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Nie ma takiej przeciwnosci losu, z ktdrej nie mozna by uczyni¢
blogostawieristwa, jesli przywota sie dobor naturalny.

R.C.Lewontin, Geny, Srodowisko, i organizmy, w: Ukryte teorie nauki,
0. Sacks, J. Miller i in., wyd. ZNAK, Krakdéw 1996.

WSTEP

Koto Naukowe Sztucznej Inteligencji CJANT przy Wydzialowym Zakladzie Informa-
tyki na Wydziale Informatyki i Zarzadzania Politechniki Wroclawskiej ukonstytu-
owato si¢ w czerwcu 2000 roku, a dziatalnos$¢ rozpoczeto wiasciwie dopiero jesienia.
Podstawowym celem Kota jest wiaczanie studentéw Inzynierii Oprogramowania do
pracy naukowej w dziedzinie szeroko rozumianej Sztucznej Inteligencji. Efekty ich
prac powinny by¢ prezentowane na konferencjach naukowych, na ktérych bywaja
réwniez doswiadczeni pracownicy naukowi oraz publikowane w materialach konfe-
rencyjnych. Niezaleznie od tej formy prezentacji wynikéw planujemy wydawac cy-
klicznie (w odstgpach rocznych) Zeszyty Naukowe. Poniewaz chcemy, by kazdy nu-
mer zeszytu byl w miar¢ mozliwosci monotematyczny, to kolejne numery be¢da prze-
kazywane do druku, kiedy zgromadzimy kilka interesujacych prac o podobnej tematy-
ce. Zalezy nam, by w Zeszytach prezentowa¢ gtéwnie efekty wiasnych, oryginalnych
prac. Jednoczesnie chcemy, by wydawane Zeszyty byly uzyteczne dla naszych mtod-
szych studentdéw, badz studentéw innych kierunkdw, dlatego tez kazdy numer Zeszytu
bedzie zawieral artykul wprowadzajacy w specyfike dziedziny, ktérej dotyczy. W
szczegblnosci bedziemy publikowad tez prace przegladowe, pokazujace aktualny stan
wybranych zagadnien (zastosowan), bgdziemy stara¢ si¢ to czyni¢ dla takich dziedzin
i/lub zastosowan, ktére sa nowe, brakuje literatury polskoj¢zycznej na ten temat i —
wedlug naszej opinii — tematyka ta spotka si¢ z zainteresowaniem miodych czytelni-
kow.

Inauguracyjny Zeszyt poswigcony jest zastosowaniom algorytmow genetycznych.
Pierwszy artykul jest wprowadzeniem w dziedzing obliczen ewolucyjnych. Daje po-
glad na temat algorytmoéw ewolucyjnych, zapoznaje dokladnie z algorytmami gene-
tycznymi. Intencja edytora jest, by potencjalny czytelnik mogt zrozumieé¢ pozostate
artykuly bez koniecznosci wezesniejszego studiowania dziedziny — to wilasnie lektura
Zeszytu powinna zachgci¢ go do siggnigcia po jedng z dostepnych ksigzek.

Drugi artykut pokazuje jak mozna zastosowac algorytm genetyczny do uproszczo-
nego zadania z silnymi ograniczeniami — szukanie bezkolizyjnych potaczen zadanych
punktéw na plaszczyznie (planowanie $ciezek na ptytkach drukowanych). Autor po-
kazuje, jak duze znaczenie ma dobdr wiasciwej funkcji oceniajacej potencjalne roz-
wigzania.



Tematyce zadan z silnymi ograniczeniami poswigcony jest tez trzeci artykut. Autor
przedstawia krotki przeglad metod rozwiazywania problemow ukfadania planow (lek-
cji, egzamindw), po czym pokazuje efekty wlasnej pracy — prezentuje sposob uktada-
nia harmonogramu dyzuréw w szpitalu (dane dla rzeczywistego szpitala)
z wykorzystaniem algorytmu genetycznego.

Nastepny, czwarty artykut analizuje mozliwo$¢ wykorzystania algorytmow ewolu-
cyjnych (programowania genetycznego pofaczonego z algorytmem genetycznym) do
wydobywania wiedzy z baz danych. Zaproponowane podejscie testowane jest na spe-
cjalnie wygenerowanych testowych bazach danych, po weryfikacji podejscie to zasto-
sowane jest do baz zawierajacych dane historyczne o aktywnosci stonecznej. Zadanie
polega na przewidywaniu liczby plam na stoncu.

Bardzo praktyczne zastosowanie algorytméw genetycznych pokazane jest w pia-
tym artykule. Zadanie polega na znalezienia optymalnego (réwnomiernego) rozktadu
jazdy tramwajow we Wroctawiu. Oczywiscie, musza by¢ spetnione pewne dodatkowe
ograniczenia, np. mijanie si¢ tramwajow na pojedynczych torach. Autor wykorzystat
algorytmy genetyczne jako narzgdzie do rozwiazania tego problemu. Przetestowat
rowniez, jak zaproponowany algorytm daje sobie radg¢ z rozktadem jazdy w Poznaniu.

Autorzy kolejnych dwdch artykutdow to hobbysci, ktoérzy probowali uczyni¢ z algo-
rytmu genetycznego wielkiego kompozytora. Nie byli oni pierwsi w swoich probach,
prébowali to — z roznym skutkiem — inni zwolennicy muzyki i algorytméw genetycz-
nych. Efekty ich prac, a wlasciwie zaprojektowanego przez autoréw algorytmu gene-
tycznego, mozna tylko czgsciowo poznaé czytajac artykut szosty i siodmy. Z niekto-
rymi dzielami genetycznego kompozytora mozna zapozna¢ si¢ po zajrzeniu na strony
internetowe autoréw.

Nastepne numery Zeszytéw bgda poruszaé takie problemy jak:
Systemy faczace sieci neuronowe i algorytmy genetyczne,
Ekstrakcja regut z sieci neuronowych,

Potaczenie algorytméw genetycznych i logiki rozmytej,
Metody rozwiagzywania problemow wzorowane na naturze,
Przetwarzanie wiedzy niepewnej — zbiory przyblizone,
Metody pozyskiwania wiedzy z baz danych,

Autorzy sktadajg serdeczne podzigkowania recenzentowi, dr. inz. Arturowi Chora-
zyczewskiemu za wnikliwa recenzj¢ i wszystkie przekazane uwagi. Zostaly one wzigte
pod uwage podczas redakcji koncowej wersji artykutdw.

Halina Kwasnicka
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Streszczenie

Praca wprowadza w tematyke algorytméw ewolucyjnych. Omoéwione sg etapy stosowania al-
gorytméw genetycznych do rozwiazywania probleméw optymalizacyjnych. Prosty przyktad
utatwi zrozumienie metody. W dalszej czgsci przyblizone sg inne rodzaje algorytméw ewolu-
cyjnych — programowanie genetyczne, strategie ewolucyjne i programowanie ewolucyjne.

Wprowadzenie

Obliczenia ewolucyjne to dziat sztucznej inteligencji [12],[13],[15] — dziedziny sto-
sunkowo miodej, budzacej wiele kontrowersji. Spotykane w literaturze przedmiotu
rézne jej definicje sprowadzaja si¢ do okreslenia, ze jest to préba modelowania
aspektow ludzkiego rozumowania za pomocg komputeréw, albo proba rozwiazywania
za pomoca komputeréw takich probleméw, ktdre sa zwykle rozwiazywane przez (in-
teligentnego) cztowieka [4],[13].

Wydaje si¢ jednak, ze coraz bardziej upowszechnia si¢ rozumienie sztucznej inteli-
gencji w sposéb sformutowany przez D.B. Fogla w przedmowie do jego ksiazki [4]:
sztuczna inteligencja to zdolnos¢ systemu do dostosowania swojego dziafania tak, aby
osiagnaé zatozony cel w srodowisku, w ktorym si¢ znajduje. Inteligentne stworzenia
powstaty w wyniku ewolucji biologicznej. Obserwujac ja i modelujac mozemy uzy-
ska¢ wiele inteligentnych zachowan. Wszelkie metody symulacji ewolucji z wykorzy-
staniem komputera nosza nazwe¢ Obliczen ewolucyjnych (EC, ang. Evolutionary
Computation), natomiast algorytmy stosowane w takich symulacjach, to Algorytmy
ewolucyjne (EA, ang. Evolutionary Algorithms).

W ostatnich latach, paradygmat obliczen ewolucyjnych stat si¢ bardzo popularny.
Obserwowany jest ogromny wzrost prac na ten temat, czasopism, konferencji, ksiazek,
powstaja listy dyskusyjne, strony internetowe. Podobnie zwigksza si¢ liczba réznych
dziedzin, w ktérych znajduja zastosowanie algorytmy ewolucyjne: od naturalnych dla
nich zadan modelowania dynamiki populacji, poprzez zastosowania czysto techniczne
(np. projektowanie samolotow, gazociagu), zadania szeregowania, gry logiczne, nauki
chemiczne i fizyczne, po nauki ekonomiczne — popularny ostatnio paradygmat eko-
nomii ewolucyjnej.
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Probujac nasladowaé ewolucje biologiczna opracowano kilka algorytmoéw, rdznia-
cych si¢ sposobem reprezentacji potencjalnego rozwiazania czy tez stosowanymi ope-
ratorami genetycznymi. Wszystkie one sa stosowane jako metody optymalizacji, na-
$ladujace glowne czynniki ewolucji biologicznej, tj. selekcje¢ naturalng i reprodukcje.
Nalezy jednak pamiegtaé, ze nie daja one gwarancji znalezienia optimum globalnego,
sq uzyteczne tam, gdzie nie mozna zastosowac innej metody i gdzie wystarczy nam
znalezienie rozwigzania satysfakcjonujacego.

1. Algorytm Genetyczny

Algorytm genetyczny (GA, ang. Genetic Algorithm) to ewolucja sztucznych ,,0s0bni-
kéw”, z ktorych kazdy jest zakodowanym potencjalnym rozwiazaniem rozpatrywane-
go problemu. Osobniki te ewoluuja w sztucznym $rodowisku, poniewaz naleza do te-
go samego gatunku (koduja rozwiazanie tego samego zadania) to konkuruja o zasoby
w tym srodowisku. Podobnie jak w biologii, o szansach przezycia i wydania potom-
stwa przez sztucznych osobnikéw decyduje ,,dobdr naturalny” — im lepiej jest przy-

stosowany osobnik do danego $ro-

START dowiska, tym wigksze ma szanse
i ot o et ot e

___________ przezy¢ i wyda¢ potomstwo. Po-

Dokladnie sprecyzuj problem | wstepny! OMStWO — podobnie j.ak W naturze
Y — rézni sie od swoich rodzicow

' Sdehiniu] problen w lemmhinach GA , dzigki dzialaniu specjalnie zapro-
1 jektowanych, wzorowanych na na-

I
|
|
|
|

-t S Y------ e turze, operatoréw  genetycznych
Utworz poczatkowa populacje (mutacji i krzyzowania). Srodowi-
;A8 22y sko odzwierciedla rozwiazywane

przez algorytm genetyczny zadanie,
zatem ocena przystosowania 0sob-
\ Ocen kazdego osobnika w populacji nika jest oceng jakosci kodowanego
% przez niego rozwiazania. W ten

sposob, w kolejnych pokoleniach

populacji sztucznej osobnikéw za-

czynaja dominowa¢ coraz to lepsze
rozwiazania. Najlepszy osobnik, po
rozkodowaniu, jest szukanym roz-
wiazaniem. W ostatnich latach al-

warunek
zatrzymania?

Wybierz potencjalnych rodzicéw gorytmy genetyczne sta*y SIQ bar-
i gY dzo popularne jako narzedzie

\ optymalizacyjne [7],[14].
Zastosuj operatory genetyczne Ewolucjn: populagji jest. proce-
sem przeszukiwania przestrzeni

| potencjalnych rozwiazan. W proce-

Rysunek 1. Etapy w stosowaniu algorytmow gene- sach takich jest wazne zachowanie
tycznych — ogélny schemat
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rownowagi pomigdzy przekazywaniem najlepszych cech do nastgpnego pokolenia,
czyli wykorzystaniem dotychczas znalezionych ,obiecujacych” rozwiazan (ang.
exploiting) z jednej strony, a szerokim przeszukiwaniem przestrzeni (ang. exploring) z
drugiej strony. Algorytm genetyczny umozliwia zachowanie takiej rownowagi.

Czynnosci niezbgdne przy stosowaniu GA do rozwiazania rzeczywistego pokazane
sg na rysunku 1. Dwa pierwsze etapy stanowia etap wstgpny i musza by¢ wykonane
‘recznie’. Ich realizacja czgsto stwarza duze trudnosci, zwlaszcza osobom niedoswiad-
czonym. Pozostale etapy algorytmu wykonuje program komputerowy, mozna do tego
wykona¢ wiasna implementacj¢ GA lub tez wykorzysta¢ komercyjne, badz dostgpne
W sieci programy.

Etap wstepny to doktadne sprecyzowanie problemu. Obejmuje takie czynnosci, jak
ustalenie zakresu zmiennosci i doktadnosci rozwigzan, zdefiniowanie ograniczen, spo-
sobu kodowania, itp. Opis pojedynczego osobnika (zakodowane rozwiazanie) nazy-
wany jest chromosomem lub genotypem, wartos¢ optymalizowanej funkcji obliczona
dla danego osobnika to jego przystosowanie (fitness). Od przystosowania osobnika
zalezy liczba jego potomkdow w nastgpnym pokoleniu.

Poczatkowa populacje (chromosomy) mozna wybra¢ losowo, zwlaszcza jesli brak
jest jakichkolwiek przestanek odnosnie dobrych rozwiazan. Jako warunek zatrzymania
mozna ustalié:

e sprawdzenie, czy zadowalajace rozwiazanie istnieje w aktualnej populacji —
moze to wykona¢ automatycznie program, lub analizujacy prezentowane roz-
wiazania uzytkownik,

e zadana liczba iteracji (wykonanych pokolen),

e niemozno$¢ znalezienia lepszego rozwiazania przez zadang liczb¢ pokolen (np.
jesli minie 100 pokolen bez poprawy najlepszego rozwiazania).

Tworzenie nowego pokolenia populacji jest procesem ztozonym. Najpierw dokonuje
si¢ selekcji ‘dobrych’ rozwiazan i tworzy ich kopie (wybér rodzicéw). Podczas two-
rzenia kopii dzialaja operatory genetyczne powodujace zréznicowanie migdzy osobni-
kami, najczesciej sa to krzyzowanie i mutacja.

Niektére etapy wyjasnimy nieco szerzej i pokazemy dziatanie GA na prostym
przykladzie.

1.1 Kodowanie rozwigzan (definiowanie chromosomu)

Potencjalne rozwigzanie jest kodowane do postaci tzw. genotypu (patrz rysunek 2). W
klasycznym algorytmie genetycznym stosuje si¢ kodowanie binarne (cho¢ nie jest to
konieczne i mozna stosowac inny od binarnego alfabet). Aby zakodowaé binarnie
wartosci argumentéw optymalizowanej funkcji musimy wiedzie¢, ile nalezy przezna-
czy¢ na nie bitow. Zatdézmy, ze optymalizowana funkcja ma m zmiennych (osobnik
ma m fendéw): [x,,...,x,]. Na poziomie genotypowym osobnik opisany jest przez fan-
cuch / bitéw [011...01]. Liczba bitéw (/) wymagana do reprezentacji (kodowania) po-
jedynczego fenu x; moze by¢ wyliczona ze wzoru:
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(b-a)-10¥ <271, 1

gdzie: [a, b] — przedziat dopuszczalnych wartosci dla i-tej zmiennej (x;),
k — zalozona doktadnos¢ reprezentacji fenu (k miejsc po przecinku),
I; — liczba wymaganych bitéw, jest to najmniejsza liczba satysfakcjonujaca po-
Wyzsz3 nier6wnos¢.
Catkowita liczba bitéw / potrzebnych do reprezentacji jednego osobnika jest suma
wymaganych dlugosci dla wszystkich fenow:

=3 L. @)

Aby policzy¢ przystosowanie osobnika, nalezy zdekodowaé jego genotyp. Warto$é
zakodowanej zmiennej x; jest liczona ze wzoru:
b-a

X, =a+(010]]...]])|0‘ﬁ, 3

gdzie: (0101...1),o — dziesigtna wartos¢ tancucha binarnego reprezentujacego zmienng
x;, traktowanego ]jako liczba zapisana w kodzie dwojkowym, pozostale ozna-
czenia jak wyzej.

Przyktad reprezentacji osobnika (dla funkcji dwuwymiarowej) w prostym algorytmie
genetycznym pokazany jest na rysunku 2.

9, 9, 9, 9i1e1 ez 9irer2
[0 [ 1] Kl EREN | 1| chromosom = genotyp
L J ]
A A& odwzorowanie genotypu w fenotyp

fenotyp (argumenty optymalizowanej funkcji)

odwzorowanie fenotypu na warto$¢ funkcji przystosowawczej
Q (x,,x;) warto$¢ funkgi przystosowawczej

Rysunek 2. Reprezentacja binarna osobnika w prostym algorytmie genetycznym

1.2 Przeksztalcanie funkcji celu na funkcje przystosowania
Czasami funkcje, ktéra chcemy optymalizowa¢ musimy przeksztalci¢, aby mozna ja
byto wykorzysta¢ jako funkcj¢ przystosowania w GA. Dzieje sig tak, gdy:

e Na argumenty optymalizowanej funkcji f nalozone sa ograniczenia, tzn. ze po-

szczegdlne x; moga przyjmowaé wartosci z ograniczonego przedziatu [x™", x™
l i sV

' Czasem lepsze efekty daje kod Graya — kolejne liczby roznig si¢ od siebie wartoscia jednego bitu, np.:
0000 — 0; 0001 — 1; 0011 — 2; 0010 — 3; 0110 — 4; 0111 — 5; 0101 — 6; 0100 — 7; 1100 — 8, itd.



13

GA moze wyprodukowa¢ rozwiazanie nie mieszczace si¢ w zadanych granicach. Pro-
sta i skuteczna metoda jest nakladanie kar na przystosowanie osobnika za przekrocze-
nie dopuszczalnych wartosci. Kara moze by¢ rézna dla poszczeg6lnych x; oraz moze
zaleze¢ od stopnia przekroczenia zakresu. Posta¢ funkcji przystosowania Q wyraza sig
wzorem:

O] rxp) = S (57 nxn) =k, - Y Kara(x!) , 4)

i=l

gdzie: k; — wspolczynnik okreslony dla i-tego fenu (argumentu),

(x/,..,x, ) —zdekodowany chromosom ocenianego osobnika (0),

min max] .

Kara(x}) — kara przy wartosci x; =x nie mieszczacej si¢ w [x™",x]
Zazwyczaj:

(x! =x™)-d,, dla A

Kara(x!) =40, dla x™ <xl <x™ S))

min 0 min 0
x"™ =x)-d;, dla x™ <x

gdzie: d; jest kara za przekroczenie i-tego argumentu o jednostke.

e Algorytm genetyczny moze produkowaé niepoprawne, nie dajace si¢ ocenié roz-
wiazania.
Przykladem takiego zadania jest automatyczne projektowanie sieci neuronowych,
gdzie w trakcie ewolucji moga powstawa¢ wrgcz rozwiazania nie majace sensu, np.
sieci zawierajace neurony, ktore nie maja potaczen wejsciowych. Taka sie¢ nie jest w
stanie przetwarza¢ zadnej informacji.2 Mozliwe sa dwie strategie:
s Usuwanie niepoprawnych osobnikow z populacji i generowanie na ich miejsce
nowych
Zwykle jest to zbyt czasochtonny sposéb, niedopuszczalne osobniki moga powstawaé
stosunkowo czgsto i wtedy praca procesora w duzej mierze jest marnotrawiona.
= Naprawianie powstajqcych ,degeneratéw”
Z reguly zadania, w ktorych wystepuja te problemy sg na tyle skomplikowane, ze
oplaca si¢ (w sensie czasu pracy procesora) naprawia¢ uszkodzone rozwigzania a nie
eliminowac je i generowac na ich miejsce nowe [10],[11].

e Funkcja celu ma by¢ minimalizowana lub przyjmuje ujemne wartosci

Ewolucja ‘dazy’ do powstawania coraz to bardziej przystosowanych osobnikdw, za-
tem naturalna sktonno$¢ GA to maksymalizacja przystosowania. W wielu zadaniach
nalezy minimalizowa¢ funkcjg celu. W tej sytuacji za funkcj¢ przystosowania QO mo-

2 Oczywiscie, idealnym rozwiazaniem byloby zastosowanie takich reprezentacji rozwiazan i/lub takich
operatoréw, ktore nie moga wytwarza¢ niepoprawnych rozwiazan, np. specjalne operatory genetyczne dla
zadan sekwencyjnych (zadanie komiwojazera), reprezentacja sieci neuronowych w postaci formul gra-
matycznych [12].
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zemy przyjaé réznicg pomigdzy ustalona, dostatecznie duza, stala wartoscia MAX, a
nasza funkcjg celu fx,x;,....x,):

0- {MAX — f(xpyenXy)y dlaf(xyyesx, )< MAX

(6)
0, dla f(x,....x,) 2 MAX

Jesli funkcja celu fx) przyjmuje ujemne wartosci, to nalezy znalez¢ mozliwie mata

stata MIN, ktéra dodana do f{x) da wynik wigkszy od zera:

~ {MIN + (X500 x,), dlaf(x),....,x,)+ MIN >0 ™

0, w innych przypadkach

1.3 Selekcja osobnikéw do reprodukcji

Mozna stosowaé rozne metody selekcji, niemniej wszystkie one musza mie¢ jedna
wspdlng cechg: lepszy osobnik musi mie¢ wigksze szanse na posiadanie potomstwa,
zgodnie z zasadg naturalnej selekcji ‘przezywa najlepszy’. Jesli metoda promuje moc-
no osobniki najlepsze nie dopuszczajac stabszych do ‘rozrodu’, to méwimy, ze jest to
tzw. twarda selekcja. Metoda promujaca lepsze osobniki, ale umozliwiajaca rozréd — z
mniejszym prawdopodobienstwem — rowniez osobnikom stabszym jest tzw. migkkq
selekcjq. Najbardziej popularne metody selekcji, to:

»  Metoda ruletki (nazywana rdwniez metoda stochastycznq z powtdrzeniami)
Wartosci przystosowania wszystkich osobnikéw w populacji sa sumowane, suma sta-
nowi cate koto ruletki. Nastgpnie kazdemu osobnikowi przypisywany jest wycinek
kota proporcjonalny do jego przystosowania. Koto ruletki jest ‘obracane’ (wybierana
jest losowo liczba) i wybierany jest osobnik odpowiadajacy temu sektorowi na ruletce,
w ktorym miesci sie wylosowana liczba. Czynnos¢ losowania powtarza si¢ N razy (N
— rozmiar populacji).

»  Metoda probkowania deterministycznego
Wartos¢ oczekiwana liczby potomkdéw dla kazdego osobnika liczona jest ze wzoru:

E =N-pr, ®)

gdzie: E; jest oczekiwana liczba potomkow i-tego osobnika,
N - liczba osobnikow w populacji,
pri— prawdopodobienstwo wybrania i-tego osobnika do reprodukcji, wynosi:
__L
Pri 9)

TN >
2.7
i=1

J; jest wartoscia funkcji przystosowania (fitness) j-tego osobnika.
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Podstawiajac rownanie (9) do (8) otrzymujemy, ze oczekiwana liczba liczby potom-
kow i-tego osobnika jest réwna stosunkowi przystosowania tego osobnika do $rednie-
g0 przystosowania osobnikéw w populacji:

E’ :N-prizN.JL_=_[l_.—L

N 1Y f (10)
Lo oy
J=1 J=1
Kazdy osobnik z populacji ma tylu potomkdw, ile wynosi czesé catkowita wartosci
oczekiwanej E;. Nastepnie osobniki sa szeregowane wedtug utamkowych czeéci E;
(malejaco). Do reprodukcji dobierane sa osobniki z poczatku tej listy, w liczbie po-
trzebnej do zachowania stalego rozmiaru populacji.

* Metoda stochastyczna wedlug reszt z powtorzeniami
Metoda ta jest podobna do poprzedniej, opiera si¢ na liczeniu warto$ci oczekiwanej
liczby potomkéw dla kazdego osobnika z populacji i przydzieleniu mu catkowitej czg-
sci E,. Czgsci utamkowe E; sa wykorzystywane do stworzenia kofa ruletki, za pomoca
ktorego wybierane sa pozostale osobniki do reprodukc;ji.

* Metoda stochastyczna wedlug reszt bez powtorzen
Analogicznie jak w poprzednich dwdoch metodach, czgsé catkowita E; stanowi liczbe
potomkow i-tego osobnika, natomiast czgs¢ utamkowa jest traktowana jako prawdo-
podobienstwo dla rozktadu Bernoulli’ego, brakujace osobniki sg losowane zgodnie z
tymi prawdopodobienstwami.

®  Metoda turniejowa
Wybierane saq dwa osobniki (mozna stosowac¢ turniej wigcej niz dwdch osobnikdw) i
do reprodukcji wybierany jest najlepszy osobnik sposrod bioracych udziat w turnieju.
Czasami stosuje si¢ wybor osobnikéw do turnieju za pomoca metody ruletki, co po-
woduje silniejsze promowanie lepszych osobnikow (selekcja jest bardziej twarda).

* Metoda rankingowa (nadawania rang)
Osobniki w populacji sa porzadkowane malejaco wedtug wartosci funkcji celu. Liczba
potomkéw osobnika zalezy od jego rangi, przy czym ranga osobnika to jego miejsce
w tym uszeregowaniu. Ustalana jest liczba potomkéw dla osobnika o najwyzszej ran-
dze (max) i liczba potomkéw dla osobnika o najnizszej randze (min), pozostatym
osobnikom przydzielana jest liczba kopii proporcjonalnie do ich rangi. Metoda ta by-
wa krytykowana, poniewaz ostabia ona zwigzek pomigdzy funkcjg przystosowania
(ranga) a funkcja celu. Mimo to, w niektorych zastosowaniach daje dobre wyniki.

1.4 Operatory genetyczne

Podstawowe operatory genetyczne to krzyzowanie (mieszanie materiatu genetycznego
réznych osobnikow) i mutacja (btad reprodukcji osobnika).

= KrzyZzowanie (crossover)
W czasie krzyzowania dwa osobniki wymieniaja migdzy soba czesci genotypu. Ope-
rator ten dziala na reprodukowanym osobniku z zadanym prawdopodobienstwem,
drugi osobnik do krzyzowania wybierany jest losowo. Najprostsza postaé to krzyzo-
wanie jednopunktowe (osobniki a i b na rysunku 3., ich potomstwo to osobniki @’ i
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b’). Moze tez by¢ stosowane krzyzowanie wielopunktowe: osobniki c i d, powstate po
dwupunktowym krzyzowaniu potomstwo to ¢’ i &’. Krzyzujac reprodukowanego wta-
$nie osobnika z innym mozna otrzymaé¢ dwdch potomkéw, sktadajacych si¢ z czgsci
genotypow rodzicielskich. Do nastgpnego pokolenia wybiera si¢ losowo jednego z
potomkow, lepszego z nich, najbardziej podobnego do rodzica, itp., zgodnie z przyj¢-
tym zatozeniem. Uogdlnieniem krzyzowania wielopunktowego jest krzyzowanie jed-
norodne. Dla kazdego bitu pierwszego potomka podejmowana jest losowo (z zadanym
prawdopodobienstwem, np. p=0,5) decyzja, od ktérego z rodzicow ma dziedziczy¢
dany bit, drugi potomek otrzymuje bit od pozostatego rodzica.
* Mutacja

Powstaly po krzyzowaniu potomek podlega mutacji. Mutacja zachodzi z zadanym
prawdopodobienistwem, polega ona na losowej zmianie wartosci bitu z zera na jedynke
lub odwrotnie (rysunek 4).

r;IIIOIolllMollIOIOIIJ ARDEEYNOnN lao),|0hhlli°1ﬂol
[%ohh!olololololl]l] |d|)|011|1|0|o|o|o|0!1|l} laO ofofttfoft]t]
2) &) Rysunek 4. Przyklad
qu)l tfololiTifofoToTtT1] {dq)l 1JoJ1JoTofo 1o o]t ] 0‘:;:;?;‘?%‘(‘;‘:::&5‘;;,
Mo olohlileo]i] oL li[ilofeloli[] 2 oscbnikzdwoma

zmutowanymi bitami)

Rysunek 3. Krzyzowanie jednopunktowe (osobniki a i b, ich potom-
stwo a’ i b’) oraz dwupunktowe (c i d, potomstwo ¢’, d’)

1.5 Przykiad (dziafanie prostego algorytmu genetycznego)
Zadanie: Znalez¢é maksimum funkcji F=x,—x,, przy ograniczeniach: x,, x, sg liczbami
catkowitymi z przedziatu [0,31].

Decydujemy si¢ na kodowanie binarne — kod dwojkowy, na kazda zmienna potrze-
ba 5 bitéw (wynika to z dopuszczalnych wartosci zmiennych x; i x;), chromosom ma
10 bitow. Funkcja F przyjmuje wartosci ujemne, co jest niedopuszczalne w GA, za-
tem musimy jg przeksztaltci¢ w funkcjg przystosowania. Jedng z mozliwosci jest funk-
cja Q zdefiniowana jako Q = 32+F, te funkcje¢ uwzglednimy przy ocenie osobnikow.

Zaktadamy losowg populacje poczatkowa, dla uproszczenia przyjmujemy, ze po-
pulacja liczy 4 osobniki, mutacja zachodzi z prawdopodobiefistwem 0,02 dla kazdego
bitu, rekombinacja reprodukowanego osobnika — jednopunktowa z prawdopodobien-
stwem 0,5, z losowo wybranym partnerem. Wybdr osobnika do reprodukcji — np. me-
toda prébkowania deterministycznego. Warunek zatrzymania — zadana liczba pokolen
(np. 100).

Etapy 1 + 4 (nie zachodzi warunek zatrzymania — nie wykonano zadanej liczby po-
kolen) pokazuje tabela 1.
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Tabela 1. Populacja poczatkowa i generacja pierwszego pokolenia

ogorb Chromosomy | Fenotyp Q = E= :)':;ztr;a_ Potomki (po dziataniu ope-
-nika | (losowe warto- | (x1, x2) ' ' Q/ Qs koW ratoréw genetycznych)
Sci)

1 10001 01111 17,15 34 | 02 (1,133 [1+0=1 [ 10101 00101

2 10101 00111 21, 07 46 | 14 [1,533 |1+1=2 (10111 00011, 10100 00001
3 00001 10101 01,21 12 |-20 0,400 |0+0=0 | brak

4 10101 11001 21,25 28 |-04 0,933 |0+1=1 |11110 11001

Q¢ 130,00

Analizujac czesci catkowite wartosci oczekiwanych E,, E,, E5 i E4 widzimy, ze osob-
nik nr 1 i osobnik nr 2 beda mie¢ po jednym potomku. Dalej brakuje nam dwdch
osobnikéw do zachowania statego rozmiaru populacji (zatozyliSmy 4 osobniki), dobie-
ramy je zgodnie z malejacymi wartosciami czesci utamkowych E), E,, E; i E4: 0,933
(osobnik 4), 0,533 (osobnik 2), 0,400 (osobnik 3), 0,133 (osobnik 1) — czyli wybrane
zostang osobniki numer 4 i numer 2. Zatézmy dalej, ze zgodnie z losowaniem z zato-
zonymi prawdopodobienstwami krzyzowania i mutacji wyszto nam, ze:
Osobnik nr 1 (kopiowany raz) jest krzyzowany z osobnikiem nr 2, punkt krzyzowania
— po szbstym bicie, mutowane bity — trzeci i dziewiaty.
Osobnik nr 2 (kopiowany dwukrotnie); raz bez krzyzowania, mutowane sg geny:
czwarty i 6smy; drugi raz — krzyzowanie z osobnikiem nr 4, po si6dmym bicie, muto-
wane geny — piaty.
Osobnik nr 4 (raz kopiowany), brak krzyzowania, mutacja gendéw: drugi, czwarty,
piaty.

Nastepuje teraz powr6t do etapu 2: liczenie przystosowania osobnikéw nowej po-
pulacji, sprawdzenie warunkow zatrzymania i ewentualne generowanie kolejnego po-
kolenia. Pokazuje to tabela 2.

Tabela 2. Generacja kolejnego pokolenia

Nr E= Liczba
osob Genotyp Fenotyp | Qi | Fi Qi /’6 potom- Potomki
-nika Vs kow

1 10101 00101 21,05 148 |16 1,021 [1+0=1 | 11101 00010
2 10111 00011 23,03 |52 |20 1,106 |[1+0=1 | 1111000011
3 10100 00001 20, 01 51 |19 1,085 |[1+0=1 [ 10101 10001
4 11110 11001 30,25 |37 |05 0,787 |0+1=1 | 11111 00001
Qs 147.00

Poprawita si¢ $rednia warto$¢ przystosowawcza populacji. Generujac kolejne pokole-
nia mozemy po pewnym czasie uzyskac rozwigzanie optymalne [11111 00000], czyli
[31,0], dla takiego osobnika F=31-0=31, a Q = 32+31=63.

Algorytm genetyczny szuka dobrego rozwiazania przesuwajac populacje w obie-
cujace rejony przestrzeni przystosowania (przestrzeni potencjalnych rozwiazan). Na-
lezy jednak pamigta¢, ze mechanizm ten bywa zawodny, np. jesli mamy do czynienia
z tzw. zwodniczymi funkcjami (ang. deception function). W takich sytuacjach GA
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moze przesunaé populacj¢ w ztym kierunku i ewolucja jest zbiezna do lokalnego
optimum [14]. Algorytm genetyczny moze by¢ stosowany, jesli dopuszczamy rozwia-
zanie bez gwarancji, ze jest ono optymalne, wystarczy nam, ze bgdzie satysfakcjonu-
jace.

1.6 Specjalizowane operatory rekonfiguracyjne

W problemach sekwencyjnych (np. problem komiwojazera) geny w chromosomie sa
warto$ciami catkowitymi i stanowia numery miast, za$ kolejnos¢ genéw na chromo-
somie méwi o tym, w jakiej kolejnosci miasta maja by¢ odwiedzane. Zatem rozwiaza-
niem jest sekwencja gendw w chromosomie. Silnym ograniczeniem nakadanym na
chromosom jest wymog, by kazda wartos¢ genu (z zakresu od 1 do liczby miast) wy-
stapita na chromosomie dokladnie jeden raz. Dla tak zdefiniowanego chromosomu
mozna stosowaé operator inwersji (jest to wylosowanie dwoch punktéw w chromoso-
mie i odwrdcenie odcinka migdzy tymi punktami) lub inne, specjalizowane operatory,
ktore tacza w sobie cechy inwersji i krzyzowania. Ponizej omdwione sa przyktadowe,
podstawowe operatory rekonfiguracyjne.

Inwersja: Jest to stosunkowo prosty operator powoduje, ze czg$¢ genotypu (pomig-
dzy dwoma losowo wybranymi punktami) zostaje uporzadkowana w odwrotnej kolej-
nosci.

Partially Matched Crossover (PMX): Na chromosomie wybierane sa losowo dwa
punkty. Czg$¢ chromosomu pomigdzy tymi punktami stanowi tzw. sekcj¢ dopasowa-
nia (ang. matching section) i ta czes$¢ jest wymieniana pomigdzy reprodukowanymi
osobnikami. Dziatanie operatora pokazane jest na rysunku 5. Osobniki I1° i I12” s po-
tomkami osobnikéw I1 i 12. W pierwszym kroku, po wylosowaniu sekcji dopasowa-
nia, 11’ otrzymuje czg$¢ chromosomu stanowiacg sekcj¢ dopasowania osobnika 12

11 : 1231451678 (tzn. wartosci genébw 7 i 6 sa umieszczane u 11’ na pozy-
24321761581 cjach odpowiadajacych sekcji dopasowania). Teraz geny o
Hialos II % l 44 warto$ciach 4 i 5 (one byly w sekcji dopasowania I1) zaj-

muja u potomka I1° te miejsca, ktére u Il byly zajmowane

Rysunek 5. Dwa osobni- odpowiednio przez geny o obecnych juz wartosciach 7 i 6.
ki przed PMX orazdwa W podobny sposéb jest tworzony drugi potomek (12°).

potomne po PMX Order Crossover (OX): operator zaczyna swoje dziatanie

od losowego wyboru sekcji dopasowania, podobnie jak po-

przednia metoda. Rézni si¢ jednak w sposobie dopa-

L L@3 143 : E 18 sowywania chromosoméw. Geny, ktore powinny by¢
2 | i W ‘ &

e przesunigte do sekcji dopasowania u pierwszego po-
I1:1231451]008a v tomka, zostawiaja ,,dziury”. Powstale ,,dziury” sa prze-
12:032176lo0812 g . :

11:345 001812 2% suwane do sekcji dopasowania, a brakujace geny sa
12 :276 813N . .
| olie | > & dodawane na koniec chromosomu (rysunek 6). Sekcje
sl atd 512 dopasowania zostaja wymienione pomig¢dzy dwoma
: reprodukowanymi osobnikami. Metoda OX, w odréz-
o - ‘dziura’

nieniu od PMX ma tendencj¢ do zachowywania
Rysunek 6. Dzialanie OX wzglednej pozycji gendw.
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Cycle Crossover (CX): Przy dziataniu tego operatora, kazdy gen u potomka jest
wzigty od jednego z rodzicéw. Potomek jest tworzony wedtug nastepujacego algoryt-
mu (patrz rysunek 7).

1. Bierzemy pierwszy gen od pierwszego rodzica I1 (w naszym przykladzie jest to
wartos¢ 1)

2. Potomek ma juz pierwszy gen. Teraz nalezy zapewnié, by
warto$¢ z pierwszej pozycji 12 byta obecna u potomka,
dlatego tez od 11 nalezy wzia¢ gen o wartosci réwnej
pierwszemu genowi u drugiego rodzica, w naszym przy-

Il :1 23 456 78
I2 : 4 327 65 81

I17: 1 - = = = = = =

I17: 1 - - 4 = = = =
ktadzie gen o wartosci 4, kopiujemy go na t¢ pozycje, na 11°: 1 - - 4 - - 7 -
ktorej znajduje si¢ u I1 (w przykladzie — na czwarte il s iy
miejsce).

3. Osobnik I2 na czwartym miejscu (zajmowanym u I1 15,0 3 -2 - 27 7]
przez wartos¢ 4) ma wartos¢ 7, kopiujemy tg wartosé (na 2o g !
Jjej miejsce u I1) do tworzonego potomka I1°. T3°: 4 3% T B € 6 A

4. Powtarzamy powyzsze czynnosci (punkty 2 i 3) az na-
potkamy gen, ktory juz istnieje u tworzonego potomka
(na miejscu zajmowanym przez 8 u Il jest I, ktéra juz
wczesniej zostata skopiowana do potomka).

5. Brakujace pozycje u potomka wypetniamy kopiujac geny od drugiego rodzica (12).

Analogicznie tworzony jest potomek [2°.

Mozna stosowa¢ inne (dodatkowe) techniki przyspieszajace znalezienie rozwiaza-
nia probleméw sekwencyjnych, na przykiad rozne heurystyki (wykorzystujac pewna
wiedz¢ o problemie).

Rysunek 7. Tworzenie
potomkéw stosujgc me-
tode CX

2. Programowanie genetyczne

W programowaniu genetycznym (GP — ang. Genetic Programming) osobnik podle-
gajacy ewolucji nie jest binarnym fancuchem, lecz ztozona struktura drzewiasta
[8],[12]. Zbiér mozliwych struktur jest zbiorem wszystkich mozliwych kombinacji
funkcji, ktore moga by¢ rekurencyjnie wyprowadzone ze zbioru funkcji
F= {ﬁ,fz,...,fNF} o mocy N i zbioru symboli terminalnych 7 = {11,12,...,1,\,7'} 0 mocy

Ny. Przyktady takich zbioréw, to: F=(AND, OR, NOT, SIN, COS, +, —, *), T=(0, 1, 2, 3, 4,
5,6,7,8,9, m), przyktadowa funkcja w postaci drzewa pokazana jest na rysunku 8.

J. Koza [8] zaproponowal programowanie genetyczne jako metode¢ automatycznego
generowania programow. Wezly w drzewie sa funkcjami (lub operatorami) jedno lub
wieloargumentowymi, a lidcie s3 symbolami terminalnymi. Dla takich struktur nalezy
inaczej niz w GA zdefiniowac krzyzowanie i mutacje. Krzyzowanie polega na wy-
mianie poddrzew migdzy dwoma osobnikami (strukturami), wezet przecigcia jest lo-
sowany w kazdym drzewie oddzielnie. Krzyzowanie odgrywa kluczowa rolg¢ w GP.
Mutacja bywa réznie implementowana: losowa zmiana funkcji w wezle, losowa zmia-
na wartosci liscia, zamiana wybranego poddrzewa innym, losowo wygenerowanym,
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<> zamiana dwdch poddrzew wychodzacych z jednego wezia
Con > (- >  (permutacja). Dodatkowo, na drzewach mozna wykonywaé:
(> (os> (s> o Edycje (upraszczanie) — nie zmienia si¢ znaczenia wyra-
zenia reprezentowanego przez drzewo lecz upraszcza sie
CRIE PR forme (np. x OR x zastgpuje si¢ x),

Rysunek 8. Przyklad o Enkapsulacj¢ (ADF — ang. Automatically Defined Func-
struktury drzewaw  tion) — wyodrgbnianie potencjalnie uzytecznego poddrzewa i
programowaniu gene-  padanie mu nazwy, tak by mozna go bylo stosowa¢ jak sym-
tycznym: bol terminalny. Enkapsulacja zapewnia niepodzielnos¢ wy-

F=SINQ2*m)+8*COS(T)  branego poddrzewa w wyniku krzyzowania.

Kluczowa role w GP petni dobdr odpowiednich zbiorow
funkcji 1 symboli terminalnych. Wybdr zbyt duzej ich liczby powoduje znaczny
wzrost przestrzeni poszukiwan, jesli jest ich za mato, lub sg Zle dobrane dla danego
problemu, to satysfakcjonujace rozwiazanie nie moze by¢ znalezione.

3. Strategie ewolucyjne

Poczatek strategii ewolucyjnych (ES — ang. Evolutionary Strategy) to lata szes¢dzie-
sigte [14]. Zadaniem ES, podobnie jak GA i GP, jest rozwigzywanie problemdéw
optymalizacyjnych metoda wzorowang na ewolucji biologicznej. W ES nie stosuje si¢
kodowania potencjalnych rozwiazan. Kazdy chromosom jest tancuchem liczb rzeczy-
wistych: bezposrednio wartosci argumentéw funkcji celu oraz prawdopodobienstw
mutacji i rekombinacji. We wczesnych pracach ewoluowano populacje sktadajaca sig
z pojedynczego osobnika, a jako czynnik réznicujacy potomka od rodzica wykorzy-
stywano mutacje. Male zmiany mutacyjne byly bardziej prawdopodobne niz duze.
Potomek mdgt zastapi¢ rodzica tylko wtedy, gdy byl od niego lepszy. Takie podejscie,
w ktérym potomek konkuruje tylko ze swoim rodzicem nazywane jest strategiq dwu-
elementowq (ang. two-membered evolution strategy) i oznaczane jest przez symbol
(1+1)-ES. Ewolucja populacji 4 elementowej (gdzie x>1) nazywana jest strategiq
wieloelementowq (ang. multi-membered evolution strategy). W strategii wieloele-
mentowej stosowane jest tez krzyzowanie: dwa osobniki sg losowo wybierane do re-
produkcji, kazdy z jednakowym prawdopodobiefistwem. Podobnie jak w strategii
(141)-ES, w jednym pokoleniu produkowany jest tylko jeden potomek, ktéry zaste-
puje najgorszego osobnika w populacji. Jesli wygenerowany potomek jest gorszy od
wszystkich w populacji, jest on usuwany i populacja nie zmienia si¢ w tym pokoleniu.
Taka strategia (produkcja pojedynczego osobnika w jednym pokoleniu) jest nazywana
(u+1)-ES. W pézniejszych aplikacjach ES zostaly rozwinigte do postaci znanych pod
nazwa (u+A)-ES i (m,A)-ES. W strategii (u+A)-ES populacja liczy u osobnikdw, ktore
w jednym pokoleniu produkuja A potomkdéw. Do populacji tworzacej nastgpne poko-
lenie wybierane sa najlepsze osobniki zaréwno sposrdd rodzicow jak i potomkdow.
Réznica pomiedzy strategiami (u+A)-ES i (u,A)-ES polega na tym, ze w tej ostatniej,
do nastgpnego pokolenia wybierane sg osobniki tylko sposrod potomkow (jest to po-
pulacja jednopokoleniowa).
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ES byly rozwijane jako metoda optymalizacji numerycznej, podczas gdy przed GA
stawiano wymagania zdolno$ci przeszukiwania. W obu podejsciach wykorzystuje sie
darwinowska metode¢ selekcji oraz populacj¢ osobnikéw bedacych potencjalnymi
rozwigzaniami. Wazniejsze réznice pomigedzy GA a ES to:

e Reprezentacja osobnika: w klasycznym GA koduje si¢ rozwiazania w postaci bi-
narnego tancucha, natomiast w ES ewoluuja rozwiazania w postaci tancucha liczb
rzeczywistych, powigkszone o prawdopodobienstwa mutacji i rekombinacji.

e Proces selekcji i reprodukcji: w GA populacja N-elementowa produkuje N potom-
kow, ktore stanowig nastgpne pokolenie, w ES — populacja p-elementowa produ-
kuje A potomkéw, przy czym do nastgpnego pokolenia wybieranych jest (w sposob
deterministyczny) u najlepszych osobnikdw sposrdd rodzicow i potomkow razem,
lub tylko sposréd potomkow. Selekcja, poza tym, ze w ES jest deterministyczna, to
zachodzi po procesie reprodukcji, natomiast w GA zachodzi przed reprodukcja
(osobniki sg wybierane do reprodukcji) i nie jest deterministyczna.

e W GA, prawdopodobienstwa mutacji i rekombinacji s z reguly state dla wszyst-
kich osobnikow i w czasie catej ewolucji, natomiast w ES sa one rézne dla réznych
osobnikow i ulegaja zmianie w czasie ewolucji (same podlegaja ewolucji stano-
wiac czg$¢ chromosomu).

e W strategiach ewolucyjnych potomki nie spetniajace wymaganych warunkdéw sg
eliminowane z populacji, nie ma mechanizméw typu nakladanie kar.

4. Programowanie ewolucyjne

Lawrence Fogel [5] zaproponowal ewolucjg populacji automatow skonczonych w celu
predykcji zmian $rodowiska i nazwal to podejscie programowaniem ewolucyjnym
(EP — Evolutionary Programming). Opis srodowiska to sekwencja symboli ze skon-
czonego alfabetu. Zadanie polega na przewidywaniu kolejnego symbolu znajac pewng
ich sekwencjg¢. Miara przystosowania ewoluujacych automatdéw skonczonych jest do-
kfadno$¢ przewidywania. Kazdy osobnik w populacji produkuje jednego potomka.
Potomek jest zmutowanym rodzicem (nie stosuje si¢ krzyzowania). Mutacja jest to lo-
sowy proces, polegajacy na:

e zmianie symbolu wejsciowego,

e dodaniu nowego stanu,

e usunigciu jednego z istniejacych standw, lub

e zmianie Sciezki pomigdzy stanami (tranzycji).

Decyzja o tym, ktora mutacja zajdzie podejmowana jest w trakcie tworzenia potomka,
na podstawie zadanego rozkladu prawdopodobienstwa. Po reprodukcji kazdego osob-
nika, populacja chwilowo sktada si¢ z podwojonej liczby osobnikdw: rodzicow i po-
tomkow. Jako nastgpne pokolenie wybierane sa najlepsze osobniki z podwojonej po-
pulacji, tak, ze zachowany jest staly rozmiar populacji w kolejnych pokoleniach.
Zwykle stosuje si¢ turniejowa metodg selekcji (turniej n-elementowy polega na wy-
braniu »n elementéw z populacji, zwycigzca — element z najwigkszym przystosowa-
niem — zostaje wybrany do nastgpnego pokolenia). W pracach L. Fogel’a mozna zna-
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lez¢ opisy wielu eksperymentéw, w ktorych automatom skonczonym stawiano coraz
trudniejsze zadania predykcji. Eksperymentowano z zastosowaniem programowania
ewolucyjnego do gier. Eksperymenty z dwuosobowymi grami o sumie zerowej poka-
zaly, ze EP jest w stanie odnalez¢ globalnie najlepsza strategi¢ dla prostych gier i
niewielkiej liczby graczy (czterech). Prace nad stosowaniem programowania ewolu-
cyjnego sa dos¢ liczne, ich krotki przeglad mozna znalez¢ w [5].

W EP nie stosuje si¢ kodowania rozwiazan (podobnie jak w ES), reprezentacja
wynika wprost z zadania — moze to by¢ sie¢ neuronowa w takiej postaci, jak jest im-
plementowana. Mutacja czgsto bywa zmniejszana w miarg¢ zblizania si¢ do optimum
globalnego. Zwykle jest to implementowane w ten sposob, ze wariancja mutacji pod-
lega zmianom (zgodnie z zadanym operatorem), czyli sama mutacja podlega ewolucji.
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Streszczenie

Algorytmy genetyczne oraz pokrewne techniki bazujace na ewolucji cieszg si¢ coraz wigkszym
zainteresowaniem tak teoretykéw jak i praktykow. Podejmowane sa proby ich wykorzystania
w zagadnieniach inzynierii projektowej. W pracy tej rozwazany jest problem prowadzenia
potaczen na ptytkach drukowanych (PCB) w kontekscie mozliwosci zastosowania metod
ewolucyjnych. Podstawowy nacisk potozony jest na aspekt dostosowania zagadnienia projek-
towego do optymalizacyjnej natury przeszukiwania ewolucyjnego. Zaproponowane podejscie
obejmuje transformacj¢ problemu w zadanie wymagajace satysfakcji szeregu ograniczen.
Przedstawiono i oméwiono podstawowy algorytm ewolucyjny, sposéb jego dostrojenia do
specyfiki problemu, a takze zastosowane metody obstugi ograniczen obejmujace karanie, opra-
cowane z wykorzystaniem wiedzy dziedzinowej reprezentacj¢ i operatory oraz mechanizm
krokowej adaptacji wag.

Wstep

Popularne w ostatnim czasie algorytmy genetyczne oraz inne techniki nasladujace
mechanizm ewolucji znalazty wiele zastosowan w rozwiazywaniu probleméw opty-
malizacyjnych. Ich niewatpliwg zaletg jest polaczenie prostoty i ogdlnosci. Umozli-
wiaja optymalizacj¢ szerokiej klasy problemow: liniowych i nieliniowych, okreslo-
nych zaréwno na ciaglych, dyskretnych oraz mieszanych przestrzeniach poszukiwan,
nieograniczonych i ograniczonych. W przypadku wielu ztozonych probleméw szcze-
golnie interesujaca cecha jest elastycznos¢ pozwalajaca na wykorzystanie opartych na
wiedzy dziedzinowej heurystyk, co pozwala na dostrojenie algorytméw ewolucyjnych
do charakterystyki konkretnego problemu. Dotyczy to w szczegdlnosci zagadnien
zwiazanych z inzynierig projektowa, wykazujacych duza ztozonos¢, co czyni je trud-
nymi do rozwiazania klasycznymi metodami algorytmicznymi.

Wyrdzniajaca t¢ klase problemdw cechg jest fakt wystepowanie zbioru ograniczen,
ktorych liczba i powiazania stanowig o rzeczywistej trudnosci zagadnienia. Obecnosé
ograniczen wplywa znaczaco na efektywnos¢ kazdego algorytmu optymalizacyjnego,
takze technik bazujacych na symulowanej ewolucji. W niniejszej pracy omdéwiono
algorytm ewolucyjny rozwiazujacy przykladowy problem zwiazany z inzynierig pro-
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jektowa, wykorzystujacy niektore z szeroko stosowanych technik dotyczacych spet-
niania narzuconych na zadanie ograniczen. Wykorzystano opracowang w oparciu o
wiedze dziedzinowa reprezentacj¢ oraz operatory genetyczne, a takze mechanizm
krokowej adaptacji wag.

1. Specyfikacja problemu

Algorytmy ewolucyjne znalazly zastosowanie w wielu aspektach projektowania i
montazu ptytek drukowanych (PCB), wliczajac projektowanie strukturalne uktadu,
selekcje komponentéw oraz optymalizacj¢ procesu montazu elementow. W pracy tej
skupiono si¢ na mozliwosciach wykorzystania technik ewolucyjnych w celu rozwia-
zania problemu prowadzenia polaczen fizycznych na jednowarstwowych ptlytkach
PCB, w kontekscie zagadnienia optymalizacyjnego z silnymi ograniczeniami.

W problemie tym dane sa:

e ograniczony, spdjny obszar plaszczyzny zwany dalej ptytka drukowana,

e uporzadkowany zbidr punktéw lutowniczych P,

o funkcja przyporzadkowujaca kazdemu punktowi ze zbioru P jego pozycjg na ptytce
zadang para wspoltrzednych kartezjanskich f. P—>RxR,

e uporzadkowany zbiér potaczen strukturalnych (tj. planowanych) S migdzy punk-
tami ze zbioru P, zadanych jako pary punktéw, ktére powinny zasta¢ potaczone fi-
zycznie tj. S = {(p;, p) | pLp:€P, p; i p: sq strukturalnie polqczone).

Problem polega na zaprojektowaniu sieci fizycznych potaczen w taki sposob, aby

dowolne dwa punkty lutownicze zostaly fizycznie polaczone wtedy i tylko wtedy,

jezeli wystepowato migdzy nimi potaczenie strukturalne. Przyjmujac, ze dla danego
rozwigzania zbior F zawiera wszystkie i tylko te pary punktow lutowniczych, migdzy
ktoérymi istnieje fizyczne potaczenie, warunek sukcesu mozna zapisa¢ nastgpujaco:

Ypi, p2€P. (p, p)EF < (pL,p)eS 1

Ponizsze rozwazania oparto o zredukowana wersj¢ problemu, w ktorej (warunek 0.):

o plytka skiada si¢ z jednej warstwy, w ksztalcie prostokata o ustalonych rozmiarach,

e punkty leza na przecigciach siatki, tj. ich wspotrzedne zadane sa liczbami catko-
witymi,

o fizyczne potaczenia moga by¢ prowadzone tylko wzdtuz natozonej na powierzch-
ni¢ ptytki siatki, zbudowanej z kwadratow o boku rownym 1.

Przykfad schematu polaczen fizycznych PCB odpowiadajacego temu warunkowi
przedstawia rys. /.
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Rysunek 1: Przykladowy schemat PCB

2. Podejscie ewolucyjne

Zastosowanie algorytmu ewolucyjnego do dowolnego zadania wymaga okreslenia
sposobu obliczania funkcji celu, reprezentacji osobnika oraz opracowania zestawu
operatorow genetycznych. Dla sformutowanego czysto projektowego problemu trudno
spetni¢ te wymagania w sposob bezposredni, konieczne jest jego dostosowanie do
optymalizacyjnej natury przeszukiwania ewolucyjnego. Nalezy tego dokonaé poprzez
okreslenie zbioru optymalizowanych wspétczynnikdw oraz ograniczen, ktorych spel-
nienie stanowi kryterium okreslenia projektu jako satysfakcjonujacy.

Sposéb kodowania osobnika, czyli jego reprezentacja oraz zestaw operatoréw
tacznie okreslaja zestaw potencjalnych rozwiagzan problemu mozliwych do uzyskania
w drodze symulowanej ewolucji, czyli przestrzen rozwiazan. Funkcja oceniajaca przy-
stosowanie powstatych osobnikéw, pozwala z kolei na ukierunkowanie ewolucji w
kierunku rozwiazan, ktére uwazamy za lepsze, a w konsekwencji kieruje poszukiwa-
nia w obszary, gdzie spodziewamy si¢ znalez¢ satysfakcjonujace rozwiazanie. Zagad-
nienia te nalezy rozpatrywac facznie, szczegolnie w przypadku koniecznosci stosowa-
nia skomplikowanej reprezentacji osobnika, a tym samym ztozonego sposobu mapo-
wania genotypu w fenotyp, a takze koniecznosci obstugi natlozonych na problem ogra-
niczen.

2.1 Reprezentacja

Ze sposobem kodowania osobnika w bezposredni sposob wiaze si¢ okreslenie mak-
symalnej dopuszczalnej przestrzeni poszukiwan. Odpowiednio dobrana reprezentacja
moze znaczaco zmniejszy¢ przestrzen poszukiwan, wplywajac tym samym na efek-
tywnos¢ algorytmu optymalizacyjnego.

Rozwazany problem mozna rozitozy¢ na dwie sktadowe, wynikajace z warunku
rownowaznosci danego wzorem [1] stanowiace niezalezne warunki ograniczen, a
mianowicie (ograniczenia la. i 1b.):

(la) kazde dwa punkty, ktore sa potaczone strukturalnie, musza zosta¢ potaczone
fizycznie,
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(Ib) zadne dwa punkty, ktdre nie sa polaczone strukturalnie, nie moga zostaé pota-
czone fizycznie.

Najprostsza z mozliwosci jest wybranie reprezentacji dopuszczajacej dowolne, zgodne

z warunkiem 0. rozwiazania. Osobnik, ktéry speinitby oba powyzsze ograniczenia,

moglby zosta¢ uznany za prawidtowy projekt uktadu potaczen na ptytce drukowane;.

W ten sposob problem zostal wigc sprowadzony do zagadnienia wyewoluowania pra-

widtowych, tj. spetniajacych ograniczenia la i 1b. osobnikéw.

Zagadnieniu obstugi ograniczen w algorytmach ewolucyjnych poswigcono wiele
prac. W pracy [2] sklasyfikowano i przedstawiono 11 mechanizméw pozwalajacych
na powstanie w toku symulowanej ewolucji prawidtowych, tzn. spetniajacych ograni-
czenia, osobnikdw. Zostaly one zgrupowane w trzy podstawowe grupy obejmujace
Zapobieganie, Korygowanie i Presj¢. Metody zwiazane z Zapobieganiem i Korygo-
waniem pozwalaja na stale zapewnienie zgodno$ci osobnikdéw z ograniczeniami, doty-
cza wiec tzw. ograniczen twardych. Z Presja z kolei zwiazana jest klasa ograniczen
migkkich, tj. takich, ktérych naruszanie w czasie dziatania algorytmu nie jest zabro-
nione.

Karanie osobnikdw uwaza si¢ za najbardziej ogélna metode obstugi ograniczen.
Mechanizm ten bazuje zazwyczaj na preferowaniu rozwigzan w mniejszym stopniu
naruszajacych ograniczenia, co powinno spycha¢ populacj¢ w kierunku rozwigzan w
Jjak najwigkszym stopniu satysfakcjonujacych poszczegdlne ograniczenia. W opraco-
waniu skutecznego mechanizmu karania pomocne moga okazac¢ si¢, sformutowane na
podstawie badan hipotezy, ktore znalezé mozna w pracy [4]:

(a) ,.kary, ktore sa miarg odleglosci od poprawnosci sa lepsze niz te, ktére sg prosta
funkcja liczby naruszonych ograniczen”,

(b),,w przypadku probleméw z kilkoma ograniczeniami oraz kilkoma petnymi roz-
wigzaniami, kary ktére sa jedynie funkcja liczby naruszonych ograniczen nie pro-
wadza zazwyczaj do znalezienia rozwigzania”.

Dodatkowo, w [5] sformutowana jest nastgpujaca hipoteza:

(c) .algorytm genetyczny ze zmiennym wspotczynnikiem kary jest skuteczniejszy od
algorytmu ze statym wspotczynnikiem kary”.

Istniejq takze inne metody obshlugi ograniczen, sg one jednak w mniejszym lub
wigkszym stopniu zalezne od problemu. Jedna z najbardziej interesujacych technik
Jest wykorzystanie tzw. dekoderéw, nalezacych do klasy zwiazanej z Zapobieganiem.
Stanowia one specjalizowane schematy mapowania genotypu na fenotyp, okreslajace
sposob budowania prawidlowego osobnika na podstawie informacji zawartych w
chromosomie. Za ich pomoca mozliwe jest, wspomniane wczesniej, zredukowanie
przestrzeni poszukiwan, a takze zapewnienie spetnienia jednego badz kilku narzuco-
nych na problem ograniczen. Przy wyborze odpowiedniej reprezentacji — dekodera,
nalezy wzia¢ pod uwagg szereg czynnikow (za [1], wymogi (1)—(5)):

(1)dla kazdego prawidlowego rozwigzania, musi istnie¢ kodujacy je osobnik,
(2)kazdy zdekodowany osobnik, musi odpowiadaé prawidlowemu rozwiazaniu,
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(3)kazde prawidlowe rozwiazanie musi by¢ reprezentowane przez t¢ samg liczbe
mozliwych, réznych osobnikow.
Ponadto, sugeruje si¢ aby:

(4)transformacja osobnika w potencjalne rozwiazanie byta szybka obliczeniowo,
(5)dekoder miat ceche lokalnosci, tj. mate zmiany w chromosomie powodowaly mate
zmiany w rozwigzaniu.

Opracowanie dekodera spetniajacego powyzsze wymagania dla zlozonych, rze-

czywistych probleméw jest zazwyczaj powaznym problemem. Wielu praktykow wy-
korzystuje wiec fakt, ze analogiczny do zastosowania dekodera efekt osiagna¢ mozna
poprzez wykorzystanie specjalnie opracowanej reprezentacji oraz zestawu operatorow.
Zaltozeniem jest tutaj zachowanie poprawnosci — zgodnosci z zadanym ograniczeniem
— wszystkich osobnikoéw w populacji. Operatory powinny wigc dziata¢ w taki sposob,
aby niemozliwe bylo otrzymanie osobnika nieprawidlowego poprzez dziatanie na
osobnikach prawidtowych. Nalezy dodatkowo pamigta¢ o takim wyborze populacji
poczatkowej, aby sktadata si¢ ona wylacznie z poprawnych osobnikow.
Stosowanie specyficznej dla problemu reprezentacji oraz specjalizowanych operato-
row czesto pozwala na uzyskanie algorytmow ewolucyjnych efektywniejszych niz w
przypadku technik opartych na karaniu. Zakres istniejacych zastosowan jest bardzo
szeroki, poczawszy od optymalizacji numerycznej i klasycznych probleméw, jak pro-
blem komiwojazera, przez uczenie maszynowe, az po przetwarzanie sygnatowe, ro-
botyke, oraz zagadnienia zwigzane z inzynierig projektowa.

W tym momencie warto wroci¢ do okreslonego wezesniej rozktadu zadania na dwa
podproblemy, z ktorymi skojarzone zostaly ograniczenia la. i 1b. Istnieje mozliwos¢
eliminacji jednego z ograniczen poprzez zastosowanie odpowiedniej reprezentacji
oraz zestawu operatorow, gwarantujacych jego utrzymanie. W tym przypadku wybra-
no warunek la. tj. koniecznos¢ fizycznego potaczenia wszystkich strukturalnie pota-
czonych punktéow. Warunkiem podtrzymywanym jest wigc istnienie w populacji jedy-
nie osobnikow kodujacych rozwiazania zawierajace wszystkie niezbgdne polaczenia
fizyczne, za$ zadanie sprowadza si¢ do znalezienia takiego rozwiazania, ktére nie
zawiera nadmiarowych potaczen fizycznych, miedzy punktami niepotaczonymi
strukturalnie, co stanowi warunek 1b.

2.2 Sposob kodowania

Kazdy osobnik powinien przedstawiaé rozwiazanie zawierajace wszystkie wymagane
potaczenia fizyczne — ,$ciezki”. Dla zadanego problemu rozwiazanie zawiera n =
card(S) sciezek, kodowanych w chromosomie. Pojedyncza $ciezka stanowi potaczenie
pomigdzy dwoma punktami lutowniczymi. Sktada si¢ ona z szeregu ,,segmentow”
stanowigcych pionowe lub poziome odcinki o catkowitoliczbowej dtugosci. Ksztalt
sciezki reprezentowany jest przez skrocony kod tancuchowy, skladajacy sie z ciagu
par (kierunek, dlugos¢), gdzie kierunek okreslony jest jako zmienna wyliczeniowa o
wartosciach (gora, dol, prawo, lewo), natomiast dtugos¢ jest liczba naturalng. Aby
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mozliwe bylo zakodowanie i zdekodowanie rozwiazania, dla kazdego polaczenia je-
den z taczonych punktéw lutowniczych ustalony jest jako poczatek $ciezki.

Przykladowo dla najdtuzszej (pogrubionej) sciezki z rys.l. przyjmujac jako po-
czatkowy goérny punkt otrzymujemy kod w postaci: ((dot,3), (lewo,2), (dol4), (pra-
wo,3)).

CHROMOSOM
Sciezka 1
Segment 1

Segment 2 Sciezka 2 | SciezkaM

Segment N,

Rysunek 2: Struktura chromosomu

Reprezentacja ma strukturg hierarchiczng i sklada si¢ z komponentéw kodujacych
poszczegodlne Sciezki. Jest to szczegdlnie wygodne ze wzgledu na intuicyjnos$¢ opra-
cowanych operatoréw genetycznych. Dla utatwienia, kody $ciezek przedstawione sg w
ustalonej kolejnosci, co pozwala na ich identyfikacja na podstawie zajmowanej pozy-
cji. Warto jednak zaznaczyd, iz ze wzgledu na nieustalong liczbg segmentdéw tworza-
cych s$ciezkg, mamy do czynienia z chromosomem o zmiennej dtugosci.

Rozpatrujac cechy powyzszej reprezentacji pod katem wymagan stawianych przed
klasycznym dekoderem, mozemy stwierdzi¢, iz bezposrednio spetnione sa punkty:
(1)reprezentacja pozwala na przedstawienie kazdego poprawnego rozwigzania,
(2)kazdemu poprawnemu rozwiazaniu odpowiada dokladnie jeden kod,

(4)z kodu mozemy w sposdb bezposredni odtworzy¢ ksztalt sciezek, a tym samym
cate rozwiazanie.

Wybrana reprezentacja nie wyklucza powstania niepoprawnych ze wzgledu na
warunek la. osobnikow, nie jest wigc to klasyczny dekoder. Sposdb kodowania i de-
kodowania zapewnia jedynie rozpoczynanie si¢ Sciezki w miejscu jednego z iaczo-
nych punktéw lutowniczych, nie ma natomiast bezposredniego mechanizmu wymu-
szajacego umiejscowienie konca $ciezki w drugim punkcie. Jak juz jednak wspomnia-
no mozliwe jest wprowadzenie rownowaznego mechanizmu, polegajacego na utrzy-
mywaniu poprawnosci wszystkich osobnikdw w populacji.

2.3 Operatory

Aby mozliwe bylo spetnienie wymogu (2), zgodnie z ktérym kazdy zdekodowany
osobnik musi odpowiada¢ prawidlowemu (w tym przypadku spetniajacemu warunek
la.) rozwiazaniu, nalezy zapewni¢ takie funkcjonowanie operatorow, aby niemozliwe
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bylo powstanie nieprawidlowych osobnikéw w wyniku dziatania na osobnikach pra-
widlowych. Zaktadajac, ze populacja poczatkowa sklada si¢ wylacznie z osobnikéw
prawidlowych, tj. sktadajacych si¢ ze Sciezek rozpoczynajacych i konczacych sig w
faczonych punktach, pozwoli to na utrzymanie spetnienia warunku la. przez wszyst-
kie wyewoluowane rozwiazania. Wynika z tego, ze wszelkie modyfikacje wprowa-
dzane przez operatory, nie moga prowadzi¢ do relokacji punktu koficowego poszcze-
golnych Sciezek — stalo$¢ punktu poczatkowego zapewnia sposob kodowania. Opra-
cowany zestaw operatorow obejmuje operator mutacji oraz rekombinacji.

2.4 Mutacja

Operator mutacji dziata na poziomie $ciezki tj. modyfikuje wybrana sciezke sktadowa
osobnika. Mechanizm dziatania wzorowany jest na heurystyce postgpowania projek-
tanta obwodow drukowanych. Wprowadzane w konfiguracj¢ sciezki modyfikacje
polegaja na przesunigciu jednego z segmentéw Sciezki w kierunku do niego prostopa-
dlym. Wiaze si¢ to zazwyczaj z modyfikacja dtugosci segmentu poprzedniego i na-
stgpnego, a czasem z ich utworzeniem lub usunigciem. Typowe sytuacje przedstawio-
ne sa na rys.3., gdzie linia przerywana pokazano wejsciowg konfiguracje Sciezki,
strzatkami kierunek przesunigcia segmentu, a linig ciaglta wynik mutacji.

YYV
vy vl

Rysunek 3: Przyklady dzialania operatora mutacji ,a”

Zaimplementowana operacja mutacji polega na losowym wybraniu dowolnego seg-
mentu $ciezki, z jednakowym prawdopodobienstwem, i przesunigciu go o jedna pozy-
cje w wylosowanym kierunku — gora lub dét w przypadku segmentu poziomego, lewo
lub prawo w przypadku segmentu pionowego. Pociaga to za sobg koniecznos¢ zmiany
dtugosci, utworzenia, badz usunigcia poprzedniego i nastgpnego segmentu, bez zmia-
ny ich polozenia. Schemat ten daje si¢ tatwo uogdlni¢ poprzez wprowadzenie para-
metru okreslajacego site¢ mutacji, od ktérego uzalezniona jest warto$¢ przesunigcia.
Operator spetnia warunek wykluczenia relokacji punktu koncowego sciezki, a jedno-
cze$nie zapewnia zgodno$¢ z wymogiem (5) o lokalnosci zmian. Zapewnia przeszu-
kanie calej przestrzeni rozwiazan, przez sekwencj¢ mutacji mozna bowiem uzyska¢
kazda dozwolona zmiang i tylko dozwolona zmiane.

Niestety, niektére, pozadane z punktu widzenia zadania projektowego, modyfika-
cje ksztattu Sciezki wymagaja sekwencji wielu mutacji, przeprowadzajacych osobnika
przez niepozadane z punktu widzenia warunku 1b. obszary przestrzeni poszukiwan
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charakteryzujace si¢ duza liczba przecinajacych, badz naktadajacych si¢ Sciezek. Jest
to zwiazane z koniecznoscig przemieszczenia tylko fragmentu jednego z segmentow
$ciezki, przy pozostawieniu pozostatej jego czgsci na miejscu — sytuacje taka przed-
stawia rys.4. Operator mutacji ,,b” dzieli segment w losowo wybranym punkcie na
dwie czgsci, z ktorych jedna (takze losowo wybrana) podlega przesunigciu. Mimo, iz
operator pierwotny ,,a” jest szczegdlna wersja operatora ,,b”, zachowano obie wersje,
wybierane z rownym prawdopodobienstwem. Mialo to na celu zmniejszenie udziatu w
populacji, osobnikow sktadajacych si¢ z nieregularnych, wielosegmentowych sciezek,
generowanych przez ogdlniejsza odmiang.

Rysunek 4: Operator mutacji,,b”

W przypadku obu operatorow wielko$¢ przesunigcia segmentu losowana jest z zakresu /..s (s
zadane przez uzytkownika), przy czym prawdopodobienstwo wylosowania kolejnych, coraz
wiekszych wartosci jest liniowo malejace. Bezposrednio preferowane sa wigc mniejsze przesu-
niecia.

2.5 Krzyzowanie

Opracowanie operatora rekombinacji utrudnia fakt zmiennej dtugosci chromosomu.
Jednak i w tym przypadku powstalo wiele prac zajmujacych si¢ bezposrednio tym
zagadnieniem, z ktérych mozna wymienié¢ choc¢by [6]. Stworzenie operatora krzyzo-
wania, dziatajacego na poziomie pojedynczych Sciezek, bytoby niejasne z punktu wi-
dzenia sposobu kodowania, dopuszczajacego zmienng dtugos¢ chromosomu, jak i
samego zagadnienia projektowania obwodow drukowanych. Krzyzowanie operuje
wigc na poziomie nadrzednym, i polega na wymianie catych, niezmienionych Sciezek
pomigdzy rodzicami. Przebiega analogicznie do krzyzowania jednopunktowego zna-
nego z AG z ta rdoznica, ze jednostka podstawowa jest tutaj nie bit, lecz stanowiaca
komponent tworzacy $ciezka. Jak juz wspomniano, $ciezki sa uporzadkowane, a ich
liczba jest taka sama dla wszystkich osobnikdw, tej samej pozycji w wektorach dwoch
osobnikéw odpowiada wigc to samo pofaczenie. Poniewaz operator nie modyfikuje
samych sciezek, zachowany jest wymog utrzymania warunku la.
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3. Algorytm ewolucyjny

Zastosowany algorytm bazuje na klasycznym schemacie algorytmu genetycznego.
Podstawowym krokiem jest utworzenie nowej populacji osobnikéw, czyli potencjal-
nych rozwiazan, na podstawie wyselekcjonowanych, najlepiej dostosowanych przed-
stawicieli poprzedniej generacji. Pseudokod algorytmu przedstawia si¢ nastgpujaco:

BEGIN
Inicjuj populacje poprawnymi (speiniajgcymi warunek la.)
osobnikamiy;
Ocena;,
WHILE nie znaleziono satysfakcjonujgcego rozwigzania DO
Selekcja i Krzyzowanie;
Mutacja;
Ocena;,
END WHILE
END

Podstawowg cechg algorytmu jest utrzymywanie liczebnosci populacji na statym,
zadanym przez uzytkownika poziomie. W kazdym kroku algorytmu, obejmujacym
generacj¢ nowego pokolenia, nalezy wigc utworzy¢ stalq liczbe osobnikow tworza-
cych nowa populacjg. Wymaga to zdefiniowania funkcji oceny przystosowania dane-
go osobnika, ktora jest podstawowym kryterium okreslajacym prawdopodobienstwo
jego wyboru.

Proces tworzenia nowego pokolenia mozna podzieli¢ na kilka etapow: selekcja
osobnikow do reprodukceji, krzyzowanie osobnikdw, mutacje osobnikéw. W tym roz-
wigzaniu fazy selekcji osobnikdw i krzyzowania zostaly pofaczone. Na tym etapie
wybierane s3, metoda losowania z zastosowaniem ruletki, pary osobnikéw. Tworza
one pule przejsciowg o liczebnosci takiej jak cata populacja, poprzez bezposrednie
skopiowanie pary rodzicow, badz skopiowanie ich potomkow powstatych na drodze
krzyzowania. Prawdopodobienstwo wystapienia krzyzowania jest okreslane przez
uzytkownika. Kolejny etap — Mutacja — przetwarza pule przejsciowa w nowa popula-
cje. Dla kazdego osobnika z puli, z wybranym przez uzytkownika prawdopodobien-
stwem wywotywany jest operator mutacji. Warto podkresli¢ dwa fakty: prawdopodo-
bienstwo krzyzowania dotyczy kazdej wylosowanej pary, a prawdopodobienstwo
mutacji dotyczy kazdego osobnika jako catosci. Ponadto zdecydowano si¢ na zasto-
sowanie mechanizmu pozwalajacego na zachowanie najlepszego osobnika w danym
pokoleniu, poprzez przeniesienie go bez modyfikacji do nowej populacji. Dzigki temu
najlepsze rozwigzania nie sg gubione, jednoczesnie mechanizm ten przez swoj elita-
ryzm powoduje skupienie osobnikéw w poblizu najlepszego.
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3.1 Funkcja oceny

Przystosowanie danego osobnika okresla si¢ analizujac stopien spetnienia wymagan
okreslonych przez cel zadania. W tym przypadku oceniamy rozwiazania pod katem
spefniania ograniczenia zwiazanego z warunkiem 1b. Jako podstawowa metode osia-
gniecia celu, tj. znalezienia rozwiazania satysfakcjonujacego oba warunki, zastosowa-
no Presje, a konkretnie — metod¢ zwiazang z karaniem osobnikdw za naruszanie nato-
zonych ograniczen.

Analiza sformulowania problemu wykazuje, ze podstawowym zroédiem naruszania
ograniczen jest przecinanie si¢ sciezek, co prowadzi w konsekwencji do powstawania
niepozadanych pofaczen fizycznych migdzy punktami nie potaczonymi strukturalnie.
Karanie osobnikow w zaleznosci od liczby przecig¢ powinno spowodowac presj¢ se-
lekcyjna kierujaca ewolucje w kierunku rozwiazan o coraz mniejszej ich liczbie, a w
konsekwencji, w kierunku satysfakcjonujacego rozwiazania. Liczba przecig¢ okredla
stopien naruszenia ograniczenia (warunek 1b.), czyli odlegtos¢ osobnika od popraw-
nosci, zwana takze kosztem ukonczenia, badZz kosztem naprawy. Zgodnie z wspo-
mniana hipoteza (a) wykorzystanie tego parametru daje lepsze rezultaty niz poprzesta-
nie na samym fakcie naruszenia ograniczenia.

Jednoczesnie w bezposredni sposob minimalizacji podlega¢ maja takze dwa dodat-
kowe parametry: sumaryczna dtugosé wszystkich sciezek oraz liczba segmentow. Ma
to na celu preferowanie rozwiazan o krotkich i regularnych sciezkach. Uzyskana w ten
sposob wigksza ilos¢ wolnego miejsca powinna wplynaé na wzrost prawdopodobien-
stwa korzystnej mutacji, redukujacej liczbg przecigé poprzez przesunigcie przecinaja-
cego si¢ segmentu w kierunku obszaru nie zajgtego przez zadna $ciezkg.

Aby uwzgledni¢ wszystkie wymagania, zamiast bezposredniego obliczania przy-
stosowania osobnika, wyznaczany jest stopien jego nieprzystosowania, okreslony
przez sumaryczng kare. Wartos¢ ta okreslona jest przez sume wazona kar za narusze-
nie ograniczen i optymalizowanych parametréw oznaczanych jako k;, a doktadnie:

e Kk, - liczba przecigc,

e k;, - sumaryczna dlugosé sciezek,

e k; - sumaryczna liczba segmentéw tworzacych $ciezki.

Zestaw ten rozszerzono o dodatkowe parametry zwigzane z wymogiem nie wykra-
czania Sciezek poza dozwolony obszar, okreslony przez wymiary ptytki:

o k; - liczba sciezek poza ptytka,

e ks - sumaryczna dtugos¢ czgsci sciezek poza ptytka.

Parametrom tym przypisano wagi w; odpowiadajace ich znaczeniu, tak aby najwy-
zej karane bylo umieszczanie Sciezek poza dozwolonym obszarem, kolejno mniej —
przecinanie si¢ sciezek, dlugos¢ sSciezek i najmniej liczba segmentéw tworzacych.
Stopien nieprzystosowania okresla wzor 2.:

f= Z wk, Q)
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Wyznaczona ocena ma wartos¢ tym wigksza im gorzej oceniamy danego osobnika,
zastosowanie ruletki jako mechanizmu selekcji wymaga wigc odpowiedniego przeli-
czenia, tak aby prawdopodobienistwo wylosowania osobnika o wigkszej wartosci kary
byto mniejsze. Jest to realizowane poprzez wyznaczenie wartosci przystosowania jako
odwrotnie proporcjonalnej do wyznaczonej kary.

)
F = min (3)
"
gdzie: fj Fj— odpowiednio nieprzystosowanie (kara) i przystosowanie j-tego osobnika
w populacji

fmin — Najmniejsza wartos$¢ nieprzystosowania w populacji, petni role
wspotczynnika normalizacyjnego.

Cecha tego przeksztalcenia jest bezposrednie przelozenie stosunku kar dwoch
osobnikéw na stosunek prawdopodobienstwa wybrania ich do nastgpnego pokolenia:
osobnik o k-krotnie wigkszej karze ma k-krotnie mniejsza szans¢ wylosowania. Cechy
tej nie posiada czgsto stosowana metoda wyznaczania przystosowania poprzez odjgcie
wartosci kary od stalej, zgodnie z wzorem F = c - f. Ponadto, w przyjetej metodzie
nie zachodzi potrzeba obstugi przypadkéw, dla ktoérych wyznaczona warto$¢ przysto-
sowania bytaby ujemna.

3.2 Krokowa adaptacja wag

Zastosowanie karania jako mechanizmu obstugi ograniczen w bezposredni sposob
sprowadza problem do zadania optymalizacji. Zwiazane sa z tym jednak pewne wady,
do ktérych naleza m.in.:

(a) utrata informacji zwiazana z reprezentacja wiedzy o naruszonych ograniczeniach w
postaci pojedynczej wartosci,
(b)nieefektywnos¢ mechanizmu w przypadku probleméw rzadkich.

Rozpatrywany problem nalezy zakwalifikowa¢ do klasy problemdw rzadkich, gdyz
pomimo pozbycia si¢ jednego z ograniczen, w zredukowanej przestrzeni przeszukiwan
udzial rozwiazan poprawnych tj. sktadajacych si¢ z roztacznych sciezek jest bardzo
maly. Przeprowadzone testy wykazaly skfonnos¢ algorytmu do przedwczesnej zbiez-
nosci i utykania w jednym z lokalnych optiméw. Jest to zwigzane ze strukturg prze-
strzeni poszukiwan, w ktorej glebokie, lokalne optima zwiazane z ustaleniem si¢ kon-
figuracji zawierajacej niewielka liczbe przecinajacych si¢ sciezek otoczone sg przez
silnie karane rozwiazania zawierajace wiele przeci¢¢. Nalezaloby wigc wprowadzié
mechanizm pozwalajacy na wyprowadzenie populacji z takiego optimum w celu
zwigkszenia zdolnos$ci przeszukiwawczych algorytmu.

Opracowany mechanizm bazuje na zaproponowanym w przez Eibena i Hemerta w
[3] mechanizmie krokowej adaptacji wag (ang. SAW — Stepwise Adaptation of We-
ights). Wspomniana praca skupia si¢ na problemie okreslenia wag zwigzanych z twar-
doscia badz priorytetem ograniczen. Osiagnigcie satysfakcjonujacej efektywnosci
algorytmu wymaga takiego ustalenia wartosci wag, aby odpowiadaly rzeczywistej
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twardosci ograniczen, dzigki czemu spefnienie trudniejszego z ograniczen bedzie sil-
niej premiowane. Wartosci te sa zazwyczaj ustalane na podstawie wiedzy dziedzino-
wej, ewentualnie dostrajane doswiadczalnie. Przeprowadzone przez autoréw badania
wykazaly jednak, ze z faktu, iz przeszukiwanie ewolucyjne jest procesem dynamicz-
nym skladajacym si¢ z réznych faz, wynika, ze optymalne wartosci parametrow algo-
rytmu podlegaja zmianom w czasie jego dzialania. Przedstawiony pomyst polega wigc
na dostosowywaniu wartosci wag w czasie rozwiazywania problemu przez algorytm
ewolucyjny.
Rozpatrzmy nastgpujaca posta¢ minimalizowanej funkc;ji celu (dla » ograniczen):

f=X a1 )
i=1

gdzie y; oznacza wartos¢ kary generowana przez naruszenie i-tego ograniczenia, a g
Jest podlegajaca krokowej adaptacji waga zwiazana z i-tym ograniczeniem. Ide¢ algo-
rytmu krokowej adaptacji wag przedstawia ponizszy pseudokod:

Ustaw poczgtkowe wartosci wag a; (a wiec postacé funkcji f);
WHILE nie znaleziono satysfakcjonujgcego rozwigzania DO
FOR T,-kolejnych obliczen funkcji celu DO
Obliczaj przystosowanie wediug f;
END FOR
Przedefiniuj f i przelicz przystosowanie osobnikodw;
END WHILE

Zmiana funkcji przystosowania f polega na dodaniu wartosci 4da do wag a; tych
ograniczen, ktore sa naruszone przez najlepszego osobnika po 7, krokach obejmuja-
cych wyznaczenie przystosowania. Mechanizm powoduje wigc zwigkszenie priorytetu
tych ograniczen, ktére sa na danym etapie optymalizacji najtrudniejsze do spetnienia
(najczgsciej tamane), poprzez zwigkszenie presji selekcyjnej natozonej na wymog
poprawnosci osobnika wzgledem tych ograniczen. Efektywnos¢ tego podejscia po-
twierdza stuszno$¢ hipotezy (c) méwiacej, ze zastosowanie zmiennych wartosci wag
moze dac potencjalnie lepsze rezultaty niz w przypadku stalych ich wartosci.

Aby rozwiaza¢ problem zwigzany z utykaniem w optimum lokalnym, warunek 1b.
o roztacznosci wszystkich Sciezek zastapiono zestawem n-warunkéw (gdzie n — liczba
potaczen) dotyczacych osobno kazdej ze $ciezek. Kazdy warunek zwiazany jest z
wymogiem roztacznosdci pojedynczej sciezki (nie przecinania si¢ jej z zadng Sciezka).
Spetnienie tych ograniczen przez wszystkie sciezki, a wigc zapewnienie roztacznosci
kazdej ze Sciezek, jest rOwnowazne spetnieniu warunku 1b. Z ograniczeniami tymi
zwiazane sg modyfikowane w czasie dziatania algorytmu wagi — mamy wigc po jed-
nym wspotczynniku a, i=1/..n dla kazdej ze Sciezek, ktérych wartosci beda podlegaé
adaptacji.

Wprowadzenie wspotczynnikow o; wymaga okreslenia nowego sposobu wyzna-
czania wartosci kary za przecigcie $ciezek. W celu wyznaczenia nowej wartosci kary
dla danego osobnika okreslane sa wszystkie punkty przecigé sciezek, a dla kazdego
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punktu warto$¢ kary wyznacza sig¢ jako iloczyn wspdtczynnikdw a; przecinajacych sie
w tym punkcie Sciezek. Kary za poszczegdlne przecigcia sa sumowane, a ostateczna
wartos¢ zastgpuje we wzorze 2. wartos¢ wspotczynnika k; (oryginalnie rowna liczbie
przecigé). Okreslenie sumarycznej kary jako iloczynu wspétczynnikéw o; przecinaja-
cych si¢ sciezek powoduje szczegdlne mocne karanie przecigé sciezek o wysokich
wspotczynnikach kar. Naktada wigc presj¢ na wyeliminowanie przeci¢gé migdzy nimi
na rzecz sfabiej karanych przecig¢ ze Sciezkami o niskiej wartosci wspotczynnika a.

Zgodnie z ideg Eibena i Hemerta wartosci wag nalezy zmieniaé co okreslong liczbe
krokow, w tym przypadku zdecydowano si¢ na modyfikacj¢ po kazdym pokoleniu.
Wagi «; podlegaja modyfikacji pod warunkiem, ze nowe pokolenie nie zawiera lep-
szego, tj. nizej karanego rozwigzania, co wskazuje na mozliwe utknigcie w lokalnym
optimum. Algorytm modyfikacji kar przedstawia si¢ nast¢pujaco:

Ustaw wartos$ci wag a; dla wszystkich Sciezek na 1;
WHILE nie znaleziono satysfakcjonujgcego rozwigzania DO
wyznacz nowe pokolenie;
IF nie znaleziono lepszego rozwigzania THEN
na podstawie najlepszego osobnika -
- ustal liste przecinajgcych sie Sciezek;
zwieksz wartosci wag @ dla przecinajgacych -
- sie Sciezek o 1;
END IF
END WHILE

Mamy wigc poczatkowa wartos¢ wspétczynnikdw a=1/ co oznacza, ze kazdy z wa-
runkéw roztacznosci danej sciezki jest tak samo wazny, oraz jednostkowa modyfika-
cj¢ da=I1. Modyfikowanie wag mozna poréwna¢ do gromadzenia przez algorytm
wiedzy o strukturze przestrzeni rozwiazan, wykorzystywanej do sprawniejszego roz-
wigzywania problemu. Nalezy jednak zaznaczy¢, ze nie nastgpuje tutaj wyznaczenie
zestawu najlepszych dla danego problemu wag, ktére czynia go fatwym do rozwiaza-
nia. Przeprowadzone przez Eibena i Hemerta badania polegajace na pordéwnaniu
efektywnosci algorytmu wykorzystujacego mechanizm SAW oraz algorytmu opartego
o stale wartosci wag ustalone na podstawie ostatecznych wartosci wag algorytmu
SAW, wykazaly duzo wyzsza efektywnos¢ podejscia adaptacyjnego.

Efektywnos¢ mechanizmu krokowej adaptacji wag bazuje raczej na wymuszaniu
ciaglej zmiany punktu skupienia poszukiwan, co prowadzi do niejawnej dekompozycji
problemu. Algorytm ewolucyjny wzbogacony o ten mechanizm wykazuje wlasciwosci
eksploracyjne — ewolucja przeprowadza populacje przez szereg optiméw lokalnych, tj.
konfiguracji o niewielkiej liczbie przecinajacych si¢ sciezek. Przez caly okres zastoju
zwiazanego z utknigciem w lokalnym optimum nastgpuje zwigkszanie wartosci
wspotczynnikoéw kar ¢; przecinajacych sig sciezek. Prowadzi to do jego ,.eksploatacji”
poprzez wzrost sumarycznej wartosci kary dla osobnikéw z taka konfiguracja przeci-
najacych si¢ Sciezek i zwiazane z tym obnizenie ich przystosowania. Po osiagnigciu
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odpowiedniego poziomu wartosci wspotczynnikow korzystniejsze staja si¢ konfigura-
cje zawierajace by¢ moze wigksza liczbg przecigé, lecz nie zawierajace przecigé mig-
dzy dotychczas najcz¢sciej karanymi $ciezkami. Nastgpuje ponowna zbieznos¢ algo-
rytmu do kolejnego optimum lokalnego. Skojarzenie funkcjonowania tego mechani-
zmu z eksploatacja z16z zwiazane jest z faktem obnizania stopnia atrakcyjnosci obsza-
ru — okreslonego jako przystosowanie osobnikow — wskutek pozostawania populacji w
Jjego obrebie. Po wyczerpaniu ztoza populacja rozbiega si¢ w poszukiwaniu nowego,
w ktérym ponownie si¢ skupia.

Wada zastosowanego rozwiazania jest niedokladnos¢ okreslenia ,,eksploatowane-
go” obszaru przestrzeni rozwigzan. Jest on zdefiniowany jedynie na podstawie zbioru
przecinajacych si¢ Sciezek i podlega jednorodnej eksploatacji przez zwigkszanie ich
wspélczynnikow kar, niezaleznie od faktycznego potozenia zbioru osobnikéw jak i
samego optimum lokalnego. Aby lepiej okresli¢ eksploatowany obszar i umozliwi¢
jego opuszczenie poprzez seri¢ nieznacznych modyfikacji osobnikéw w kierunku
prawidlowego rozwiazania, wprowadzono dodatkowy zestaw adaptowanych wspdi-
czynnikéw B zwiazanych z wszystkimi punktami plytki (lezacymi na przecigciach
linii siatki). Po ich uwzglednieniu wyznaczanie kary dla j-tego przecigcia polega na
obliczeniu iloczynu wspétczynnikéw a; przecinajacych si¢ w danym punkcie $ciezek
(tak jak w poprzednim przypadku) oraz wspoiczynnika f; tego punktu. Wartosci
wspolczynnikoéw £ ustalane i zmieniane sa analogicznie do wspoétczynnikéw a;, tj.
poczatkowo ich warto$¢ wynosi jeden i zwigkszana jest o jeden dla punktow, w kto-
rych znajduja si¢ przecigcia (okreslonych na podstawie najlepszego osobnika po kaz-
dym pokoleniu). Podsumowujac, wartos¢ kary za j-te przecigcie dana jest wzorem 5.:

e s

gdzie s; przyjmuje wartosci indekséw $ciezek przecinajacych si¢ w j-tym punkcie.
Sumaryczna warto$¢ kary za wszystkie przecigcia zastgpujaca we wzorze 2. wspdl-
czynnik k; okreslajacy liczbg przecig¢, dana jest wzorem 6.:

k, = ZP/- ©)
J
gdzie j okresla kolejne punkty przecigcia dla konfiguracji danego osobnika.

Wyznaczong w ten sposob oceng (karg) okresla si¢ w dalszej czgsci dokumentu
jako adaptacyjng, natomiast wyznaczong w sposob pierwotny (tj. dla k; réwnego licz-
be przecig€) jako rzeczywista. Ocena rzeczywista odpowiada ocenie adaptacyjnej przy
ustaleniu wartosci wag ¢; oraz f; na jeden.

3.3 Mechanizm funkcjonowania krokowej adaptacji wag

Nastgpujace po sobie etapy zbiegania do optimum lokalnego oraz jego eksploatacji
najtatwiej przesledzi¢ na wykresie przedstawiajacym zmiany wartosci nieprzystoso-
wania najlepszego osobnika w kolejnych pokoleniach przedstawione na rysunku Sab.
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Analizujac przebieg z rys.5a. mozna dostrzec kolejne etapy szybkiego, w przybli-
zeniu kwadratowego, wzrostu oceny najlepszego osobnika — a wigc jego kary. Wzro-
sty te sa wynikiem zwigkszania wartosci wag «; i 3; kar za przecigcia wywolanego
utknigciem w optimum lokalnym. Sg to etapy ,,eksploatacji”” optimum, trwajacej az do
momentu przekroczenia krytycznej wartosci wag pozwalajacej na ustalenie si¢ innej
konfiguracji przecig¢ czemu towarzyszy gwaltowny spadek wartosci kary adaptacyj-
nej.
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Rysunek 5: Warto$¢ adaptacyjnej (a) oraz rzeczywistej (b) oceny najlepszego osobnika

Poréwnujac przebiegi przedstawiajace adaptacyjng i rzeczywista oceng mozna
zauwazy¢, ze wytraceniu populacji z optimum lokalnego (spadek wartosci kary adap-
tacyjnej) towarzyszy gwaltowny wzrost rzeczywistej kary najlepszego osobnika,
zwigksza si¢ wigc liczba przecigé. Nastepnie liczba przecig¢ ulega redukceji i populacja
zbiega w kierunku kolejnego optimum lokalnego — obserwujemy ,,schodkowy” spadek
wartosci rzeczywistej kary. Przebieg algorytmu sklada si¢ wigc faktycznie z trzech
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powtarzajacych si¢ naprzemiennie faz: zbiegania do optimum lokalnego (i), jego eks-
ploatacji (ii) oraz ekspansji w poszukiwaniu nowego optimum (iii). Proces ten konczy
si¢ w momencie znalezienia optimum zwiazanego z konfiguracja pozbawiona przeci-
najacych sig sciezek.

Jeszcze jeden typ zachowania pozostawit wyraznie widoczny $lad na przebiegach z
rys.6ab. Chodzi tutaj o oscylacje rzeczywistej oceny najlepszego osobnika, ktérej
towarzyszy wzrost kary adaptacyjnej. Odpowiada to sytuacji naprzemiennego ustala-
nia si¢ dwoch lub wigkszej liczby réznych konfiguracji przecinajacych si¢ sciezek,
ktére kolejno staja si¢ korzystniejsze by nastgpnie wskutek ,.eksploatacji” ustapi¢
miejsca nastepnym. Ostatecznie prowadzi to do ustalenia si¢ innej konfiguracji zwia-
zanej z nowym optimum lokalnym.
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Ocena [*1e+06)

Pokolenie ( a)

Ocena [*1e+03)

Pokolenie (b)

Rysunek 6: Warto$¢ adaptacyjnej (a) oraz rzeczywistej (b) oceny najlepszego osobnika
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4. Badania

W tej czgsci pracy zawarte sa wyniki badan i ich analiza pod katem efektywnosci
funkcjonowania wprowadzonych mechanizméw. Badania dla wszystkich czterech
problemow przeprowadzono przy ustaleniu nastgpujacych wartosci podstawowych
parametrow algorytmu:

e Prawdopodobienstwo mutacji: 0,8
e Prawdopodobienstwo krzyzowania: 0,1
e Liczebnos¢ populacji: 100

Oznacza to, ze przecigtnie 80 na 100 osobnikow z puli przejsciowej poddawane bylto
pojedynczej mutacji, natomiast 5 na 50 wylosowanych par zastgpowane bylo swoimi
potomkami przy kopiowaniu do puli przejsciowej. Jako moment znalezienia rozwia-
zania okreslono numer pokolenia, do ktérego nalezal pierwszy osobnik pozbawiony
przecig¢. W celu wyznaczenia ostatecznej oceny dzialanie algorytmu kontynuowano
do momentu uzyskania osobnika o minimalnej diugosci i liczbie segmentéw tworza-
cych $ciezki, przy ustaleniu maksymalnej sity mutacji s=/ w celu praktycznego wy-
eliminowania mozliwosci ,,przekroczenia” jednej ze Sciezek nad inng.

4.1 Problem 1

Liczba punktéw lutowniczych 16
Liczba pofaczen 8
Uwagi:

e polozone blisko siebie punkty lutownicze
utrudniaja prowadzenie S$ciezek najkrétsza
droga

e duza liczba réznych rozwiagzan

Pomiary przeprowadzono dla trzech wartosci parametru s okreslajacego maksymalna
sit¢ mutacji. Dla kazdej wartosci sity przeprowadzono 30 pomiardéw, notujac moment
rozwigzania problemu oraz oceng¢ znalezionego rozwiazania. Wartosci usredniono
($red.) i wyznaczono ich odchylenie standardowe (odch.).

Rysunek 7ab: Problem 1 - przykladowe rozwigzania, w tym najlepsze - 7a
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L.p. s=10 s=3 s=3

|. pokolen| ocena ]I. pokolen| ocena |}l. pokoleni| ocena
1 71 106,6 140 1125 412 1124
2 59 108,3 271 106,5 324 106,7
3 195 104,2 99 106,6 184 106,5
4 408 116,8 280 106,7 248 106,6
5 220 1143 95 1124 904 110,9
6 107 104,2 186 106,6 174 1124
7 308 114,8 133 106,6 127 106,7
8 37 100,6 141 106,7 209 106,6
9 49 104,2 53 100,5 270 106,6
10 105 116,5 161 100,6 312 106,7
11 140 106,7 310 110,8 265 106,7
12 102 106,6 165 106,6 201 102,6
13 62 128,5 275 106,6 160 106,5
14 368 1083 36 100,5 842 106,6
15 248 100,6 40 104,2 576 114,7
16 263 114,8 155 100,6 394 110,8

17 639 106,7 91 100,6 310 107
18 247 114,6 137 1204 212 102,6
19 60 104,2 68 108,3 341 106,6
20 225 104,2 642 107 57 100,5
21 43 104,2 343 100,5 122 106,6
22 89 108,3 415 120,4 92 106,6
23 160 108,3 279 1204 237 106,7
24 341 104,2 79 106,6 95 102,6
25 258 108,3 269 106,8 261 100,5
26 276 110,6 350 106,8 44 100,6
27 73 108,5 82 114,7 202 106,6

28 129 120,4 124 106,7 843 107
29 64 104,2 52 100,6 101 106,6
30 149 110,9 135 106,8 520 106.,6
$red.] 1833 109,1 186,9 107,4 3013 106,6

odch.] 1365 6.2 134,6 5.8 228,0 3.4

Tabela 1: Wyniki dla problemu 1

Mozna zauwazy¢, ze dla wigkszych (35,10) wartosci maksymalnej sity mutacji roz-
wigzanie znajdowane jest przecigtnie prawie dwukrotnie szybciej niz dla matej warto-
$ci sity. Wartos¢ s=3 jest wigc w tym przypadku zbyt mata aby umozliwi¢ jednorazo-
wa mutacj¢ pozwalajaca na pozbycie si¢ niepozadanego przecigcia. Wymagana jest w
tym przypadku sekwencja mutacji, przeprowadzajaca przez silnie karane konfiguracje,
a tym samym mniej prawdopodobna i wymagajaca diuzszego dziatania mechanizmu
eksploatacji. Dla tej wartosci sity algorytm zbiezny jest z kolei do przecigtnie lepiej
ocenianych rozwiazan i wykazuje si¢ prawie dwukrotnie mniejszym odchyleniem
standardowym ich oceny. Zwiazane jest to z faktem bardziej prawdopodobnego, a
przez to czgstszego powstawania konfiguracji zawierajacej prowadzone naokoto
Sciezki w przypadku duzych wartosci parametru s. Dla matych wartosci sity czgsciej
powstaja rozwiazania zawierajace Sciezki prowadzone pomigdzy punktami lutowni-
czymi, a wiec krotsze. Mniejsza liczba oraz zblizona ocena takich konfiguracji ttuma-
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czy mniejszy rozrzut oceny rozwigzan. Analogiczny wplyw wartosci parametru s wi-
doczny jest takze dla pozostatych problemow.

4.2 Problem 2

Liczba punktéw lutowniczych 10
Liczba polaczen 4
Uwagi:

e jedno najprostsze rozwigzanie wymagajace
prowadzenia $ciezki poziomej pomigdzy
s$ciezkami pionowymi

e stosunkowo duzo miejsca pomigdzy Sciez-
kami

Rysunek 8ab: Problem 2 — sytuacja wejsciowa (8a) i rozwigzanie (8b)

Tabela 2. zawiera wyniki badan przeprowadzonych dla problemu 2 i czterech réznych
wartosci parametru s. Zestawiono wartosci Srednie oraz odchylenia standardowe licz-
by pokolen potrzebnych do znalezienia rozwiazania. Poza jednym przypadkiem
wszystkie znalezione rozwiazania odpowiadaly wzorowi z rys.8b.

s=10 s=5 s=3 s=1
sred.{  1040,7 1856,4 2019,1 4398,7
odch. 711,0 1321,9 924.,5 2111,2

Tabela 2: Wyniki dla problemu 2

Takze i w tym przypadku wida¢ tendencj¢ do wzrostu liczby pokolen koniecznych do
znalezienia rozwiazania wraz ze zmniejszaniem sily mutacji. Jednak nawet dla najniz-
szej mozliwej wartosci s=/, odpowiadajacej dopuszczeniu przesuni¢é tylko o jedna
pozycje, algorytm jest w stanie znalez¢ prawidlowe rozwiazanie. Jest to mozliwe
dzigki wprowadzeniu kar pozycyjnych i zwigzanych z nimi wspotczynnikéw f; zwie-
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lokrotniajacych karg za przecinanie si¢ sciezek w konkretnym miejscu. Wymusza to
ciagla zmiang punktu przecigcia dwoch sciezek umozliwiajac ich rozdzielenie poprzez
sekwencje mutacji wyprowadzajaca punkt przecigcia poza koniec jednej ze Sciezek.

4.3 Problem 3

Liczba punktéw lutowniczych 38

Liczba potaczen 19

Uwagi:

e duza liczba punktéw i potaczen

Lp. s=J s =10

1. pokolen ocena I. pokolen ocena

1 3706 334,1 575 342,2
2 516 333,7 6073 344,2
3 4995 340,3 894 362,7
4 1447 325,6 915 333,8
5 1444 3339 5095 358,9
6 2706 327,7 1445 348,6
7 8548 380,5 1305 345,5
8 1592 352,5 1307 356,9
9 3360 325,5 7425 378,3
10 4082 339,9 558 340,2

sred. | 3239,6 3394 2559,2 351,1

odch.l  2334,7 16,6 2587,4 13,1

Tabela 3: Wyniki dla problemu 3

4.4 Problem 4

Liczba punktéw lutowniczych 16
Liczba polaczen 6
Uwagi:

e konieczno$¢ ciasnego, rownoleglego prowa-
dzenia potaczen

e jedno najlepsze rozwiazanie, oraz kilka gor-
szych zawierajacych $ciezki prowadzone na-
okoto
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Rysunek 9: Problem 4 - najlepsze rozwigzanie

§=J §= 40
l.pokolen ocena 1.pokolen ocena
sred- | 4506,4 228,7 31774 2343
odch.|  2162,5 4,4 22759 20,1

Tabela 4: Wyniki dla problemu 4

Konieczno$¢ ciasnego prowadzenia $ciezek sprawia, ze rozwigzanie tego problemu
bez mechanizmu kar pozycyjnych okazalo si¢ praktycznie niemozliwe. Jest to zwiaza-
ne z faktem istnienia tylko jednego najlepszego rozwiazania, pozbawionego nadmia-
rowego miejsca dla wewnetrznych sciezek. W wyniku wigkszosci mutacji zwiazanych
z przemieszczeniem ktoregos z poziomych segmentdw powstaja konfiguracje zawie-
rajace nakladajace sie fragmenty Sciezek, silnie karane ze wzgledu na sumowanie sig
kar z kazdego punktu przecigcia. Mamy wigc do czynienia z glgbokim optimum glo-
balnym otoczonym wysoka i rozlegla bariera silnie karanych rozwiazan. Podobny
charakter majq takze inne lokalne optima przestrzeni poszukiwan, co sprawia, ze jest
to problem szczegdlnie trudny do rozwiazania tradycyjnymi metodami ewolucyjnymi.
Uzyskane wyniki wykazuja wzglednie duza liczb¢ pokolen potrzebnych na znalezie-
nie rozwiazania pozbawionego przeci¢¢. Ponadto nalezy zwréci¢ uwage na fakt, iz
wiekszo$¢ ze znalezionych rozwiazan zawiera jedna lub wigcej sciezek prowadzonych
naokolo, a rozwigzanie optymalne (pokazane na rys.9.) znajdowane jest zaledwie w
kilku procentach przypadkow.

Poréwnujac problemy 3 i 4 mozna zauwazy¢, ze rzeczywista trudnos¢ zadania nie
jest prosta funkcja liczby punktdw i potaczen, lecz zalezy w duzym stopniu od gesto-
$ci ich potozenia. Okresla ona nadmiar miejsca dla prowadzenia $ciezek, ktory wpty-
wa na charakter rozkfadu funkcji celu. Koniecznos$¢ ggstego prowadzenie Sciezek od-
powiada przestrzen poszukiwan o glgbokich i ciasnych optimach lokalnych, z czym
zwiazany jest dluzszy czas ,,bladzenia” populacji oraz koniecznos$¢ diuzszej eksploata-
cji znalezionych optimow lokalnych.
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5. Podsumowanie

Przedstawiony w tej pracy algorytm ewolucyjny dostrojono do rozwigzywania jedne-
go szczegblnego problemu zwiazanego z szeroko pojeta inzynierig projektowa. Pod-
stawowym zagadnieniem bylo takie sformulowanie problemu, z ktérym w sposob
naturalny zwiazany jest zestaw ograniczen, aby sprowadzi¢ go do zadania optymaliza-
cyjnego mozliwego do rozwiazania za pomocg technik ewolucyjnych. Zakres modyfi-
kacji obejmuje wprowadzenie opartej na wiedzy dziedzinowej strukturalnej reprezen-
tacji oraz zestawu operatorOw genetycznych, ich wspéldziatanie w celu ograniczenia
przestrzeni poszukiwan oraz redukcji liczby twardych ograniczen, a takze wykorzy-
stanie mechanizmu krokowej adaptacji wag w celu zwigkszenia mozliwosci eksplora-
cyjnych. Zrédtem tych modyfikacji byly sformutowane w wielu pracach wskazéwki i
hipotezy odnosnie problemu spelniania ograniczen, ktére zostaly zaadaptowane do
tego zadania. Wykorzystano zar6wno metody polegajace na zapewnianiu spelnienia
ograniczen w oparciu o specjalnie opracowang reprezentacj¢ i zestaw operatorow, jak
i metody zwiazane z nalozeniem presji selekcyjnej spychajacej populacj¢ w kierunku
obszaru poprawnych rozwiazan. Nie sa to oczywiscie wszystkie mozliwosci, jednak
wybrano je ze wzgledu na ich ogéInos¢ (karanie), jak i mozliwosé wykorzystania wie-
dzy dziedzinowej (reprezentacja, operatory, kary pozycyjne). Warto takze zwrocic¢
uwage na sposob dostosowania mechanizmu krokowej adaptacji wag do tego proble-
mu. Wida¢ tutaj mozliwos¢ analogicznego zastosowania wszgdzie tam, gdzie jedno z
ograniczen daje si¢ rozbi¢ na zbior stabszych ograniczen, z ktérymi mozemy zwiazaé
podlegajace adaptacji wagi. Wyniki badan swiadcza o potencjalnej optacalnosci takie-
go postgpowania. Pozwoli ono by¢ moze na efektywne rozwiazywanie zadan trady-
cyjnie okreslanych jako trudne badz niemozliwe do rozwiazania za pomoca technik
ewolucyjnych.
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Streszczenie

Praca poswigcona jest tematyce automatycznego planowania i harmonogramowania. Dokona-
no uporzadkowania stosowanych terminéw oraz przegladu stosowanych metod. Na zakoncze-
nie omowiono przykiad zastosowania algorytmu genetycznego do zadania planowania dyzu-
réw personelu w rzeczywistym szpitalu.

1. Wstep

Niniejszy rozdzial stanowi wprowadzenie do problematyki automatycznego planowa-
nia i harmonogramowania. Zawiera definicje tych poj¢¢ oraz krotkie opisy najczgscie)
badanych problemow.

1.1 Co to jest planowanie?

W jezyku angielskim istnieje kilka stéw oznaczajacych ,,plan” i ,planowanie”. Rze-
czownik plan odpowiada polskiemu rzeczownikowi ,,plan”, oznaczajacemu ,,program
zadan i prac (...), ktére maja by¢ wykonane w okreslonym czasie; porzadek, rozktad
zaje¢ lub czynnosci przewidzianych do wykonania” (wg Malego Stownika Jezyka
Polskiego, PWN 1993). Analogicznie angielski czasownik plan odpowiada polskiemu
»planowac” — uktadaé plany. Oprécz tego w jezyku angielskim wystepuje wyraz sche-
dule (zarbwno w znaczeniu czasownikowym jak i rzeczownikowym), ktory jest naj-
blizszy polskiemu rzeczownikowi ,,harmonogram” — ,(...) opis obrazujacy kolejnos¢ i
czas trwania poszczegdlnych czynnosci w ogdlnym planie pracy” (ibid.) — oraz cza-
sownikowi ,harmonogramowac” — uktada¢ harmonogramy. Oprdcz tego jezyk angiel-
ski dysponuje ,,specjalnym” rzeczownikiem timetable, ktéry oznacza plan zajgé lub
rozklad jazdy.

W najbardziej ogélnym przypadku harmonogramowanie (scheduling) jest proble-
mem grupowania zasobdw (lub po prostu zdarzer) w pewnych punktach czasowych
(nazywanych w tej pracy terminami) w danym okresie czasowym, aby osiagnac¢ pe-
wien okreslony cel (cele) i/lub spetni¢ okreslone zatozenia (ograniczenia). Ukladanie
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plandw, czy tez krocej planowanie (fimetabling), jest szczegdlnym przypadkiem har-
monogramowania (Newall 1999).

1.2 Ukfadanie planéw szkolnych i jego warianty

Jednym z najpopularniejszych problemow planowania jest uktadanie planow dla szkot
i uczelni. Ukladanie planu szkolnego jest problemem takiego ustalenia sekwencji
spotkan studentow z nauczycielami w okreslonym przedziale czasowym, aby byly
spelnione réznego typu ograniczenia (Schaerf 1995).

Czlowiekowi ulozenie planu, w zaleznos$ci od skali jego zlozonosci, zajmuje zwy-
kle od kilku godzin do kilku dni. Co wigcej, tak skonstruowany plan moze by¢ niedo-
skonaly pod pewnymi wzglgdami, np. uczei ma migdzy kolejnymi zajgciami wiele
dtugich przerw. Z tych powodoéw zwrdcono uwage na mozliwo$¢ automatyzacji pro-
cesu ukfadania planow. Pierwsze prace z tej dziedziny powstaty w latach szes¢dzie-
siatych ubiegtego stulecia (za Schaerf 1995). Od tego czasu powstato i zostalo wdro-
zonych wiele aplikacji, efektywnie rozwiazujacych problem uktadania plandw.

W literaturze pojawia si¢ wiele wariantéw problemu ukfadania planu, rézniacych sig
zarowno typem szkoly (podstawowa, srednia, wyzsza), jak i typem ograniczen.
A. Schaerf (1995) dzieli problemy uktadania planéw na trzy klasy:

e Ukladanie planu lekcji (school timetabling) — utozenie tygodniowego planu dla
wszystkich zaje¢ w szkole tak, aby zaden nauczyciel nie prowadzit dwoch zajeé
w tym samym czasie i na odwrot,

o Uktadanie planu zajeé na uczelni (course timetabling) — utozenie tygodniowego
planu dla wszystkich kursow na uczelni tak, aby unikna¢ naktadania si¢ zajgc,
na ktdre uczgszeza ten sam podzbidr studentow,

e Uktadanie planu egzamindw (examination timetabling) — utozenie planu egza-
minow dla zbioru kursow na wyzszej uczelni tak, aby unikna¢ nakfadania si¢
egzaminow z przedmiotdw, na ktdre uczgszcza ten sam podzbidr studentow.

Blisko powiazany z uktadaniem planu zaj¢¢ jest tzw. podproblem grupowania. Na
niektorych uczelniach wyzszych pewne zajgcia sa powtarzane czgsciej niz raz w tygo-
dniu. W szczegolnosci sg to zajecia wspdlne dla duzej liczby studentdw réznych wy-
dziatow (kierunkow, specjalnosci) podzielonych na grupy. Zatézmy, ze specjalnos¢ S,
obejmuje wyktady W, i W,, a specjalnos¢ S, kursy W, i W;. Dodatkowo zatdézmy, ze
wyktad kursu W, odbywa si¢ w punkcie czasowym p, a wyktad W; w punkcie g. W
tym przypadku wyktad W, nie moze si¢ odbywac ani o czasie p ani q. Jezeli jednak
studenci specjalnosci S, i S, zostana podzieleni na dwie grupy, to jedna bedzie mogta
uczeszcza¢ na wyktad W, o czasie p a druga o czasie ¢g. Problem podziatu studentow
na grupy przy ustalonym planie zajg¢ w celu minimalizacji liczby konfliktow nazywa-
ny jest wiasnie podproblemem grupowania (grouping subproblem, student sectioning)
(Schaerf 1995).
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1.3 Planowanie a sfuzba zdrowia

Planowanie personelu (employee scheduling) jest problemem bardzo podobnym do
ukfadania planéw szkolnych. Popularne sa tu modele zwigzane ze stuzbg zdrowia —
planowanie dyzuréw lekarzy réznych specjalnosci, pracy pielegniarek i personelu
technicznego. W tych przypadkach chodzi o utozenie planu tak, zeby wszystkie termi-
ny w pewnym okresie czasowym (najczgsciej w ciggu miesiaca) byly obsadzone pra-
cownikami w okreslony sposéb, przy jednoczesnym zapewnieniu réwnomiernego
obcigzenia pracownikow praca. Opisywany w tej pracy problem jest wariantem pro-
blemu planowania personelu w stuzbie zdrowia. Oprocz planowania personelu, w
stuzbie zdrowia wystepuja rowniez problemy harmonogramowania zadan dla oddzia-
tow intensywnej opieki medycznej, planu operacji chirurgicznych oraz dziatan specja-
listycznych jednostek diagnostycznych (laboratoriow, ultrasonografow itp.). Przykia-
dy zadan planowania i harmonogramowania w stuzbie zdrowia mozna znalez{ w
(Spyropoulos 2000; Marinagi, Spyropoulos, Papatheodorou i Kokkotos 2000; Oddi i
Cesta 2000; Valouxis i Housos 2000).

1.4 Wybrane problemy harmonogramowania

Artykut ten dotyczy gtéwnie probleméw uktadania planéw, lecz nie nalezy zapomi-
na¢, ze analogiczne metody rozwigzan stosuje si¢ takze w zadaniach harmonogramo-
wania. Ponizej opisano kilka popularnych probleméw harmonogramowania.

Harmonogramowanie zadar w Srodowiskach przetwarzania réwnolegtego

Problem ten dotyczy przydzialu zadan (proceséw) do procesoréw w Srodowisku
przetwarzania réwnoleglego. System multiprocesorowy jest reprezentowany przez
nieskierowany, niewazony graf, zwany grafem systemu (system graph). Wezet grafu
systemu reprezentuje procesor komputera rownolegtego w architekturze MIMD, wraz
z lokalng pamigcia. Krawedzie oznaczaja dwukierunkowe kanaty komunikacyjne po-
migdzy procesorami i opisuja topologi¢ systemu. Zwykle zaktada sig, ze procesory
maja t¢ samg moc obliczeniowa, a komunikacja przez kanaty nie zuzywa czasu proce-
sora (procesorow).

Program réwnolegly jest reprezentowany przez skierowany acykliczny graf wazo-
ny, zwany grafem sekwencji zadan (precedence task graph) lub grafem programu.
Wezty w tym grafie reprezentuja zadania (procesy) elementarne, ktore sa wykonywa-
ne w kolejnosci opisanej przez graf. Wagi wezlow oznaczaja czas przetwarzania kaz-
dego z zadan na jednym procesorze systemu multiprocesorowego, zas wagi krawedzi
— czas komunikacji migdzy zadaniami, jesli zadania wykonuja si¢ w sasiednich proce-
sorach (jedli zadania wykonuja si¢ w tym samym procesorze, to czas komunikacji
migdzy nimi wynosi 0). Celem harmonogramowania jest takie przydzielenie zadan do
procesorow, aby zostala zachowana wiasciwa kolejnos¢ wykonywania zadan oraz
catkowity czas wykonania programu byt jak najmniejszy (Swigcicka, Seredynski i
Jazdzyk 2001).
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Problemy typu job-shop scheduling

Problemy typu job-schop scheduling (JSS) sa wazne z praktycznego punktu widzenia.
W ogdlnym przypadku dana jest pewna liczba prac (jobs) do wykonania na pewne;j
liczbie maszyn (czgsto podawany jest przyktad obrobki czgsci w fabryce samocho-
dow). Kazda z prac sktada si¢ z czynnosci (tasks) i poszczeg6lne czynnosci musza by¢
wykonywane przez odpowiednie maszyny. W danej chwili kazda maszyna moze ob-
rabia¢ tylko jedng cze$¢ i zadna czgsé nie moze by¢ obrabiana przez dwie maszyny
jednoczesnie. Zadanie polega na znalezieniu harmonogramu czynnosci minimalizuja-
cego zadane kryterium (np. catkowity czas pracy maszyn). W ogolnej postaci proble-
mu JSS kolejnos¢ wykonywanych czynnosci jest istotna, w odréznieniu od problemu
open-schop scheduling (OSS), gdzie moze by¢ dowolna. Najbardziej ztozonym przy-
padkiem jest harmonogramowanie dynamiczne (dynamic scheduling), zwane tez czg-
sto reharmonogramowaniem (rescheduling), gdzie w czasie pracy maszyn moga po-
jawiaé sie dodatkowe czynnosci do wykonania oraz zadany jest czas, w ktéorym nalezy
zrealizowaé¢ dang czynnos¢. W zaleznosci od tego, czy zmiany pojawiaja si¢ w ustalo-
nych chwilach, czy tez losowo, mamy do czynienia z reharmonogramowaniem deter-
ministycznym badz stochastycznym. Jako, ze teoretycznie proces reharmonogramo-
wania moze trwa¢ w nieskonczonos¢ (gdy ciagle pojawiaja si¢ nowe czynnosci do
wykonania), stosuje si¢ inne niz w przypadku problemdéw OSS i JSS kryteria oceny
jakosci rozwiazania. Wszystkie opisane wyzej problemy sa NP-trudne (Fang, Ross i
Corne 1993; Fang, Ross i Corne 1994).

Harmonogramowanie fapania kurczakow

Zagadnienie harmonogramowania tapania kurczakoéw (chicken catching scheduling)
zostato opracowane na podstawie rzeczywistego problemu szkockiego przedsigbior-
stwa drobiarskiego. Przedsigbiorstwo ma kilka fabryk (o danej wydajnodci), z ktérych
kazda dysponuje pewng liczba cigzaréwek okreslonej (czgsto réznej) pojemnosci wraz
z kierowcami oraz pewng liczba druzyn ,tapaczy”. Druzyny fapaczy moga pracowac
na pot lub pelny etat na jednej z trzech zmian i maja okreslong wydajnos¢ fapania.
Podobnie okreslany jest maksymalny czas pracy kierowcow. Zadanie polega na takim
zaplanowaniu pracy fapaczy i kierowcdw, poruszajacych si¢ migdzy fabrykami a po-
fozonymi w réznych miejscach farmami, aby zapewni¢ ciagla prace fabryk. Jednocze-
$nie musza by¢ spetnione réznego typu ograniczenia (kierowcy nie moga zbyt dtugo
siedzie¢ za kierownica bez przerwy, ptaki nie moga zbyt dtugo przebywac w klatkach
transportowych, nalezy unikaé¢ bezczynnosci tapaczy i kierowcédw itp.) (Hart, Ross i
Nelson 1998; Hart, Ross i Nelson 1998).

1.5 Podejscia do problemu i do rozwigzania

Jezeli ukfadanie ma na celu znalezienie jakiegokolwiek planu spetniajacego wszystkie
zdefiniowane ograniczenia, problem jest wyrazony jako problem poszukiwania (se-
arch problem). Jezeli jednak poszukujemy planu, ktéry spetnia wszystkie silne ograni-
czenia (czyli takie, ktore muszq by¢ spetnione, aby plan byl akceptowalny) oraz mini-
malizuje (lub maksymalizuje) funkcj¢ celu, zawierajaca ograniczenia sfabe, problem
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wyrazony jest jako problem optymalizacji (optimalization problem). W obu przypad-
kach definiuje si¢ problem podstawowy (underlying problem), ktory jest problemem
zawyrokowania, czy istnieje rozwiazanie (w przypadku problemu poszukiwania) lub
czy istnieje rozwiazanie, dla ktérego funkcja celu osiaga pewng zatozona warto$¢ (w
przypadku problemu optymalizacji). Zwykle problem podstawowy jest NP-zupeiny,
tak wigc idealne rozwiazanie moze by¢ znalezione tylko w przypadkach o niewielkich
rozmiarach (Schaerf 1995).

Wszystkie podejscia do rozwiazania opieraja si¢ na pomysle, aby najpierw umiescié
na planie zajgcia obtozone najsilniejszymi ograniczeniami, jednak réznia si¢ rozumie-
niem pojecia ,,najsilniejsze ograniczenia”. Najprostsze podejscie do rozwigzania imi-
tuje sposdb rozumowania cztowieka — bezposredniq heurystyke (direct heuristics),
oparta na kolejnych przyrostach (successive augmentation). Cztowiek ukfada plan
kolejno dodajac jedne zajgcia po drugich, az wypetni nimi caly plan. Historycznie,
rozwiazania oparte na tym podejsciu powstaty najwczesniej. Potem zaczeto stosowac
bardziej ogdlne metody, takie jak redukcja do dobrze poznanego problemu kolorowa-
nia grafu. Najpozniej zaczgto stosowac metaheurezy, np. przeszukiwanie tabu, symu-
lowane wyzarzanie czy algorytmy genetyczne (Schaerf 1995).

1.6 Ukfadanie automatyczne a interaktywne

Opinie w kwestii, czy uktadanie planéw moze by¢ w petni automatyczne, roznia si¢ z
dwoch powodow z dwoch powodoéw: po pierwsze, czasem trudno wyjasni¢ w sposob
zrozumialy dla programu komputerowego, dlaczego jeden plan jest lepszy od innego;
po drugie, poniewaz zwykle przestrzen poszukiwan jest bardzo duza, interwencja
czlowieka moze pchna¢ poszukiwania we wlasciwym (lub cho¢by tylko obiecujacym)
kierunku, ktérego system mogtby w ogole nie zbadac, lub mogtby go zbadaé po diu-
gim czasie. Powyzsze argumenty przemawiaja za budowa systemow, ktore przynajm-
niej pozwalaja manipulowaé swoim wyjsciem. Niektore systemy wymagajg czestsze;j i
dalej idacej interwencji cztowieka, i nazywane sa interaktywnymi (lub pétautomatycz-
nymi). Ich przeciwiefistwem sg systemy automatyczne (batch), ktore dzialaja bez inge-
rencji ze strony cztowieka (Schaerf 1995).

2. Modele stosowane w planowaniu

Ponizszy rozdziat zawiera opis ograniczen i miernikdw jakosci stosowanych w pro-
blemach planowania oraz matematyczna posta¢ przykfadowego problemu typu klasa-
nauczyciel.

2.1 Mozliwe ograniczenia i mierniki jakosci w problemach planowania

Uktadanie planu zajgé na uczelni polega na przypisaniu zbioru wykfadéw i innych
form zaj¢¢ do pewnej liczby miejsc (sal) i przedzialdow czasowych. Podstawowg roz-
nica migdzy planem zaj¢¢ na uczelni a planem lekcji w szkotach podstawowych i
srednich jest fakt, ze zajgcia na uczelni maja czgsto przypisane te same zbiory stu-
dentoéw, podczas gdy zbiory ucznidéw, przypisanych do lekcji w szkole sa prawie zaw-
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sze rozlaczne. Jezeli dwa wyklady (lub inne formy zajec¢) dziela ten sam zbidr stu-
dentow, to nie moga odbywac si¢ w tym samym czasie. Jest to tzw. ograniczenie silne,
czyli takie, ktore musi by¢ spetnione aby plan byt akceptowalny, w odrdznieniu od
ograniczen slabych (soft constraints), takich jak np. zapewnienie odpowiednio dhugiej
przerwy miedzy zajeciami na positek lub dojazdy, ktérych ztamanie nie pociaga za
sobg takich konsekwencji. Plan nazywany jest osiqgalnym (feasible), gdy spetnione sg
dla niego wszystkie silne ograniczenia. Wazna rol¢ w przypadku zaj¢¢ na uczelni od-
grywa wielkos¢, dostepnos¢ i wyposazenie sal wyktadowych (laboratoridw itp.). Czg-
sto tez musza by¢ wzigte pod uwagg wzajemne relacje migdzy kursami. Warianty tego
problemu uwzgledniaja rowniez zajgcia, w ktdrych uczestniczy wigcej niz jedna grupa
studentow, niedostepnos¢ okreslonych sal w pewnych terminach, przypisanie z gory
zaje¢ do sal i (lub) godzin, uwzglednienie w planie przerw (na dojazdy, positki itp.)
oraz uktadanie plandéw dla zaje¢ o roznym czasie trwania. Miarg jakosci planu moze
by¢ jego zwartos¢ (compactness). Plan jest zwarty z punktu widzenia nauczyciela,
jezeli poszczegdlne jego zajecia sg pogrupowane razem tak bardzo, jak to jest mozli-
we. Podobnie mozna zdefiniowaé zwartos¢ z punktu widzenia ucznia (studenta). Od-
wrotng do zwarto$ci miarg jest rozrzucenie (distribution). Jezeli jakie$ zajgcia odby-
waja si¢ pieé razy w tygodniu (np. jezyki, matematyka), to niepozadane jest, aby
wszystkie zajecia danego przedmiotu odbywaly si¢ w tym samym dniu. Odlegtos¢
migedzy zajeciami z danego przedmiotu to wiasnie rozrzucenie. Model zwartosci i
rozrzucenia wraz z rozszerzonym modelem ograniczen silnych mozna znalez¢ w
(Drex! i Salewski 1997). Zaréwno zakres problemdéw branych pod uwage podczas
uktadania planu, jak rozréznienie, ktére z wynikajacych z nich ograniczen sa silne, a
ktore stabe zalezy od specyfiki uczelni, dla ktérej plan jest uktadany.

2.2 Posta¢ matematyczna problemu uktadania planu lekcji

Ponizszy model dotyczy ,,klasycznego” modelu klasa-nauczyciel w ukfadaniu planéw
lekcji (stowo ,,klasa” wystepuje tu w znaczeniu grupy ludzi, a nie sali). Mamy dane m
klas ¢y,..., ¢y 1 nauczycieli ¢,,..., t, oraz p terminéw 1,..., p. Dodatkowo dang mamy
macierz nieujemnych liczb catkowitych R,.,, zwana macierzq wymagan (requrie-
ments matrix), gdzie r; jest iloscig lekcji, jakie daje nauczyciel ¢ klasie ¢,. Problem
polega na przypisaniu lekcji do termindw tak, aby zadna klasa i zaden nauczyciel nie
uczestniczyli jednoczesnie w wigcej niz jednej lekcji. Posta¢ matematyczna tego pro-
blemu przedstawia si¢ nastgpujaco (de Werra 1997a):

znalezé x (i=1,..,mj=1,.,nmk=1,.,p)

L

takie, ze zx‘]k = rl_j (i=1,.., m;j= 1,..., n), 1)
k=1

lejk <1 (1 = 1,---: m; = ],---,P), (2)

J=1
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> x, <1 G=1yrm; k=1,.., p), ®
i=1
X =01lub 1 (i=le,mj=1.,mk=1,.p), )

gdzie x;x = 1 gdy klasa ¢; i nauczyciel # spotykaja si¢ w terminie k, w przeciwnym
przypadku x;; = 0.

Zaltozenie (1) daje pewnos¢, ze kazdy nauczyciel ma z kazda klasg pewna okreslo-
ng liczbe lekcji. Zatozenie (2) daje pewnos¢, ze kazdy nauczyciel ma co najwyzej
jedna lekcje w kazdym terminie. Zatozenie (3) zapewnia to samo w stosunku do klasy.
Dowiedziono, ze istnieje rozwigzanie powyzszego problemu, pod warunkiem, ze Za-
den nauczyciel ani zadna klasa nie maja wigcej niz p lekcji.

m

2 <P (=10 m), 5)
=1
drsp Gi=1,.., m). 6)
J=1

Wigkszos¢ teoretycznych rozwiazan i twierdzen dotyczacych powyzszego proble-
mu wyprowadzono, korzystajac z redukcji instancji problemu do grafu. Szczegdty
tego podejscia mozna znalez¢ w rozdziale 3 .4.

2.3 Problem uktadania planow lekcji jako zadanie optymalizacji

Problem opisany w rozdziale 2.2 jest problemem poszukiwania, ktérego rozwigzaniem
jest kazdy osiagalny plan. W rzeczywistosci pewien osiagalny plan moze by¢ lepszy
niz inne i celem jest znalezienie optymalnego. Takie podejscie zmusza nas do sfor-
mutowania problemu planowania jako zadania optymalizacji z funkcja celu, ktora
bedziemy minimalizowa¢ (lub maksymalizowac).

Najprostsze i najstarsze historycznie jest podejscie Jungingera. Postuluje on dodanie
do problemu poszukiwania nastgpujacej funkcji celu

m n P
min), D, D dyx )
=l j=1 k=l
gdzie dj, jest przypisane do termindw &, w ktorych lekcja nauczyciela ¢ z klasa ¢; jest
mniej pozadana (Schaerf 1995).

W (Colorni, Dorigo i Maniezzo 1990a) zaproponowano bardziej ztozona funkcje
celu, uwzgledniajaca kilka aspektéw utozonego planu. Funkcja taka brata pod uwage
nastgpujace wielkosci (ufozone wedlug zmniejszajacej si¢ wagi): koszt dydaktyczny
(np. rozrzucenie wyktadéw po réznych dniach tygodnia), koszt organizacyjny (np.
posiadania nauczycieli zastgpczych ,,w zapasie”) i koszt personalny (np. konkretny
dzien wolny dla danego nauczyciela). Jeszcze inne podejscie opisane jest w (Ross,
Corne i Fang 1994). Autorzy z kazdym zlamanym ograniczeniem wigza okreslong
karg (np. za to, ze nauczyciel musi naucza¢ w terminie, w ktorym jest niedostepny).
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3. Przeglad metod automatycznego planowania

Rozdziat ten zawiera krétki przeglad metod automatycznego planowania opisanych w
ciagu ostatnich dziesigciu lat.

3.1 Metody heurystyczne

Bezposrednie heurystyki wypetniaja plan, wstawiajac do niego po jednym zdarzeniu
(wykladzie, grupie wykladow, egzaminie itd. — w zaleznosci od wariantu problemu)
tak dlugo, az nie pojawi si¢ zaden konflikt. Od tego momentu zamienia si¢ zdarzenia
miejscami (lub usuwa sig¢ je z planu) tak, aby znalazlo si¢ miejsce dla innych (Schaerf
1995).

Najprostszym podejsciem heurystycznym w uktadaniu plandw jest metoda porzqd-
kowa (sequential method), ktdrej podstawg jest pewna okreslona strategia porzqdko-
wania zdarzen (event sequencing strategy). Metoda ta uzywa heurezy do okreslenia,
jak trudne do zaplanowania byloby rozwazane zdarzenie, aby mozna bylo utozy¢ zda-
rzenia w kolejnosci malejacej trudnosci. Oprocz tego podobnej strategii mozna uzy¢
do utozenia w kolejnosci dostgpnych terminéw.

Heurystyczna metoda z nawrotami (heuristic backtracking method) przedstawiona
np. w (Burke, Newall i Weare 1998) jest typowa metoda porzadkowa, zastosowang do
testowego problemu uktadania planu egzaminéw. Autorzy proponujg trzy strategie
porzadkowania zdarzen: largest degree first, gdzie jako pierwsze sg umieszczane na
planie zdarzenia z najwigksza liczba zdarzen kolidujacych, largest colour degree first,
w ktérej w pierwszej kolejnosci sa umieszczane na planie zdarzenia kolidujace z naj-
wigksza liczbg zdarzen juz zaplanowanych, oraz least saturation degree firs), gdzie na
poczatku planowane sa zdarzenia z najmniejsza liczbg dostgpnych w danym momen-
cie mozliwych terminéw. Po wybraniu strategii porzadkowania w kazdej iteracji algo-
rytm umieszcza pierwsze w kolejnosci zdarzenie na planie w takim terminie, aby
wartos¢ funkcji celu byta jak najmniejsza. W ostatnich dwdch strategiach w przypad-
ku, gdy takich termindw jest wiele, strategia largest degree first jest uzywana do roz-
strzygnigcia konfliktéw. W przypadku, gdy konflikty nadal wystepuja, wybierany jest
najwczesniejszy termin. (Corne i Ross 1995) nazywaja to strategia ,,first-fit”, nato-
miast w strategii ,, best-fit” wybierany jest najwczesniejszy termin, do ktdrego nie
przypisano jeszcze zadnych zdarzen. W tej samej pracy proponowany jest takze loso-
wy wybor terminu ze zbioru konfliktéw.

Jezeli nie ma mozliwych termindw, nalezy usuna¢ kilka (w szczegdlnosci jedno)
zdarzen z planu. Kazdy z termindéw (nie tylko tych z przypisanymi zdarzeniami) jest
badany pod katem przynaleznosci do jednej z dwdch grup:

a. Zdarzenie nie moze by¢ zaplanowane w tym terminie, nawet jezeli nie byloby koli-
zji z innymi zdarzeniami w tym lub innych terminach.

b. Zdarzenie nie moze by¢ zaplanowane w tym terminie, o ile z planu nie zostanie
usunieta pewna liczba zdarzen.

W przypadku a) termin jest odrzucany. Z terminéw, nalezacych do grupy b) wybiera-

ny jest ten, ktéry ma najmniejszy koszt (czyli zaplanowanie zdarzenia w tym terminie
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wiaze si¢ z usunigciem z planu najmniejszej liczby innych zdarzen). Dodatkowo ist-
nieje mechanizm zapobiegajacy tworzeniu si¢ petli bez konca. Polega on na tym, ze
jezeli zaplanowanie zdarzenia e, spowodowato usunigcie zdarzenia e, z terminu p, to
taka operacja nie moze zosta¢ wykonana po raz drugi (ten termin dla zaplanowania
zdarzenia e nie jest dluzej brany pod uwagg). :

Metody porzadkowe majaq pewng wad¢ — daja tylko jedno rozwigzanie, co moze
oznaczaé, ze istnieje inne, rownie dobre lub nawet lepsze. Aby je znalezé mozna
zmienia¢ strategie porzadkowania w kolejnych przebiegach algorytmu lub wprowa-
dzi¢ do czysto heurystycznej metody elementy niedeterministyczne. W (Burke, Ne-
wall, Weare 1998) zaproponowano dwie metody wyboru zdarzenia do zaplanowania:
selekcje turniejowq (tournament selection), gdzie generowany jest losowy podzbidr o
okreslonej wielkosci zbioru jeszcze nie zaplanowanych zdarzen, a nastgpnie stosuje
si¢ heurystyke¢ do wybrania ,,najlepszego” (pierwszego w kolejnosci) zdarzenia z tego
podzbioru, oraz selekcje progowq (bias selection), gdzie zdarzenia sa uktadane zgod-
nie ze strategia porzadkowania, a nastgpnie losowo wybierane jest jedno z pewnej
liczby najlepszych. Dalsza czgs$¢ algorytmu pozostaje bez zmian. Autorzy wykazali
wyzszos¢ metod taczacych heurystyki z elementami losowymi nad metodami czysto
heurystycznymi oraz podejsciem z catkowicie losowa strategia porzadkowania. Cho-
ciaz heurystyczne metody niedeterministyczne powoduja relatywnie mata poprawg
funkcji celu (do 25%) w stosunku do metod czysto heurystycznych i sg bardziej cza-
sochlonne, to autorzy podkreslaja, ze rozwiazania byly szeroko rozrzucone po duzej
przestrzeni i metody te moga stanowi¢ dobry kompromis migdzy technikami porzad-
kowymi a bardziej skomplikowanymi i czasochlonnymi podejsciami, takimi jak algo-
rytmy genetyczne czy metody przeszukiwania lokalnego.

We wspomnianej wyzej pracy (Corne i Ross 1995) opisuja nieco inne podejscie.
Rozrézniaja oni dwa rodzaje algorytméw, rézniacych sig strategia wyboru terminu, do
ktorego zostanie przypisane zdarzenie, sposrod termindw spetniajacych ograniczenia
silne i/lub stabe (rozumiane tak, jak to opisano w rozdziale 2.1). W algorytmach ,, za-
chlannych” (,,greedy”) wybor terminu odbywa sie¢ zgodnie z ktora$ z wymienionych
strategii (first-fit, next-fit badz losowo) oraz ,,glodnawe” (,, peckish’’), podobne do
opisanej wyzej selekcji turniejowej, gdzie ze zbioru wszystkich termindw losowana
jest pewna ich liczba & i wybierany jest ten, w ktorym zaplanowanie zdarzenia spowo-
duje najmniej konfliktéw. Liczba ta zostala nazwana ,zachlannosciq” (,.greedness”)
algorytmu. Dla A=1 wybor jest catkowicie losowy, gdy & zbliza si¢ do liczby wszyst-
kich mozliwych terminéw, algorytm staje si¢ zachtanny. Dodatkowo algorytmy po-
dzielono na jednorodne (uniform), gdzie brane sa pod uwagg zarowno silne, jak i stabe
ograniczenia, 1 osiqgalne (feasible), gdzie stabe ograniczenia sa pomijane. Autorzy
proponuja wymienione algorytmy jako sposoby inicjalizacji populacji dla metod po-
szukiwania opartych o populacje, takich jak algorytmy genetyczne czy niektore meto-
dy przeszukiwania lokalnego.

Inng metoda w ktorej wykorzystywane sg heurystyki jest metoda badania skupisk
(cluster method). Polega ona na grupowaniu zdarzen w skupiska, w ktérych zdarzenia
nie wchodza w konflikty z innymi zdarzeniami w ramach skupiska. Gtéwnymi pro-
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blemami w tym podejsciu jest wlasciwe przypisanie zdarzen do skupisk i skupisk do
termindw (najczesciej dazy si¢ do minimalizacji liczby konfliktéw migdzy sasiednimi
w sensie termindw skupiskami). Podejscie to ma powazne ograniczenia, gdyz po
ustaleniu zawartosci skupisk utozenie dobrego jakosciowo planu moze by¢ niemozli-
we. Przeglad metod opartych o skupiska mozna znalez¢ w (Newall 1999).

3.2 Metody przeszukiwania lokalnego (local search techniques)

Jest to grupa metod ogdlnego zastosowania do rozwigzywania zadan optymalizacji.
Wszystkie bazuja na pojgciu sgsiada. Jezeli rozwazymy zadanie optymalizacji z prze-
strzenia rozwiazan S oraz funkcja celu f, ktora bedziemy minimalizowa¢, to funkcja N,
ktorej postac jest zalezna od struktury problemu, przypisuje do kazdego rozwiazania s
€ S jego sqsiedztwo N(s) < S. Kazde rozwiazanie s’ € N(s) jest nazywane sasiadem s.

Algorytmy przeszukiwania lokalnego rozpoczynaja dziatanie od pewnego poczat-
kowego rozwiazania s, ktore jest ustalane losowo, lub otrzymywane w wyniku zasto-
sowania innych metod. Nastgpnie wchodza w petle, w ktdrej poruszajg si¢ po prze-
strzeni rozwigzan, przechodzac od rozwiazania do jednego z jego sasiadow. Modyfi-
kacje¢ transformujaca rozwiagzanie w jeden z jego sasiadow nazywamy ruchem (move).
Jedna z metod przeszukiwania lokalnego jest metoda steepest descendent, ktora anali-
zuje wszystkie mozliwe ruchy i wybiera ten, dla ktérego warto$¢ funkcji celu jest
najmniejsza. Kandydat jest akceptowany tylko w przypadku, gdy wartos¢ funkcji celu
jest mniejsza niz poprzednia. Algorytm zatrzymuje si¢, gdy funkcja celu osiagnie mi-
nimum lokalne. Metoda ta wymaga przeszukania calego sasiedztwa biezacego rozwia-
zania, w odrdznieniu od metody randomized descendent, ktora wybiera losowo sasia-
da i przyjmuje go za nowe rozwiazanie, jesli zmniejsza on wartos¢ funkeji celu. Jesli
tak nie jest, losowany jest kolejny sasiad. Algorytm konczy si¢ po ustalonej liczbie
iteracji bez zmiany wartosci funkcji celu. Podobnie jak technika steepest descendent
zatrzymuje si¢ po osiagnigciu lokalnego minimum. Modyfikacja metody randomized
descendent jest algorytm randomized non-ascendent, (RNA), ktory akceptuje losowe-
go sasiada, jesli wartos¢ funkeji celu jest mniejsza lub réwna biezacej. Ten algorytm
rowniez konczy si¢ po ustalonej liczbie iteracji bez zmniejszenia wartosci funkcji celu.
Metoda ta moze by¢ ulepszona poprzez wprowadzenie ruchéw bocznych (sideways
moves) (Selman, Levesque i Mitchell 1992, za Schaerf 1996), dzigki czemu moze
poruszaé si¢ w kierunku minimum przez plaetau (ptaskie obszary).

Metoda steepest non-ascendent taczy elementy metody steepest descendent z ruchami
bocznymi. Wybdr migdzy dwoma ruchami jednakowo minimalizujacymi funkcje¢ celu
jest losowy.

W przeszukiwanie tabu (tabu search) algorytm przeglada caly zbiér sasiadow bie-
zacego rozwigzania. Nastgpnie przyjmuje za biezace rozwiazanie ten element zbioru,
dla ktorego wartos¢ funkeji celu jest najmniejsza, niezaleznie od tego, czy wartosé ta
jest lepsza czy gorsza od poprzedniej. Aby unikna¢ cykli istnieje tzw. lista tabu (tabu
list), ktora jest lista ruchow, ktorych nie wolno wykona¢. Lista ta jest zbudowana na
zasadzie tonacego stosu (zawiera okreslong liczbe poprzednich ruchéw; kiedy kolejny
ruch jest dodawany do listy, najstarszy jest usuwany). Oprdcz tego istnieje mecha-
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nizm, ktéry pozwala omina¢ tabu — jezeli ruch niesie za soba znaczng poprawe funkc;ji
celu, to pomija sig jego status tabu i nowe rozwiazanie jest akceptowane. Precyzyjniej
rzecz ujmujac, definiowana jest funkcja aspiracji (aspiration function) A, ktora dla
kazdej wartosci v funkcji celu wyznacza wartosé v’, ktora reprezentuje warto$¢, ktora
algorytm chciatby osiagnaé po v. Jezeli przyjmiemy biezace rozwiazanie s, funkcje
celu f'i rozwiazanie sasiednie s, uzyskane przez wykonanie ruchu m, to jezeli fs’) <
A( fs)), to s’ zostanie zaakceptowane, nawet jezeli m jest na liscie tabu. Algorytm
konczy si¢ po okreslonej liczbie iteracji bez poprawy wartosci funkeji celu lub gdy
biezace rozwiazanie osiagnie okreslong warto$¢ funkcji celu (Schaerf 1996; Schaerf
1995; Weare 1995; Newall 1999).

Symulowane wyzarzanie (simulated annealing) zawsze akceptuje wybranego losowo
sgsiada, jezeli warto$¢ funkcji celu jest dla niego réwna lub lepsza od biezacej. Jezeli
tak nie jest, to nowe rozwiazanie jest akceptowane z prawdopodobiefistwem réwnym
e’ gdzie A jest réznica miedzy wartoscia funkceji celu dla nowego i biezacego roz-
wigzania, a T parametrem, zwanym temperatura. Na poczatku dziatania algorytmu
temperatura jest ustawiana na odpowiednio wysoka wartos¢ 7,. Po okreslonej liczbie
iteracji temperatura jest obnizana o stopien schladzania (cooling rate) a, taki ze
T,=a*T,.,, gdzie 0 < a < 1. Algorytm konczy si¢, gdy temperatura osiaggnie warto$¢
bliska 0 i nie beda juz wlasciwie akceptowane zadne zmiany (system jest ,,zamrozony)
(Schaerf 1996; Schaerf 1995; Ross i Corne 1995; Michalewicz 1999; Weare 1995;
Newall 1999; Thompson i Dowsland 1998). W (Thompson i Dowsland 1998) autorzy
zastosowali symulowane wyzarzanie do rozwiazania problemu ukfadania planu egza-
mindéw. Jako ze zaréwno stopien schladzania, jak i posta¢ funkcji sasiedztwa majq
duzy wplyw na efektywnos¢ i jako$¢ rozwiazania w metodach przeszukiwania lokal-
nego, zaproponowano rozwiazanie problemu w dwoch fazach — pierwsza daje plan
osiagalny, w drugiej z przestrzeni rozwigzan usuwane sg wszystkie nieosiggalne roz-
wigzania (co pozwala na jej zawegzenie), a pozostata przestrzen jest przeszukiwana w
celu znalezienia rozwigzania optymalizujacego funkcjg ograniczen stabych. Dodatko-
wo posta¢ funkcji sasiedztwa w fazie drugiej byta duzo bardziej ztozona, niz w fazie
pierwszej (tzw. Kempe chain neighbourhood). Podejscie to okazato si¢ stuszne, auto-
rzy wykazali ponadto, ze przydatno$¢ sasiedztwa typu Kempe chain nie ogranicza si¢
tylko do optymalizacji ograniczen stabych, ale moze takze dawaé dobre rozwiazania w
przypadkach, gdzie znalezienie osiagalnego planu jest bardzo trudne.

3.3 Algorytmy genetyczne

Algorytmy genetyczne (AG) sa narzgdziem optymalizacyjnym ogdlnego zastosowa-
nia. Przy ich zastosowaniu mozna uzyska¢ dobre jakosciowo rozwigzania nawet przy
zwigkszajacym si¢ rozmiarze problemu i z tego powodu znalazly wiele réznorodnych
zastosowan. Dobre wprowadzenie do problematyki algorytmow genetycznych mozna
znalez¢ w (Michalewicz 1999).

Typowy AG rozpoczyna dziatanie od losowego wygenerowania poczatkowego
zbioru rozwiazan {s,’, ..., s,"}, zwanego populacjq w chwili 0. Nastepnie powtarzana
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jest w petli procedura, tworzaca populacje {s,'"/, ..., s," '} w chwili r+1 z populacji w
chwili £. Aby to uczynic, obliczana jest warto$¢ funkcji celu dla kazdego rozwiazania,
a nastgpnie losowo wybierane jest n (niekoniecznie réznych) rozwigzan w czasie .
Prawdopodobienstwo wylosowania danego elementu populacji jest uzaleznione od
wartosci funkcji celu dla tego rozwiazania tak, ze rozwiazania o wyzszej wartosci
funkcji (przy zalozeniu, ze staramy si¢ ja zmaksymalizowacé) maja wigksze prawdo-
podobienstwo wylosowania. Nastgpnie wybiera si¢ z okreslonym prawdopodobien-
stwem rozwiazania do krzyzowania, polegajacego na przemieszaniu dwoch rozwiazan
przez zamian¢ miejscami odpowiadajacych sobie fragmentéw ich reprezentacji. Do-
datkowo rozwiazania moga by¢ (z okreslonym prawdopodobienstwem) poddane mu-
facji. Mutacja zmienia losowo pewng czg$¢ rozwiazania. Algorytm konczy dziatanie
gdy wykonana zostanie okreslona liczba iteracji lub najlepsze rozwiazanie osiagnie
(badz przekroczy) zatozona wartos¢ funkcji celu, albo tez przez okreslong liczbg itera-
cji warto$¢ funkgeji celu nie ulegnie poprawie.

Modyfikacja algorytméw genetycznych sa algorytmy mimetyczne. W algorytmach
mimetycznych po rekombinacji (krzyzowaniu i mutacji) nastepuje faza przeszukiwa-
nia lokalnego — rozwiazania sa kolejno poddawane dziataniu wybranego algorytmu,
aby poprawi¢ ich jakos$¢ przed kolejna iteracja wiasciwego AG. Opis takiego podej-
scia wraz z danymi eksperymentalnymi mozna znalezé w (Newall 1999). Autor,
oprocz przeszukiwania lokalnego, traktowanego jak operator genetyczny, wprowadza
pojecia ,lekkiej” (light) i ,cigzkiej” (heavy) mutacji (mutacja lekka mutuje zdarzenie
w ramach terminu, ci¢zka zamienia cale terminy). W pracy mozna réwniez znalezé
poréwnanie réznych heurystyk przeszukiwania, prosty algorytm heurystyczny oraz
opis wielofazowego algorytmu ewolucyjnego.

Od poczatku lat dziewigédziesiatych prowadzone sa intensywne badania nad zasto-
sowaniem algorytméw genetycznych w rozwiazywaniu probleméw planowania. Opis
pierwszych prob wykorzystania AG do ukladania planu lekcji mozna znalezé w (Co-
lorni, Dorigio i Maniezzo 1990a) oraz (w rozszerzonej wersji) w (Colorni, Dorigio i
Maniezzo 1990b). Autorzy zastosowali macierzowa reprezentacje osobnika (rozwia-
zania). Wiersz takiej macierzy odpowiada nauczycielowi, kolumna terminowi, a jej
elementami sa klasy. Uzyto trzech operatoréw genetycznych: mutacji rzgdu k (opera-
tor wybiera dwa sasiednie ciagi k-elementowe z tego samego wiersza macierzy i za-
mienia je miejscami), mutacji dni (zamienia miejscami dwie grupy kolumn macierzy)
oraz krzyzowania (dla danych dwdch macierzy operator ustawia wiersze pierwszej
macierzy w porzadku malejacych wartosci tzw. lokalnej funkcji celu, ktéra jest skia-
dowa funkcji celu zwiazang tylko z charakterystyka danego nauczyciela). Uwzgled-
niono wylacznie silne ograniczenia. Powstaly program zostat z powodzeniem zasto-
sowany na duzej uczelni we Wtoszech. Dwa lata pézniej w (Colorni, Dorigio i Manie-
zzo 1992) przedstawiono analizg porownawcza roznych sposobow ukfadania zastoso-
wanych do tego samego problemu w terminach funkcji celu — uktadania recznego,
algorytmu genetycznego, mimetycznego, symulowanego wyzarzania, symulowanego
wyzarzania z reinicjacja (temperatura ,,zamrozonego” systemu byla ponownie usta-
wiana na warto$¢ poczatkowa) oraz przeszukiwania tabu (rowniez w wersji z ponow-
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na inicjacja, tym razem listy tabu). Algorytm genetyczny, a zwlaszcza mimetyczny,
okazat si¢ dobra alternatywa dla przeszukiwania tabu, tylko troch¢ pozostajac w tyle
zaréwno pod wzgledem jakosci najlepszego rozwiazania, jak i $redniej jego jakosci.
Autorzy podkreslaja jednak niezwykla elastycznos¢ AG. Pozostate metody byly zde-
cydowanie gorsze. We wspomnianej pracy wprowadzono réwniez specjalny operator,
zdolny przeksztalcac¢ nieosiagalne plany w osiagalne.

Podobna analizg porownawcza AG, symulowanego wyzarzania oraz wariantu algo-
rytmu RNA przeprowadzili autorzy (Ross i Corne 1995). W terminach funkcji celu
AG okazat si¢ gorszy od metod ,.klasycznych”, jednak jego elastyczno$¢ (ktora auto-
rzy mierza jako odlegtos¢ Hamminga migdzy réznymi rozwiazaniami tego samego
problemu proponowanymi przez algorytm) okazala si¢ duzo wigksza. W pracy tej
podobnie jak we wczesniejszej (Ross, Corne i Fang 1994) autorzy zastosowali zupet-
nie inng reprezentacj¢ osobnika, nazwana przez nich bezposredniq (direct). Osobnik
jest wektorem symboli o dtugosci 3v (gdzie v jest liczba zdarzen), podzielonym na
trojki. Poszczegodlne elementy w trdjce oznaczaja kolejno czas, miejsce i nauczyciela.
Operatory genetyczne zostaly dostosowane do takiej reprezentacji, autorzy zapropo-
nowali rowniez operator mutacji, ktéry wybiera losowo kilka (a nie jedna, jak propo-
nowano wczesniej) wartosci mutowanej czg¢sci rozwiazania, i przyjmuje za nowe roz-
wigzanie te, ktora daje najwigksza poprawe funkcji celu. Uwzgledniono zardéwno
ograniczenia silne, jak i stabe. Powstaly program zastosowano na jednej z angielskich
uczelni z dobrym rezultatem.

3.4 Redukcja do kolorowania grafu

Podstawy teorii graféw mozna znalez¢ w (Ross i Wright 1996), (Wilson 2000) oraz w
(Thulasiraman i Swamy -1992). Problem kolorowania weztow grafu jest jednym z
klasycznych NP-zupelnych probleméw dotyczacych graféw. Dla danego grafu G=(V,
E), gdzie V jest zbiorem weztow, a E zbiorem krawedzi, problem polega na znalezie-
niu podzialu ¥ na jak najmniejsza liczbg klas kolordw takich, ze zadne dwa wierz-
chotki nie beda nalezaly do tej samej klasy, jesli istnieje krawedZ migdzy nimi (Wil-
son 2000).

Metody oparte o redukcj¢ do kolorowania grafu sa szeroko stosowane w rozwia-
zywaniu problemow uktadania planéw i harmonogramowania. Takie podejscia sa
nazywane harmonogramowaniem chromatycznym (chromatic scheduling) (de Werra
1997). W typowych problemach ukladania plandéw szkolnych poszczegdlnym zdarze-
niom odpowiadaja wezly, istnienie krawedzi miedzy dwoma weztami oznacza, ze
przypisane tym weztom zdarzenia nie moga by¢ zaplanowane w tym samym terminie.
Kolor wezta reprezentuje termin. Taki model jest dobry dla prostych zadan ukfadania
planéw, moze by¢ jednak rozszerzony tak, aby obejmowal takze ograniczenia stabe.
Rozszerzenia takie zostaly zaproponowane migdzy innymi w (de Werra 1996) i roz-
winigte w (de Werra i Mahadev 1997) oraz (de Werra 1997a) — przedstawienie wy-
magan w postaci multigrafu pozwala uwzgledni¢ zdarzenia z gory przypisane do zbio-
ru mozliwych termindéw (w szczegdlnosci do jednego) i niedostgpnos¢ okreslonych
termindw dla pewnych zdarzen. W (de Werra 1997a) przedstawiono rdwniez sposoby
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na zapewnienie, ze plan bedzie zwarty, przez zastosowanie kolorowania krawedzi
(problem kolorowania krawedzi polega na znalezieniu podziatu E na jak najmniejsza
liczbe klas koloréw tak, aby zadne dwie krawegdzie nie nalezaty do tej samej klasy,
jezeli dzielg wspolny wierzchotek) (Wilson 2000). W (de Werra 1997b), jak rowniez
w (de Werra i Mahadev 1997) opisana jest koncepcja zastosowania kolorowania
ograniczonego (czyli takiego, gdzie kazdy z weztéw lub krawedzi ma przypisany
zbiér koloréw, ktore moze przyjac) do wyrazenia niedostgpnosci termindw i przypisa-
nia z gory. Ostatnia praca zawiera rowniez propozycj¢ bardziej ogélnego sposobu na
radzenie sobie z przypisaniem z gory — kolorowanie krawedzi z uwzglednieniem
kosztu. Praca (de Werra 1996), podobnie jak (de Werra, Hoffman, Mahadev i Peled
1996) dotyczy giownie problemu job-schop scheduling, znajduja si¢ tam jednak
(pierwsza praca) uniwersalne modele, pozwalajace wyrazi¢ wymagania co do jedno-
czesnosci zdarzen oraz ograniczenia dotyczace zasobow (np. wielkosci sal) oraz (dru-
ga praca) opis reprezentacji za pomoca drzew oraz nieco prostszej, ale mniej uniwer-
salnej metody uwidaczniania przypisania z gory za pomoca wczesniejszego pokolo-
rowania okreslonych wierzchotkéw (krawgdzi). Praca (de Werra 1999) opisuje zlozo-
ng reprezentacje za pomoca grafow, ktéra moze by¢ zastosowana w problemach ukfa-
dania planéw z wieloma ograniczeniami. Sam autor przyznaje jednak, ze opisywane
przez niego przypadki sa wciaz dalekie od rzeczywistosci i zbyt mato ogdlne. Dlatego
w dalszej czesci niniejszego opracowania wymienione sa tylko podejscia oparte na
kolorowaniu weztéw w grafach prostych. Wspomnie¢ warto jednak wczesniej prace
(Hilton, Slivnik i Stirling 2001), gdzie opisana jest reprezentacja za pomoca multigra-
fu z petlami i rozwiazanie z zastosowaniem kolorowania krawedzi problemu uklada-
nia planu w szkole z wieloma ograniczeniami stabymi (przypisanie z gory i niedostep-
no$¢ w terminie zarowno dla nauczycieli, jak i zajg¢) i miernikami jakosci (zaréwno
zwarto$¢, jak i miara rozrzucenia zadan po planie). Autorzy zaproponowali tam row-
niez skomplikowana koncepcje conference scheduling (uktadania planu konferencji).

Istnieje kilkanascie algorytméw i heurystyk stosowanych do rozwiazywania pro-
bleméw kolorowania graféw. Cze$¢ z nich zostata opisana w rozdziale dotyczacym
metod heurystycznych, jako ze kolejnos¢ kolorowania wierzchotkéw odpowiadaja w
zadaniach uktadania planoéw strategiom porzadkowania zdarzen. Przeglad metod sto-
sowanych w kolorowaniu grafow znajduje si¢ w (Weare 1995). Do kolorowania gra-
fow moga byé¢ rowniez stosowane metody przeszukiwania lokalnego oraz metody
hybrydowe. W (Burke, Elliman i Weare 1994) autorzy zastosowali kompilacj¢ dwdch
zaawansowanych metod heurystycznych do rozwiazania probleméw ukladania planu
egzamin6éw oraz ukladania planu zaj¢¢ na uczelni wraz z rozszerzeniami obejmujacy-
mi stabe ograniczenia. Autorzy (Mausser i Magazine 1996) proponuja wlasna metode
heurystyczng do rozwiazania jednego z wariantow problemu uktadania planu egzami-
néw. W pracy (Cangalovi¢, Kovagevié-Vujéi¢, Ivanovié i Drazi¢ 1998) wykorzystano
potaczenie metody heurystycznej z przeszukiwaniem tabu, co dalo bardzo dobre
efekty.
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3.5 Inne metody

Wiréd innych podejsé do rozwigzania problemu planowania nalezy wymieni¢ metody
oparte o przeptyw w sieciach (network flow techniques). Sie¢ zdefiniowana jest jako
skierowany graf wazony, w ktorym wagi sa nieujemnymi liczbami rzeczywistymi
(waga krawedzi nazywana jest jej przepustowosciq). Oprocz tego w sieci wyrdznione
sa dwa wierzcholki: Zrédlo -wierzchotek, do ktérego nie wchodzi zadna krawedz (ma
tylko krawedzie wychodzace), oraz ujscie — wierzchotek, z ktérego nie wychodza
zadne krawedzie. Wiele problemdw planowania i harmonogramowania zostato zredu-
kowane do sekwencji przeptywow w sieciach. Jednak ze wzglgdu na istnienie mniej
skomplikowanych i bardziej uniwersalnych modeli, nie prowadzi si¢ obecnie zbyt
wielu badan w tym kierunku. Kompendium wiedzy o sieciach i ich zastosowaniach
mozna znalez¢ w (Dolan i Aldous 1993).

Innym interesujacym pomystem jest zastosowanie sieci neuronowych w rozwiazy-
waniu probleméw planowania. Podstawy teorii sieci neuronowych mozna znalez¢ np.
w (Osowski 1994) lub (Tadeusiewicz 1993). Sieci neuronowe sa uwazane za dobre
narzedzie do rozwiazywania probleméw optymalizacji. W latach dziewigédziesiatych
pojawily sie propozycje wykorzystania ich na polu planowania. Najczgsciej propono-
wano, aby sie¢ byfa narz¢dziem optymalizujacym wynik dzialania innego algorytmu,
np. kolorowania grafu. Przykfad takiego podejscia mozna znalezé w (Mausser i Maga-
zine 1996), wraz z poroéwnaniem z metoda czysto heurystyczna. Co prawda jakos¢
planow produkowanych przez sie¢ neuronowa byta lepsza od tych uzyskanych meto-
dami heurystycznymi, jednak jak przyznaja autorzy, w praktyce podejscie to jest nie-
efektywne ze wzgledu na duze zapotrzebowanie sieci neuronowych na moc oblicze-
niowa. Metody oparte na sieciach neuronowych sa w planowaniu i harmonogramowa-
niu uwazana jest za skomplikowane i stosunkowo mato efektywne, dlatego prace na
ten temat sa niezbyt liczne.

Warto wspomnie¢ rowniez o metodach opartych o systemy ekspertowe. W podej-
$ciach tych buduje si¢ systemy z baza wiedzy w postaci regutowej. Reguly opisuja
zasady ukfadania planow — w jakiej kolejnosci umieszcza¢ zdarzenia na planie, jak
rozwiazywaé konflikty itp. Na podstawie zadanych parametrow (zdarzen, termindw,
zasobow i dotyczacych ich ograniczen) system uktada plan, korzystajac z bazy regut.
Opis takiego rozwiazania mozna znalezé w (Lee i Wu 1995) — przedstawiony tam
system CLXPERT pomaga uktada¢ plany dla uczelni na podstawie danych o nauczy-
cielach, salach i kursach oraz bazy ponad 500 regut pozyskanych od ekspertéw. Sys-
tem dziata efektywnie na jednym z tajwanskich uniwersytetow. Nieco inne podejscie
zaproponowano w (Burke, MacCarthy, Petrovic i Qu 2000). Opisany tam system za-
wiera baze wczesniejszych przypadkow i stara si¢ znalez¢ w niej przypadek najblizszy
zadanym zatozeniom, a nastgpnie zaadaptowac go do biezacych potrzeb stosujac algo-
rytm wnioskowania na podstawie przypadkéw — case based reasoning (CBR). Duzy
nacisk potozono na ponowne uzycie istniejacych przypadkéw. Do przechowywania
przypadkéw w bazie wiedzy zastosowano rozszerzong reprezentacj¢ grafowa (tzw.
grafy atrybutow). Dzigki temu mozna byto wykorzysta¢ whasnosci dotyczace izomor-
fizmu w grafach. System nie zostat jeszcze zastosowany do rozwiazania realnego pro-
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blemu, ani jego efektywnos¢ nie zostata pordwnana z innymi metodami. Nalezy pod-
kresli¢, ze podejscia oparte o systemy ekspertowe sg historycznie najmtodsze wsrod
metod rozwigzywania probleméw harmonogramowania i planowania (pierwsze prace
na ten temat pojawily si¢ na poczatku lat dziewigédziesiatych) i z pewnoscia wyma-
gaja jeszcze wielu badan. Jednak juz teraz mozna stwierdzi¢, ze wyniki préb sa obie-
cujace, chociazby ze wzgledu na stosunkowo krotki czas oczekiwania na rozwigzanie.

4. Uktadanie planu dyzuréw na oddziale szpitalnym przy zastoso-
waniu algorytmu genetycznego

Ponizszy rozdzial zawiera opis rozwigzania prostego problemu planowania dyzurow
personelu w stuzbie zdrowia przy pomocy algorytmu genetycznego.

4.1 Opis rzeczywistosci

Na oddziale w szpitalu pracuje na state kilkunastu lekarzy. Dodatkowo czasem poma-
ga im kilku anestezjologdw z innego szpitala. Plan dyzuréw uktada si¢ w cyklu mie-
sigcznym. Kazdego dnia dyzur musi petni¢ trzech lekarzy — anestezjolog i dwoch chi-
rurgéw. Co najmniej jeden z chirurgéw na dyzurze musi mie¢ drugi stopien specjali-
zacji (w praktyce musi by¢ oprocz tego doswiadczony i odpowiedzialny). Wedtug
przepisoOw nie mozna bra¢ kilku dyzuréow pod rzad — przy dwoéch lekarz spedza w
szpitalu 56 godzin bez przerwy. W praktyce jednak takie przypadki sa dos¢ po-
wszechne — uktadajacy dyzury staraja si¢ unikac sytuacji, gdy lekarz miatby trzy dy-
zury pod rzad (78 godzin w pracy !), ale takie przypadki rowniez si¢ zdarzaja. Przed
rozpoczgciem ukladania planu przeprowadza si¢ rozmowy ze wszystkimi lekarzami.
Okreslaja oni ile mniej wigcej chea mie¢ dyzurdw, kiedy je cheg lub nie cheg mied, a
takze z kim chcieliby lub nie chcieliby dyzurowaé. Zyczenia lekarzy najczesciej koli-
duja ze soba, wigc konieczna jest pewna swoboda w odbieraniu i dodawaniu dyzuréw.
Po pierwsze dyzury powinny by¢ rozdzielone mniej wigcej sprawiedliwie — nie mozna
na przyktad da¢ komus$ wszystkich dyzuréw weekendowych, bo sg one cenne (ptaci
si¢ za nie podwdjnie, podobnie jak za dyzury we wszystkie dni ustawowo wolne). Po
drugie, wedtug przepiséw lekarza nie mozna zmusi¢ do odbycia wigcej niz osmiu
dyzuréw w miesiacu (a wedtug zwyczaju kierujacy zespotem raczej nie bierze wigcej
niz czterech). Po trzecie trzeba zostawi¢ par¢ wolnych dyzuréow dla lekarzy z
innego szpitala, jednak ich termin moze by¢ ustalany bardziej elastycznie w
stosunku do lekarzy ,miejscowych”. Po czwarte, uktadaniem dyzurow w
Swieta, Sylwestra itp. rzadza specjalne prawa, ktore nie sa tutaj opisane, ze
wzgledu na ich marginalne znaczenie.

4.2 Uzywane dane i reprezentacja rozwigzania
Kazdy lekarz ma przypisany odpowiadajacy mu nastgpujacy zestaw danych:

- preferencje towarzyskie — dla kazdego innego lekarza okreslona jest jedna z
trzech mozliwych preferencji towarzyskich (,,tak”, ,,nie” i ,,obojetna™),
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- preferencje czasowe — dla kazdego dnia miesiaca, na ktéry plan jest uktadany,
okreslona jest jedna z pigciu mozliwych preferencji czasowych (w kolejnosci od
najbardziej pozadanej: , koniecznie”, ,tak”, ,,obojetnie”, ,,nie” i ,,wykluczone™),

- minimalna i maksymalna liczba dyzuréw w miesiacu, ktére chcialby mie¢ le-
karz

- znaczniki oznaczajace, czy lekarz jest anestezjologiem lub czy moze petni¢ dy-
zur samodzielnie.

Reprezentacja rozwigzania jest bezposrednia. Genotyp osobnika ma dtugos¢ 4d, gdzie
d jest liczba dni w miesiacu, na ktory plan jest ukladany. Jest to powtérzona d razy
krotka <n, .s',,/, s,,”, a,>, gdzie n jest identyfikatorem kolejnego terminu (dnia w miesia-
cu), . s, is,” sa identyfikatorami odpowiednio pierwszego i drugiego chirurga, a a,
jest identyfikatorem anestezjologa.

4.3 Funkcja celu i uzyty algorytm

Funkcja celu oparta jest na karze. Za kazde ztamane ograniczenie na termin, w ktérym
ograniczenie zostalo naruszone, nakladana jest kara. Kara nakladana jest tylko na
ograniczenia dotyczace czasu i liczby dyzuréw — dyzur w nieodpowiednim czasie
(negatywna preferencja czasowa), przekroczona liczba dyzuréow pod rzad lub przekro-
czona maksymalna liczba dyzuréw — wtedy kara nakladana jest na pierwszy i kazdy
nastgpny termin, w ktorym lekarz przekracza maksymalng liczbe dyzurdéw, pod wa-
runkiem, ze lekarz nie ma na ten termin ustawionej preferencji ,,koniecznie”. Jezeli tak
jest, to algorytm nakfada kare, o ile jest to mozliwe, na poprzedni cyklicznie termin z
tym lekarzem. Podobnie jest w przypadku dyzuréw pod rzad - dzigki sprawdzeniu
poprzedniego i nastgpnego terminu unikamy negatywnego oceniania sytuacji, gdy
lekarz chce mie¢ 3 dyzury pod rzad na wilasne zyczenie. Zsumowana ocena poszcze-
gélnych terminéw oznacza oceng planu jako calosci. Algorytm ma za zadanie mini-
malizacje¢ funkcji celu.
ograniczenia:

- lekarze, ktérych wzajemne preferencje towarzyskie beda ustawione na ,tak”,

zawsze bedg mieli dyzur ze soba,

- lekarze, , ktérych wzajemne preferencje towarzyskie beda ustawione na ,,nie”,
nigdy nie beda mieli dyzuru ze sobag,

- lekarz, ktéory ma w danym terminie ma ustawiong preferencj¢ czasowg ,,ko-
niecznie” bedzie miat dyzur w tym terminie,

- lekarz, ktéry ma w danym terminie ma ustawiong preferencj¢ czasows ,,wyklu-
czone” nie bgdzie mial dyzuru w tym terminie,

- anestezjolog nie bedzie nigdy petnit dyzuru na miejscu chirurga i na odwrdt,

- wsrdd dwoch chirurgdw na dyzurze przynajmniej jeden bedzie miat prawo do
petnienia dyzuru samodzielnie.
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Podejscie takie mozna tatwo zastosowaé, gdyz otrzymywane z wywiadu z lekarzami
dane sa w wigkszosci spojne, lub tez mozna wzglednie tatwo usunaé napotkane nie-
spdjnosci w trybie potautomatycznym. Nalezy tez wspomnie¢ o stosunkowo niewiel-
kim rozmiarze problemu, co ufatwia zadanie — problem jest prawdopodobnie NP-
zupelny (wymaga to oczywiscie formalnego dowodu, ale przyjmijmy to za robocza
hipotezg¢), wigc mozemy juz na poczatku zapewni¢ osiagalnos¢ kazdego planu.

W kazdej iteracji algorytmu poszczegdlne rozwiagzania sa oceniane i wybierane do
nastgpnego kroku zgodnie z zasadami dziatania algorytméw genetycznych. Nastepnie
wybierane sa osobniki do mutacji. Mutacja jest kompromisem pomigdzy wersja ,,lek-
ka” a ,ciezka” — mutuje jeden termin (z najgorsza wartoscia funkcji celu), ale we-
wnatrz terminu sa mutowane tylko te elementy (lekarze), ktore t¢ warto$¢ obnizaja.
Mutacja nie moze pogorszy¢ wartosci funkcji celu — dzigki temu w kazdej iteracji
algorytmu istnieje szansa na ,,naprawienie” jednego terminu. Dodatkowo, caly czas
utrzymywana jest osiagalnos¢ planu, poniewaz elementy niezmienne (np. dyzury w
terminie, na ktéry dany lekarz ma ustawiona preferencj¢ ,,koniecznie) nie podlegaja
mutacji. Na konicu wybierane sa osobniki do krzyzowania — miejsce krzyzowania jest
wybierane losowo i wybrane osobniki zamieniaja si¢ wszystkimi terminami od tego
miejsca. Algorytm konczy si¢ po okreslonej liczbie krokow.

4.4 Wyniki eksperymentow

Ze wzgledu na brak ogdlnie dostgpnych danych testowych (benchmarkowych) dla
tego specyficznego problemu oraz duza trudnos¢ uktadania przyktadowych zestawow
danych, eksperymenty byly prowadzone na danych rzeczywistych. Wynika z tego
pewna niedogodnos$¢, gdyz co miesigc powstaje tylko jeden zestaw danych. Jednak juz
eksperymenty z trzema zestawami pokazuja pewne prawidlowosci.

Podczas badan liczbe iteracji AG okreslono na 150. Podane wyniki sa $rednimi z
trzech réznych zestawdéw danych, po pig¢ przebiegow dla kazdego zestawu. Kazdy
zestaw zawierat dane dotyczace dwunastu chirurgéow (w tym osmiu samodzielnych) i
trzech anestezjologow. Wielkos$¢ populacji ustalono na 200 osobnikdw. Wykresy 1 i 2
pokazuja wartosci funkcji celu dla najlepszego planu w funkcji wykonanych iteracji
algorytmu. W obu przypadkach prawdopodobienstwo krzyzowania ustawione byfo na
0.2 a prawdopodobienstwo mutacji na 1 (wykres 1) i 0.33 (wykres 2). Mutacja w kaz-
dym przebiegu algorytmu potencjalnie poprawia funkcj¢ celu zwigzang z jednym ter-
minem. Wyraznie wida¢ to na pierwszym wykresie — po trzydziestu iteracjach od roz-
poczecia wykonywania algorytmu warto$¢ funkcji celu poprawia si¢ niemal trzykrot-
nie. Przy trzykrotnie rzadszej mutacji taka poprawa zajmuje mniej wigcej trzykrotnie
wigcej czasu. Nalezy jednak zauwazyé, ze jakos¢ plandw po 120 przebiegach jest
praktycznie taka sama, wigc z punktu widzenia efektywnego uzycia mocy obliczenio-
wej, korzystniejsze jest uzycie mniejszego prawdopodobiefistwa mutacji.



63

200 -
180 +
160 -
140 -
120 |
100 -
80 -
60 -
40 -
20 -

0 T T T T T T T 1
0 20 40 60 80 100 120 140 160

37,2 36,11

L 4
)

Wykres 1 Wartosci funkceji celu dla najlepszego planu w funkcji wykonanych iteracji
algorytmu; prawdopodobienstwo mutacji rowne 1; prawdopodobienstwo krzyZzowania
rowne 0,2

Wykres 3 pokazuje wartosci funkcji celu dla prawdopodobienistwa krzyzowania row-
nego 0,5 i prawdopodobienistwa mutacji rownego 0,33. Krzyzowanie jest operacja o
ztozonosci obliczeniowej (zwlaszcza pesymistycznej) duzo mniejszej, niz mutacja,
jednak wprowadza do planu wigksze fluktuacje. Mutacja stara si¢ poprawi¢ warto$¢
funkcji celu dla jednego terminu w kontekscie innych terminéw, gdy tymczasem krzy-
zowanie zamienia cz¢sci plandw miejscami, bez rozwazania planu jako catosci. Wy-
raznie widaé, ze zbyt czgste krzyzowanie niszczy powolna poprawe, dawang przez
mutacje.

Na podstawie uzytych danych zbudowano réwniez plany metoda tradycyjna (recz-
nie). Srednia wartoéé funkcji celu dla tych planéw wynosita 46,2, jednak uwazane
byly przez uzytkownikow za lepsze od ulozonych automatycznie ze wzglgdu na lep-
szy (bardziej sprawiedliwy) rozdziat dyzuréw weekendowych migdzy lekarzy.
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Wykres 2. Wartosci funkcji celu dla najlepszego planu w funkcji wykonanych iteracji
algorytmu; prawdopodobienstwo mutacji: 0,33; prawdopodobienstwo krzyzowania: 0,2
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Wykres 3. Wartosci funkeji celu dla najlepszego planu w funkeji wykonanych iteracji
algorytmu; prawdopodobienstwo mutacji: 0,33; prawdopodobienstwo krzyzowania: 0,5
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4.5 Moziiwe modyfikacje algorytmu

Algorytm wymaga pewnych modyfikacji. W pierwszej kolejnosci nalezy zmienié
warunek zakoficzenia algorytmu tak, aby przerywat swoje dziatanie po okreslonej
liczbie iteracji bez poprawy funkcji celu. Warta rozwazenia jest likwidacja krzyzowa-
nia, a raczej zastapienie go cigzka mutacja (mutujaca np. wszystkie w kolejnosci ter-
miny, w ktorych przekroczona jest maksymalna liczba dyzuréw lub maksymalna licz-
ba dyzuréw pod rzad). Konieczne jest tez rozbudowanie algorytmu o mozliwos$¢ ukta-
dania dyzuréw ,,pod telefonem” oraz rozszerzenie zakresu mozliwych preferencji to-
warzyskich.

5. Podsumowanie

Z pewnoscia badania nad zastosowaniami metod poszukiwawczych i optymalizacyj-
nych bgda kontynuowane. Wiele ze wspomnianych metod wymaga doktadniejsze;j
analizy, aby mozliwe bylto uzyskanie rezultatow jeszcze lepszych niz dotychczasowe.
Szczegodlnie interesujace wydaja si¢ algorytmy genetyczne i ich warianty, ze wzgledu
na ich niezwykla elastycznos¢, niewielkie skomplikowanie i umiarkowany koszt obli-
czeniowy. Przedstawione tutaj rozwiazanie prostego, rzeczywistego problemu za po-
moca AG jest tego dobrym przyktadem.
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Streszczenie

Artykut prezentuje hybrydowy algorytm, oparty o klasyczny algorytm genetyczny
i 0 programowanie genetyczne, umozliwiajacy wyszukiwanie zaleznosci pomigdzy danymi
liczbowymi zawartymi w relacyjnych bazach danych. W artykule przedstawione sa wyniki
testow algorytmu wykonanych na danych sztucznie wygenerowanych, jego cechy, a takze
opisany jest przyktad zastosowania go do danych rzeczywistych, dotyczacych plam na Stoncu.

Wprowadzenie

Wraz z powstawaniem coraz to nowszych baz danych o wciaz zwigkszajacych sig¢
rozmiarach rosng potrzeby analizy zgromadzonych informacji, ich opisu, klasyfikacji
oraz znajdowania zwiazkéow migdzy nimi. Doprowadzilo to do rozwoju dziedziny
Data Mining , majacej na celu dostarczenie skutecznych mechanizmow pozyskiwania
wiedzy z baz danych. W celu znalezienia zaleznosci funkcyjnych pomigdzy warto-
$ciami liczbowymi atrybutow w relacyjnych bazach danych, klasycznie stosuje si¢
metody regresji oparte o np. konkretyzacje wzorcow lub wykrywanie trendow w da-
nych. Metody te sa czasochtonne, nieskuteczne przy niedokfadnych danych lub mate;j
ich ilosci i czgsto nakladaja duze ograniczenia na posta¢ otrzymanego wzoru [1]. Dla-
tego konieczne jest szukanie nowych ibardziej uniwersalnych metod. Pew-
ne mozliwosci w tej dziedzinie stwarza stosowanie programowania genetycznego —
odmiany algorytmdéw genetycznych — opisanej przez J. Kozg [4].

W niniejszym artykule opisany jest hybrydowy algorytm genetyczny, powstaly z
polaczenia programowania genetycznego z klasycznym algorytmem genetycznym.
Przedstawione sa jego wiasciwosci oraz przyktad zastosowania do znajdowania zalez-
nosci pomigdzy danymi liczbowymi. Testy przeprowadzone zostaly na danych zarow-
no sztucznie wygenerowanych, jak i rzeczywistych — dotyczacych stopnia aktywnosci
stoneczne;j.


mailto:eszpunar@sunlO.ci.pwr.wroc.pl

70

1. Programowanie genetyczne

Programowanie genetyczne to odmiana algorytmu genetycznego, w ktérym osobnik to
zakodowany program, o zmieniajacym si¢ w czasie ksztalcie i rozmiarze [4],[8]. Pro-
gram taki zbudowany jest z funkcji i operatoréw nalezacych do predefiniowanego
zbioru F oraz symboli terminalnych z ustalonego zbioru T. Poprawne okreslenie tych
zbioréw jest o tyle istotne, Zze w przypadku niepetnego lub btednego ich zdefiniowania
niemozliwe moze si¢ okaza¢ odnalezienie rozwiazania [4].

Podobnie jak w klasycznym algorytmie genetycznym, pierwszym krokiem w pro-
gramowaniu genetycznym jest utworzenie populacji poczatkowej. Osobnika — czyli
program — mozna zakodowaé w postaci drzewa, ktorego wezty to funkcje nalezace do
zbioru F, natomiast liscie to symbole terminalne ze zbioru T. Dla kazdego wezfa ist-
nieje tyle poddrzew, ile argumentéw wymaga funkcja znajdujaca si¢ w wezle. Istotna
role odgrywa tu okreslenie maksymalnej glgbokosci tworzonych drzew. Przy zbyt
ptytkim drzewie moze okaza¢ si¢ niemozliwe zakodowanie rozwiazania, zbyt giebokie
powoduje nadmierny wzrost przestrzeni poszukiwan i utrudnia znalezienie rozwiaza-
nia [4],[8].

Funkcja celu w tym przypadku jest scisle zalezna od rezultatu wykonania progra-

mu, ktéry dany osobnik koduje, na okreslonym zbiorze danych. Na podstawie warto-
sci funkcji celu nastgpuje selekcja, czyli okreslane jest, ktore osobniki i w jakiej licz-
bie przejda do fazy krzyzowania [4],[8].
Krzyzowanie osobnikéw w programowaniu genetycznym polega na losowym wybo-
rze wezta — punktu krzyzowania u dwdch osobnikéw, a nastgpnie wymianie pomigdzy
tymi osobnikami poddrzew, ktorych korzeniem sa wybrane punkty krzyzowania. Aby
zapobiega¢ powstawaniu bardzo duzych drzew zakiada si¢ maksymalna glebokosé
drzewa-potomka. Jezeli gigbokos¢ potomka jest wigksza niz zaktadana, to kopiuje sig
jednego z rodzicéw do nowej populacji [4],[8].

W algorytmie tym moga wystgpowaé dodatkowo inne operacje, takie jak mutacja —
zmiana losowego poddrzewa na inne, permutacja — zamiana poddrzew wychodzacych
z jednego wezta, czy upraszczanie — niezmienianie znaczenia programu, ale jego
uproszczenie [4],[8].

2. Algorytm hybrydowy do odnajdowania zaleznosci funkcyjnych
w danych liczbowych

Prezentowany algorytm zbudowany jest z dwoch algorytméw. Pierwszy z nich (zwany
dalej PG) oparty jest o programowanie genetyczne, natomiast drugi bazuje na algo-
rytmie genetycznym w klasycznym ujgciu (nazywany jest dalej AG). Hybrydowy
algorytm ma zastosowanie w relacyjnych bazach danych sktadajacych si¢ z » kolumn
danych liczbowych z okreslonego zakresu i o okreslonej doktadnosci, oznaczonych
X1, ..., Xp. Jego zadaniem jest znalezienie postaci funkcji x,-f{x,, ..., x,), najlepiej od-
zwierciedlajacej potencjalnie istniejaca zalezno$¢ migdzy kolumnami, przy zatozeniu,
ze szukana funkcja nie musi by¢ funkcja wszystkich, lecz tylko wybranych kolumn,
nalezacych do bazy danych [6],[10].
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2.1 Algorytm PG

Funkcj¢ wielu zmiennych mozna zakodowa¢ w postaci drzewa, w ktorego weztach
znajdujg si¢ identyfikatory podstawowych operatorow arytmetycznych, natomiast
liscie to identyfikatory kolumn badz statych. Taka tez posta¢ ma osobnik w algorytmie
PG. Zbiorem symboli nieterminalnych w tym przypadku jest zbior F ={+,-,*/}, nato-
miast zbiér symboli terminalnych sklada si¢ z dwoch podzbiorow: W i I, gdzie
I={x,, ..., x,} to zbidr identyfikatoréw kolumn natomiast W to zbiér wspdtczynnikow

o od 0 do 100. Przyklad osobnika kodujacego zaleznosé
x/=x;/(x+2)+x; przedstawiony jest na rysunku 1 [6],[10].

o @ Osobnik oceniany jest na dwa sposoby. Pierwszy z nich

polega na tym, ze dla kazdej krotki w bazie danych obliczana

@ ° jest wartos¢ ze wzoru, jaki koduje dany osobnik, a nastgpnie

obliczana jest warto$¢ bezwzgledna réznicy otrzymanego wy-
@ 9 niku i wartosci w kolumnie wynikowej x; — czyli blad wartosci
zwrdconej przez osobnika, po czym bledy dla wszystkich kro-
Rysunek 1. Przyklad tek s3 sumowane. Funkcja ta jest wyrazona wzorem:
osobnika Drugi sposob jest podobny, z tym Ze po obliczeniu bledu liczo-
ne jest, jaki procent wartosci w kolumnie wynikowej stanowi blad, a nast¢pnie warto-
$ci procentowe dla wszystkich krotek sa sumowane i liczona jest ich wartos¢ srednia:

N

Fo=2 |xi-v M
i=1

gdzie:

N- liczba krotek w bazie danych

X ,' — warto$¢ w pierwszej kolumnie dla i-tej krotki
yi— wartos¢ dla i-tej krotki zwracana przez osobnika

& 100 *|x/ - p
F==3 ! @)

i
i=1 xl

gdzie:
N- liczba krotek w bazie danych
X ,i — warto$¢ w pierwszej kolumnie dla i-tej krotki

yi— warto$¢ dla i-tej krotki zwracana przez osobnika

Podczas wyliczania wartosci zwracanej przez danego osobnika dla danej krotki moze
si¢ okaza¢, ze wystgpuje dzielenie przez zero, wtedy wartos¢ funkcji oceniajacej dla
danego osobnika przyjmuje wartos¢ —1, bez wzgledu na to, jaki wynik otrzymano dla
pozostatych krotek [6],[10].

Stosowana metoda selekcji jest metoda elitarna z zachowaniem najlepszych osob-
nikéw bez zmian. Natomiast mutacja polega na losowej zmianie, zgodnie z okreslo-
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nym, niewielkim prawdopodobienistwem, wartosci w weztach i lisciach drzew, przy
czym typ wartosci pozostaje zawsze bez zmian, tzn. operator jest zastgpowany opera-
torem, kolumna — kolumna, a wspdiczynnik — wspotczynnikiem [6][10].

Opisany powyzej algorytm testowany byl na danych sztucznie wygenerowanych,
przy wykorzystaniu funkcji oceniajacej liczonej ze wzoru (1). Okazalo sig, ze algo-
rytm ten pozwala na dokladne odnalezienie wielu zaleznosci istniejacych pomigdzy
danymi w bazie. Ich przyklady, dla populacji réwnej 300 osobnikéw i liczby kolumn
w bazie rownej liczbie kolumn wystepujacej we wzorze, liczbie krotek w bazie réwnej
100, wraz z potrzebng do odnalezienia zaleznosci liczba pokolen pokazane sa w tabeli
1 [6],[10].

Tabela 1. Przykladowe odnalezione zaleznosci

Szukany wzér zaleznosci liczba pokolen

X1= X2:X2:X> 3

X1= X4t X3:Xo— X5 8

X1= Xo/( X3t X4) 16
X1= Xat Xo'Xo— X3/ Xa 22
X|= Xot X3+ X4t X5t Xt X7+ Xgt Xo 31

X1= Xt X3/ X4— X4/ X3 45
X1= Xp:X3/( X4t Xs)— Xs 103
X1= Xot X3/ Xyt Xg-Xs— (Xot Xg)/ X3 135
X;=10-X,+5:X; 137
X)= XoF X3t XgoXg— Xo-X2 Xo/(( X3°X3) 207
X1= Xt X3t X4t X5t Xgt Xg+ Xg+ Xot XpX3:X4 375
X< X2 X2 XoF X3:X3:X3H Xg-Xg-XgH Xs-Xs5°Xs 579

2.2 Cechy algorytmu PG

Algorytm okazywat si¢ skuteczny rowniez w przypadku nadmiarowosci kolumn, tzn.
gdy liczba identyfikatoréw kolumn wystepujacych we wzorze, na podstawie ktérego
generowane byly dane testowe, byla mniejsza niz zdefiniowano w bazie danych. Licz-
ba pokolen potrzebnych do znalezienia rozwiazania przy pewnej liczbie nadmiaro-
wych kolumn jest wigksza niz w przypadku, gdy kolumn w bazie jest doktadnie tyle,
co we wzorze. Przykiad tej zaleznosci dla wzoru x;=x;+x;—x;-x3, 400 osobnikow w
populacji i 100 krotek w bazie danych pokazany jest w tabeli 2 [6],[10].

Algorytm mozna stosowaé rowniez wtedy, gdy dane w bazie sa niedoktadne (za-
szumione). Przeprowadzone zostaly testy, w ktorych generowane dane wedlug zada-
nego wzoru zmieniane byly o pewna losowa liczbg, nie wigksza niz 10% wartosci.
Porownywana byta nastgpnie suma bledow zawarta w bazie danych z wartoécia funk-
cji oceniajacej dla najlepszego osobnika (liczonej wg wzoru 1), ktora jest suma btedu
po wszystkich danych. Okazato si¢, ze odnalezione zaleznosci daja mniejszy btad niz
suma btedow w bazie, czyli odnalezione zostaly wzory lepiej odzwierciedlajace zalez-
nosci w bazie niz wzor, na podstawie ktorego dane byly generowane i nastgpnie za-
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Tabela 2. Pomiary przy nadmiarowos$ci kolumn

Liczba nadmiarowych kolumn 0 1 2 3 4 5 6
Liczba pokolen dla pomiaru 1 9 16 15 17 45 34 | 107
Liczba pokolen dla pomiaru 2 7 30 18 16 47 45 23
8
9
6

Liczba pokolen dla pomiaru 3 11 16 25 20 20 51
Liczba pokolen dla pomiaru 4 17 27 20 22 26 38
Liczba pokolen dla pomiaru 5 17 27 11 33 37 32
Liczba pokolen dla pomiaru 6 12 15 18 31 15 64 26
Liczba pokolen dla pomiaru 7 10 16 17 25 26 36 18
Wartos$¢ srednia 8,71 | 17,4 | 19,7 1 20,7 | 29,7 | 37,4 | 42,1
odchylenie standardowe 1,97 | 591 | 5,08 | 6,75 | 12,4 | 14,2 | 30,6

szumiane, np. dla wzoru x;=x;-x3-x, suma bledéw zawartych w bazie wynosita
761861,39, natomiast bfad zwracany przez najlepszego osobnika, majacego postaé
xX1=X5(1/x4=x3)+x5-x3:x4—8-x3, po 50 pokoleniach wynosit mniej, bo 715182,477
[6],[10].

Trudnosci natomiast pojawialy sig¢, gdy we wzorze reprezentujacym zalezno$¢
pomigdzy kolumnami wystgpowaly wspdlczynniki. Niemozliwe bylo odnalezienie
niektérych nawet dos¢ prostych zaleznosci np. x;=15-x,+4-x;-23,4-x,/x; (dla 500 osob-
nikéw w populacji). Okazalo sig, ze czg¢Sciowo problem ten mozna rozwiazaé poprzez
zwigkszenie rozmiardw populacji do 5000, np. zalezno$é: x,;=100-x,-x3-x,+17,5x,/x3+
2:-x;,, ktorej nie udalo si¢ znalez¢ przy 500 osobnikach w populacji, przy 5000 odnale-
ziona zostala w 457 pokolen. Dla wielu zaleznosci zwigkszenie rozmiar6w populacji
bylo niewystarczajace. Aby uczyni¢ algorytm bardziej skutecznym, wprowadzono
dodatkowy algorytm genetyczny (AG) [6],[10].

2.3 Algorytm dostrajajacy AG

Celem algorytmu opartego na klasycznym algorytmie genetycznym jest dobranie dla
okreslonej parametrycznie liczby najlepszych osobnikéw PG, co okreslong liczbe
pokolen PG, jak najlepszych wartosci wspotczynnikdw, wystepujacych w tych osob-
nikach, bez zmiany struktury drzewa. Ze wzgledu na swoj cel, algorytm ten nazwany
zostat algorytmem dostrajajacym.

Przebieg algorytmu dostrajajacego wspotczynniki jest nastgpujacy: dla danego osob-
nika, przekazanego przez PG okresla si¢ liczbg wspdlczynnikéw w nim wystepuja-
cych. Jest to dlugos¢ osobnika w AG. Osobnikiem w AG jest ciag liczb z pewnego
zakresu o okreslonej doktadnosci (liczbie miejsc po przecinku). Populacja poczatkowa
zawiera ciag utworzony na podstawie dostrajanego osobnika oraz okreslong liczbe
ciagéw losowych. Jest ona nieduza, od 100 do 200 osobnikow. Nastepnie tak utwo-
rzona populacja podlega cyklicznej selekcji, krzyzowaniu i mutacji przez ok. 70 po-
kolen (wielko$¢ populacji oraz liczba pokolen okreslane sa parametrycznie) [6],[10].
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Osobniki oceniane sa na podstawie tej samej funkcji oceniajacej, jaka jest w PG.
Liczona jest dla danego dostrajanego osobnika ze zmienianymi kolejno wspéiczynni-
kami. Réwniez analogiczny do PG jest wybdr osobnikéw do krzyzowania, ale samo
krzyzowanie jest mniej skomplikowane. Dla pary osobnikéw wybierany jest punkt
krzyzowania, bgdacy losowym miejscem w ciggu wspotczynnikéw, po czym wymie-
niane sa migdzy osobnikami podciagi. Przyktad krzyzowania dwoch osobnikéw o
dlugosci S w AG przedstawiony jest na rysunku 2.

52 [24_]38. 2 52 24 _[11__[452[67
52 | 11106111_>| [4 J11 [452]67]

[243[46 [11 [45.2[6.7] [2.43[4.6 [38.1 0.6 [12 ]

Rysunek 2. Przyklad krzyzowania osobnikéw w algorytmie dostrajajg-
cym AG

W przeciwienstwie do algorytmu PG, wigksza role odgrywa tu mutacja. Zapropo-

nowana bowiem zostata specyficzna posta¢ mutacji, ktorej celem jest umozliwienie
dobrego dostrojenia réwniez wspotczynnikow z pewnga liczba miejsc po przecinku.
Polega ona na zwigkszeniu prawdopodobiefistwa matych zmian wartosci wspoiczyn-
nikow, tzn. jezeli dana liczba ma podlega¢ mutacji, to dla kazdej cyfry, z ktdrej jest
zbudowana, okreslane jest prawdopodobienstwo mutacji pojedynczej cyfry, przy czym
dla cyfr przed przecinkiem dziesigtnym, prawdopodobienstwo jest mniejsze niz dla
cyfr po przecinku. Poza tym, na im dalszym miejscu po przecinku znajduje si¢ cyfra, z
tym wigkszym prawdopodobienstwem begdzie zmutowana [6],[10].
Po potaczeniu algorytméw okazato si¢ mozliwe odnalezienie zaleznosci, z ktérymi
samo programowanie genetyczne nie radzito sobie , np. dla funkcji x,=sin(x;), dlax, €
(0..180) wartos¢ funkcji oceniajacej liczonej wg wzoru (2), dla najlepszego osobnika
po 250 pokoleniach, przy dostrajaniu co 20 pokolen 20 osobnikéw przez 40 pokolen
wynosita 1,52. Gdy natomiast dostrajanie nie bylo stosowane, warto$¢ funkcji oce-
niajacej, po 2000 pokolen, dla najlepszego osobnika byta wigksza od 50. Poza tym dla
zaleznosci, do znalezienia ktorych dostrajanie nie bylo konieczne, pofaczenie algoryt-
méw przyspieszalo ewolucjg. Przykladem moga by¢ badania przeprowadzone dla
danych wygenerowanych wg wzoru:

x=11,3/x+10:x7 -5, 2%/ (x5+x5)+33,8+x 3:x5: 26+ 20(x +x,)/xs5+8x s+ 12(x5+x5)/x; +x7;.
Bez dostrajania po 165 pokoleniach wartos¢ funkcji oceniajacej (wg wzoru (2)) wyno-
sifa 9,25, natomiast w ewolucji, startujacej z tego samego pokolenia poczatkowego, w

ktérej dostrajanych bylo 15 osobnikéw co 40 pokolen PG przez 50 pokolen AG, naj-
lepszy osobnik juz po 100 pokoleniach miat przystosowanie rowne 1,2 [6],[10].
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3. Testy na danych rzeczywistych

Dane rzeczywiste do badan generowane byly na podstawie plikéw pochodzacych z
obserwatorium astronomicznego w Greenwich (Royal Greenwich Observatory), doty-
czacych liczby plam wystepujacych na Stoficu w kolejnych dniach poczawszy od
1874 roku. Algorytm testowany byt zaréwno pod katem dokladnosci przyblizen za-
lezno$ci pomiedzy sumami plam wystgpujacych na Stoficu w kolejnych okresach cza-
su, jak i mozliwoscia zastosowania otrzymanych zaleznosci do przewidywania liczby
plam w kolejnych odcinkach czasu [10].

3.1 Plamy na Stoncu

Plamy na Stoncu sa gléwnym przejawem i wyznacznikiem stopnia aktywnosci sto-
necznej, ktéra ma duzy wptyw na zycie na Ziemi. Informacja o przyszlej liczbie plam
najistotniejsza jest podczas okreslania orbit satelitéw i przy planowaniu misji zatogo-
wych prowadzonych w przestrzeni kosmicznej, gdyz aktywno$¢ stoneczna wptywa na
zmiany gestosci atmosfery ziemskiej wraz z wysokoscig, a poza tym wysokoenerge-
tyczne czastki wysylane przez Stonce sa grozne dla cztowieka i aparatury elektronicz-
nej. Promieniowanie stoneczne moze wyrzadzi¢ wiele szkdd réwniez na Ziemi, gdyz
moze np. wytworzy¢ prad w procesie indukcji w liniach energetycznych i w konse-
kwencji zaburzy¢ proces przesylania pradu, a nawet wyrzadzi¢ szkody w sieci ener-
getycznej, moze takze zakldci¢ pracg radaréw i uniemozliwi¢ pomiary geologiczne
przy uzyciu magnetograféw oraz powoduje powstawanie zorz polarnych. Liczbg plam
na Stoficu wiaze si¢ takze np. z klimatem czy wybuchami epidemii, ale s3 to powiaza-
nia na razie niepotwierdzone [5],[2], [7],[11].

Aktywno$¢ stoneczna ma charakter mniej wigcej cykliczny, tzn. okresowo, co
okoto 10,5 roku, na tarczy stonecznej najpierw nie ma plam, potem ich liczba wzrasta
do pewnego poziomu, po czym znow spada do zera. Wykres miesigcznych sum plam
w latach 1800-1997 przedstawiony jest na rysunku 3. Na wykresie tym mozna zauwa-
zy¢ charakterystyczne maksima i minima sumy liczby plam [5],[7]. Przewidywanie
wielkosci maksimum kolejnych cykli jest trudnym zadaniem, nad ktérym pracuje
wielu naukowcow, z czego najwigksza grupa jest grupa 12-stu ekspertoéw z USA,
Wielkiej Brytanii, Australii i Niemiec powofana przy wsparciu NASA przez Centrum
Badan Przestrzeni Kosmicznej (Space Environment Center) [3]. Nie znana jest do tej
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Rysunek 3. Zmiana miesigcznej liczby plam w cyklu jedenastoletnim
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pory zaleznos¢ pomigdzy liczba plam w poszczegdlnych odcinkach czasu i nie wia-
domo w jakim stopniu jest to zjawisko losowe.

3.2 Sposdb generowania bazy danych

Na rysunku 4. przedstawiony jest ogdlny sposob generowania krotek wchodzacych w
sktad bazy danych. Dane podzielone sa na krotki uczace i testowe. Krotki uczace to
krotki zawierajace dane, wsrdd ktérych hybrydowy algorytm genetyczny probuje
znalez¢ zalezno$¢ funkceyjna. Na krotkach testowych sprawdzane jest, na ile odnale-
ziony wzér sprawdza si¢ dla nowych danych [10].

W celu wygenerowania krotek uczacych najpierw wybierany jest okres czasu
(t0.1;), nazywany dalej dlugoscia okresu uczacego. Potem ustalana jest liczba atrybu-
tow w krotkach — n. Nastgpnie okreslana jest dfugos¢ odcinka czasu oznaczona na
rysunku 4. jako d,. Warto$ciami atrybutow od 2 do » sa sumy plam wystepujacych w
odcinkach czasu tej dtugosci. Liczba plam, bedaca warto$cig dla atrybutu pierwszego,
obliczana jest dla odcinkéw takiej samej badz innej dtugosci co d), oznaczonej d,.
Dodatkowo wyznaczana jest dtugos¢ odcinka p (przesunigcie), ktéra okresla odstep
czasu pomigdzy okresem, dla ktérego generowana jest wartos¢ atrybutu n, a okresem
dla ktérego generowana jest wartos¢ atrybutu pierwszego [10].

Zgodnie z powyzszym, jesli s(t,, ) oznacza liczbg plam w okresie (1,4, gdzie ¢,
to data poczatkowa, a # — data koficowa, to dla okresu uczacego (#,¢,) warto$ci atry-
butéw od 2 do » dla pierwszej krotki w bazie danych beda nastgpujace:

{x2 =St tr+d))), % =S((trtd) .1+ 2A))),.oos X=s((tt (=20 (14 (n-1)d )},

natomiast warto$¢ w pierwszej kolumnie begdzie wynosita:

x;=s((tyt(n-1)dtp) , (t5H(n-1)dtp+dy)).

Druga krotka uczaca begdzie generowana analogicznie, przy czym t, przyjmie warto$¢
ty+d,. Ostatnig (k-ta) krotka uczacg bedzie krotka, dla ktorej wartos¢ pierwszego atry-
butu liczona jest dla okresu (¢; t,+d,). [10]

Dla tak utworzonych krotek uczacych, algorytm PG + AG szuka zaleznosci
x,=f(x5,...,x,) pomigdzy danymi zawartymi w bazie danych. Odpowiada to szukaniu
zaleznosci pomigdzy suma plam w odcinku czasu dlugosci d;, a sumami plam w »
kolejnych, poprzedzajacych dany okres odcinkach czasu dtugosci d;.

b 2 3 xnlxm M dane uczace | dane testowe
A A e
¥2 1 x3 x4 xn x1 : X2 x3 xn x1
B) A e = L QI . e —~—
e e = = e o
to — — A d) S A s re e =1 czas
dq p dy X2: %3 xn-1 xn x1
e) Rt el L s SO L T VT TETF )
a) - pierwsza krotka uczaca ) ) X2 x3  xn-1 xn x1
b) - druga krotka uczaca d) - pierwsza krotka testujaca

c) - ostatnia krotka uczaca ) - druga krotka testujaca

Rysunek 4. Generowanie krotek
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Sprawdzone zostaje, na ile doktadng zaleznos¢ pomigdzy danymi wystepujacymi w
tak wygenerowanej bazie jest w stanie znalez¢ proponowany algorytm, a nastepnie
czy za pomocg uzyskanego wzoru mozna przewidywac liczbe plam w kolejnych okre-
sach, tzn. w okresie (¢,, t,/¥m*d, ), gdzie m=1,2,.. .W tym celu generowane sa, analo-
gicznie do krotek uczacych, krotki testowe, co rowniez przedstawia rysunek 4. Przy
generowaniu krotek testowych parametry d,, dy, n oraz p pozostaja bez zmian. Pierw-
sza krotka testowa jest krotka, dla ktdrej wartos¢ pierwszego atrybutu liczona jest dla
okresu (¢,,(t,+d,)), druga krotka ta, dla ktdrej warto$¢ pierwszego atrybutu wynosi s
(t+d>,(t+2*d5)), itd. [10].

3.3 Przeprowadzone testy

Przeprowadzone testy podzielone zostaly na dwie zasadnicze grupy: testy krétkoter-
minowe i testy dlugookresowe. Testy krotkoterminowe to testy skutecznosci przybli-
zania i przewidywania przy wartosciach parametréw d, i d, zmieniajacych sie od 30 do
120 dni, dla przesunigcia p od 0 do 180 dni oraz dlugosci okresu uczacego nie wigk-
szej niz 10 lat, w zaleznosci od fazy cyklu jedenastoletniego. W testach dtugotermi-
nowych dane uczace generowane byly na podstawie okresu obejmujacego kilka cykli
jedenastoletnich, czyli wigcej niz 10 lat. W eksperymentach tych dlugosci okresow d,
d, byly wigksze niz przy testach krotkoterminowych (do 360 dni), a takze wigksze
byto przesunigcie p (do 1800 dni). [10]

W testach krotkookresowych bardzo dobre okazalo si¢ przyblizenie danych ucza-
cych. Na rysunku 5. przedstawione jest porownanie wartosci w kolumnie x;, wyliczo-
nej na podstawie odszukanego przez algorytm wzoru, z wartosciami rzeczywistymi,
przy dwoch roznych wartosciach parametrow. Rysunek 5a) dotyczy okresu uczacego
1933-1939, wartosci parametrow d, i d; rownych 60 i parametru p réwnego 0. Ewolu-
cja prowadzona byla przez 900 pokolen. Na rysunku 5b) przedstawione sa wyniki dla
okresu uczacego 1941-1949, wartosci parametrow d, i d; rownych 90 i parametru p
rownego rowniez 0, po 900 pokoleniach. W testach dlugoterminowych przyblizenie
bylo rézne dla réznych okreséow uczacych, ale nadal zaskakujaco dobre. Najlepsze
przyblizenie uzyskano dla liczby kolumn w bazie réwnej 21 i parametrow d, oraz d,,
rownych 180 dni, dla przesunigcia — rownego 900 dni i okresu uczacego — lata 1914-
1980. Funkcja oceniajaca w tym przypadku byta funkcja liczona wg wzoru (1), a dane
zostaty przyblizone ze srednim blgdem procentowym (odpowiadajacym przystosowa-
niu wyliczonemu przy pomocy drugiej funkcji) rownym 16,9%. Przyklad ten ilustruje
rysunek 6. [10]

W testach dlogoterminowych uzyskanie dobrego przyblizenia danych bylo trud-
niejsze i wyniki zalezaly od wyboru okresu uczacego. Najlepsze przyblizenie danych
uczacych uzyskano dla liczby kolumn 21 i parametréw d, oraz d,, réwnych 180 dni,
dla przesunigcia rownego 900 dni i okresu uczacego obejmujacego lata 1914-1980.
Funkcjq oceniajaca w tym przypadku byta funkcja liczona ze wzoru (1), a dane zostaly
przyblizone ze $rednim bigdem procentowym (odpowiadajacym przystosowaniu wyli-
czonemu przy pomocy wzoru (2)) rownym 16,9%. Uzyskane przyblizenie pokazane
jest narysunku 7. [10]
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O ile uzyskane wzory, przyblizajace dane uczace dobrze odzwierciedlaty zaleznosci
pomigdzy danymi, o tyle nie nadawaly si¢ do przewidywania przysztych wartosci
cyklu jedenastoletniego zardwno jesli chodzi o przewidywanie z duzym, jak i krétkim
wyprzedzeniem. W [10] przedstawione zostaly szczegdtowe wyniki testow i wskazane
zostaly mozliwosci rozbudowy algorytmu w celu poprawy jego przydatnosci nie tylko
do odnajdowania zaleznos$ci, ale rowniez do przewidywania. Najprawdopodobniej,
dzieki mozliwosci zwiekszenia liczby kolumn w bazie danych (do 30 [ub 40) oraz
wydtuzenia okresu czasu, na podstawie ktérego generowane sa krotki uczace, algo-
rytm moglby znalez¢ takg zalezno$¢ migdzy danymi, ktora dobrze by przyblizata dane
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historyczne i jednoczesnie mogta by¢ stosowana do okreslania przysztych wartosci. W
przypadku danych dotyczacych plam na Storicu nie jest jednak mozliwe zwigkszenie
okresu uczacego ze wzgledu na brak zapiséw o prowadzonych regularnie obserwa-
cjach przed druga potowa dziewigtnastego wieku [10].

4, Podsumowanie

Przeprowadzone eksperymenty pokazaly duza skuteczno$¢ przedstawionego algoryt-
mu Data Mining w znajdowaniu zalezno$ci migdzy danymi liczbowymi w bazach
danych. Potwierdzily to badania przeprowadzone zaréwno na danych wygenerowa-
nych sztucznie, jak i rzeczywistych, dotyczacych sum liczb plam na Stoficu. Algorytm
znajduje istniejace zaleznosci zaréwno w bazach z duzg iloscia informacji nadmiaro-
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wych, jak i przy danych niedoktadnych — zaszumionych. Dzigki temu bardzo dobrze
radzi sobie z przyblizaniem szeregdw czasowych, reprezentujacych przejawy aktyw-
nosci sfonecznej, mimo iz sg one w duzej mierze zjawiskami chaotycznymi. Trafnos¢
uzyskiwanych rezultatow okazuje si¢ niezalezna tak od liczby krotek, jak i kolumn w
bazie.

Zdolno$¢ odnajdowania zaleznosci pomigdzy danymi moze by¢ poprawiona, po-
przez zwigkszenie zbioru wykorzystywanych przez algorytm funkcji (np. o funkcje
trygonometryczne) i jednoczesne zwigkszenie rozmiaréw ewoluujacych populacji.
Podczas eksperymentow zauwazono bowiem, ze w przypadku uwzglednienia funkcji
sinus jako potencjalnej operacji, uzyskiwane prognozy byly bardziej trafne.
Niewatpliwie mozliwe jest skuteczne zastosowanie proponowanej metody do innych
problemdéw — wszedzie tam, gdzie wymagana jest analiza zwiazkéw pomigdzy danymi
liczbowymi, zgromadzonymi w bazach danych. Algorytm mozna takze fatwo rozsze-
rza¢ o dodatkowe funkcje i symbole terminalne, specyficzne dla okreslonego zagad-
nienia. Czyni to przedstawiony system elastycznym i skutecznym mechanizmem po-
zyskiwania wiedzy z baz danych.
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Streszczenie

W artykule oméwiono mozliwos¢ zastosowania algorytmu genetycznego do poszukiwania
optymalnej synchronizacji rozktadéw jazdy transportu miejskiego. Przedstawiono szczegoty
konstrukcji algorytmu i realizujacego go oprogramowania. Oméwiono otrzymane wyniki.
Poréwnano mozliwosci wykorzystania algorytmu genetycznego i przegladu zupelnego oraz
podejscia hybrydowego do realizacji zadania.

1. Problem synchronizacji rozktadéw jazdy

Obecnie w wigkszosci duzych osrodkéw miejskich rozktady jazdy komunikacji zbio-
rowej tworzone s3 w oparciu o zasade jednego taktu podstawowego. Oznacza to, ze
wszystkie gtowne linie tramwajowe, trolejbusowe i autobusowe kursuja w jednako-
wych odstgpach czasu. W zaleznosci od obciazenia na danej trasie roznicowana jest
natomiast pojemnos$¢ taboru [Wys 97].

Takie rozwiazanie ulatwia projektowanie rozkladéw jazdy i zapewnianie przesia-
dek na weztach dla pasazerow — analizie podda¢é mozna bowiem jedynie wycinek
czasu diugosci jednego taktu (w pozostatym czasie sytuacja begdzie analogiczna).
Wszystkie przyjazdy i odjazdy tramwajow, czy autobuséw okreslane sa poprzez prze-
sunigcie wzgledem poczatku taktu.

Jak tatwo dostrzec, zadanie synchronizacji sprowadza si¢ do znalezienia optymal-
nego zestawu odjazdéw poszczegdlnych linii z punktow poczatkowych. Ocena roz-
wigzania polega za$ na sprawdzeniu synchronizacji odjazdow w wybranych wezlach
sieci. I tak, jezeli takt wynosi np. 15 minut (co oznacza, ze wszystkie linie kursuja z
czgstotliwodcig co 15 minut), a w danym punkcie pojawiaja si¢ pojazdy 3 linii, to ich
odjazdy powinny nastgpowaé w pigciominutowych odstepach. Oceniana jest zatem
regularno$¢ kursowania komunikacji. Przy niskich wartosciach taktu (do 20 minut) i
obstudze tras przez kilka linii (odstepy migedzy pojazdami okoto 5 minut) traci bowiem
znaczenie czas oczekiwania na przesiadke (pasazer albo na przystanku poczatkowym
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oczekuje na pofaczenie bezposrednie, albo przesiada si¢ nawet kilkukrotnie w razie

potrzeby, wykorzystujac wielo$¢ linii miedzy weztami).

Trzeba przy tym zwroéci¢ uwage na fakt, iz poszczegdlne wezly sieci maja rézng wage

— istotniejsze sa np. diugie odcinki na przedmiesciach, na ktorych znajduje si¢ nawet

kilkanascie przystankdéw obstugiwanych przez jeden zestaw linii, niz krotkie odcinki

w centrum miasta. Waga danego punktu zmienia si¢ rowniez w trakcie dnia — rano

istotniejszy jest kierunek do centrum, dzielnic przemystowych, czy akademickich, po

potudniu natomiast — centréw handlowych i dzielnic mieszkaniowych.

Rozwigzanie problemu synchronizacji rozktadu jazdy wymaga¢ moze jednak

uwzglednienia dodatkowych ograniczen:

e w ciaggu dnia zmianie moze ulega¢ warto$¢ taktu (np. we Wroctawiu tramwaje w
szczycie kursujg co 12 minut, poza nim co 15 min., wieczorem — co 20 min.). W
tym przypadku kazda pora tworzy praktycznie odrgbne zadanie synchronizacji,
ktére moze by¢ rozwigzywane osobno.

e podobnie, w ciagu dnia zmianie mogg ulega czasy przejazdu miedzy weztami
(dzieje si¢ tak gltdwnie w osrodkach, w ktérych komunikacja zbiorowa nie ma
wydzielonych paséw ruchu). Rozwiazanie jest analogiczne — doba dzielona jest na
pory, w ktérych obowigzuja okreslone zestawy czasow — dla kazdego z nich zada-
nie rozwiazywane jest oddzielnie.

e zmienione moga by¢ rozklady jazdy tylko niektérych linii (czgsto w przypadku
remontéw rekonstrukcji poddaje si¢ jedynie rozkiady linii o zmienionej trasie).
Rozwiazaniem jest sztywne uzaleznienie odjazdu z petli poczatkowej jednej linii
od startu innej.

e niektore linie wykorzystuja na trasie odcinki jednotorowe, gdzie wyznaczone sa
stale punkty mijania. Podobnie jak w poprzednim przypadku, rozwigzaniem jest
sztywne powiazanie startow — w tym przypadku dwoch kierunkéw jazdy jednej
linii.

2. Algorytm genetyczny

Zastosowanie algorytmu genetycznego [Gol 1995] do tak postawionego problemu nie
nastrecza wigkszych trudnosci. Opisujacy osobnika genotyp powinien zawieral ze-
staw startdw poszczegdlnych linii. Funkcja oceniajaca natomiast — ocenia¢ rowno-
mierno$¢ pojawiania si¢ pojazdéow komunikacji zbiorowej na wskazanych weztach, z
odpowiednimi wagami.

Po uwzglednieniu ograniczen wymienionych w punkcie 1, przyjeto nastgpujaca postaé

genotypu:

e liczba gendéw bedzie rowna liczbie niezaleznych startow linii — najczgsciej jednej
linii odpowiadaé beda dwa geny (pierwszy dla kierunku tam, drugi — z powrotem),
jednak za odjazdy linii o narzuconej z gory wzajemnej synchronizacji odpowiadaé
bedzie tylko jeden gen, podobnie dla dwoch kierunkdw linii przebiegajacej przez
odcinki z wyznaczonymi sztywnie mijankami.
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e jeden, wybrany gen powinien mie¢ zawsze wartos¢ zero (istotne sa nie same war-
tosci startow linii, ale wzajemne przesunigcia migdzy nimi).

e wykorzystujac powyzszy fakt, przyjeto ze wartos¢ zero bedzie miat gen ,,zerowy”
— beda z nim zwigzane starty linii o rozktadach nie podlegajacych zmianom (na-
rzuconej synchronizacji).

W trakcie dziatania algorytmu genetycznego, dane z genotypu przeliczane sa na mo-
menty pojawiania si¢ linii na weztach wedtug wzoru:

b = (g(;(/) +p,,)modT )
gdzie:
t,, —moment (w takcie) pojawienia sig¢ linii | na wezle w;
&iy — gen okreslajacy start grupy linii;
G(l) - funkcja wskazujaca, do ktorej grupy linii zalicza sig linia I;
Dy, — czas przejazdu linii | od punktu poczatkowego do wezta w;

T — diugos¢ taktu.

Nastepnie, przyjazdy wszystkich linii branych pod uwagg na danym wezle oceniane sa
pod wzgledem regularnosci:

O, = R(t115 s s times T)s ()
gdzie:
O, - ocena synchronizacji na wezle w;
R(t,t,, ..., t,,T) — funkcja oceniajaca regularno$¢ wystapien £+, w takcie o dlugoscei
T,
t,, —moment (w takcie) pojawienia sig linii /; na wezle w;
n - liczba linii branych pod uwagg w ocenie synchronizacji na wezle.

Funkcja oceniajaca regularno$¢ moze by¢ przy tym oparta np. na odchyleniu stan-
dardowym odstepoéw pomigdzy momentami pojawienia si¢ linii na wezle.
Ogolna ocena rozwiazania sprowadza si¢ do sumy wazonej wynikdw ocen czastko-
wych:

0 = i(wwi ' Ow:) ’ (3)
i=1

gdzie:
O - ogdlna ocena rozwigzania;
0, — ocena synchronizacji na wezle wi;

w,, — waga synchronizacji na wezle wi;

wi

m  — liczba branych pod uwagg weziow.
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Jak wida¢, algorytm bedzie mogt zdecydowacé sig na poswigcenie kilku mniej istot-
nych weztdéw sieci, za ceng dobrego rozwiazania na jednym z weztéw podstawowych.
Z tego tez wzgledu bardzo istotny jest rozwazny dobdr wag synchronizacji na po-
szczegdlnych weztach.

W algorytmie zatozono wykorzystanie krzyzowania jednopunktowego. Sposéb
konstrukcji genotypu zapewnil, iz w procesie krzyzowania nie mogty powsta¢ genoty-
py btedne. Dopuszczono réwniez mutacj¢ — losowo wybrany gen mdgt zmieni¢ war-
tos¢ o maksymalnie +12,5%.

3. Realizacja programowa

Podczas implementacji algorytmu oparto si¢ na fikcyjnym takcie 256, co pozwolito na
wykorzystanie sprzgtowej arytmetyki bajtowej (modulo 256). W zwiazku z tym, przed
rozpoczgciem obliczen, wszystkie wartosci czasow przejazdu byly przeskalowywane
(przemnozenie przez wartos¢ 256/T).
Kazdy gen mogt by¢ wigc przechowywany w jednym bajcie, co wplyngto pozytywnie
na szybkos¢ obliczen. Zgodnie z zatozeniami omdéwionymi w punkcie drugim, w kaz-
dym pokoleniu ewolucji genotyp byl normalizowany (po operacji krzyzowania czy
mutacji warto$ci wszystkich gendw zmniejszane byly o wartos¢ genu zerowego).
Funkcje oceniajacq oparto na sumowaniu odchylen odstepéw migedzy momentami
pojawienia si¢ kolejnych linii na wezle od wartosci optymalnej (tak np. dla T=12 min.
i 4 linii optymalny odstgp wynosi 3 minuty).
W trakcie badan testom poddano samo zachowanie si¢ algorytmu genetycznego.
Na ich podstawie przyjeto, ze:
e rozmiar populacji wynosi¢ bedzie 1024 osobniki;
e populacja poczatkowa bgdzie tworzona losowo;
e przez pierwsze 30 pokolen nie bgdzie wykorzystywana mutacja;
e przez kolejne 30 pokolen prawdopodobienstwo mutacji bedzie wynosic¢ 1%;
e poczawszy od 61 pokolenia prawdopodobienstwo mutacji bedzie 10-procentowe;
e wykorzystywana bedzie elitarna metoda selekcji — w kazdym pokoleniu gorsza
potowa populacji zostanie zastapiona krzyzéwkami organizmow lepszych;
e moment zakonczenia ewolucji bedzie dobierany w zaleznosci od otrzymywanych
w danym przypadku wynikdw.

4. Badania na rzeczywistych sieciach tramwajowych

Powstate oprogramowanie postuzyto do testéw na danych pochodzacych z dwdch
duzych polskich osrodkéw miejskich — Wroctawia i Poznania. W obu przypadkach
,.kregostup” sieci komunikacyjnej stanowia linie tramwajowe. W momencie wykony-
wania badan we Wroctawiu kursowaty 23 linie (co 12, 15 lub 20 minut — zaleznie od
pory dnia), w Poznaniu 15 linii (co 10, 15 lub 20 minut — zaleznie od rodzaju dnia).

Pierwsze badania wykonano dla Wroctawia, pory III dnia roboczego (od godziny
12.00 do 17.00). Linie tramwajowe kursuja wowczas co 12 minut. W wyborze pory
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kierowano si¢ opinig pracownikéw MPK Wroctaw, zajmujacych si¢ recznym opraco-
wywaniem synchronizacji — wlasnie ta pora zostata okreslona jako najtrudniejsza.

W chromosomie znalazto si¢ 45 genoéw (23 linie tramwajowe, z ktérych jedna (nr
17, relacji Klecina — S¢polno) miata narzucone mijanki). Na funkcj¢ oceniajacg skta-
daty si¢ 44 oceny czastkowe (26 zwiazanych z we¢ztami podstawowymi i 18 — uzupet-
niajacymi). Wezly podstawowe (waga 2) zostaly wybrane na liniach dojazdowych do
centrum, uzupetniajace (waga 1) na krotszych odcinkach, w obregbie centrum.

Uzyskane wyniki oceniono wysoko — na 13 weztow podstawowych, tylko w jed-
nym (Pilczyce) rownomierno$¢ odjazdéw nie byta dobra. W przypadku weztéow uzu-
petniajacych, regularnos¢ byta dobra, lub zadowalajaca.

Badanie ponowiono, podnoszac wage wezta Pilczyce do 4, bez zmian pozostatych
parametrow. Otrzymano praktycznie optymalny rozktad odjazdéw na wezle Pilczyce,
z nieznacznym pogorszeniem synchronizacji na niektorych weztach uzupetniajacych.

Po zakonczeniu podstawowej fazy badan, wykonano szereg optymalizacji dla ce-
16w kontrolnych i pordwnawczych. Sprawdzono m.in. dziatanie algorytmu dla innych
por czasowych Wroctawia i sieci tramwajowej Poznania. Uzyskane wyniki byty dobre
lub zadowalajace (szczegdtowe omowienie znajduje si¢ w [Kwa 99]).

5. Porownanie metod synchronizacji rozktadéw jazdy

W trakcie przeprowadzania testow dziatania algorytmu genetycznego, nawiazana zo-
stata wspoltpraca z dziatem rozktadéw jazdy Miejskiego Przedsigbiorstwa Komunika-
cyjnego we Wroctawiu. W efekcie prac powstalo nowe oprogramowanie komputero-
we, wykorzystujace przeglad zupelny. Rozwiazanie takie byto mozliwe, ze wzgledu
na bardzo ostre warunki stawiane przez koordynatorow rozktadéw jazdy w MPK
Wroctaw. W rezultacie przestrzen poszukiwan rzedu 10* zawezana jest maksymalnie
do 10° przypadkow, przy czym dla parzystych wartosci taktu (12 i 20 minut) nie prze-
kracza zazwyczaj nawet 30.000 kombinacji.

Nowe podejscie oparte jest o operacje macierzowe, zblizone do rozwigzywania
uktadu réwnan z wieloma niewiadomymi. Ograniczenia narzucane synchronizacji sa
bowiem bardzo ostre — nie tylko zawieraja dopuszczalne odstepy miedzy pojawienia-
mi si¢ linii na wezle, ale nawet okreslaja kolejnos¢ ich wystapienia. O trudnosci pro-
wadzenia takiego zadania optymalizacji $wiadczy¢ moze fakt, iz w okoto potowie
przypadkow wykazywana jest niemozliwos¢ realizacji petnego zestawu warunkdw.

Na podstawie przeprowadzonych badan i kilkuletniego okresu wspotpracy z uzyt-
kownikiem rzeczywistego systemu, nalezy stwierdzi¢, iz zaréwno algorytmy gene-
tyczne, jak i przeglad zupelny moga by¢ z powodzeniem stosowane w poszukiwaniu
synchronizacji rozkladow jazdy miejskiej komunikacji zbiorowe;j.

Najwigksze pole zastosowan algorytmow genetycznych miesci si¢ przy tym w przy-
padku sieci o niezbyt dobrze rozpoznanej specyfice — gdzie warunki stawiane syn-
chronizacji sprowadzaja si¢ do wskazania punktow, w ktoérych ma zosta¢ dokonana
optymalizacja. Ze wzrostem skomplikowania narzucanych warunkéw maleje rozmiar
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przestrzeni poszukiwan — mozliwe wigc staje si¢ stosowanie technik opartych na prze-
gladzie zupetnym. Nalezy rowniez wspomnie¢ o podejsciu hybrydowym — mozliwosci
wykonania synchronizacji kilku linii w oparciu o przeglad zupetny, a nastgpnie wyko-
rzystania wynikow jako danych wejsciowych algorytmu genetycznego (optymalizacja
catosci systemu).
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Streszczenie

Artykut podejmuje zagadnienie generowania muzyki przez program komputerowy
wykorzystujacy algorytm genetyczny jako mechanizm generujacy. Autor artykutlu musi w
pewnym stopniu zdefiniowa¢ pojgcie muzyki, ocenia¢ w obiektywny sposob to, co nam
wszystkim wydaje si¢ jak najbardziej subiektywne. Implementacja algorytmu genetycznego
prezentowanego w artykule nie rézni si¢ niczym na poziomie ideowym od powszechnie
przyjetej formy: ocen pokolenie, wybierz najlepszych, wykorzystaj ich do stworzenia nowego
pokolenia, jednak tematyka artykutu jest juz w duzym stopniu niestandardowa. Do oceny
potrzebne sa kryteria — jesli chodzi o ocen¢ muzyki, musimy przyja¢ duze zalozenia
upraszczajace, aby takie kryteria zdefiniowac.

Wstep

Ludzkos¢ zawsze probowala ulatwi¢ sobie zycie zaprzggajac do pracy maszyny.
Poczatkowo do najprostszych czynnosci, potem do coraz bardziej zlozonych. Na
pewnym etapie tych ulatwien ktos wpadt na pomyst, aby udostgpni¢ dla komputeréw
— czyli maszyn obliczeniowych — dziedziny do tej pory zarezerwowane tylko dla
cztowieka. Sztuka, bo o niej mowa, z natury swojej rzeczy jest nieobliczalna, oddaje
wnetrze czlowieka, jego spontanicznos$¢, intuicjg, geniusz, specyficzna wiedzg oparta
na niematematycznych regutach. Jak z tym wszystkim pogodzi¢ imperatywny
charakter tego co dzieje si¢ wewnatrz maszyny? Dla wielu — absurd. Podjete zostaty
juz jednak pewne niesmiate kroki, aby nauczy¢ komputer ,kultury”, bo to wlasnie jej
przejawem jest sztuka. Bardzo czgsto wykorzystuje si¢ do tego algorytmy genetyczne
(GA) lub inne metody wzorujace si¢ na naturze. Do tej pory wyniki badan nie sg
najbardziej zachgcajace, nie oznacza to jednak, ze kierunek badan jest zty. Wszystko
zalezy, jak to zwykle w przypadku GA, od pomystowosci w dobieraniu ksztattu
genotypu oraz operatoréw genetycznych. W wigkszosci przypadkdw nie znamy i nie
chcemy z gory zna¢ przebiegu dzialania GA. Interesuje nas jedynie efekt — czyli
zoptymalizowane rozwigzanie.

Naprawdg trudnym zadaniem jest optymalizowanie muzyki. W tym wypadku
efektem dziatania GA powinno by¢ oczywiscie wygenerowanie muzyki takiej, do
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jakiej przyzwyczajone jest ucho ludzkie, tzn. muzyki, w ktérej panuje pewien
porzadek, jest ona ztozeniem porzadku w rytmice oraz harmonii. Pomijam tu zupetnie
kwestie aranzacji, ekspresji czy artykulacji, ktore tez sa nieodtaczna czgs$cia muzyki,
ale wiekszy wplyw na nie ma jednak wykonawca a nie kompozytor. Muzyka jest
akceptowalna wtedy, gdy podoba sig, z tego czy innego powodu, stuchaczowi. Owo
podobanie si¢ zalezy tylko od jego indywidualnych preferencji — gustu muzycznego,
od nastroju chwili, kontekstu w jakim si¢ znajduje i na pewno réwniez od pogody za
oknem. Poniewaz uwzglednienie wszystkich tych czynnikdw jest rzecza niemozliwa,
sq to czynniki w wigkszosci niemierzalne, musimy podja¢ pewne zalozenia
upraszczajace. W probie generowania muzyki, pierwszym poczynionym zatozeniem
mogloby by¢ ograniczenie si¢ do gustu jednej i tylko jednej osoby. Jednak i wtedy
pozostaje do uwzglednienia wiele nie dajacych si¢ zdefiniowaé w Scisty sposéb pojec.
Ograniczmy si¢ wiec do osiagnigcia nastgpujacego efektu: muzyka pochodzaca z
pierwszych pokolen (nuty generowane sa niemalze losowo) musi by¢ odréznialna od
muzyki pochodzacej z pokolen pdzniejszych - oczywiscie ta druga powinna by¢
»muzycznie” doskonalsza.

1. Wprowadzenie w tematyke, czyli jak robig to inni

Z pomystami innych komputerowych kompozytoréw najtatwiej zapoznaé si¢ w
Internecie. Problem generowania muzyki przez maszyny okazuje si¢ bardzo
popularnym tematem w sieci. Bez zadnych trudnosci mozna przyjrze¢ si¢ pracom i
wynikom prac innych autoréw. Najbardziej interesujace wydaja si¢ by¢ prace
wykorzystujace algorytmy genetyczne. Autorzy prac przedstawiaja struktury
chromosomoéw, uzyte operatory genetyczne, specyfikacj¢ swoich systemdéw. Dla
przyktadu i rozjasnienia tematyki przedstawiony zostanie system zaimplementowany
przez Bruce Jacob’a z uniwersytetu w Michigan.
Bruce Jacob[4] we wstgpie do swojego artykutu ,Komponowanie z algorytmami
genetycznymi” probuje zdefiniowa¢ sam proces powstawania muzyki, czyli
tworczos¢. Wedtug niego istnieja dwa, nie majace z soba nic wspélnego, sposoby na
komponowanie muzyki: btysk (flash) czyli geniusz, impresja, komponowanie niejako
bez uwzgledniania zadnych regul, sztuka. Drugi sposob to proces iteracyjny,
polegajacy na szukaniu najlepszego rozwiazania dzigki cigzkiej i wytrwalej pracy — w
tym Bruce Jacob widzi szans¢ dla algorytmu genetycznego. Musimy polega¢ na
cigzkiej pracy (hard work) z tego powodu, ze nie tylko nie potrafimy modelowa¢
muzyki, ale nie potrafimy jej w zaden sposdb zrozumieé. Cigzka praca Jacob’a
polegata na wykorzystaniu istniejacych juz wzorcéw (motywdw) muzycznych do
generowania wariacji na ich temat. Ogdlny zamyst jego projektu przedstawia si¢ wigc
W nastgpujacy sposob:
1. zdefiniuj zbior gtéwnych motywodw, ktore wykorzystasz w procesie kompozyciji,
2. komponuj frazy ukfadajac motywy w pewne sekwencje,
3. tworz nowe motywy wybierajac sposrod motywow gléwnych i tych juz
wykorzystanych we frazach, produkujac wariacje na ich temat,
4. potacz frazy w wigksze czgsci.
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Aby ograniczy¢ domeng poszukiwarn Jacob nie pracuje na poziomie pojedynczych
nut, a wykorzystuje motywy, czyli struktury wyzszego poziomu — moga by¢ nimi np.
takty. Caly system wykorzystuje i komponuje wigc male motywy, nastepnie aranzuje
je w wigksze frazy. Wtedy kompozycja staje si¢ o wiele prostszym procesem. W
systemie Jacoba wystepuja moduty: kompozytor (composer), ucho (ear) i aranzer
(arranger). Uzytkownik systemu definiuje zbior giéwnych motywow. Kompozytor
dokonuje wariacji na ich temat i uzywa ich do produkcji wigkszych fraz. W
momencie, gdy motyw dodawany jest do frazy, do akcji wkracza ucho. Jesli ucho
stwierdzi, ze motyw nie jest odpowiednim skiadnikiem harmonicznym tej frazy,
motyw jest usuwany. Gdy istnieje juz odpowiednia liczba fraz do wykorzystania,
aranzer produkuje i ocenia porzadki fraz, ktore sa nastgpnie wykorzystywane do
produkcji nowych i lepszych porzadkow. Algorytmy genetyczne sa uzyte w kazdym z
podanych tu komponentow. Parametry tych komponentéw zapisane sa w
chromosomach, ktére to ewoluujg wlasnie dzigki algorytmom genetycznym.

2. Opis systemu MGen

System do generowania muzyki MGen napisany zostal w jezyku
programowania Java i sktada sig, podobnie jak system B. Jacob’a, z trzech
gtownych czgsci (rysunek 1):

—  Kompozytor (modut Composer)

— Ucho (modut Ear)
— Aranzer (modut SongMaker)

Skomponowane :
takty grzekazy- Najlepsze takty
wane s mo- przekazywane
dutowi Ucho sa doAranzera | gongMaker
Composer | 3| Ear
Dziatanie GA —
Ucho ocenia
kolejne poko-
lenia taktow
Rys. 1. Droga, ktéra pokonujg takty w czasie dzialania systemu MGen

Moduly te sa odpowiedzialne za produkowanie materialu muzycznego. Sama muzyka
przechowywana jest w specjalnie stworzonej strukturze danych. Struktura ta jest
czyms, co w terminologii algorytméw genetycznych nazywamy po prostu pokoleniem
(Generation). Jest ona zbiorem taktow, takt to pojedynczy osobnik pokolenia,
reprezentujacy najmniejsze rozwigzanie problemu generowania muzyki. Wszystkie
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moduly dziataja w sposdb od siebie niezalezny (w innym czasie), kazdy polega na
wynikach swego poprzednika w podanej wyzej kolejnosci (najpierw pracuje
Kompozytor, potem Ucho, ktdrego wyniki pracy wykorzystuje Aranzer — rysunek 1).
Algorytm genetyczny wykorzystywany jest jedynie w module Ucho. Ucho ocenia
wystepujace w pokoleniu takty, a ocena ta jest podstawa poprawnego dzialania
algorytmu genetycznego.

1.1 Opis modutdéw oraz zastosowanego algorytmu genetycznego

e Modut Kompozytor

Modut ten jest odpowiedzialny za przygotowanie poczatkowej postaci pokolenia
zawierajacego wybrang przez uzytkownika liczbg taktow. Komponowanie polega na
losowym doborze nut (ich wartosci rytmicznych jak i wysokosci dzwigku), tak aby
komponowaly si¢ one w pojedynczy takt w metrum 4/4. Na modut Kompozytor
nalozone s3 pewne ograniczenia, aby komponowane takty nie przyjmowaty zanadto
chaotycznej postaci. Komponowanie przeprowadzane jest z rozdzielczoscia do 16
czgscei nuty z uwzglednieniem triol 6semkowych i czworkowych (tacznie 7 rodzajow
nut ze wzgledu na rytmike). Wysokos¢ kazdej nuty dobiera si¢ losowo na przestrzeni
trzech kolejnych skal chromatycznych (3 * 12 = 36 réznych dzwigkow). Takty
przyjmuja uporzadkowang struktur¢ rytmiczna dzigki zastosowaniu nastgpujacego
mechanizmu: w danej chwili prawdopodobienstwo wylosowania ostatnio
wylosowanej wartoSci rytmicznej jest réwne %:, z zalozeniem, ze poczatkowo
wylosowanie ¢wierénuty jest rowne 2. Efektem tego jest powtarzanie si¢ w taktach
jednej po drugiej tych samych wartosci rytmicznych, tak jak to si¢ czgsto dzieje w
kompozycjach dokonanych przez cztowieka (autor nie przeprowadzat zadnych badan
statystycznych materialu nutowego). Pokolenie stworzone przy pomocy Kompozytora
przekazywane jest do pracy z algorytmem genetycznym.

o  Modut Ucho

Ucho to zasadnicza czgs$¢ systemu MGen. Dokonuje oceny wszystkich taktow z
pokolenia, aby algorytm genetyczny mogt prawidlowo dziata¢ z wykorzystaniem tych
ocen jako wartosci funkeji celu. Dlatego na poziomie opisu ucha dokonany zostanie
opis zastosowanego algorytmu genetycznego.

Czym jest ocena taktu?
Ocena rozbita zostata na trzy czg¢sci odpowiadajace trzem punktom widzenia, wedtug
ktorych oceniany jest pojedynczy takt:

1. Takt oceniany jest pod wzgledem przynaleznosci jego nut do skali, w ktorej
chcemy komponowac,.

W przyjetym w muzyce klasycznej (i kazdej pdzniejszej, oprocz egzotyki typu

muzyka orientalna) systemie tonalnym istnieje 12 réznych dzwigkéw: C Cis D Dis E

F Fis G Gis A B H. W skiad skal muzycznych wchodzi najczgsciej tylko 7 sposréd

tych dzwigkdw. Istnieje wiele skal, przyktadem skali joniskiej jest gama C dur, w skiad

ktorej wehodza dzwigki: C D E F G A H. Aby komponowa¢ w gamie C dur mozemy
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wykorzystywaé jedynie te dzwigki sposréd wszystkich 12 na przestrzeni dowolnej
liczby oktaw. Sa to zatozenia troch¢ upraszczajace, ale w gruncie rzeczy tak wilasnie
jest. Ocena skali jest wige odsetkiem nalezacych do danej skali nut w danym takcie.
Kazdy takt moze otrzyma¢ maksymalnie 100 punktéw. Ucho ocenia takty wediug
aktualnej skali wybranej przez uzytkownika, np. skala D dorycka (dorian D).

2. Ocena pod wzgledem wspoélbrzmienia ze sobg nut z kazdego taktu.
Problem ten rozwigzano bez sformalizowania zasad rzadzacych kompozycja harmonii
utworu. Chociaz jest to w pewnym stopniu mozliwe (na Akademiach Muzycznych
wyktada si¢ przedmioty uczace wlasciwej kompozycji), autor uznal, ze jest to obszar
wiedzy za malo przez niego poznany i gdyby miat w tej materii wyciaga¢ wnioski, nie
bytyby one do konca stuszne i prawdziwe. Na przykltad, wcale nie jest prawda, ze
najcze¢sciej wystgpuja w bezposrednim sasiedztwie ze sobg nuty roznigce si¢ tylko o
jeden stopien skali (bo gdzie miescitaby si¢ ekspresja budowana przez chociazby
zaskoczenie?). Muzyka, jak kazdy inny rodzaj sztuki moze wyrazaé¢ ludzkie uczucia, a
czy czlowiek zawsze jest tylko w trochg innym stanie emocjonalnym niz byt przed
chwila? Dlatego MGen proponuje inne rozwiazanie. Ta propozycja jest stworzenie
przez uzytkownika systemu banku brzmien. Bank ten bylby zbiorem taktow
wyrazajacych indywidualne preferencje stuchacza i tym samym stanowitby niepetna
funkcje oceniajaca wszystkie mozliwe takty. Im wigkszy jest rozmiar banku, tym
doktadniejsza jest ocena muzyki. Gdyby bank zwieral wszystkie mozliwe takty z ich
ocenami, bytby kompletna funkcja oceniajacq muzyke, uwzgledniajaca preferencje
muzyczne stuchacza. Jest to niewykonalne chociazby dlatego, ze liczba wszystkich
mozliwych taktow w systemie MGen jest z rowna:
C=A"  gdzie:
C — liczba réznych taktéw, jest to liczba permutacji 48 elementowych z
powtdrzeniami ze zbioru 37 elementowego,
A —liczba réznych mozliwych nut, A =3 * 12 + jedna nuta pusta =37 nut,
B — maksymalna liczba nut w takcie = 48, zatem:
Cc=37"

Poza tym, gdybySmy dysponowali takim bankiem moglibysmy po prostu wybraé z
niego najlepsze takty (gdybysmy mieli tylko czas na przegladanie tak duzego zbioru
ocen taktoéw).
W ostatecznej wersji systemu, takty z kazdego pokolenia poréwnywane sa z taktami
pochodzacymi z banku. Jesli w takcie z pokolenia wystapi sekwencja nut z banku,
Jjego oceng zwigksza si¢ o oceng sekwencji z banku. Oceny taktow w banku pochodza
od samego autora tego banku. Kazdy takt moze otrzyma¢ oceng z zakresu 0..100.

Same takty banku jawia si¢ dla uzytkownika jako ciagi liczb z zakresu 1..21
(Rysunek 2), ktore odzwierciedlaja sekwencje dzwigkéw wyrdznione przez autora
banku. Przykfadowo, ciag 1,3,5 dla wybranej przez uzytkownika skali C-dur oznacza
ciag dzwigkdow C, E, G. Jezeli te dzwigki pojawia si¢ w jakimkolwiek
wygenerowanym takcie w tej wlasnie kolejnosci, to ocena tego taktu wzrosnie o ocene
ciggu 1,3,5. Godnym zauwazenia jest fakt, ze sekwencje z banku (np.: 1,3,5) nie
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odzwierciedlaja bezposrednio konkretnych nut, a stopnie skali w jakiej aktualnie
pracuje kompozytor oraz tej, ktérej Ucho uzywa do oceny taktow.

E:
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Rysunek 2. Okno edytora banku brzmien

3. Ocena rytmiki zrealizowana jest, podobnie jak wyzej ocena wspélbrzmienia
nut, przy pomocy banku rytmoéw.

W tym wypadku takt jest tablica 48-elementowa. Wypelnione pole tablicy oznacza
nute w takcie umiejscowiong w wybranym przez uzytkownika miejscu taktu. W banku
rytméw ostatnia zaznaczona w takcie nuta nie jest brana pod uwage, stanowi ona
jedynie ograniczenie dlugosci trwania poprzedniej nuty (w przeciwnym wypadku
ostatnia nuta dopetniataby kazda sekwencj¢ wartosci rytmicznych do dlugosci trwania
taktu w metrum 4/4, patrz opis chromosomu w dalszej czgsci pracy).

1.2 Opis algorytmu genetycznego, struktury chromosomu i uzytych operatoréw
Zastosowany w systemie algorytm genetyczny wlasciwie nie rdézni si¢ od
standardowej postaci algorytmu genetycznego podanej w podreczniku Goldberga[1]
czy Michalewicza[2]. Pierwsze pokolenie jest pokoleniem niemalze losowym, o
liczbie osobnikéw zadeklarowanych przez uzytkownika. Kazde nastepne pokolenie
jest reprodukowane z poprzedniego po dokonaniu selekcji metoda ruletki.
Uzytkownik ma mozliwo$¢ wyboru dowolnej liczby pokolen, na ktéra uruchomiony
zostaje algorytm genetyczny.
® Reprezentacja taktu — reprezentacja chromosomu

Chromosom (takt) to tablica ztozona z 48 elementéw 16 bitowych (typ short w Javie).
Kazdy element to niezalezna nuta. Warto$¢ elementu decyduje o wysokosci nuty.
Polozenie elementu w chromosomie decyduje o dtugosci trwania nuty. Kazda kolejna
nuta ogranicza dlugos¢ trwania poprzedniej nuty. Diugo$¢ ostatniej nuty ogranicza
koniec taktu. Zastosowano wigc kodowanie calkowitoliczbowe.

Przykiad:
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Gdybysmy chcieli zapisa¢ takt w metrum 4/4 skladajacy si¢ z 4 c¢wierénut o
wysokosci dzwigku C, to wygladatby on tak jak na Rysunku 3.

Podzial taktu na
cztery ¢wierénuty

+

Lol el Lol el 3l )

J el e Ll

Bl NEEE B
Podzial ¢wier¢- Podziat ¢wierc-
nuty na cztery nuty na trzy nuty
szesnastki trioli 6semkowej
Legenda:
‘1°,°2°,°3°,°4” - odleglo$¢ miedzy kolejnymi liczbami to dlugos¢ trwania
¢wierénuty

‘+’ - odlegto$¢ migdzy kolejnymi plusami to dlugos¢ trwania szesnastki, w
charakterze ‘+’ wystepuja rowniez liczby ‘1°,°2°,°3°°4’

‘t’ - odlegtos¢ migdzy kolejnymi literkami ‘t’ to dlugos¢ trwania trioli 6sem-
kowych, w charakterze literki ‘t” wystgpuja rowniez liczby ‘1°,°2°,°3",’4’

3

-* - pozostale wartosci rytmiczne

Rysunek 3. Przykladowy takt w metrum 4/4

Doktadnie wida¢, ze elementy zaczernione reprezentuja nuty, ich polozenie na
poczatku taktu, w Y4, Y2, 1 % czesci taktu odzwierciedla dlugosé trwania nuty,
natomiast nie prezentowana tutaj warto$¢ kazdego czarnego elementu, decyduje o
wysokos$ci brzmienia nuty.

o Operatory genetyczne. (Crossoverl, Crossover2, Crossover3, Mutationl,
Mutation2, Myl)

Crossoverl jest standardowym operatorem krzyzowania zaczerpnigtym z Goldberga
[1] (Rysunek 4). Losowo wybierany jest punkt przeciecia chromosomu (warto$é¢ z
przedziatu 0..47). Cigcie decyduje o wygladzie dwoch taktéw — potomkow
uzyskanych z dwoéch taktow-rodzicow. Nalezy przy tym zaznaczyC, ze przy tej
operacji mozliwa jest zmiana dlugosci trwania nut znajdujacych sie¢ na kofcu
pierwszej czgsci przecinanego taktu-rodzica. Nowa dlugo$¢ trwania nuty wcale nie
musi mie¢ dtugosci standardowej, tzn. takiej, jaka wykorzystuje w swym dziataniu
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Kompozytor (¢wierénuta, 6semka, ...). W ten sposdb w takcie moze zaplatac sie nuta o
wartosci rytmicznej 6semki z kropka, badz kazda inna nuta, ktérej czas trwania jest
wielokrotnoscig trzydziestkidwojki z kropka (kazdy takt podzielony jest na
maksymalnie 48 rownych czgsci — patrz opis genotypu). Autor projektu celowo nie
eliminowal tego zjawiska. Doswiadczenie pokazalo, ze nowo powstale nuty w
niewielkim stopniu wplywaja na nieregularnos¢ taktow w pokoleniu. Crossoverl
sprzezony jest z mutacja Mutationl. W tym operatorze mutacji prawdopodobienstwo
mutowania odnosi si¢ do kazdej, niepustej nuty w takcie. Nuta jest mutowana
standardowo tylko pod wzgledem wysokosci brzmienia nuty (tak aby nowa wartosé
nuty nalezala do aktualnej skali), opcjonalnie mozna wiaczy¢ jej przemieszczenie si¢
w takcie po dokonaniu mutacji (moving in mutation). Nowe potozenie nuty wybierane
jest tu w sposob zupetnie losowy.

Crossover2 jest operatorem bardzo podobnym do operatora Crossoverl, ale

wzbogacony jest o mechanizm Myl (rys. 5). Mechanizm ten polega na zmianie
sposobu tworzenia nowych taktow z taktéw rodzicow. Myl dziala z pewnym
ustalonym prawdopodobienstwem, dotyczacym kazdego taktu i polega na zamianie
kolejnosci dwoch sklejanych czesci tworzacych nowy takt.
Crossover2 sprzggnigty jest z innym operatorem mutacji niz Crossoverl. Mutation2
polega na mutowaniu calego taktu (prawdopodobienstwo mutowania przypada na
pojedynczy takt) w pewien okreslony sposob. Losowo wybierana jest jedna nuta z
taktu, a nastgpnie mutowana jest jej wysokos¢ brzmienia. Zmieniony zostal, wiaczany
opcjonalnie, sposdb przemieszczania si¢ nuty w takcie. Nie zachodzi on catkowicie
losowo, a w nastgpujacy sposob: znajdowana jest najdtuzsza nuta w takcie, jej dtugosé
skracana jest do polowy poprzez wstawienie za nig nowej, zmutowanej nuty. Takie
podejscie pozwala na regularne rozmieszczenie si¢ nut w takcie (zapobiega
grupowaniu si¢ nut koto siebie w takcie).

Dwa takty I ] I 2 l l ] l < I (l))t:;a'mkty
wa takty ymane

przed krzyzo- _’ po krzyzo-

waniem I 3 I 4 I I 3 l 2 I waniu

Rysunek 4. Dzialanie operatora Crossoverl

Dwa takty I ! I 2 I I 4 I 1 I Dwa takty

przed krzyzo- e otrzymane

waniem po kFZ)ZO-
l 3 l 4 l I 2 I 3 I waniu

Rysunek 5. Dzialanie operatora Crossover2 wzbogaconego o mechanizm Myl
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Crossover3 jest najbardziej wyspecjalizowanym, skomplikowanym i nowatorskim
operatorem ze wszystkich wykorzystanych w systemie MGen. Jego dzialanie jest w
pewien sposob dwupoziomowe. Jak juz wiemy, takty oceniane sa z trzech
niezaleznych punktéw widzenia. Punkty te mozna podzieli¢ na te oceniajace melodig
(przynalezno$¢ nut do skali, wspdtbrzmienie nut z soba) oraz te oceniajace rytmike.
Idea operatora jest wigc taka aby w czasie selekcji stworzy¢ dwa pokolenia
rodzicielskie, kazde o liczbie osobnikow rownej licznosci populacji, gdzie w pierwszej
puli znalaztyby si¢ takty o najladniejszym brzmieniu, a w drugiej puli takty o
najlepszej rytmice. Wtedy takty przeznaczone do kolejnego pokolenia bylyby
krzyzéwka taktéw z obu pokolen rodzicielskich.

Crossover3 wykorzystuje wigc inny mechanizm selekcji — Selection2. Selection2
metodq ruletki tworzy dwa pokolenia rodzicielskie: RythmParents i SoundParents.
Obie pule rodzicielskie nie musza by¢ zbiorami roztacznymi. Dziatanie Crossover3
jest nastgpujace: w pierwszej fazie dziatanie operatora jest identyczne z dziataniem
operatora Crossover2, z ta réznica, ze pulg rodzicielska s takty z puli RythmParents.
Tworzone sa takty bedace wynikiem krzyzowania taktéw o najlepszej rytmice w
pokoleniu. Nastgpnie, w drugiej fazie, wartosci melodyczne nut z taktow sa
nadpisywane wartosciami melodycznymi taktow pochodzacych z puli rodzicielskiej
SoundParents. Operator Crossover3 sprzgzony jest z wersja mutacji Mutation2.

o  Modul Aranzer(SongMaker)

Jego dziatanie polega na grupowaniu taktow w wigksze formy muzyczne (frazy).
Takty do tworzenia fraz pobiera on z przygotowanego wczesniej przez uzytkownika
banku taktéw. Uzytkownik, obserwujac ewolucje taktow, moze wybierac sobie takty
odpowiadajace jego preferencjom i podsytac je aranzerowi (przycisk Add na ekranie
gtownym aplikacji). Aranzer skfada frazy wedlug podanej przez uzytkownika formy.
Forma moze mie¢ przyktadowa postac:

Formal: abcddabedd,

gdzie kazdy znak odpowiada jednemu taktowi (niekoniecznie réznemu od innych
znakow). Fraza w tym przypadku budowana jest z czterech czgsci a, b, ¢ oraz d
sktadanych przez aranzer w podanej w Formiel kolejnosci. Przyporzadkowanie
taktow do znakéw odbywa si¢ losowo w przestrzeni wybranych przez uzytkownika
taktow (losowanie ze zwracaniem). Aranzer pozwala na zapisanie powstatych fraz do
pliku Midi oraz odczyt wczesniej powstatych fraz zapisanych w pliku Midi.

3. System MGen w praktyce

Program uruchamia si¢ wykonujac plik wsadowy run.bat z katalogu classes po
uprzednim upewnieniu sig¢, ze w systemie zainstalowany jest JDK w wersji 1.3. Moze
zdarzy¢ si¢ tak, ze nie sa ustawione sciezki do JDK i wtedy warto przekopiowaé do
katalogu c/asses plik java.exe.
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Czynnosci wykonywane po uruchomieniu programu:

e Przy pomocy Kompozytora nalezy wygenerowaé poczatkowe pokolenie taktow.
Zalecana wielkos$¢ pokolenia to 200 taktow. Po wygenerowaniu pokolenia pojawi
si¢ jego reprezentacja widoczna w oknie aplikacji. Otrzymane takty mozna
odstuchiwa¢ klikajac na oceng danego taktu i w ten sposob zaznaczajac go, a
nastepnie naciskajac przycisk Start na panelu po lewej stronie okna aplikacji.

e Nastepnie nalezy utworzy¢ banki brzmien i rytméw. Mozna to zrobi¢ recznie
(menu Bank|EditXXXBank), ale mozna tez skorzysta¢ z bankdéw przygotowanych
przez autora wybierajac z menu opcje Bank|OpenXXXBank, otworzy¢ banki
rbank2.rbk oraz bank2.sbk z katalogu Bank.

e Aby banki te zostaly wykorzystane do ocenienia zerowego pokolenia nalezy
wybraé opcje Evaluate (z6tta ikonka z paska narzedzi lub opcja z menu
Tools|Evaluate). Po wybraniu tej opcji oceny taktow widoczne na ekranie powinny
si¢ zwigkszy¢. Dowodzi to prawidtowego dziatania bankow.

e Mozemy teraz przejs¢ do generowania nastgpnego pokolenia klikajac niebieska
ikonke z paska narzedzi lub dowolng liczbg pokolen wprzoéd wybierajac opcjg z
menu Tools|Next n Generations. W czasie podrézy po pokoleniach mozemy
dowolnie zmienia¢ parametry algorytmu genetycznego. Dotyczy to zaréwno
zmiany prawdopodobienstwa krzyzowania 1 mutacji (opcja z menu File|Options)
jak réwniez mozemy wiaczaé i wylacza¢ mutacje¢ taktdw (ZTools|Mutation) oraz
przemieszczanie si¢ nut w takcie w czasie mutacji (Tools|Moving in Mutation).
Dowolnie mogg by¢ rowniez zmieniane banki w czasie dziatania algorytmu.

e W czasie ewolucji pokolen nalezy réwniez dostarcza¢ wybrane przez nas takty
aranzerowi (SomgMaker) do komponowania wigkszych fraz. Dokonujemy tego
klikajac na oceng¢ dowolnego taktu a nastepnie na przycisk Add na panelu po lewej
stronie okna aplikacji. Aranzer SongMaker mozna w dowolnej chwili resetowac,
tzn. usuwaé wszystkie podestane mu wczesniej takty (7ools|ResetSoundMaker).

o W celu uruchomienia SongMaker’a wybieramy opcj¢ z menu Tools|SongMaker.
Wpisujemy formute i klikamy przycisk Create. Po tym mozemy odstuchac
stworzona fraze (Play) lub zapisaé ja do pliku .midi (Save).

4. Analiza wynikow, wnioski dotyczace systemu MGen

W trakcie powstawania systemu autor spotkal si¢ z wieloma zjawiskami
charakterystycznymi dla AG. Dla wybranej zbyt matej populacji poczatkowe;j, takty
bardzo szybko si¢ do siebie upodobniaty. Aby temu zaradzi¢ wiaczono pierwsza
wersje¢ mutacji (Mutationl). Nie byt to jednak operator wilasciwy dla przyjetej
reprezentacji taktow. Zbyt chaotyczne jego dzialanie prowadzito do grupowania sig¢
nut koto siebie w jednym miejscu taktu, przez co takty sprawialy wrazenie
nieskladnych i mocno przypadkowych. Rdéwniez pierwsza wersja krzyzowania
(Crossoverl) nie dopuszczata do przeptywu nutek z jednej strony taktu na druga.
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Dopiero wprowadzenie drugiej wersji krzyzowania doprowadzito do ciaglego wzrostu
ocen w populacji przy zachowaniu réznorodnosci taktoéw. Operator Myl pozwolif na
przeptyw nut z poczatku na koniec taktu i odwrotnie (operator Myl wywotywany jest
z prawdopodobienstwem 0.01 dla kazdego zachodzacego krzyzowania). Druga wersja
mutacji, oprécz zmiany wysokosci nut, odpowiedzialna stata si¢ za losowe rozbijanie
lezacych zbyt blisko siebie nut.

Pierwsza wersja krzyzowania dawata mato ciekawe wyniki. Najciekawsze wyniki
osiagnigto stosujac druga i trzecia wersj¢ krzyzowania.
Proponowane prawdopodobienstwa dla operatordw oraz inne parametry algorytmu:

¢ Prawdopodobienstwo krzyzowania, pcross = 0.99
e Prawdopodobienstwo pmut = 0.05

e Liczebnos¢ osobnikéw w pokoleniu, size of generation = 200 (ciekawe efekty
uzyskiwano réwniez dla mniejszych pokolen - liczba osobnikow rzedu 40).

e Liczba generacji — proponowane jest obserwowanie kolejnych pokolen i wybdr z
nich taktdw do aranzera na biezaco (liczba taktow w aranzerze moze by¢ dowolna,
optymalnie 5 — 10). W razie upodobnienia si¢ osobnikdw proponowane jest
zwigkszenie prawdopodobiefistwa mutacji i wiaczenie algorytmu na okoto 10
pokolen.

5. Implementacja systemu MGen

System MGen napisany zostal w jezyku programowania Java, ktory jest jezykiem
bardzo mocno zorientowanym na programowanie obiektowe. Dlatego naturalnym
stato si¢ zaimplementowanie wszystkich modutdw systemu jako klas jezyka Java. Oto
krotki opis gtownych klas systemu wraz z diagramem UML (rys. 6):

Klasa Takt — klasa modelujaca takt w metrum 4/4. Jej instancje to tablice 48
elementow typu Short.

Klasa Generation — klasa, ktorej obiekt to tablica obiektow klasy Takt. Jedna ze
zmiennych stanu obiektu klasy Generation, No_Generation, to zmienna okreslajaca
numer pokolenia, ktore zawiera sam obiekt. Jedna z metod obiektu, metoda
NextGeneration(), dokonuje przejscia obiektu w stan nowego pokolenia

Komponuje> Wybiera »
Composer dia Generation takty dla SongMaker
*
Ocenia P
Ear Takt
Rysunek 6. Diagram klas (UML) systemu MGen
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Klasa Kompozytor — odpowiedzialna jest za generowanie materialu muzycznego.
Jedna z jej metod jako argument przyjmuje obiekt klasy Takt i wypelnia go
wygenerowanymi nutami

Klasa Ear — klasa bedaca czescia klasy Generation. Odpowiedzialna jest za oceng
wszystkich taktow wchodzacych w skiad klasy Generation.

Klasa SongMaker — klasa odpowiedzialna za tworzenie wigkszych fraz z taktow
pochodzacych z ewolucji, a przekazanych do SongMaker 'a z klasy Generation.

6. Podsumowanie

Ocena muzyki musi mie¢ charakter wylacznie jakosciowy i taka jest rowniez postaé
tego artykulu. Wyniki dziatania algorytmu dostgpne sa w plikach .midi i bynajmniej
nie stuza one do stuchania a jedynie do dalszej ich obrdbki (brak interpretacji ze
strony odtworcy a jedynie suchy zapis materialu nutowego). Pliki .midi sa
petnowartosciowym zapisem materialu muzycznego, dlatego stworzona przez
generator muzyka moze by¢ w dowolny sposéb wykorzystywana i aranzowana w
dalszym procesie obrébki. Prawda jest taka, ze jej wykorzystanie zalezy tylko i
wylacznie od pomystowosci i umiejetnosci ludzi zajmujacych si¢ muzyka na state i w
sposob profesjonalny.

Literatura

[1] Zbigniew Michalewicz ,,Algorytmy genetyczne + struktury danych = programy
ewolucyjne”, WNT, Warszawa, 1999r.

[2] David E. Goldberg ,,Algorytmy genetyczne i ich zastosowania”, Warszawa, 1996r.

[3] Bruce Jacob ,Algorithmic Composition for , Acousticnstruments” http://www.ee.
umd.edu/~blj/algorithmic_composition/

[4] Bruce Jacob ,COMPOSING WITH GENETIC ALGORITHMS” http://www.ee.
umd.edu/~blj/algorithmic_composition/icmc.95.html

[5] Bruce Jacob ,,Algorithmic Composition As A Model Of Creativity” http://www.ee.umd.
edu/~blj/algorithmic_composition/ algorithmicmodel.html

[6] Bruce Jacob ,THEME DEVELOPMENT IN ALGORITHMIC COMPOSITION”
http://www.ee.umd.edu/~blj/algorithmic_composition/nebula.html

[7] ThinkQuest Library of Entries “Threads: Computers, Music, and a Little Theory”
http://library.thinkquest.org/3343/web-docs/page2.html

[8] Al Biles, opis systemu GenJam, http://www.it.rit.edu/~jab/GenJam.html

[9] Peter M. Todd, Gregory M. Wermner ,,Frankensteinian Methods for Evolutionary Music
Composition” http://citeseer.nj.nec.com/242222 html

[10]Uses of GAs in the Real World — Music Composition http://www.cs.qub.ac.uk/~M.
Sullivan/ga/ga8.html

[11]Eduardo Reck Miranda ,,Composing Music with computers” http://mapage.noos.
fr/press.release/compmusic.htm


http://www.ee
umd.edu/%7Eblj/algorithmic_composition/
http://www.ee
http://www.ee.umd
http://www.ee.umd.edu/%7Eblj/algorithmic_composition/nebula.html
http://library.thinkquest.org/3343/web-docs/page2.html
http://www.it.rit.edu/%7Ejab/GenJam.html
http://citeseer.nj.nec.com/242222.html
http://www.cs.qub.ac.uk/%7EM
http://mapage.noos

Prace Naukowe Wydziatowego Zakiadu Informatyki
Politechniki Wroctawskiej

Zeszyt Sztuczna Inteligencja Nr 1, 2002

Algorytmy genetyczne w rozwiazywaniu problemow
— generowanie muzyki

Btazej Budzynski
Wydzialowy Zaktad Informatyki, Politechnika Wroctawska
E-mail: budzynski@poczta.visnet.pl

Streszczenie
W pracy oméwiono zastosowanie algorytméw genetycznych w procesie komponowania mu-
zyki. W punkcie pierwszym postaramy si¢ znalez¢ odpowiedzie¢ na pytanie, czym wiasciwie
jest proces komponowania. Rozdziat drugi jest krotkim wstepem do algorytméw genetycznych.
Punkty trzy, cztery, pie¢ oraz sze$s¢ omawiaja dokladnie istot¢ dziatania algorytmu komponuja-
cego opartego na AG. W konicowym rozdziale przypatrzymy si¢ blizej otrzymanym wynikom.

Wstep

Komponowa¢ — to stowo styszeli wszyscy ale co ono doktadnie oznacza? Cytujac za
[6]: ,,komponowaé — tworzy¢ dzieto sztuki (zwlaszcza muzycznej); rozmieszczaé od-
powiednio elementy (dzieta), uktada¢ z nich harmonijna cato$¢”. ,,Tworzy¢ dzieto
sztuki” — taki termin zadowoli kazdego ale jak go przenies¢ do Swiata algorytméw
genetycznych. Pojecie to (dzieto sztuki) nie dos¢, ze jest niejednoznaczne, to na do-
datek ,,przeogromne” — taczy w sobie elementy socjologii, psychologii oraz filozofii.
Dlatego tez w dalszych rozwazaniach skupimy si¢ na drugiej czgsci definicji.

Zastanowmy si¢ przez chwile co pcha czlowieka, aby ,,rozmieszcza¢ odpowiednio
elementy” oraz ,,uktada¢ z nich harmonijng catos¢”. Cisnie si¢ od razu na usta, iz ma
on inwencje (tworcza). No dobrze, ale, drazac dalej temat, czymze jest inwencja? Na-
suwaja si¢ dwie odpowiedzi: jest to przebtysk geniuszu (lub przyptyw inspiracji) badz
tez jest to proces stopniowego, krok po kroku, budowania dzieta (cigzka praca). O ile
tego pierwszego nie umiemy zamodelowa¢ i nie uczynimy tego tak dtugo dopoki nie
pojmiemy czym jest geniusz (badZ inspiracja), o tyle ten drugi, z samej swojej istoty,
daje si¢ fatwo zalgorytmizowac.

W wydaniu elektronicznym, algorytmy probujace nasladowaé dziatania podejmo-
wane przez czlowieka podczas komponowania muzyki, obejmuja swym zasiggiem
wiele technik: od prostych metod stochastycznych jak w M and Jam Factory, az do
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skomplikowanych systeméw ekspertowych, takich jak EMI Davida Cope’a czy Cy-
pher Roberta Rowe’a ([8], [10]).

Systemy EMI oraz Cypher dzialaja na podobnej zasadzie — generuja muzyke analizu-
jac utwory stworzone przez cztowieka. O ile jednak EMI analizuje dane wejsciowe z
gotowych kompozycji, o tyle system Rowe’a otrzymuje na wejsciu dane od muzyka
grajacego na zywo. Rowe przy tym odrdznia transformacyjne komponowanie muzyki
od komponowania opartego na generowaniu. Chociaz jego Cypher zawiera oba ele-
menty, swoje dzialanie opiera gtdwnie na pierwszym sposobie — pobiera dane wej-
sciowe od uzytkownika, poddaje je serii transformacji, otrzymujac na wyjsciu cos$
pochodnego (ale niekoniecznie podobnego).

1. Algorytmy genetyczne oraz komponowanie muzyki — gdzie
zwigzek ?

Popularng metoda rozwiazywania problemu, szukania odpowiedzi na pytanie, czy - w
ogodlnoscei - uzyskania zbioru spelniajacego postawione wymagania, jest konwersja
tegoz problemu (pytania) do postaci ,,problemu przeszukiwania”. Idea jest nastepuja-
ca: przeszukanie catego zbioru mozliwych rozwigzan tak, aby znalez¢ jedno (rozwia-
zanie) najlepiej odpowiadajace zadanym kryteriom. Jednakze, aby proces poszukiwa-
nia nie trwal niepomiernie dtugo, co mogtoby mie¢ miejsce przy sprawdzaniu wszyst-
kich elementow zbioru potencjalnych rozwiazan, nalezy ten zbior ograniczyé. Zazwy-
czaj czynnos¢ ta jest najtrudniejszym etapem przy stosowaniu techniki przeszukiwa-
nia.

Komponowanie muzyki mozna wiasnie rozwazac¢ jako taki problem: bierzemy pod
uwage zbidr wszystkich mozliwych kompozycji (ktory jest nieskonczenie wielki) jako
przestrzen poszukiwan, z kryterium postawionym jako: ,;znalez¢ kompozycje (lub
prosciej fraze'), ktora brzmi dobrze”. Niestety, przestrzen ta jest kompletnie nieupo-
rzadkowana co, mowiac w przeno$ni, powoduje, ze dobre rozwigzania moga leze¢
obok kompletnie niedobrych (w sensie: brzydkich, ztych). Zmiana tylko kilku nut we
frazie moze ja uczyni¢ o wiele mniej interesujaca pomimo, iz obie ,,wygladaja” prak-
tycznie identycznie. Wtasciwosci te implikuja, ze proces poszukiwania rozwigzania
jest trudny oraz nie dajacy si¢ fatwo przewidzieé.

Do rozwiazania probleméw przeszukiwania dobrze nadajg si¢ algorytmy genetycz-
ne ([3], [2]), technika oparta na mechanizmach doboru naturalnego oraz dziedziczno-
sci. Algorytm rozpoczyna dziatanie z losowo wygenerowanymi rozwigzaniami danego
problemu i uzywajac odpowiednika biologicznej rekombinacji szuka coraz to lepszych
rozwiazan. Potencjalne rozwigzania przedstawiane sa jako chromosomy sktadajace sie
z alleli, ktore to zbudowane sa z liczb (ciagow liczb, bitdw — w zaleznosci od proble-
mu). W takim przypadku rekombinacja jest po prostu procesem tworzenia nowego
chromosomu na podstawie alleli zawartych w chromosomach rodzicow. Ewolucja
rozwiazan (w kierunku ,lepszych”) odbywa si¢ poprzez wybieranie ciagdw, ktére

'fraza - odcinek melodii, obejmujacy kilka taktéw, stanowiacy wyodrebniong catosg.
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najlepiej odpowiadaja postawionemu kryterium (kryteriom) i krzyzowanie ich. Pomi-
mo elementu losowosci, algorytmy genetyczne nie sprowadzajg si¢ do zwyklego bla-
dzenia przypadkowego. Wykorzystuja one efektywnie przeszle doswiadczenia do
okreslenia nowego obszaru poszukiwan o spodziewanej podwyzszonej wydajnosci.

Jedng z pierwszych prob wykorzystania algorytméw genetycznych do kompono-
wania muzyki byly dzialania podjete przez Hornera i Goldberga ([4], [7], [9]). Stwo-
rzyli oni AG stuzacy do transformacji tematéw muzycznych. Sekwencja prostych
operacji, w z gory okreslonej liczbie krokdéw, miala za zadanie przeprowadzi¢ poczat-
kowgq fraz¢ do frazy pozadanej (rowniez zadanej). Operacje obejmowaty wstawianie,
usuwanie oraz rotacj¢ (calego tematu) nut. Kazdy osobnik w populacji byt sekwencja
tychze operacji. W celu obliczenia wskaznika przystosowania, dana sekwencja opera-
cji byla wykonywana na poczatkowej (,,wejsciowej”) frazie w celu wygenerowania
frazy wynikowej (,,przetransformowanej”). Nastgpnie, funkcja celu brata pod uwage
dwa czynniki, oceniajac osobnika tym wyzej im bardziej efekt jego dziatania (fraza
przetransformowana) byl podobny do frazy pozadanej oraz im bardziej liczba krokdéw
transformacji byla blizsza do zadane;j.

Inny algorytm zaprezentowal Horowitz ([5], [7], [9]). W przeciwienstwie jednak
do poprzednikdw nie zajmowat si¢ on melodiami lecz rytmami. Ocena osobnikdéw
odbywata si¢ dwustopniowo. Najpierw podlegaty one dziataniu algorytmu genetycz-
nego z okreslona funkcjg celu, a nastgpnie otrzymane w ten sposob wyniki byly oce-
niane przez cztowieka i to ta ocena wplywala na dalsza ewolucj¢. Funkcja celu uzyta
w AG byta wazong suma tego, jak bardzo dany osobnik (rytm) rézni si¢ od podanych
(pozadanych) wartosci takich jak synkopa®, stopien akcentowania taktu (ang. downbe-
at — akcentowana miara taktu), stopien powtdrzenia oraz kilku innych czynnikdw.

Najgtosniejszym i najbardziej znanym przykladem potaczenia AG z muzyka jest
praca autorstwa Johna Bilesa [1]. Jego program, GenJam, generujacy jazzowe ,,S0-
16wki”, jest bazujacym na algorytmach genetycznych modelem tego jak poczatkujacy
muzyk jazzowy uczy si¢ improwizacji. Dzialanie algorytmu opiera si¢ na kilku (réz-
nych) hierarchicznie ,,pouktadanych” populacjach, zawierajacych potencjalne, nowe
muzyczne pomysty. Wszystkie te populacje stuza do zbudowania jednej partii solo-
wej. Kazda melodia (,,soléwka”) odgrywana przez program jest na biezaco oceniana
przez cztowieka (okreslanego mianem mentora). Wskaznik przystosowania tejze me-
lodii (osobnika) jest zwigkszany za kazdym razem gdy uzytkownik wcisnie klawisz
‘g’ (ang. good), a zmniejszany gdy uzytkownik naci$nie ‘b’ (ang. bad). Uzywajac
réznorodnych operatorow genetycznych oraz danych podanych przez mentora (m.in.
uzyte akordy, progresja’), algorytm tworzy nowe populacje, ktére z duzym prawdopo-
dobienstwem zawieraja ,,lepsze” (bardziej obiecujace) pomysty.

? synkopa - termin muzyczny oznaczajacy przeniesienie akcentu z mocnej czesci taktu na jego
staba czesé.

? progresja - termin muzyczny dotyczacy przeniesienia danej melodii lub struktury harmo-
nicznej o okreslong odlegtos¢ w gore lub w dét skali muzycznej. Progresja jest czesto stosowa-
nym przez kompozytorow srodkiem konstrukcyjnym.
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Dalsza cze$¢ pracy prezentuje algorytm zastosowany w systemie MUZG (od MU-
Zyczne Geny).

2. Budowa osobnika w programie MUZG

Strukture genotypu, ktéry odpowiada pojedynczej nucie, przedstawia rysunek 1. Pole
note (nuta) oznacza wysoko$¢ dzwieku, pole duration (okres, czas trwania) okresla
dtugos$¢ dzwieku, a pole volume (glosnos¢) odpowiada za glosnos¢ danej nuty.

note duration volume

Rysunek 1. Budowa genotypu

Wszystkie trzy pola moga przyjmowac tylko wartosci catkowitoliczbowe.

Na rysunku 2 zaprezentowano budowg osobnika. Chromosomem (ciagiem kodo-
wym) w tym osobniku jest (tablica) melody. Pole parent to dwuelementowa tablica w
ktérej zapisywane sa numery rodzicow (przyktadowo dla populacji liczacej 250 osob-
nikow, numer rodzica jest liczbg z przedziatu [0,249]). W polu fitness zapamigtywane

Wartosci pomocnicze melody parent fitness

Rysunek 2. Budowa osobnika

jest przystosowanie danego osobnika. W polu wartosci pomocnicze przechowywane
sq takie informacje jak: tonacja, ilos¢ oktaw z ktorych osobnik moze losowaé dzwigki

itp.
3. Operatory genetyczne - krzyzowanie i mutacja

Aby lepiej zrozumie¢ ide¢ krzyzowania i mutacji, przesledzmy dziatanie obu tych
operatoréw krok po kroku. Zacznijmy od operatora krzyzowania.

Zalézmy, ze mamy dwa ,,0sobniki” (tak naprawd¢ mamy tylko odpowiednik pola
melody z rysunku 2) takie jak na rysunkach 3 i 4. Przerywana linia zaznaczono punkt
krzyzowania. W wyniku otrzymamy osobnika z rysunku Sa.

Patrzac uwaznie na powstatego po krzyzowaniu osobnika, fatwo spostrzec btad w
pierwszym takcie. Ma tu miejsce nastgpujaca sytuacja — w wyniku krzyzowania w
nowo powstatym osobniku otrzymalismy niewfasciwe (niedozwolone) wartosci czasu
trwania dzwieku (duration). W takiej sytuacji nalezy zastosowac procedurg, ktora
podzieli wartos¢ duration na kilka mniejszych, dozwolonych wartosci, dodajac przy
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okazji (jesli zachodzi taka potrzeba) nowe pozycje w tablicy melody. Operacja ta w
pewnym stopniu, ingeruje w ewolucjg¢ (,,psuje”’) osobnika, ale przy przyjetym sposobie
kodowania ciezko bytoby znalez¢ inne rozwiazanie. Ostateczny wynik krzyzowania
przedstawia rysunek 5b. W tym przypadku wystarczylo zamieni¢ ¢wierénutg na
osemke.

Po powyzszym przyktadzie widaé, iz dziatanie operatora krzyzowania opiera si¢
gtéwnie na ,kopiowaniu” melodii. Inaczej méwiac, z zadanym prawdopodobienstwem
sprawdzamy czy krzyzowanie w ogdle zachodzi, wybieramy losowo punkt krzyzowa-
nia (przerywana linia na rysunkach 3 i 4) i ostatecznie wiasnie kopiujemy melodig.
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Przejdzmy teraz do omdéwienia operatora mutacji. Zasadniczym elementem tego
operatora jest zmiana wysokosci dzwigku. Operacja ta ma podstawowe znaczenie dla
algorytmu z opcja ,,wariacje” lub ,,schemat” (patrz nizej). Rysunek 6a prezentuje
dzialanie tego kroku, przy zatozeniu, ze osobnik poddany dziataniu operatora jest taki
jak na rysunku 5b.
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Rysunek 6a. Operator mutacji — zmiana wysokoS$ci dZzwigku

Drugim elementem procedury mutacji jest zmniejszanie glosnosci oraz taczenie
(scalanie) nut. Ma to zapobiegaé powstawaniu efektu objawiajacego si¢ ,,nadmiernym
wypetnieniem” taktu nutami. Chodzi o to, iz wraz z kolejnymi iteracjami algorytmu
genetycznego, ulega zapeinieniu tablica melody, co przy odstuchu bardziej przypomi-
na szybka zmiang czgstotliwosci dzwigku (oczywiscie wszystko zalezy od tempa) niz
melodi¢ (inaczej: uzytkownik ,nie widzi” w takim osobniku melodii co wplywa
oczywi$cie na jego oceng). Zjawisko to wynika, jak si¢ tatwo domysli¢, z duzej liczby
losowo wygenerowanych osobnikow poczatkowych. Rysunek 6b przedstawia osobni-
ka po wykonaniu tego kroku mutacji.
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Rysunek 6b. Operator mutacji — ,,1aczenie” nut

4. Funkcja celu

Funkcja celu jest ,,wielostopniowa”. Pod pojgciem ,,wielostopniowa” nalezy tutaj ro-
zumie¢ nie tylko ilos¢ kryteridéw oceniajacych ,ale takze to iz niektdre z kryteriow nie
oceniajg osobnika (jako catosci), a jedynie sasiednie nuty (nie sa to wigc tak elementy
oceniajace w sensie algorytmdw genetycznych). Funkcja celu zostanie omdwiona krok
po kroku doktadnie w takiej kolejnosci w jakiej oceniane sa osobniki.

Zaczynamy od sprawdzenia nie osobnikéw, ale poszczegdlnych nut (i ich ,,sasia-
dow”). Po pierwsze, sprawdzamy jakie jest ,,prawdopodobienstwo” danej dtugosci
trwania dzwigku. W celu uzyskania dobrych (czytaj: prostych) melodii, przyjeto, ze
najczesciej wystepuja dsemki oraz ¢wierénuty.
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Nastepnie, poréwnujemy dwie nuty pod katem wysokosci dzwigkéw (im mniejsza
roznica migdzy wysokosciami tym lepiej). W tym miejscu nalezy zwréci¢ uwagg na
»Wyjatek’: dzwigki o tej samej wysokosci sg oceniane gorzej od dzwigkow rdzniacych
si¢ co do wysokosci.

Po trzecie, funkcja celu bada parametr duration dwéch sasiadujacych nut. Im wigk-
sza jest roznica tym gorzej (przykfadowo: trzydziestkadwdjka sasiadujaca z calg nutg
jest mato prawdopodobna i przez to zle oceniana).

Teraz przystepujemy do oceny catego osobnika.

Zaczynamy od sprawdzenia ,,wypetnienia” frazy (tablicy melody). Tutaj przyj¢to, ze
bardziej rownomierne rozfozenie oceniane jest wyzej. Oznacza to, ze np. fraza zbu-
dowana z dwdch taktdow, jeden skladajacy si¢ z samych trzydziestekdwdjek, drugi z
calej nuty jest oceniany nizej niz dwutaktowa fraza zbudowana z samych 6semek. Na
marginesie: z cala pewnoscia istnieja tysiace kompozycji, w ktorych wystepuja frazy
podobne do pierwszej, ale kazde poczynione tutaj zalozenie jest pewnym (czgsto dos¢
sporym) uproszczeniem.

Nastgpnie znajdujemy najczesciej powtarzajaca si¢ wartos¢ (dominantg) duration.
Kolejnym krokiem jest sprawdzenie odchylenia standardowego dtugosci. Czynno$¢ ta
faczy si¢ z poprzednia. W zaleznosci od parametréw mozemy otrzymywac melodie od
prostych (co, na przyktad, oznacza cztery takty po dwie poinuty kazdy) do bardziej
skomplikowanych.

Ostatecznie badamy odchylenie standardowe wysokosci. W tym miejscu mozemy
wplywa¢ na melodig¢, dazac do uzyskania coraz prostszych (np. dwa dzwigki grane
naprzemiennie) lub coraz bardziej réznorodnych (w zaleznosci od parametru progra-
mu).

5. Dziatanie algorytmu genetycznego w programie MUZG

Majac powyzsze struktury danych oraz procedury mozemy przejs¢ do omowienia
istoty dziatania algorytmu. Postgpowanie tutaj przedstawione jest zblizone do prostego
algorytmu genetycznego zaprezentowanego w ksigzce [2].

Pierwsza czynnoscia jaka nalezy wykonaé, jest ustawienie parametrow algorytmu
genetycznego (takich jak prawdopodobienstwo krzyzowania czy mutacji). W tym
miejscu nalezy zaznaczy¢, iz podobnie jak ma to miejsce w innych przypadkach algo-
rytmow ewolucyjnych w sztuce, prawdopodobienstwo mutacji powinno by¢ znacznie
wigksze od standardowego (jesli za standardowe przyjmiemy przedziat migdzy <0,01;
0,02>). Jest to spowodowane tym iz to wlasnie mutacja jest operacja, posuwajaca
nasze muzyczne poszukiwania naprzod.

Nastgpnie musimy wybra¢ metodg selekcji. Rowniez 1 tutaj musimy si¢ zatrzymaé
na chwilg. W programie zostaly zaprogramowane trzy metody selekcji: wedlug reguty
ruletki, turniejowa oraz losowa wedtug reszt bez powtdrzen. Po przeprowadzeniu sze-
regu eksperymentow okazalo sig, ze najlepsze rezultaty daje metoda turniejowa (patrz
wykres 2).
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Po wykonaniu przez uzytkownika dwéch powyzszych krokéw do dziatania przy-
stepuje komputer. Generuje on populacje poczatkowa, a nastgpnie powtarza operacje
selekcji, krzyzowania i mutacji (dla calej populacji) » razy, gdzie »n jest parametrem
uzytkownika.

Ostatnig faza algorytmu jest ocena (zatwierdzanie) wyniku. Jesli otrzymany rezultat
dziatania AG zadowala uzytkownika, jest on zatrzymywany. W przeciwnym przypad-
ku nalezy powtorzy¢ powyzsze kroki.

Warto zaznaczyé, iz algorytm genetyczny nie generuje ,,catej muzyki” (catej kom-
pozycji) na raz. Pojedyncze wywotanie algorytmu genetycznego produkuje jedynie
melodie, z ktérych to dopiero uzytkownik sktada caly utwér. Inspiracja do takiego
podejscia byla (oczywiscie oprocz prostoty funkcji celu) znana w informatyce (i nie
tylko) metoda ,,dziel i rzadz”. Ale uwaga: jest to spore ograniczenie (i uproszczenie) i
nalezy watpi¢, aby taka metoda udato si¢ zbudowac¢ bardziej rozbudowany utwor.

Ponadto, zastosowano dwa dodatkowe mechanizmy majace na celu poprawienie
uzyskiwanych wynikow.

Pierwszy to wariacje’. Przez wariacje rozumiemy tutaj tylko zmiang tematu. Istote
dziatania oddaje nastgpujacy algorytm:

e Przeprowadz algorytm genetyczny (z zadanymi parametrami) w celu znalezie-

nia tematu (fraza, ktéra bedzie zmieniana).

e Ze znalezionego tematu (ktory, w kategoriach AG, jest najlepszym osobnikiem
uzyskanym w powyzszym kroku) utwérz nowg populacje.

e Przeprowadz jeszcze raz algorytm genetyczny dla tak utworzonej populacji.
Podczas dziatania algorytmu czynnikiem zmieniajgcym osobniki jest mutacja,
ktoéra zmienia wysokosé dzwieku nut.

Metoda ta daje zdecydowanie najlepsze rezultaty. Powody takiego stanu rzeczy wy-
daja si¢ by¢ intuicyjnie jasne.

Po pierwsze, fraza stuzaca za temat wariacji jest juz oceniona (,,dobra”; nie wy-
chodzimy od populacji poczatkowej wygenerowanej losowo).

Po drugie za$, mutacja nie zmienia wszystkich nut. Uzyskujemy w ten sposéb fraze
zbudowang z kilkukrotnie powtdérzonego tematu podstawowego (przez co latwiej
»wpada w ucho”, a co za tym idzie, fraza taka jest wyzej oceniana), w ktorej mutacja
dokonata niewielkich zmian.

Drugi mechanizm, bardzo podobny do wariacji, polega na odpowiednim sposobie
tworzenia populacji poczatkowej. Metoda ta sprowadza si¢ do wygenerowania jedne-
go osobnika calkowicie losowo, nast¢gpnie na zapisaniu jego budowy (méwiac obra-
zowo — zapamigtujemy ,,gdzie we frazie sa nuty”) i na tej podstawie generowania

* wariacje - forma muzyczna oparta na zmianach tematu, reprezentatywna dla muzyki kla-
syczno-romantycznej (temat z wariacjami), takze technika kompozytorska. Temat wariacji
mogt by¢ tworzony przez kompozytora lub przejgty z dziefa innego twdrcy. Liczba wariacji nie
byla $cisle okreslona. Kazda z kolejnych wariacji byla przeksztalceniem tematu polegajacym
m.in. na figuracji partii melodycznej lub partii lewej reki, zmianach harmonicznych, wprowa-
dzeniu techniki polifonicznej, zmianach rytmu i metrum.
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reszty populacji poczatkowej, losujac juz tylko wysokos¢ dzwigkow dla poszczegoél-
nych osobnikéw. Dla tak uzyskanej populacji wykonujemy algorytm genetyczny.
Wielka zaleta tej techniki jest wigksza roznorodnos¢ uzyskiwanych melodii. Z poczat-
ku moze si¢ to wydawac¢ dziwne. Wytlumaczenie jest proste — w momencie gdy mamy
catg populacj¢ wygenerowang losowo, mutacja, wraz z postgpem dziatania algorytmu,
sprowadza osobniki do prostych, ,,podobnych” melodii (w przypadku doswiadczen z
»progiem” réwnym ,.¢wierénucie”, wigkszosé melodii -okoto 90% - byta zbudowana
wylacznie z ¢wierénut oraz z dsemek). W momencie zastosowania tej metody, podob-
nie jak przy wariacjach, mutacja ,,pcha” algorytm w poszukiwaniu jak najlepszej me-
lodii, w ramach przyjetego uktadu.

6. Wyniki

Na wykresie 1. przedstawiono zmiang¢ wskaznika przystosowania w zaleznosci od
liczby osobnikéw. Wida¢ wyraznie, ze wraz ze wzrostem liczby osobnikdw, algorytm
szybciej znajduje dobre rozwiazania. Niestety, koszt tego jest znaczny (patrz tabela 2).
Parametry, dla ktérych uzyskano omawiane wyniki zostaty zebrane w tabeli 1. W tym
miejscu naleza si¢ rowniez dwa zdania wyjasnienia na temat zbieznosci wszystkich
$rednich wartosci przystosowania (avg_50, avg 250 i avg 500) do (mniej wiecej)
jednej wartosci. Jak mozna si¢ domyslaé, za taka sytuacj¢ odpowiada dtugosé chro-
mosomu. Przy tak niewielkiej liczbie taktow (dtugosci chromosomu), dosé ,,rygory-
styczna” funkcja celu, ostatecznie zawsze znajdzie ,,podobne” osobniki.

Parametr Wartos¢
dtugo$¢ chromosomu 4 (czyli cztery takty)
ilos¢ iteracji 250
prawdopodobienstwo krzyzowania 0,95
prawdopodobienstwo mutagiji 0,2
metoda selekgc;ji losowa wedtug reszt bez powtoérzen

Tabela 1. Parametry algorytmu genetycznego dla omawianych wynikéw

Liczba osobnikéw Sredni czas dziatania
50 ~21s
250 ~ 8,04 s
500 ~ 14,98 s

Tabela 2. Sredni czas dzialania algorytmu w zaleznosci od liczby osobnikéw

Na wykresie numer dwa zaprezentowano wpltyw metody selekcji na otrzymywane
rezultaty. Potwierdza si¢ to co zostalo powiedziane wczesniej — najlepsze rezultaty
otrzymuje si¢ metoda turniejowa. Powod jest prosty: metoda ta ,,pozbywa” si¢ osobni-
kéw o matym wskazniku przystosowania, przez co wraz z kolejnymi iteracjami, osob-
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niki podlegaja juz praktycznie tylko mutacji (jest to skrot myslowy: poniewaz wigk-
szo$¢ populacji jest podobna (efekt turnieju), krzyzowanie prawie nic nie wnosi do
poszukiwan). Jak wiemy z paragrafu o wariacjach, takie poszukiwania, zazwyczaj
osiagaja najwyzszy wskaznik przystosowania. Wszystkie pozostale parametry sa takie
same jak dla algorytmu z wykresu numer jeden.
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"Machines are getting smarter all the time. This is the century when they will
start to walk, talk, and maybe even think."

Maszyny stajq sie coraz to inteligentniejsze. Jest to wiek, w ktérym zaczng one
chodzi¢, méwi¢, a moze nawet myslec.

AI, Special Features, http://www.zdnet.co.uk/news/specials/2001/01/ai/

¢

Ewolucja to powolny, nieodwracalny i kierunkowy proces rozwoju organizméw, kto-
rego efektem jest coraz wieksza réznorodnosé, ztozonos¢é ...

http://wiem.onet.pl/wiem/

¢

.6dy Karol Darwin ogtosit swojq teorig, jednym z pierwszych zarzutow wobec niej
byto to, ze ztozone struktury (takie jak oko) muszq rozwijaé sie jako catkowicie
uksztattowane, albo nie bedq one prawidtowo dziata¢ (potowa oka jest catkowicie
bezuzyteczna), ale szansa, ze przypadkowa mutacja wytworzy przypadkowy zespot
ztozonych zmian, jest zaniedbywalnie mata. Teoretycy ewolucji natychmiast odpo-
wiedzieli, ze chociaz potowa oka nie jest uzyteczna, to w potowie rozwiniete moze
by¢ przydatne. Na przyktad, oko z siatkowka, lecz bez soczewki, gromadzitoby
Swiatto i wykrywatoby ruch; a kazdy sposéb poprawienia wykrywalnosci drapiezni-
kow jest korzystny ewolucyjnie dla dysponujacego nim zwierzecia."

Ian Stewart, Liczby natury, Wydawnictwo CIS,
Warszawa 1996, str. 33.
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