła.
Stację transferu zbiorów weryfikowano w sztucznym środowisku

(testowanie poziomu O oraz 1 protokołu NIFTP Blue Book), Następnie

przeprowadzono konfirmację, ale jeszcze z zawracaniem komunikatów

"za" programem MŁOT - czyli nadal testowano program MCP oraz MŁOT
ale w warunkach zwiększonych przepływów danych.

Oprogramowanie węzła oraz innych modułów umieszczonych w
ECŁ371.O1 powstawało w komputerze obliczeniowym. Weryfikowano je naj­
pierw na programowym emulatorze procesora EC8371.01, który specjal­
nie w tym celu zaprojektowano i zaimplementowano. Tak zweryfikowane
oprogramowanie wprowadzano (ładowano) do komputera EC8371.01 i pod­

dawano konfirmacji. Założono, że najpierw będzie testowane oprogra­
mowanie odpowiedzialne za styk fizyczny i logiczny (sieciowa metoda

dostępu) między komputerem obliczeniowym a oprogramowaniem węzła
w EC8371.O1. Zrealizowano to "zawracając" strumień komunikatów za
oprogramowaniem sieciowej metody dostępu. Do -sprawdzenia tego styku
wystarczyło wykorzystać już istniejące środowisko testujące - STZ..
TSO, MCP, MŁOT oraz terminale.

W tym momencie spotkała nas bardzo przykra niespodzianka. W śro­

dowisku tym, jak łatwo zauważyć, między oprogramowaniem komputera
obliczeniowego a oprogramowaniem komputera czołowego i węzła istnie­
je łączność fizyczna przez dwa wydzielone podkanały multiplekserowe.
W takiej konfiguracji istniejące firmowe oprogramowanie nigdy nie
było generowane. Okazało się, że podkanał obsługujący łączność z opro
gramowaniem węzła ulega trwałemu zawieszeniu (stan trwałej zajętości)

co wstrzymywało przepływ danych przez ten podkanał. Okazało się, że
produkowana wersja EC8371.01 wykonywana jest niezgodnie z dokumenta­
cją. Po wprowadzeniu niewielkiej zmiany sprzętowej w EC8371.01, pod­
kanał działał poprawnie. Kolejne zawracanie strumienia komunikatów
nastąpiło na wyjściach skanerowych (zapętlenie na modemach). Pow­

tórzono dotychczasowe testy. W warunkach prawie "rzeczywistych" in­
tensywnie przetestowano oprogramowanie (sesja STZ, otwarte sesje

użytkowników TSO).

Na tym etapie prac można było przenieść oprogramowanie na insta­
lację eksperymentalną sieci, składającą się z trzech zestawów kompu­
terowych (tyle udostępnił zamawiający) i przetestować oprogramowanie

węzła w zakresie współpracy z innymi węzłami oraz zasymulować "upadki

41

wybranych zestawów komputerów. Można było wreszcie przystępie do po­
miarów sieci i oceny jej parametrów czasowych.

Po przeniesieniu oprogramowania bazowego na instalację ekspery­
mentalną rozpoczęły się próby i badania poczty elektronicznej, którą

wykonywały zespoły spoza Politechniki Wrocławskiej.,Oprócz niewielkich
korekt w-rozumieniu styku logicznego między oprogramowaniem poczty a
programem MŁOT, oprogramowanie to zostało uruchomiona praktycznie od
razu.

Krótkie przypomnienie poszczególnych etapów tworzenia oprogra­
mowania bazowego sieci SK0S2 wersja 1 wskazuje, że w zasadzie zgodne

one były z ogólnie zalecanymi w metodologii programowania zasadami
testowania. Nie próbowano uruchomić całości od razu, a w przemyślany

sposób włączano poszczególne części oprogramowania, osiągając w sto­
sunkowo krótkim czasie wyznaczony cel ("oprogramowanie to nie cel,

lecz środek do celu").

6. OCENA WŁASNOŚCI OPROGRAMOWANIA

Ponieważ oprogramowanie sieci SK3S2 wersja 1 należy do oprogra­
mowania systemowego, należy dbać o to, by spełniało ono wiele różno­
rodnych wymagań [11]> W przypadku tworzenia tego oprogramowania wy­
magania te były spełniane mniej lub bardziej świadomie. Warto jednak
skonfrontować w jakim stopniu oprogramowanie sieci spełnia najważ­

niejsze z nich :
1. Zgodność z założoną specyfikacją (poprawność). Formalnej

specyfikacji sieci nie było. Zamawiający określił jedynie funkcje
sieci, które zostały spełnione. Nie wydaje się zresztą możliwe po­
danie formalnej specyfikacji środowiska, w którym działa sieć.

2. Niezawodność obejmująca odporność systemu na błędy własne,

środowiska, sprzętu i użytkownika. Oprogramowanie jest odporne na
część błędów. Odporne jest zwłaszcza na wszystkie błędy użytkownika,
na niektóre awarie sprzętu(możliwość tworzenia drogi zastępczej w po­
łączeniach sieciowych w przypadku fizycznego połączenia między węzła­
mi). Nie jest natomiast odporne na błędy systemowe oraz większość

błędów własnych.
3. Wydajność w sensie oszczędnego wykorzystania zasobów takich,

jak: czas, pamięć, urządzenia zewnętrzne. Oprogramowanie sieci działa
szybciej niż oprogramowanie o takich samych funkcjach systemu dotych­
czasowego (.np. TSO w pracy lokalnej). Wielkość zajmowanej pamięci
jest o około jedną trzecią większa niż w dotychczasowych systemach

42

teleprzetwarzania. Natomiast są zajmowane urządzenia zewnętrzne,-

które są obsługiwane przez sieć.
4. Rozszerzalność, tzn. możliwość rozszerzania systemu w przy­

szłości bez konieczności dokonywania zbyt wielu zmian w istniejącej
części. Ten postulat jest spełniony bardzo dobrze. Można bez większych
problemów zwiększyć liczbę aplikacji sieciowych, typów obsługiwanych
terminali, przenieść funkcje węzła z procesora czołowego do proceso­

ra pełniącego tylko funkcje węzła. Można też rozdzielić między dwa

komputery czołowe funkcje węzła i procesora obsługującego terminale.
5. Przenoszalność , tzn. możliwość łatwej adaptacji systemu do

różnych konfiguracji systemowo-sprzętowych.
6. Łatwość pielęgnacji, tzn. podatność systemu na wprowadzanie

niewielkich zmian bez nadmiernego ryzyka wprowadzenia błędu. Ten po­

stulat jest spełniony dzięki użyciu języka Pascal do tworzenia opro­
gramowania komputera obliczeniowego. Podczas uruchamiania czas zna­
lezienia przyczyny zauważonego błędu i jego usunięcie był często

krótszy niż 0,5 godziny. Ze względu na brak dobrego języka do progra­
mowania komputera czołowego, szukanie i poprawianie błędów było tam

bardziej czasochłonne i skomplikowane.
7. Odzyskiwalność, tzn. możliwość użycia modułów systemu w in­

nych systemach lub nowych generacjach tego samego systemu. Wydaje się,
że spełnienie tego postulatu zależy przede wszystkim od charakteru
zmian w nowym systemie. Twórcy gwarantują działanie oprogramowania
tylko w systemie OS/OS 5.01. W innych systemach typu OS/OS oprogra­

mowanie sieciowe będzie przypuszczalnie musiało być częściowo zmody­
fikowane lub przynajmniej wygenerowane od początku.

8. Odporność na włamania (odporność przed niepożądanym użyciem)'.

Że względu na przeznaczenie sieci oraz własności systemu 0S/3S ta
cecha nie jest spełniona. Zachowano jednak te zabezpieczenia, które
mają aplikacje sieciowe (np. TSO wymaga znajomości nazwy użytkownika

i hasła). Istnieją jednak możliwości łatwej modyfikacji oprogramowa­
nia, by oprogramowanie akceptowało jedynie zarejestrowanych użytkowni­

ków.
9. Zgodność ze standardami.

10. Łatwość użycia, tzn. prostota koncepcyjna systemu umożliwia­

jąca szybkie jego opanowanie oraz pomoc udzielana użytkownikom w
trakcie pracy. Korzystanie z sieci jest bardzo proste i niemal nie
wymaga szkolenia (trzeba natomiast nauczyć się korzystania z aplika­
cji sieciowych).. . System udziela prostej pomocy użytkownikom w razie

nawiązywania i rozłączania połączeń.

43

11. Dobra dokumentacja będąca podstawę do modyfikacji systemu
przez producenta, a także do napisania odpowiednich podręczników dla
różnych użytkowników. Dokumentacja techniczna była robiona tak, by
autorzy mogli z niej w przyszłości skorzystać bez problemu (samodoku-
mentujące się programy). Natomiast autorzy sporządzili osobno doku­

mentację użytkową i eksploatacyjną z myślą o użytkownikach nie znają­
cych tajników oprogramowania.

□ak widać z przedstawionego bilansu, oprogramowanie sieci speł­
nia niemal wszystkie z przytoczonych postulatów. Niestety do dziś
(marzec 1988) sieć nie jest eksploatowana w warunkach rzeczywistych

i dlatego trudno o praktyczną weryfikację jej możliwości. Z racji
rozproszenia oprogramowania należy sądzić, że jej wdrażanie stanie
się źródłem kolejnych doświadczeń oraz umożliwi wykrycie i poprawie­

nie dotychczas nie dostrzeżonych błędów, jak również jej własności
użytkowych.

LITERATURA

[1] Aneks do założeń techniczno-ekonomicznych na sieć komputerową
SKJS2 wersja 1, CO PWr., Raport SPR 5/84, Wrocław 1984.

[2] BAKER F.T., Chief programmer team management of production pro-
gramming, IBM System 5., Vol. 11, No. 1, 1972,: s. - 56-73.

[3] BRADY D.M., Informatyka teoretyczna w ujęciu programistycznym,
Warszawa, WNT,1983,

[4] BROOKS F.P., The mythical man-month : essays on software engineer-
ing, Reading, Massachusets , Addison-Wesley, 1975,

[5] BUDZIANOWSKI L. i in., Projekt techniczny oprogramowania PTD ja­
ko procesora czołowego dla EC1032 i komputera węzła w sieci
SK3S2 wersja 1: Założenia funkcjonalne, Inst .Cybern.Techn.PWr.,
Raport SPR 11/84, Wrocław 1984,

[6] FOX O.M., Software and its development, Prentice Hall Inc., 1982,
[7] DONES C.B., Konstruowanie oprogramowania metodą systematyczną,

Warszawa, WNT, 1984,
[8] MYERS G.D. , Projektowanie niezawodnego oprogramowania, Warszawa,

WNT, 1980,
[91 McCUE G. M. , IBM Santa Teresa laboratory - Architectural design

for program development , IBM System U., Vol. 17, No. 1, 1978,
s. 4-25,

[10] SHNEIDERMAN B., Software psychology. Humań factors in Computer
and Information Systems, Winthrop Pub. Inc., Cambridge 1980,

[11] TURSKI W.M., Metodologia programowania. Warszawa, WNT, 1982,
[12] WEINBERG G.M., The psychology of Computer programming, Van

Nostrand Reinhold, New York 1971,
[13] Van TASSEL D.,Praktyka programowania, Warszawa, WNT, 1982,

44

T14] HERZOG 0., Formal Software Development Methods in Industrisl
Enviroments, in Fornal Software Oevelopment: Combining Specyfi"
cation Methods, Proc. Workshop, Wyborg 1984,

Praca wpłynęła do Redakcji 1988.03.28

THE C-REATION OF BASIC SOFTWARE OF THE NETWORK SK3S2 WERSION 1

The paper describes the particular parts of the software crea-
tion of the network SK0S2 version 1. One aftar the other, the phasas
of the project are given. The problems of effectivity of the program”
ming works are considered. There is an attempt to answer the ques-
tion: How to test, debugg and start the big software?

0BPA30BAHHE OCHOBHOPO MATEMATUWKOPO OBECIIEWDIfl
HJWJMTEJffiHOn CETM SKJS2 BEPGHH 1

B HacTOHiueii craTŁe npeucraBJieHŁi ornejiBHue srana odpasosaHM ochob-
noro MareMaTHHecKoro ofiecneHennH BHnncjmrejiBHoii cera SKJS2 sepcnn 1.
OócyaweHH nocjienoBare^Bnae $asa npoeKTHpoBaHnH ocHOBHoro MareMarnHecKO-
ro oóecneHeHHH, npoójiem s$i>eKTHBH0CTi5 paóOTU nporpaMMMCTOB, a npeswe
Bcero - recTMpoBaHKH n óontuioro MareMam^ecKoro oóecne^eHM.

Prace Naukowe Centrum Obliczeniowego
Nr 6____________________Politechniki Wrocławskiej Nr 6
Studia i Materiały Nr 3 ~7989

Sieć komputerowa,
transfer zbiorów,

język dostępu do usług

Maria JACUKOWICZ*
Andrzej JANISZEWSKI*
Jan KWIATKOWSKI*

DOSTĘP TERMINALOWY W SIECI SKJS2 WERSJA 1

Opisano sposób wykorzystania terminali w sieci SKOS 2 wersja 1.
Przedstawiono rodzaje terminali, z których można uzyskać dostęp
do sieci oraz aplikacji sieciowych. Podano postać komend umo­
żliwiających ten dostęp. Opisano rozwiązania programowe doty­
czące sposobu połączenia z aplikacją, formatowania ekranu i
zmian umożliwiających wykorzystanie podsystemu TSO w pracy sie­
ciowej .

1. WSTĘP

Oedną z usług oferowanych przez sieć SKOS2 wersja 1 jest możli­
wość dostępu terminalowego do aplikacji wielodostępnych działających

w komputerach obliczeniowych sieci. W założeniach wstępnych [2,3]
przyjęto możliwość dostępu do następujących aplikacji:

- TSO (ang. Time-iSharing Options)

- SKOT (System Kontroli i Obsługi Terminali).,

Oednocześnie założono możliwość stosowania innych aplikacji
sieciowych, konstruowanych samodzielnie■przez użytkownika sieci [2].

Możliwość współpracy z aplikacjami mają zarówno terminale pod­
łączone do danego komputera obliczeniowego (tzw. lokalne), jak r6vt~

Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wyspiań­
skiego 27, 50-370 Wrocław.

46

nież terminale podłączone (fizycznie.) do innych komputerów oblicze­

niowych w sieci.
Współpracę terminali z aplikacjami systemu, umieszczonymi w do­

wolnym komputerze obliczeniowym, zapewnia język dostępu do sieci. Pro
gramem odpowiedzialnym za interpretację komend języka dostępu siecio­
wego oraz zestawienie połączeń z odpowiednimi aplikacjami w kompute­
rze obliczeniowym jest moduł o nazwie MŁOT (Moduł Łęcznikowy Obsługi
Terminali).

2. RODZAJE TERMINALI

W sieci SKOS2 wersja 1 dostęp przez terminale obsługiwany jest

przez program PSPC wchodzący w skład oprogramowania węzła, metodę
dostępu telekomunikacyjnego TCAM5 oraz program MŁOT. Program PSPC

powstał na bazie programu NCP i umieszczony jest w komputerze czoło­
wym (spełniającym jednocześnie funkcje węzła), natomiast pozostałe

dwa w komputerze obliczeniowym.
Aplikacje dostępne przez terminale, są aplikacjami umożliwiają-

cymi pracę interakcyjną. Przyjęte rozwiązanie umożliwia zastosowanie
następujących urządzeń:

- niezależnych stacji abonenckich EC8575M
- monitorów EC7917 oraz drukarki EC7914 ze sterownikiem grupo­

wym EC7912
- monitorów EC7917 z grupowym sterownikiem zdalnym EC7911

- monitorów niezależnych EC7915.

Obsługa terminali w sieci SK3S2 wersja 1, opierająca się na pro­

gramach MCP i NCP, pozwala na obsługę także innych typów terminali.
W obecnej wersji oprsgramowania bazowego sieci obsługiwane są tylko
wymienione typy. Ograniczenie to wynika z cech interakcyjności każdej
aplikacji oraz z szerokiego rozpowszechnienia wymienionych urządzeń
w kraju. Ewentualne rozszerzenie o nowe typy wymaga modyfikacji pro­
gramu MŁOT oraz dostarczenia aplikacji współpracujących z tymi ter­
minalami.

3. ZESTAWIENIE POŁĄCZEŃ TERMINALOWYCH

Po załadowaniu oprogramowania sieciowego do komputera oblicze­
niowego oraz komputera czołowego i węzła, terminale sieciowe, zdefi­
niowane w opisie programu MCP i NCP, stają się terminalami aktywnymi.

47

Terminalem aktywnym nazywamy terminal, który może nawiązać połącze­
nie z dowolną interakcyjną aplikacją sieciową. Do nawiązania połą­
czenia służą komendy dostępu sieciowego. Obsługę komend dostępu sie­
ciowego wykonuje się w programie MŁOT. Program ten identyfikuje ro­
dzaj terminala przez nagłówek komunikatu wysyłanego przez program MCP.
Potrzeba identyfikacji rodzaju terminala wynika z różnic w sterowaniu
między terminalami ekranowymi a terminalami wierszowymi (np. typu DZM).

Stosowanie programu MŁOT wymaga informacji o rodzaju interakcyjnej
aplikacji sieciowej, z którą użytkownik chce nawiązać połączenie.
Możemy tutaj wyróżnić dwa rodzaje aplikacji sieciowych - aplikacje,

które same sterują terminalami oraz aplikacje, które tej własności
nie wykazuję. Podsystem SKOT jest aplikacją, która samodzielnie for­
matuje dane dla terminala sieciowego. Dla aplikacji samodzielnie
formatujących dane terminala zakłada się tzw. transparentne połącze­

nie z terminalem użytkownika. Oznacza to, że program MŁOT nie inge­
ruje w treść komunikatów wymienianych między terminalem a tą aplika­
cją, stanowiąc jedynie swego rodzaju "medium'' transmisyjne dla prze­

pływu komunikatów. Jeżeli aplikacja sieciowa sama nie formatuje da­
nych terminala, funkcję tę przejmuje program MŁOT, tworząc połącze­
nie nietransparentne.

Taką aplikacją w sieci SKJS2 jest podsystem TSO. W firmowym
oprogramowaniu podsystemu TSO funkcję tę wypełniało oprogramowanie
TIOC, stanowiące część programu MCP. W sieci SKJS2 wersja 1 zrezy­
gnowano z usług oprogramowania TIOC z następujących względów:

- oprogramowanie.to zapewniało jednokierunkową obsługę komuni­

katów, tzn. wysyłając komendę do podsystemu TSO należało oczekiwać

na jej realizację i dopiero potem wysłać następną komendę
- koncepcja oprogramowania TIOC nie dopuszczała nawet standar­

dowej obsługi terminali zdalnych pracujących w trybie NCP
- pobieżna analiza oprogramowania TIOC wskazuje na małą jego

efektywność, przede wszystkim ujawniającą się w niezadowalającej

szybkości obsługi terminali.

Daje się więc zauważyć, że program MCP w sieci SKJS2 wersja 1
wykorzystywany jest jedynie jako mechanizm przenoszący komunikaty
między aplikacją sieciową a programem MŁOT oraz programem MŁOT a
terminalami (lokalnymi i zdalnymi). Jeżeli program MCP jest wyko­

rzystywany przede wszystkim do przenoszenia komunikatów między pro­
gramami (i terminalami), to jest on programem efektywnym (szybka

obsługa kolejek komunikatów).
W sieci nie istnieje oprogramowanie terminala wirtualnego, po­

nieważ jest to sieć homogeniczna.

4 8

Realizacja przez program MŁOT funkcji sterowania terminalami
sieciowymi (dla aplikacji nietransparentnych) pozwoliła uzyskać, w

stosunku do firmowego oprogramowania podsystemu TSO, pracę w trybie
dupleksowym. Oznacza to, że użytkownik ma możliwość wysyłania kolej­

nych poleceń do podsystemu TSO bez konieczności oczekiwania na ich

realizację.
Niewielka zmiana w sposobie formatowania każdego wiersza przez

program MŁOT (w stosunku do formatowania ekranu przez TIOC) pozwoli­

ła na uzyskanie cech właściwych edytorom ekranowym (można zredago­

wać dowolnie wybrane fragmenty ekranu). Oczywiście właściwość ta w

znacznym stopniu przyspiesza edycję zbiorów tekstowych.

4. KOMENDY DOSTĘPU SIECIOWEGO

Komendy dostępu sieciowego umożliwiają komunikację użytkownika
z siecią. Służą one do nawiązania lub rozłączenia połączenia siecio­
wego z dowolnym komputerem obliczeniowym włączonym do sieci SKJS2

wersja 1.
Język dostępu sieciowego składa się tylko z dwóch komend [4] :

NETON oraz NETOFF. Komendy te można wprowadzać używając dużych lub

małych liter.
Wydanie komendy NETON powoduje nawiązanie połączenia z wybraną

aplikacją sieciową. Parametrami tej komendy są numer komputera obli­

czeniowego, w którym umieszczono wybraną aplikację oraz numer apli­
kacji w tym komputerze. Numer komputera obliczeniowego jest unikato­

wy w całej sieci, a numer aplikacji w danym komputerze.
Komenda NETOFF służy do rozłączenia istniejącego połączenia

między terminalem a aplikacją. Jest to komenda bezparametrowa, W
czasie trwania połączenia z aplikacją użytkownik prowadzi z nią dia­
log, używając komend specyficznych dla tej aplikacji.

Do wprowadzania komend dostępu sieciowego służy specjalnie zde­
finiowany klawisz funkcyjny. Dla komendy NETON jest to klawisz PF1O
(wartość domyślna dla terminali ekranowych). Identyczny klawisz słu

ży do akceptacji komendy NETOFF. Jeżeli jednak aplikacja sieciowa
wykorzystuje do swoich celów klawisz PF1O, to w komendzie NETON mamy
możliwość wskazania innego klawisza, który pozwoli zaakceptować ko­
mendę NETOFF.

Dla terminali typu DZM rolę klawisza funkcyjnego pełni znak
twardy z cyrylicy, poprzedzający komendy sieciowe. Na rysunku zilu­
strowano użycie komend dostępu sieciowego.

49

Terminal

NETON --

NETON

। Sieć

NETON —

-- TSO
LOGON

. _ LOGOFF SEND

— TSO

LOGON

- LOGOFF pFlO

— SKOT

NETOFF pFlO

Rys. Ilustracja komend dostępu sieciowego
Fig. Illustration of the network aecess commands

5. SYSTEM TRANSFERU ZBIORÓW

Oednę z aplikacji sieciowych dostępnych przez terminale w sieci

SK0S2 wersja 1 jest usługa transferu zbiorów [11. Usługa ta umożli­
wia użytkownikowi przenoszenie między komputerami obliczeniowymi sie­
ci zbioru o strukturze sekwencyjnej (f.FB. V. VB). Dostęp do usługi

realizowany jest przez system komend systemu transferu zbiorów umożli­

wia jęcy :
a) zdefiniowanie polecenia transferu do/z lokalnego komputera

obliczeniowego (komenda TRANSFER)
b) zdefiniowanie zapytania do systemu transferu zbiorów o stan

zaawansowania realizacji uprzednio wydanego polecenia transferu
(komenda WHATORDER)

c) zdefiniowanie polecenia nakazującego skasowanie uprzednio wy­
danego polecenia transferu (komenda MODIFYORDER)

d) zdefiniowanie zapytania o sposób zakończenia realizacji uprze­
dnio wydanego polecenia transferu (komenda MAIL).

Powyższe polecenia wydawane sę w sposób transakcyjny, tzn. wydane

polecenie jest rejestrowane i następnie wykonywane niezależnie od

50

dalszej działalności użytkownika. Ten sposób obsługi nakłada na użyt­
kownika konieczność zdefiniowania wszystkich szczegółów dotyczących

transferu lub innych poleceń w jednej interakcji z systemem, a jedno­
cześnie umożliwia przyjmowanie poleceń do systemu transferu zbiorów

niezależnie od czasu eksploatacji systemu.

6. PODSUMOWANIE

W pracy przedstawiono sposób dostępu do aplikacji sieciowych w
sieci SKDS2 wersja 1 przez terminale. Podano postać komend umożliwia­
jących dostęp do sieci oraz przedstawiono język dostępu do usługi tran­
sferu zbiorów. Zaprezentowano przyjęte rozwiązania sprzętowo-programo­

we .

LITERATURA

[1] DUBIELEWICZ A. i in., Stacja transferu zbiorów w sieci SK0S2 wer­
sja 1 - Dokumentacja użytkownika, CO PWr,, Raport SPR 24/86,
Wrocław 1986.

[2] DYRKA K., RUTKOWSKI E., Zasady tworzenia i udostępniania zasobów
w sieci SK0S2 wersja 1, CO PWr., Raport SPR 14/86, Wrocław 1986,

L3] HUZAR A., ŻAK D., Protokół interfejsu pomiędzy komputerem czołowym
metodę dostępu w komputerze obliczeniowym i aplikacjami w sieci
SKJS2 wersja 1, CO PWr., Raport SPR 3/86, Wrocław 1986,

[4] HUZAR A., DACUKOWICZ M., Terminal w sieci SK0S2 wersja 1 - Podrę­
cznik użytkownika, CO PWr,, Raport SPR 20/86, Wrocław 1986.

Praca wpłynęła do Redakcji 1988.03.28

TERMINAL ACCESS TO SKDS2 COMPUTER NETWORK

The paper is concerned with the method of utilizing different
terminals in the SKDS2 version 1 Computer network. Some chosen problems
connected with network software development are described. On this base
the new possibilities obtained as result of some changes in TSO system
are presented. At the end user interface to network and its applica-
tion is given.

51

flOCTYn K TEFMMHAJIAM B CETH SKJS2BEPCKfl 1

B CTaTŁS onucaH cnocoó ncnojiŁSOBaHHH TepMHajiOB b cera SŁJS2 Bep-
chh 1. UpeacTasjienH rana TepM0Hajic®, ns kotophx mokko no^ynura nocTyn
k cera u ceTeBHM nporpaMMaM nojiB3OBaTejiH. Onucami KOMaHUH, KOTopue nasor
B03M0KH0CTB 3Toro BocTyna. OnncaHH TaK«e chocoóh peoiennH cjreuywi* sa-
flant: coeflJiHeHiie c ceTeBUMn nporpaMMaMH nojiŁSOBaTejiH, ycTanoBJieHMe ęop-
MaTa sKpana TepMiraa^a m nepepaóoran, KacanuneoK paóora noacMCTeMu TSO
b ceTeBOM peraiMe.

Prace Naukowe Centrum Obliczeniowego
Nr 6____________________Politechniki Wrocławskiej Nr 6
Studia i Materiały Nr 3 1989

Sieć komputerowa,
sterowanie przepływem

Józef STAŃKO*
Danuta ŻAK*

* Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wyspiań
skięgo 27, 50-370 Wrocław

STYKI A STEROWANIE PRZEPŁYWEM W SIECI SKJS2 WERSJA 1

Omówiono transparentny styk między komputerem obliczeniowym a
węzłem w jednorodnej sieci komputerowej Jednolitego Systemu
SKOS2 wersja 1. Styk ten umożliwia użytkownikowi sieci komuni­
kowanie się z aplikacjami zainstalowanymi w komputerach obli­
czeniowych i rozpoznającymi go. Obowiązuje on również między
aplikację i programem MŁOT w komputerze obliczeniowym, pośredni-
częcym w komunikacji. Opis styku obejmuje opis procedur, struk­
turę komend oraz opis implementacji w węźle.

1. WSTĘP

W sieci SKDS2 stosuje się trzy rodzaje połęczeń terminali z wę­

złem EC 8371.01:
- trwałe punkt-punkt
- trwałe wielopunkt
- komutowane punkt-punkt.

Transmisja na tych połączeniach może być synchroniczna lub asyn­
chroniczna. Dwa węzły mogę być połęczone dwoma łęczami trwałymi lub

komutowanymi. Łęcza te sę dupleksowe i transmisja na nich odbywa się

zgodnie z protokołem bitowym HDLC [1].

54

Komputer węzła jest włączony w kanał multiplekserowy komputera
obliczeniowego. Transmisja na tym łączu odbywa się zgodnie ze sty­
kiem logicznym TCAM5/NCP2 wykorzystując jeden podkanał multiplekse­

rowy komputera obliczeniowego.
Żądania użytkownika terminala są przekazywane przez program MCP

do aplikacji. Zaimplementowana wersja TCAM-u nie współpracuje z TSO.
Stąd powstała potrzeba opracowania specjalnego styku w celu komuni­
kowania się z TSO. Dla tego styku został użyty jeden dodatkowy pod­
kanał multiplekserowy oraz opracowany program kanałowy w komputerze
obliczeniowym, obsługujący ten podkanał oraz specjalne oprogramowa­

nie adaptera kanałowego w węźle.
Opracowanie oddzielnego styku logicznego i wydzielenie oddziel­

nego podkanału umożliwiło w stosunkowo prosty sposób włączenie pod­

systemu TSO do sieci SK0S2.

2. STYKI W SIECI SKDS2 WERSJA 1

Komputer czołowy (KC) jest połączony z komputerem obliczeniowym

(ko) łączem kanałowym. Podstawowe styki fizyczne i logiczne przed­

stawiono na rysunku.

Rys. Styki w sieci SK0S2 wersja 1
Fig. Interfaces in SKDS2 network

55

Standardowy program NCP (Network Control Program) współpracuje

z Metodę Dostępu Telekomunikacyjnego (tgamd)przez pojedynczy pod-
kanał multiplekserowy (np. 001).

Zaimplementowane wersje TCAM5 i NCP2 nie współpracuję z syste­
mem TSO. Aby umożliwić użytkownikom zdalnym sieci SK0S2 (tzn. nawię-
zujęcym połęczenie z KO przez podsieć) korzystanie z systepu TSO,

opracowano dodatkowy styk, tzw. sieciową metodę dostępu (smd). Ko­
mendy tego styku sę opisane w rozdz. 3.

Zaprojektowano i zaimplementowano w KO program o nazwie MŁOT,
który jest aplikację współpracujęcę w standardowy sposób z programem
MCP.. Program MŁOT współpracuje z aplikacjami zgodnie ze stykiem lo ­
gicznym SMD. Istniejęce aplikacje typu TSO, SKOT zostały zmodyfiko­
wane w celu obsługi tego styku. Do obsługi SMD na poziomie fizycznym
wykorzystano po stronie KO oddzielny podkanał (np. 02E) i własny

program kanałowy. Po stronie KC zmodyfikowano obsługę adaptera kana-
łowego oraz opracowano moduły obsługujące linie sieciowe (HDLC) ska­

nera .
Logiczny styk SMD obowiązuje na połączeniu tMŁOT-aplikacje w KO

oraz na styku MŁOT-węzeł w KC. Pozostałe styki w sieci SK0S2 sę zgo­
dne z modelem OSI/ISO warstw 1-4.

3. PROCEDURY STYKU SMD

3.1, Procedury globalne

3.1.1. Procedura restartu

Procedura restartu jest wykorzystywana do inicjowania lub reini-

cjowania styku MŁOT-aplikacja lub MŁOT-węzeł. W przypadku styku MŁOT-
aplikacja restart jest dokonywany na żądanie aplikacji. W przypadku
styku MŁOT-węzeł inicjatorem restartu jest program MŁOT. Procedura
restartu kasuje wszystkie połączenia sieciowe. Inicjowana jest ko­
mendą “restart" (RST), a potwierdzana komendą "potwierdzenie restar­

tu" (RSTC).

3.1.2. Procedura wstrzymania nadawania

Procedura wstrzymania nadawania jest podejmowana wówczas, gdy

istnieje przeciążenie KC lub KO i pula wolnej pamięci nie wystarcza
na obsłużenie przepływu danych na wszystkich połączeniach. Oest ona
inicjowana komendę "żądanie wstrzymania nadawania" (ZWN). Blokada ta
trwa do momentu przesłania komendy "kontynuacja nadawania" (KNN).

56

3.1.3. Procedura,zakończania pracy

Procedura zakończenia pracy jest inicjowana komendą "koniec pra­
cy" (kpr). Wówczas wszystkie sesje zostają zamknięte (przez sesje ro­

zumiemy połączenie użytkownika z aplikacją)..

3.2. Procedury sesji

3.2.1. Procedury nawiązania połączenia

Nawiązywanie połączenia transparentnego jest inicjowane komendą
"żądanie nawiązania połączenia" (ZNP), Może ona być wysłana przez

KO lub KC. Nawiązanie połączenia jest potwierdzone komendą "potwier­
dzenie nawiązania połączenia" (PNP) lub odmową "odrzucenie nawiąza­
nia połączenia" (ONP).

3.2.2. Procedura transferu danych

Dane normaln.e mogą być przesyłane w obu kierunkach za pomocą
komendy "dane normalne" (CNN).. Każda komenda ONN przenosi całkowi­

tą jednostkę danych lub jej część. Koniec jednostki danych jest wska­

zany za pomocą znać nika końca EOT.—
Otrzymywanie danych normalnych jest potwierdzane komendą "po­

twierdzenie danych normalnych" (PDN) po otrzymaniu liczby komend rów­

nej wielkości okna. Wielkość okna można zmienić - standardowa war­
tość wynosi 10. Mechanizm okna służy również do sterowania przepły­

wem, które polega na możliwości wstrzymania przepływu danych.
Przesyłanie danych przyspieszonych jest realizowane komendą

"dane przyspieszone" (dnp). Komenda ta nie jest potwierdzana.

3.2. . Procedura.rozłączeńia połączenia

Zgłoszenie kasowania (rozłączenia) połączenia następuje przez

przesłanie przez styk MŁOT-aplikacja lub MŁOT-węzeł komendy "zgło­
szenie rozłączenia połączenia" (ZRP). Komenda ta jest potwierdzana

komendą "potwierdzenie rozłączenia połączenia" (PRP).

3.3. Struktura komend

Komendy składają się z części stałej i zmiennej. Część stała
jest 3-bajtowa, część zmienna ma najwyżej 125 bajtów. W skład części

zmiennej wchodzą parametry kluczowe. Część stałą tworzą trzy jedno-
bajtowe pola: kod komendy, identyfikator portu oraz licznik zawiera­
jący długość części zmiennej.

częsc zmienna

Kod
komendy

Identyfikator
portu

Długość części
zmiennej

Parametry kluczowe właści­
we dla typu komendy

częśc stała

57

Dopuszczalne komendy i ich parametry kluczowe są umieszczone w
tab. 1.

Tabela 1

Komendy styku KO-KC

Komenda Skrót Parametry kluczowe (opcjonalne)

Restart RST Identyfikator aplikacji

Potwierdzenie restartu RSTC Identyfikator aplikacji

Żądanie wstrzymania
nadawania

ZWN Identyfikator aplikacji

Kontynuacja nadawania KNN Identyfikator aplikacji

Koniec pracy KPR Identyfikator aplikacji

Żędanie nawiązania
połączenia

ZNP Adres procesu docelowego, adres
nadawcy, wielkości okien, dane
użytkownika, identyfikator portu
nadawcy

Potwierdzenie nawią­
zania połączenia

PNP Identyfikator portu nadawcy, dane
użytkownika

Odrzucenie nawiązania
połączenia

ONP Przyczyna, dane użytkownika

Dane normalne ONN Identyfikator EOT, dane

Dane przyspieszone ONP Identyfikator EOT, dane

Potwierdzenie odbioru
danych

PDN Identyfikator EOT, dane

Zgłoszenie rozłącze­
nia połączenia

ZRP Przyczyna, dane użytkownika

Potwierdzenie roz­
łączenia

PRP Przyczyna, dane użytkownika

4. IMPLEMENTACJA STYKU MIEDZY KO I KC

4.1. Struktura bloków sterujących

Do utworzenia odcinka drogi przepływu .anych są wykorzystywane
bloki sterujące w postaci tablic. Dla każdego połączenia sieciowego
jest wykorzystywana jedna tablica, tzw. tablica portu normalnego.
Dla wszystkich połączeń jest wykorzystywana dodatkowo jedna tablica,
tzw. tablica portu systemowego. Tablice opisujemy w postacji sekeji

pozornych języka asemblera.

58

*
x DEFINICJA TABLICY PORTU NORMALNEGO

XXCXTTPN DSECT
TPN DS OF
TPNCCB EOU X OPIS PROCESU

XQCB PREFIX =TPN.TYPE=INPUT
DS OF

TPNECB EQU X-XXCXTTPN
XECB PREFIX=TPN

TNOOCB EOU x—XXCXTTPN OPIS KOLEJKI
XQCB PREFIX =TNO.TYPE=WORK

w KOMEND Z KO
DS OF

TINOCB EQU x-XXCXTTPN OPIS KOLEJKI
XQCB PREFIX=TIN.TYPE=WORK

X DANYCH DO KO
DS OF OPIS KOLEJKI DANYCH

TIPOCB EOU x-XXCXTTPN PRZYSPIESZONYCH
XQCB PREFIX=TIP.TYPE=WORK

TPNTYP DS X ' TYP TABLICY
TPNIDP DS X IDENTYFIKATOR PORTU

*

TPNSTP DS X STAN PORTU NORMALNEGO
TPNIDWKO DS X IDENTYFIKATOR PORTU
X ZWIĄZANEGO W KO
TPNATPT DS H ADRES TABLICY POŁĄCZENIA
X TRANSPORTOWEGO Z KTÓRĄ JEST
X USTANAWIANY ZWIĄZEK
TPNTYT DS X TYP TABLICY,. Z KTÓRĄ JEST
X USTANOWIONY ZWIĄZEK
TPNOKZ DS X OKNO Z KO
TPNLOD DS X LICZNIK ODEBRANYCH KOMEND DNN
TPNOKD DS X OKNO DO KO
TPNLMD DS X LICZNIK NADANYCH KOMEND DNN
TPNSYG DS B SYGNAŁY
TPNSYGO DEFMSK 0 OTRZYMANO
X T-DISCONNECT INDICATION
TPNSYG1 DEFMSK 1 OTRZYMANO
X T-DISCONNECT INDICATION

_TPNSYG2 DEFMSK 2 OTRZYMANO
X T-CONNECT CONFIRM
TPNSYG3 DEFMSK 3 OTRZYMANO
X T-WARNING INDICATION
TPNSYG4 DEFMSK 4 OTRZYMANO
X T-CONTTNUE INDICATION
TPNSYG5 DEFMSK 5 WYSŁANO SYGNAŁ
x T-WARNING REOUEST ZE WZGLĘDU NA PRZEPEŁNIENIE KOLEJKI
TPNSYGO DEFMSK 6 OCZEKIWANIE NA KOMENDĘ PDN Z I
TTPNPRZ DS XC PRZYCZYNA ROZŁĄCZENIA
X POŁĄCZENI A
TNINOCBL DS X DŁUGOŚĆ KOLEJKI DO KO
TNCOCBL DS X DŁUGOŚĆ KOLEJKI Z KO

END

59

* DEFINICJA TABLICY PORTU SYSTEMOWEGO'
*
XXCXTTPS DSECT
TPS
TPSQCB

TPSECB .

TPSTYP
TPSIDN
TPSLPN
*
TPSSYG
TPSSYGO

DS OF
EQU * OPIS PROCESU
XQCB PREFIX=TPS.TYPE=INPUT
DS OF
EOU *-XXCXTTPS
XECB PREFIX=TPS
DS X■ TYP TABLICY
DS X IDENTYFIKATOR PORTU
DS X LICZBA WYGENEROWANYCH

PORTÓW NORMALNYCH
DS - B SYGNAŁY
DEFMSK 0 OTRZYMANO KOMENDĘ ZWW

TPSSYG1 DEFMSK 1 NALEŻY WYSŁAĆ KOMENDĘ ZWW
TPSSYG2
TPSSYG3

DEFMSK 2 NALEŻY WYSŁAĆ KOMENDĘ
DEFMSK 3 UPŁYNĄŁ TIME-OUT

RST

DS X STAN PORTU SYSTEMOWEGO
DS OF OPIS KOLEJKI KOMEND Z

5
KO

END

TSYOCB EOU
XQCB

*-XXCXTTPS
PREFIX=TSY.TYPE=WORK

IMS 11 ME DS X. TIME OUT DO WYSŁANIA KNN
TPSLI CZ DS x LICZNIK KROTNOŚCI SPRAWDZEŃ
* PULI BUFORÓW W CELU WYSŁANIA KNN
TPSDLUG EQU *—XXCXTTPS

4.2. Tabele etanów portów w procesorze EC.8371.01

Tabela 2
Tablica stanów portu systemowego

'"■^Stan portu

Komenda
X'OO'

nieaktywny
X*04'

aktywny
X'O1'

oczekiwanie na RSTC

R-RST X *04' X*04’ X*04'

S-RST - X<01/ -

R-RSTC Ignoruj Ignoruj X'O4*

R-KPR Abend X*834* X*00' X*00*

R-ZWN Abend X*835* X*04* Ignoruj

R-KNN Abend X'836' X*04' Ignoruj

R-ZNP Abend X'837' X*04' Ignoruj

R-DNN Abend X*83C* X*04' Ignoruj

Oznaczenia: R - otrzymano komendę, S - nadano komendę

60

Tabela 3

Tablica przejść portu normalnego (cz. 1)

^^\Stan portu

Komenda

X'00i

nieaktywny
X'O1'
wolny

X '02'
oczekiwanie na po­
twierdzenie PNP z

podsieci;

R-RST X’O1’ X'O1' X'O1'

S-RST X'OO' X'OO' X'OO'

R-KPR X’OO' X'OO' X'OO'

ZNP Z KO - X'O2' -

ZNP z podsieci ! - X*03' -

PNP Z KO Ignoruj Abend X'8O7’ Abend X'8O8'

ONP z KO Ignoruj Abend X‘80B' Abend X'80C'

DNN z KO Ignoruj Abend X'80F' Abend X ' 810'

PNP z podsieci i AbendX'8Ol' Abend X'802' X'O4'

DNN z podsieci • . AbendX’812' Abend X'813' Abend X'814'

DNP z KO Ignoruj Abend X'818' Abend X'819'

DNP z podsieci i AbendX'82F' Abend X'830' Abend X '831'

PDN z KO Ignoruj Abend X'81C' Abend X'81D'

-ZRP z KO Ignoruj Abend X'825' -

ZRP z podsieci ' AbendX'827' Abend X'828' X'O1'

PRP z KO Ignoruj Abend X'82B' Abend X'82C '

Uwagi: 1. Otrzymanie komendy ZRP, gdy uprzednio wydano komendę ZRP,
jest traktowane jako potwierdzenie połączenia (PRP).

2. Zędania do/z podsieci nie sę w postaci komend styku KO i
KC.

Port systemowy pośredniczy w dialogu operatora systemu 0SMVT
5.01 z oprogramowaniem sieciowym procesora EC 8371,

Wśród komend wprowadzanych przez operatora wyróżnia się nastę­
pujące grupy:

- wysyłanie datagramów

- ustawianie kategorii monitorowania

61

- zmiany stanu kierunku sieciowego

- zmiany stanu połączenia sieciowego
- zmiany stanu połączenia transportowego.

Tabela 3
Tablica przejść portu normalnego (cz. 2)

X'03'
oczekiwanie na

PNP z KO

X '04 ’
transfer danych

X '07 '
oczekiwanie na

PRP z KO

X '01 ’ X '01 ' X '01 ’

X '00 ' X'OO' X '00 '

X’OO', X-00' X’00'

— - -

- -

X’04' Abend X’809' Ignoruj

X '01 ' Abend X'80D’ Abend X’845'

Abend X ’ 811' X’O4’ Ignoruj

Abend X ' 80 3' Abend X '804' A bend X ■ 805'

Abend X'815' X'O4’ Abend X'816*

Abend X'81 A' X '04' Ignoruj

Abend X'832' X '04' Abend X'833'

Abend X*81D' X'04’ Igno ruj

Abend X'826’ X '01 ’ X’01'

Oczekiwanie na
odp. z KO

X'O7' Abend X'829*

Abend X'82D’ Abend X'82D' X '01 ’

Komunikaty wyprowadzane do operatora należą do jednej z następu

jących kategorii:
- sygnalizacji błędów wprowadzanych komend

- odpowiedzi na pytanie o stan
- sygnalizacji zmian stanu kierunku sieciowego
- sygnalizacji stanu indywidualnych połączeń sieciowych

- sygnalizacji o przesyłaniu datagramów.

62

4,3. Przepływ danych

Do sterowania przepływem danych w komputerze czołowym zostały
wykorzystane makroinstrukcje nadzorcy (supervisora) programu NCP,

Makroinstrukcje NCP spełniają cztery podstawowe funkcje:
- zarządzanie zadaniami
- zarządzanie kolejkami
- -zarządzanie buforami
- usługi nadzorcy.
Obsługa portu normalnego, jak również systemowego,jest procesem

(task) w sensie NCP. Makroinstrukcja ENQUE [4J dołącza bufor do wska­

zanej kolejki i budzi proces obsługujący tę kolejkę. Obudzony proces
obsługuje najpierw bajt sygnałów ze stacji transportowej, później w
kolejności: kolejkę komend z KO, kolejkę danych przyspieszonych i
komend sterujących do KO oraz kolejkę danych do KO.

Do pobierania buforów z kolejki służy makroinstrukcja DEQUE[4].
Do wstrzymania napływu danych z KO służy mechanizm okna. Oeśli

procesor EC 8371 nie potwierdzi danych, to KO nie może nadsyłać dal­

szych danych. Podobnie, jeśli KO nie potwierdzi porcji danych, regu­
lowanych wielkością okna, to procesor EC 8371 nie może posyłać dal­
szych danych.

4.4. Procedura generowania sieciowego programu procesora EC 8371.01

Program sieciowy procesora EC8371 generuje się ze zmodyfikowa­
nych bibliotek generacyjnych Network Control Program. Procedurę gene­
rowania można podzielić na trzy etapy:

1. Generowanie konfiguracji sieciowej EC 8371.

2. Generowanie opisu zadań, których wykonanie spowoduje utwo­
rzenie programu sieciowego. Generowanie to wykonuje się tak samo jak
generowanie standardowego programu NCP z uwzględnieniem dodatkowych

parametrów makroinstrukcji generacyjnych. Rozszerzenia makroinstru­
kcji dokonano podczas projektowania węzła.

3. Wykonanie zadań generacyjnych, z których ostatnie zawiera
krok łączenia modułów w sieciowy program ładowalny.

W etapie 1. są tworzone statyczne struktury danych opisujące
konfigurację sieciową. Dane te należy umieścić jako człon KONFIG
w zbiorze określonym przez parametr OBOLIB makroinstrukcji BUILD [4],

W etapie 3. wykonuje się kompilacja wymaganych modułów oraz
następuje łączenie modułów w program sieciowy. W czasie łączenia do
standardowych modułów programu NCP są dołączone moduły sieciowe.

63

LITERATURA

CU Dokumentacja oprogramowania sieci SKDS2 wersja 1.
L2] Procesor teleprzetwarzania danych -EC8371. Architektura logiczna.
[3] IBM TCAM System Programmer Guide.

[4] IBM 3704 and 3705 Communications Controllers. NetWork Control
Program VS.PLM. Version 2. SY 30-3007.

[5] IBM Network Control Program. Generation and Utilities.
[6] BERNARDYN R., DANISZEWSKI A., STAŃKO □ ., WIETRZYCH Procedura

generowania sieciowego programu procesora czołowego sieci SK0S2
wersja 1. CO PWr., Raport SPR 10/86, Wrocław 1986.

Phaca wpłynęła do Redakcji 1988.03.28

THE INTERFACES AND FLOW CONTROL IN SK0S2 NETWORK , RELEASE 1

In the paper, the transparent intarface between a Computer hoat
and Computer node of SK3S2 network is presented. łbie intarface
enables the utilization of application programmes in hoste of
SK3S2. It ia also applied between the MŁOT programma (intaraedia-
ry in Communications / and an application program®^ in thes hoat.
The intarface description contains descriptions of procedures,
structures of commands and implementation in the node.

COWHEHHH W ^PABJIEHME IIOTOKAMM B CEW SKJS2 BEPCI4H 1

B GTaTte onucaho TpancnapeHTHoe coeujiHeHue Meamy BHHHCjfflTejn>HHM
KOMIIŁfflTepOM H ySJIOM B KOMIIBIOTepHOii C6T0 EMHCTBeHHOii C0CT6MŁi SKJS2 Bep-
cm 1 • 3to coeuaHeHHe nae? nojiB30BaTeiiio ceTH BOSMOKHOCTBcooómaTBca c
npMKJiaBHHMH nporpaMMaMH, HaxonHmnMBCH b BHH0ciiHTejiBHHX KOMnBK)Tepax. Oho
oóHSHBaeT TaKKe npH coTpyBHunecTBe npnKJianHnx nporpaMM co cnenuajiBHOH
nporpaMMoił MŁOT, KOTopaa HrpaeT pcuiB nocpemniKa. B CTaTBe npejicTaBjieHU:
cipyKTypa KOManu, onHcaraie npouenyp 0 nporpaMMHoro oPecneneraiH ysjia.

Prace Naukowe Centrum Obliczeniowego
Nr 6 Politechniki Wrocławskiej Nr 6
Studia i Marter;ały Nr 3 " 1989

Synchronizacja,
sieć komputerowa,

transfer zbiorów

Andrzej HUZAR*
Andrzej KAŁlS*

PROBLEMY SYNCHRONIZACJI W STACJI TRANSFERU ZBIORÓW
SIECI KOMPUTEROWEJ SKJS2 WERSJA 1

Omówiono sposoby synchronizacji procesów w stacji transferu zbio­
rów sieci komputerowej SKJS2 wersja 1 na tle ogólnych metod syn­
chronizacji procesów oraz uwarunkowań środowiska, w którym sta­
cja transferu zbiorów powstała. Przedstawiono model synchroniza­
cji procesów i jego realizację na potrzeby stacji. Krótko omówio­
no zalety proponowanego podejścia.

1. . PROBLEMY SYNCHRONIZACJI W STACJI TRANSFERU ZBIORÓW

Wraz z powstaniem możliwości i potrzeb tworzenia oprogramowania
złożonego z kilku procesów traktowanych jako programy sekwencyjne,
pojawiła się konieczność ich synchronizacji. Korzystają one zazwy­
czaj z pewnych wspólnych zasobów, do których dostęp w danej chwili
mogę mieć tylko niektóre z nich (często tylko jeden). W przypadku

tworzenia programów działających współbieżnie, ich twórcy znajdują
się w następującej sytuacji: z jednej strony dostępny jest im zbiór
metod synchronizacji, z drugiej zaś środowisko programowe dostarcza
pewnych mechanizmów, za pomocą których można synchronizować procesy.

Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wyspiań­
skiego 27, 50-370 Wrocław

66

Usługi dostarczane przez system operacyjny (środowisko) nie muszą być

gotowymi do wykorzystania mechanizmami synchronizacji. W większości
przypadków charakter oprogramowania narzuca wybór pewnych metod syn­

chronizacji.
Wydaje się, że współpracujące procesy można podzielić na dwie

grupy różniące się sposobem synchronizacji:

1. Procesy, które zasadniczo pracują niezależnie, tzn. praca in­

nych procesów nie jest potrzebna do ich właściwego działania, korzy­
stają jedynie od czasu do czasu ze wspólnych zasobów środowiska (dru­

karek, dysków itp.). Nad ich niezależnością czuwa nadzorca systemu,
rozwiązując problemy synchronizacji.

2. Procesy, które współpracując ze sobą wymieniają przetwarzaną
informację (np. procesy będące implementacją tej samej warstwy sieci
komputerowej pracujące w różnych komputerach),

Stacja transferu zbiorów została zaprojektowana jako zbiór współ­
pracujących ze sobą podakcji. W terminologii systemu operacyjnego
OS/MVT przez pojęcie podakcji rozumiemy zadanie, które przez system

operacyjny traktowane jest jak każde inne zadanie. Oznacza to, że sy­
stem może spowodować przejście podakcji w stan "niegotowe", jeżeli pod-
akcja musi na coś czekać. Przy tym zasady generalne, ustalone dla

całego systemu, są stosowane do podakcji. Z jednej strony oczekiwanym
zdarzeniem może być na przykład: zakończenie operacji wejścia-wyjścia,

o zebranie odpowiedzi od operatora, upłynięcie pewnego odcinka czasu,
uzyskanie możliwości modyfikacji zbioru przetwarzanego równocześnie
przez wiele zadań. Z drugiej zaś strony, podakcja traktowana jako pro­
ces może sama przechodzić w stan zawieszenia, oczekując na realizację

pewnego zdarzenia, uzależnionego zazwyczaj od wykonania ściśle ustalo­
nych czynności przez współpracującą z nią podakcją. Innymi słowy, w pe­
wnych punktach podakcji realizującej jeden proces musimy zakładać, że
inny proces już coś zdążył zrobić.

W stacji transferu zbiorów procesy współpracują ze sobą różnie,
tzn. przez dostęp do wspólnych zasobów i przez wymianę komunikatów.

Również synchronizacja w każdej z tych grup jest zróżnicowana i odby­
wa się częściowo bezpośrednio przez system operacyjny i częściowo

przez stosowanie mechanizmów utworzonych tylko na potrzeby stacji. W

stacji można wskazać następujące miejsca, w których następuje synchro­
nizacja procesów:

1. Stacja wysyła i odbiera treść przesyłanych zbiorów. Musi być
więc rozwiązany problem dostępu do zbiorów przez stację i inne progra­
my. W tym przypadku skorzystano z systemowego mechanizmu synchroniza­

67

cji (makroinstrukcje supervisora ENQ i DEQ z odpowiednią nazwę re­

gionu krytycznego [4]).

2. Ze stację współpracuję programy uruchamiane przez użytkowni­
ków systemu transferu zbiorów, które wpisuję zlecenia do kolejki. W
tym przypadku również skorzystano z systemowego mechanizmu regionów
krytycznych, ustalajęc własnę jego nazwę.

3. Stacja komunikuje się z innę stację. Tutaj synchronizację
zapewnia zastosowany protokół transferu zbiorów [5],.

4. Wewnętrzna budowa stacji jest wieloprocesowa (rys.).

Rys. Struktura stacji transferu zbiorów
Fig. File transfer station structur

Proces główny o nazwie STEROWANIE nadzoruje pracę stacji, po­
biera zlecenia z kolejki zleceń, pośredniczy w przesyłaniu komunika­

tów do sieci oraz komunikuje się z innymi procesami stacji, którymi
sę :

a) proces ZEGAR informujęcy o upływie kolejnego kwantu czasu,
b) procesy o nazwie TRANSFER (praktycznie w dowolnej liczbie),

które realizuję protokół transferu zbiorów.

Utworzenie takiej struktury wynikło przede wszystkim z możliwoś­
ci podziału funkcji między poszczególnymi modułami (procesami) oraz

z tego, że system OS/MVT dostarcza środków do stosunkowo łatwego
tworzenia programów wieloprocesorowych (współbieżnych). Problemy,

które musieli rozwiązać twórcy sami, to:
a) definicja wspólnych struktur danych, zadanie to okazało się

dość łatwe
b) definicja własnego modelu synchronizacji zgodnego z potrze­

bami i możliwościami realizacyjnymi.

68

2. MODEL SYNCHRONIZACJI PROCESÓW

Przyjęto, że procesy będę przesyłać żędania wykonania pewnych
akcji między sobę przez dwa kanały logiczne (po jednym dla każdego
kierunku). Każdy kanał może się znajdować tylko w jednym z dwóch

stanów:

1. Kanał wolny - wtedy proces nadajęcy może zainicjować żędanie
wykonania pewnej akcji (zbiór możliwych żędań jest ustalony). Żęda­

nie spowoduje zmianę stanu kanału na zajęty i uaktywnienie odbiorcy
(jeśli był zawieszony).

2. Kanał zajęty - wtedy proces odbierajęcy może wykonać żędanę
akcję zmieniajęc stan kanału na wolny (po jej zakończeniu). W tym

stanie proces nadajęcy nie może inicjować nadania kolejnych żądań

akcji.

W dowolnej chwili każdy z procesów może odczytywać stan kanału.

Istotną cechę zastosowanego modelu synchronizacji jest to, że żaden
z procesów nie musi czekać ani na dotarcie żędania do odbiorcy, ani

na dostarczenie żędania od nadawcy. Me to istotne znaczenie w przy­
padku, gdy proces STEROWANIE przesyła de procesu TRANSFER dane ma­
jące być zapisane na dysku, natomiast proces TRANSFER nie może tych
danych zapisać na dysku z po-wodu chwilowej awarii.

3. REALIZACJA MODELU SYNCHRONIZACJI PROCESÓW

W celu realizacji przedstawionego modelu synchronizacji wy­
korzystano następujące mechanizmy i makroinstrukcje supervisora sy­
stemu OS/MVT (ich pełny opis można znaleźć w pracy [4]):

1. ECB - zmienna, z którą związany jest meshanizm zawieszania
i uaktywniania procesów (podakcji). Zawartość ECB wskazuje na to

czy jakiś proces jest zawieszony, może zostać zawieszony lub nie
zostanie zawieszony.

2. POST (ECB) - makroinstrukcja supervisora, która uaktywnia

proces zawieszony lub zapobiega zawieszeniu takiego procesu, gdy
ten wykona makroinstrukcję WAIT (ECB), Proces identyfikowany jest

przez nazwę ECB.
3. WAIT (ECB) - makroinstrukcja powodująca zawieszanie danego

procesu, aż do momentu wykonania przez inny proces ma kroinstrukcji
POST (ECB). Oczywiście proces nie będzie zawieszony, gdy wcześniej
została wykonana makroinstrukcja POST (ECB).

69

Jak można się domyślić, wartość zmiennej ECB ustawiana jeet
przez system operacyjny.

Po to, by wykorzystać opisane makroinstrukcje w celu realizacji

przedstawianego modelu synchronizacji, zdefiniowano wspólną struktu­
rę danyeh. Poniżej została ona pokazana dla połączenia TRANSFER-
STEROWANIE:

type

AKCJA = (wolny, akcja^, akcja^,..,akcja); {odpowiada
~ stanowi kanałECB »= integer;

POLE„SYNCHRONIZACJI = record
ecb_sterowani a,
ecb_transferu : ECB;
kanał_transfer_sterowanie : akcja;

end;

Na zmiennej x typu P®LE SYNCHRONIZACJI proces STEROWANIE działa
według następującego schematu:

with x do
begin
ecb_sterowania := O;
wykonaj _pocz etek;
while truś do
begin
wait (ecb_sterowania);
ecb_sterowania := O;
{jeśli ecb_sterowania=0, to wykonanie wait(ecb_sterowani a)
powoduje zawieszenie procesu ł

case kanał_transfer_sterowanie of
wolny : ;

akcja : i-f możl i we_wykonani e_akcj i . then
begin
wykonaj_akcję_i;
kanał_transfer_sterowanie:=wol ny;
post (ecb_transfer)

end;

end; (casel
end; {whilel

end; {withl-

Natomiast proces TRANSFER może żądać wykonania pewnej akcji od
procesu STEROWANIE tylko wtedy, gdy wartość zmiennej kanał-transfer

—sterowanie ® wolny, czyli kanał jest wolny.

70

Analogicznie został zdefiniowany kanał dla kierunku przeciwnego.

Warto zauważyć, że;
- proces nadający uaktywnia odbiorcę , jeśli ten jest zawieszony

oraz uniemożliwia jego zawieszenie dopóki odbiorca nie sprawdzi sta­

nu tego kanału ,
- żaden z procesów nie musi aktywnie czekać w pętli na żądanie

innych procesów,
proces nadający zawsze jest odwieszany (jeśli był zawieszony

przez proces odbierający po zrealizowaniu żądania (jest w ten sposób
informowany o zrealizowaniu akcji).

4. PODSUMOWANIE

Przedstawione sposoby synchronizacji w stacji transferu zbiorów
sprawdziły się w praktyce, ponieważ:

a) umożliwiły niezależne uruchamianie poszczególnych procesów,'
b) nie doprowadziły nigdy do jakichkolwiek problemów z syn­

chronizacją w stacji)
c) stacja pracując w warunkach pełnego obciążenia wykorzystuje

około 10,0 czasu procesora, co wydaje się wielkością dopuszczalną/
d) metoda synchronizacji pełni w oprogramowaniu stacji rolę me­

tody strukturalnej; wprawdzie nie następuje syntaktyczne sprawdze­
nie poprawności metody, ale łatwe jest (co było robione) sprawdze­

nie “ręczne" tekstu programuj
e) metoda jednolita dla całej stacji oraz innych komponentów

oprogramowania komputera obliczeńiowego(zwłaszcza oprogramowanie mo­
dułu MŁOT) i nie zależy od liczby typów akcji.

Okazało się też, że mimo braku nowoczesnego języka do progra­
mowania współbieżnego (np. Concurrent Pascala), można uzyskać po­

dobny komfort programowania stosując się jedynie do pewnych reguł
programowania [1] (moduł STEROWANIE zakodowany został w języku Pas­
cal 360).

LITERATURA

[1] HUZAR A., Programowanie współbieżne w systemie 0S/3S, na poziomie
języka Pascal, Informatyka nr 6, 1983 .

[2J HUZAR Z., Wstęp do programowania współbieżnego, Wrocław, Wyd.PWr.
1985 .

71

[3J ISZKOWSKI W. , MANIECKI M., Programowanie współbieżne, Warszawa,
WNT, 1982 ,

[4] 0S/3S Makroinstrukcje supervisora, WZE Mera-Elwro, Wrocław 1976 .

[5] A Network Independent File Transfer Protocol, File Transfer
Protocol Implementore Group, NIFTP-B (80), 5th Feb. 1991 (Blue
Book).

Praca wpłynęła do Redakcji 1988.03.28

SOME SYNCHRONIZATION PROBLEMS IN THE FILE TRANSFER STATION
OF THE NETWORK SK3S2 VERSION 1

The paper describes the raethods of synchronization of the pro-
cesses in the file transfer station of the network SK3S2 version 1,
one the base of generał synchronization mathods and the system 0S/3S
eńwircnment condltions. The synchronization model In the file
transfer station and its realization la presented, The advanta-
ges of this model are shortly deacribed.

IIPOEJIEMH CMHXP0HPI3Affiffl B CTAHW TPAHCSEPA WUIOB
B HacTo>nne3 ciaTte npeucTaBnenu cnocoóH cnHxpoHH3an0H nponeccoB

b cTaHujm Tpanc$epa ęafoioB BH^oicjMTejiBHoK cera SKJS2 sępcie 1 «a $OHe
OÓiW MeTOUOB. CHHXpOHH3anj5E H yCJIOBBŻ CpejH, B KOTOpoił ona BOSHKKJia.
nosasana woleju. cnHxpoiai3amiM npoueccoB, ee nocTomcTBa h peazHaaiw
B CTaHUHM.

Prace Naukowe Centrum Obliczeniowego
Nr 6_______________ Politechniki Wrocłąwskiej Nr 6
Studia i Mater:ały Nr ’3 1989

Siec komputerowa,
pomiar, analizator
protokołów, tester

Zbigniew FRYZLEWICZ *

* Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wyspiań­
skiego 27, 50-370 Wrocław

APARATURA P.0MIAROWO-DIAGNOSTYCZNA
DLA SIECI KOMPUTEROWEJ

Skonstruowana aparatura pomiarowo-diagnostyczna spełnia funkcję
analizatora/testera protokołów. Urządzenie skonstruowano dobu-
dowując do modułowego systemu mikroprocesorowego (MSW) trzy do­
datkowe karty oraz projektując całe oprogramowanie. Dest ono zde-
komponowane na procesy i monitor, który tworzy dla nich środowis­
ko do pracy współbieżnej i w czasie rzeczywistym. W opracowaniu
podano cechy funkcjonalne urządzenia oraz zasady współpracy pro­
cesów w tym środowisku.

1. WSTĘP

Doświadczenia uzyskane w trakcie realizacji sieci MSK wskazywa­
ły, że zastosowanie specjalistycznych urządzeń monitorująco-testują-

cych wydatnie ułatwia diagnostykę i lokalizację błędów transmisji
wynikających z nieprawidłowej implementacji protokołów. W sieci

SKOS/2, w której infrastruktura komunikacyjna była budowana od pod­
staw, przewidywano podobną skalę problemów podczas diagnozowania błę­
dów w implementacjach protokołów komunikacyjnych stosowanych między

różnymi jej komponentami. De komunikacji miano stosować różne proto­

koły i to różnych klas. Planowano włączenie do sieci terminali sto­
sujących protokół asynchroniczny, synchroniczny znakowy BSC i syn-

74

chroniczny bitowy SDLC. Zastosowane w sieci SKDS/2 teleprocesory
przetwarzania miały wykorzystywać do wzajemnej komunikacji dwupozio-
mowy protokół X.25 (protokół pakietowy X.25/3 i liniowy LAPB).

W fazie projektu funkcjonalnego i technicznego uwzględniono te
wszystkie wymagania wzbogacając je dodatkowo o takie opcje, które
czynić miały budowane urządzenie przydatne do jak najszerszej klasy

zastosowań. W czasopiśmiennictwie technicznym są opisywane podobne
urządzenia i podzielić je można umownie na dwie klasy. W pierwszej

mieszczą się te, które spełniają najogólniej rozumiane funkcje ana­
liza tora/tes tera protokołów. Do klasy drugiej należą te, które do­
datkowo wypełniają funkcje sterujące w podsieci komunikacyjnej (zbie­

ranie danych i wyznaczanie dróg, optymalizacja wykorzystania zasobów
podsieci). W początkowej fazie projektowania budowane urządzenie

miało należeć do drugiej klasy i tworzyć zintegrowany system pomia-
rowo-sterujący (sps). Ze względu na poczynione ograniczenia w kon­

cepcji całej sieci SKCS/2 zrezygnowano z aktywnego sterowania w pod­
sieci komunikacyjnej i zbudowana aparatura o "historycznej" nazwie

SPS jest urządzeniem klasy pierwszej. Urządzenia podobnego typu pro­
dukuje wiele firm elektronicznych, np. [1],[2], [5], lecz na przeło­
mie lat 1983/1984 (start tematu) były one w Polsce niedostępne.

W punkcie 2 artykułu opisano cechy funkcjonalne SPS ilustrując
je pomiarami przykładowymi. Przykłady dobrano tak, aby pokazać za­
stosowanie SPS do monitorowania /testowania transmisji według róż­
nych protokołów, podać ich parametry i zakresy wartości. W punkcie 3
opisar, budowę oprogramowania SPS. Dest ono zdekomponowane na proce­

sy i monitor. W pracy opisano elementy składowe struktury pojedyn­
czego procesu i szczegółowo podano usługi monitora, który tworzy dla
procesów środowisko do ich wzajemnej synchronizacji, komunikacji i
podziału zasobów. VI kolejnym punkcie zestawiono wykorzystane przy-
budowie SPS standardowe moduły systemu MSN oraz podano podstawowe

charakterystyki specjalnie zbudowanych, dodatkowych kart. Całość koń­
czy ocena implementacji wraz z uwagami o możliwościach modyfikacji i
rozbudowy SPS.

2. CECHY FUNKCJONALNE

Zbudowana aparatura pomiarowo-diagnostyczna [4] może być stosowa­
na do :

- monitorowania transmisji przechodzącej przez styk S2,
- testowania komponentów sieci komputerowej połączonych z SPS

stykiem 32.

75

W pierwszym przypadku SPS jest połączony trójnikiem z układem
pomiarowym i jest obserwatorem oraz rejestratorem dialogu. W drugim
przypadku SPS jest aktywną stroną dialogu, tj. generuje do układu
sekwencje znaków i/lub bitów oraz rejestruje nadsyłane odpowiedzi.
W obu przypadkach parametry mechaniczne, elektryczne, funkcjonalne
i proceduralne styku 32 są opisane, przez zalecenia V.24/V.2S.

W maksymalnej konfiguracji p.rogramowo-sprzętowe j SPS ma reper­
tuar 24 komend, w tym 6 komend pomiarowych, 9 komend redagująco-
wyprowadzających i 9 komend pomocniczych.

2.1, Monitorowanie

SPS umożliwia monitorowanie na dwóch poziomach szczegółowości.
Poziom pierwszy to monitorowanie stanów obwodów styku S2 o numerach
ze zbioru(103...115,125), Poziom drugi to monitorowanie transmisji

prowadzonej według jednego z następujęcyh protokołów: asynchronicz­
nego, BSC, LAPB, SOLC i X.25/3 (pakietowego).

Komendy i parametry monitorowania są do SPS wprowadzane dialo­

gowo. Koniec dialogu określa moment rozpoczęcia pomiaru, lecz koniec
pomiaru wynika już z jego typu. W przypadku monitorowania stanu obwo­
dów styku S2 pomiar kończy się w momencie zapełnienia wewnętrznego
bufora o ustalonej generacyjnie pojemności. Na rysunku 1 podano przy­
kład dialogu i uzyskanych wyników dla opisanego typu pomiaru.

Schemat, pomiaru na drugim poziomie szczegółowości jest bardziej
złożony i wymaga trzech typów informacji:

- charakterystyki monitorowanego protokołu
- ogólnych warunków transmisji i pomiaru
- warunków zakończenia monitorowania, tzw. pułapek.

Pierwszy typ informacji ściśle zalezy od rodzaju protokołu i np.

dla protokołu asynchronicznego należy podać informacje o:
- długości znaku
~ długości elementu STOP
- typie parzystości.

Drugi i trzeci typ informacji mają części jednakowe dla wszyst­
kich rodzajów protokołów oraz części specyficzne dla danego rodzaju
protokołu. Na przykład dla protokołu LAPB, definując warunki pomiaru,

podaje się informacje o :
- szybkości transmisji
- konieczności rejestracji (lub nie) czasu pojawiania się jedno­

stek protokołu
- typie kodowania (NRZ vs . NRZI)

- lokalizacji SPS względem DTE.

76

MI
* INTERFACE MONITOR *

Sample step 0.1 me x (1... 65535) = 1
Disolayed circuits (Y/N)

125 = N
115 =3 Y
114 =3 Y
113 =3 N
112 =J N
1 1 1 = N
110 = N.

109 = Y
10S N

107 =3 N
łt 106 =□ N
105 N
104 =i Y
103 =3 Y

* * *
a)

» INTERFACE MONITOR *

START

SAMPLE STEP

b)

Rys. 1. Monitorowanie stanu obwodów styku S2:
a - wprowadzenie komendy, b - kopia wyników

Fig. 1. Interface monitoring: a - command delivery, b - resultg

Przykładowo, definiując pułapkę kończącą monitorowanie transmi-
cji według protokołu BSC, należy podać czy Jest nią jedno z następu­
jących zdarzeń;

- upływ czasu

- zapełnienie bufora pamięci pojemność na 100 Jednostek prots-
kołu średniej długości

- przepływ k-tej jednostki protokołu

77

- n-krotne wystąpienie błędu sumy kontrolnej

- m-krotne wystąpienie sekwencji najwyżej 6 znaków (z operacją
maskowania dowolnych bitów).

Wszystkie warunki, z wyjątkiem pierwszego, mogą definiować nie­
zależne lub wspólne pułapki dla strumienia odbiorczego(RX), nadaw­
czego (TX) lub wspólnego (XX + RX),

Przykładową postać dialogu ustalającego warunki monitorowania
transmisji według protokołu X.25/3 przedstawiono na rys, 2. Pomiar

♦ MB
* .BIT-ORIENTED PPOTOCOL MONITOR *

Line.sueed (600 ... 9600) = 2400
Protocol (L/S/X) = x
Your tester local to DTE (Y/N) = Y
Time marł: (Y/N) = y
NRZI (Y/N) = N

- Trap events -

Time limit (Y/N) = y
Calue <m: s) =2

Traps def . for
(CS/BS/TX/RX/NO) = BS

TX

FCS (Y/N) = Y
No (1...65535) = 10

Abort (Y/M) = Y
No (1. . .65535) = 20

Buffer -fuli (Y/N) = N
Pattern (Y/N) = N

RX

FCS (Y/N) = N
Abort (Y/N) = N
Buffer fuli (Y/N) = Y
Pattern (Y/N) = Y

Length (1... 6) =2
łf 1 = 11XXOOXX
#2 = 1111XXXX

No (1...65535) = 10

♦ * *

Rys, 2. Eefiniowanie warunków i pułapek monitorowania
transmisji według protokołu X.25/3

Fig. 2. X.25/3 transmission monitoring - parameters
and traps initialization

rozpoczyna się z chwilą wprowadzenia wymaganych danych, a kohczy w
momencie zarejestrowania przez SPS zdarzenia realizującego zdefinio­
waną pułapkę. W dowolnej chwili monitorowanie można przerwać, za­

trzymać lub uzyskać raport bieżący z jego przebiegu. Z chwilę ..akoń-

78

* LAPB PROTOCOL MONITOR *

Start 10:27:28 Duration 00:04:46:720

Pattern TX Trap
Pattern TX
XXXXXX11
Pattern RX
XXXXXX01

Results TX RX

U 6 6
S 7 6
I 3 3

FOS Errors O O
Aborts O O
Patterns 11 5

Rys. 3. Monitorowanie transmisji według protokołu LAPB -
raport końcowy

Fig. 3. Finał raport of LAPB transmission monitoring

czenia pomiaru SPS generuje raport końcowy zawierający między innymi
dane o czasie trwania pomiaru, przyczynie zakończenia, rodzajach i
ilościach zarejestrowanych jednostek. Ten rodzaj raportu, z monito­
rowania transmisji według protokołu LAPB, przedstawiono na rys. 3.

W trakcie trwania pomiaru SPS zbiera wszelkie istotne informacje
o wszystkich obserwowanych jednostkach protokołu, a w buforze cyklicz­
nym jest pamiętanych po 100 jednostek ostatnich z każdego strumienia.

Po skończonym pomiarze mogę one być przedmiotem dalszej analizy.

Komendy sterujęce redagowaniem i wyprowadzaniem sę tak dobrane,

że pozwalaję dokonać analizy jednostek protokołu na różnym poziomie

szczegółowości, w tym zilustrować ich strukturę, wartości parametrów
oraz dynamikę wymiany. SPS rejestruje wszystkie przepływające jedno­
stki^ również nierozpoznane, jeżeli tylko ich struktura, być może
szkieletowa, umożliwia synchronizację układu sprzęgajęcego. Takie nie­
rozpoznane jednostki sę w raporcie bieżęcym/końcowym specjalnie klasy­
fikowane, a ich treść należy wyprowadzać szesnastkowe. Jeżeli wszystkie
jednostki monitorowanej transmisji należę do ustalonego protokołu, to
ich wyprowadzanie i analizę wygodniej jest prowadzić w trybie procedu­
ralnym, tj . zlecajęc SPS ich dekodowanie zgodnie z właściwym formatem.

Rysunki 4 i 5 zawierają wydruk w trybie szesnastkowym i procedu­
ralnym tego samego fragmentu zarejestrowanej transmisji prowadzonej
według protokołu LAPB.

79

TX + RX STREAM

TX
RX
TX
RX
TX

10:32:06:440 03 3F . n
10:32:06:540 01 3F '7
10:32:06:580 01 73 ,C
10:32:06:600 03 73 .C
10:32:06:660 03 00 10 00 FB 07 00

RX 10:32:06:720 01 00 10 00 FB 00 00
Last
TX
Last
RX

U
A B'

entity of TX
10:32:06:740 01 21 . 1
entity of RX
10:32:06:800 03 21 ■

T T T
c D D(w ASCII)

Rys. 4. Wydruk szesnastkowy zawartości buforów rejestrujących
monitorowanie transmisji według LAPB: A - typ strumienia,
B - wskaźnik poprawności przesyłania ramki, C - czas, D - za­

wartość
Fig. 4. LAPB transmission monitoring - hexadecimal listing of

buffers

TX + RX STREAM

X Y Z T W

nu i

TX
RX
TX
RX
TX

10:32:06:440
10:32:06:540
10:32:06: 580
10:32:06:600
10:32:06:660

03
01
01

03
10
01
10

C I
C I
R I
R I
C
00
C
00

P
P
F
F

' U
' U
' U
■ U

I
FB

I
FB

SABM
SABM
UA
DA
I
07
I
00

N(R>=0
00

N(R)=0
00

N(S)=0

N (S) =0

Rys. 5. Wydruk proceduralny zawartości buforów rejestrują­
cych monitorowanie transmisji według LAPB: X - pole adresu,
Y - rozkaz (c)/odpowiedź (RJ,Z - stan bitu P/F, T - typ ram­

ki, W - nazwa i wskaźniki

Fig. 5. LAPB transmission monitoring - procedural listing
of buffers

2.2. Testowanie

SPS umożliwia prowadzenie testowania dwóch rodzajów. Pierwszy
rodzaj to tzw. testowanie standardowe. Realizowana procedura - test
511B według CCITT - pozwala zmierzyć elementową i blokową stopę błę­

dów wybranego kanału transmisji danych. Rodzaj drugi to tzw. testo­
wanie programowe wykorzystujące specjalnie zbudowany język do nada­

BO

wania, odbioru i analizy buforów danych między SPS a środowiskiem

testowym.
Zainicjowanie testowania standardowego jest możliwe po zestawie­

niu odpowiedniej konfiguracji i wprowadzeniu do SPS informacji o:
- konfiguracji podlegającej testowaniu,
- warunkach zakończenia testowania (liczba cykli lub czas).

W testowaniu programowym użytkownik SPS ma do dyspozycji specjal­
ny język programowania testów (TPL), którego instrukcje zestawiono w

tabeli. V' TPL obiektami działań s? bufory, liczniki i stopery. Bufory
stanowię podstawowe struktury danych. Zawarte w nich informacje s? na-
dawane/odbierane do/z urządzenia testowanego i podlegaj? odpowiedniej
analizie oraz obróbce. Liczniki i stopery s? strukturami pomocniczymi
i umożliwiaj? łatwę organizację pętli wraz z warunkowaniem działań

upływem czasu. Eksploatacyjna wersja SPS dopuszcza używanie 16 bufo­
rów o definowanej długości, 8 stoperów zliczaj?cych z rozdzielczości?
20 ms i 8 liczników 8-bitowych.

Tabela

□ęzyk programowania testów

Kod Składnia Opis
CO HALT Zatrzymanie programu testu
01 EXIT Koniec definicji programu testu
10 SEND Bi Nadaj bufor Bi
20 RCEV Bj Odbieraj dane do bufora Bj
30 CMP Bi, Bj Porównaj dane w buforach Bi i Bj
31 MASK Bi, Bj Zeruj bity w Bi zgodnie z wzorcem w Bj
32 TEST Bi, Bj Zlicz w liczniku CO różnicę bitów między

Bi i Bj
40 □ UMP NK Skocz bezwarunkowo do NK
41 □ PEQ NK Skocz do NK, gdy bufory jednakowe
42 □PNQ NK Skocz do NK, gdy bufory niejednakowe
43 □ NS NK Skocz do NK, gdy nadawanie niepoprawne
44 □ NR NK Skocz do NK, gdy odbiór niepoprawny
45 □LEO NK Skocz do NK, gdy Ci równy 0
45 □NLQ NK Skocz do NK, gdy Ci nierówny 0
47 □PTQ NK Skocz do NK, gdy Ti równy 0
50 WAIT n Czekaj n k 20 ms, n ^255
51 RUNT n, Ti Wpisz n do stopera Ti i odblokuj zliczanie
52 SET n, Ci Wpisz n do licznika Ci
53 STPT Ti Zatrzymaj stoper Ti
60 CLR Ci Zeruj licznik Ci
62 INC Ci Dodaj 1 do Ci
63 DEC Ci Odejmij 1 od Ci

Na rysunku 6 przedstawiono kod programu testu, w którym SPS,
spełniajęc rolę DTE w proto-kole X.25/3, przeprowadza w wybranej linii
procedurę restartu. Następuje ona po fazie nawi?zania połęczema li­
niowego zgodnie z wymaganiami protokołu LAPB.

81

*TP
* PROGRAMMABLE TEST T

Linę śoeed (600...P600)
Modem speed (H/L)
Linę mad (H/D)
Protocol class CC/B)
Pratacol (H/S)
NRZI (Y/N)

* H
= D
= B
= S
= N

INSERT TESTING PROGRAM

1 60 CLR CO
•' 20 RCEM BO

50 WAIT 10
4 44 JNR T
5 62 INC CO
6 30 CMP BO, BI
"7 42 JPNE a
8 10 SEND B2
o 50 WAIT o

10 43 JNS o
11 RCEV B3
12 ') WAIT T
13 44 JNR 12
14 30 CMP . B3, E4
15 41 JPEG 20
16 10 SEND B5
17 50 WAIT a
18 43 JNS 17
19 40 JUMP 1 1
20 10 SEND B6
21) WAITon 43 JNS 21

0 HALT
24 1 EXIT

; odbiera ramkę

; odebrano SABM ?
; nie, skocz
; tak, nadaj UA

: odtierz ramkę

; odebr. RESTART REGUEST ?
; tak, skocz
; nie, nadaj RR

; nadaj RESTART CONFIRMATTIDN

; stop
; koniec definicji

* * *

Rys. 6. Test programowy - procedura restartu według X.25/3
(w buforach BI, B2, B5 wstawiono wzorce ramek SABM.UA, RR
a w buforach B4, B6 wstawiono wzorce pakietów RESTART REQU

EST i RESTART CONFIRMATION)

Fig. 6. The programmed test (restart procedura according
X.25/3)

Programując sekwencje testowe użytkownik SPS ma do dyspozycji,
oprócz instrukcji języka TPL, również inne komendy systemu. Służę
one do podziału przestrzeni dostępnej pamięci na wymaganą liczbę
buforów, zapisania i edycji danych w tych buforach, zapisania i edy­
cji definicji testu oraz uzyskania raportu bieżącego i końcowego z

realizacji testu programowego.
Należy tutaj podkreślić uniwersalność rozwiązania. SPS nie rea­

lizuje stałych, wbudowanych sekwencji testowych, lecz oferuje język
i dane do generowania takich sekwencji. Istniejące standardowe sprzę­
gi SPS, przeznaczone do transmisji synchronicznej znakowej lub bi-

SABM.UA

62

towej, umożliwiają testowanie urządzeń pracujących według różnych

protokołów. Najczęściej stosowane sekwencje testowe mogą tworzyć bi­

bliotekę procedur składowaną na urządzeniach zewnętrznych. Dedynym
ograniczeniem implementacyjnym testu programowego jest to, że nie

może on zawierać więcej niż 127 linii programu.

3. BUDOWA OPROGRAMOWANIA

SPS należy do klasy systemów działających w czasie rzeczywis­

tym. Budowa oprogramowania aplikacyjnego dla takiego systemu opiera
się zwykle na systemie operacyjnym gwarantującym współbieżność , syn­

chronizację i komunikację procesów. Rozwiązaniem alternatywnym jest
budowa specjalizowanego monitora, co zwykle gwarantuje krótszy czas
reakcji systemu ną pojedyncze przerwanie, krótszy czas przełączania
procesów i mniejszy obszar pamięci przeznaczony na kod systemu (moni­

tora), Te trzy istotne cechy monitora uzyskuje się kosztem rezygna­

cji z pewnych usług systemu operacyjnego stanowiących o jego uniwer­

salności, a zatem i przydatności dla wielu aplikacji. Budowę opro­
gramowania SPS oparto na specjalizowanym monitorze, rezygnując -

po analizie - z głębokich modyfikacji firmowego systemu DOPS zgodny
z CP/m). W fachowej literaturze opisano wiele realizacji monitorów.

Implementację monitora dla SPS oparto na pracy [6], adaptując mo­
delowe rozwiązanie do innego sprzętu i rozszerzając listę usług zgo­

dnie z wymaganiami procesów aplikacyjnych.
Oprogramowanie aplikacyjne zdekomponowano na pewną liczbę sta­

tycznych procesów, z których każdy realizował się na pewnej maszynie
wirtualnej. Dla pojedynczego procesu maszynę taką tworzy procesor z
pamięcią wspólną i dzieloną, system przerwań (źródło pierwotnych

zdarzeń w systemie) oraz monitor, dostarczający między innymi usług

synchronizacji i komunikacji międzyprocesowej. Monitor, tworząc śro­
dowisko dla procesów kodowanych w języku makroasemblera, narzuca im
strukturę. Elementy składowe struktury procesu przedstawiono na rys.7.

3ak to wynika z rys. 7, każdy z procesów ma trzy punkty wejścia.
Wyznaczają one kod prologu, epilogu oraz startu "normalnego". Kod

prologu każdego z procesów jest wykonywany w momencie (re)etartu mo­
nitora i działanie to pozwala na ustalenie stanu początkowego proce­

su. Monitor aktywuje proces od etykiety epilogu, tj. DHi, jeżeli in­
ny proces zażąda usunięcia podanego procesu z systemu. Monitor, uru­
chamiając proces od etykiety epilogu DHi, usuwa go ze wszystkich ko­
lejek, w których taki proces mógł oczekiwać na spełnienie swoich żą­
dań i kod epilogu musi gwarantować integralność danych usuwanego

83

Priorytet

Obszar pamiętania kontekstu

Obszar komunikacyjny

Obszar stosu procesu

Obszar zmiennych procesu

OFi: Kod procesu

Dli: Kod procesu - prolog

DHi: Kod procesu - epilog

Rys. 7. Elementy składowe struktury procesu
Fig. 7. Elements of tha process structure

procesu. Po procedurze (re)startu wszystkie procesy maję w swoich

strukturach danych ustawiony stan początkowy i sę gotowe do "normal­
nego” startu od etykiedy OFi. Podczas wykonywania niektórych usług

monitor przełącza procesy. Jeżeli proces zwalnia procesor, to jego
ślad jest pamiętany w "obszarze pamiętania kontekstu".

3.1. Usługi monitora

W opisywanym systemie monitor tworzy środowisko i zarządza sta­
tyczną liczbę procesów o stałych priorytetach. V/ systemie jednopro­
cesorowym tylko jeden proces może w wyróżnionej chwili wykonywać się

na procesorze. Pozostałe procesy przebywają w jednej z czterech kole­
jek, tj« procesora (gotowości), żądań aktywacji, czasowej i czasowo-

zdarzeniowej. Monitor przesuwa procesy między kolejkami w wyniku rea­
lizacji zleconych mu usług, które z punktu widzenia procesu należę do

kilku grup. Przede wszystkim służę one do:

- aktywacji/deaktywacji procesów

- synchronizacji z innym procesem
- przesyłania komunikatów między procesami

- odmierzania czasu.

Każdy proces może zażądać aktywacji/deaktywacji innych procesów

lub deaktywacji samego siebie. Wymaga to użycia usług monitora o na­
stępujących definicjach (i - identyfikator procesu);

84

ACTIVATE (i); jeżeli proces I nie jest zawieszony w kolejce czaso­

wej lub czasowo-zdarzeniowej , to jest wstawiany do kolejki proce­
sora wraz z procesem bieżęcym; w przeciwnym razie proces I jest
wstawiany do kolejki żędań aktywacji, a proces bieżęcy do kolejki

procesora,

DEACTIVATE (i); proces I jest usuwany ze wszystkich kolejek i z ety­

kietę epilogu jest wstawiany do kolejki procesora wraz z procesem
bieżęcym,

HOŁD (n): proces bieżęcy zwalnia procesor i jes-t wstawiany do kolej­

ki czasowej, skęd po upływie n tików jest przesuwany do kolejki

procesora,

BYE: proces bieżęcy zwalnia proćesorj jeżeli kolejka żędań aktywacji

tego procesu jest niepusta, to jest zmniejszana o 1 i proces jest
wstawiany do kolejki procesora.
W celu synchronizacji jednego procesu z innym wprowadzono pojęcie

zdarzenia. Może być ono sygnalizowane (ustawiane), zerowane i

oczekiwane przez pewien proces..Cechę wyróżniajęcę jest to, że moni­
tor buforuje zdarzenia. Jeżeli przez E oznaczymy zdarzenie, to w tej
grupie sę dostępne usługi o następujęcych definicjach:

WAIt(e, n): jeżeli kolejka zdarzenia jest nie-pusta, to jest

zmniejszana o 1, a proces zwalniajęc procesor jest ponownie wstawia­
ny do kolejki procesora; jeżeli kolejka zdarzenia jest pusta, te pro­
ces zwalnia procesor i jest wstawiany do kolejki czasowo-zdarzenie-
wej na maksymalny okres n jednostek czaeu (tików), a zdarzenie jest

znakowane jako oczekiwane;

SEND (e); jeżeli zdarzenie jest oczekiwane, to jest zerowane, a
procesy bieżęcy i oczekujęcy na E sę przesuwane do kolejki procesora;
jeżeli kolejka E jest pusta lub jest niepusta, a E nie jest oczekiwa­
ne, to kolejka E jest zwiększana o 1, a proces bieżęcy przechodzi do
kolejki procesora;

CLEAR (e): kolejka E zostaje wyzerowana, a proces bieżęcy jest

przesuwany do kolejki procesora.

Jeżeli proces jest wznawiany, to w jego obszarze komunikacyjnym
jest informacja czy:
- zdarzenie E już oczekiwało na konsumenta,
- zdarzenie E występiło przed czasem przeterminowania,
- czas minęł, a zdarzenie E nie występiło.

Sę dwa sposoby komunikacji między procesami. Sposób pierwszy to
dostęp do wspólnych danych dzielonych. Integralność takich danych nie

jest gwarantowana przez monitor i musi być realizowana przez procesy

85

(co łatwo osiągnąć korzystając z usług WAIT(..) i SENO(..) . Sposób

drugi to komunikacja przez przesyłanie buforów z wiadomościami (komu­
nikatami). Bufory dla komunikatów są pobierane z puli buforów systemu.

Są ich dwa rodzaje, tj. krótkie i długie o liczbie i rozmiarach usta­
lanych generacyjnie. Definicje usług monitora w tej grupie są nastę­
pujące :

GETSHORT_BUF; jeżeli lista krótkich lub długich buforów systemu
jest niepusta, to jest zmniejszana o 1 i adros bufora (p) jest przeka­
zany procesowi,

GETLONG_BUF: jeżeli lista długich buforów systemu jest niepusta,

to jest zmniejszana o i i adres bufora (p) jest przekazany procesowi,

FREE_BUF(p): bufor o adresie p jest dołączony do listy buforów

wolnych ,
SEND_COMM (l,p); do procesu I jest przesyłany komunikat uformowa­

ny w buforze o adresie (p bufor jest dopisywany do kolejki wejścio­
wej wskazanego procesu),

CHECK_QUEUE: jeżeli kolejka wejściowa bieżącego procesu jest nie­

pusta, to jest zmniejszana o 1 i adres pierwszego bufora jest przeka­
zany procesowi przez jego obszar komunikacyjny.

Procesy pobierając bufory z puli systemowej nie maję przy tych
usługach jednakowych uprawnień. Uprawnienia wynikają z priorytetu pro­
cesu, który jest argumentem funkcji progowej rozstrzygającej czy dla

danege procesu monitor ma bufory wolne.
Ostatnią grupę tworzą usługi wykorzystywane przez procesy do

odmierzania czasu. Są to:

STARTTIC_TIM (n,j): aktywacja czasomierza j z nastawą dla odlicze­

nia n tików,

STOPTIC_TIM(j): wyłączenie czasomierza j,

STARTMIN_TIM(n): aktywacja minutnika z nastawą dla odliczenia n minut,

STOPMIN_TIM: wyłączenie minutnika.

4. MODUŁY SPRZĘTOWE

SPS został zbudowany z modułów systemu MSM [3] firmy Impol-1
oraz specjalizowanych kart sprzęgających [4j zaprojektowanych i wyko­

nanych w Politechnice Wrocławskiej. Podstawowa konfiguracja SPS jest
przedstawiona na rys. 8. Architektura systemu MSM, jak i funkcje jego
standardowych modułów, są szczegółowo zdokumentowane w pracy [3].

86

MSM-MD-2 MSD - 25

Rys. 8, Podstawowa konfiguracja SPS
Fig. 8. Basic configuration of the SPS

Wszystkie moduły są umieszczone w kasecie wraz z zasilaczem impulso­

wym MSM-SPS-1 i połączone standardowym interfejsem międzypakietowym
BUSMAT. Są to:

- moduł jednostki centralnej MSM-CPU-85 z procesorem 8085 pracu­
jącym z częstotliwością zegara 3.072 MHz

- moduł pamięci MSM-USMB 128k stanowiący pamięć operacyjną syste­
mu zrealizowaną jako pamięć statyczną RAM o pojemności 64 KB

- moduł obsługi przerwań MSM-ITSC-1 stanowiący programowany ste­
rownik ośmiu przerwań priorytetowych systemu

- moduł sterownika monitora ekranowego MSM-CRTC-1
- moduł sterownika pamięci na dyskach elastycznych MSM-FLOPC-1
- moduł sprzęgający do monitorowania obwodów styku S2 (karta A)

- moduł sprzęgający do minotorowania/sterowania transmisji asyn­
chronicznej i synchronicznej znakowej (karta B)

- moduł sprzęgający do monitorowania/sterowania transmisji syn­
chronicznej bitowej (karta C).

Standardowe urządzenia zewnętrzne systemu SPS stanowią:

- klawiatura alfanumeryczna MSM-KASCII dołączona do modułu CPU-85

- monitor monochromatyczny MSM-MD-2 dołączony do modułu CRTC-l.

Karta A służy do monitorowania obwodów styku S2 w programowanych

odstępach czasu. Blok portu wejściowego oraz blok programowanego gene­

ratora przerwań zbudowano z wykorzystaniem odpowiednio układu 8255 i
układu licznika 8253. Wbudowany blok konwersji poziomów sygnałów pozwą

87

la współpracować z modemami typu EC 8013 i EC 8006 lub innymi zgod­

nymi z nimi mechanicznie, elektrycznie i funkcjonalnie. Kaskadowe po­
łączenie dwóch liczników układu 8253 pozwala uzyskać zakres czasów
między próbkowaniem! od kilku mikrosekund do 2000 s. Ograniczenia pro­

gramowe podnoszę jednak minimalny próg do wartości 50 mikrosekund.

Karta B służy do monitorowania lub sterowania transmisję danych
przez styk S2 dla protokołów asynchronicznych i synchronicznych zna­

kowych. Blok transmisji zbudowano z użyciem dwóch układów 8251A, które

w zależności od trybu pracy są wykorzystywane jako układ nadajnika -
odbiornika lub dwa układy odbiorników. Karta ma własny blok zegara
(dwa liczniki układu 8253) co umożliwia programowy wybór wewnętrz­
nej lub zewnętrznej (modemowej) podstawy czasu. Systemowy port wej -

ściowy umożliwia odczyt wybranych linii styku S2, a port wyjściowy
umożliwia sterowanie obwodem 111, wybór podstawy czasu, maskowanie i
otwieranie przerwań z bloku transmisji. Blok konwersji poziomów syg­
nałów jest analogiczny jak w karcie A.

Karta C służy do monitorowania lub sterowania transmisję danych
przez styk S2 dla protokołów synchronicznych bitowych, Blok transmi­
sji zbudowano z użyciem dwóch układów 8273, które w zależność od

trybu pracy są wykorzystywane jako układ nadajnika-odbiornika l.b
dwa układy odbiorników. Zaprojektowana konfiguracja umożliwia obsłu­
gę układów 8273 trzema sposobami, lecz w SPS układy te są obsługiwa­
ne w trybie programowego DMA. Karta ma własny oscylator kwarcowy o
częstotliwości 4 MHz i blok zegara zbudowany z liczników układu 8253.
Systemowy port wejściowy wraz z portami wewnętrznymi układów umożli­

wia odczyt stanu wybranych linii styku S2, co zapewnia łatwą diagno­
stykę zachowań modemu. Port wyjściowy umożliwia wybór podstawy cza­
su oraz maskowanie i otwieranie przerwań od układów 8273. Blok kon­

wersji poziomów sygnałów jest analogiczny jak w karcie A.

5. OCENA IMPLEMENTACJI

Do budowy oprogramowania zastosowano dość prymitywne narzędzie
jakim jest język makroasemblera. W rezultacie wymagane było napisa­
nie prawie 22 tysięcy linii programu źródłowego. Kod wynikowy wszy­
stkich procedur monitorowania oraz testowania zajął odpowiednio 34 i
26 08 pamięci operacyjnej nie licząc obszarów na bufory. Pięcioosobo­

wy zespół projektowy pracował nad tym zagadnieniem przez 1,5 roku.
Podstawową cechą użytkową budowanej aparatury miała byc jej zdol­

ność do monitorowania i testowania transmisji dupleksowej w całym ty-
do szeregu aż do wartości 9600 b/s włącznie. Szacunkowe obliczenia

o8

dokonane w fazie projektowej nie dyskwalifikowały osiągnięcia tej szyb­
kości. Przeprowadzono cały cykl testowań definiując różną liczbę puła­
pek monitorowania, a tym samym wpływając na czas procedur obsługi przer
wań i analizy danych gromadzonych do analizy w czasie rzeczywistym.
We wszystkich tych przypadkach, łącznie z szybkością 9600 b/s, SPS nie
rejestrował stanu przeciążenia. W trakcie badań sprawdzano również
ergonomię obsługi SPS i czytelność generowanych wyników. Gromadzono

także uwagi na ten temat osób spoza kręgu realizatorów. Okazało się,
że niektóre założenia, a w rezultacie i wykonanie, zostały podporząd­
kowane "łatwości" realizacji a nie wygodzie użytkownika. Zmodernizowa­
na, obecna wersja 1.20 oprogramowania, jest częściowo wolna od tych
niedomagać jakkolwiek pewne zagadnienia zostały odłożone do momentu
budowy urządzenia nowej generacji, opartego na nowych typach kontro­
lerów w kartach sprzęgających. Kontrolery te, np. 8274 lub 82530 w
połączeniu z mikroprocesorami serii iAPX88/86/186 i układami sprzęto­
wego DMA, umożliwią zbudowanie pojedynczej karty integrującej funkcje

trzech kart dotychczasowych, tj.A,B i C i pozwolą na uzyskanie nowych,

zwiększonych wartości parametrów użytkowych. Istniejącą wersję SPS
można natomiast, ze względu na budowę modułową, łatwo wzbogacać o no­
we funkcje. Dotyczy to przede wszystkim monitorowania protokołów ko­
lejnych warstw, tj. transportowego, sesyjnego itd. Rozbudowa oprogra­
mowania realizującego te funkcje jest prowadzona w ramach dyplomowych
prac magisterskich.

LITERATURA

[1] Data Analyzer DA-10, Prospekt firmy Mandel 8 Golterman, 1981.

[2] Data Communications Test Sets, Prospekt firmy Electrodata Inc.
[3] Dokumentacja systemu M.SM, PPZ Impol-1, Warszawa.

[4j DUBIELEWICZ I., FRYZLEWICZ Z., KOLEŚNIK K, KOMOROWSKI W. ,MISIU-
RA L. , Aparatura pomiarowo-diagnostyczna dla sieci SK3S/2. Doku­
mentacja eksploatacyjna, Raport SPR 12/86, CO PWr., Wrocław 1986.

[5] Measurenents, Computation, Systems: Katalog firmy Hewlett-Packard
1984.

[6} THORELLI L.E., A Monitor for Smali Computers, Software-Practice
and Experience, Vol. 8 , s. 439-450, 1978.

Praca wpłynęła do Redakcji 1988.03.28

89

THE N.ICROCOMPUTER BASEB PROTOGOL TESTER AND ANALYZER

Based on the standard MSM hardware the protocol tester and ana-
lyzer is designed for applications to a WAN comraunication protocols.
Three additional cards are designed and shortly described as well as
all the software. This one is decomposed to the proccessee and the
monitor Iwhich enables concurrent and real time proccessing. The taoni-
tor's services are summerized and structural aspects of proccessee
are given.

AHnAPATYPA B BHWJMTEJIHWl CETM

CKOHCTpywpoBaHHaH annapaTypa acnojiHHeT $yH-Knnn aHajniaaTopa/TecTopa
npOTOKOJIOB B OSTU WAN. yCTpoilCTBO GKOHCTpyHpOBaHO nyTGM npUCTpaHBaHUH
k cmctgmg msm Tpex AonojiHiiTejiBHŁix KapT-naKSTOB u GAejian npoeKT nporpaM-
MHoro oóecneHeHMH, cocTOBujero m-3 npoueccoB u MOHMTopa, kotophK co3,uaeT

hmx paPonyio cpesy wlh gmhxpohhom padom b peajibHOM BpeMerai. B CTa-
tbg jiana (SyHKnuoHajiBHHG yepTH ycTpożcTBa u npMHmann cOTpyBHjmecTBa npo-
ueccoB b sToił cpeae.

Prace Naukowe Centrum Obliczeniowego
Nr 6 ____________ Politechniki Wrocławskiej__________________ Nr 6
Studia i Materiały Nr 3 1989

Sieć komputerowa,
pomiar, przepustowość,
opóźnienie tranzytowe

Kazimierz DYRKA*

* Centrum Obliczeniowe Politechniki Wrocławskiej, Wybrzeże Wyspiań
skiego 27, 50-370 Wrocław

Piotr KREMIENIOWSKI*
Edward RUTKOWSKI*

CHARAKTERYSTYK! CZASOWE I PRZEPUSTOWOŚĆ
W SIECI SKJS/2 WERSJA 1

W artykule przedstawiono wyniki pomiarów niektórych charakterys­
tyk ilościowych sieci komputerowej SKOS/2 wersja 1. Omówiono me­
tody i narzędzia pomiarów ze szczególnym uwzględnieniem pomiarów
na poziomie programów aplikacyjnych wykonywanych w komputerach
obliczeniowych. Określono warunki realizacji pomiarów.

1. WSTĘP *

W sieci komputerowej z komutację pakietów podczas przesyłania

komunikatów zawsze powstaję opóźnienia będęce sumę czasów transmisji
tych komunikatów przez linie i inne elementy pośredniczęce.

Oednym z najważniejszych parametrów charakteryzujęcych sieć kom-

puterowę jest opóźnienie przesyłanych przez nię komunikatów. Opóźnie­
nie to zależy od natężenia strumieni przesyłanych komunikatów, prze­
pustowości elementów pośredniczęcych (linii i węzłów) oraz przepusto­

wości kanałów, sposobu obsługi pakietów w komputerach obliczeniowych,
a także od właściwości wykorzystywanych systemów operacyjnych i metod

dostępu. Oczywiście opóźnienie zależy także od mocy obliczeniowej i
obciężenia użytkowanych komputerów obliczeniowych.

92

W wersji 1 SK3S/2 zrealizowana jest usługa przesyłania zbiorów
między komputerami obliczeniowymi. Usługę tę realizuje tak zwana Sta-,
cja Transferu Zbiorów wraz ze sprzęgami międzyprogramowymi, zaimple­
mentowanymi w komputerach obliczeniowych. Czasy wykonania usługi prze­
syłania zbiorów zależę od wielkości.zbiorów, a także od wymienionych
czynników wpływających na opóźnienia przesyłania komunikatów.

Problemy analizy, modelowania i optymalizacji sieci komputero­
wych ujęte sę w pracy [4] gdzie opisano i przeanalizowano wyniki
bezpośrednich pomiarów siec_l. Natomiast w artykule [1] omówiono wy­
niki pomiarów i statystyki sieci MERI7, dokonywane w cięgu dziesię­

cioletniej pracy tej sieci. Analiza wymienionych prac i innych po­
twierdziła tezę, że przepustowość elementów sieci oraz całej sieci
bardzo silnie zależy od sprzętu i oprogramowania i może być oceniana

dopiero w konkretnej realizacji sieci.
W dalszym cięgu tego artykułu podane będę wyniki bezpośrednich

pomiarów niektórych charakterystyk czasowych i przepustowość sieci

SKJS/2 wersji 1.

2. POZIOMY POMIARÓW SKOS/2

Pomiary mogę być dokonywane z użyciem środków sprzętowych lub
programowych na poziomie podsieci komunikacyjnej i komputerów obli­
czeniowych. W wersji 1 SKOS/2 dokonano pomiarów na poziomie podsie­

ci komunikacyjnej za pomocę specjalnego sprzętu - aparatury pomia-
rowo-diagnostycznej. Natomiast na poziomie komputerów obliczeniowych

pomiary zostały wykonane za pomocę specjalnego oprogramowania.

2.1, Pomiary na poziomie podsieci komunikacyjnej

Pomiary na tym poziomie sę dokonywane za pomocę aparatury pomia-

rowo-diagnestycznej, która jest specjalnie skonstruowana dla sieci
SK3S/2 wersja 1 [31. Miejscem włęczenia urzędzenia do sieci jest
styk S2 (między DTE i DCE). Urzędzenie może być włęczone szeregowo

lub równolegle.
Konstrukcja systemu oparta jest na mikrokomputerze oraz specjal­

nych modułach umożliwiajęcych sprzęg systemu ze stykiem S2. W skład
systemu wchodzi specjalne oprogramowanie.

System SPS umożliwia testowanie:
- w czasie normalnej pracy
- w warunkach symulacji DTE
- sygnałów styku DTE-DCE.

93

Do bade:iia przepustowości i natężenia może być wykorzystana fun­
kcja pomiarowa SPS Monitorowanie transmisji danych polegające na
rejestrowaniu strumieni danych płynących do i z DTE. Wykorzystując tę
funkcję uzyskujemy następujące wyniki statystyczne dla każdego stru­
mienia osobno:

- liczbę zarejestrowanych jednostek protokołu
- liczbę zarejestrowanych błędów

- liczbę wyróżnionych typów jednostek protokołu (ramek, pakietów)
- liczbę jednostek dostępnych w buforze.

Przy tych wynikach jest podanych czas rozpoczęcia i zakończenia
oraz czas aktuąlny. Wyniki te są również bardzo pomocne w weryfikacji
pomiarów wykonywanych innymi metodami.

W sieci SKDS/2 badano natężenie przepływu między dwoma współpra­
cującymi RTD; wykorzystując program generujący ruch w sieci oraz sy­

stem' SPS. Przy natężeniu w linii około 2000 b/s u-dział informacji wysy­
łanych przez program użytkowy wynosił 80/j, przy natężaniu 2300 b/s
udział informacji wysyłanych przez program użytkowy wynosił 90&.

2.2, Pomiary na poziomie komputerów obliczeniowych

Podstawową usługą sieci jest przesyłanie komunikatów między na­

dawcą a odbiorcą. Inną istotną usługą jest przesyłanie zbiorów między
dwoma komputerami obliczeniowymi. Czasy wykonywania tych usług są .naj­
ważniejszymi parametrami charakteryzującymi daną sieć.

Ola sieci SKOS/2 wersja 1 dokonano pomiarów tych podstawowych
charakterystyk czasowych. W dalszej części tego punktu w rozbiciu na
te dwa rodzaje usług podano definicje mierzonych wielkości, metodykę
badań, narzędzia służące do pomiarów oraz omówiono wyniki pomiarów.

2.2.1. Przesyłanie komunikatów

W zakresie usługi przesyłania komunikatów na poziomie komputerów

obliczeniowych dskonano następujących pomiarów: czasu opóźnienia

tranzytowego oraz natężenia przepływu.
Opóźnienie tranzytowe jest to parametr techniczny sieci określa­

ny jako czas potrzebny na przesłanie komunikatu o określonej długości

między nadawcą(użytkownikiem lub aplikacją) , zlokalizowanym w danym
komputerze obliczeniowym, a odbiorcą (użytkownikiem lub aplikacją),

zlokalizowanym w innym komputerze obliczeniowym.
Natężenie przepływu określane jest jako stosunek ilości przesła­

nych danych (długości komunikatu) do czasu ich przesłania między na­
dawcą i odbiorcą. Natężenie jest podawane jako liczba przesłanych

bajtów między nadawcą a odbiorcą w czasie jednej sekundy.

94

Pomiar opóźnienia tranzytowego dokonywany był przez dokładne
zmierzenie czasu przesyłania komunikatów określonej długości między
dwoma programami umiejscowionymi w dwóch komputerach obliczeniowych.
Ponieważ nie ma możliwości dokładnej synchronizacji zegarów maszyno­
wych komputerów obliczeniowych pracujących w sieci, pomiar czasu był
dokonywany w komputerze wysyłającym komunikat,określanym jako nadawca

Natomiast program odbiorca, znajdujący się w drugim komputerze obli­
czeniowym, otrzymane komunikaty natychmiast wysyłał z powrotem do na­
dawcy. Zasadę współdziałania obu programów zilustrowano na rys. 1.

Komputer Komputer
obliczeniowy obliczeniowy

Rys. 1. Przepływ komunikatów między nadawcą a odbiorcą
przez elementy pośredniczące

Fig. 1. Flow of messages between sender and receiver
through intermeclirte elements

Przebieg pomiaru jest następujący:
- program nadawca wysyła komunikat do programu odbiorca i roz­

poczyna liczenie czasu
- komunikat jest dzielony na pakiety i przesyłany przez podsieć

komunikacyjną; po dotarciu do odbiorcy komunikat jest natychmiast
wysyłany z powrotem do nadawcy

- po odebraniu komunikatu nadawca kończy liczenie czasu.
Praktycznie komunikat jest zatem przesyłany w obie strony po

tych samych łączach. Przyjmuje się, że czas opóźnienia tranzytowego

wynosi połowę zmierzonego czasu. Pomiary są dokonywane z dokładnością
zegara maszynowego, tj. 26.04166 ms. Aby uniknąć przypadkowości wy­
ników, pomiarów dokonuje się wielokrotnie (n razy), wylicza się

wartość średnią opóźnienia oraz podaje się wartości minimalne i maksy'
malne.

Pomiary zostały wykonane na pilotowej instalacji sieci SKOS/2
wersja 1, której schemat jest przedstawiony na rys. 2.

Komputery obliczeniowe R-32 i R-55 były połączone przez proce­
sory teleprzetwarzania danych (ptd) i modemy pracujące z szybkością
2400 b/s, Modemy były połączone symulowaną linią telefoniczną, co
zmniejsza wartość uzyskanych pomiarów. Wyniki z trzech różnych pomia­

rów pokazano na rys. 3. Pomiary te przeprowadzono z różnymi liczbami

95

Komputer
obliczenie wy Komputer

obliczeniowy

Rys.2. Schemat pilotowej instalacji sieci SK3S/2 wersja 1
Fig.2. Configuration of the prototype instalation of SK3S/2

network version 1

powtórzeń (n), Na wykresie podano wartości średnie. Linią ciągłą połą­

czone są punkty wyników pomiarów opóźnienia tranzytowego dla komuni­
katów o długościach 100, 200, 300, 2000 bajtów. Pomiary były pow­
tarzane trzykrotnie. Linię przerywaną połączone są punkty wyników po­
miarów komunikatów o długościach 100, 300, 5CG... 1900 bajtów. Nato­
miast kropkami połączone są punkty wyni ;ów pomiarów i komunikatów o
długościach 124, 355 (zwiększanych o 211), aż do 2023 bajtów. Z wy­

kresów widać liniową zależność opóźnienia tranzytowego od długości

przesyłanego komunikatu. Widoczne są wahania wielkości opóźnienia
tranzytowego dla komunikatów o tej samej długości, co jest spowodowa­
ne wykonywaniem w tym czasie przez system operacyjny operacji syste­
mowych .

Pomiar natężenia przepływu dokonywany był w warunkach symulowa­
nego ruchu w sieci za pomocą dwóch programów umieszczonych w kompute­
rach R-32 i R-55 instalacji pilotowej (rys. 2). Po zainicjowaniu

pracy przez jeden z programów przez wysłanie komunikatu, programy wza­
jemnie wysyłają ten komunikat natychmiast po otrzymaniu. Zatem komu­

nikat jest "odbijany" z maksymalną prędkością na jaką pozwala łącze
komunikacyjne. Zliczana jest liczba odbić. Natężenie przepływu jest
wyliczane ze wzoru (w bajtach na sekundę).

Nat

gdzie :
n - liczba odbić,
d - długość komunikatu,

p - czas odbijania.
Na rysunku 4 podano natężenie przepływu dla krótkich komunikatów

z przedziału 1-130 bajtów. Na wykresie widać charakterystycz-a zała­
manie się wielkości natężenia dla komunikatów, których długość prze­

kroczyła długość pakietu w SKOS/2 wersja 1, wynoszącą 128 bajtów.

96

Rys.3. Zależność czasu opóźnienia tranzytowego od długości komunikatu

Fig.3. Dependence of transit delayjfrom message length

10 20 30 40 50 60 70 80 90 100 110 120 130

Rys.4. Natężanie przepływu w zależności od długości komunikatu
Fig.4. Flow intensity as function of message length

97

2.2.2. Przesyłanie zbiorów

Podstawowym narzędziem w sieci SK3S/2 wersja 1 do realizacji usłu.

gi przesyłania zbiorów jest System Transferu Zbiorów. 3ego własności
w dużej mierze stanowię o walorach użytkowych sieci.

Szczegółowy program prób i badań oraz narzędzia i metody przed­
stawiono w pracy [2],

Należy zwrócić uwagę, że ocena uzyskanych wyników musi uwzględ­
niać cechy funkcjonalne zaimplementowanego systemu. Zwłaszcza dla sy­
stemu Transferu Zbiorów w sieci SK3S/2 wersja 1 należy w analizie wy-
nikóss uwzględnić kompresję danych znakowych i możliwość wznowień prze­
rywanych transferów w wyniku awarii sprzętu.

Przy badaniach ilościowych charakterystyk systemu zwrócono prze­
de wszystkim uwagę na :

a) czas przesyłania zbioru zdefiniowany jako czas przesyłania in­

formacji z pamięci dyskowej jednego komputera do pamięci dyskowej in­
nego komputera obliczeniowego; czas przesłania zbioru jest liczony od
momentu wydania pierwszej komendy (nawiązanie połączenia) do momentu
wydania ostatniej komendy (rozwiązanie połączenia),

b) natężenie przepływu danych zdefiniowane jak w p-kcle 2.1.

Pomiary wykonano w warunkach pracy sieciowej dla zbiorów sekwen­
cyjnych zblokowanych o stałej i zmiennej długości rekordów. Pomiary

czasu dokonywane są z dokładnością zegara maszynowego.
Średni czas przesłania zbioru zmierzono dla zbiorów o wielkoś­

ciach 2 kB i 1 kB i otrzymano wyniki dla zbioru 2 kB - 50 s, dla zbio­

ru 1 k0 - 70 s.
Pomiary natężenia przepływu danych wykonano dla zbiorów o wielko­

ściach od 2 kB do 30 kB. Wartości średnie otrzymanych wyników zawarte
są w przedziale od 700 b/s do 1800 b/s, przy czym dla zbiorów krót­
kich przepustswość maleje ze względu na narzuty czasowe związane z
nawiązywaniem połączeń, negocjacją warunków transferu i ustaleniem

końcowego statusu zakończenia transferu.

3. UWAGI KOŃCOWE

Uzyskane w czasie badań wyniki stanowić mogą podstawę wstępnej
oceny charakterystyk ilościowych. Występujące w konfiguracji ekspery­
mentalnej odstępstwa od konfiguracji rzeczywistej (dwa komputery, mała

odległość między poszczególnymi systemami, zastosowanie sprzężenia
galwanicznego między PTD z użyciem par przewodów modemowych i zasynu-

98

lowania zegara modemowego przez zewnętrzny generator spowodowały
zmniejszenie błędów transmisji i utrudniły do pewnego stopnia wniosko­
wanie o rzeczywistej przepustowości połę czert.

Istnieje więc potrzeba weryfikacji wyników i rozszerzenie zakresu
badań instalacji użytkowej opartej na istniejącym sprzęcie pomiarowo-

-diagnostycznym i oprogramowaniu pomiarowym, jak również informacjach
dostępnych w kronice pracy sieci.

LITERATURA

[1] AUPPERIE E.M., Merit*s evolution - statistically speaking, IEEE
Trans, on Computers. Vol. c-32, No. 10, October 1983.

[2] DUBIELEWICZ A. i in., Program prób i badań usługi transferu zbio­
rów dla SK3S2 wersja 1., CO PWr., Raport SPR 8/86.

[31 DUBIELEWICZ I.,' FRYŹLEWICZ Z., KOMOROWSKI W., Założenia technicz­
no-ekonomiczne na aparaturę pomiarowo-diagnostycznę , CO PWr., Ra­
port SPR 13/86, Wrocław 1986.

[4] KLEINROCK L. Queueing Systems. Vol. II: Computer Applications,
New York, Wiley, 1976.

TIME AND THROUGHPUT CHARACTERISTICS
OF SKOS/2 YERSION 1 COMPUTER NETWORK

This paper is intended to familiarize the reader with the result
of direct measuring ofcomputer network SKOS/2 version 1. Lavels of
measurement, hardware and software tools for measurement are shortly
presented and the results of measurement transitive delay, flow inten-
slty and file transfer delay are given.

WJICBHE yAPAKTEPMCTM K HPOnYCKHAB CROCOEHOCTB
BHWJIETEJIŁHOil CETM SKJS2 BEPCMH 1

B CTaTŁe npeacTaBjieHH pesyjiBTam hkcjiobhx H3MepeHMfi HeKOTopta xa-
paKTepMCTMK BHHHCJUiTejiLHoil cera SKJS2 BspcnH 1. Onucami mstoah 0 opy-
Ahh 03MepeHH0, b TacTHOcTH HSMepeHKA na ypoBHe npHKjiaflHHx nporpaMM.
upeacTaBJieHH ycAOBHH peajiKsanjra z3MepeHna.

SPIS TREŚCI

Przedmowa .. 3

A. HUZAR, A. KALIŚ, Sieć komputerowa Jednolitego Systemu

SKJS2 wersja 1 ... 5

L. BUDZIANOWSKI, 3. WIETRZYCH, A. FRYS, Struktura warstwowa

a standardy w sieci SKJS2 wersja 1 13

A. KALIŚ, A. HUZAR, Tworzenie oprogramowania bazowego sieci

komputerowej SKJS2 wersja 1 27

M. JACUKOWICZ, A. JANISZEWSKI, J. KWIATKOWSKI, Dostęp termi­

nalowy w sieci SKJS2 wersja 1 45

,J. STAŃKO, 0. ŻAK, Styki a sterowanie przepływem w sieci SKJS2

wersja 1 53

A. HUZAR, A. KALIŚ, Problemy synchronizacji w stacji trans­

feru zbiorów sieci komputerowej SKJS2 wersja 1.............................. 65

Z. FRYŹLEWICZ, Aparatura pomiarowo-diagnostyczna dla sieci

komputerowej

K. DYRKA, P. KREMIENOWSKI, E. RUTKOWSKI, Charakterystyki cza­

sowe i przepustowość w sieci SKJS2 wersja 1

CONTENtS

Preface .. 3

A. HUZAR, A, KALIŚ, The Computer network SKJS2 versi®n !..«.. 5

L. BUDZIANOWSKI, □ . WIETRZYCH, A. FRYS , Layer structur and
standards in Computer network SK0S2 ... 13

A. KALIŚ, A. HUZAR, The creation of basie Software o<f rhe

network SK0S2 version 1 ♦ 27

M. OACUKOWICZ, A. 3ANISZEWSKI, □ . KWIATKOWSKI, Terminal access

to the SK0S2 Computer network 45

□ . STAŃKO, D. ZAK, The interfaces and' flow contro! in SK0S2

network .. • V'

A. HUZAR, A. KALIś, Some synchronization problems in the file

transfer station on the SK0S2 network*. 65

Z. FRYZLEWICZ, The microcomputer based protocol tester and

analyzer 73

K. DYRKA, P. KREMIENOWSKI, E. RUTKOWSKI, Time and throughput

characteristics of SK0S.2 Computer network 91

PRACE NAUKOWE CENTRUM OBLICZENIOWEGO
(wydane w latach 1985-1987)

Nr 3, Konferencje nr 1, Sieci komputerowe — Usługi, protokoły, modele,
cz. I, Wrocław 1985 160,—

Nr 4, Konferencje nr 2, Sieci komputerowe — Usługi protokoły, modele,
cz. II, Wrocław 1986 170,—

Nr 5, Konferencje nr 3, Sieci komputerowe — Teoria, technika, zastosowa­
nia, Wrocław 1987 335,—

Cena zł 440,—>

Subscription shouid be sent (at any lima of the year) to:
„Ars Palona”

Krakowskie Przedmieście 1, 00-068 Warszawa
Bank account number: PBK XIII Oddz. W-wa 37G044-1195-139-11

Zamówienia na prenumeratę można składać:
OR PAN, PKiN, 00-901 Warszawa

Nr konta bankowego: PBK IX Oddz. W-wa, 370031-4792

Wydawnictwa Politechniki Wrocławskiej
ma stale na składzie Księgarnia Wr 49

Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
oraz Wojewódzka Księgarnia Techniczna

ul. Świdnicka 8, 59-087 Wrocław

ISSN 0860-1623

Raport dostępności

		Nazwa pliku:

		PN_PWr_CO_06_SM_03_1989.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

