
R E S E A R C H P A P E R S R E S E A R C H P A P E R S R E S E A R C H P A P E R S

Leszek A. Maciaszek, Bruc Lee Liong
Macquarie University, Sydney, Australia

MINING OF KNOWLEDGE
IN OBJECT-ORIENTED SOFTWARE

(invited paper)

1. Introduction

Enterprise information systems (EIS) are focal points of all functional,
operational and managerial areas of any enterprise. They are a critical resource for
everyday business activities and for maintaining a competitive position in business.
EIS-s represent the business and organizational knowledge.

Knowledge is usually defined as “know-how" - an intellectual capital
accumulated through experience. As noted by Rus and Lindvall (2002, p.26) -
“The major problem with intellectual capital is that it has legs and walks home
every day. At the same rate experience walks out the door, inexperience walks
in the door. Whether or not many software organizations admit it, they face the
challenge of sustaining the level of competence needed to win contracts and fulfil
undertakings.”

To sustain intellectual capital present in an EIS, the know-how has to be
managed. Effectively, knowledge management has to be engaged to help
organizations discover, organize, distribute and apply the knowledge encoded in
information systems. Data mining is an area of knowledge management concerned
with exploratory data analysis to discover relationships and patterns (perhaps
previously unknown or forgotten) that can (re-)discover knowledge and can
support decision making.

The main objectives of data mining are (Oz, 2004, p.343):
- Path analysis - finding patterns where one event leads to another later event.
- Classification - finding if certain facts fall into predefined groups.
- Clustering - finding groups of facts not previously known.

368

- Forecasting - discovering patterns in data that can lead to reasonable
predictions.
When applied to the know-how present in EIS-s, data mining is the process of

exploring, modeling, and evaluating software code (rather than large data sources).
The exploration stage aims at discovering how the code is structured and how its
components collaborate. The modeling stage aims at representing the code in an
abstract language that can facilitate the understanding and maintenance of
discovered knowledge. The evaluation stage aims at assessing the overall
supportability aspect of discovered knowledge and at refactoring the code to
achieve the required supportability level.

The point of supportability is critical. It sets the target for the mining of
knowledge in the software and for the successive management of that knowledge.
Supportability in software engineering combines three software characteristics -
understandability, maintainability, and scalability (Maciaszek and Liong, 2005).
Only supportable software is a viable information system and an interesting
knowledge resource.

A necessary condition for a supportable EIS is its conformance to a layered
architectural design that reduces system complexity by minimizing component
dependencies. A supportable system enables knowledge transfer and keeping
intellectual capital “in the door”.

The remainder of the paper is structured as follows. Next section addresses the
knowledge exploration phase. The input to exploration is any Java program. The
output is the discovery if and how that Java program conforms to a supportable
architectural design. Section 3 addresses the knowledge modeling phase. It shows
how code visualization facilitates program understanding and how it reveals
additional code dependencies. Section 4 explains how knowledge evaluation phase
can improve the supportability quality of software. The Summary and Conclusion
section explains once more why mining of knowledge present in object-oriented
software is of paramount importance for businesses and why the very existence of
many organizations depend on capturing and transferring knowledge encoded in EIS-
s.

2. Knowledge Exploration

Mining of software knowledge begins with, what is called here, the code
exploration stage. In fact, code exploration is where the real mining is done. The
next two stages model and evaluate the “mined” knowledge.

Code exploration draws its techniques from the related areas of reverse
engineering, code inspection and code profiling. However, code exploration, as
addressed in this paper, is a “value-added” technique in the sense that it aims at
analysing the code with regard to its supportability requirement.

369

Code exploration is given as input a supportable architectural meta-model and
its mining activities are architecture-aware. Consequently, the research presented in
this paper is only interested in mining software knowledge in information systems
originally built to satisfy a given meta-architecture (Maciaszek, 2005).

Because virtually all new enterprise information system are object-oriented,
code exploration targets the object-oriented code and the object-oriented meta­
architecture. Mining legacy systems is not considered in this paper.

Unlike procedural code in Cobol-style legacy systems, the object oriented code
is significantly more difficult to explore because of its different structural and
execution models. That is, the static compile-time code is not sufficient to
understand all object interactions. Some object interactions “happen” dynamically
at run-time and are not visible in the static code. Moreover, the dynamic (run-time)
view of 0 0 code changes for different runs.

It is one of the tasks of a meta-architecture to ensure that dynamic object
collaborations are legitimised (as much as possible) in the static code by means of
establishing explicit associations between collaborating objects (so called Explicit
Association Principle (EAP) - Maciaszek and Liong, 2005). The EAP is
reminiscent of what in knowledge management is known as the transformation of
tacit knowledge into an explicit (codified) knowledge.

A related difficulty of exploring an > object-oriented code is the code
delocalisation (Dunsmore, Roper and Wood, 2003). Delocalisation is a code
characteristic that a closely related functionality is widely distributed throughout
the code. Accordingly, the code exploration requires following the trail of method
invocations and complicated traversals through inheritance hierarchies,
polymorphic invocations, provided and realized interfaces, class libraries, etc.

To fully explore the code, there is a need to perform careful parsing of its tacit
knowledge. This is performed in multiple stages by our mining tool called Design
Quantifier, DQ (Maciaszek and Liong, 2003). DQ is a kind of software inspection
tool and uses typical code analysis and inspection techniques (Devanbu, 1999;
Anderson et al., 2003).

However, DQ is calibrated for discovering if the software conforms to
architectural design and for measuring the supportability of the software. In this
sense DQ relates to the work on architectural localization and extraction (Jerding
and Rugaber, 2000), on architecture-level dependence analysis (Stafford and Wolf,
2001), and on object-oriented design patterns recovery (Antoniol et al., 2001;
Huang et al., 2005).

DQ accepts the definition of a meta-architecture as its input and it assumes
that the meta-architecture enforces supportability principles and patterns (such
as the PCMEF meta-architecture described in Maciaszek and Liong (2005)). DQ
can then analyze the code to determine the components into which the system
is broken and the ways in which components communicate. Communication paths
define dependencies between components. Dependencies that violate the meta-

370

architecture are pinpointed as leading to unsupportable code. As the aim is to
minimize dependencies in software, the dependencies are measured according to
various metrics.

Figure 1 shows the phases of code analysis and inspection performed by
DQ (Maciaszek and Liong, 2003). Parsing of class declarations discovers explicit
knowledge of associations between classes. Parsing of method signatures and local
variables further discovers the implicit intention of associations. The analysis
of function calls establishes the real dependencies. It indicates any runtime
dependencies not legitimized in static program structures. It also points to
delocalisation in the code.

Fig. 1. Phases in object exploration

Parsing is performed via customized byte code engineering tool, BCEL
(BCEL, 2005). Statistics as well as information regarding the class and its
relationships with other classes are collected in various parsing phases. Each
parsing phase unravels different information about the class and its role in the
system.

BCEL has an advantage over standard methods, such as Java reflection, which
reveal only class metadata such as class signature, method signature, parameters
expected for the method, and class variables. Reflection does not reveal local
variables in methods or method invocations performed in each method.

BCEL parses the byte code to recover the class information including the
information recoverable by Java reflection and, furthermore, it recovers method
invocations and local variables. Ability to analyze method invocations is important
for discovering certain features or weaknesses of the system, in particular, hidden
dependencies.

Knowledge exploration starts with class declaration analysis. The class
declaration shows dependencies between the current class and its inherited classes

and implemented interfaces. Moreover, variables declared as part of the class
reveal dependencies of the current class to those declared variable types.

Consider the class declaration in Figure 2. There are a number of different
types of dependencies derivable from that declaration, such as extend dependency,
implementation dependency, and instantiation dependency. Class D extends A and
it, therefore, depends on A (it needs A because it inherits from it). Class D depends
on interfaces B and C because it makes the promise to its clients that it will
implement both interfaces (D can be used anywhere in the program to substitute for
B or C). Finally D depends on both E and F as these are declared as the types of
variables needed for class D to be fully functional. Note that all this information
can be gathered from Java reflection as well as by BCEL.

371

public class D extends A implements B, C{
E varE;
F varF;J___________________________

Fig. 2. Class declaration

The phase of method parsing analysis examines the declaration and content of
each method in the class. This phase is performed in three sub-phases. The first is
to analyse the method’s signature. Information gathered in this sub-phase adds
extra classes to the list of dependencies with the following information: method
parameter types, method return type, method’s declared exception type. This
subphase can be analysed via Java reflection as well as by BCEL.

The next sub-phase is to analyse local variable declarations. Similarly to class
variables, local variables indicate dependencies from the current class to the declared
classes. The program can use the local variables to establish hidden dependencies in
delocalised classes. This usually signifies a breach of the meta-architecture. Java
reflection mechanism is unable to reveal such hidden dependencies.

The third sub-phase of method parsing involves function calls. A method call
may reveal object types not previously registered as the class dependencies. This is
another category of hidden dependencies, which - in extreme cases - can even
create a class without revealing any dependency in the static code.

Another purpose of function calls analysis is to discover execution paths that
lead to runtime behavior. This reveals further information such as method
delegation, method composition, abidance to de Morgan’s law, etc. Function calls
analysis will also reveal information important for enforcing architectural
conformity.

3. Knowledge Modeling

Tools such as DQ or SA4J (SA4J, 2005) provide means to model the mined
knowledge. UML has been used to model such knowledge as it provides rich set of

372

abstractions and notations. For example, dependencies discovered in the class
declaration in Figure 2 can be visually modeled as in Figure 3.

Fig. 3. Class dependencies

Figure 4 is an example showing how method parsing analysis can lead to a
visual model represented as a sequence diagram. The model shows how
fu n c t io n ! . () contains invocation to f u n c t i o n 2 () from param B and
supplying two parameters. The first parameter is an object D from the result of
invoking g e tD () method from param C. The second parameter is its own class.
The g e t A () method is further invoked from the result of f u n c t i o n 2 () ,
expected to be of type A as indicated by the return type of f u n c t i o n l ().

Fig. 4. Method dependencies

The implementation of f u n c t i o n l () reveals that the class A depends on B
and C. The success of f u n c t i o n l () is determined by the existence, result, some
knowledge of f u n c t i o n 2 () , g e tD () , and g e tA () methods. In particular, it

373

depends on f u n c t i o n 2 () returning an object with a method g e t A (), which
will return an object of class A. It depends on A merely for A’s existence since it
does not seem to use A’s functionalities at all.

Another not easily noticeable fact is that there is a local variable declared
implicitly as the result of f u n c t i o n 2 () call. This variable is a placeholder for
ge tA () function call. This means that the class also depends on this particular
placeholder class, whatever the class is, since a method ge tA () is assumed from it.

All in all, there is lots of interesting information that can be discovered from
the code snippet in Figure 4. The fact that C has a method called g e tD () ,
presumably of type D, indicates that C also depends on D. Knowledge like that is
critical for assessing the impact of propagation of changes in the system. Figure 5
is the knowledge model obtained from the method parsing analysis applied to
f u n c t i o n l () in Figure 4.

Fig. 5: Knowledge model corresponding to method dependencies in Figure 4

4. Knowledge Evaluation

It is the task of developers to ensure that the developed software follows the
architectural design, which in turn conforms to a chosen meta-architecture.
However, the evaluation of the explored knowledge represented in knowledge
models is likely to reveal that most software does not follow the intended meta­
architecture.

374

With regard to the knowledge model in Figure 5, method parsing analysis
clearly revealed some suspect dependencies. For example, there is a circular
dependency in the implemented code - interface C depends on class D and yet class
D implements C. Refactoring is advisable on such circular dependencies as
discussed in Maciaszek and Liong (2005).

Knowledge models for software allow better understanding of software
properties and its functionality, thus leading to refactorings that result in
supportable systems. For example, it may help to realize that the code as presented
in Figure 4 could further be improved by considering implementation of faęade
pattern (Maciaszek and Liong, 2005).

Knowledge evaluation is about determining the quality of the software. The
quality addressed in this paper is system supportability. Metrics have been
proposed to measure system supportability. Supportability metrics have been
discussed in Maciaszek and Liong (2003) and this work is continuing.

DQ supports knowledge evaluation by generating UML notes that contain
metric values (Maciaszek and Liong, 2003; Maciaszek, 2005). These notes are
attached to corresponding classes in the diagram, as shown in Figure 6 . The model
shows (in UML notes) the cumulative metrics for the classes. The metrics are:
CCD - cumulative class dependency; CMD - cumulative message dependency,
and CED - cumulative event dependency.

CCD: 5 [X CCD: 2 IX CCD: 2
CMD: 4 CMD: 3 CMD: 3
CED: 2 | CED: 1 | CED: 1

Fig. 6. Knowledge model with upportability metrics

375

Although not currently supported by DQ, tools like DQ should be able to
visualize dependencies by producing call graphs. Ideally, a call graph could be a
variant of a UML sequence diagram. A call graph can be used for the change
impact analysis and to answer “what-if” questions such as “which methods are
affected if a particular method is modified?”. Figure 7 shows the SA4J’s “what-if’
analysis performed on the same Java program that was mined in order to obtain the
knowledge model in Figure 6 .

Knowledge evaluation supports learning and improvement. As discussed by
Rus and Lindvall (2002), evaluation based on metrics can lead to predictive models
that can help to guide decision making for future projects based on past
experiences. Software evaluation with metrics defines a knowledge management
strategy. Applying induction, generalization and abstraction on this knowledge can
generate new knowledge.

5. Summary and Conclusion

This paper started with the conjecture that information systems embody most
of business and organizational knowledge of any enterprise. Much of the
knowledge that underpins everyday business processes and decides about
competitive advantages and the overall future of an enterprise is hidden in the code
rather than present in the minds of employees. The consequence must be that many
large enterprises have no sufficient “know-how” of how their business is done.

Huihans have no option but to search for the “know-how’ in the programming
code, frequently legacy code. However, this paper is about mining of knowledge in
modem object-oriented software. Our point is that newly developed object-oriented
software can be as unsupportable as any thirty years old COBOL program. Worse - the
source code of a COBOL program explains how it works and what it does; the source
code of a C# or Java program may say little about the runtime behaviour of the code.
Hence, this paper is also about how to make the object-oriented code “mine-able”

To be mine-able, the object-oriented code must be written with supportability
(understandability, maintainability, and scalability) in mind. To be supportable, the
architectural design of the code must conform to the supportability-enforcing
meta-architecture. Hence, an overriding objective of the knowledge exploration
stage is to determine if the code supports the architectural design and is, therefore,
supportable. Mining unsupportable code is a misguided effort.

The aim of software mining is to make the implicit implementation knowledge
into an explicit subject matter knowledge that humans can communicate to
each other. Communications requires a language and a set of abstractions
that permits communications at a desired level of detail. The UML delivers
necessary abstractions and communication ability. During the knowledge modeling
stage, the explored knowledge is modelled in UML to formalize knowledge of the
subject matter. The models represent the business and organizational “memory”

376

implemented in software. They also define the current (implemented) architectural
design for the system.

Fig. 7. „What-if’ visualization

Being about software mining, this paper starts with knowledge exploration in the
existing code and it accepts that the original developments models and the code get
out of sync. So, it is not just sufficient to create models from the implementation, but
these models must be evaluated for supportability. Hence, during the knowledge-
evaluation stage, the discovered models (and the current architectural design) are
checked if they conform to the meta-architecture. If they do then the system is still
supportable. But because there are different levels of supportability, the knowledge
evaluation stage attempts also to measure the supportability. To re-introduce
supportability to a system found to be unsupportable, or to improve supportability
level, various refactorings can be applied on the models.

377

Like in the case of data mining, the focus of software mining is to reveal
information that is unknown, hidden or unexpected but that is actionable and can
be used for business decisions. In case of software mining, the obtained knowledge
serves the business decisions with relation to the understanding, maintenance and
scalability of EIS-s. Such decisions are of fundamental importance in today’s
information and knowledge society.

Note that the approach presented in this paper creates models that become
assets, not just costs (as it is the case in most contemporary software development).
Interestingly, this “models-as-assets” approach underpins another interesting trend
in software production - the trend standardized as MDA (Model Driven
Architecture) (Mellor et al., 2004). The MDA raises the abstraction bar even
higher. In the MDA, all knowledge of an information system is formalized in the
modeling language and the models are software-independent. A model compiler is
used to generate all the implementation source code, which is then normally
compiled to the executable code. Under the MDA philosophy, the knowledge
exploration, modeling, and evaluation stages would all apply to the models, never
to the code.

Literatura

[1] Anderson P., Reps T. and Teitelbaum T.: Design and Implementation of a Fine-Grained
Software Inspection Tool, “IEEE Trans, on Soft. Eng.”, 2003, Vol. 29, No.8, pp.721-733.

[2] Antoniol G., Casazza G., Di Penta M. and Fiutem R.: Object-Oriented Design Patterns
Recovery, “The J. of Syst. and Soft.”, 2001, 59, pp.181-196.

[3] BCEL: Byte Code Engineering library, http://jakarta.apache.org/bcel/ (last accessed Feb. 2005)
[4] Devanpu P.: GENOA - A Customizable, Front-End-Retargetable Source Code Analysis

Framework, “ACM Trans, on Soft. Eng. and Methodology”, 1999, Vol. 8, No.2, pp.177-212.
[5] Dunsmore A., Roper M. and Wood M.: Practical Code Inspection techniques for Object-

Oriented Systems: An Experimental Comparison, “IEEE Soft.”, 2003, July/August, pp.21-29.
[6] Huang H„ Zhang S., Cao J. and Duan Y.: A Practical Pattern Recovery Approach Based on both

Structural and Behavioral Analysis, “The J. of Syst. and Soft.”, 2005, 75, pp.68-87.
[7] Jerding D. and Rugaber S.: Using Visualization for Architectural Localization and Extraction,

“Science of Comp. Programming”, 2000, 36, pp.267-284.
[8] Maciaszek L. and Liong B.L.: Designing Measurably-Supportable Systems, “Advanced

Information Technologies for Management", Research Papers No 986, ed. by E., Niedzielska, H.
Dudycz, M. Dyczkowski, Wroclaw University of Economics, 2003, pp.120-149.

[9] Maciaszek L. and Liong B.L.: “Practical Software Engineering. A Case Study Approach”,
Addison-Wesley, 2005, 829p.

[10] Maciaszek L.A.: Roundtrip Architectural Modeling, “Second Asia-Pacific Conference on
Conceptual Modelling (APCCM2005)”, Newcastle, Australia, eds. S. Hartmann and M.Stumper,
Australian Computer Science Communications, 2005, Vol. 27, No. 6, pp. 17-23. (invited paper)

[11] Mellor S., Scott K., Uhl A. and Weise, D.: “MDA Distilled. Principles of Model-Driven
Architecture”, Addison-Wesley 2004 ,150p.

[12] Oz E.: Management Information Systems, 4th ed., Thomson, 2004, 756p.

http://jakarta.apache.org/bcel/

378

[13] Rus I. and Lindvall M.: Knowledge Management in Software Engineering, “IEEE Soft.”, 2002,
May/June, pp.26-38.

[14] SA4J: Structural Analysis for Java, http://www.alphaworks.ibm.com/tech/sa4j (last accessed Fe.
2005)

[15] Stafford J. and Wolf A.: Architecture-Level Dependence Analysis for Software Systems, “Int. J.
on Soft. Eng. and Knowledge Eng.”, 2001, Vol. 11, No. 4, pp.431-451..

DRĄŻENIE WIEDZY W OPROGRAMOWANIU
OBIEKTOWO-ZORIENTOWANYM

Streszczenie

Punktem wyjściowym artykułu jest domniemanie, że systemy informacyjne zawierają więk­
szość organizacyjnej i biznesowej wiedzy przedsiębiorstwa. Przeważająca część tej wiedzy,
wykorzystywanej w codziennie realizowanych procesach biznesowych i decydującej o przewadze
danej firmy nad konkurencją i jej przyszłości, jest raczej ukryta w oprogramowaniu niż w umysłach
jej pracowników. Częściowo jest za to odpowiedzialny współczesny dynamiczny rynek pracy, w
którym pracownicy, zmieniając pracodawców, pozbawiają ich kapitału intelektualnego zdobytego
przez lata pracy. W konsekwencji wiele dużych firm nie ma wystarczającej wiedzy o tym w jaki
sposób one funkcjonują.

Nie ma zatem wyboru: wiedzy tej należy szukać w kodach programowych, najczęściej w
systemach informatycznych. Artykuł ten jest jednakowoż o drążeniu wiedzy we współczesnym
oprogramowaniu obiektowo-zorientowanym. Naszym zdaniem, współczesne oprogramowanie (także
obiektowo-zorientowane) może być w takim samym stopniu „nieznośne” jak 30 letnie programy
pisane w COBOLu. Nawet gorzej - kody źródłowe w COBOLu wyjaśniały sposób działania podczas
gdy programy w C# lub Javie mogą niewiele mówić o metodach zachowania się kodu. Zatem artykuł
ten jest o tym jak sprawić, żeby programy obiektowo-zorientowane uczynić podatne na wydobywanie
z nich wiedzy (mine-able).

Aby z takich programów można było wydobyć wiedzę - powinny one być projektowane z takim
zamysłem (tzn. muszą być zrozumiałe, łatwe do utrzymania i skalowalne). W tym celu projekt
architektury programu musi być zgodny z pewną wymuszoną meta-architekturą. Zatem, nadrzędnym
celem w fazie odkrywania wiedzy jest ustalenie czy kod programowy wspomaga taki projekt
architektury i czy jest w konsekwencji podatny na wydobywanie wiedzy. W przeciwnym razie
drążenie jest chybionym zabiegiem.

Celem drążenia oprogramowania jest przekształcenie wiedzy ukrytej zawartej w kodach
programowych na wiedzę przedmiotową, która może być przekazywana do użytkowników.
Komunikacja międzyludzka wymaga odpowiedniego języka i zbioru pojęć, pozwalających na
wymianę informacji na pożądanym poziomie szczegółowości. Takim językiem jest UML, który
dostarcza pojęć i niezbędnych metod (zdolności) komunikacyjnych. W czasie fazy modelowania
wiedzy, odkrywana wiedza jest formalizowana za pośrednictwem języka UML przybierając postać
odpowiednich modeli wiedzy dziedzinowej. Modele reprezentują biznesową i organizacyjną
“pamięć” zaimplementowaną w oprogramowaniu. Zarazem stanowią projekty architektury
docelowego systemu.

Reprezentując tematykę drążenia oprogramowania, artykuł zaczyna od odkrywania wiedzy w
ramach istniejących kodów, akceptując zarazem oryginalne modele budowy i otrzymywane z nich
programy. Zatem nie jest wystarczające tworzenie modeli z opracowanych wcześniej ale powinny
być one oceniane pod kątem ich przydatności z punktu widzenia drążenia wiedzy. W fazie oceny

http://www.alphaworks.ibm.com/tech/sa4j

379

wiedzy odkrywane modele (i projekty architektury zarazem) są sprawdzane pod kątem ich zgodności
z meta-architekturą. Jeśli są zgodne to system jest uznawany za podatny na odkrywanie wiedzy.
Jednakże z uwagi na różne poziomy „podatności” faza oceny wiedzy wymaga wprowadzenia miar
podatności. Aby uczynić z systemu wersję „podatną” na odkrywanie wiedzy lub podnieść poziom
„podatności” do istniejących modeli można wprowadzić różne zabiegi typowe dla re-factoringu.

Podobnie jak w przypadku drążenia danych - celem drążenia oprogramowania jest odsłonięcie
informacji nieznanych, ukrytych i niespodziewanych ale zarazem użytecznych w decyzyjnych
procesach biznesowych. Uzyskiwana w ten sposób wiedza obsługuje decyzje biznesowe odnoszące
się do zrozumienia, utrzymania i skalowalności systemów typu EIS (Executive Information
Systems).Takie decyzje mają fundamentalne znaczenie we współczesnym społeczeństwie informacji
i wiedzy.

Należy podkreślić, że w podejściu prezentowanym w tym artykule wykorzystuje się modele,
które stają się wartością a nie tylko wywołują koszty (jak w przypadku większości tworzonego
współcześnie oprogramowania). Interesujące jest, że podejście „modele jako wartości” wspiera inną
ciekawą tendencję produkcji oprogramowania - trend MDA (Model Driven Architecture) zaliczony
do standardów (Mellor et al., 2004). Model MDA jest traktowany jako koncepcja wyżej. W modelu
MDA cała wiedza systemu informacyjnego jest formalizowana w języku modelowania a powstające
modele są programowo niezależne. Kompilator modelu jest używany do generowania wszystkich
implementowanych kodów źródłowych, które dalej są kompilowane do postaci wykonywalnej.
Według filozofii MDA poszczególne fazy odkrywania, modelowania i oceny wiedzy powinny być do
modeli a nie do kodów programowych.

	MINING OF KNOWLEDGEIN OBJECT-ORIENTED SOFTWARE
	1. Introduction
	2. Knowledge Exploration
	3. Knowledge Modeling
	4. Knowledge Evaluation
	5. Summary and Conclusion
	Literatura

