
P R A C E  N A U K O W E  A K A D E M I I  E K O N O M I C Z N E J  WE WR O C Ł A WI U
Nr 1064 ----------------------------------------------------------------------------------------------------------  2005

Pozyskiwanie wiedzy i zarządzanie wiedzą

Igor Wojnicki, Antoni Ligęza
University of Missouri -  St.Louis, USA; AGH University of Science and Technology, Poland

HANDLING RECURSIVE QUERIES WITHIN RDBMS WITH 
JELLY VIEW TECHNOLOGY. SOME EXPERIMENTAL 

RESULTS WITH THE REDARES SYSTEM

1. Introduction

Some most significant limitations of information processing within contempo­
rary Relational SQL. Two typical 'classes of unsolvable problems include the 
following examples: Database Management Systems follows from the lack of re­
cursive queries at the level of
• C l Traversal of structurally complex data structures (such as graphs, trees, 

terms, lists etc.).
• C2 Search for Admissible Solutions under specified constraints problems 

(finding specific subsets of a given set, generation of structural solutions 
satisfying specific constraints etc.).
These two classes cover many different problems such as: plan generation, 

searching for acceptable or optimal solutions, analysis of structures, decision 
sup-port systems, constraint programming problems. The limitations are inherited 
in SQL which is based on simple relational algebra concepts [1] while handling 
re-cursive queries requires more advanced approach (recursive queries are 
addressed by SQL99 standard, however this feature is implemented only in DB2 
by IBM).

These problems are tackled by the ReDaReS system, which introduces 
rule-based processing to the database systems, providing virtually limitless proce­
ssing capabilities. The system implements Jelly View technology [7,8,9]. The tech­
nology allows for encoding intensional knowledge using the Prolog langua­
ge syntax within RDB tables (Prolog, being a superset of Datalog, has been 
proven to be a proper methodology to provide the Logical Data Model [3]). As



313

the result the functionality of RDBMS is extended towards that of Deductive 
Databases [2,4,5].

The Prolog clauses are decomposed into data, and stored in the RDBMS 
founding so-called Logic Program (or just Program). The database becomes 
a complete source of knowledge, both extensional and intensional.In order 
to process intensional knowledge an inference engine is coupled with the 
RDBMS. The results of the inference process are visible as regular views, 
accessible by SQL.The state of the view is generated dynamically by the infe­
rence engine.

As the result problems of the C l or C2 class can be smoothly approached 
keeping SQL as the outermost communication technology.The proposed methodo­
logy extends the system catalog towards storing, accessing, and processing inten­
sional knowledge within RDBMS.

2. Intensional Knowledge Decomposition

The clauses, which provide intensional knowledge are decomposed and stored 
in a well defined manner in the database. The appropriate Entity Relationship 
Diagram is given in Fig.l. The entities c l a u s e ,  a rg u m e n t l o g i c a l  o p e ­
r a t o r  provide the Program - a set of decomposed Prolog clauses.

Figure 1. Storing Intensional Knowledge in RDBMS, Entity Relatio nship Diagram

The decomposition takes place at the predicate level, not the term level. 
Arguments of the predicates are not further decomposed (see entity argument). 
If the arguments were more complex expressions (terms, structures etc.) they



314

would not be decomposed. They would be treated as atomic expressions in­
stead. The lack of further decomposition is forced because of the performan­
ce reasons. If the arguments were decomposed, in order to recreate a clause, 
a recursive query would have to be issued. Since most of the RDBMS do not 
support such queries, there would be a performance loss (this issue is subject to 
the further research).

There are two more components which are vital to intensional knowledge 
processing. They define the way how the user accesses the Jelly View, what clauses 
a particular Jelly View is composed of, and how the inference engine accesses 
extensional knowledge gathered in the database. These are External Matching and 
Internal Matching respectively. The External Matching establishes the name of a 
Jelly View and its schema (entities: t a b l e - p r e d i c a t e ,  tp -a rg u m e n t) ,  in 
terms of the Relational Model. It also indicates what is the goal for the inference 
engine (the attribute p r e d i c a t e  of the t a b l e - p r e d i c a t e  entity). The goal is 
used to generate the state of the Jelly View. It also denotes what clauses should be 
used by the inference engine for the particular Jelly View (the relationship 
c o n s i s t s  o f  between the entities: t a b l e - p r e d i c a t e  and c la u s e ) .  The 
arity of the goal matches the number of attributes of the Jelly View. Moreover, the 
goal has to be a valid predicate covered by the Program clauses.

It is worth pointing out, that some clauses may be shared among some number 
of Jelly Views. It enables modular programming and allows to reuse the code. In 
such a way libraries of problem-spećific modules may be provided and stored for 
further use.

The Internal Matching enables the inference engine to access extensio­
nal knowledge gathered in the database. It indicates which extensional knowled­
ge is available to the inference engine.lt is provided by defining a corresponden­
ce (mapping) between a predicate and a relation ( th e  p r e d i c a t e - t a b l e  
entity). In such a way simple clauses of the given predicates are provided by 
the tuples from the given relations. Moreover, the same mapping between the 
predicate and the relation might be used by more than a single Jelly View, since 
there is a many-to-many relationship (h as) between the External Matching and 
Internal Matching.

All the relations used by the External Matching, Internal Matching and 
Program extend the system catalog of the RDBMS allowing it to store intensional 
knowledge. Since intensional knowledge is stored as (decomposed) Prolog clauses; 
a Prolog inference engine has to be coupled with the RDBMS to interpret it.

3. Implementation: the ReDaReS System

ReDaReS is a prototype system implementing the proposed Jelly View techno­
logy. It is designed to be a loosely coupled middleware between client applications 
and the RDBMS. It uses ODBC as a communication protocol. In this way the



315

system may be applied to any standard relational database, which supports ODBC, 
regardless of its physical organization, vendor, or SQL dialect it uses (the loose 
coupling has some important performance issues, though).

The system is designed to be connected via ODBC to the RDBMS. Further­
more, it becomes an ODBC data source (being ODBC server has not been imple­
mented yet, this functionality is currently replaced with text oriented query/res- 
ponse interface) which mimics the original database. Instead of querying the 
database one should query ReDaReS. The system is transparent. It means that all 
the queries, which were being accepted by the database, are still accepted while 
querying ReDaReS, since they are forwarded to the database directly. The database 
response is forwarded back to the client application.

If the query concerns a Jelly View the system takes the processing over. It 
gathers intensional knowledge, which is accompanied with particular Jelly View, 
and launches the inference engine. As the result, the inference engine provides the 
state of the Jelly View. The state is temporarily stored in the RDBMS (storing the 
state of Jelly View in the database is forced by the middleware architecture). Then, 
the original query is forwarded to the database. Finally the database sends the reply 
to ReDaReS and it forwards it back to the client application.The data flow is given 
in Fig.2. The inference engine is based on SWI Prolog [6].

Figure 2. ReDaReS and RDBMS, Data Flow

The inference engine has a direct access to extensional knowledge gathered in 
the RDBMS. Current implementation downloads all extensional knowledge to the 
inference engine before the inference process takes place. It introduces a time- 
delay and this issue is subject to further research. The experiments showed that 
downloading extensional knowledge on-demand (during the inference process) 
causes even more slowdown.



316

4. Performance Issues

A series of experiments have been carried out to investigate performance of the 
proposed system. The main test subject is the tree traversal problem. It is finding 
predecessor or ancestor nodes in a tree structure stored in a relation. The test tree is 
composed of 12 levels, having 3 children at each node. The number of nodes is 
given as a Sum of Geometric Series:

r.  . ■ 2 .  . ( n - l )  ( 1  — r " )S = a + a r + a r  + . . . + a r  —a-r-------7-,(1-r )
and with a=l, n=12, r=3, there are: S=265720 nodes. Such a tree structure is 
represented as a single relation: s u b j e c t  ( P a r e n t_ i d ,  I te m _ id ,  Name). 
The Prolog code for finding relationships among nodes is given below:

f i n d ( P a r e n t , C h i l d ) t r e e ( P a r e n t , C h i l d , _)  
f i n d ( P a r e n t , C h i l d ) t r e e ( P a r e n t , C l , _ ) ,

f i n d ( C l , C h i l d )

In order to generate a Jelly View, which is capable of finding the relationships, 
the above program is decomposed. The External Matching is set to define the Jelly 
View, which has the following schema: f  i n d ( p a r e n t _ i d ,  c h i l d _ i d ) , and 
uses f i n d / 2 as the goal. Furthermore, the Jelly View corresponds to the above 
clauses. The Internal Matching defines, that simple clauses (facts) of the t r e e / 3 
predicate are taken from the su b  j  e c t  relation.

There has been a series of experiments carried out in an isolate environment 
(with the PostgreSQL RDBMS, and ReDaReS running only). In general, they 
focused on finding all child nodes of the node at different levels of the tree 
structure. In particular these levels are: 11, 9,7, 5, 3, 1, where the level number 1 is 
the root. The query, used in the experiments, finds all child nodes of the given 
parent one. The parent node is selected by passing the first argument to the Jelly 
View and setting the second one unbounded. The precise value passed as the 
p a r e n t _ i d  is a result of a sub-query given as the argument.The query is given 
below.

SELECT * FROM findfSELECT XXX’,);

where XXX is the following p a r e n t _ i d  queried in turns: 29523, 3279, 363, 39, 
3, 0, which correspond to the levels of the tree structure. The chart in Fig.3 shows 
the results.The X-axis is the number of nodes obtained from the query (its different 
for different levels of the tree). The Y-axis is the elapsed processing time which 
includes the RDBMS processing time, the ReDaReS processing time and the 
communication overhead.

The performance of ReDaReS is compared with the performance of a PSM 
(Permanent Stored Module, also known as Stored SQL Function/Procedure)



317

with the same functionality. The PSM is written in PL/pgSQL, which is a nati­
ve PostgreSQL procedural language. The experiments take into account the 
database indexing as well. The graphs labeled e l a p s e d  and e l a p s e d  id x  
represent the timings of ReDaReS on the relation s u b j e c t ,  without and with 
the indexing turned on respectively. The graphs e l a p s e d  p i  and e l a p s e d  p i  
id x  represent the timings provided by the PSM without and with the indexing. As 
it is showed, the ReDaReS system outperforms the PSM if there is no inde­
xing involved. Turning the indexing on (on the attributes of the s u b j  e c t  relation) 
has a tremendous impact on PSM based solution, which becomes faster than 
ReDaReS.

Finding Child Nodes, Output Discarded

♦ e la p se d  
f  e la p se d  pi

Figure 3. Performance of the System -  Browsing a Tree (Output Discarded)

Some of the ReDaReS slowdowns regard the fact, that the system has to feed 
the database with the results from the inference process. The second set of 
experiments takes it into account (see Fig.4). This time the output tuples are 
discarded. They are not generated by ReDaReS nor PSM. Such an approach 
investigates timings of the inference process alone, without the communication 
overhead (which is pretty significant considering 265720 tuples returned while 
querying at level 1).

The entry time-delay of the ReDaReS system is caused by the necessity of 
downloading extensional knowledge into the inference engine, plus the time 
needed to start the engine up. It takes about 10 seconds for this particular expe­
riment, which is downloading 265720 tuples into the inference engine.



318

240.00

220.00 

200.00 

180.00 

160.00

140.00 -

120.00 

100.00

80.00

60.00

40.00

20.00

Finding Child Nodes

elap sed  
e la p s ed  idx 
e la p s ed  pi 
e la p s ed  pi i<

Num ber of Children

Figure 4. Performance of the System -  Browsing a Tree

The experiments show that ReDaReS is more efficient than the PSM approach 
concerning the inference process itself. The conclusion is that the system is 
sufficiently efficient. However, its performance can be improved by optimizing the 
communication between the prototype system and the database. The improvement 
should focus on both downloading extensional knowledge and uploading the 
results of the inference process.

5. Conclusion

The Jelly View technology extends the Relational Database systems, in such a 
way, that even more complex problems than these specified in Section 1 can be 
smoothly approached keeping SQL as outermost communication technology. 
These problems are tackled by introducing rule-based processing to the database 
systems. The proposed approach allows to solve problems of C l and C2 classes 
(see Section 1), which cover: plan generation, searching for acceptable or optimal 
solutions, analysis of structures, decision support systems, constraint programming 
problems.

The functionality of Relational Databases is significantly extended towards that 
of Deductive Databases [2,4,5], by integrating the proposed technology into a 
database. The technology is based on coupling the existing Prolog inference engine 
with the database.

The prototype ReDaReS system, providing the proposed technology, has been 
implemented and tested on a number of problems. It has shown out the following



319

key properties. The original functionality of the database is preserved. The databa­
se is coupled with the Prolog inference engine.

Both data and knowledge are stored within the Relational Database; no addi­
tional knowledge base is necessary.

There are modules specified in Prolog for extending data processing capabi­
lities, which are decomposed and stored as data in the database.

Results of the inference process, which is inferred knowledge, are accessible as 
dynamically generated SQL views; the necessary code is generated on request from 
components stored in the database. The communication method between the user 
and the database remains SQL.

Obviously, the problems examined (see Fig. 3, Fig. 4) are of exponential 
computational complexity. However, the technology and its implementation turned 
out to be relatively efficient, so that even practical, realistic problems can be solved 
with this simple approach. Taking into account that at present no further optimi­
zation of the code nor other mechanisms (such as use of heuristics or constraints) 
have been considered and the experiments were carried out with PC class compu­
ters, the technology seems to be a promising extension to classical RDBMS.

The proposed solution is more flexible than PSMs. It allows modular pro­
gramming, and may be supported with a CAD system easily. Furthermore, it is 
designed to work with any database system regardless of its PSM capabilities. The 
performance of the prototype system is at least comparable with this of server- 
based processing (PSM). There is also an ongoing research in this domain, which is 
focused on the decomposition of intensional knowledge and improvement of the 
system efficiency.

References

[1] Connolly T., Begg C., Strachan A., Database Systems, A Practical Approach to Design, 
Implementation, and Management, Addison-Wesley, 2nd edition, 1999.

[2] Derr M.A., Morishita S., Phipps G., The Glue-nail Deductive Database System: Design, 
Implementation and Evaluation, VLDB Journal, 3(2): 123 160, 1994.

[3] Nilsson U.,Mabuszynski J., Logic, Programming and Prolog, John Wiley & Sons, 1990.
[4] Ramakrishnan R., Snvastava D., Sudarshan S., Seshadri P., The CORAL Deductive System, 

VLDB Journal: Very Large Data Bases, 3(2): 161 210,1994.
[5] Vaghani J., Ramamohanarao K., Kemp D.B., Somogyi Z., Stuckey P.J., Leask T.S., Harland J., 

The Aditi Deductive Database System, Technical report, University of Melbourne, 1994.
[6] Wielemaker J., SWI-Prolog Reference Manual, Dept, of Social Science Informatics, University 

of Amsterdam, 2002.
[7] Wojnicki I., A Rule-based Inference Engine Extending Knowledge Processing Capabilities o f 

Relational Database Management Systems. PhD thesis, AGH University of Science and 
Technology, 2004. A copy is availbale upon request from the author: wojnickiagh.edu.pl.

[8] Wojnicki I., Janików C.Z., Extending Data Processing Capabilities o f Relational Database 
Management Systems, [in:] H.R. Arabnia, Rose Joshua, and Youngsong Mun, editors,



320

International Conference on Artificial Intelligence, volume I, pages 388 393, Las Vegas, Nevada, 
USA, 2003. CSREA Press.

[9] Wojnicki I., Ligęza A., An Inference Engine fo r  Rdbms, In 6th International Conference on Soft 
Computing and Distributed Processing, Rzeszów, Poland, 2002.

OBSŁUGA REKURENCYJNYCH ZAPYTAŃ W SZRBD 
Z TECHNOLOGIĄ JELLY VIEW. REZULTATY BADAWCZE 

Z SYSTEMEM ReDaReS

Streszczenie

Możliwości przetwarzania relacyjnych baz danych są ograniczone. Szczególnie dwie kategorie 
problemów są trudne do rozwiązania: przechodzenie po złożonych strukturach danych (takich jak 
wykresy, schematy, zestawienia itd.) oraz poszukiwanie dopuszczalnych rozwiązań zgodnie z 
określonymi ograniczeniami (znajdowanie specyficznych podzbiorów danego zbioru, generowanie 
rozwiązań spełniających określone ograniczenia itd.).

W artykule przedstawiono problemy wydajnościowe dotyczące systemu ReDaReS. Do systemu 
wprowadzono technologię Jelly View, która stanowi nowy, praktyczny sposób dekompozycji, 
przechowywania i wyszukiwania wiedzy w obrębie SZRBD. Technologia stawia czoło powyższym 
problemom przez wprowadzenie przetwarzania opartego na regułach (zamierzone przetwarzanie 
wiedzy) do systemów bazy danych. Wiedza intencjonalna jest przedstawiana w formie klauzul języka 
Prolog. Są one dekomponowane na dane i przechowywane w bazie danych, rozszerzając katalog 
systemu w kierunku przechowywania, wejścia i przetwarzania zamierzonej wiedzy w ramach 
SZRBD. W celu przetworzenia wiedzy intencjonalnej mechanizm wnioskowania jest połączony z 
SZBRD. Rezultaty procesu wnioskowania są widoczne jako zwykłe perspektywy dostępne za 
pośrednictwem języka SQL. Perspektywy są generowane w sposób dynamiczny, na żądanie, przez 
mechanizm wnioskowania. Z punktu widzenia użytkownika możliwości przetwarzania stają się 
nieograniczone (mogą być tworzone bardzo złożone kwerendy) w środowisku języka SQL. W 
konsekwencji funkcjonalność SZRBD jest poszerzona o własności dedukcyjnych baz danych. Baza 
danych staje się kompletnym źródłem wiedzy (zarówno intencjonalnym, jak i ekstensjonalnym). 
Artykuł skupia się na przedstawieniu systemu ReDaReS -  pierwowzoru wprowadzania proponowanej 
technologii Jelly View -  i prezentuje wnioski z cyklu eksperymentów.


	HANDLING RECURSIVE QUERIES WITHIN RDBMS WITHJELLY VIEW TECHNOLOGY. SOME EXPERIMENTALRESULTS WITH THE REDARES SYSTEM
	1. Introduction
	2. Intensional Knowledge Decomposition
	3. Implementation: the ReDaReS System
	4. Performance Issues
	5. Conclusion
	References

