
INSTYTUT CHEMII FIZYCZNEJ I TEORETYCZNEJ

POLITECHNIKI WROCŁAWSKIEJ

Raport Serii PREPRINTY Nr 1

MODELOWANIE NIEPORZĄDKU 

W KRYSZTAŁACH MOLEKULARNYCH

Krzysztof ROHLEDER

Praca doktorska

Słowa kluczowe:
nieporządek orientacyjn; 
kryształ CT, energia swi 
bodną, model pseudospim 
dynamika fononowa, meto* 
Monte Carlo, kryształ 
azotu.

Wrocław 1994



Instytut Chemii Fizycznej i Teoretycznej

Politechniki Wrocławskiej

Krzysztof Rohleder

MODELOWANIE NIEPORZĄDKU 
W KRYSZTAŁACH MOLEKULARNYCH

Praca doktorska wykonana w 

Zakładzie Fizyki Chemicznej 

pod kierunkiem 

dr hab. Bogdana Kuchty

Wrocław 1994



Spis Treści

1. Wstęp....................................................................................................... 4
2. Oddziaływania międzycząsteczkowe....................................................... 6
3. Dynamika sieci krystalicznej.................................................................... 13
4. Metoda podatności uogólnionej................................................................18
5. Modelowanie nieporządku..................................................................... 21

5.1 Metoda Monte Carlo................................................................... 21
5.2 Metoda Dynamiki Molekularnej................................................. 23
5.3 Metoda pseudospinu.................................................................... 25

6. Struktura modelowanych kryształów......................................................27
7. Model nieporządku w oparciu o formalizm pseudospinowy...................36
8. Przykłady zastosowania modelowania nieporządku................................44

8.1 Kryształy F-TCNB...................................................................... 44
8.2 Kryształy A-TCNB...................................................................... 46
8.3 Kryształy N-TCNB...................................................................... 58
8.4 Kryształy mieszane...................................................................... 64
8.5 Symulacje Monte Carlo dla kryształu azotu............................... 69

9. Podsumowanie......................................................................................... 75
10. Uzupełnienia...........................................................................................77

10.1 Definicja układów współrzędnych.............................................77
10.2 Struktury związków cytowanych w pracy................................. 81
10.3 Schemat blokowy programu...................................................... 83

2



Autor pracy pragnie serdecznie podziękować dr hab. 

Bogdanowi Kuchcie za życzliwą pomoc w przygotowywaniu 

niniejszej pracy oraz dr Andrzejowi Mierzejewskiemu za 

udostępnienie wyników eksperymentalnych. Szczególnie serdeczne 

wyrazy wdzięczności składam prof. dr hab. Tadeuszowi Lutemu za 

ukształtowanie moich zainteresowań naukowych.
3



"Teraźniejszość - część wieczności, 
która oddziela domenę rozczarowań od 
królestwa nadziei".

A. BIERCE

1. Wstęp
Próbując zrozumieć i opisać otaczającą nas przyrodę sięgamy 

w głąb materii by na podstawie mikroskopowej budowy przewidzieć 

i wytłumaczyć jej zachowanie. Szczególnie interesującym 

przedmiotem takich studiów są kryształy, które ze względu na swą 

periodyczną strukturę dają możliwość budowania prostych modeli. W 

większości przypadków jednak, periodyczna struktura nie jest 

doskonała z uwagi na występujące nieuporządkowanie. Nieporządek 

w kryształach może mieć różny charakter i zasięg. Nieporządkiem 

jest zarówno domenowa struktura kryształu, jak i statystyczny 

rozkład położeń cząsteczek. Przedmiotem zainteresowania poniższej 

pracy są kryształy, w których nieporządek polega na 

niejednoznaczności orientacji cząsteczek. Celem pracy jest pokazanie 

tego problemu na wybranych przykładach a zarazem zaproponowanie 

jednej z możliwych metod opisu tradycyjnego podejścia do opisu 

kryształów wówczas, gdy występuje nieuporządkowanie. Oprócz 

zdefiniowania modelu wraz z uzasadnieniem możliwości jego 

stosowania przedstawiono wyniki dla przypadków, w których 
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podejrzewa się różny charakter nieporządku. Wyniki obliczeń 

konfrontowane są z wynikami eksperymentalnymi na każdym 

poziomie modelowania.

W pierwszej części pracy przedstawiono podstawy teoretyczne 

obliczeń statyki i dynamiki kryształów wraz z opisem modelowania 

potencjału oddziaływań i sposobów traktowania nieporządku. W 

drugiej części przedstawione są oryginalne wyniki prac autora. 

Zawiera ona prezentację modelu nieporządku w kryształach, w 

których liczba stanów mikroskopowych jest ograniczona. 

Przedstawiono wyniki modelowania różnych jakościowo typów 

nieporządku dla wybranych kryształów molekularnych wraz z 

porównaniem ich z wynikami eksperymentalnymi. Zaprezentowano 

również przykład obliczeń symulacji Monte Carlo i ich interpretację 

w kryształach z nieporządkiem orientacyjnym charakteryzującym się 

quasi-ciągłym rozkładem mikroskopowych stanów orientacyjnych. W 

końcowej części pracy przedstawiono krótkie podsumowanie. 

Uzupełnienia zawierają definicje układów współrzędnych, budowy 

związków chemicznych występujących w pracy i schematu 

oryginalnego programu zmodyfikowanego i wykorzystywanego przez 

autora w tracie przygotowywania niniejszej pracy.
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2. Oddziaływania międzycząsteczkowe.
Aby cokolwiek powiedzieć o krysztale, o warunkach jego 

stabilności czy dynamice, trzeba znać naturę oddziaływań, zwykle 

opisywanych modelem potencjału. Jest rzeczą bezsporną, że 

potencjał taki musi zależeć zarówno od odległości pomiędzy 

cząsteczkami jak i od ich wzajemnej orientacji.

Oddziaływania cząsteczek w krysztale mają naturę 

elektronową i związane są z ich strukturą elektronową. Z kwantowo 

mechanicznej teorii zaburzeń wiadomo1-2, że oddziaływanie 

pomiędzy cząsteczkami A i B może być wyrażone jako:

U = U ,+UA + UB + U. (1)el in in aysp v 7

Uel reprezentuje oddziaływania elektrostatyczne rozkładów 

ładunków na tych cząsteczkach. Ten człon energii wyraża się jako: 

uel = (oV|r|oV} (2)

gdzie 0A i O5 oznaczają funkcje falowe stanu podstawowego 

cząsteczek A i B. Powyższy zapis jest kwantowomechaniczną 

średnią:

) = J W • $0) • 9* (*) • (3)

W naszym przypadku funkcja ważąca O = V jest potencjałem 
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oddziaływań. Energia elektrostatyczna Uel jest energią z jaką 

oddziałują dwie cząsteczki A i B znajdujące się w stanie 

podstawowym tj. ze względu na swe statyczne rozkłady ładunków.

i są odziaływaniami związanymi z indukowanym 

momentem dipolowym na obu cząsteczkach i są wyrażone 

odpowiednio przez:

Uln = - E (4)
nA*0A Łn ~Ł0

Pierwszy z nich jest oddziaływaniem cząsteczki B w stanie 

podstawowym z cząsteczką A we wszystkich stanach wzbudzonych. 

Mówiąc prościej odpowiada za oddziaływanie ładunku statycz­

nego na cząsteczce B z wyindukowanym, w wyniku oddziaływania z 

nim, momentem dipolowym na cząsteczce A. Analogicznie 

odpowiada za oddziaływanie ładunku statycznego na cząsteczce A z 

wyindukowanym momentem dipolowym na cząsteczce B.

dysp reprezentuje oddziaływania pomiędzy cząsteczkami we 

wszystkich stanach wzbudzonych a więc pomiędzy wyindukowanymi 

na nich momentami dipolowymi i może być wyrażony jako:
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2

dysp 2^ rpA _ pA , r^B _  t?B (6)
nAMA Ln 
nB*0B

Oddziaływania te, zwane dyspersyjnymi z uwagi na to, że pochodzą 

głównie od elektronów walencyjnych odpowiedzialnych za dyspersję 

światła są czysto kwantowomechanicznym efektem związanym z 

korelacją fluktuacji gęstości rozkładu ładunków na cząsteczce3. 

Oddziaływania te wnoszą ujemny, stabilizujący wkład do energii 

całkowitej. W rachunku zaburzeń, zakłada się, że ładunki są 

izolowane. Ponieważ w praktyce powłoki elektronowe nakładają się 

na siebie, istnieje potrzeba wprowadzenia poprawki do energii 

całkowitej uwzględniającej oddziaływania odpychające, wynikające 

zarówno z klasycznego odpychania się elektronów jak i zakazu 

Pauliego.
Oddziaływania elektrostatyczne Uel, wyrażone w ogólności 

przez harmoniki sferyczne poszczególnych momentów4, sprowadza 

się do oddziaływań kulombowskich o postaci qA • qB • rAB , gdzie q - 

są ładunkami szczątkowymi ar- odległością. Oddziaływania 

związane z indukowanym momentem dipolowym są bardzo trudne do 

wyliczenia. Ponadto mają one mały wkład do energii całkowitej i w 

większości przypadków są zaniedbywane. Człon dyspersyjny wyraża 
się sumą szeregu C2n -r^ , gdzie C2n są współczynnikami dla n > 3. 

W praktyce oddziaływania dyspersyjne przybliża się pierwszym 

wyrazem tego szeregu dla n = 3. Człon odpychający przybliża się
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iloczynem dwóch funkcji zależnych od odległości f^^-eKp^B-r^^)5, 

choć zwykle w miejsce funkcji f przyjmuje się stałą. Trzeba tu 

nadmienić, że model potencjału dla dwóch cząsteczek jest łatwy do 

stosowania jedynie w przypadku prostych cząsteczek. W przypadku 

cząsteczek wieloatomowych rozwiązania równań kwantowo 

mechanicznych są coraz bardziej skomplikowane i wymagają 

znacznych uproszczeń, aby stały się rozwiązywalne. Z uwagi na tą 

trudność, w wielu przypadkach, stosuje się modele potencjału zwane 

atom - atom, w których opisuje się oddziaływania pomiędzy 

cząsteczkami jako sumę oddziałujących, wchodzących w ich skład 

atomów6. Dążenie do uniwersalności sprawia, że poszukuje się takich 

parametrów potencjału dla poszczególnych atomów, które byłyby 

niezależne od rodzaju cząsteczki w ogóle lub przynajmniej dla 

określonej grupy związków.
Niezależnie od rodzaju modelu potencjału, występujące w nim 

stałe współczynniki dobiera się tak, by potencjał ten odtwarzał 

wielkości znane z eksperymentu (np. parametry komórki elemen­

tarnej, ciepło sublimacji) lub z niezależnych obliczeń (np. ab initio).

Najczęściej stosowanym opisem odziaływań atom - atom jest 

potencjał zwany w skrócie "6 - exp" o postaci:

— ’ eXp(Ąv ’ ^iv) (7)

gdzie jest odległością pomiędzy atomami p i v zaś Av. Ąv. 

C empirycznymi stałymi opisującymi oddziaływanie pomiędzy 

nimi. Cechą charakterystyczną tego potencjału jest jego krótko- 

zasięgowość. Człon przyciągający jest do pominięcia już przy 
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odległościach kilkunastu angstremów a odpychający na jeszcze krót­

szych odległościach. Krótkozasięgowość potencjału, która wynika z 

cech oddziaływania sprawia, że jest on bardzo praktyczny z punktu 

widzenia obliczeń, gdyż ogranicza liczbę kontaktów atomowych, 

które trzeba uwzględnić przy wyliczaniu energii całkowitej.

Jest rzeczą bezsporną że parametry potencjału "6 - exp", 

których dobór jest empiryczny, mogą być dowolne. Potencjał musi 

jednak opisywać jakieś wielkości realne, co determinuje wartości 

tych parametrów.

Tabela 1 Wartości (wg. Williamsa, Boeyensa i Levendisa) parametrów potencja­
łu "6-exp" dla poszczególnych rodzajów kontaktów (A i C wyrażono 
w kcal/mol, B w 1 /A ).

A B C

c-c 367364 3.60 2415

C-H 65505 3.67 573

C-N 175728 3.67 1276

H-H 11680 3.74 136

H-N 149368 4.25 454

N-N 175728 3.78 1084

Dążenie do uniwersalności powoduje, że poszukuje się takich 

parametrów, które dobrze opisują energię oddziaływań takich samych 

atomów w różnych związkach. Dla związków będących przedmiotem 

zainteresowania niniejszej pracy dobrze sprawdzonym i przetes­

towanym jest zbiór parametrów, zaproponowany przez Williamsa7, 

Boeyensa i Levendisa8 przedstawiony w tabeli (tab. 1).
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Niezależnie od typu potencjału pierwszym testem jego 

poprawności ze względu na użyte parametry jest by energia kryształu 

osiągała minimum dla parametrów kryształu takich, jakie znane są z 

eksperymentu. W większości przypadków, jeśli jest to uzasadnione, 

przyjmuje się, że cząsteczki tworzące strukturę są sztywne a energia 

pomiędzy cząsteczką na i-tym i j-tym węźle sieci jest sumą energii 

pomiędzy wszystkimi tworzącymi je atomami. Dodając wskaźniki 

numerujące cząsteczki do oznaczenia potencjału możemy zapisać:

— ) (8)

Minimalizacja energii oznacza, że poszukujemy takiego rozkładu

przestrzennego cząsteczek, który daje najmniejszą energię

K = W
i<j

Minimalizację energii sieci można przeprowadzić rozlicznymi 

metodami numerycznymi. Jedną z metod minimalizacji energii sieci 

jest metoda wariacyjna zaproponowana przez Kitajgrodskiego9. 

Metoda ta polega na wariacyjnym poszukiwaniu minimum energii po 

każdym z parametrów kryształu z osobna. Ustala się wartość 

wszystkich parametów kryształu i zmieniając wartość jednego 

minimalizuje się energię. Po uzyskaniu minimum względem tego 

parametru ustala się jego wartość i minimalizuje się po innym. Po 

zminimalizowaniu energii względem wszystkich parametrów 

rozpoczyna się następny cykl minimalizacyjny aż do momentu, kiedy 
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wartości parametrów nie będą się zmieniały przy kolejnych 

iteracjach. Jest to metoda prosta choć nie zawsze daje bezwzględne - 

najniższe minimum. Inną metodą dającą dobre rezultaty jest metoda 

gradientów, której algorytm został zawarty w standardowym module 

fortranowym z biblioteki programów CERN pod nazwą MINUIT. 

Podprogram ten został użyty do minimalizacji energii w niniejszej 

pracy. Metoda ta polega na równoczesnej zmianie wartości 

wszystkich parametrów sieci kryształu zgodnie z wyliczonym 

uprzednio wpływem ich zmian (gradientów) na zmianę wartości 

energii całkowitej. Program MINUIT10 składa się z szeregu 

podprogramów pozwalających na wybór optymalnej metody minima­

lizacji konkretnych struktur w zależności od ich specyfiki.

Dobra zgodność parametrów sieci krystalicznej z wartościami 

eksperymentalnymi upoważnia do użycia go do przewidywania 

własności kryształu np. do policzenia wzbudzeń w tym krysztale.
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3. Dynamika sieci krystalicznej.
Klasyczna dynamika sieci, opisuje jedynie kryształy idealne, 

uporządkowane. Stanowi ona jednak punkt odniesienia dla bardziej 

skomplikowanych modeli, w których uwzględnia się dodatkowe 

efekty (modelowanie nieporządku, metoda podatności uogólnionej 

opisane w dalszej części pracy).
Dysponując potencjałem oddziaływań można policzyć dyna­

mikę kryształu przy najprostszym założeniu, że cząsteczki mogą 

wykonywać drobne oscylacje harmoniczne wokół swych położeń 

równowagowych we wszystkich stopniach swobody. Niech dla trans- 

lacyjnych stopni swobody wychylenia względem osi układu współ­

rzędnych będą Tx, Ty, Tz a dla rotacyjnych obroty wokół trzech osi 

Rx, Ry, Rz. Równania ruchu można zapisać jako11’12:

a^2
, i = 1, 2, 3 (10)

dla translacyjnych stopni oraz

dt2
du 
dR,

, i = 1, 2, 3 (11)

dla rotacyjnych. M oznacza masę cząsteczki, Ij wartości momentu 

bezwładności a U - potencjał oddziaływania międzycząsteczkowego. 

Wygodnie jest zapisać powyższe równania w przenormalizowanych 
zmiennych u,, i = 1 4- 6 zdefiniowanych jako13:
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oraz

,i= 1,2,3

^+3 = ^-Ri ,i = 1,2,3

wtedy równania ruchu zapiszemy następująco:

^2Uj _ dU

dt2 dui

(12)

(13)

(14)

Należy w tym miejscu zaznaczyć, że równania ruchu zapisane 

powyżej są równaniami ruchu tylko jednej cząsteczki. Analogicznie 

zapiszemy równania ruchu dla każdej cząsteczki w komórce 

elementarnej. W praktyce zmienna uj winna mieć jeszcze jeden 

wskaźnik numerujący komórki elementarne, który dla przejrzystości 

zapisu pominięto.

Ponieważ potencjał oddziaływań U zależy od wszystkich 

stopni swobody, możemy go rozłożyć w szereg Taylora wokół 

położenia równowagi względem tych stopni swobody14:

17=+- Z +Z % •u. ■ + -
2 i i,J

(15)

gdzie Oj i Ojj określone sąjako:

(16)

Wskaźnik 0 oznacza, że jest to wartość pierwszej i drugiej pochodnej
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w stanie równowagi. W przybliżeniu harmonicznym pomija się 

wyższe niż druga pochodne rozwinięcia.

Drugi człon rozwinięcia (15) określa wypadkową siłę 

działającą na cząsteczkę i zgodnie z poczynionymi założeniami 

(rozwijaliśmy potencjał względem wychyleń wokół położenia 

równowagi) jest równy zero. Równania ruchu (14) będą więc miały 

następuj ącą postać:

32 u
~^T = 'UJ J = l-6 (17)

Rozwiązań powyższych równań należy poszukiwać wśród równań 

opisujących fale płaskie. Biorąc pod uwagę periodyczność struktury 

kryształu możemy rozwiązanie zapisać w postaci:

ui ~ ui ‘ exP z ‘ W ° 2? ~ ® • t (18)

gdzie Uj(q) jest amplitudą £ - wektorem falowym, R - wektorem 

położenia środków ciężkości cząsteczek, co - częstością a t - czasem.

Konsekwencją podstawienia takiego rozwiązania do równań 

ruchu (17) będzie równanie:

= , i=1+6 (i9)
j

lub wektorowe15:
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O(?)-W = C02-V(£) (20)

gdzie D jest macierzą dynamiczną a E wektorem składającym się z 

amplitud wychyleń. Wektor V_ 6xZ elementów, gdzie Z jest 

liczbą cząsteczek w komórce elementarnej. Macierz dynamiczna D 

ma ten sam wymiar a jawna postać jej elementów jest następująca15:

Ą = • exp(z^) (21)

gdzie prawa strona jest przesumowana po wszystkich komórkach 

elementarnych. W macierzy dynamicznej możemy wyróżnić cztery 

podmacierze:

(22)

które opisują odpowiednio sprzężenia translacyjno - translacyjne, 

translacyjno - rotacyjne, rotacyjne - translacyjne i rotacyjno - 

rotacyjne. Każda z tych macierzy ma wymiar 3Z x 3Z.

Równanie (20) jest typowym równaniem na wartości i wektory 

własne. Rozwiązaniem tego równania jest 6xZ rzeczywistych 

wartości (kwadratów częstości drgań) i wektorów własnych. 

Elementy macierzy dynamicznej D są w ogólności liczbami 

zespolonymi z uwagi na postać rozwiązania (18). W praktyce, znając 

analityczną postać potencjału, można również analitycznie (poprzez 

różniczkowanie potencjału) wyliczyć stałe siłowe16 dla wybranych 
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wartości wektora falowego a potem macierz dynamiczną. Część 

translacyjno - translacyjną można wyliczyć dokładnie, bez czynienia 

dodatkowych założeń. W przypadku pozostałych trzech podmacierzy, 

aby uniknąć problemów z różniczkowaniem funkcji trygono­

metrycznych i nieprzemienności w dziedzinie obrotów przyjmuje się, 

że kąty obrotów są infmitezymalne. Wówczas, korzystając z zależ­

ności podanych przez Olivera17, można wyrazić stałe siłowe libracyj- 

no - libracyjne poprzez translacyjno - translacyjne. Założenie takie, 

choć drastyczne, daje jednak dobre rezultaty w większości przypad­

ków i jest zgodne z przybliżeniem harmonicznym. Rozszerzeniem 

przybliżenia harmonicznego jest metoda podatności uogólnionej.
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4. Metoda podatności uogólnionej.

Istotnym ograniczeniem statyki i dynamiki w przybliżeniu 

harmonicznym jest fakt, że otrzymuje się rezultaty dla temperatury 

0 K. Potencjał spełnia przybliżenie harmoniczności, gdy amplitudy 

wychyleń są małe co ma miejsce w temperaturach bliskich zera 

bezwzględnego. Nawet w przypadkach gdy wiadomo, że w niskich 

temperaturach jakiś kryształ, czy jego faza nie może istnieć (jest 

niestabilna) to prowadząc obliczenia harmoniczne dostajemy w 

efekcie teoretyczne częstości drgań fononowych dla tego kryształu w 

temperaturze zera bezwzględnego. Dynamika harmoniczna nie 

pozwala ponadto śledzić zjawisk krytycznych z uwagi na fakt, że z 

założenia jest stosowana w warunkach stabilności struktury.

Jedną z metod, która pozwala wyciągać wnioski dotyczące 

warunków stabilności jest metoda podatności uogólnionej19. 

Podatność uogólniona jest miarą odpowiedzi układu - kryształu na 

dowolne zaburzenie zewnętrzne.

Równanie (15) będące rozwinięciem potencjału względem 

stopni swobody uj można traktować jako potencjał sprzężonych 

oscylatorów. Częstości drgań kolektywnych (każda cząsteczka 

wychyla się zgodnie z falą płaską opisaną wektorem falowym q) w 

krysztale mogą być znalezione jako bieguny (osobliwości) 

uogólnionej dynamicznej podatności w przybliżeniu Hartree 

zdefiniowanej jako20:

x(£, co, n=/ (co, n • [i+• x° (co, n?1 (23)
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gdzie stała sprzężenia O jest transformatą Fouriera macierzy stałych 

siłowych d>jj opisanych w równaniu (16) a %° (co, 7") jednocząstkową 

podatnością dynamiczną, ^(co,/1) ma sens podatności lokalnej na 

węźle. W ogólności dynamiczna podatność jednocząstkową jest 

wyrażona jako20:

%? .(co,T) = i • f dd u^-udt = 0) \-exp(icoi) (24)
J \L J/
o

gdzie co jest częstością uj - wychyleniem w i-tym stopniu swobody a 

t - czasem. Podatność ta może być wyznaczona kwantowo, poprzez 

rozwiązanie równania Schródingera dla zadanego potencjału21, lub 

klasycznie. W niektórych przypadkach można tę podatność przybli­

żyć poprzez model efektywnego oscylatora harmonicznego:

gdzie M oznacza uogólniony tensor masowy zawierający oprócz 

masy momenty bezwładności.

W wysokiej temperaturze, kiedy istnieje continuum stanów 

energetycznych, jednocząstkową podatność statyczną można wyli­

czyć klasycznie jako23:

Z//7) = P'{(“/’ HM) (26) 
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gdzie P jest odwrotnością energii termicznej ( P = k-T ) a up u: 

zmiennymi translacyjnych i rotacyjnych stopni swobody. Nawiasy 

kwadratowe określają średnią termodynamiczną liczoną klasycznie 

jako:

oo

(/(*)} = Z1 • J/(x) • exp(-p • V (x)) • dx (27)

gdzie V(x) jest tak zwaną funkcją ważącą, a stała Z we wzorze jest 

funkcją normującą i wyraża się następującą całką:

Z = Jexp(-p-K(x))-ó7x (28)
—oo

Przedstawiona metoda podatności uogólnionej daje większe 

możliwości niż przybliżenie harmoniczne, bo - choć sprzężenia 

pomiędzy węzłami są w dalszym ciągu harmoniczne - to potencjał 

lokalny jest anharmoniczny. Model podatnościowy pozwala na 

interpretację przejść fazowych z miękkim drganiem23. Można poka­

zać24, że w przypadku ciągłej przemiany fazowej, zwanej przemianą 

drugiego rodzaju, musi wystąpić drganie kolektywne, którego 

częstość zmierza do zera w miarę zbliżania się do temperatury 

krytycznej25. Łatwo pokazać, iż wówczas podatność (23) ma 

osobliwość (jej wartość dąży do nieskończoności), co wskazuje na 

niestabilność układu26. Fakt ten może być wykorzystany do badania 

warunków stabilności kryształów i określania temperatury przemiany 

fazowej.
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5. Modelowanie nieporządku

Najdokładniejszy opis nieporządku można otrzymać z 

modelowania komputerowego, w którym uwzględnia się dużą liczbę 

cząsteczek, a tym samym dużo niezależnych stopni swobody. 

Pozwala to dobrze uśrednić własności mikroskopowe z uwagi na 

statystycznie dużą liczbę możliwych konfiguracji mikroskopowych.

Modelowanie komputerowe jest metodą, która łączy w sobie 

elementy teorii i eksperymentu i z tego względu nazywane jest często 

eksperymentem numerycznym. Wszystkie tego typu eksperymenty są 

wariantami dwóch metod (Monte Carlo i Dynamiki Molekular­

nej)27-28, które zostaną omówione poniżej.

5.1 Metoda Monte Carlo
Symulacje komputerowe polegają na wyliczeniu statystycznie 

średnich wartości wielkości fizycznych danego układu. Mając model 

potencjału możemy, dla dostatecznie dużego zespołu cząsteczek 

(rzędu kilkuset) wyliczyć jego energię. W następnych krokach 

zmieniamy położenie lub orientację kolejno wszystkich cząsteczek, 

wyliczając za każdym razem energię tak zmodyfikowanego układu29. 

Ze statystycznego punktu widzenia zajmie on wszystkie możliwe 

stany energetyczne, w tym również stan, w którym energia jest 

najniższa. Aby jednak spełnić warunek wiarygodności statystycznej 

należy wykonać dużą liczbę takich kroków. W praktyce wykonanie 

wystarczającej liczby iteracji dla dużych cząsteczek jest niemożliwe. 

Przy wykonywaniu kolejnych kroków energia, w zależności od 

konfiguracji może się zwiększać lub zmniejszać. Można poprawić 
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statystykę i zmniejszyć liczbę koniecznych do wykonania obliczeń 

postulując, by bardziej preferowane były stany konfiguracyjne o 

niższych energiach przez ważenie stanów zależnie od ich energii z 

preferencją stanów niskoenergetycznych. Takie kryterium w sposób 

oczywisty przyspieszy ewolucję układu do stanu najniżej energetycz­

nego. Jednak wymóg ten jako bardzo drastyczne ograniczenie rodzi 

niebezpieczeństwo, że układ zatrzyma sie w lokalnym minimum 

energii nie mając możliwości przekroczenia nawet niskiej bariery 

energetycznej nie mając żadnych możliwości zwiększenia swej 

energii. By ominąć tą istotną niedogodność stosuje się metodę znaną 

pod nazwą Monte Carlo28. Polega ona na tym, że akceptuje się każdą 

konfigurację o energii niższej od poprzedniej ale również akceptuje 

się z pewnym prawdopodobieństwem konfigurację o energii wyższej. 

W metodzie Monte Carlo miarą prawdopodobieństwa zwiększenia 

energii układu jest rozkład Boltzmana29. Niech różnica energii 
pomiędzy kolejnymi krokami wynosi AE. Jeśli losowo wybrana 

liczba z zakresu od zera do jedności jest mniejsza od exp(-AE/kT) 

wówczas krok jest akceptowany, jeśli większa - odrzucany. Gdy 

wzrost energii jest niewielki, wartość funkcji Bolzmana jest bliska 

jedności a zatem prawdopodobieństwo zaakceptowania tego kroku 

jest duże, bowiem prawdopodobieństwo wylosowania liczby 

mniejszej jest również duże. Jeśli zmiana energii jest duża, wówczas 

wartość funkcji Boltzmana jest bliska zeru i wówczas 

prawdopodobieństwo zaakceptowania takiego kroku jest małe.

Przy tak skonstruowanych kryteriach ewolucji układu liczba 

potrzebnych do wykonania kroków, by spełnić wymóg wiarygodnej 

statystyki, zmniejsza się znacznie. W praktyce wystarcza wykonanie
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O Z"
liczby kroków rzędu 10J 4- 10° - zależy to jednak od konfiguracji 

początkowej i szybkości zmian energii w poszczególnych 
krokach30.31,32,33,34,35.

Rejestrując położenia cząsteczek i ich orientacje w kolejnych 

krokach, po osiągnięciu przez układ stanu równowagi (energia w 

kolejnych krokach fluktuuje wokół energii średniej, nie wykazując 

zmian systematycznych), możemy po wykonaniu symulacji wyliczyć 

średnie statystyczne np. położenia, orientacje, lub wzbudzenia26-36. 

Przykład zastosowania symulacji Monte Carlo i wyników jakie 

pozwala otrzymać został zawarty w dalszej części pracy.

5.2 Metoda Dynamiki Molekularnej

Inną niż Monte Carlo metodą eksperymentu komputerowego 

jest metoda dynamiki molekularnej. Mimo swej ogólności metoda 

Monte Carlo ma istotne ograniczenie w stosunku do dynamiki mole­

kularnej, gdyż nie pozwala modelować ewolucji układu w czasie. 

Dynamika molekularna polega na rozwiązywaniu niutonowskich 

równań ruchu w układzie wielu ciał26. Dla każdej cząsteczki w 

rozpatrywanym układzie można zapisać równania ruchu w postaci:

dt

(30)

Istotą metody jest wprowadzenie skończonych przyrostów czasu
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At26>27. W pierwszym przybliżeniu, zakładając, że znamy położenie, 

prędkość i przyspieszenie w chwili i tn możemy przewidzieć, że 

położenie w chwili t(n+1) będzie:

^'} = x^+2-\t-vf (31)

Znając przewidywane położenie, możemy przewidzieć przyspie­

szenie w chwili t(n+1), a następnie, w drugim kroku wyliczyć prędkość 

i położenie jako:

1 1 2 v ’
(32)

1 1 2
(33)

Procedurę iteracyjną należy prowadzić tak długo, aż wyliczone 

wielkości nie będą się różniły od przewidywanych o wiecej, niż 

założony poziom dokładności. Prowadząc takie obliczenia dla 

kolejnych momentów czasu, dostaniemy w rezultacie pełną infor­

mację na temat modelowanego układu. Taka informacja może być 

użyta na wiele sposobów26’27. Można na przykład badać korelację 

ruchów cząsteczek i porównywać ją z eksperymentem.
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5.3 Metoda pseudospinu

Niedogodnością metod symulacyjnych takich jak Monte Carlo 

czy dynamiki molekularnej jest fakt, że nawet dla prostych rzeczy­

wistych układów molekularnych trzeba wykonać bardzo dużą liczbę 

obliczeń.

Rysunek 1. Mapa gęstości elektronowej cząsteczki naftalenu w krysztale 
N-TCNB38.

Dla bardziej skomplikowanych układów, symulacje mogą być 

niemożliwe, gdyż wymagają nierealnie długich obliczeń, nieosią­

galnych nawet na najszybszych komputerach. Niedogodność ta 

zachęca do poszukiwania pośredniej metody, która potrafiłaby mode­

lować nieporządek bez konieczności wykonywania pełnych symu­

lacji Monte Carlo. Można na przykład użyć model z ograniczoną 

liczbą stopni swobody układu, co w zdecydowany sposób 
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przyśpiesza obliczenia38.

Dość powszechnym rodzajem nieporządku jest sytuacja w 

której cząsteczki zajmują z równym prawdopodobieństwem dwie 

różne orientacje w sposób statystyczny. Taki obraz nieporządku 

można zaobserwować na mapach rozkładu gęstości elektronowej 

związków takich jak A-TCNB45, N-TCNB37 (rysunek 1), F-TCNB48 

czy innych. Jest to sytuacja, w której niekoniecznie trzeba stosować 

zaawansowane i czasochłonne obliczenia Monte Carlo. Można 
wówczas skorzystać na przykład z formalizmu pscudospinowego39>4o.

W terminologii fizyki cząstek elementarnych pokaźne miejsce 

zajmuje pojęcie spinu do określania ich własności. W mechanice 

kwantowej wprowadza się do opisu spinu trzy macierze spinowe 
Pauliego41. Pojęcie spinu, którego wartości równe są + y i - y, 

posłużyło do budowania i opisu wszelkich układów dwustanowych o 

innych niż spinowe wartościach. Modele te zwane są modelami 

pseudospinowymi i służą np. do opisu tunelowania protonu w 

wiązaniu wodorowym42. Idea ta może być także zastosowana w 

modelach klasycznych. Można pokazać (w dalszej części pracy 

będzie o tym mowa)43, że wprowadzenie operatora pseudospinowego 

pozwala rozdzielić hamiltonian na część niezależną od pseudospinu, 

na część zależną od pseudospinu tylko jednej cząsteczki oraz zależną 

od pseudospinów oddziałujących cząstek. Idea pseudospinu posłu­

żyła do modelowania nieporządku w kryształach, w których nieupo­

rządkowanie ma charakter dwustanowy, np. są możliwe dwie 

statystycznie równoważne orientacje.
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6. Struktura modelowanych kryształów

Przedmiotem zainteresowania niniejszej pracy jest 

modelowanie nieporządku ilustrowane układami molekularnymi, w 

skład których wchodzą antracen, naftalen, fenantren i 

czterocyjanobenzen oraz azot (Uzupełnienie 1).

Kryształy antracen - (A-TCNB), naftalen - (N-TCNB) i 

fenantren - czterocyjanobenzen (F-TCNB) stanowią interesującą 

reprezentację grupy kryształów z przeniesieniem ładunku (CT) w 

których akceptorem jest TCNB. Strukturę A-TCNB jako pierwsi 

wyznaczyli Tsuchiya45 i Stezowski46, jednak szczegółowe i 

kompleksowe pomiary rentgenowskie wraz z opisem nieporządku 

zostały wykonane przez Lefebvre47 w 1989 roku. Lefebvre wyznaczył 

również strukturę kryształu N-TCNB48-49. Strukturę F-TCNB 

wyznaczył Wright50.

Rysunek 2. Rzut struktury kryształu A-TCNB na krystalograficzną płaszczyznę 
ac (cząsteczki ułożone są w kolumnach wzdłuż osi c).

Wymienione kryształy organiczne krystalizują w kolumny, w 
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których na przemian znajdują się płaskie cząsteczki akceptora i 

donora.

W temperaturze pokojowej wszystkie trzy kryształy należą do 

grupy przestrzennej C2/m. Rzut struktury na krystalograficzne 

płaszczyzny ac i (1 0 2) zaprezentowano na rysunkach 2 i 3. 

Interesująca cecha tych układów jest wyraźnie widoczna w 

krystalograficznej płaszczyźnie (1 0 2), w której leżą cząsteczki w 

fazie wysokotemperaturowej.

Rysunek 3. Rzut struktury kryształu A-TCNB w fazie wysokotempe­
raturowej - HT na krystalograficzną płaszczyznę (102) (cząs­
teczki ułożone w płaszczyźnie o pół periodu niżej zazna­
czono linią przerywaną).

Podobieństwo struktury krystalograficznej tych związków 

wynika z faktu, że we wszystkich trzech przypadkach cząsteczki 

donora wbudowują się właśnie w tej płaszczyźnie w sztywną sieć 
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TCNB, który tworzy praktycznie taką samą strukturę w każdym z 

tych kryształów.

Zarówno w przypadku A-TCNB jak i N-TCNB mamy do 

czynienia z orientacyjnym przejściem fazowym (zachodzi odpo­

wiednio w temperaturach 21 OK i 70K)46, które związane jest ze 

zmianą symetrii węzła z C2/m w fazie wysokotemperaturowej (HT) 

do Cj w fazie niskotemperaturowej (LT). Faza LT obu tych kryszta­

łów ma jednoskośną komórkę prymitywną, należącą do grupy 

przestrzennej P2j/a.

Rysunek 4. Rzut struktury kryształu A-TCNB na krystalograficzną 
płaszczyznę (102) w fazie niskotemperaturowej - LT (cząsteczki 
ułożone w płaszczyźnie o pół periodu niżej zaznaczono linią 
przerywaną).

Rzut struktury na krystalograficzną płaszczyznę (10 2) dla A-

TCNB w fazie LT przedstawia rysunek (rys.4). Niższa symetria fazy 
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LT polega na tym, że cząsteczki obu tworzących te kryształy podsieci 

nie posiadają elementu symetrii jakim jest płaszczyzna ac. Brak tego 

elementu symetrii sprawia, że cząsteczki antracenu są zreorientowane 

w fazie LT w stosunku do fazy HT.

Orientację cząsteczki względem krystalograficznego układu 

współrzędnych możemy opisać poprzez trzy kąty obrotu Rx, Ry, Rz 

wokół trzech osi cząsteczki. Osie cząsteczki definiuje się zazwyczaj 

zgodnie z osiami jej głównych momentów bezwładności; oś x 

zgodnie z kierunkiem największego momentu bezwładności, oś z z 

kierunkiem najmniejszego (Uzupełnienie 2). Przemiana fazowa w 

przypadku obu kryształów polega na zmianie orientacji cząsteczek z 

(0, Ry, 0) w HT na (Rx, Ry, Rz) w LT. W przypadku F-TCNB 

przejścia fazowego nie obserwuje się. Faza niskotemperaturowa dla 

A-TCNB i N-TCNB jest uporządkowana, a faza wysokotempera­

turowa dla wszystkich trzech kryształów jest nieuporządkowana50. 

Nieporządek ten ma różny charakter w każdym przypadku, choć 

struktury są izomorficzne.

Nieuporządkowanie fazy HT w przypadku A-TCNB i N- 

TCNB choć ma tą samą przyczynę - potencjał oddziaływań z 

otoczeniem - ma różny charakter. Potencjał oddziaływań zarówno 

cząsteczki antracenu jak i naftalenu z podsiecią TCNB w funkcji kąta 

obrotu wokół osi normalnej, charakteryzuje się jednym minimum. 

Potencjał oddziaływań obu cząsteczek w obrębie swych podsieci ma 

dwa minima w funkcji tego kąta. Różna jest jednak głębokość tych 

minimów w obu przypadkach. Sumaryczna, całkowita energia 

kryształu jest wynikiem konkurencji oddziaływań z tymi podsieciami 

i w krysztale A-TCNB ma jedno minimum (przeważa oddziaływanie 
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z TCNB) a w N-TCNB dwa minima (przeważa oddziaływanie w 

podsieci naftalenu)50. Istotnym czynnikiem wpływającym na taką 

sytuację wydaje się być owalny, lekko spłaszczony kształt wnęki 

tworzonej przez podsieć TCNB i wielkość a głównie długość 

cząsteczek donora.

Nieporządek we wszystkich trzech układach ma jeszcze jedną 

wspólną cechę. Cząsteczki donora pod presją sąsiadów z kolumn leżą 

w płaszczyźnie, specyfika oddziaływań z podsiecią akceptora 

uniemożliwia praktycznie ruch translacyjny pozostaje więc tylko 

jeden stopień swobody, niesprzeczny z symetrią - libracja bądź 

reorientacja wokół osi normalnej do płaszczyzny (1 0 2).

Pomimo izomorficzności tych kryształów i podobieństwa 

przemiany charakter nieporządku jest inny. Dane strukturalne46 

zaczerpnięte z eksperymentów rentgenowskich nie są w stanie roz­

strzygnąć szczegółów nieporządku gdyż pokazują obraz uśredniony 

po czasie (czas trwania eksperymentu jest znacznie dłuższy niż czas 

ewentualnych reorientacji cząsteczek) i po przestrzeni (obraz 

rentgenowski daje informację uśrednioną po wielu węzłach w 

makrokrysztale). Tak więc na przykład w krysztale A-TCNB, gdzie 

obserwuje się zbyt duże rozmycie położeń atomów cząsteczki 

antracenu w jego płaszczyźnie45, nie można powiedzieć, czy jest to 

spowodowane libracją cząsteczki czy dwupołożeniowym niepo­

rządkiem w podsieci antracenu. Jeszcze wyraźniej sytuacja ta wystę­

puje w krysztale N-TCNB. Cząsteczka naftalenu, mniejsza od 

antracenu, ma większą swobodę we wnęce pomiędzy TCNB. Obraz 

rentgenowski wskazuje wręcz na istnienie dwóch orientacji cząstecz­

ki naftalenu na każdym węźle (rys.l). Oczywiście taka sytuacja jest
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niemożliwa w realnym krysztale. Próbuje się obraz ten tłumaczyć 

jako średni obraz, w którym cząsteczki naftalenu w dwóch różnych 

orientacjach statystycznie okupują węzły w sieci z równym 

prawdopodobieństwem. Podobnie wygląda sytuacja w krysztale 

F-TCNB, w którym cząsteczka fenantrenu wykazuje centrum 

inwersji, podczas gdy izolowana cząsteczka nie posiada tego 

elementu symetrii. W tym przypadku można pośrednio wnioskować o 

rodzaju nieporządku: z uwagi na przeszkody steryczne można 

wykluczyć reorientację cząsteczek w sieci co prowadzi do wniosku, 

że cząsteczki zajmują w sieci dwie równoważne pozycje w sposób 

statystyczny.

Przedstawiona charakterystyka kryształów A-TCNB, N-TCNB 

i F-TCNB, ich podobieństwa w budowie i oczekiwane różnice w 

charakterze nieporządku, predestynują te układy jako testowe przy 

modelowaniu nieporządku orientacyjnego.

Kryształ azotu charakteryzuje się bardzo ciekawym i bogatym 

polimorfizmem fazowym51. Ponadto kryształ ten składa sie z cząste­

czek dwuatomowych a więc znacznie prostszych niż opisywane 

poprzednio. Cechy te sprawiają, że kryształ azotu jest przedmiotem 

intensywnych studiów nie tylko teoretycznych ale i eksperymen­

talnych, pomimo iż niektóre jego fazy występują w bardzo niskich 

temperaturach i wysokich ciśnieniach52-53. Wykres fazowy dla azotu 

prezentuje rysunek (rys.5).
Faza oc jest fazą regularną uporządkowaną (grupa przestrzenna 

Pa3), faza p jest nieuporządkowaną heksagonalną (P 6 3/mmc), y - 

uporządkowaną tetragonalną (P42/w«w), 5 - nieuporządkowaną 

regularną54 (Pm3«), e - (zwana również 8(LT1)) prawdopodobnie 
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romboedryczną56 (R3c) oraz faza - (zwana również 5(LT2)) też 

prawdopodobnie romboedryczną (R3c).

Temperatura [K]

Rysunek 5. Wykres fazowy kryształu azotu.

Z punktu widzenia tematyki niniejszej pracy interesujące są 
fazy a i P, a także przejście fazowe pomiędzy nimi57-58’59, z uwagi na 

nieuporządkowanie fazy p60. Faza ot, jak wskazują dane z 

eksperymentów rentgenowskich i kalorymetrycznych61-62-63, chara­

kteryzuje się symetrią należącą do grupy przestrzennej Pa3. W 

komórce elementarnej znajdują się cztery cząsteczek azotu jak 

pokazano na rysunku (rys.6).
Faza P należy do grupy przestrzennej Póy/mmc a jej strukturę 

prezentuje rysunek (rys.7). W tej fazie cząsteczki azotu są 
swobodnymi rotatorami. Nieporządek fazy P ma odmienny charakter
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od nieporządku w dotychczas omawianych przykładach.

Rysunek 6. Struktura fazy a kryształu azotu.

Rysunek 7. Struktura fazy P kryształu azotu.
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Istotna różnica polega na tym, że w przypadku fazy p stałego 

azotu mamy do czynienia z ciągłym rozkładem prawdopodobieństwa 

orientacji cząsteczek.

Z uwagi na ten fakt nie można stosować modelowania 

nieporządku opartego na formalizmie pseudospinowym. W takich 

przypadkach należy stosować metody statystycznego modelowania - 

np. Monte Carlo.
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7. Model nieporządku w oparciu o formalizm pseudospinowy.
Korzystając ze specyfiki nieporządku, można zapropo­

nować63-64 sposób opisu pseudospinowego w kryształach dwu­

składnikowych, składających się z cząsteczek dwóch typów (A, D), 

w których jedna z podsieci jest nieuporządkowana.

Rozpatrzmy węzeł sieci krystalicznej, w którym cząsteczka D 

może zajmować jedną z dwóch równieprawdopodobnych orientacji i 
przypiszmy tym stanom oznaczenia cc = (+, -) odpowiadające tym 

orientacjom. Niech średnie położenie i orientacja i-tej cząsteczki 
będzie opisana zbiorem cpj ; cpj zawiera parametry komórki 

elementarnej (periody a, b, c, oraz kąty oc, P, y) oraz położenie (Tx, 

Ty, Tz) i orientację (Rx, Ry, Rz) tej cząsteczki w komórce 

elementarnej. Należy podkreślić, że przez średnie położenie i 
orientację rozumiemy zbiór (pi opisujący położenie i orientację 

wynikającą np. z symetrii węzła zajmowanego przez tą cząsteczkę.

Zdefiniujmy nowy, dodatkowy stopień swobody dla tej cząsteczki 

d>“ - zmienną nieporządku. Zmienna nieporządku określa jak 

cząsteczka jest zreorientowana na i-tym węźle w stosunku do średniej 
(pi i w ogólności jest również zbiorem zawierającym tą samą liczbę 

stopni swobody co (pj. Położenie i orientację cząsteczki w stanie oc 

możemy wówczas opisać jako

+ X (34)
a

gdzie jest operatorem rzutowym o wartościach 1 lub 0 i określa 

czy cząsteczka na i-tym węźle jest w stanie (+) czy (-). Notacja taka 
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pozwala opisać położenie i orientację nieuporządkowanych 

cząsteczek niejako wspólnie, tzn. jednym wyrażeniem. Zauważmy, że 
jeśli cząsteczka znajduje się w stanie a = + będziemy mieli:

®(=<p(+i®;+o®ó (35)

a gdy w stanie a = -

0z=(pz+0-0;+l-0o (36)

Operator rzutowy może być wyrażony poprzez operator pseudo- 

spinowy jako:

c“=|(l+ac,) (37)

Energia kryształu dwuskładnikowego jest połową sumy energii 

oddziaływań pomiędzy wszystkimi cząsteczkami tej sieci :

y = ł.V (vPD + VOA + (38)
Q \ IJ IJ 1] IJ / 7
Z ‘J

gdzie V™ oznacza energię oddziaływania pomiędzy cząsteczką ( n = 

A lub D) w węźle i-tym a cząsteczką ( m = A lub D) w węźle j-tym. 

Można teraz wyrazić energię jako jawną funkcję położenia i 

orientacji:
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Z-/

(39)

Przeanalizujmy poszczególne składniki tej energii biorąc pod uwagę 

założenia modelu pseudospinowego opisane powyżej. Ostatni człon 

nie zależy od zmiennej nieporządku, gdyż opisuje energię oddziały­

wania wewnątrz podsieci cząsteczek A, a ta jest uporządkowana. 

Człony drugi i trzeci opisują energię podsieci D z A i A z D i mają 

podobny charakter. Podstawiając do drugiego członu równania (39) 

równanie (34) otrzymujemy:

(40)

Oznacza to, że zgodnie z (35) i (36) jest to energia oddziaływania 
cząsteczki D w stanie oc = + (jeżeli zajmuje ona taki stan) z 

cząsteczką A lub cząsteczki D w stanie a = - (jeżeli jest ona w tym 

stanie) z cząsteczką A. Z uwagi na powyższe zapis taki jest 

równoważny z zapisem:

C /Pj = E ^C'3'P, + C (41)
a

OtPodstawiając w miejsce operatora rzutowego Oz wyrażenie (37)
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otrzymujemy:

■ V;) = Z131 + <*' <7) 4^4^ (42)

a

lub inaczej, rozdzielając sumę na część niezależną od operatora 

pseudospinowego i od niego zależną, jako:

4l><«VC<pJ (43)
4 a

Podobnie postępując możemy doprowadzić do rozdzielenia 

względem operatora pseudospinowego trzeci składnik równania (39), 

skąd otrzymamy:

(<P;, 0>; ) = k X (<P. ’ % + ) +
2 p

(44)
2 p

W przypadku pierwszego członu energii (39), po podstawieniu (34) i
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(37) otrzymamy nieco bardziej skomplikowane wyrażenie67:

= 7' Z + + )+
4 «,P

+1 • Y a • o, ■ V™ (ę,. + 0“, <p. + O’) +

+h^apa, +O“,ęy +<K§) (45)
4 a,p

Z powyższych rozważań widać, że całkowitą energię oddziaływań w 

tym układzie można wyrazić poprzez człon, który nie zależy od 

operatora pseudospinowego (jest to statyczna część tej energii), oraz 

pozostały człon, który zależy od operatora pseudospinowego liniowo 

i kwadratowo (jest to dynamiczna część energii). Nie wnikając w 

szczegóły można powiedzieć, że dynamiczna część energii opisuje 

zależność jednocząstkową, średniopolową (człon liniowy) i energię 

korelacji pomiędzy węzłami (człon kwadratowy). Z uwagi na to, że 

chcemy wyniki naszego modelu porównywać z eksperymentem 

rentgenowskim interesować nas będzie tylko energia oddziaływań 

Vs, która nie zależy od operatora pseudospinowego i wynosi:

2 i,j 4 a,P
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a

2 p 

+C'(<p.’lP>)] <46>

lub - rozpisując sumy:

Równanie powyższe określa przepis na liczenie statycznej energii 

oddziaływań w przybliżeniu pseudospinowym tzn. takim, w którym 

przyjęto dyskretny rozkład prawdopodobieństwa orientacji 
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cząsteczek podsieci D. Wynik ten można interpretować jako średnią 

arytmetyczną oddziaływań pomiędzy węzłami, przy czym każdy 

węzeł podsieci D zajmuje teraz supercząsteczka będąca złożeniem 

dwóch cząsteczek D zreorientowanych o 0^ i 0“ względem 

położenia średniego. Utworzenie średniego węzła sprawia, że sieć 

krystaliczna staje się periodyczna ponieważ każdy węzeł obsadzony 

uprzednio przez cząsteczkę D w położeniu i orientacji (+) albo (-) jest 

teraz taki sam.

Rysunek 8. Definicja kąta nieporządku (DA).

Rozwiązanie modelu pseudospinowego zaproponowane 

powyżej jest całkiem ogólne gdyż zawiera wszystkie stopnie 

swobody nieuporządkowanych cząsteczek D. W przypadku 

materiałów zaproponowanych uprzednio, model ten upraszcza się 

znacznie gdyż redukuje się do jednego stopnia swobody. Jak 

zaznaczono wcześniej wspólną cechą zarówno A - TCNB, N - TCNB 

jak i F - TCNB jest nieuporządkowanie podsieci donora (A, N, F) 
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względem osi obrotu prostopadłej do cząsteczki. Zapostulujmy naszą 
zmienną nieporządku jako reorientację w prawo i w lewo 

cząsteczki donora właśnie wokół osi normalnej do jej płaszczyzny i 

nazwijmy ją kątem nieporządku DA. Kąt nieporządku jest więc w 

przypadku tych trzech kryształów dodatkowym aktywnym stopniem 

swobody, który jest miarą "rozszczepienia" cząsteczki na średnim 

węźle.

Rysunek (rys. 8) definiuje kąt nieporządku względem 

położenia średniego na węźle na przykładzie cząsteczki antracenu w 

kompleksie A - TCNB. Trzeba podkreślić, że DA jest miarą 

reorientacji cząsteczki względem jej orientacji średniej Rz (która nie 

koniecznie musi wynosić zero). Orientacje obu części składowych 

supercząsteczki są odpowiednio (Rx, Ry, Rz + DA) i (Rx, Ry, Rz - 

DA), natomiast położenia są takie same.
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8. Przykłady zastosowania modelowania nieporządku.

8.1 Kryształy F-TCNB
Pierwsze próby modelowania nieporządku w krysztale F-TCNB 

polegały na minimalizacji energii kryształu, w którym pseudolosowo 

umieszczano na każdym węźle cząsteczkę fenantrenu w jednej z 

możliwych orientacji. Pseudolosowość polegała na wymuszeniu 

znanej z eksperymentu równej proporcji cząsteczek w jednym i 

drugim położeniu. Obliczenia miały pokazać dla jakiego rozkładu 

cząsteczek energia jest najniższa.

Rysunek 9. Supercząsteczka będąca złożeniem dwóch cząsteczek 
fenantrenu (F) użyta do modelowania nieporządku w 
krysztale F-TCNB.

Po wykonaniu szeregu serii obliczeń wyniki wskazywały, że 

najniższą energię otrzymuje się dla struktury regularnej, w której na 

kolejnych węzłach cząsteczki są przeciwnie zorientowane. Taki 

wynik nie był oczywiście zgodny z eksperymentem rentgenowskim 

gdyż oznaczał podwojenie komórki elementarnej, którego w 
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eksperymencie nie obserwuje się.

Tabela 2 Porównanie wyników obliczeń z danymi eksperymentalnymi^ 
dla kryształu F-TCNB.

parametr eksp. oblicz.

a 9.413 9.468

b 13.104 13.271

c 7.260 7.217

0 93.06 85.13

<k(F) 0 0

9v(F) 20.86 20.48

<p,(F) 0 0
(pJTCNB) 0 0

9v(TCNB) 17.86 18.82

<p7(TCNB) 0 0

Efkcal/mol] - -39.17

W następnym etapie wprowadzono model nieporządku w tym 

krysztale postulując, że na każdym węźle w obrębie podsieci fenan- 

trenu mamy do czynienia z supercząsteczką zawierającą dwie 

cząsteczki fenantrenu w dwóch możliwych orientacjach, stano­

wiących dwa stany pseudospinowe rysunek (rys.9). Utworzona 

supercząsteczką spełnia wymóg centrosymetryczności narzucony, 

przez eksperyment rentgenowski. Wyniki minimalizacji dla takiego 

kryształu prezentuje tabela (tab.2). Widać, że parametry komórki 

elementarnej i orientacje cząsteczki są w dobrej zgodności z 
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eksperymentalnymi.

8.2 Kryształy A-TCNB
Dla kryształu A-TCNB przeprowadzono minimalizację energii 

zarówno w fazie HT jak i LT przy użyciu potencjału atom - atom 

typu "6-exp" z parametrami Williamsa6. Potencjał tego typu ma bez­

względne minimum dla fazy LT, stąd obliczenia dla fazy HT przepro­

wadzono narzucając warunki symetrii fazy HT.

Tabela 3 Porównanie wyników obliczeń z danymi eksperymentalnymi^ dla 
kryształu A-TCNB.

LT H T

eksp. obi. eksp. obi.

a 9.457 9.701 9.519 9.457

b 12.689 12.900 12.730 13.027

c 7.325 7.152 7.384 7.418

P 92.98 84.44 92.57 90.64

<Px(A) 3.37 8.9 0 0

<Pv(A) 19.34 16.7 19.93 19.7

<Pz(A) 8.34 15.1 0 0

(px(TCNB) -1.40 1.0 0 0

(pv(TCNB) 17.48 16.8 17.90 18.5

(pz(TCNB) 1.47 0.2 0 0

E[kcal/mol] - -40.28 - -38.11

Orientacje obu podsieci, kąt obrotu wokół osi długiej 

cząsteczek (Rx), oraz wokół osi normalnej do cząsteczek (Rz) 
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przyjęto zero. Minimalizacja odbywała się po wszystkich pozostałych 

stopniach swobody. Zestawienie wyników obliczeń prezentuje tabela 

(tab.3). Przedstawione wyniki wskazują na dobrą zgodność 

parametrów komórki elementarnej z eksperymentalnymi. 

Przeprowadzono również minimalizację energii sieci z 

uwzględnieniem oddziaływań kulombowskich z ładunkami na 

atomach, wyliczonymi metodą INDO66. Wyniki tych obliczeń 

wskazują że wkład energii elektrostatycznej do energii sieci jest 

mały (około 2%) i nie zmienia w sposób istotny minimalizacji. W 

dalszych obliczeniach nie uwzględniano energii e^ktrostatycznej.

Rysunek 10. Potencjał jednocząstkowy dla obrotów cząsteczki antracenu wokół 
jej trzech osi w krysztale A-TCNB.

Wyniki eksperymentów w krysztale A-TCNB wskazują że jest 

ten kryształ przykładem, w którym przemiana ma charakter ciągły67. 

Ponadto wyniki eksperymentalne wskazują również, że odpowie­

dzialnym za przemianę fazową jest tylko jeden, aktywny stopień 
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swobody - reorientacja cząsteczki antracenu wokół osi normalnej68. 

Różnica pomiędzy strukturą tego kryształu w obu fazach jest bowiem 

najistotniejsza właśnie w tym stopniu swobody. Kryształ ten jest więc 

dobrym przykładem, w którym można rozszerzyć obliczenia 

dynamiki harmonicznej poprzez zastosowannie opisanego wyżej 

modelu podatności uogólnionej.

W przypadku A-TCNB wskaźniki i, j we wzorze na 

jednocząstkową podatność statyczną (26) dotyczą jedynie rota­

cyjnych stopni swobody. Funkcja V(Xj) w naszym przypadku jest 

lokalnym potencjałem jednocząstkowym dla obrotu cząsteczki 

antracenu wokół jej trzech osi.

Potencjał ten wyliczano jako sumę potencjałów oddziaływań 

cząsteczki antracenu w różnych orientacjach z cząsteczkami 

będącymi w niezmiennym otoczeniu. Wykres takiego potencjału 

przedstawia rysunek (rys. 10). Można pokazać, że w przypadku kiedy 

funkcja ważąca V(xf) jest harmoniczna wówczas statyczna podatność 
jednocząstkową % nie jest funkcją temperatury bowiem człon 

temperaturowy - p skraca się w wyniku analitycznego policzenia 

całek. Niech V(x;) = a^j wówczas: 

(48)

gdy aj > 0. Zwróćmy teraz uwagę na całkę we wzorze (28). Przy 

całkowaniu poprzez całą dziedzinę rzeczywistą, całka ma wartość 

zerową, gdy funkcja podcałkowa jest funkcją anty symetryczną.

48



Wobec powyższego, w przypadku liczenia średnich typu <uj> (wzór 

(27)), gdy funkcja f(xf) = Uj jest antysymetryczna, otrzymujemy 

wynik zerowy co zgodne jest z intuicją, bo średnie wychylenie 

oscylatora harmonicznego jest równe zero. Podobnie jest, gdy 
liczymy średnie mieszane <upu:> dla i j. Widać więc, że macierz 

podatności statycznej, będąca dla rotacyjnych stopni swobody 

tensorem 3x3, będzie miała niezerowe wartości dla elementów 

przekątniowych. Wówczas dla f(x() = Xj mamy:

oo

= Zf1 • J xj exp(-p • ■x1i\dx =
—oo

1 
( K v i

' (4.(P-^.)3 J 2-P-a,.

Po podstawieniu do wzoru (26) otrzymujemy:

x«(r) = p-(4) = -l_ (50)
' ' 2-a:

Uwzględnienie anharmonicznego potencjału sprawia, iż 

niemożliwe staje się znalezienie analitycznego rozwiązania tych 

całek. Należy wobec tego stosować metody numeryczne całkowania 

tym bardziej, że postać potencjału V(Xj) nie jest funkcyjna tylko 

numeryczna (znamy wartości potencjału dla określonych kątów 

orientacji cząsteczki).
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Przy analizowaniu wyrażenia na statyczną podatność jedno- 

cząstkową warto zwrócić uwagę na dwie trudności w trakcie jej 

obliczania. Wraz ze wzrostem temperatury rośnie udział czynnika 

eksponencjalnego dla większych wychyleń. Ta własność zmusza do 

uwzględniania coraz większych amplitud, co jest w sprzeczności z 

założeniem małych drgań poczynionym w tym przybliżeniu. Drugim 

ważnym elementem, który wydatnie wpływa na jakość obliczeń jest 

wkład anharmoniczny do potencjału jednocząstkowego. Gdy wkład 

ten jest mały, wówczas zależność temperaturowa podatności jest 

słaba, bliska stałej (równanie (50)).

Rysunek 11. Zależności temperaturowe częstości rotacyjnych drgań fononowych 
w krysztale A-TCNB w przybliżeniu podatności uogólnionych.

Wyliczona w podany powyżej sposób podatność została zasto­
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sowana do zbudowania efektywnych stałych siłowych, które uwzglę­

dniają własności jednocząstkowego potencjału. Ponieważ podatność 

w tym przybliżeniu jest zależna od temperatury więc i wyliczone z 

równania (23) częstości drgań są zależane od temperatury. 

Przeprowadzono obliczenia częstości drgań dla wektora falowego 

q = M (granica strefy Brillouina) w funkcji temperatury. Wyniki tych 

obliczeń dla drgań, które związane są z rotacyjnymi stopniami 

swobody przedstawiono na rysunku (rys.l 1).

Jak widać z rysunku interesującym wynikiem jest "miękkość" 

najniższego drgania. Jego częstość rośnie wraz ze wzrostem 

temperatury aż staje się ona dodatnia. Ponadto, wartości wektora 

własnego tego drgania wskazują iż jest to drganie związane z 

reorientacją cząsteczki antracenu wokół osi prostopadłej do jej 

płaszczyzny. Jest to zgodne z, wynikającą z eksperymentu, sugestią 

że aktywnym, odpowiedzialnym za przemianę fazową jest właśnie 

ten stopień swobody. Nie do przyjęcia jest jednak wartość 

temperatury, przy której to następuje (ok. 1500K). Tak duże 

odstępstwo wyliczonej od eksperymentalnej temperatury stabilności 

fazy wysokotemperaturowej (częstość ujemna oznacza brak 

stabilności) wynika z znikomego wkładu członu anharmonicznego w 

porównaniu z wkładem harmonicznym (o blisko trzy rzędy). Tak 

duża dysproporcja pomiędzy tymi członami, a w jej efekcie błędne 

oszacowanie temperatury przemiany fazowej, wskazuje na 

niedostatki zastosowanego modelu potencjału, bądź jego parametrów.

W następnym kroku przeprowadzono obliczenia minimalizacji 

energii sieci modelując nieporządek w podsieci antracenu. Obliczenia 

polegały na minimalizacji energii dla różnych wartości kąta 
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nieporządku DA. Ryśunek (rys. 12) przedstawia wyniki tych obliczeń. 

Ciągła krzywa przedstawia minimalną energię sieci. Przerywana 

część krzywej HT jest wynikiem wymuszonej w obliczeniach 

symetrii HT dla małych kątów DA. Przerywana część krzywej LT 

jest wynikiem ekstrapolacji, gdyż nie można wymusić na układzie 

niższej symetrii dla dużych kątów DA. Energia sieci rośnie 

monotonicznie wraz ze wzrostem kąta rozszczepienia cząsteczki 

antracenu aż do pewnej krytycznej wartości DA = 7.2 . Powyżej tej 

wartości kąta nieporządku, pomimo utrzymywania wyjściowych 

parametrów jak dla fazy niskosymetrycznej, symetria spontanicznie 

staje się wyższa (faza HT) co oznacza, że krzywa energii dla fazy HT 

jest niżej energetyczna, niż krzywa dla fazy LT. Uwidacznia to fakt 

załamania się narysowanej linią ciągłą funkcji na rysunku (rys. 11).

Rysunek 12. Zależność energii od kąta nieporządku dla kryształu 
A-TCNB.

Wartość krytycznego kąta nieporządku jest w dobrej zgodności 
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z eksperymentalnym kątem amplitudy libracji cząsteczki antracenu w 

fazie HT. Powyżej krytycznego kąta DA kąty obrotu cząsteczki 

wokół osi x oraz z są równe zero. Ewolucję orientacji wokół tych 

dwóch osi wraz ze wzrostem kąta nieporządku przedstawiono na 

rysunku (rys. 13). Ponieważ przemiana fazowa uwidacznia się 

najwyraźniej w tych właśnie dwóch orientacjach, interesującym 

wydawało się prześledzenie ewolucji powierzchni energetycznej w 

funkcji obu orientacji.

Rysunki (rys. 14) przedstawiają linie ekwipotencjalne uzyskane 

z obliczeń, w których obie orientacje jak również kąt nieporządku 

traktowano jako parametry a minimalizacja energii odbywała się po 

pozostałych parametrach.

Rysunek 13. Zależność orientacji cząsteczki antracenu od kąta nieporządku 
dla kryształu A-TCNB.

Wraz ze wzrostem kąta nieporządku powierzchnia, w której dwa 

minima odpowiadają wartościom obu kątów w fazie LT dla obu 

domen podsieci antracenu staje się coraz bardziej płaska lecz
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położenia minimów zmieniają się (oba kąty orientacji maleją dla 

rosnących wartości kąta nieporządku (rys. 13)). Przy DA = 7.2 

powierzchnia energetyczna staje się całkiem płaska w przekroju 

wzdłuż doliny o najniższej energii, a następnie, przy dalszym 

wzroście kąta nieporządku wykształca się centralne minimum 

odpowiadające orientacji w fazie HT.

DA =10.0 (fazaHT)

0 10-10

DA = 7.2 (kąt krytyczny)

DA = 6.0 (faza LT)

Rysunek 14. Linie ekwipotencjalne dla wybranych wartości kąta nieporządku dla 
kryształu A-TCNB (oś pozioma - kąt obrotu wokół z, pionowa - wokół x).

Cząsteczki w fazie LT nie mogą pokonać bariery energetycznej 

pomiędzy oboma minimami lecz wraz ze wzrostem kąta pomiędzy 
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oboma częściami supercząsteczki bariera ta staje się coraz mniejsza 

aż w końcu pojawia się minimum energetyczne dla Rx = 0 i Rz = 0, 

które stabilizuje orientację fazy HT.

Faktem, na który warto zwrócić uwagę, jest istnienie dwóch 

minimów w fazie LT na płaszczyźnie Rx i Rz , których nie 

zaobserwowano wcześniej analizując energię w funkcji tylko jednej 

orientacji - Rz ; przekrój płaszczyzną Rx = 0 ma tylko jedno 

minimum dla Rz = 0. Na podstawie tych wyników można postulować 

dynamiczny charakter nieporządku w krysztale A-TCNB a przemianę 

fazową określić jako ciągłą.

Tabela 4 Porównanie wyników obliczonych częstości fononowych (1 - bez 
modelu nieporządku, 2- z modelem nieporządku) z danymi 
eksperymentalnymi69 dla kryształu A-TCNB w fazie HT.

eksp. (q=0) 1 (q=0) 2 (q=0) 1 (q=M) 2 (q=M)
- 0 Au 0 Au i24.7 Bg 13.3 Bg
- OBu OBu il2.8 Bu 24.0 Au
- OBu OBu 4.7 Bg 34.9 Ag

25.6 19.3 Bg 24.7 Bg 38.0 Ag 43.6 Bu
- 33.4 Au 35.2 Au 50.3 Bu 48.2 Au
- 55.8 Bu 56.2 Bu 56.3 Bg 54.3 Bg

75.2 59.6 Ag 65.1 Ag 59.1 Au 64.9 Ag

64.4 63.0 Bg 62.1 Bg 61.9 Bu 70.2 Bu

74.1 78.1 Bg 73.4 Bg 66.8 Au 76.3 Bg

103.6 100.3 Ag 101.1 Ag 98.7 Ag 82.4 Bg
- 116.0 Bu 113.5 Bu 107.2 Bg 101.8 Bu

120.2 136.1 Bg 145.1 Bg 119.8 Bu 110.8 Bu
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Przeprowadzone obliczenia dynamiki fononowej dla fazy HT 

przy użyciu oryginalnego programu dla tego kryształu zarówno w 

przybliżeniu harmonicznym70 jak i w przypadku wprowadzenia 

modelu nieporządku wskazują na dobrą zgodność częstości i 

wektorów własnych z doświadczeniem co przedstawia tabela (tab.4). 

Ponadto dzięki zamodelowaniu nieporządku drgania dla wektora 

falowego q=M, które w przypadku harmonicznym miały częstości 

urojone (z uwagi na niestabilność struktury), stają się drganiami o 

częstościach rzeczywistych. Z powyższej prezentacji widać, że kąt 

nieporządku jest bardzo czułym miernikiem przemiany fazowej i 

może być w pierwszym przybliżeniu jej parametrem. Zgodnie z 

prostym rozumowaniem termodynamiki statystycznej można 

traktować obie funkcje energetyczne na rysunku (rys. 12) jako 

kontinuum stanów energetycznych dla każdego poziomu z osobna i 

policzyć ich sumę stanów jako:

(51)

gdzie i jest wskaźnikiem funkcji energii od kąta nieporządku dla fazy 
LT i HT, a p = (kT)"l ; k - stała Boltzmana, T - temperatura, oraz 

energię swobodną A jako:

Ą^-P-lnCĄ) (52)
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Zależność energii swobodnej dla obu faz w funkcji temperatury 

przedstawia rysunek (rys. 15).

Warto skomentować fakt, że bardzo prosty model i duże 

przybliżenia poczynione w obliczeniach, mimo iż nie dają przecięcia 

krzywych energii swobodnych w oczekiwanym zakresie temperatur, 

to jednak daja jakościowo poprawny wynik; energia swobodna dla 

fazy LT jest niższa od energii dla fazy HT oraz fakt, że funkcje te są 

zbieżne. Wydaje się, że - podobnie jak w przybliżeniu podatnoś- 

ciowym - istnieje potrzeba uwzględnienia dodatkowych czynników, 

bez których temperatura przejścia fazowego zarówno w przybliżeniu

Rysunek 15. Zależność energii swobodnej od temperatury dla kryształu 
A-TCNB.

podatnościowym jak i przy modelowaniu nieporządku jest
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nierozsądnie wysoka.

8.3 Kryształy N-TCNB

Minimalizacja energii sieci dla kryształu N-TCNB w fazie 

niskotemperaturowej dobrze odtwarza strukturę eksperymentalną w 

tej fazie. W przypadku fazy wysokotemperaturowej wyniki 

minimalizacji bez modelowania nieporządku gorzej odtwarzają 

strukturę eksperymentalną. Zestawienie wyników obliczeń z danymi 

eksperymentalnymi przedstawiono w tabeli (tab.5).

Tabela 5 Porównanie otrzymanych po minimalizacji parametrów komórki 
elementarnej z danymi eksperymentalnymi^® dla obu faz kryształu 
N-TCNB (1 - bez modelu nieporządku, 2- z modelem nieporządku).

Parametr HT

eksp. obi. eksp. 1 2

a 9.337 9.077 9.420 9.866 9.264

b 12.554 12.694 12.684 11.842 12.738

c 6.738 7.010 6.880 7.028 6.980

P 107.4 106.6 107.46 111.8 108.2

<PX(N) -7.66 -8.2 0 0 0
<Pv(N) -17.19 -18.3 -18.3 -16.6 -19.3

<Pz(N) 18.04 18.7 0 0 0
(px(TCNB) 0.13 5.5 0 0 0
(pv(TCNB) -17.75 -19.3 -18.5 -17.7 -19.4
^(tcnb) 0.98 -0.7 0 0 0

E[kcal/mol] - -34.46 - -32.68 -34.09
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Największe odstępstwo od parametrów eksperymentalnych 

wykazuje period b sieci. Jest to zrozumiałe gdy porównać strukturę 

eksperymentalną tego związku w fazie HT ze strukturą jaką 

uwzględnia się w obliczeniach. Z warunków symetrii dla fazy HT 

wynika, że cząsteczka naftalenu jest symetryczna względem 

płaszczyzny ac zaś eksperyment wskazuje, że mamy do czynienia z 

dwoma orientacjami, które średnio spełniają ten warunek symetrii. 

Jest to sytuacja podobna do tej w krysztale F-TCNB z tym, że w 

przypadku N-TCNB obie domeny różnią się orientacją względem 

położenia średniego. Zrozumiała jest wobec tego kontrakcja periodu 

b w obliczeniach w stosunku do rzeczywistej struktury, w której dwie 

domeny powodują "rozepchnięcie" w tym właśnie kierunku. 

Modelowanie nieporządku w tym krysztale można oprzeć na tej 

samej koncepcji, którą użyto w przypadku kryształu A-TCNB.

Rysunek 16. Zależność energii od kąta nieporządku dla kryształu N-TCNB.

Wprowadzając kąt nieporządku w tej samej konwencji 

przeprowadzono obliczenia statyki dla tego kryształu, minimalizując 
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energię sieci z kątem rozszczepienia cząsteczki jako parametrem. 

Wykres otrzymanych rezultatów przedstawiono na rysunku (rys. 16).

Podobnie jak w przypadku A-TCNB, wraz ze wzrostem kąta 

nieporządku rośnie energia sieci aż do wartości krytycznej tego kąta 

DA = 9.2. Podobnie jak w przypadku A-TCNB powyżej krytycznego 

kąta nieporządku symetria spontanicznie staje się wyższa (kąty Rx i 

Rz stają się zero po minimalizacji zarówno dla podsieci naftalenu jak 

i TCNB). Znaczącą różnicą jest, iż energia sieci maleje wraz z 

dalszym wzrostem kąta nieporządku. Dla kąta nieporządku równego 

19.8 energia osiąga minimum. Jest to punkt stabilności fazy HT tego 

kryształu. Należy w tym miejscu podkreślić, że parametry komórki 

elementarnej dla tego kąta nieporządku bardzo dobrze odtwarzają 

perametry eksperymentalne, w tym również period b. Innym, równie 

ważnym faktem jest, że uzyskany z obliczeń kąt nieporządku dla 

stabilnej fazy HT jest w idealnej niemal zgodności z 

ekserymentalnym kątem reorientacji cząsteczki naftalenu na węźle, 

wynoszącym ok. 20 stopni. Przy dalszm wzroście kąta nieporządku 

energia sieci rośnie szybko i monotonicznie. Różnica wykresów 

energii w funkcji kąta nieporządku dla tych dwóch kryształów 

wskazuje na jakościowo różny charakter nieporządku. Na podstawie 

wykresu dla N-TCNB można stwierdzić, że po pokonaniu pewnej 

bariery energetycznej możliwa jest stabilizacja fazy 

wysokotemperaturowej, w której cząsteczki naftalenu są losowo 

zreorientowane w prawo i w lewo w stosunku do położenia 

średniego. Taki nieporządek nazwać można statycznym71 w 

przeciwieństwie do dynamicznego w A-TCNB72-73. Dla wybranych 

wartości kąta nieporządku po minimalizacji sporządzono mapy linii
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ekwipotencjalnych na płaszczyźnie orientacji cząsteczki naftalenu 

względem dwóch osi x i z (rys. 17). Dla kąta równego zero (minimum 

fazy LT) mamy dwa minima, które odpowiadają orientacjom 

cząsteczek w tej fazie (rys,17a).

Rysunek 20. Kontury stałych energii dla wybranych wartości kąta nieporządku 
dla kryształu N-TCNB (oś pozioma - kąt obrotu wokół z, pionowa 
- wokół x).
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Wraz ze wzrostem kąta nieporządku minima te stają się coraz 

płytsze lecz nie zmieniają swego położenia na płaszczyźnie RXRZ w 

przeciwieństwie do analogicznej ewolucji w A-TCNB. Takie 

zachowanie oznacza, że w przypadku N-TCNB wraz ze wzrostem 

kąta nieporządku stale preferowana jest orientacja fazy LT. W 

pobliżu krytycznego kąta nieporządku zaczyna wykształcać się 

minimum dla orientacji Rx = 0 i Rz = 0. Minimum to odpowiada 

orientacji cząsteczek naftalenu w fazie wysokotemperaturowej.

Tabela 6 Porównanie wyników obliczonych częstości drgań fononowych 
z danymi eksperymentalnymi74 dla kryształu N-TCNB (q=0).

eksp. 1 2
- 0.0 Bu 0.0 Bu
- 0.0 Bu 0.0 Bu
— 0.0 Au 0.0 Au

38.0 Bg i25.6Bg 39.9 Bg

36.8 Ag 65.3 Ag 45.2 Ag
- 45.8 Au 50.0 Au
- 59.1 Bu 55.6 Bu

66.0 Bg 82.0 Bg 62.8 Bg

73.7 Bg 113.2 Bg 84.0 Bg

68.7 Ag 126.9 Ag 95.8 Ag

108.4 Bg 140.6 Bg 114.8 Bg
- 129.9 Bu 119.5 Bu

Wraz z dalszym wzrostem kąta rozszczepienia cząsteczki 

zmieniają się proporcje pomiędzy głębokością tych trzech minimów.
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Centralne minimum pogłębia się, zaś minima fazy niskotempera­

turowej stają się coraz płytsze. Dla krytycznego kąta nieporządku 

wszystkie trzy minima są równej głębokości a bariera pomiędzy nimi 

jest znikoma rysunek (rys,17b). Mamy wtedy do czynienia z prawie 

dowolną reorientacją cząsteczek pomiędzy minimami. Jest to typowy 

przykład nieciągłego przejścia fazowego zwanego również przejś­

ciem pierwszego rodzaju.

Rysunek 18. Zależność energii swobodnej od temperatury dla kryształu N-TCNB.

Przy dalszym wzroście kąta nieporządku tendencja zmian 

głębokości minimów utrzymuje się stabilizując orientację fazy HT aż 
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do całkowitego zaniku bocznych minimów. Przy kącie nieporządku 

odpowiadającym minimum energetycznemu fazy HT mamy już do 

czynienia tylko z jednym, bardzo głębokim minimum fazy 

wysokotemperaturowej rysunek (rys.l7c).

Korzystając z zaproponowanego wcześniej formalizmu 

przeprowadzono również obliczenia dynamiki fononowej zarówno 

bez stosowania modelu nieporządku jak i z jego zastosowaniem. 

Wyniki obliczeń, zestawione z danymi eksperymentalnymi 

przedstawia tabela (tab.6). Policzono, jak w przypadku A-TCNB, 

zależność energii swobodnej dla tego kryształu. Rezultaty tych 

obliczeń zaprezentowano na rysunku (rys. 18).

Wykres energii swobodnej dla obu faz ma przebieg podobny 

do tego jaki otrzymano dla A-TCNB. Mniejsza różnica energii 

swobodnych w temperaturze T = OK sprawia jednak, że w przypadku 

tego kryształu krzywe energii swobodnych przecinają się w rozsądnej 

temperaturze. Temperatura ta choć różna od eksperymentalnej jest do 

zaakceptowania, biorąc pod uwagę prostotę modelu i poczynione 

założenia, o których mówiliśmy przy okazji A-TCNB. Rezultat ten w 

porównaniu z otrzymanym dla A-TCNB wskazuje na bardziej 

"czysty" charakter przemiany fazowej w N-TCNB jako przemiany 

typu porządek nieporządek w przeciwieństwie do złożonego 

charakteru przemiany fazowej w A-TCNB, dla którego 

uwzględnienie tylko efektów związanych z nieporządkiem dało 

nienajlepsze rezultaty.

8.4 Kryształy mieszane
Nadspodziewanie dobre wyniki, uzyskane przy modelowaniu 

nieporządku w prostych przypadkach, zachęciły do zastosowania tej 
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koncepcji w sytuacjach, gdzie nieporządek jest bardziej 

skomplikowany. Kryształ mieszany antracen - fenantren - czterocyja- 

nobenzen (A-F-TCNB) jest przykładem, w którym mamy do czynie­

nia z trzema rodzajami nieporządku76. Pierwszym jest nieporządek 

orientacyjny w podsieci fenantrenu nazwany, przy okazji omawiania 

kryształu F-TCNB, statystyczno - statycznym. Drugi rodzaj niepo­

rządku to nieporządek dynamiczny występujący w podsieci antra­

cenu. Trzeci, to nieporządek substytucyjny, którego istota polega na 

zmiennym składzie w podsieci donora i zależy od koncentracji x. 

Istotnym rozszerzeniem przy modelowaniu nieporządku substytu­

cyjnego jest wprowadzenie koncentracji, która sprawia, że obsa­

dzenie dwóch stanów w wykorzystywanym formalizmie pseudospi- 

nowym nie jest równocenne.

Kryształ mieszany A-F-TCNB jest zbudowany podobnie jak 

trzy uprzednio omawiane związki i ma izomorficzną z nimi 

strukturę75. Sztywna i analogicznie zbudowana sieć TCNB zawiera w 

swych wnękach cząsteczki bądź to antracenu bądź fenantrenu w 

średniej ilości x i l-x odpowiednio.

Kryształy mieszane kompleksu A-F-TCNB są bardzo intere­

sujące z punktu widzenia polimorfizmu. Jak to zaznaczono wcześniej 

kryształ A-TCNB wykazuje przemianę fazową zaś kryształ F-TCNB 

nie. Musi więc istnieć pewna krytyczna koncentracja dla której 

przemiana fazowa w krysztale mieszanym zanika.

Stosując model nieporządku w tym krysztale budujemy na 

każdym węźle obsadzonym przez donor, supercząsteczkę75, na 

zasadach opisanych uprzednio. Jest to w tym przypadku obiekt 

bardzo skomplikowany, gdyż zawiera dwie cząsteczki fenantrenu w 
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obu możliwych orientacjach ze współczynnikiem koncentracji l-x 

oraz nieuporządkowaną cząsteczkę antracenu w dwóch orientacjach 

scharakteryzowanych kątem nieporządku jako parametrem ze 

współczynnikiem koncentracji x.

Rysunek 19. Zależność energii od kąta nieporządku i koncentracji x dla kryształu 
mieszanego A-F-TCNB.

Podobnie jak w poprzednich przypadkach taka super- 

cząsteczka, choć skomplikowana sprawia, że każdy węzeł podsieci 

donora jest taki sam będąc węzłem średnim. Dla tak 

skonstruowanego kryształu przeprowadzono obliczenia statyki 
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minimalizując energię sieci w funkcji dwóch parametrów. Jednym z 

parametrów jest kąt nieporządku w podsieci antracenu drugim zaś 

koncentracja x. Obliczenia minimalizacji energii prowadzono 

wprowadzając jako wyjściową strukturę fazy niskotemperaturowej - 

LT tak jak w poprzednich przypadkach. Rezultaty tych obliczeń 

przedstawia rysunek (rys. 19), na którym przestrzennie zaznaczono 

powierzchnię energii w funkcji koncentracji i kąta nieporządku. Linią 

ciągłą zaznaczono granicę występowania fazy niskotemperaturowej 

w tym krysztale. Z rysunku wynika, że w miarę wzrostu koncentracji 

fenantrenu, krytyczny kąt nieporządku, przy którym następuje 

spontaniczna zmiana symetrii kryształu na symetrię fazy HT, maleje. 

Dla czystego A-TCNB kąt ten wynosi około 7 stopni. Dla 

koncentracji przekraczającej 40% fenantrenu niezależnie od kąta 

nieporządku niższą energię otrzymuje się dla symetrii fazy LT. 

Oznacza to, że przy tych koncentracjach, z punktu widzenia energii, 

faza HT jest niestabilna. Wynik taki jest jakościowo zgodny z 

wynikiem eksperymentalnym w którym stwierdzono, iż przemiana 

fazowa w kryszale mieszanym zanika jeśli koncentracja fenantrenu 

przekracza 25%77.

Niestabilność w czystym krysztale A-TCNB jest spowodowana 

orientacyjnym sprzężeniem antyferro wewnątrz podsieci antracenu, 

które preferuje niższą niż C2/m (HT) symetrię, a zatem nieporządek. 

W miarę wprowadzania fenantrenu w węzły uprzednio obsadzone 

przez antracen sprzężenie to maleje a nieporządek zmienia charakter 

z dynamicznego na substytucyjny. Powoduje to obniżenie 

temperatury przemiany fazowej obserwowane eksperymentalnie 

(rys.20). Zależność temperatury przemiany od koncentracji może być
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opisana przy użyciu koncepcji "ciśnienia chemicznego"77. Sugeruje 

ona liniową zależność dla małej koncentracji fenantrenu, zmieniającą 

się w kwadratową dla większych, aż do krytycznego. Przy 

krytycznym stężeniu sprzężenie wewnątrz podsieci antracenu jest 

zbyt słabe by skompensować oddziaływanie w podsieci fenantrenu, 

preferującego symetrię fazy HT, co powoduje zaniknięcie przemiany 

fazowej.

Rysunek 20. Wykres fazowy dla kryształu mieszanego A-F-TCNB75.

Przy wyższych koncentracjach fenantrenu kryształ mieszany 

jest szkłem molekularnym ze średnią symetrią C2/m. Lokalne 
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naprężenia, spowodowane przez obecność statystycznie 

nieuporządkowanych cząsteczek fenantrenu odgrywa ważną rolę w 

tworzeniu szkieł krystalicznych i decyduje o średniej symetrii tego 

kryształu.

8.5 Symulacje Monte Carlo dla kryształu azotu
Przeprowadzono symulacje Monte Carlo dla fazy oc i P azotu w 

siedmiu różnych temperaturach.

-90 -60 -30 0 30 60 90

Rysunek 21. Rozkład orientacji cząsteczek azotu w funkcji kąta tp (faza 
regularna; temperatury 25, 30, 35, 38, 40, 42 i 50K).

Dla każdej temperatury wykonano pół miliona kroków dla 

ustabilizowanej struktury w danej temperaturze. W każdym kroku 

rejestrowano położenia i orientacje cząsteczek. Rozkład orientacji 
cząsteczek w zakresie dwóch kątów układu cylindrycznego (p i 0 

69



prezentują rysunki (rys.21 i 22). Z obu rysunków wynika, że dla 

niskich temperatur struktura kryształu jest uporządkowana a 

orientacje cząsteczek są zgodne z danymi eksperymentalnymi79. Wraz 

ze wzrostem temperatury rozkład orientacji staje się coraz bardziej 

płaski wskazując na wzrost stopnia nieuporządkowania.

Rysunek 22. Rozkład orientacji cząsteczek azotu w funkcji kąta 0 (faza 
regularna; temperatury 25, 30, 35, 38, 40, 42 i 50K).

W temperaturze 5OK kryształ wykazuje cechy całkowitego 

nieuporządkowania; prawdopodobieństwo znalezienia cząsteczki jest 

praktycznie takie samo dla każdej orientacji.

Do opisu stopnia uporządkowania stosuje się parametr 

porządku80. Skonstruowano taki parametr, który jest miarą 

odstępstwa struktury w danej temperaturze od perfekcyjnej, 

regularnej. Parametr ten ma postać:
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1 N
^ = —-Go)]

N~t (53)

gdzie cpj i 0j są kątami orientacji i-tej cząsteczki w układzie 

biegunowym, 0O - kątem orientacji pierwszej podsieci a N jest liczbą 

wykonanych kroków Monte Carlo. Dla struktury idealnej parametr P 

jest równy 1, gdyż dla każdej z czterech cząsteczek w komórce 

elementarnej wartość iloczynu funkcji trygonometrycznych pod zna­

kiem sumy jest równa 1. W idealnej strukturze regularnej cztery pod­
sieci mają orientacje cpj = 45 lub (pj = -135 i 0f = 0O lub 0, = 0O+ 180.

Rysunek 23. Zależność parametru porządku od temperatury (faza regularna).

Wraz z rosnącym odstępstwem od idealnej struktury tak 

skonstruowany parametr porządku maleje. Wykres zależności 
parametru porządku od temperatury dla fazy oc azotu przedstawiono 

na rysunku (rys.23). Z rysunku widać, że struktura uporządkowana w 
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niskiej temperaturze staje się całkowicie nieuporządkowana w 

wysokiej temperaturze (parametr porządku bliski jest zeru).

Przedstawione wyniki obliczeń, wskazują na dobrą zgodność 

przeprowadzonego modelowania z eksperymentem. Jest jednak 
pewna niezgodność jeśli chodzi o symetrię. Faza P jest fazą 

nieuporządkowaną, heksagonalną natomiast z obliczeń wynika, że 

faza jest nieuporządkowana ale ciągle regularna - wykres 

prawdopodobieństwa wykazuje ciągle słabe maksimum dla orientacji 
zgodnej z fazą ot nawet przy temperaturze 5OK.

Rysunek 24. Liczba cząsteczek azotu w funkcji kąta <p (faza heksa­
gonalna; temperatury 25, 30, 35, 38, 40, 42 i 50K).

Aby uzupełnić modelowanie tej przemiany fazowej, 

przeprowadzono dodatkowe symulacje Monte Carlo dla fazy 

heksagonalnej, nieuporządkowanej w funkcji temperatury. Tak jak w 
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przypadku fazy regularnej wykonano obliczenia dla szeregu 

temperatur, poczynając od 50K, aż do 25K. Wyniki rozkładu 

orientacji dla obu kątów, analogicznie jak dla fazy regularnej 

prezentują rysunki (rys.24 i 25). Z rysunków tych wynika, że 

całkowicie nieuporządkowana struktura staje się uporządkowana w 

niskich temperaturach. Widoczny jest efekt "przechłodzenia" fazy 

nieuporządkowanej polegający na tym, że temperatura przy której 

następuje uporządkowanie jest niższa niż temperatura, w której faza 
regularna (a) staje się nieuporządkowana.

Rysunek 28. Liczba cząsteczek azotu w funkcji kąta 0 (faza heksa­
gonalna; temperatury 25, 30, 35, 38, 40, 42 i 50K).

Podobnie jak uprzednio, zbudowano parametr porządku, który 

teraz ma postać:

1 NP = — 2Lc°s[2(<P,-<Po)] (54)
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Należy zaznaczyć, że kąt orientacji (Pj jest kątem orientacji 

cząsteczki i-tej po zrzutowaniu jej na pierwszą podsieć zgodnie z 

operacjami symetrii. Zależność tego parametru od temperatury 

przedstawiono na rysunku (rys.26).

Rysunek 26. Zależność parametru porządku od temperatury (faza heksagonalna).

Należy zaznaczyć, że choć w wyniku obniżenia temperatury 

otrzymaliśmy fazę uporządkowaną to ma ona symetrię fazy 

heksagonalnej. Na obecnym etapie nie można rozstrzygnąć, która 

struktura w danej temperaturze jest stabilna a która metastabilna. 

Istnieje potrzeba policzenia zależności energii swobodnych obu faz 

od temperatury co wymaga wykonania dalszych obliczeń. Prace nad 

tym problemem są kontynuowane.
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9. Podsumowanie
Przedstawiony w pracy sposób podejścia do kryształów 

charakteryzujących się nieporządkiem daje możliwość lepszego 

zrozumienia ich natury. Zilustrowane przykładami modelowanie w 

oparciu o model pseudospinowy wykazuje na dobrą zgodność 

jakościową z eksperymentem. Pozwala również na poznanie 

charakteru przemian fazowych w prezentowanych układach. 

Proponowany sposób modelowania jest cennym narzędziem 

wspomagającym dla eksperymentatorów wówczas, gdy istnieją 

wątpliwości w interpretacji wyników eksperymentalnych. Oczywiste 

jest, że ilościowa zgodność modelowanych wielkości z eksperymen­

talnymi zależy od jakości modelu oddziaływań. Gdy model 

oddziaływań dobrze odtwarza energię realnego kryształu wówczas 

zgodność ilościowa z eksperymentem jest dobra. Pokazano na 

przykładzie A-TCNB jak istotne jest prawidłowe odtworzenie 

lokalnego potencjału i jego anharmoniczności. Właśnie w przypadku 

tego kryształu, który wydawał się modelowym do opisu nieporządku 

orientacyjnego i był od dawna studiowany zarówno teoretycznie jak i 

eksperymentalnie, istotną przeszkodą w uzyskaniu prawidłowych 

oszacowań jest bardzo słaba anharmoniczność potencjału lokalnego 

co jest cechą modelu oddziaływań. Przedstawiona idea modelowania 

nieporządku jest prosta i charakteryzuje się jasną interpretacją 

fizyczną użytych parametrów. Koncepcja supercząsteczki, zgodna z 

obrazem eksperymentalnym, pozwala traktować kryształ jako 

uporządkowany na poziomie mikroskopowym. Zastąpiono przy tym 

statystycznie nieuporządkowany węzeł przez wynikającą z 
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eksperymentu średnią statystyczną węzła. Takie modelowanie daje 

dobre rezultaty nawet dla złożonych układów molekularnych takich 

jak kryształy mieszane. Zalety powyższego modelowania widać w 

układach, w których mamy do czynienia z nieporządkiem opisanym 

małą liczbą stanów orientacyjnych (rotacyjnych). W przypadkach, 

gdy nieporządek charakteryzuje się dużą liczbą takich stanów należy 

stosować symulacje na przykład typu Monte Carlo. Zaletą metod 

symulacyjnych jest generowanie mikroskopowych stanów układu, 

które są bliskie kryształowi rzeczywistemu. Sumując, proponowana 

koncepcja modelowania nieporządku w oparciu o ideę pseudospinu 

jest prostym i wygodnym narzędziem poznawczym w kryształach, 

które z jednej strony nie mogą być traktowane jako całkowicie 

uporządkowane, z drugiej zaś, ze względu na duże cząsteczki i 

skomplikowane modele oddziaływań, są zbyt wymagające dla 

zaawansowanych metod symulacyjnych.



10. Uzupełnienia

10.1 Definicja układów współrzędnych.
W krysztale molekularnym mamy zwykle do czynienia z 

kilkoma kategoriami organizacji przestrzennej, które zależą od natury 

oddziaływań międzyatomowych. Atomy są pogrupowane w 

cząsteczki, które traktuje się często jako obiekty sztywne, gdy 

oddziaływania wewnątrzcząsteczkowe są znacznie silniejsze od 

międzycząsteczkowych. Jest to pierwszy stopień zorganizowania. Z 

uwagi na fakt sztywności cząsteczki wygodnie jest określać 

położenia wchodzących w jej skład atomów w układzie 

współrzędnych związanym z jej środkiem ciężkości. Osie takiego 

układu, nazwijmy go LMN, są wyznaczone przez osie główne

Rysunek 1. Definicja układu współrzędnych LMN, związanego z 
momentami bezwładności cząsteczki.

momentu bezwładności cząsteczki: oś L zgodnie z kierunkiem 
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najmniejszego momentu bezwładności, oś N w kierunku 

największego (rys. 1). Innym stopniem organizacji w krysztale jest 

rozkład przestrzenny cząsteczek w komórce prymitywnej, która 

stanowi również kategorię umowną i określa najmniejszą 

niepowtarzalną objętość kryształu, z której poprzez operacje 

translacji można zbudować cały kryształ. Położenia środków 

ciężkości i orientacje cząsteczek określa się zwyczajowo w układzie 

krystalograficznym abc

Rysunek 2. Definicja krystalograficznego (abc) i zortogonalizowanego (XYZ) 
układu współrzędnych.

(rys. 2) lub zortogonalizowanym prostokątnym układzie 

współrzędnych XYZ. Układ krystalograficzny definiuje się tak, aby 

jego osie były zgodne z kierunkami trzech periodów 
charakteryzujących komórkę elementarną kryształu a kąty pomiędzy 

osiami tego układu odpowiadały kątom pomiędzy krawędziami
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komórki elementarnej. Ponadto przyjmuje się w układzie 

krystalograficznym znormalizowanie jednostek na jego osiach do 

długości odpowiadających im periodów. Układ XYZ jest 

przetransformowanym układem krystalograficznym, w którym osie są 

wzajemnie prostopadłe a jednostki na wszystkich osiach są wyrażane 

w typowych jednostkach długości. Jeżeli współrzędne atomu pa, p^, 

pc (odpowiednie współrzędne ułamkowe wzdłuż periodów a, b, c) 

oznaczymy przez wektor pabc, a kąty pomiędzy osiami b i c, a i c, a i 

b odpowiednio przez oc, p, y to operacja transformacji z tego układu 

do układu współrzędnych prostokątnych będzie miała następującą 

postać80:

Pxyz — ROT • pahc 

gdzie

ROT =
ó-cosy c-cosP
Z?-siny

0 c-^/sin2 P~^2

cosoc-cosp-cosy 
siny

Wybór układu XYZ nie jest jednoznaczny choć w niektórych 

przypadkach istnieją reguły na sposób ortogonalizacji. W układzie 

jednoskośnym, w którym tylko jeden kąt pomiędzy osiami a i c jest 

różny od prostego ortogonalizuje się oś a lub c. W takim układzie 

krystalograficznym operacja transformacji do układu współrzędnych 

79



prostokątnych będzie miała następującą postać:

Px = Pa-a + pc-c-sin(p), 

py = pb-b, 

pz = pc-c-cos(p),

przy ortogonalizacji osi c lub

px = pa -a-cos(P) ,

Py = Pb’b , 
pz = pc-c + pa-a-sin(p)

przy ortogonalizacji osi a. Ortogonalny układ współrzędnych, choć z 

fizycznego punktu widzenia mniej uzasadniony, bowiem 

krystalograficzny wygodnie opisuje położenia cząsteczek w jego 

węzłach, jest jednak przydatny w szczególności do liczenia 

odległości między atomami różnych cząsteczek.
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10.2 Struktury związków cytowanych w pracy.
Poniżej zamieszczono schematyczne struktury związków 

tworzących kryształy, w których modelowano nieporządek orien­

tacyjny (antracenu, naftalenu, fenantrenu i czterocyjanobenzenu).

Rysunek 3. Struktura cząsteczki naftalenu (N)

Cząsteczkę naftalenu o wzorze chemicznym CioHg tworzą 

dwa pierścienie aromatyczne (rys. 3).

Rysunek 4. Struktura cząsteczki antracenu (A)

Cząsteczka antracenu jest następnym z kolei węglowodorem o 
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wzorze chemicznym C14H10 i składa się z trzech pierścieni (rys. 4).

Rysunek 5. Struktura cząsteczki fenantrenu (F)

Fenantren, którego wzór chemiczny jest taki sam jak antracenu 

też składa się z trzech pierścieni ale inaczej połączonych jak 

przedstawiono to na rysunku 5. Rysunek 6 przedstawia cząsteczkę

Rysunek 6. Struktura cząsteczki czterocyjanobenzenu (TCNB)

czterocyjanobenzenu (CgH2(CN)4)
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10.3 Schemat blokowy programu

Program HARMON jest pakietem podprogramów napisanych 

w fortranie. Składa się z dwóch części.

Rysunek 7. Schemat blokowy programu HARMON.

Pierszą część stanowią podprogramy zgrupowane w pakiecie CERN9 
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służące do minimalizacji struktury kryształu. Druga część to 

modyfikacja oryginalnego programu napisanego przez T. Lutego i A. 

van der Avoirda do obliczania dynamiki kryształów w przybliżeniu 

harmonicznym. Modyfikacja dokonana przez autora pracy polegała 

na dostosowaniu programów do modelowania nieporządku. Część 

podprogramów uległa przy tym zmianie (np. ROTAT, MITENS, 

MINV, ORTHOG, FRCCON), niektóre są zupełnie nowe (np. 

SCANR, LATSMR, DOGEOM, INITDOG, PRTDOG).

Idea programu polega na tym, że zbiór danych zawiera oprócz 

danych liczbowych przepis na działanie programu w konkretnym 

przebiegu np. jak ma przebiegać minimalizacja, jak liczyć dynamikę, 

czy i jak uwzględniać ładunki elektrostatyczne. Funkcje te są 

kontrolowane przez wywołania podprogramu sterującego (FCN). 

Opis parametrów tego podprogramu przedstawiono na poniższym 

wydruku:

C FCN CALLS:

C 1. INPUT DATA

C 2. CALCULATE LATTICE ENERGY

C 3. NOT IMPLEMENTED

C 4. CALCULATE LATTICE ENERGY (AS 2.)

C 6. N. M. LATTICE DYNAMICS CALCULATION

C N CONTROLS FORCE CONSTANTS PROCESSING

C NEGATIYE N TURNS OFF PRINTING OF FRCS

C 6. 0. CALCULATE FORCE CONSTANTS

C 6. 1. AS 0. AND WRITE FORCE CONSTANTS TO FILE

C in binary format

C 6. 3. AS 0. AND WRITE FORCE CONSTANTS TO FILE

C in ASCII format

C 6. 2. READ FORCE CONSTANTS FROM FILE

C in binary format
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C 6. 4. READ FORCE CONSTANTS FROM FILE

C in ASCII format

C M CONTROLS PHONON CALCULATION

C 6. N. 1. DO STANDARD OLD PHONON CALCULATION

C 6. N. 2. CALCULATE PHONON DENSITY OF STATES FUNCTION

C 6. N. 3. PREPARE DATA FOR ELASTIC CONSTANT CALCULATION

C (NOT IMPLEMENTED)

C 7. PRINT PARTITIONING OF THE LATTICE ENERGY

C 8. N. PRINTS MOLECULAR AND ATOM COORDINATES,

C NIS NO. OF MOLECULES TO PRINT

C 9. N. PUNCH THE FRACTIONAL ATOM COORDINATES OF

MOLECULE N

C ON UNIT 11

C 10. N. XI. X2. XD. SCAN A PARAMETER FROM XI TO X2 BYXD

C

C

C

C

C

C

11. M. N. XI. X2. XD. SCAN ROTATION ANGLE N=l,2,3 OFMOLECULE M

12. Nar imol nat mir

I I

I I

I I

Enable disordered molecule model

I 1. reflect in y

I 2. reflect in y and x

no. ofatoms in non-disordered molecule

I molecule type (coordinate set no.)

C no. of external Minuit variable

C 14. Turn on logging offcn 2. and 4. function calls on unit 14

C 15. Turn on Ewald summation

Poniżej zamieszczono spis nazw ważniejszych 

podprogramów z krótkim ich opisem:

INPUT - czyta dane wyjściowe

INPPOT - czyta dane dotyczące potencjału

GEOM - oblicza położenia i orientacje cząsteczek i atomów

SCAN - oblicza potencjały jednocząstkowe

QLTSUM - sumuje energię kryształu

AAPOT - funkcja, która wylicza energię pary atomów
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BVKFRC - oblicza stałą siłową pary atomów

FRCCON - oblicza stałe siłowe

DYNMAT - obilcza macierz dynamiczną

GCHEIG - oblicza wektory i wartości własne macierzy

PHONON - oblicza częstości drgań fononowych dla 

zadanego wektora falowego

FILES - obsługuje współpracę ze zbiorami danych i wyników 

SCANR - obilcza minimalizację w funkcji kąta nieporządku 

LATSMR - oblicza energię sieci krystalicznej przy 

modelowaniu nieporządku

DOGEOM - nowy GEOM dla modelowania nieporządku 

INIDOG - inicjuje modelowanie nieporządku
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ROHLEDER Krzysztof
Modelllng of disorder In molecular crystals 

f ■■ 
The dlssertatlon presents a simple model to mimie orientatlonal 

disorder in molecular solids. The model is based on the concept of 
spllt molecule, an object which is a superposition of two molecules 
in orientation which are supposed to mimie orientatlonal distribution. 
The spllt molecule is characterized by a disorder angle, an extra 
degree of freedom which labels disorder States and alows to calculate 
free energy of the erystal, The model is simple for applicatlons 
lllustrated by numerlcal calculations for two-component (1:1) organie 
charge-transfer crystals. In the family of crystals with TCNB mole­
cules, the following ones form a rlgid network for donors and dlffe- 
rent orientatlonal disorder: dynamlcal A-TCNB, statlc N-TCNB, and 
statistidal P-TCNB. Results of disorder modelllng are In good agree- 
ment with structural and Raman experiments. Dlssertatlon presents 
also results of the Monte Carlo simulatlons for the nitrogen erystal 
and the phase transitions modelllng as an example of ąuasl-conti- 
nuous distribution of orientations.
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KOWALE

Analiza dokumentacyjna
<P .

Praca prezentuje koncepcję modelowania nieporządku orien­

tacyjnego, bazującą na pojęciu pseudospinu. Uśrednienie 
węzła sieci pozwala traktować kryształ jak uporządkowany 
przez wprowadzenie pojęcia supercząsteczki. Jest ona zło­
żeniem orientacyjnie niezrównoważonych cząsteczek nieupo­

rządkowanych. Wprowadzony kąt nieporządku jest dodatkowym 
stopniem swobody, pozwalającym modelować orientacyjną 
przemianę fazową. Pokazano na przykładach kompleksów A-, 

N- i Ph-TCNB i kryształów mieszanych przydatność metody. 
Wyniki modelowania wykazują dobrą zgodność z doświadcze­
niem. Zaprezentowano również wyniki modelowania nieporząd­
ku przy użyciu metody Monte Carlo dla kryształu azotu.
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nieporządek orientacyjny, kryształ CT, energia swobod­
na, model pseudospinowy, dynamika fononowa, metoda Monte 
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