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"Terazniejszos¢ - czes¢ wiecznosci,
ktéra oddziela domene rozczarowarn od
krélestwa nadziei”,

A. BIERCE

1. Wstep

Probujac zrozumiec 1 opisa¢ otaczajacq nas przyrode siggamy
w glab materii by na podstawie mikroskopowej budowy przewidziec
i  wyttumaczy¢ jej zachowanie. Szczegdlnie interesujagcym
przedmiotem takich studidw sa krysztaly, ktore ze wzgledu na swa
periodyczng strukturg daja mozliwos¢ budowania prostych modeli. W
wiekszosci przypadkéw jednak, periodyczna struktura nie jest
doskonata z uwagi na wystgpujace nieuporzadkowanie. Nieporzadek
w krysztatach moze mie¢ rozny charakter 1 zasigg. Nieporzadkiem
jest zarowno domenowa struktura krysztalu, jak 1 statystyczny
rozktad potozen czasteczek. Przedmiotem zainteresowania ponizszej
pracy sa krysztaly, w ktorych nieporzadek polega na
niejednoznaczno$ci orientacji czasteczek. Celem pracy jest pokazanie
tego problemu na wybranych przyktadach a zarazem zaproponowanie
jednej z mozliwych metod opisu tradycyjnego podejscia do opisu
krysztatdéw woéwcezas, gdy wystepuje nieuporzadkowanie. Oprocz
zdefiniowania modelu wraz z uzasadnieniem mozliwosci jego

stosowania przedstawiono wyniki dla przypadkéw, w ktorych

4



podejrzewa si¢ rozny charakter nieporzadku. Wyniki obliczen
konfrontowane s z wynikami eksperymentalnymi na kazdym
poziomie modelowania.

W pierwszej czg$ci pracy przedstawiono podstawy teoretyczne
obliczen statyki i dynamiki krysztatow wraz z opisem modelowania
potencjatu oddzialywan i sposobdéw traktowania nieporzadku. W
drugiej czgsci przedstawione sa oryginalne wyniki prac autora.
Zawiera ona prezentacj¢ modelu nieporzadku w krysztatach, w
ktorych  liczba standw mikroskopowych jest ograniczona.
Przedstawiono wyniki modelowania réznych jakosciowo typow
nieporzadku dla wybranych krysztatow molekularnych wraz z
porownaniem ich z wynikami eksperymentalnymi. Zaprezentdwano
rowniez przyktad obliczen symulacji Monte Carlo 1 ich interpretacjg
w krysztatach z nieporzadkiem orientacyjnym charakteryzujacym si¢
quasi-ciggtym rozktadem mikroskopowych standw orientacyjnych. W
koncowej czgsci pracy przedstawiono kréotkie podsumowanie.
Uzupetnienia zawieraja definicje uktadow wspodtrzednych, budowy
zwiazkoOw chemicznych wystegpujagcych w pracy 1 schematu
oryginalnego programu zmodyfikowanego 1 wykorzystywanego przez

autora w tracie przygotowywania niniejszej pracy.



2. Oddzialywania mi¢dzyczgsteczkowe.

Aby cokolwiek powiedzie¢ o krysztale, o warunkach jego
stabilno$ci czy dynamice, trzeba zna¢ natur¢ oddziatywan, zwykle
opisywanych modelem potencjatu. Jest rzecza bezsporna, ze
potencjatl taki musi zaleze¢ zar6wno od odlegtosci pomigdzy
czasteczkami jak i od ich wzajemnej orientacji.

Oddziatywania czasteczek w  krysztale maja naturg
elektronowa 1 zwiazane sg z ich struktura elektronowa. Z kwantowo
mechanicznej teorii zaburzen wiadomo!2, ze oddzialywanie
pomiegdzy czasteczkami A 1 B moze by¢ wyrazone jako:

U=U,+U.+U!+U,

YSp

(1)

U

tadunkow na tych czasteczkach. Ten czlon energii wyraza sie¢ jako:

reprezentuje  oddzialtywania elektrostatyczne rozktadéw

el

U, =(0"0"r|o"0") @)

gdzie 04 i 0° oznaczaja funkcje falowe stanu podstawowego
czasteczek A 1 B. Powyzszy zapis jest kwantowomechaniczng

Srednia:

(9.]@]0,) = [ @, (x)- (x)- 9, (x)- dx 3)

W naszym przypadku funkcja wazaca @ = V jest potencjalem



oddzialywan. Energia elektrostatyczna U, jest energia z jaka

oddzialuja dwie czasteczki A 1 B znajdujace si¢ w stanie

podstawowym tj. ze wzgledu na swe statyczne rozktady tadunkow.
U' i Ul sa odzialywaniami zwiazanymi z indukowanym

momentem dipolowym na obu czasteczkach 1 s3 wyrazone

odpowiednio przez:

<0AOB\V|nAoB>

A_—

Ve R R @
OAOBVOA B

U,-f=—2< o) 5)

B B
lfn __120

nP 208

Pierwszy z nich jest oddzialywaniem czasteczki B w stanie
podstawowym z czasteczkq A we wszystkich stanach wzbudzonych.

Mowiac prosciej U f odpowiada za oddzialywanie fadunku statycz-

i
nego na czasteczce B z wyindukowanym, w wyniku oddzialywania z
nim, momentem dipolowym na czasteczce A. Analogicznie U l.f
odpowiada za oddziatywanie fadunku statycznego na czasteczce A z
wyindukowanym momentem dipolowym na czasteczce B.

Us,

o Treprezentuje oddziatywania pomigdzy czasteczkami we

wszystkich stanach wzbudzonych a wigc pomig¢dzy wyindukowanymi

na nich momentami dipolowymi i moze by¢ wyrazony jako:



~ KOAOB V|n*n® >’2
Ui = ‘% E'—E)+E°-E?

n®#08

(6)

Oddziatywania te, zwane dyspersyjnymi z uwagi na to, ze pochodza
gtownie od elektronow walencyjnych odpowiedzialnych za dyspersj¢
Swiatlta sa czysto kwantowomechanicznym efektem zwigzanym z
korelacjgq fluktuacji gestosci rozktadu tadunkéw na czasteczces.
Oddzialywania te wnosza ujemny, stabilizujacy wklad do energii
catkowitej. W rachunku zaburzen, zaktada si¢, ze tadunki sa
izolowane. Poniewaz w praktyce powloki elektronowe naktadajg sig¢
na siebie, istnieje potrzeba wprowadzenia poprawki do energii
catkowitej uwzgledniajace; oddzialywania odpychajace, wynikajace
zarowno z klasycznego odpychania sie elektronéow jak i zakazu
Pauliego.

Oddziatywania elektrostatyczne U, wyrazone w ogolnosci
przez harmoniki sferyczne poszczegdlnych momentow4, sprowadza
sie do oddziatywan kulombowskich o postaci g4 - g5 - FA_; , gdzie q -
sa tadunkami szczatkowymi a r - odlegloscia. Oddziatywania
zwiazane z indukowanym momentem dipolowym sa bardzo trudne do
wyliczenia. Ponadto maja one maty wkiad do energii catkowitej 1 w
wiekszosci przypadkow sg zaniedbywane. Czton dyspersyjny wyraza
sie suma szeregu C,, -rf;;‘" , gdzie C,, sa wspoiczynnikami dla n > 3.
W praktyce oddziatywania dyspersyjne przybliza si¢ pierwszym
wyrazem tego szeregu dla n = 3. Czlon odpychajacy przybliza si¢



iloczynem dwdch funkcji zaleznych od odlegtosci f(r 45)-exp(-B-14p)5,
choé¢ zwykle w miejsce funkcji f przyjmuje si¢ stala. Trzeba tu
nadmieni¢, ze model potencjatu dla dwoch czasteczek jest tatwy do
stosowania jedynie w przypadku prostych czasteczek. W przypadku
czasteczek  wieloatomowych rozwigzania réwnan kwantowo
mechanicznych sa coraz bardziej skomplikowane 1 wymagaja
znacznych uproszczen, aby staly si¢ rozwigzywalne. Z uwagi na ta
trudno$é, w wielu przypadkach, stosuje si¢ modele potencjalu zwane
atom - atom, w ktérych opisuje si¢ oddziatywania pomiedzy
czasteczkami jako sume¢ oddzialujacych, wchodzacych w ich sktad
atomOoweé. Dazenie do uniwersalnosci sprawia, ze poszukuje si¢ takich
parametrow potencjatu dla poszczegdlnych atomow, ktore bytyby
niezalezne od rodzaju czasteczki w ogole lub przynajmniej dla
okreslonej grupy zwiazkow.

Niezaleznie od rodzaju modelu potencjatu, wystepujace w nim
state wspolczynniki dobiera si¢ tak, by potencjat ten odtwarzal
wielkosci znane z eksperymentu (np. parametry komorki elemen-
tarnej, ciepto sublimacji) lub z niezaleznych obliczen (np. ab initio).

Najczesciej stosowanym opisem odziatywan atom - atom jest

potencjat zwany w skrocie "6 - exp" o postaci:

_ -6
Vi = o =e2p(dl o r V=0 oan (7)

gdzie r,,  jest odlegto$cia pomigdzy atomami W i v za$ 4,,, B,,,

CHV empirycznymi statymi opisujacymi oddziatywanie pomigdzy

nimi. Cecha charakterystyczna tego potencjalu jest jego krotko-
zasiegowo$¢. Czlon przyciagajacy jest do pominigcia juz przy

9



odlegtosciach kilkunastu angstreméw a odpychajacy na jeszcze krét-
szych odlegtosciach. Krdtkozasiggowos¢ potencjatu, ktéra wynika z
cech oddzialywania sprawia, ze jest on bardzo praktyczny z punktu
widzenia obliczen, gdyz ogranicza liczbg¢ kontaktéw atomowych,
ktére trzeba uwzgledni¢ przy wyliczaniu energii catkowite;.

Jest rzecza bezsporng, ze parametry potencjalu "6 - exp",
ktorych dobdr jest empiryczny, moga by¢ dowolne. Potencjat musi
jednak opisywac jakies wielkoSci realne, co determinuje wartosci

tych parametrow.

Tabela 1 Wartosci (wg. Williamsa, Boeyensa i Levendisa) parametréw potencja-
tu "6-exp" dla poszczegdlnych rodzajow kontaktéw (A i C wyrazono

w kcal/mol, B w 1/A ).

A B C
C-C 367364 3.60 2415
C-H 65505 3.67 573
C-N 175728 3.67 1276
H-H 11680 3.74 136
H-N 149368 4.25 454
N -N 175728 3.78 1084

Dazenie do uniwersalnos$ci powoduje, ze poszukuje si¢ takich
parametrow, ktore dobrze opisuja energi¢ oddziatywan takich samych
atomOow w réznych zwiazkach. Dla zwigzkow bedacych przedmiotem
zainteresowania niniejszej pracy dobrze sprawdzonym 1 przetes-
towanym jest zbioér parametréw, zaproponowany przez Williamsa’,

Boeyensa i Levendisa8 przedstawiony w tabeli (tab.1).
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Niezaleznie od typu potencjalu pierwszym testem jego
poprawnosci ze wzgledu na uzyte parametry jest by energia krysztatu
osiagata minimum dla parametréw krysztatlu takich, jakie znane sg z
eksperymentu. W wigkszos$ci przypadkow, jesli jest to uzasadnione,
przyjmuje si¢, ze czasteczki tworzace struktur¢ sa sztywne a energia
pomiedzy czasteczkq na i-tym i j-tym wezle sieci jest suma energii
pomigdzy wszystkimi tworzacymi je atomami. Dodajac wskazniki

numerujace czasteczki do oznaczenia potencjatu mozemy zapisac:

Vi =2 Vi (i) (8)
[TRY

Minimalizacja energii oznacza, ze poszukujemy takiego rozktadu

przestrzennego czasteczek, ktory daje najmniejsza energie

V=3, ©)

i<j

Minimalizacj¢ energii sieci mozna przeprowadzi¢ rozlicznymi
metodami numerycznymi. Jedng z metod minimalizacji energii sieci
jest metoda wariacyjna zaproponowana przez Kitajgrodskiego?.
Metoda ta polega na wariacyjnym poszukiwaniu minimum energii po
kazdym z parametrow krysztalu z osobna. Ustala si¢ wartos¢
wszystkich parametéw krysztalu 1 zmieniajac wartoS¢ jednego
minimalizuje si¢ energi¢. Po uzyskaniu minimum wzglgdem tego
parametru ustala si¢ jego warto$¢ 1 minimalizuje si¢ po innym. Po
zminimalizowaniu energii wzgledem wszystkich parametréw

rozpoczyna si¢ nastgpny cykl minimalizacyjny az do momentu, kiedy
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warto$ci parametrow nie beda si¢ zmienialy przy kolejnych
iteracjach. Jest to metoda prosta cho¢ nie zawsze daje bezwzgledne -
najnizsze minimum. Inng metoda, dajaca dobre rezultaty jest metoda
gradientéw, ktorej algorytm zostal zawarty w standardowym module
fortranowym z biblioteki programéw CERN pod nazwa MINUIT.
Podprogram ten zostal uzyty do minimalizacji energii w niniejszej
pracy. Metoda ta polega na réwnoczesnej zmianie warto$ci
wszystkich parametrow sieci krysztalu zgodnie z wyliczonym
uprzednio wpltywem ich zmian (gradientéw) na zmiange wartosci
energii catkowitej. Program MINUIT! sktada si¢ z szeregu
podprograméw pozwalajacych na wybor optymalnej metody minima-
lizacji konkretnych struktur w zaleznosSci od ich specyfiki.

Dobra zgodno$¢ parametréw sieci krystalicznej z warto$ciami
eksperymentalnymi upowaznia do uzycia go do przewidywania

wlasnodci krysztatu np. do policzenia wzbudzen w tym krysztale.
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3. Dynamika sieci krystalicznej.

Klasyczna dynamika sieci, opisuje jedynie krysztaty idealne,
uporzadkowane. Stanowi ona jednak punkt odniesienia dla bardziej
skomplikowanych modeli, w ktérych uwzglednia si¢ dodatkowe
efekty (modelowanie nieporzadku, metoda podatnosci uogélnionej
opisane w dalszej czg¢sci pracy).

Dysponujac potencjatem oddziatywan mozna policzy¢ dyna-
mike krysztalu przy najprostszym zalozeniu, ze czasteczki moga
wykonywa¢ drobne oscylacje harmoniczne woko6t swych polozen
rownowagowych we wszystkich stopniach swobody. Niech dla trans-
lacyjnych stopni swobody wychylenia wzgledem osi uktadu wspot-
rzednych beda Ty, Ty, T, a dla rotacyjnych obroty wokot trzech osi

Ry, Ry, R,. Réwnania ruchu mozna zapisac¢ jako!!.12:

2
M.a?’:__ai ,i=1,2,3 (10)
ot a7,
dla translacyjnych stopni oraz
2
]i.alfi:_a—U ,i=1,2,3 (11)
ot oR,

dla rotacyjnych. M oznacza masg¢ czasteczki, I; wartoSci momentu
bezwtadnos$ci a U - potencjat oddzialywania mig¢dzyczasteczkowego.
Wygodnie jest zapisa¢ powyzsze rownania w przenormalizowanych

zmiennych u; , i = 1 + 6 zdefiniowanych jako!3:
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u=vM-T. ,i=1,2,3 (12)

oraz
ui+3:‘\/I_i'Ri ai:132’3 (13)

wtedy roéwnania ruchu zapiszemy nastgpujaco:

2
7w, _ _dU i=1+6 (14)

9> Ju,

Nalezy w tym miejscu zaznaczyC, ze rownania ruchu zapisane
powyzej sa rownaniami ruchu tylko jednej czasteczki. Analogicznie
zapiszemy réwnania ruchu dla kazdej czasteczki w komorce
elementarnej. W praktyce zmienna uj winna mie¢ jeszcze jeden
wskaznik numerujacy komorki elementarne, ktory dla przejrzystosci
zapisu pominigto.

Poniewaz potencjal oddzialywan U zalezy od wszystkich
stopni swobody, mozemy go roztozy¢ w szereg Taylora wokot

potozenia réwnowagi wzgledem tych stopni swobody!4:

U=UO+%-Z¢,.-u,.+Zch-ui-uj+... (15)

L

gdzie ®@j i ®jj okreslone sa jako:

oU o’U
(I)i (aul. )0 ’ ! (au,‘auj }0 (16)

Wskaznik 0 oznacza, ze jest to wartos¢ pierwszej 1 drugiej pochodne;j
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w stanie rownowagi. W przyblizeniu harmonicznym pomija sie
wyzsze niz druga pochodne rozwinigcia.

Drugi czlon rozwinigcia (15) okresla wypadkowa site
dzialajaca na czasteczke i1 zgodnie z poczynionymi zatozeniami
(rozwijaliSmy potencjal wzgledem wychylen wokét polozenia
rownowagi) jest rowny zero. Réwnania ruchu (14) beda wigc mialy

nastepujaca postac:

Rozwiazan powyzszych réwnan nalezy poszukiwaé¢ wsrod réwnan
opisujacych fale ptaskie. Biorac pod uwagg periodycznos¢ struktury

krysztatu mozemy rozwigzanie zapisa¢ w postaci:
ui——-u,.(q)-exp[i-(qoﬂ—w-t)] (18)

gdzie u,(q) jest amplituda, ¢ - wektorem falowym, R - wektorem
potozenia srodkow cigzkosci czasteczek, m - czgstoscia a t - czasem.
Konsekwencja podstawienia takiego rozwigzania do réwnan

ruchu (17) bedzie réwnanie:

O u(@)= Y0, 1) | =1+ (19)

lub wektorowo!s:
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D(g)-V(¢g)=0* V(g) (20)

gdzie 2 jest macierza dynamiczng a V wektorem skladajacym si¢ z
amplitud wychylen. Wektor V' zawiera 6xZ elementéw, gdzie Z jest
liczba czasteczek w komorce elementarnej. Macierz dynamiczna 1__2

ma ten sam wymiar a jawna postac jej elementdéw jest nastgpujacals:
D,=0, -exp(zgﬁ) (21)

gdzie prawa strona jest przesumowana po wszystkich komoérkach

elementarnych. W macierzy dynamicznej mozemy wyrdzni¢ cztery

Dtt Dtr
D=+=, = 22
= {Qrt er} ( )

ktére opisuja odpowiednio sprzg¢zenia translacyjno - translacyjne,

podmacierze:

translacyjno - rotacyjne, rotacyjno - translacyjne 1 rotacyjno -
rotacyjne. Kazda z tych macierzy ma wymiar 3Z x 3Z.

Réwnanie (20) jest typowym réwnaniem na warto$ci 1 wektory
wilasne. Rozwiazaniem tego rdéwnania jest 6xZ rzeczywistych
wartosci  (kwadratéw czestosci drgan) 1 wektorow wiasnych.
Elementy macierzy dynamicznej D s3 w ogolnosci liczbami
zespolonymi z uwagi na posta¢ rozwigzania (18). W praktyce, znajac
analityczna posta¢ potencjatu, mozna réwniez analitycznie (poprzez

rézniczkowanie potencjatu) wyliczy¢ stale sitowe!¢ dla wybranych
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wartosci wektora falowego a potem macierz dynamiczng. Cze$é
translacyjno - translacyjng mozna wyliczy¢ doktadnie, bez czynienia
dodatkowych zatozen. W przypadku pozostatych trzech podmacierzy,
aby unikngé probleméw z rézniczkowaniem funkcji trygono-
metrycznych 1 nieprzemienno$ci w dziedzinie obrotow przyjmuje sie,
ze katy obrotow sa infinitezymalne. Woweczas, korzystajac z zalez-
nosci podanych przez Oliveral?, mozna wyrazi¢ stale sitowe libracyj-
no - libracyjne poprzez translacyjno - translacyjne. Zatozenie takie,
cho¢ drastyczne, daje jednak dobre rezultaty w wigkszosci przypad-
kéw i jest zgodne z przyblizeniem harmonicznym. Rozszerzeniem

przyblizenia harmonicznego jest metoda podatnosci uogdlnione;j.
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4. Metoda podatnoS$ci uogélnionej.

Istotnym ograniczeniem statyki i dynamiki w przyblizeniu
harmonicznym jest fakt, ze otrzymuje si¢ rezultaty dla temperatury
0 K. Potencjat spetnia przyblizenie harmonicznosci, gdy amplitudy
wychylenn sq mate co ma miejsce w temperaturach bliskich zera
bezwzglednego. Nawet w przypadkach gdy wiadomo, ze w niskich
temperaturach jaki$§ krysztal, czy jego faza nie moze istnie¢ (jest
niestabilna) to prowadzac obliczenia harmoniczne dostajemy w
efekcie teoretyczne czestosci drgan fononowych dla tego krysztatu w
temperaturze zera bezwzglednego. Dynamika harmoniczna nie
pozwala ponadto $ledzi¢ zjawisk krytycznych z uwagi na fakt, ze z
zatozenia jest stosowana w warunkach stabilnos$ci struktury.

Jedng z metod, ktoéra pozwala wycigga¢ wnioski dotyczace
warunkéw  stabilnosci  jest metoda podatnosci uogdlnionej!s.
Podatno$¢ uogoélniona jest miarag odpowiedzi uktadu - krysztatu na
dowolne zaburzenie zewngetrzne.

Rownanie (15) bedace rozwinigciem potencjatu wzgledem
stopni swobody uj mozna traktowa¢ jako potencjal sprze¢zonych
oscylatorow. Czestosci drgan kolektywnych (kazda czasteczka
wychyla si¢ zgodnie z falg ptaska opisang wektorem falowym q) w
krysztale mogg by¢ znalezione jako bieguny (osobliwosci)
uogllnionej dynamicznej podatnosci w przyblizeniu Hartree

zdefiniowanej jako20:
x|
x(g:0.)=1 @1 [1+2@ 1 @D] @3
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gdzie stata sprzezenia @ jest transformata Fouriera macierzy statych
sitowych @j; opisanych w réwnaniu (16) a ZO (®,7) jednoczastkowa

podatnosciag dynamiczna. ZO (0,7) ma sens podatno$ci lokalnej na

wezle. W ogoélno$ci dynamiczna podatno$¢ jednoczastkowa jest

wyrazona jako20:

xf.fj((x), T)=i -Tdt<[ui(t) u(t= O)]> -exp(ior) (24)

gdzie  jest czgstoscia, uj - wychyleniem w i-tym stopniu swobody a
t - czasem. Podatnos¢ ta moze by¢ wyznaczona kwantowo, poprzez
rozwigzanie rownania Schrodingera dla zadanego potencjatu?l, lub
klasycznie. W niektorych przypadkach mozna t¢ podatnos¢ przybli-

zy¢ poprzez model efektywnego oscylatora harmonicznego:

—1

1 (0,T)= [{§°(o, T)}—l -M (02} (25)

gdzie M oznacza uogOlniony tensor masowy zawierajacy oprocz
masy momenty bezwtadnosci.

W wysokiej temperaturze, kiedy istnieje continuum stanow
energetycznych, jednoczastkowa podatnos¢ statyczng mozna wyli-

czy¢ klasycznie jako23:
X, (T) =Bt )= (10 )- (1)} (26)
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gdzie P jest odwrotnoscig energii termicznej ( B-l =kT) auy;, Y
zmiennymi translacyjnych i rotacyjnych stopni swobody. Nawiasy
kwadratowe okre$laja $rednig termodynamiczng liczong klasycznie

jako:

(f@)=2"[f(x)-exp(-B-V(x)-dx @7

gdzie V(x) jest tak zwana funkcjq wazaca, a stata Z we wzorze jest

funkcjg normujaca i wyraza si¢ nastepujaca catka:

oo

Zi= Jexp(—B V(x))-dx (28)

—o00

Przedstawiona metoda podatnosci uogélnionej daje wigksze
mozliwosci niz przyblizenie harmoniczne, bo - cho¢ sprzezenia
pomiedzy wezlami sa w dalszym ciggu harmoniczne - to potencjal
lokalny jest anharmoniczny. Model podatnosciowy pozwala na
interpretacj¢ przej$¢ fazowych z migkkim drganiem?3. Mozna poka-
zac¢?4, ze w przypadku ciaglej przemiany fazowej, zwanej przemiang
drugiego rodzaju, musi wystapi¢ drganie kolektywne, ktorego
czesto$¢ zmierza do zera w miar¢ zblizania si¢ do temperatury
krytycznej?s. Latwo pokazaé, iz wodwczas podatnosé¢ (23) ma
osobliwos$¢ (jej warto$¢ dazy do nieskonczono$ci), co wskazuje na
niestabilno$¢ uktadu?¢. Fakt ten moze by¢ wykorzystany do badania
warunkow stabilno$ci krysztatow i okreslania temperatury przemiany

fazowe;.
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5. Modelowanie nieporzadku

Najdoktadniejszy opis nieporzadku mozna otrzymaé z
modelowania komputerowego, w ktorym uwzglednia si¢ duza liczbe
czasteczek, a tym samym duzo niezaleznych stopni swobody.
Pozwala to dobrze usredni¢ wiasnosci mikroskopowe z uwagi na
statystycznie duzg liczb¢ mozliwych konfiguracji mikroskopowych.

Modelowanie komputerowe jest metoda, ktora taczy w sobie
elementy teorii 1 eksperymentu 1 z tego wzgledu nazywane jest czgsic
eksperymentem numerycznym. Wszystkie tego typu eksperymenty sa

wariantami dwoch metod (Monte Carlo 1 Dynamiki Molekular-

nej)?’.28, ktére zostang omowione ponize;j.

5.1 Metoda Monte Carlo

Symulacje komputerowe polegajq na wyliczeniu statystycznie
$rednich wartos$ci wielkosci fizycznych danego uktadu. Majac model
potencjalu mozemy, dla dostatecznie duzego zespolu czasteczek
(rzedu kilkuset) wyliczy¢ jego energi¢. W nastepnych krokach
zmieniamy potozenie lub orientacj¢ kolejno wszystkich czasteczek,
wyliczajac za kazdym razem energi¢ tak zmodyfikowanego uktadu2.
Ze statystycznego punktu widzenia zajmie on wszystkie mozliwe
stany energetyczne, w tym rdéwniez stan, w ktérym energia jest
najnizsza. Aby jednak spelni¢ warunek wiarygodnosci statystycznej
nalezy wykona¢ duza liczbg takich krokéw. W praktyce wykonanie
wystarczajacej liczby iteracji dla duzych czasteczek jest niemozliwe.
Przy wykonywaniu kolejnych krokéw energia, w zaleznosci od

konfiguracji moze si¢ zwigksza¢ lub zmniejsza¢. Mozna poprawié
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statystyke 1 zmniejszy¢ liczbe koniecznych do wykonania obliczen
postulujac, by bardziej preferowane byly stany konfiguracyjne o
nizszych energiach przez wazenie standw zaleznie od ich energii z
preferencjq stanow niskoenergetycznych. Takie kryterium w sposéb
oczywisty przyspieszy ewolucje uktadu do stanu najnizej energetycz-
nego. Jednak wymog ten jako bardzo drastyczne ograniczenie rodzi
niebezpieczenstwo, ze uktad zatrzyma sie w lokalnym minimum
energii nie majac mozliwosci przekroczenia nawet niskiej bariery
energetycznej nie majac zadnych mozliwosci zwickszenia swej
energii. By oming¢ ta istotng niedogodnos$¢ stosuje si¢ metodg¢ znang
pod nazwa Monte Carlo2s. Polega ona na tym, ze akceptuje si¢ kazda
konfiguracj¢ o energii nizszej od poprzedniej ale rowniez akceptuje
sie z pewnym prawdopodobienstwem konfiguracj¢ o energii wyzsze;j.
W metodzie Monte Carlo miarg prawdopodobienstwa zwigkszenia
energii uktadu jest rozklad Boltzmana®. Niech rdéznica energii
pomiedzy kolejnymi krokami wynosi AE. Je$li losowo wybrana
liczba z zakresu od zera do jednosci jest mniejsza od exp(-AE/KT)
wowczas krok jest akceptowany, jesli wigksza - odrzucany. Gdy
wzrost energii jest niewielki, wartos¢ funkcji Bolzmana jest bliska
jednosci a zatem prawdopodobienstwo zaakceptowania tego kroku
jest duze, bowiem prawdopodobienstwo wylosowania liczby
mniejszej jest rowniez duze. Jesli zmiana energii jest duza, wowczas
warto$¢ funkcji Boltzmana jest bliska zeru 1 wdweczas
prawdopodobienstwo zaakceptowania takiego kroku jest mate.

Przy tak skonstruowanych kryteriach ewolucji ukladu liczba
potrzebnych do wykonania krokéw, by spetni¢ wymoég wiarygodne;j

statystyki, zmniejsza si¢ znacznie. W praktyce wystarcza wykonanie
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liczby krokéw rzedu 103 + 100 - zalezy to jednak od konfiguracji
poczatkowej 1 szybkosci zmian energii w poszczegdlnych
krokach30:3132.33,34.35,

Rejestrujac potozenia czasteczek i ich orientacje w kolejnych
krokach, po osiagnigciu przez uktad stanu réwnowagi (energia w
kolejnych krokach fluktuuje wokét energii $redniej, nie wykazujac
zmian systematycznych), mozemy po wykonaniu symulacji wyliczy¢
Srednie statystyczne np. potozenia, orientacje, lub wzbudzenia26.3,
Przyktad zastosowania symulacji Monte Carlo i wynikow jakie

pozwala otrzymac zostal zawarty w dalszej czesci pracy.

5.2 Metoda Dynamiki Molekularnej

Inng niz Monte Carlo metoda eksperymentu komputerowego
jest metoda dynamiki molekularnej. Mimo swej ogdlnosci metoda
Monte Carlo ma istotne ograniczenie w stosunku do dynamiki mole-
kularnej, gdyz nie pozwala modelowa¢ ewolucji uktadu w czasie.
Dynamika molekularna polega na rozwiazywaniu niutonowskich
robwnan ruchu w uktadzie wielu cial?. Dla kazdej czasteczki w

rozpatrywanym uktadzie mozna zapisa¢ rdwnania ruchu w postaci:

—L =y (29)

= i:m-l-éﬁzj(xi,xj) (30)

Istotaq metody jest wprowadzenie skonczonych przyrostow czasu
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At2627. W pierwszym przyblizeniu, zaktadajac, ze znamy potozenie,
predkos¢ i przyspieszenie w chwili t™V i t" mozemy przewidzieé, ze

polozenie w chwili t™" bedzie:
p— 1 %
X = x0T 42 Arp® (31

Znajac przewidywane potozenie, mozemy przewidzie¢ przyspie-
szenie w chwili t™) a nastepnie, w drugim kroku wyliczy¢ predkosé

1 potozenie jako:

]

y =y % At (E,-"H) + Ef")) (32)

1

2 = 50 +é-- At (v +1) (33)

Procedure iteracyjna nalezy prowadzi¢ tak dlugo, az wyliczone
wielkosci nie beda si¢ réznity od przewidywanych o wiecej, niz
zatozony poziom doktadnosci. Prowadzac takie obliczenia dla
kolejnych momentéw czasu, dostaniemy w rezultacie peina infor-
macj¢ na temat modelowanego ukfadu. Taka informacja moze by¢
uzyta na wiele sposobow2627. Mozna na przyktad bada¢ korelacje

ruchow czasteczek 1 poréwnywac jg z eksperymentem.
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5.3 Metoda pseudospinu

Niedogodnoscig metod symulacyjnych takich jak Monte Carlo
czy dynamiki molekularnej jest fakt, ze nawet dla prostych rzeczy-
wistych uktadéw molekularnych trzeba wykona¢ bardzo duzg liczbe

obliczen.

Rysunek 1. Mapa ggstosci elektronowej czasteczki naftalenu w krysztale
N-TCNB33.

Dla bardziej skomplikowanych uktadéw, symulacje moga by¢
niemozliwe, gdyz wymagaja nierealnie dlugich obliczen, nieosia-
galnych nawet na najszybszych komputerach. Niedogodnos¢ ta
zacheca do poszukiwania posredniej metody, ktora potrafitaby mode-
lowaé nieporzadek bez koniecznosci wykonywania pelnych symu-
lacji Monte Carlo. Mozna na przykiad uzy¢ model z ograniczong

liczbg stopni swobody uktadu, co w zdecydowany sposob
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przyspiesza obliczenia3s.

Do$¢ powszechnym rodzajem nieporzadku jest sytuacja w
ktérej czasteczki zajmuja z réwnym prawdopodobienstwem dwie
rézne orientacje w sposéb statystyczny. Taki obraz nieporzadku
mozna zaobserwowa¢ na mapach rozkladu gestosci elektronowej
zwiazkow takich jak A-TCNB45, N-TCNB?37 (rysunek 1), F-TCNB48
czy innych. Jest to sytuacja, w ktdrej niekoniecznie trzeba stosowac
zaawansowane 1 czasochtonne obliczenia Monte Carlo. Mozna
wowczas skorzystaé na przyktad z formalizmu pseudospinowego39.40,

W terminologii fizyki czastek elementarnych pokazne miejsce
zajmuje pojecie spinu do okreslania ich wiasnosci. W mechanice
kwantowe] wprowadza si¢ do opisu spinu trzy macierze spinowe
Pauliego4!. Pojecie spinu, ktérego wartos$ci réwne sa + % i- %,
postuzyto do budowania 1 opisu wszelkich uktadéw dwustanowych o
innych niz spinowe wartoSciach. Modele te zwane sq modelami
pseudospinowymi i stuza np. do opisu tunelowania protonu w
wiazaniu wodorowym4. Idea ta moze by¢ takze zastosowana w
modelach klasycznych. Mozna pokaza¢ (w dalszej czesci pracy
bedzie o tym mowa)*, ze wprowadzenie operatora pseudospinowego
pozwala rozdzieli¢ hamiltonian na cz¢S¢ niezalezng od pseudospinu,
na cze$¢ zalezng od pseudospinu tylko jednej czasteczki oraz zalezna
od pseudospindw oddziatujacych czastek. Idea pseudospinu postu-
zyta do modelowania nieporzadku w krysztatach, w ktérych nieupo-
rzadkowanie ma charakter dwustanowy, np. sq mozliwe dwie

statystycznie rownowazne orientacje.
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6. Struktura modelowanych krysztalow

Przedmiotem  zainteresowania  niniejsze]  pracy  jest
modelowanie nieporzadku ilustrowane uktadami molekularnymi, w
sktad  ktérych  wchodza antracen, naftalen, fenantren i
czterocyjanobenzen oraz azot (Uzupetnienie 1).

Krysztaty antracen - (A-TCNB), naftalen - (N-TCNB) i
fenantren - czterocyjanobenzen (F-TCNB) stanowiq interesujaca
reprezentacje grupy krysztaldéw z przeniesieniem tadunku (CT) w
ktérych akceptorem jest TCNB. Strukture A-TCNB jako pierwsi
wyznaczyli Tsuchiya*s 1 Stezowski*s, jednak szczegotowe i
kompleksowe pomiary rentgenowskie wraz z opisem nieporzadku
zostaly wykonane przez Lefebvre” w 1989 roku. Lefebvre wyznaczyt
rowniez struktur¢ krysztatu N-TCNB449.  Struktur¢ F-TCNB

wyznaczyt Wrightso.

Rysunek 2. Rzut struktury krysztatu A-TCNB na krystalograficzna ptaszczyzng
ac (czasteczki utozone sa w kolumnach wzdhuz osi c).

Wymienione krysztaly organiczne krystalizuja w kolumny, w
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ktéorych na przemian znajdujg si¢ plaskie czasteczki akceptora i
donora.

W temperaturze pokojowej wszystkie trzy krysztaty naleza do
grupy przestrzenne] C2/m. Rzut struktury na krystalograficzne
ptaszczyzny ac 1 (1 0 2) zaprezentowano na rysunkach 2 i 3.
Interesujaca cecha tych uktadéw jest wyraznie widoczna w
krystalograficznej ptaszczyznie (1 0 2), w ktorej leza czasteczki w

fazie wysokotemperaturowe;j.
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Rysunek 3. Rzut struktury krysztalu A-TCNB w fazie wysokotempe-
raturowej - HT na krystalograficzna ptaszczyzng (102) (czas-
teczki utozone w plaszczyznie o pét periodu nizej zazna-
czono linig przerywana).

Podobienstwo struktury krystalograficznej tych zwiazkow
wynika z faktu, ze we wszystkich trzech przypadkach czasteczki

donora wbudowujgq sié wlasnie w tej plaszczyznie w sztywng sieé
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TCNB, ktéry tworzy praktycznie takq samgq strukture w kazdym z
tych krysztatéw.

Zaréwno w przypadku A-TCNB jak i N-TCNB mamy do
czynienia z orientacyjnym przejSciem fazowym (zachodzi odpo-
wiednio w temperaturach 210K 1 70K)%, rkt(’)re zwigzane jest ze
zmiang symetrii wezta z C2/m w fazie wysokotemperaturowej (HT)
do C; w fazie niskotemperaturowej (LT). Faza LT obu tych kryszta-
tow ma jednosko$na komorke prymitywna, nalezaca do grupy

przestrzennej P21/a.

Rysunek 4. Rzut struktury krysztalu A-TCNB na krystalograficzng
plaszczyzng (102) w fazie niskotemperaturowej - LT (czasteczki
ulozone w plaszczyznie o pét periodu nizej zaznaczono linig

przerywana).

Rzut struktury na krystalograficzng ptaszczyzne (1 0 2) dla A-
TCNB w fazie LT przedstawia rysunek (rys.4). Nizsza symetria fazy
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LT polega na tym, ze czasteczki obu tworzacych te krysztaty podsieci
nie posiadajg elementu symetrii jakim jest plaszczyzna ac. Brak tego
elementu symetrii sprawia, ze czasteczki antracenu sg zreorientowane
w fazie LT w stosunku do fazy HT.

Orientacje czasteczki wzgledem krystalograficznego uktadu
wspoirzednych mozemy opisa¢ poprzez trzy katy obrotu Ry, Ry, Ry
wokot trzech osi czasteczki. Osie czasteczki definiuje si¢ zazwyczaj
zgodnie z osiami jej gtdwnych momentéw bezwladnosci; 0§ x
zgodnie z kierunkiem najwigkszego momentu bezwtadnosci, o$ z z
kierunkiem najmniejszego (Uzupetnienie 2). Przemiana fazowa w
przypadku obu krysztaldw polega na zmianie orientacji czasteczek z
(0, Ry, 0) w HT na Ry, Ry, R,) w LT. W przypadku F-TCNB
przejécia fazowego nie obserwuje si¢. Faza niskotemperaturowa dla
A-TCNB i N-TCNB jest uporzadkowana, a faza wysokotempera-
turowa dla wszystkich trzech krysztatéw jest nieuporzadkowanas.
Nieporzadek ten ma rozny charakter w kazdym przypadku, cho¢
struktury sg izomorficzne.

Nieuporzadkowanie fazy HT w przypadku A-TCNB i1 N-
TCNB cho¢ ma ta sama przyczyng¢ - potencjal oddziatywan z
otoczeniem - ma rozny charakter. Potencjal oddziatywan zaréwno
czasteczki antracenu jak 1 naftalenu z podsiecia TCNB w funkcji kata
obrotu wokét osi normalnej, charakteryzuje si¢ jednym minimum.
Potencjat oddziatywan obu czasteczek w obrebie swych podsieci ma
dwa minima w funkcji tego kata. Rézna jest jednak glebokos¢ tych
miniméw w obu przypadkach. Sumaryczna, catkowita energia
krysztatu jest wynikiem konkurencji oddziatywan z tymi podsieciami

i w krysztale A-TCNB ma jedno minimum (przewaza oddzialywanie
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z TCNB) a w N-TCNB dwa minima (przewaza oddzialywanie w
podsieci naftalenu)s. Istotnym czynnikiem wplywajacym na taka
sytuacj¢ wydaje si¢ by¢ owalny, lekko sptaszczony ksztalt wneki
tworzonej przez podsie¢ TCNB 1 wielko$s¢ a gitdwnie dlugosé
czasteczek donora.

Nieporzadek we wszystkich trzech uktadach ma jeszcze jedna
wspolng cechg. Czasteczki donora pod presja sasiadow z kolumn leza
w plaszczyznie, specyfika oddzialywan z podsieciq akceptora
uniemozliwia praktycznie ruch translacyjny pozostaje wigc tylko
jeden stopien swobody, niesprzeczny z symetriq - libracja badz
reorientacja wokot osi normalnej do plaszczyzny (1 0 2).

Pomimo izomorficznosci tych krysztaléw 1 podobienstwa
przemiany charakter nieporzadku jest inny. Dane strukturalne+
zaczerpnigte z eksperymentdw rentgenowskich nie sa w stanie roz-
strzygna¢ szczeg6tow nieporzadku gdyz pokazujq obraz usredniony
po czasie (czas trwania eksperymentu jest znacznie dluzszy niz czas
ewentualnych reorientacji czasteczek) 1 po przestrzeni (obraz
rentgenowski daje informacj¢ usredniong po wielu weztach w
makrokrysztale). Tak wigc na przyktad w krysztale A-TCNB, gdzie
obserwuje si¢ zbyt duze rozmycie polozen atomoéw czasteczki
antracenu w jego plaszczyznie, nie mozna powiedzieé, czy jest to
spowodowane libracjq czasteczki czy dwupotozeniowym niepo-
rzadkiem w podsieci antracenu. Jeszcze wyrazniej sytuacja ta wyste-
puje w krysztale N-TCNB. Czasteczka naftalenu, mniejsza od
antracenu, ma wigkszg swobode we wngce pomigdzy TCNB. Obraz
rentgenowski wskazuje wregcz na istnienie dwoch orientacji czastecz-

ki naftalenu na kazdym wezle (rys.1). Oczywiscie taka sytuacja jest
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niemozliwa w realnym krysztale. Probuje si¢ obraz ten tlumaczy¢
jako $redni obraz, w ktérym czasteczki naftalenu w dwoch réznych
orientacjach statystycznie okupuja wezly w sieci z réwnym
prawdopodobienstwem. Podobnie wyglada sytuacja w krysztale
F-TCNB, w ktorym czasteczka fenantrenu wykazuje centrum
inwersji, podczas gdy izolowana czasteczka nie posiada tego
elementu symetrii. W tym przypadku mozna posrednio wnioskowac o
rodzaju nieporzadku: z uwagi na przeszkody steryczne mozna
wykluczy¢ reorientacj¢ czasteczek w sieci co prowadzi do wniosku,
ze czasteczki zajmujq w sieci dwie rdwnowazne pozycje W Sposob
statystyczny.

Przedstawiona charakterystyka krysztatow A-TCNB, N-TCNB
i F-TCNB, ich podobienstwa w budowie 1 oczekiwane rdéznice w
charakterze nieporzadku, predestynujg te uklady jako testowe przy
modelowaniu nieporzadku orientacyjnego.

Krysztat azotu charakteryzuje si¢ bardzo ciekawym i bogatym
polimorfizmem fazowyms5!. Ponadto krysztat ten sktada sie z czaste-
czek dwuatomowych a wigc znacznie prostszych niz opisywane
poprzednio. Cechy te sprawiaja, ze krysztat azotu jest przedmiotem
intensywnych studiow nie tylko teoretycznych ale i eksperymen-
talnych, pomimo iz niektére jego fazy wystgpuja w bardzo niskich
temperaturach i wysokich cisnieniachs253. Wykres fazowy dla azotu
prezentuje rysunek (rys.5).

Faza o jest faza regularng uporzadkowang (grupa przestrzenna
Pa3), faza P jest nieuporzadkowana heksagonalng (P63/mmc), 7y -
uporzadkowang tetragonalng (P4,/mnm), & - nieuporzadkowang

regularnag’ (Pm3n), € - (zwana rowniez (LT1)) prawdopodobnie
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romboedryczna’ (R3c) oraz faza & - (zwana rowniez 3(LT2)) tez

prawdopodobnie romboedryczng (R3c¢).

100 F T T T T 1T T T T T T 1 3
C LN, ]
I~ (R3c)?
10 — ///// -
— E /// 8'N2 .
¥ I €-N, /// (Pm3n) ]
\-LZ = (RSC)? e
2 - -
o)
(5] -
X BN, .
Ba (P65/mmc)
O
1.0 ¢ 3
| a-Np i
(Pa3)
0.1 1 S (SO SO (N
0 100 200 300

Temperatura [K]

Rysunek 5. Wykres fazowy krysztatu azotu.

Z punktu widzenia tematyki niniejszej pracy interesujace sa
fazy o i B, a takze przejscie fazowe pomiedzy nimis?.5859, z uwagi na
nieuporzadkowanie fazy f¢. Faza o, jak wskazuja dane z
eksperymentow rentgenowskich 1 kalorymetrycznychsé!6263, chara-
kteryzuje si¢ symetria nalezaca do grupy przestrzennej Pa3. W
komorce elementarnej znajdujgq si¢ cztery czasteczek azotu jak

pokazano na rysunku (rys.6).
Faza P nalezy do grupy przestrzennej P63/mmc a jej strukture

prezentuje rysunek (rys.7). W tej fazie czasteczki azotu sa

swobodnymi rotatorami. Nieporzadek fazy  ma odmienny charakter
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od nieporzadku w dotychczas omawianych przyktadach.

Rysunek 7. Struktura fazy B krysztatu azotu.
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Istotna réznica polega na tym, ze w przypadku fazy [ statego
azotu mamy do czynienia z cigglym rozkltadem prawdopodobienstwa

orientacji czasteczek.

Z uwagi na ten fakt nie mozna stosowa¢ modelowania
nieporzadku opartego na formalizmie pseudospinowym. W takich
przypadkach nalezy stosowa¢ metody statystycznego modelowania -

np. Monte Carlo.
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7. Model nieporzadku w oparciu o formalizm pseudospinowy.

Korzystajac ze specyfiki nieporzadku, mozna zapropo-
nowace364 sposob opisu pseudospinowego w krysztatach dwu-
sktadnikowych, sktadajacych si¢ z czasteczek dwdch typoéw (A, D),
w ktorych jedna z podsieci jest nieuporzadkowana.

Rozpatrzmy wezet sieci krystalicznej, w ktérym czasteczka D
moze zajmowac jedng z dwdch réwnieprawdopodobnych orientacji i
przypiszmy tym stanom oznaczenia o = (+, -) odpowiadajace tym
orientacjom. Niech $rednie polozenie i1 orientacja i-tej czasteczki
bedzie opisana zbiorem @ ; @ zawiera parametry komorki
elementarnej (periody a, b, ¢, oraz katy o, 3, ¥) oraz potozenie (Ty,
Ty, Ty 1 orientacj¢ (Rx, Ry, Ry) tej czasteczki w komorce
elementarnej. Nalezy podkresli¢, ze przez Srednie potozenie i
orientacje rozumiemy zbior @i opisujacy polozenie 1 orientacje
wynikajaca np. z symetrii wezla zajmowanego przez tq czasteczke.

Zdefiniujmy nowy, dodatkowy stopien swobody dla tej czasteczki
@7 - zmienna nieporzadku. Zmienna nieporzadku okresla jak
czasteczka jest zreorientowana na i-tym wezle w stosunku do $rednie;j
@; 1 w ogolnosci jest rowniez zbiorem zawierajacym ta samg liczbe
stopni swobody co @j. Polozenie i orientacj¢ czasteczki w stanie o

mozemy wowczas opisac jako
— o o
CDi _(pi+20i '(Do (34)
o
gdzie O jest operatorem rzutowym o warto$ciach 1 lub 0 i okre$la

czy czasteczka na i-tym wezle jest w stanie (+) czy (-). Notacja taka

36



pozwala opisa¢ polozenie 1 orientacj¢ nieuporzadkowanych
czasteczek niejako wspdlnie, tzn. jednym wyrazeniem. Zauwazmy, ze

jesli czasteczka znajduje si¢ w stanie o0 = + bedziemy mieli:

D =0, +1-D;+0-D, (35)

a gdy w stanie o = -

D =0,+0-D; +1- D, (36)

Operator rzutowy moze by¢ wyrazony poprzez operator pseudo-

spinowy jako:

1
0?:5-(1+oc-0,.) (37)

Energia krysztatu dwusktadnikowego jest potowa sumy energii

oddziatywan pomigdzy wszystkimi czasteczkami tej sieci :

V:%-Z(\/’.JPD+VI.1.DA+\{.].AD+V;A) (38)

iL,j

gdzie V" oznacza energi¢ oddzialywania pomigdzy czasteczka (n =

A lub D) w wezle i-tym a czasteczka ( m = A lub D) w wezZle j-tym.
Mozna teraz wyrazi¢ energi¢ jako jawna funkcje polozenia i

orientacji:
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V= [V (0.0, + v (@,0,) ¢

+szAD((Pi’(Dj)+VyM((Pi’(Pj)] (39)

Przeanalizujmy poszczegdlne sktadniki tej energii biorac pod uwage
zatozenia modelu pseudospinowego opisane powyzej. Ostatni czton
nie zalezy od zmiennej nieporzadku, gdyz opisuje energi¢ oddziaty-
wania wewnatrz podsieci czasteczek A, a ta jest uporzadkowana.
Czlony drugi i trzeci opisujq energi¢ podsieci D z A1 A z D 1 maja
podobny charakter. Podstawiajac do drugiego czionu rownania (39)

rownanie (34) otrzymujemy:

szDA((Di’(Pj):Vijm((pi‘*'zo-?'q)g’@j) (40)

Oznacza to, ze zgodnie z (35) 1 (36) jest to energia oddziatywania
czasteczki D w stanie o = + (jezeli zajmuje ona taki stan) z
czasteczka A lub czasteczki D w stanie a0 = - (Jezeli jest ona w tym
stanie) z czasteczka A. Z uwagi na powyzsze zapis taki jest

rOwnowazny z zapisem:
@e,)=Xor v e, rake,) @y

T e (0 A .
Podstawiajac w miejsce operatora rzutowego O, wyrazenie (37)
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otrzymujemy:

(1+0-0,) VP (g, +D%,0,) (42

‘/zJDA((I)t’(p]) Z

o

t\Jlrd

lub inaczej, rozdzielajac sumg¢ na czg$¢ niezalezna od operatora

pseudospinowego 1 od niego zalezna, jako:

1
Vy'DA((Di’(Pj)ZE ZV'jDA((P +q)o’(P,)

1
+5-2a~0i-‘{,PA((Pf+q)g’(Pj) (43)

Podobnie postgpujac mozemy doprowadzi¢ do rozdzielenia
wzgledem operatora pseudospinowego trzeci sktadnik réwnania (39),

skad otrzymamy:

1
VqAD((Pi’(Dj):E';VUAD((PP(P/‘ +(D8)+

+%'ZB'GJ"VUAD((D¢"(9,'+®2) (44)
B

W przypadku pierwszego cztonu energii (39), po podstawieniu (34) i
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(37) otrzymamy nieco bardziej skomplikowane wyrazenie®’:

zll"zVijDD((Pi +(Da’(Pj +(Dg)+
B

VijDD((Di’(Dj) =
LS00, (o, 00, +00):
LS B0, v (g + 5.0, +0h)+

p

+%-Zo¢-B-0i-0j-\/,.jPD((pi+CDg‘,(pj+<Dg) (45)

Z powyzszych rozwazan wida¢, ze catkowita energi¢ oddzialywan w
tym ukladzie mozna wyrazi¢ poprzez czion, ktéry nie zalezy od
operatora pseudospinowego (jest to statyczna cz¢s$¢ tej energii), oraz
pozostaty czlon, ktéry zalezy od operatora pseudospinowego liniowo
i kwadratowo (jest to dynamiczna czg$¢ energii). Nie wnikajac w
szczegbly mozna powiedzie¢, ze dynamiczna czg$¢ energii opisuje
zalezno$¢ jednoczastkowa, Sredniopolowg (czton liniowy) 1 energie
korelacji pomigdzy weztami (czton kwadratowy). Z uwagi na to, ze
chcemy wyniki naszego modelu poréwnywaé z eksperymentem
rentgenowskim interesowa¢ nas bedzie tylko energia oddziatywan

Vg, ktora nie zalezy od operatora pseudospinowego i wynosi:

V.= 2[ ZVDD( DL, + D)+

LJ
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1
+5'ZVUDA((P1' +q)g’(9j)+

1
+5'ZV;D((pis(Pj +CI)8)+
B
+V;(0,,9,)] (46)

lub - rozpisujac sumy:
v, =%-§,B-‘{f”(@i + 07,0, +Pp )+
+VP (9, + @50, + ;) +
+V (0, + @5, 0, +@F ) +
V2 (g, + Dy, + @)+

1
+5'(VU‘DA((P,~ +q)+’(Pj)+ V:J'DA((PI' +(D5’(Pf'))+

1
#2200, + 01 41,09, + ;) +

+V;(9,,9,)] @47)

Rownanie powyzsze okre$la przepis na liczenie statycznej energii
oddziatywan w przyblizeniu pseudospinowym tzn. takim, w ktorym

przyjeto  dyskretny rozklad prawdopodobienstwa  orientacji
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czasteczek podsieci D. Wynik ten mozna interpretowaé jako sredniag
arytmetyczng oddzialywan pomigdzy weztami, przy czym kazdy
wezet podsieci D zajmuje teraz superczasteczka bgdaca zlozeniem
dwoch czasteczek D zreorientowanych o @, i @, wzgledem
potozenia $redniego. Utworzenie $redniego wezla sprawia, ze sie¢
krystaliczna staje si¢ periodyczna poniewaz kazdy wezet obsadzony
uprzednio przez czasteczkg¢ D w potozeniu 1 orientacji (+) albo (-) jest

teraz taki sam.

Rysunek 8. Definicja kata nieporzadku (DA).

Rozwiazanie modelu pseudospinowego zaproponowane
powyzej jest calkiem ogolne gdyz zawiera wszystkie stopnie
swobody nieuporzadkowanych czasteczek D. W przypadku
materialdw zaproponowanych uprzednio, model ten upraszcza si¢
znacznie gdyz redukuje si¢ do jednego stopnia swobody. Jak
zaznaczono wczesniej wspolng cecha zarowno A - TCNB, N - TCNB

jak i F - TCNB jest nieuporzadkowanie podsieci donora (A, N, F)
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wzgledem osi obrotu prostopadlej do czasteczki. Zapostulujmy nasza

zmienna nieporzadku @ jako reorientacje w prawo i w lewo

czasteczki donora wiasnie wokoét osi.normalnej do jej ptaszczyzny i
nazwijmy ja katem nieporzadku DA. Kat nieporzadku jest wiec w
przypadku tych trzech krysztatow dodatkowym aktywnym stopniem
swobody, ktory jest miarg "rozszczepienia" czasteczki na Srednim
wezle.

Rysunek (rys. 8) definiuje kat nieporzadku wzgledem
potozenia Sredniego na wezle na przyktadzie czasteczki antracenu w
kompleksie A - TCNB. Trzeba podkreslié, ze DA jest miarg
reorientacji czasteczki wzgledem jej orientacji sredniej R, (ktora nie
koniecznie musi wynosi¢ zero). Orientacje obu czesci sktadowych
superczasteczki s odpowiednio (Rx, Ry, Rz + DA) i (Rx, Ry, Rz -

DA), natomiast polozenia sg takie same.
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8. Przyklady zastosowania modelowania nieporzadku.

8.1 Krysztaly F-TCNB

Pierwsze proby modelowania nieporzadku w krysztale F-TCNB
polegaty na minimalizacji energii krysztatu, w ktérym pseudolosowo
umieszczano na kazdym wezle czasteczke fenantrenu w jednej z
mozliwych orientacji. Pseudolosowos$¢ polegata na wymuszeniu
znane] z eksperymentu roéwnej proporcji czasteczek w jednym i
drugim potozeniu. Obliczenia miaty pokaza¢ dla jakiego rozktadu

czasteczek energia jest najnizsza.

Rysunek 9. Superczasteczka bedaca zlozeniem dwdch czasteczek
fenantrenu (F) uzyta do modelowania nieporzadku w
krysztale F-TCNB.

Po wykonaniu szeregu serii obliczen wyniki wskazywaty, ze
najnizszg energi¢ otrzymuje si¢ dla struktury regularnej, w ktorej na
kolejnych weztach czasteczki sa przeciwnie zorientowane. Taki
wynik nie byl oczywiscie zgodny z eksperymentem rentgenowskim

gdyz oznaczal podwojenie komoérki elementarnej, ktorego w
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eksperymencie nie obserwuje sig.

Tabela 2 Poréwnanie wynikéw obliczen z danymi eksperymentalnymi48
dla krysztatu F-TCNB.

parametr eksp. | oblicz.
a 9.413 9.468
b 13.104 | 13.271
s 7.260 | 7.217
B 93.06 | 85.13
¢(F) 0 0
¢(F) 20.86 | 20.48
¢F) 0 0
¢ (TCNB) 0 0
¢ (TCNB) 17.86 18.82
¢, (TCNB) 0 0
Elkcal/mol] - -39.17

W nastepnym etapie wprowadzono model nieporzadku w tym
krysztale postulujac, ze na kazdym we¢zle w obrgbie podsieci fenan-
trenu mamy do czynienia z superczasteczka zawierajaca dwie
czasteczki fenantrenu w dwodch mozliwych orientacjach, stano-
wigcych dwa stany pseudospinowe rysunek (rys.9). Utworzona
superczasteczka spetnia wymodg centrosymetrycznosci narzucony,
przez eksperyment rentgenowski. Wyniki minimalizacji dla takiego
krysztatu prezentuje tabela (tab.2). Wida¢, ze parametry komorki

elementarnej i orientacje czasteczki sa w dobrej zgodnosci z
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eksperymentalnymi.

8.2 Krysztaly A-TCNB

Dla krysztatu A-TCNB przeprowadzono minimalizacj¢ energii
zaréwno w fazie HT jak i LT przy uzyciu potencjatu atom - atom
typu "6-exp" z parametrami Williamsas. Potencjat tego typu ma bez-
wzgledne minimum dla fazy LT, stad obliczenia dla fazy HT przepro-
wadzono narzucajac warunki symetrii fazy HT.

Tabela 3 Poréwnanie wynikéw obliczen z danymi eksperymentalnymi46 dla
krysztatu A-TCNB.

LT HT
eksp. obl. eksp. obl.
a 9.457 9.701 9.519 9.457
b 12.689 | 12.900 | 12.730 | 13.027
C 7.325 7.152 7.384 7.418
B 92.98 84.44 92.57 90.64
0. (A) 3.37 8.9 0 0
0J(A) 19.34 16.7 19:93 19.7
PLA) 8.34 15.1 0 0
¢ (TCNB) -1.40 1.0 0 0
¢ (TCNB) 17.48 16.8 17.90 18.5
¢0,(TCNB) 1.47 0.2 0 0
E[kcal/mol] - -40.28 - -38.11

Orientacje obu podsieci, kat obrotu wokot osi diugie;

czasteczek (Ry), oraz wokét osi normalnej do czasteczek (Ry)
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przyjeto zero. Minimalizacja odbywata si¢ po wszystkich pozostatych
stopniach swobody. Zestawienie wynikéw obliczen prezentuje tabela
(tab.3). Przedstawione wyniki wskazuja na dobra zgodno$é
parametréw  komorki  elementarnej z  eksperymentalnymi.
Przeprowadzono réwniez minimalizacj¢  energii  sieci z
uwzglednieniem oddzialywan kulombowskich z tadunkami na
atomach, wyliczonymi metoda INDO¢. Wyniki tych obliczen
wskazuja, ze wktad energii elektrostatycznej do energii sieci jest
maty (okoto 2%) i nie zmienia w sposob istotny minimalizacji. W

dalszych obliczeniach nie uwzglgdniano energii elektrostatyczne;.

0.5 T

Kat obrotu [stopnie]

Rysunek 10. Potencjal jednoczastkowy dla obrotow czasteczki antracenu wokot
jej trzech osi w krysztale A-TCNB.

Wyniki eksperymentéw w krysztale A-TCNB wskazuja, ze jest
ten krysztat przyktadem, w ktérym przemiana ma charakter ciaghy¢’.
Ponadto wyniki eksperymentalne wskazujaq réwniez, ze odpowie-

dzialnym za przemian¢ fazowgq jest tylko jeden, aktywny stopien

47



swobody - reorientacja czasteczki antracenu wokét osi normalnejss.
Ro6znica pomigdzy strukturg tego krysztatu w obu fazach jest bowiem
najistotniejsza wlasnie w tym stopniu swobody. Krysztal ten jest wigc
dobrym przyktadem, w ktérym mozna rozszerzy¢ obliczenia
dynamiki harmonicznej poprzez zastosowannie opisanego Wwyzej
modelu podatnosci uogolnione;.

W przypadku A-TCNB wskazniki 1, j we wzorze na
jednoczastkowa podatno$¢ statyczna (26) dotycza jedynie rota-
cyjnych stopni swobody. Funkcja V(x;) w naszym przypadku jest
lokalnym potencjatem jednoczastkowym dla obrotu czasteczki
antracenu wokot jej trzech osi.

Potencjat ten wyliczano jako sumg¢ potencjaléw oddziatywan
czasteczki antracenu w roznych orientacjach z czasteczkami
bedacymi w niezmiennym otoczeniu. Wykres takiego potencjatu
przedstawia rysunek (rys.10). Mozna pokaza¢, ze w przypadku kiedy
funkcja wazaca V(x,) jest harmoniczna wowczas statyczna podatnosé
jednoczastkowa 7% nie jest funkcja temperatury bowiem czion
temperaturowy - B skraca si¢ w wyniku analitycznego policzenia

catek. Niech V(x) = ai-xi2 wowczas:

Zl.:]zexp(—ﬁoai-xiz)-dxz( T ) (43)

—o00

gdy a, > 0. Zwr6émy teraz uwage na catke we wzorze (28). Przy
catkowaniu poprzez cala dziedzing rzeczywista, catka ma wartos¢

zerowa, gdy funkcja podcatkowa jest funkcja antysymetryczna.
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Wobec powyzszego, w przypadku liczenia srednich typu <u;> (wzér
(27)), gdy funkcja f(x;) = u; jest antysymetryczna, otrzymujemy
wynik zerowy co zgodne jest z intuicja, bo Srednie wychylenie
oscylatora harmonicznego jest réwne zero. Podobnie jest, gdy
liczymy $rednie mieszane <ui-uj> dla 1 # j. Wida¢ wigc, ze macierz
podatnosci statycznej, bedaca dla rotacyjnych stopni swobody
tensorem 3x3, bedzie miala niezerowe wartosci dla elementow

przekatniowych. Woweczas dla f(x;) = xl-2 mamy:

oo

<x,.2> =Z" - Jxlz exp(—B-a,-x)-dx =

Po podstawieniu do wzoru (26) otrzymujemy:

X (T)=B-(u) =

1
— 50
o (50)

Uwzglednienie anharmonicznego potencjalu sprawia, iz
niemozliwe staje si¢ znalezienie analitycznego rozwigzania tych
catek. Nalezy wobec tego stosowa¢ metody numeryczne catkowania
tym bardziej, ze posta¢ potencjalu V(x;) nie jest funkcyjna tylko
numeryczna (znamy wartosci potencjalu dla okreslonych katow

orientacji czasteczki).
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Przy analizowaniu wyrazenia na statyczna podatno$¢ jedno-

czastkowa warto zwroci¢ uwage na dwie trudnosci w trakcie jej

obliczania. Wraz ze wzrostem temperatury rosnie udziat czynnika

eksponencjalnego dla wigkszych wychylen. Ta wtasno$¢ zmusza do

uwzgledniania coraz wigkszych amplitud, co jest w sprzecznosci z

zatozeniem matych drgan poczynionym w tym przyblizeniu. Drugim

waznym elementem, ktéry wydatnie wplywa na jako$¢ obliczen jest

wktad anharmoniczny do potencjalu jednoczastkowego. Gdy wkiad

ten jest maty, wowczas zaleznos$¢ temperaturowa podatnosci jest

staba, bliska statej (réwnanie (50)).

Czestosé [em™1]

120

80

EeN
o

Temperatura [K]

Rysunek 11. Zaleznosci temperaturowe czg¢stosci rotacyjnych drgan fononowych

w krysztale A-TCNB w przyblizeniu podatno$ci uogélnionych.

Wyliczona w podany powyzej sposob podatnos¢ zostata zasto-
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sowana do zbudowania efektywnych stalych sitowych, ktére uwzgle-
dniajg wlasnosci jednoczastkowego potencjalu. Poniewaz podatnosé
w tym przyblizeniu jest zalezna od temperatury wigc i wyliczone z
rownania (23) czestosci drgan sa zalezane od temperatury.
Przeprowadzono obliczenia czgstosci drgan dla wektora falowego
q = M (granica strefy Brillouina) w funkcji temperatury. Wyniki tych
obliczen dla drgan, ktére zwigzane s z rotacyjnymi stopniami
swobody przedstawiono na rysunku (rys.11).

Jak wida¢ z rysunku interesujacym wynikiem jest "migkkos¢"
najnizszego drgania. Jego czgsto$¢ rosnie wraz ze wzrostem
temperatury az staje si¢ ona dodatnia. Ponadto, wartosci wektora
wlasnego tego drgania wskazuja, iz jest to drganie zwigzane z
reorientacja czasteczki antracenu wokol osi prostopadiej do jej
ptaszczyzny. Jest to zgodne z, wynikajaca z eksperymentu, sugestia,
ze aktywnym, odpowiedzialnym za przemian¢ fazowa, jest wiasnie
ten stopien swobody. Nie do przyjecia jest jednak — wartos$é
temperatury, przy ktorej to nastgpuje (ok. 1500K). Tak duze
odstepstwo wyliczonej od eksperymentalnej temperatury stabilnosci
fazy wysokotemperaturowej (czgsto§¢ ujemna oznacza brak
stabilnos$ci) wynika z znikomego wktadu cztonu anharmonicznego w
poréwnaniu z wkiadem harmonicznym (o blisko trzy rzedy). Tak
duza dysproporcja pomigdzy tymi cztonami, a w jej efekcie bigdne
oszacowanie temperatury przemiany fazowej, wskazuje na
niedostatki zastosowanego modelu potencjatu, badz jego parametrow.

W nastgpnym kroku przeprowadzono obliczenia minimalizacji
energii sieci modelujac nieporzadek w podsieci antracenu. Obliczenia

polegaly na minimalizacji energii dla réznych wartosci kata
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nieporzadku DA. Ry$unek (rys.12) przedstawia wyniki tych obliczen.
Ciagta krzywa przedsfawia minimalng energi¢ sieci. Przerywana
cze$¢ krzywej HT jest wynikiem wymuszonej w obliczeniach
symetrii HT dla matych katow DA. Przerywana cze$¢ krzywej LT
jest wynikiem ekstrapolacji, gdyz nie mozna wymusi¢ na uktadzie
nizszej symetrii dla duzych katow DA. Energia sieci ro$nie
monotonicznie wraz ze wzrostem kata rozszczepienia czasteczki
antracenu az do pewnej krytycznej wartosci DA = 7.2 . Powyzej tej
wartodci kata nieporzadku, pomimo utrzymywania wyjSciowych
parametréw jak dla fazy niskosymetrycznej, symetria spontanicznie
staje si¢ wyzsza (faza HT) co oznacza, ze krzywa energii dla fazy HT
jest nizej energetyczna, niz krzywa dla fazy LT. Uwidacznia to fakt

zatamania si¢ narysowanej linig ciagla funkcji na rysunku (rys.11).

Energia [kcal/mol]
L.

PR ST T S SR TR S S U S SR S S S S S St

0 5 10 15 20
Kat nieporzadku [stopnie]

Rysunek 12. Zaleznos$¢ energii od kata nieporzadku dla krysztatu
A-TCNB.

Warto$¢ krytycznego kata nieporzadku jest w dobrej zgodnosci
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z eksperymentalnym katem amplitudy libracji czasteczki antracenu w
fazie HT. Powyzej krytycznego kata DA katy obrotu czasteczki
wokot osi x oraz z s réwne zero. Ewolucje orientacji wokoét tych
dwoch osi wraz ze wzrostem kata nieporzadku przedstawiono na
rysunku (rys.13). Poniewaz przemiana fazowa uwidacznia si¢
najwyrazniej w tych wiasnie dwdch orientacjach, interesujacym
wydawato si¢ przesledzenie ewolucji powierzchni energetycznej w
funkcji obu orientacji.

Rysunki (rys.14) przedstawiajg linie ekwipotencjalne uzyskane
z obliczen, w ktorych obie orientacje jak rowniez kat nieporzadku
traktowano jako parametry a minimalizacja energii odbywata si¢ po

pozostatych parametrach.

20 5

D WO K O X

Kat nieporzadku [stopnie]

Rysunek 13. Zaleznos¢ orientacji czasteczki antracenu od kata nieporzadku
dla krysztalu A-TCNB.

Wraz ze wzrostem kata nieporzadku powierzchnia, w ktérej dwa
minima odpowiadaja warto$ciom obu katow w fazie LT dla obu

domen podsieci antracenu staje si¢ coraz bardziej plaska lecz
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potozenia minimOw zmieniajq si¢ (oba katy orientacji malejq dla
rosnacych wartos$ci kata nieporzadku (rys.13)). Przy DA = 7.2
powierzchnia energetyczna staje si¢ calkiem ptaska w przekroju
wzdtuz doliny o najnizszej energii, a nastgpnie, przy dalszym
wzroscie kata nieporzadku wyksztalca si¢ centralne minimum

odpowiadajace orientacji w fazie HT.
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Rysunek 14. Linie ekwipotencjalne dla wybranych wartoéci kata nieporzadku dla
krysztalu A-TCNB (0§ pozioma - kat obrotu wokét z, pionowa - wokét x).

Czasteczki w fazie LT nie mogg pokonac bariery energetycznej

pomiedzy oboma minimami lecz wraz ze wzrostem kata pomigdzy
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oboma czeéciami superczasteczki bariera ta staje si¢ coraz mniejsza
az w koncu pojawia si¢ minimum energetyczne dla Ry =01 R, =0,
ktore stabilizuje orientacj¢ fazy HT.

Faktem, na ktory warto zwroci¢ uwage, jest istnienie dwdéch
miniméow w fazie LT na ptaszczyznie Rx 1 R, , ktorych nie
zaobserwowano wczesniej analizujac energi¢ w funkcji tylko jednej
orientacji - Ry, ; przekr6] plaszczyzna Rx = 0 ma tylko jedno
minimum dla R, = 0. Na podstawie tych wynikéw mozna postulowac
dynamiczny charakter nieporzadku w krysztale A-TCNB a przemiang
fazowgq okresli¢ jako ciagla.

Tabela 4 Poréwnanie wynikow obliczonych czgstosci fononowych (1 - bez
modelu nieporzadku, 2- z modelem nieporzadku) z danymi

eksperymentalnymi®® dla krysztalu A-TCNB w fazie HT.

eksp. (q=0) | 1(q=0) | 2(q=0) | 1(g=M) | 2(q=M)
- 0 Au 0 Au 124.7 Bg 13.3 Bg

- 0 Bu 0 Bu i12.8 Bu | 24.0 Au

- 0 Bu 0 Bu 4.7 Bg 349 Ag
23.6 19.3 Bg 24.7 Bg 38.0 Ag 43.6 Bu
- 334 Au | 352 Au 503 Bu | 48.2 Au

- 55.8 Bu 56.2 Bu 56.3 Bg 54.3 Bg
75.2 59.6 Ag | 65.1 Ag 59.1 Au 64.9 Ag
64.4 63.0 Bg 62.1 Bg 61.9 Bu 70.2 Bu
74.1 78.1 Bg 73.4 Bg 66.8 Au 76.3 Bg
103.6 100.3 Ag | 101.1 Ag | 98.7 Ag 82.4 Bg
- 116.0 Bu | 113.5Bu | 107.2Bg | 101.8 Bu
120.2 136.1 Bg | 145.1 Bg | 119.8 Bu | 110.8 Bu
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Przeprowadzone obliczenia dynamiki fononowej dla fazy HT
przy uzyciu oryginalnego programu dla tego krysztalu zaré6wno w
przyblizeniu harmonicznym?™ jak i w przypadku wprowadzenia
modelu nieporzadku wskazuja na dobrag zgodnosc czegstos"ci i
wektorow wiasnych z doswiadczeniem co przedstawia tabela (tab.4).
Ponadto dzieki zamodelowaniu nieporzadku drgania dla wektora
falowego q=M, ktére w przypadku harmonicznym miaty czg¢stosci
urojone (z uwagi na niestabilno$¢ struktury), staja si¢ drganiami o
czestosciach rzeczywistych. Z powyzszej prezentacji wida¢, ze kat
nieporzadku jest bardzo czulym miernikiem przemiany fazowej 1
moze by¢ w pierwszym przyblizeniu jej parametrem. Zgodnie z
prostym rozumowaniem termodynamiki statystycznej ~mozna
traktowa¢ obie funkcje energetyczne na rysunku (rys.12) jako
kontinuum stanéw energetycznych dla kazdego poziomu z osobna i

policzy¢ ich sumg¢ stanow jako:

Q= [P ™ao, (51)

-T

gdzie i jest wskaznikiem funkcji energii od kata nieporzadku dla fazy
LTiHT, aP= (kT)'1 ; k - statla Boltzmana, T - temperatura, oraz

energie swobodna A jako:

A =—PB-In(Q,) (52)
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ZaléZnos’c’ energii swobodnej dla obu faz w funkcji temperatury
przedstawia rysunek (rys.15).

Warto skomentowaé fakt, ze bardzo prosty model i duze
przyblizenia poczynione w obliczeniach, mimo iz nie daja przecigcia
krzywych energii swobodnych w oczekiwaﬂym zakresie temperatur,
to jednak daja jakoSciowo poprawny wynik; energia swobodna dla
fazy LT jest nizsza od energii dla fazy HT oraz fakt, ze funkcje te sa
zbiezne. Wydaje si¢, ze - podobnie jak w przyblizeniu podatnos-
ciowym - istnieje potrzeba uwzglednienia dodatkowych czynnikdw,

bez ktorych temperatura przejscia fazowego zaréwno w przyblizeniu

2.5 I T T T T

I HT
2.0 |- :

Energia swobodna [kcal/mol]

0.0 [ | 1 | 1 1

0 50 100 150 200 250 300
Temperatura [K]

Rysunek 15. Zalezno$¢ energii swobodnej od temperatury dla krysztahu
A-TCNB.

podatno$ciowym jak 1 przy modelowaniu nieporzadku jest
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nierozsadnie wysoka.

8.3 Krysztaly N-TCNB
Minimalizacja energii sieci dla krysztatu N-TCNB w fazie

niskotemperaturowej dobrze odtwarza strukturg¢ eksperymentalng w

tej fazie. W przypadku fazy wysokotemperaturowej wyniki

minimalizacji bez modelowania nieporzadku gorzej odtwarzaja

strukture eksperymentalng. Zestawienie wynikdw obliczen z danymi

eksperymentalnymi przedstawiono w tabeli (tab.5).

Tabela 5 Poréwnanie otrzymanych po minimalizacji parametréw komorki
elementarnej z danymi eksperymentalnymi
N-TCNB (1 - bez modelu nieporzadku, 2- z modelem nieporzadku).

6 dla obu faz krysztatu

Parametr LT HT
eksp. obl. eksp. 1 2
a 9.337 | 9.077 | 9.420 | 9.866 | 9.264
b 12.554| 12.694 | 12.684 | 11.842 | 12.738
6.738 | 7.010 | 6.880 | 7.028 | 6.980
B 107.4 | 106.6 | 107.46 | 111.8 | 108.2
o.(N) -7.66 | -8.2 0 0 0
o,(N) -17.19| -183 | -183 | -16.6 | -19.3
¢,(N) 18.04 | 18.7 0 0 0
¢ (TCNB) 0.13 5.5 0 0 0
o(TCNB) | -17.75| -193 | -185 | -17.7 | -19.4
¢(TCNB) 098 | -0.7 0 0 0
E[kcal/mol] - -34.46 - -32.68 | -34.09
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Najwigksze odstepstwo od parametrow eksperymentalnych
wykazuje period b sieci. Jest to zrozumiate gdy poréwnac strukture
eksperymentalng tego zwigzku w fazie HT ze strukturg jakg
uwzglednia si¢ w obliczeniach. Z warunkéw symetrii dla fazy HT
wynika, ze czasteczka naftalenu jest symetryczna wzgledem
ptaszczyzny ac za$ eksperyment wskazuje, ze mamy do czynienia z
dwoma orientacjami, ktére $rednio spetniajg ten warunek symetrii.
Jest to sytuacja podobna do tej w krysztale F-TCNB z tym, ze w
przypadku N-TCNB obie domeny réznig si¢ orientacjg wzgledem
polozenia $redniego. Zrozumiata jest wobec tego kontrakcja periodu
b w obliczeniach w stosunku do rzeczywistej struktury, w ktorej dwie
domeny powoduja "rozepchniecie" w tym wiasnie kierunku.
Modelowanie nieporzadku w tym krysztale mozna oprze¢ na tej

samej koncepcji, ktorg uzyto w przypadku krysztatu A-TCNB.

=32

Energia [kcal/mol]

0 5 10 15 20 25 30
Kat nieporzadku [stopnie]

Rysunek 16. Zaleznos¢ energii od kata nieporzadku dla krysztatu N-TCNB.

Wprowadzajac  kat nieporzadku w tej samej konwencji

przeprowadzono obliczenia statyki dla tego krysztatu, minimalizujac

59



energie sieci z katem rozszczepienia czasteczki jako parametrem.
Wykres otrzymanych rezultatéw przedstawiono na rysunku (rys.16).
Podobnie jak w przypadku A-TCNB, wraz ze wzrostem kata
nieporzadku ro$nie energia sieci az do wartosci krytycznej tego kata
DA = 9.2. Podobnie jak w przypadku A-TCNB powyzej krytycznego
kata nieporzadku symetria spontanicznie staje si¢ wyzsza (katy Ry i
R, stajg si¢ zero po minimalizacji zaréwno dla podsieci naftalenu jak
i TCNB). Znaczaca roznica jest, iz energia siecli maleje wraz z
dalszym wzrostem kata nieporzadku. Dla kata nieporzadku rownego
19.8 energia osiaga minimum. Jest to punkt stabilnosci fazy HT tego
krysztatu. Nalezy w tym miejscu podkresli¢, ze parametry komorki
elementarnej dla tego kata nieporzadku bardzo dobrze odtwarzajq
perametry eksperymentalne, w tym réwniez period b. Innym, réwnie
waznym faktem jest, ze uzyskany z obliczen kat nieporzadku dla
stabilnej fazy HT jest w idealnej niemal zgodnosci =z
ekserymentalnym katem reorientacji czasteczki naftalenu na weZle,
wynoszacym ok. 20 stopni. Przy dalszm wzroscie kata nieporzadku
energia sieci rosnie szybko i monotonicznie. Réznica wykresow
energii w funkcji kata nieporzadku dla tych dwoch krysztalow
wskazuje na jakosciowo rézny charakter nieporzadku. Na podstawie
wykresu dla N-TCNB mozna stwierdzi¢, ze po pokonaniu pewnej
bariery  energetycznej  mozliwa  jest  stabilizacja  fazy
wysokotemperaturowej, w ktérej czasteczki naftalenu sa losowo
zreorientowane w prawo i w lewo w stosunku do potozenia
$redniego. Taki nieporzadek nazwa¢ mozna statycznym’' w
przeciwienstwie do dynamicznego w A-TCNB7273. Dla wybranych

wartosci kata nieporzadku po minimalizacji sporzadzono mapy linii
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ekwipotencjalnych na plaszczyznie orientacji czasteczki naftalenu
wzgledem dwoch osi x 1 z (rys.17). Dla kata r6wnego zero (minimum
fazy LT) mamy dwa minima, ktére odpowiadaja orientacjom

czasteczek w tej fazie (rys.17a).

{
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Rysunek 20. Kontury statych energii dla wybranych wartosci kata nieporzadku
dla krysztalu N-TCNB (0$ pozioma - kat obrotu wokét z, pionowa
- wokoét x).

61



Wraz ze wzrostem kata nieporzadku minima te stajg si¢ coraz
plytsze lecz nie zmieniaja swego potozenia na ptaszczyznie RyR; w
przeciwienstwie do analogicznej ewolucji w A-TCNB. Takie
zachowanie oznacza, ze w przypadku N-TCNB wraz ze wzrostem
kata nieporzadku stale preferowana jest orientacja fazy LT. W
poblizu krytycznego kata nieporzadku zaczyna wyksztalcaé sig
minimum dla orientacji Ry = 0 i R, = 0. Minimum to odpowiada
orientacji czasteczek naftalenu w fazie wysokotemperaturowe;.

Tabela 6 Pordéwnanie wynikéw obliczonych czgstosci drgan fononowych
z danymi eksperymentalnymi’4 dla krysztatu N-TCNB (q=0).

eksp. 1 2
- 0.0 Bu 0.0 Bu
- 0.0 Bu 0.0 Bu
- 0.0 Au 0.0 Au
38.0 Bg 125.6 Bg | 39.9Bg
36.8 Ag 653 Ag | 452 A¢g
- 45.8 Au 50.0 Au
- 59.1 Bu 55.6 Bu
66.0 Bg 82.0 Bg 62.8 Bg
73.7 Bg 113.2Bg | 84.0Bg
68.7 Ag 1269 Ag | 95.8 Ag
108.4Bg | 140.6Bg | 114.8 Bg
- 129.9Bu | 119.5 Bu

Wraz z dalszym wzrostem kata rozszczepienia czasteczki

zmieniaja si¢ proporcje pomigdzy giebokoscia tych trzech minimow.

62



Centralne minimum pogtebia si¢, za$§ minima fazy niskotempera-
turowej staja si¢ coraz ptytsze. Dla krytycznego kata nieporzadku
wszystkie trzy minima sa rownej glgbokosci a bariera pomiedzy nimi
jest znikoma rysunek (rys.17b). Mamy wtedy do czynienia z prawie
dowolna reorientacjg czasteczek pomig¢dzy minimami. Jest to typowy
przyktad nieciaglego przejscia fazowego zwanego rowniez przejs-

ciem pierwszego rodzaju.
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Rysunek 18. Zalezno$¢ energii swobodnej od temperatury dla krysztalu N-TCNB.

Przy dalszym wzrodcie kata nieporzadku tendencja zmian
gleboko$ci miniméw utrzymuje si¢ stabilizujac orientacje fazy HT az
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do catkowitego zaniku bocznych miniméw. Przy kacie nieporzadku
odpowiadajacym minimum energetycznemu fazy HT mamy juz do
czynienia tylko z jednym, bardzo glebokim minimum fazy
wysokotemperaturowej rysunek (rys.17c).

Korzystajac z zaproponowanego wczesniej formalizmu
przeprowadzono réwniez obliczenia dynamiki fononowej zaréwno
bez stosowania modelu nieporzadku jak 1 z jego zastosowaniem.
Wyniki  obliczen, zestawione 2z danymi eksperymentalnymi
przedstawia tabela (tab.6). Policzono, jak w przypadku A-TCNB,
zalezno$¢ energii swobodnej dla tego krysztalu. Rezultaty tych
obliczen zaprezentowano na rysunku (rys.18).

Wykres energii swobodnej dla obu faz ma przebieg podobny
do tego jaki otrzymano dla A-TCNB. Mniejsza roznica energii
swobodnych w temperaturze T = OK sprawia jednak, ze w przypadku
tego krysztalu krzywe energii swobodnych przecinaja si¢ w rozsadne;j
temperaturze. Temperatura ta cho¢ r6zna od eksperymentalnej jest do
zaakceptowania, biorac pod uwagg prostot¢ modelu 1 poczynione
zatozenia, o ktérych mowiliSmy przy okazji A-TCNB. Rezultat ten w
poréwnaniu z otrzymanym dla A-TCNB wskazuje na bardziej
"czysty" charakter przemiany fazowe;] w N-TCNB jako przemiany
typu porzadek nieporzadek w przeciwienstwie do zlozonego
charakteru przemiany fazowej w A-TCNB, dla ktorego
uwzglednienie tylko efektow zwiazanych z nieporzadkiem dato

nienajlepsze rezultaty.

8.4 Krysztaly mieszane
Nadspodziewanie dobre wyniki, uzyskane przy modelowaniu

nieporzadku w prostych przypadkach, zachecily do zastosowania tej
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koncepcji w  sytuacjach, gdzie nieporzadek jest bardziej
skomplikowany. Krysztat mieszany antracen - fenantren - czterocyja-
nobenzen (A-F-TCNB) jest przyktadem, w ktérym mamy do czynie-
nia z trzema rodzajami nieporzadku’s. Pierwszym jest nieporzadek
orientacyjny w podsieci fenantrenu nazwany, przy okazji omawiania
krysztatu F-TCNB, statystyczno - statycznym. Drugi rodzaj niepo-
rzadku to nieporzadek dynamiczny wystgpujacy w podsieci antra-
cenu. Trzeci, to nieporzadek substytucyjny, ktérego istota polega na
zmiennym sktadzie w podsieci donora i zalezy od koncentracji x.
Istotnym rozszerzeniem przy modelowaniu nieporzadku substytu-
cyjnego jest wprowadzenie koncentracji, ktora sprawia, ze obsa-
dzenie dwdch stanéw w wykorzystywanym formalizmie pseudospi-
nowym nie jest rownocenne.

Krysztat mieszany A-F-TCNB jest zbudowany podobnie jak
trzy uprzednio omawiane zwiazki i ma izomorficzng z nimi
strukture?s. Sztywna i analogicznie zbudowana sie¢ TCNB zawiera w
swych wnekach czasteczki badz to antracenu badz fenantrenu w
$redniej ilosci x 1 1-x odpowiednio.

Krysztaly mieszane kompleksu A-F-TCNB sg bardzo intere-
sujace z punktu widzenia polimorfizmu. Jak to zaznaczono wczesnie]
krysztat A-TCNB wykazuje przemiang¢ fazowa, za$ krysztat F-TCNB
nie. Musi wiec istnie¢ pewna krytyczna koncentracja dla ktorej
przemiana fazowa w krysztale mieszanym zanika.

Stosujac model nieporzadku w tym krysztale budujemy na
kazdym wezle obsadzonym przez donor, superczasteczke’, na
zasadach opisanych uprzednio. Jest to w tym przypadku obiekt

bardzo skomplikowany, gdyz zawiera dwie czasteczki fenantrenu w
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obu mozliwych orientacjach ze wspdlczynnikiem koncentracji 1-x

oraz nieuporzadkowang czasteczke¢ antracenu w dwoch orientacjach

| scharakteryzowanych katem nieporzadku jako parametrem ze

wspotczynnikiem koncentracji x.
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Rysunek 19. Zalezno$¢ energii od kata nieporzadku i koncentracji x dla krysztatu
mieszanego A-F-TCNB.

Podobnie jak w poprzednich przypadkach

taka super-

czasteczka, cho¢ skomplikowana sprawia, ze kazdy wezel podsieci

donora jest taki sam bedac weziem

skonstruowanego krysztatu przeprowadzono obliczenia

srednim. Dla tak

statyki
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minimalizujac energi¢ sieci w funkcji dwoch parametréw. Jednym z
parametrow jest kat nieporzadku w podsieci antracenu drugim za$
koncentracja x. Obliczenia minimalizacji energii prowadzono
wprowadzajac jako wyjsSciowq struktur¢ fazy niskotemperaturowe;j -
LT tak jak w poprzednich przypadkach. Rezultaty tych obliczen
przedstawia rysunek (rys.19), na ktérym przestrzennie zaznaczono
powierzchnig¢ energii w funkcji koncentracji i1 kata nieporzadku. Linig
ciagla zaznaczono granic¢ wystgpowania fazy niskotemperaturowe;j
w tym krysztale. Z rysunku wynika, ze w miar¢ wzrostu koncentracji
fenantrenu, krytyczny kat nieporzadku, przy ktéorym nastgpuje
spontaniczna zmiana symetrii krysztalu na symetri¢ fazy HT, maleje.
Dla czystego A-TCNB kat ten wynosi okolo 7 stopni. Dla
koncentracji przekraczajacej 40% fenantrenu niezaleznie od kata
nieporzadku nizsza energi¢ otrzymuje si¢ dla symetrii fazy LT.
Oznacza to, ze przy tych koncentracjach, z punktu widzenia energii,
faza HT jest niestabilna. Wynik taki jest jakosciowo zgodny z
wynikiem eksperymentalnym w ktérym stwierdzono, iz przemiana
fazowa w kryszale mieszanym zanika je$li koncentracja fenantrenu
przekracza 25%77.

Niestabilno$¢ w czystym krysztale A-TCNB jest spowodowana
orientacyjnym sprzezeniem antyferro wewnatrz podsieci antracenu,
ktore preferuje nizsza niz C2/m (HT) symetri¢, a zatem nieporzadek.
W miare wprowadzania fenantrenu w wezlty uprzednio obsadzone
przez antracen sprzezenie to maleje a nieporzadek zmienia charakter
z dynamicznego na substytucyjny. Powoduje to obnizenie
temperatury przemiany fazowej obserwowane eksperymentalnie

(rys.20). Zalezno$¢ temperatury przemiany od koncentracji moze by¢
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opiséna przy uzyciu koncepcji "ci$nienia chemicznego"?”. Sugeruje
ona liniowa zalezno$¢ dla malej koncentracji fenantrenu, zmieniajaca
si¢. w kwadratowa dla wigkszych, az do krytycznego. Przy
krytycznym st¢zeniu sprze¢zenie wewnatrz podsieci antracenu jest
zbyt stabe by skompensowac oddziakywanie' w podsieci fenantrenu,
preferujacego symetri¢ fazy HT, co powoduje zaniknigcie przemiany

fazowe;j.

;M: 200

2

5 c2/m (HT)

2 180 B
<

k=

g L

o

g 160 |- .
5

QO

5 | P2,/a (LT)

& 140 o _

1 1 1 1 1 1 1 1 1 |

1.0 0.8 0.8 0.7

koncentracja x
Rysunek 20. Wykres fazowy dla krysztatu mieszanego A-F-TCNB75.

Przy wyzszych koncentracjach fenantrenu krysztal mieszany
jest szklem molekularnym ze $redniaq symetria C2/m. Lokalne
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naprg¢zenia, = spowodowane  przez  obecnos¢  statystycznie
nieuporzadkowanych czasteczek fenantrenu odgrywa wazng rolg w
tworzeniu szkiet krystalicznych 1 decyduje o Sredniej symetrii tego

krysztatu.

8.5 Symulacje Monte Carlo dla krysztalu azotu

Przeprowadzono symulacje Monte Carlo dla fazy o i 3 azotu w

siedmiu r6znych temperaturach.

-90 -60 -30 0 30 60 90

Rysunek 21. Rozklad orientacji czasteczek azotu w funkcji kata ¢ (faza
regularna; temperatury 25, 30, 35, 38, 40, 42 i 50K).

Dla kazdej temperatury wykonano po6t miliona krokéw dla
ustabilizowanej struktury w danej temperaturze. W kazdym kroku
rejestrowano potozenia i orientacje czasteczek. Rozklad orientacji

czasteczek w zakresie dwoch katéw uktadu cylindrycznego ¢ i ©
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prezentujg rysunki (rys.21 i 22). Z obu rysunkdéw wynika, ze dla
niskich temperatur struktura krysztalu jest uporzadkowana a
orientacje czasteczek sa zgodne z danymi eksperymentalnymi?. Wraz
ze wzrostem temperatury rozklad orientacji staje si¢ coraz bardziej

ptaski wskazujac na wzrost stopnia nieuporzadkowania.

0 30 60 90 120 150 180

Rysunek 22. Rozktad orientacji czasteczek azotu w funkcji kata 0 (faza
regularna; temperatury 25, 30, 35, 38, 40, 42 i S0K).

W temperaturze 50K krysztal wykazuje cechy catkowitego
nieuporzadkowania; prawdopodobienstwo znalezienia czasteczki jest
praktycznie takie samo dla kazdej orientacji.

Do opisu stopnia uporzadkowania stosuje si¢ parametr
porzadku®. Skonstruowano taki parametr, ktory jest miarg
odstepstwa struktury w danej temperaturze od perfekcyjne;j,

regularnej. Parametr ten ma postac:
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N
P-:%Zsin(Z(pi)-cos[Z-(ei -0,)] (53)
i=1

gdzie ¢, 1 6, sa katami orientacji i-tej czasteczki w ukladzie
biegunowym, 6, - katem orientacji pierwszej podsieci a N jest liczba
wykonanych krokéw Monte Carlo. Dla struktury idealnej parametr P
jest rowny 1, gdyz dla kazdej z czterech czasteczek w komorce
elementarnej wartos¢ iloczynu funkcji trygonometrycznych pod zna-
kiem sumy jest réwna 1. W idealnej strukturze regularnej cztery pod-

sieci maja orientacje @, =45 lub ¢, =-13516,=6, lub 6, = 6,+ 180.

—
o +—+—"t+—+—+—tt+t+t++t+t++—t+++t+t+t+t++—+——
25 30 35 40 45 50

Temperatura [K]

Rysunek 23. Zalezno$¢ parametru porzadku od temperatury (faza regularna).

Wraz z rosngcym odstepstwem od idealnej struktury tak
skonstruowany parametr porzadku maleje. Wykres zaleznosci

parametru porzadku od temperatury dla fazy o azotu przedstawiono

na rysunku (rys.23). Z rysunku wida¢, ze struktura uporzadkowana w
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niskiej temperaturze staje si¢ calkowicie nieuporzadkowana w
wysokiej temperaturze (parametr porzadku bliski jest zeru).
Przedstawione wyniki obliczen, wskazuja na dobrg zgodnosé
przeprowadzonego modelowania z eksperymentem. Jest jednak
pewna niezgodno$¢ jesli chodzi o symetri¢. Faza [ jest faza
nieuporzadkowang, heksagonalng natomiast z obliczen wynika, Ze
faza jest nieuporzadkowana ale ciggle regularna - wykres
prawdopodobienstwa wykazuje ciagle stabe maksimum dla orientacji

zgodnej z faza o. nawet przy temperaturze SOK.

-90 -60 -30 0 30 60 90

Rysunek 24. Liczba czasteczek azotu w funkcji kata ¢ (faza heksa-
gonalna; temperatury 25, 30, 35, 38, 40, 42 i 50K).

Aby uzupelni¢ modelowanie tej przemiany fazowej,
przeprowadzono dodatkowe symulacje Monte Carlo dla fazy

heksagonalnej, nieuporzadkowanej w funkcji temperatury. Tak jak w
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przypadku fazy regularnej wykonano obliczenia dla szeregu
temperatur, poczynajac od 50K, az do 25K. Wyniki rozktadu
orientacji dla obu katéw, analogicznie jak dla fazy regularnej
prezentujg rysunki (rys.24 1 25). Z rysunkéw tych wynika, ze
catkowicie nieuporzadkowana struktura staje si¢ uporzadkowana w
niskich temperaturach. Widoczny jest efekt "przechtodzenia" fazy
nieuporzadkowanej polegajacy na tym, ze temperatura przy ktdrej
nastepuje uporzadkowanie jest nizsza niz temperatura, w ktorej faza

regularna (o) staje si¢ nieuporzadkowana.

0 30 60 90 120 150 180

Rysunek 28. Liczba czasteczek azotu w funkcji kata 6 (faza heksa-
gonalna; temperatury 25, 30, 35, 38, 40, 42 i 50K).

Podobnie jak uprzednio, zbudowano parametr porzadku, ktory

teraz ma postac:

1 N
P:—]VECOS[Z((P,- —¢)] (54)
i=1
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Nalezy zaznaczy¢, ze kat orientacji ¢, jest katem orientacji
czasteczki i-tej po zrzutowaniu jej na pierwszg podsie¢ zgodnie z
operacjami symetrii. Zalezno$¢ tego parametru od temperatury

przedstawiono na rysunku (rys.26).

0.8 1

(
0.6 T
0.4 1

0.2 T

o +—+—+—"+—+—+t++++t++++++t+++tttt
25 30 35 40 45 50

Temperatura [K]

Rysunek 26. Zaleznos$¢ parametru porzadku od temperatury (faza heksagonalna).

Nalezy zaznaczy¢, ze cho¢ w wyniku obnizenia temperatury
otrzymalismy faz¢ uporzadkowang to ma ona symetri¢ fazy
heksagonalnej. Na obecnym etapie nie mozna rozstrzygnaé, ktéra
struktura w danej temperaturze jest stabilna a ktéra metastabilna.
Istnieje potrzeba policzenia zaleznosci energii swobodnych obu faz
od temperatury co wymaga wykonania dalszych obliczen. Prace nad

tym problemem sg kontynuowane.
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9. Podsumowanie

Przedstawiony w pracy sposob podejscia do krysztatow
charakteryzujacych si¢ nieporzadkiem daje mozliwos¢ lepszego
zrozumienia ich natury. Zilustrowane przyktadami modelowanie w
oparciu o model pseudospinowy wykazuje na dobra zgodnos¢
jakosciowa z eksperymentem. Pozwala rowniez na poznanie
charakteru przemian fazowych w prezentowanych uktadach.
Proponowany sposdb modelowania jest cennym narze¢dziem
wspomagajacym dla eksperymentatorow wowczas, gdy istniejq
watpliwosci w interpretacji wynikow eksperymentalnych. Oczywiste
jest, ze iloSciowa zgodnos¢ modelowanych wielkosci z eksperymen-
talnymi zalezy od jakosci modelu oddziatywan. Gdy model
oddziatywan dobrze odtwarza energie¢ realnego krysztalu wowczas
zgodnos$¢ ilosciowa z eksperymentem jest dobra. Pokazano na
przyktadzie A-TCNB jak istotne jest prawidlowe odtworzenie
lokalnego potencjatu i jego anharmoniczno$ci. Whasnie w przypadku
tego krysztatu, ktéry wydawal si¢ modelowym do opisu nieporzadku
orientacyjnego i byt od dawna studiowany zaréwno teoretycznie jak i
eksperymentalnie, istotng przeszkoda w uzyskaniu prawidtowych
oszacowan jest bardzo staba anharmoniczno$¢ potencjatu lokalnego
co jest cecha modelu oddziatywan. Przedstawiona idea modelowania
nieporzadku jest prosta 1 charakteryzuje si¢ jasng interpretacja
fizyczng uzytych parametréw. Koncepcja superczasteczki, zgodna z
obrazem eksperymentalnym, pozwala traktowa¢ krysztat jako
uporzadkowany na poziomie mikroskopowym. Zastapiono przy tym
statystycznie nieuporzadkowany wezet przez wynikajaca z
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eksperymentu $rednig statystyczna wezlta. Takie modelowanie daje
dobre rezultaty nawet dla ztozonych uktadéw molekularnych takich
jak krysztaly mieszane. Zalety powyzszego modelowania widaé¢ w
uktadach, w ktérych mamy do czynienia z nieporzadkiem opisanym
mata liczbg standéw orientacyjnych (rotacyjnych). W przypadkach,
gdy nieporzadek charakteryzuje si¢ duza liczbg takich standw nalezy
stosowa¢ symulacje na przyktad typu Monte Carlo. Zaletq metod
symulacyjnych jest generowanie mikroskopowych stanéw uktadu,
ktore sa bliskie krysztatowi rzeczywistemu. Sumujgc, proponowana
koncepcja modelowania nieporzadku w oparciu o ide¢ pseudospinu
jest prostym i wygodnym narz¢dziem poznawczym w krysztatach,
ktére z jednej strony nie moga by¢ traktowane jako catkowicie
uporzadkowane, z drugiej zas, ze wzgledu na duze czasteczki i
skomplikowane modele oddziatywan, sa zbyt wymagajace dla

zaawansowanych metod symulacyjnych.
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10. Uzupelnienia

10.1 Definicja ukladéw wspolrzednych.

W krysztale molekularnym mamy zwykle do czynienia z
kilkoma kategoriami organizacji przestrzennej, ktdre zaleza od natury
oddziatywan miedzyatomowych. Atomy sa pogrupowane w
czasteczki, ktére traktuje si¢ czgsto jako obiekty sztywne, gdy
oddziatywania wewnatrzczasteczkowe sa znacznie silniejsze od
miedzyczasteczkowych. Jest to pierwszy stopien zorganizowania. Z
uwagi na fakt sztywnosci czasteczki wygodnie jest okreslaé
potozenia wchodzacych w jej sktad atoméw w uktadzie
wspbirzednych zwiazanym z jej Srodkiem cigzkosci. Osie takiego

uktadu, nazwijmy go LMN, sa wyznaczone przez osie gldwne

Rysunek 1. Definicja ukfadu wspéirzednych LMN, zwiazanego z
momentami bezwladnosci czasteczki.

momentu bezwladno$ci czasteczki: 0§ L zgodnie z kierunkiem
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najmniejszego momentu bezwladnosci, o§ N w kierunku
najwigkszego (rys. 1). lInnym stopniem organizacji w krysztale jest
rozktad przestrzenny czasteczek w komdrce prymitywnej, ktéra
stanowi rowniez kategori¢ umowna 1 okre$la najmniejsza
niepowtarzalng objgtos¢ krysztalu, z ktérej poprzez operacje
translacji mozna zbudowa¢ caly krysztal. Potozenia $rodkéw
ciezkosci 1 orientacje czasteczek okresla si¢ zwyczajowo w uktadzie

krystalograficznym abc

X

Rysunek 2. Definicja krystalograficznego (abc) i zortogonalizowanego (XYZ)
ukfadu wspétrzednych.
(rys. 2) lub zortogonalizowanym prostokatnym ukladzie
wspoétrzednych XYZ. Uktad krystalograficzny definiuje si¢ tak, aby
jego osie byly zgodne =z kierunkami trzech periodéw
charakteryzujacych komoérke elementarng krysztalu a katy pomigdzy

osiami tego ukltadu odpowiadaly katom pomigdzy krawedziami
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komoérki elementarnej. Ponadto przyjmuje si¢ w ukladzie
krystalograficznym znormalizowanie jednostek na jego osiach do
dtugosci odpowiadajacych im periodéw. Uklad XYZ jest
przetransformowanym uktadem krystalograficznym, w ktérym osie sg
wzajemnie prostopadte a jednostki na wszystkich osiach sq wyrazane
w typowych jednostkach dtugosci. Jezeli wspdtrzedne atomu pg, pp,
pc (odpowiednie wspotrz¢dne utamkowe wzdtuz periodéw a, b, c)
oznaczymy przez wektor P, a katy pomigdzy osiamibic,aic,ai
b odpowiednio przez o, B3, Yy to operacja transformacji z tego uktadu

do uktadu wspotrzednych prostokatnych bedzie miata nastepujaca

postacso:
pxrz:M'@
gdzie
a b-cosy c-cosf3
ROT=|0 b-siny c-&

0 0 c-+/sin’ B—E&?

_coso.—cosf3-cosy

g

sin‘’y

Wyboér uktadu XYZ nie jest jednoznaczny cho¢ w niektérych
przypadkach istnieja reguty na sposoéb ortogonalizacji. W uktadzie
jednoskosnym, w ktérym tylko jeden kat pomigdzy osiami a 1 ¢ jest
rozny od prostego ortogonalizuje si¢ o$ a lub c¢. W takim uktadzie

krystalograficznym operacja transformacji do uktadu wspéirzednych
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prostokatnych bedzie miata nastgpujaca postaé:

px = pa-a + pc-csin(B),
Py =pbb,
pz = pcc-cos(B),

przy ortogonalizacji osi ¢ lub

px = Pa -a-cos(P),
Py =pbb,
Pz = pc-C + pa-a -sin(P)

przy ortogonalizacji osi a. Ortogonalny uktad wspdtrzednych, cho¢ z
fizycznego punktu widzenia mniej uzasadniony, bowiem
krystalograficzny wygodnie opisuje polozenia czasteczek w jego
weztach, jest jednak przydatny w szczegdlnosci do liczenia

odlegtosci miedzy atomami réznych czasteczek.
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10.2 Struktury zwigzkow cytowanych w pracy.
Ponizej] zamieszczono schematyczne struktury zwigzkow
tworzacych krysztaty, w ktérych modelowano nieporzadek orien-

tacyjny (antracenu, naftalenu, fenantrenu 1 czterocyjanobenzenu).

Rysunek 3. Struktura czasteczki naftalenu (N)

Czasteczke naftalenu o wzorze chemicznym CioHg tworza

dwa pierscienie aromatyczne (rys. 3).

Rysunek 4. Struktura czasteczki antracenu (A)

Czasteczka antracenu jest nastgpnym z kolei wegglowodorem o
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wzorze chemicznym C14H1( 1 sklada si¢ z trzech pierscieni (rys. 4).

Rysunek 5. Struktura czasteczki fenantrenu (F)
Fenantren, ktérego wzdr chemiczny jest taki sam jak antracenu

tez sktada si¢ z trzech pierscieni ale inaczej potaczonych jak

przedstawiono to na rysunku 5. Rysunek 6 przedstawia czasteczke

Rysunek 6. Struktura czasteczki czterocyjanobenzenu (TCNB)

czterocyjanobenzenu (CgH2(CN)4)
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10.3 Schemat blokowy programu
Program HARMON jest pakietem podprograméw napisanych

w fortranie. Sktada si¢ z dwoch czgsci.

HARMON > srop

INPUT PEXIT
START FILES
GTINP |— FILES
I
wro| | MINUIT
MIDATA

P 1
COMMAND

| |

GEOM TAUROS MIGRAD INIDOG
il P Z DOGEOM
QLTSUM / § LATSMR
AAPOT e
BVKFRC FRCCON DYNMAT GCHEIG PHONON

Rysunek 7. Schemat blokowy programu HARMON.

Pierszg cze$¢ stanowig podprogramy zgrupowane w pakiecie CERN?
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stuzace do minimalizacji struktury krysztatu. Druga czes$¢ to
modyfikacja oryginalnego programu napisanego przez T. Lutego i A.
van der Avoirda do obliczania dynamiki krysztatéw w przyblizeniu
harmonicznym. Modyfikacja dokonana przez autora pracy polegata
na dostosowaniu programéw do modelowania nieporzadku. Cze$¢
podprogramow ulegta przy tym zmianie (np. ROTAT, MITENS,
MINV, ORTHOG, FRCCON), niektére s zupeinie nowe (np.
SCANR, LATSMR, DOGEOM, INITDOG, PRTDOG).

Idea programu polega na tym, ze zbidr danych zawiera oprécz
danych liczbowych przepis na dziatanie programu w konkretnym
przebiegu np. jak ma przebiega¢ minimalizacja, jak liczy¢ dynamike,
czy 1 jak uwzglednia¢ tadunki elektrostatyczne. Funkcje te sa
kontrolowane przez wywotania podprogramu sterujacego (FCN).
Opis parametréw tego podprogramu przedstawiono na ponizszym

wydruku:

C FCN CALLS:
1. INPUT DATA
2. CALCULATE LATTICE ENERGY
3. NOT IMPLEMENTED
4. CALCULATE LATTICE ENERGY (AS 2.)
6. N.M. LATTICE DYNAMICS CALCULATION
N CONTROLS FORCE CONSTANTS PROCESSING
NEGATIVE N TURNS OFF PRINTING OF FRC'S
6. 0. CALCULATE FORCE CONSTANTS
6. 1. AS 0. AND WRITE FORCE CONSTANTS TO FILE
in binary format
6. 3. AS 0. AND WRITE FORCE CONSTANTS TO FILE
in ASCII format
6. 2. READ FORCE CONSTANTS FROM FILE

QO O a0 a0 a0 aaaaaqaaqaaqaaqaan

in binary format
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6. 4. READ FORCE CONSTANTS FROM FILE
in ASCII format
M CONTROLS PHONON CALCULATION
6. N. 1. DO STANDARD OLD PHONON CALCULATION
6. N.2. CALCULATE PHONON DENSITY OF STATES FUNCTION
6. N.3. PREPARE DATA FOR ELASTIC CONSTANT CALCULATION
(NOT IMPLEMENTED)
7. PRINT PARTITIONING OF THE LATTICE ENERGY
8. N. PRINTS MOLECULAR AND ATOM COORDINATES,
N IS NO. OF MOLECULES TO PRINT
9. N. PUNCH THE FRACTIONAL ATOM COORDINATES OF

a a aaaaaaaqaaqaaqa

MOLECULEN
ON UNIT 11
10. N.X1. X2. XD. SCAN A PARAMETER FROM X1 TO X2 BY XD
11. M. N. X1. X2. XD. SCAN ROTATION ANGLE N=1,2,3 OF MOLECULE M
12. ivar imol nat mir Enable disordered molecule model
| I | 1. reflectiny
| | | 2. reflectinyand x
| I no. of atoms in non-disordered molecule
| molecule type (coordinate set no.)
no. of external Minuit variable
14. Turn on logging of fcn 2. and 4. function calls on unit 14

15. Turn on Ewald summation

O O O a aaaaqa a0

Ponizej zamieszczono spis nazw wazniejszych

podprogramow z krotkim ich opisem:

INPUT - czyta dane wyjsciowe

INPPOT - czyta dane dotyczace potencjatu

GEOM - oblicza potozenia i orientacje czasteczek i atoméw
SCAN - oblicza potencjaly jednoczastkowe

QLTSUM - sumuje energi¢ krysztatu

AAPOT - funkcja, ktéra wylicza energi¢ pary atomow
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BVKFRC - oblicza statg silowg pary atoméw

FRCCON - oblicza state silowe

DYNMAT - obilcza macierz dynamiczng

GCHEIG - oblicza wektory 1 wartosci wlasne macierzy

PHONON - oblicza czgstosci drgan fononowych dla
zadanego wektora falowego

FILES - obstuguje wspotprace ze zbiorami danych 1 wynikow

SCANR - obilcza minimalizacj¢ w funkcji kata nieporzadku

LATSMR - oblicza energig¢ sieci krystalicznej przy
modelowaniu nieporzadku

DOGEOM - nowy GEOM dla modelowania nieporzadku

INIDOG - inicjuje modelowanie nieporzadku
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ROHLEDER Krzysztof
Modelling of disorder in molecular crystals

AThe dissertation presents a simple model to mimic orientational
disorder in molecular solids. The model is based on the concept of
split molecule, an obJject which is a superposition of two molecules
in orientation which are supposed to mimic orientational distribution.
The split molecule is characterized by a disorder angle, an extra
degree of freedom which labels disorder states and alows to calculate
free energy of the crystal., The model is simple for applications
illustrated by numerical calculations for two-component (1:1) organic
charge~transfer crystals., In the family of crystals with TCNB molee
cules, the following ones form a rigid network for donors and diffe=-
rent orientational disorder: dynamical A~TCNB, static N-TCNB, and
statistieal P-TCNB. Results of disorder modelling are in good agree-
ment with structural and Raman experiments. Dissertation presents
also results of the Monte Carlo simulations for the nitrogen erystal
and the «~P phase transitions modelling as an example of quasi-conti=-

nuous distribution of orientations.
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Analiza dokumentacyjna
£ D e i
Praca prezentuje koncepcje modelowania nieporzgdku orien-
tacyhnego, bazujgcg na pojéciu pseudospinu. Udrednienie
wezta sieci pozwala traktowaé krysztat jak uporzagdkowany
przez wprowadzenie pojecia superczgsteczki., Jest ona zo-
zeniem orientacyjnie niezrdéwnowazonych czgsteczek nieupo-
rzgdkowanych, Wprowadzony kgt nieporzgdku Jjest dodatkowym
stopniem swobody, pozwalajgcym modelowad orientacyjng
przemiane fazowg. Pokazano na przyktadach kompleksdéw A-,
N- i Ph-TCNB i krysztaidéw mieszanych przydatnos$é mebody.
Wyniki modelowania wykazujg dobrg zgodnos$é z dodwiadcze-
~ niem, Zaprezentowano wéwniez wyniki modelowania nieporzad
ku przy uzyciu metody Monte Carlo ‘dla krysztaiu azotu.
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