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Nie ma takiej przeciwności losu, z której nie można by uczynić 
błogosławieństwa, Jeśli przywoła się dobór naturalny.

R.C.Lewontin, Geny, środowisko, i organizmy, w: Ukryte teorie nauki, 
O. Sacks, J. Miller i in., wyd. ZNAK, Kraków 1996.

WSTĘP

Koło Naukowe Sztucznej Inteligencji CJANT przy Wydziałowym Zakładzie Informa­
tyki na Wydziale Informatyki i Zarządzania Politechniki Wrocławskiej ukonstytu­
owało się w czerwcu 2000 roku, a działalność rozpoczęło właściwie dopiero jesienią. 
Podstawowym celem Koła jest włączanie studentów Inżynierii Oprogramowania do 
pracy naukowej w dziedzinie szeroko rozumianej Sztucznej Inteligencji. Efekty ich 
prac powinny być prezentowane na konferencjach naukowych, na których bywają 
również doświadczeni pracownicy naukowi oraz publikowane w materiałach konfe­
rencyjnych. Niezależnie od tej formy prezentacji wyników planujemy wydawać cy­
klicznie (w odstępach rocznych) Zeszyty Naukowe. Ponieważ chcemy, by każdy nu­
mer zeszytu był w miarę możliwości monotematyczny, to kolejne numery będą prze­
kazywane do druku, kiedy zgromadzimy kilka interesujących prac o podobnej tematy­
ce. Zależy nam, by w Zeszytach prezentować głównie efekty własnych, oryginalnych 
prac. Jednocześnie chcemy, by wydawane Zeszyty były użyteczne dla naszych młod­
szych studentów, bądź studentów innych kierunków, dlatego też każdy numer Zeszytu 
będzie zawierał artykuł wprowadzający w specyfikę dziedziny, której dotyczy. W 
szczególności będziemy publikować też prace przeglądowe, pokazujące aktualny stan 
wybranych zagadnień (zastosowań), będziemy starać się to czynić dla takich dziedzin 
i/lub zastosowań, które są nowe, brakuje literatury polskojęzycznej na ten temat i - 
według naszej opinii - tematyka ta spotka się z zainteresowaniem młodych czytelni­
ków.

Inauguracyjny Zeszyt poświęcony jest zastosowaniom algorytmów genetycznych. 
Pierwszy artykuł jest wprowadzeniem w dziedzinę obliczeń ewolucyjnych. Daje po­
gląd na temat algorytmów ewolucyjnych, zapoznaje dokładnie z algorytmami gene­
tycznymi. Intencją edytora jest, by potencjalny czytelnik mógł zrozumieć pozostałe 
artykuły bez konieczności wcześniejszego studiowania dziedziny - to właśnie lektura 
Zeszytu powinna zachęcić go do sięgnięcia po jedną z dostępnych książek.

Drugi artykuł pokazuje jak można zastosować algorytm genetyczny do uproszczo­
nego zadania z silnymi ograniczeniami - szukanie bezkolizyjnych połączeń zadanych 
punktów na płaszczyźnie (planowanie ścieżek na płytkach drukowanych). Autor po­
kazuje, jak duże znaczenie ma dobór właściwej funkcji oceniającej potencjalne roz­
wiązania.
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Tematyce zadań z silnymi ograniczeniami poświęcony jest też trzeci artykuł. Autor 
przedstawia krótki przegląd metod rozwiązywania problemów układania planów (lek­
cji, egzaminów), po czym pokazuje efekty własnej pracy - prezentuje sposób układa­
nia harmonogramu dyżurów w szpitalu (dane dla rzeczywistego szpitala) 
z wykorzystaniem algorytmu genetycznego.

Następny, czwarty artykuł analizuje możliwość wykorzystania algorytmów ewolu­
cyjnych (programowania genetycznego połączonego z algorytmem genetycznym) do 
wydobywania wiedzy z baz danych. Zaproponowane podejście testowane jest na spe­
cjalnie wygenerowanych testowych bazach danych, po weryfikacji podejście to zasto­
sowane jest do baz zawierających dane historyczne o aktywności słonecznej. Zadanie 
polega na przewidywaniu liczby plam na słońcu.

Bardzo praktyczne zastosowanie algorytmów genetycznych pokazane jest w pią­
tym artykule. Zadanie polega na znalezienia optymalnego (równomiernego) rozkładu 
jazdy tramwajów we Wrocławiu. Oczywiście, muszą być spełnione pewne dodatkowe 
ograniczenia, np. mijanie się tramwajów na pojedynczych torach. Autor wykorzystał 
algorytmy genetyczne jako narzędzie do rozwiązania tego problemu. Przetestował 
również, jak zaproponowany algorytm daje sobie radę z rozkładem jazdy w Poznaniu.

Autorzy kolejnych dwóch artykułów to hobbyści, którzy próbowali uczynić z algo­
rytmu genetycznego wielkiego kompozytora. Nie byli oni pierwsi w swoich próbach, 
próbowali to - z różnym skutkiem - inni zwolennicy muzyki i algorytmów genetycz­
nych. Efekty ich prac, a właściwie zaprojektowanego przez autorów algorytmu gene­
tycznego, można tylko częściowo poznać czytając artykuł szósty i siódmy. Z niektó­
rymi dziełami genetycznego kompozytora można zapoznać się po zajrzeniu na strony 
internetowe autorów.
Następne numery Zeszytów będą poruszać takie problemy jak:
• Systemy łączące sieci neuronowe i algorytmy genetyczne,
• Ekstrakcja reguł z sieci neuronowych,
• Połączenie algorytmów genetycznych i logiki rozmytej,
• Metody rozwiązywania problemów wzorowane na naturze,
• Przetwarzanie wiedzy niepewnej - zbiory przybliżone,
• Metody pozyskiwania wiedzy z baz danych,

Autorzy składają serdeczne podziękowania recenzentowi, dr. inż. Arturowi Chorą- 
życzewskiemu za wnikliwą recenzję i wszystkie przekazane uwagi. Zostały one wzięte 
pod uwagę podczas redakcji końcowej wersji artykułów.

Halina Kwaśnicka
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Streszczenie

Praca wprowadza w tematykę algorytmów ewolucyjnych. Omówione są etapy stosowania al­
gorytmów genetycznych do rozwiązywania problemów optymalizacyjnych. Prosty przykład 
ułatwi zrozumienie metody. W dalszej części przybliżone są inne rodzaje algorytmów ewolu­
cyjnych - programowanie genetyczne, strategie ewolucyjne i programowanie ewolucyjne.

Wprowadzenie
Obliczenia ewolucyjne to dział sztucznej inteligencji [12],[13],[15] - dziedziny sto­
sunkowo młodej, budzącej wiele kontrowersji. Spotykane w literaturze przedmiotu 
różne jej definicje sprowadzają się do określenia, że jest to próba modelowania 
aspektów ludzkiego rozumowania za pomocą komputerów, albo próba rozwiązywania 
za pomocą komputerów takich problemów, które są zwykle rozwiązywane przez (in­
teligentnego) człowieka [4],[13].

Wydaje się jednak, że coraz bardziej upowszechnia się rozumienie sztucznej inteli­
gencji w sposób sformułowany przez D.B. Fogla w przedmowie do jego książki [4]: 
sztuczna inteligencja to zdolność systemu do dostosowania swojego działania tak, aby 
osiągnąć założony cel w środowisku, w którym się znajduje. Inteligentne stworzenia 
powstały w wyniku ewolucji biologicznej. Obserwując ją i modelując możemy uzy­
skać wiele inteligentnych zachowań. Wszelkie metody symulacji ewolucji z wykorzy­
staniem komputera noszą nazwę Obliczeń ewolucyjnych (EC, ang. Evolutionary 
Computatioń), natomiast algorytmy stosowane w takich symulacjach, to Algorytmy 
ewolucyjne (EA, ang. Evolutionary Algorithmś).

W ostatnich latach, paradygmat obliczeń ewolucyjnych stał się bardzo popularny. 
Obserwowany jest ogromny wzrost prac na ten temat, czasopism, konferencji, książek, 
powstają listy dyskusyjne, strony internetowe. Podobnie zwiększa się liczba różnych 
dziedzin, w których znajdują zastosowanie algorytmy ewolucyjne: od naturalnych dla 
nich zadań modelowania dynamiki populacji, poprzez zastosowania czysto techniczne 
(np. projektowanie samolotów, gazociągu), zadania szeregowania, gry logiczne, nauki 
chemiczne i fizyczne, po nauki ekonomiczne - popularny ostatnio paradygmat eko­
nomii ewolucyjnej.

mailto:kwasnicka@ci.pwr.wroc.pl
http://www.ci.pwr.wroc.pl/%7Ekwasnick
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Próbując naśladować ewolucję biologiczną opracowano kilka algorytmów, różnią­
cych się sposobem reprezentacji potencjalnego rozwiązania czy też stosowanymi ope­
ratorami genetycznymi. Wszystkie one są stosowane jako metody optymalizacji, na­
śladujące główne czynniki ewolucji biologicznej, tj. selekcję naturalną i reprodukcję. 
Należy jednak pamiętać, że nie dają one gwarancji znalezienia optimum globalnego, 
są użyteczne tam, gdzie nie można zastosować innej metody i gdzie wystarczy nam 
znalezienie rozwiązania satysfakcjonującego.

1. Algorytm Genetyczny
Algorytm genetyczny (GA, ang. Genetic Algorithm) to ewolucja sztucznych „osobni­
ków", z których każdy jest zakodowanym potencjalnym rozwiązaniem rozpatrywane­
go problemu. Osobniki te ewoluują w sztucznym środowisku, ponieważ należą do te­
go samego gatunku (kodują rozwiązanie tego samego zadania) to konkurują o zasoby 
w tym środowisku. Podobnie jak w biologii, o szansach przeżycia i wydania potom­
stwa przez sztucznych osobników decyduje „dobór naturalny''’ - im lepiej jest przy-

( START )

Dokładnie sprecyzuj problem wstępny1

Rysunek 1. Etapy w stosowaniu algorytmów gene­
tycznych - ogólny schemat

• ‘ V ........ :
; Zdefiniuj problem w terminach GA | 11 ------ v---- — -J

Utwórz początkową populację

i 5

i i
Oceń każdego osobnika w populacji -------------------

/warunek\ - .
<^zatrzyijiania? >----- >-[ STOP)

XNie

Wybierz potencjalnych rodziców

. V
Zastosuj operatory genetyczne

..T

stosowany osobnik do danego śro­
dowiska, tym większe ma szanse 
przeżyć i wydać potomstwo. Po­
tomstwo - podobnie jak w naturze 
- różni się od swoich rodziców 
dzięki działaniu specjalnie zapro­
jektowanych, wzorowanych na na­
turze, operatorów genetycznych 
(mutacji i krzyżowania). Środowi­
sko odzwierciedla rozwiązywane 
przez algorytm genetyczny zadanie, 
zatem ocena przystosowania osob­
nika jest ocenąjakości kodowanego 
przez niego rozwiązania. W ten 
sposób, w kolejnych pokoleniach 
populacji sztucznej osobników za­
czynają dominować coraz to lepsze 
rozwiązania. Najlepszy osobnik, po 
rozkodowaniu, jest szukanym roz­
wiązaniem. W ostatnich latach al­
gorytmy genetyczne stały się bar­
dzo popularne jako narzędzie 
optymalizacyjne [7],[14].

Ewolucja populacji jest proce­
sem przeszukiwania przestrzeni 
potencjalnych rozwiązań. W proce­
sach takich jest ważne zachowanie
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równowagi pomiędzy przekazywaniem najlepszych cech do następnego pokolenia, 
czyli wykorzystaniem dotychczas znalezionych „obiecujących” rozwiązań (ang. 
exploiting) z jednej strony, a szerokim przeszukiwaniem przestrzeni (ang. exploring) z 
drugiej strony. Algorytm genetyczny umożliwia zachowanie takiej równowagi.

Czynności niezbędne przy stosowaniu GA do rozwiązania rzeczywistego pokazane 
są na rysunku 1. Dwa pierwsze etapy stanowią etap wstępny i muszą być wykonane 
‘ręcznie’. Ich realizacja często stwarza duże trudności, zwłaszcza osobom niedoświad­
czonym. Pozostałe etapy algorytmu wykonuje program komputerowy, można do tego 
wykonać własną implementację GA lub też wykorzystać komercyjne, bądź dostępne 
w sieci programy.

Etap wstępny to dokładne sprecyzowanie problemu. Obejmuje takie czynności, jak 
ustalenie zakresu zmienności i dokładności rozwiązań, zdefiniowanie ograniczeń, spo­
sobu kodowania, itp. Opis pojedynczego osobnika (zakodowane rozwiązanie) nazy­
wany jest chromosomem lub genotypem, wartość optymalizowanej funkcji obliczona 
dla danego osobnika to jego przystosowanie {fitness). Od przystosowania osobnika 
zależy liczba jego potomków w następnym pokoleniu.

Początkową populację (chromosomy) można wybrać losowo, zwłaszcza jeśli brak 
jest jakichkolwiek przesłanek odnośnie dobrych rozwiązań. Jako warunek zatrzymania 
można ustalić:

• sprawdzenie, czy zadowalające rozwiązanie istnieje w aktualnej populacji - 
może to wykonać automatycznie program, lub analizujący prezentowane roz­
wiązania użytkownik,

• zadana liczba iteracji (wykonanych pokoleń),
• niemożność znalezienia lepszego rozwiązania przez zadaną liczbę pokoleń (np. 

jeśli minie 100 pokoleń bez poprawy najlepszego rozwiązania).
Tworzenie nowego pokolenia populacji jest procesem złożonym. Najpierw dokonuje 
się selekcji ‘dobrych’ rozwiązań i tworzy ich kopie (wybór rodziców). Podczas two­
rzenia kopii działają operatory genetyczne powodujące zróżnicowanie między osobni­
kami, najczęściej są to krzyżowanie i mutacja.

Niektóre etapy wyjaśnimy nieco szerzej i pokażemy działanie GA na prostym 
przykładzie.

1.1 Kodowanie rozwiązań (definiowanie chromosomu)
Potencjalne rozwiązanie jest kodowane do postaci tzw. genotypu (patrz rysunek 2). W 
klasycznym algorytmie genetycznym stosuje się kodowanie binarne (choć nie jest to 
konieczne i można stosować inny od binarnego alfabet). Aby zakodować binarnie 
wartości argumentów optymalizowanej funkcji musimy wiedzieć, ile należy przezna­
czyć na nie bitów. Załóżmy, że optymalizowana funkcja ma m zmiennych (osobnik 
ma m fenów): [x/,...,x„,]. Na poziomie genotypowym osobnik opisany jest przez łań­
cuch / bitów [Ol l...01]. Liczba bitów (/,) wymagana do reprezentacji (kodowania) po­
jedynczego fenu x, może być wyliczona ze wzoru:
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(ó-a)10* <2/h, (1)

gdzie: [a, ó] - przedział dopuszczalnych wartości dla ż-tej zmiennej (x,), 
k- założona dokładność reprezentacji fenu (k miejsc po przecinku), 
I, - liczba wymaganych bitów, jest to najmniejsza liczba satysfakcjonująca po­
wyższą nierówność.

Całkowita liczba bitów / potrzebnych do reprezentacji jednego osobnika jest sumą 
wymaganych długości dla wszystkich fenów:

(2)

Aby policzyć przystosowanie osobnika, należy zdekodować jego genotyp. Wartość 
zakodowanej zmiennej x, jest liczona ze wzoru:

x, =a + (01011...11)l0-4—- 
2Ó -1 (3)

gdzie: (0101... 1 )j0 — dziesiętna wartość łańcucha binarnego reprezentującego zmienną 
x„ traktowanego jako liczba zapisana w kodzie dwójkowym, pozostałe ozna­
czenia jak wyżej.

Przykład reprezentacji osobnika (dla funkcji dwuwymiarowej) w prostym algorytmie 
genetycznym pokazany jest na rysunku 2.

9, 9j g„ 9/(.i 9/,+2 9d./2

Q (x, , x2) wartość funkcji przystosowawczej

Rysunek 2. Reprezentacja binarna osobnika w prostym algorytmie genetycznym

1.2 Przekształcanie funkcji celu na funkcję przystosowania
Czasami funkcję, którą chcemy optymalizować musimy przekształcić, aby można ją 
było wykorzystać jako funkcję przystosowania w GA. Dzieje się tak, gdy:
• Na argumenty optymalizowanej funkcji f nałożone są ograniczenia, tzn. że po­

szczególne xj mogą przyjmować wartości z ograniczonego przedziału [X™” ,x(max ].

1 Czasem lepsze efekty daje kod Graya - kolejne liczby różnią się od siebie wartością jednego bitu, np.: 
0000 —>0; 0001 — 1; 0011 — 2; 0010 — 3; 0110 — 4; 0111 —5; 0101 — 6; 0100 —7; 1100 — 8, itd.
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GA może wyprodukować rozwiązanie nie mieszczące się w zadanych granicach. Pro­
stą i skuteczną metodą jest nakładanie kar na przystosowanie osobnika za przekrocze­
nie dopuszczalnych wartości. Kara może być różna dla poszczególnych Xj oraz może 
zależeć od stopnia przekroczenia zakresu. Postać funkcji przystosowania Q wyraża się 
wzorem:

Wx") = /(xf,...,x") - k.■ £Karatf), 
i=l

(4)

gdzie: k, - współczynnik określony dla z-tego fenu (argumentu),

(X|°,...,x" ) - zdekodowany chromosom ocenianego osobnika (o),

Kara(x") - kara przy wartości x, = x" nie mieszczącej się w [x,min ,xlmax ].
Zazwyczaj:

(x"-xrx)di,

Kara(x") = 10,

dla x" > x™ 

dla x™n < x"' < x,max 
dla x,min < x"

(5)

(xr -s^d,,

gdzie: dj jest karą za przekroczenie z-tego argumentu o jednostkę.

• Algorytm genetyczny może produkować niepoprawne, nie dające się ocenić roz­
wiązania.

Przykładem takiego zadania jest automatyczne projektowanie sieci neuronowych, 
gdzie w trakcie ewolucji mogą powstawać wręcz rozwiązania nie mające sensu, np. 
sieci zawierające neurony, które nie mają połączeń wejściowych. Taka sieć nie jest w 
stanie przetwarzać żadnej informacji.2 Możliwe są dwie strategie:

2 Oczywiście, idealnym rozwiązaniem byłoby zastosowanie takich reprezentacji rozwiązań i/lub takich 
operatorów, które nie mogą wytwarzać niepoprawnych rozwiązań, np. specjalne operatory genetyczne dla 
zadań sekwencyjnych (zadanie komiwojażera), reprezentacja sieci neuronowych w postaci formuł gra­
matycznych [12].

■ Usuwanie niepoprawnych osobników z populacji i generowanie na ich miejsce 
nowych

Zwykle jest to zbyt czasochłonny sposób, niedopuszczalne osobniki mogą powstawać 
stosunkowo często i wtedy praca procesora w dużej mierze jest marnotrawiona.

■ Naprawianie powstających „degeneratów"
Z reguły zadania, w których występują te problemy są na tyle skomplikowane, że 
opłaca się (w sensie czasu pracy procesora) naprawiać uszkodzone rozwiązania a nie 
eliminować je i generować na ich miejsce nowe [10],[l 1].
• Funkcja celu ma być minimalizowana lub przyjmuje ujemne wartości
Ewolucja ‘dąży’ do powstawania coraz to bardziej przystosowanych osobników, za­
tem naturalna skłonność GA to maksymalizacja przystosowania. W wielu zadaniach 
należy minimalizować funkcję celu. W tej sytuacji za funkcję przystosowania Q mo- 
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żerny przyjąć różnicę pomiędzy ustaloną, dostatecznie dużą, stałą wartością MAX, a 
naszą funkcją celu j{xi,X2,...,xj)'.

[MAX - f(xx,...,xn), dlaf{x\,...,xn)< MAX

|0, dlaj\x\,...,x„)> MAX
(6)

Jeśli funkcja celu^) przyjmuje ujemne wartości, to należy znaleźć możliwie małą 
stałą MIN, która dodana doX^) da wynik większy od zera:

[MIN + f(x\,...,xn), dlaf(xit...,x„) +MIN > 0
[O, w innych przypadkach (7)

1.3 Selekcja osobników do reprodukcji
Można stosować różne metody selekcji, niemniej wszystkie one muszą mieć jedną 
wspólną cechę: lepszy osobnik musi mieć większe szanse na posiadanie potomstwa, 
zgodnie z zasadą naturalnej selekcji ‘przeżywa najlepszy'. Jeśli metoda promuje moc­
no osobniki najlepsze nie dopuszczając słabszych do ‘rozrodu’, to mówimy, że jest to 
tzw. twarda selekcja. Metoda promująca lepsze osobniki, ale umożliwiająca rozród - z 
mniejszym prawdopodobieństwem - również osobnikom słabszym jest tzw. miękką 
selekcją. Najbardziej popularne metody selekcji, to:

■ Metoda ruletki (nazywana również metodą stochastyczną z powtórzeniami) 
Wartości przystosowania wszystkich osobników w populacji są sumowane, suma sta­
nowi całe koło ruletki. Następnie każdemu osobnikowi przypisywany jest wycinek 
koła proporcjonalny do jego przystosowania. Koło ruletki jest ‘obracane’ (wybierana 
jest losowo liczba) i wybierany jest osobnik odpowiadający temu sektorowi na ruletce, 
w którym mieści się wylosowana liczba. Czynność losowania powtarza się N razy (N 
- rozmiar populacji).

■ Metoda próbkowania deterministycznego
Wartość oczekiwana liczby potomków dla każdego osobnika liczona jest ze wzoru:

E^N-pr^ (8)

gdzie: E, jest oczekiwaną liczbą potomków /-tego osobnika,
N- liczba osobników w populacji,
pr, - prawdopodobieństwo wybrania z-tego osobnika do reprodukcji, wynosi:

(9)

fj jest wartością funkcji przystosowania (fitness) j-tego osobnika.
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Podstawiając równanie (9) do (8) otrzymujemy, że oczekiwana liczba liczby potom­
ków /-tego osobnika jest równa stosunkowi przystosowania tego osobnika do średnie­
go przystosowania osobników w populacji:

E, = N-pr^N-^ (10)1 N— ¥

Każdy osobnik z populacji ma tylu potomków, ile wynosi część całkowita wartości 
oczekiwanej E,. Następnie osobniki są szeregowane według ułamkowych części E, 
(malejąco). Do reprodukcji dobierane są osobniki z początku tej listy, w liczbie po­
trzebnej do zachowania stałego rozmiaru populacji.

■ Metoda stochastyczna według reszt z powtórzeniami
Metoda ta jest podobna do poprzedniej, opiera się na liczeniu wartości oczekiwanej 
liczby potomków dla każdego osobnika z populacji i przydzieleniu mu całkowitej czę­
ści Ej. Części ułamkowe E, są wykorzystywane do stworzenia koła ruletki, za pomocą 
którego wybierane są pozostałe osobniki do reprodukcji.

■ Metoda stochastyczna według reszt bez powtórzeń
Analogicznie jak w poprzednich dwóch metodach, część całkowita E, stanowi liczbę 
potomków z-tego osobnika, natomiast część ułamkowa jest traktowana jako prawdo­
podobieństwo dla rozkładu Bernoulli’ego, brakujące osobniki są losowane zgodnie z 
tymi prawdopodobieństwami.

■ Metoda turniejowa
Wybierane są dwa osobniki (można stosować turniej więcej niż dwóch osobników) i 
do reprodukcji wybierany jest najlepszy osobnik spośród biorących udział w turnieju. 
Czasami stosuje się wybór osobników do turnieju za pomocą metody ruletki, co po­
woduje silniejsze promowanie lepszych osobników (selekcja jest bardziej twarda).

■ Metoda rankingowa (nadawania rang)
Osobniki w populacji są porządkowane malejąco według wartości funkcji celu. Liczba 
potomków osobnika zależy od jego rangi, przy czym ranga osobnika to jego miejsce 
w tym uszeregowaniu. Ustalana jest liczba potomków dla osobnika o najwyższej ran­
dze (max) i liczba potomków dla osobnika o najniższej randze (min), pozostałym 
osobnikom przydzielana jest liczba kopii proporcjonalnie do ich rangi. Metoda ta by­
wa krytykowana, ponieważ osłabia ona związek pomiędzy funkcją przystosowania 
(rangą) a funkcją celu. Mimo to, w niektórych zastosowaniach daje dobre wyniki.

1.4 Operatory genetyczne
Podstawowe operatory genetyczne to krzyżowanie (mieszanie materiału genetycznego 
różnych osobników) i mutacja (błąd reprodukcji osobnika).

■ Krzyżowanie (crossover)
W czasie krzyżowania dwa osobniki wymieniają między sobą części genotypu. Ope­
rator ten działa na reprodukowanym osobniku z zadanym prawdopodobieństwem, 
drugi osobnik do krzyżowania wybierany jest losowo. Najprostsza postać to krzyżo­
wanie jednopunktowe (osobniki a i b na rysunku 3., ich potomstwo to osobniki a’ i 
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b'). Może też być stosowane krzyżowanie wielopunktowe'. osobniki c i d, powstałe po 
dwupunktowym krzyżowaniu potomstwo to c’ i cT. Krzyżując reprodukowanego wła­
śnie osobnika z innym można otrzymać dwóch potomków, składających się z części 
genotypów rodzicielskich. Do następnego pokolenia wybiera się losowo jednego z 
potomków, lepszego z nich, najbardziej podobnego do rodzica, itp., zgodnie z przyję­
tym założeniem. Uogólnieniem krzyżowania wielopunktowego jest krzyżowanie jed­
norodne. Dla każdego bitu pierwszego potomka podejmowana jest losowo (z zadanym 
prawdopodobieństwem, np. p=0,5) decyzja, od którego z rodziców ma dziedziczyć 
dany bit, drugi potomek otrzymuje bit od pozostałego rodzica.

■ Mutacja
Powstały po krzyżowaniu potomek podlega mutacji. Mutacja zachodzi z zadanym 
prawdopodobieństwem, polega ona na losowej zmianie wartości bitu z zera na jedynkę 
lub odwrotnie (rysunek 4).

a)
1 o 111 o jo iTm o|l |0 |0 |1 |
b) _ _ _ _
|l|o|l|l| 0 101 o|o|o|1 |1 1

c)
|o 11 lo |o 11 11 lo 11 lo lo |1~1 
d)

I 1 I 0 1111 | o | o |o |0 | 011 IH

|o|o| 111| iloWl 
a’] y

10|o|0 |1 I l|o| 1I1 I

a’)
10 I 1 lo lo 11 11 lo |o lo 11 I i~] 
b’)
111o 1111 lo Io lo 11 lo ioTn

c’)
|o| 1 |o11 |o 10 lo 11 |o |0|1~| 
d’)
I 110 11 |0 11 11 |0 |o lo 11111

Rysunek 4. Przykład 
działania mutacji (a - 

osobnik przed mutacją, 
a' - osobnik z dwoma 
zmutowanymi bitami)

Rysunek 3. Krzyżowanie jednopunktowe (osobniki a i b, ich potom­
stwo a’ i b’) oraz dwupunktowe (c i d, potomstwo c’, d’)

1.5 Przykład (działanie prostego algorytmu genetycznego)
Zadanie'. Znaleźć maksimum funkcji F=X\-X2, przy ograniczeniach: Xi,%2 są liczbami 
całkowitymi z przedziału [0,31].

Decydujemy się na kodowanie binarne - kod dwójkowy, na każdą zmienną potrze­
ba 5 bitów (wynika to z dopuszczalnych wartości zmiennych i xj), chromosom ma 
10 bitów. Funkcja F przyjmuje wartości ujemne, co jest niedopuszczalne w GA, za­
tem musimy ją przekształcić w funkcję przystosowania. Jedną z możliwości jest funk­
cja Q zdefiniowana jako Q = 32+F, tę funkcję uwzględnimy przy ocenie osobników.

Zakładamy losową populację początkową, dla uproszczenia przyjmujemy, że po­
pulacja liczy 4 osobniki, mutacja zachodzi z prawdopodobieństwem 0,02 dla każdego 
bitu, rekombinacja reprodukowanego osobnika - jednopunktowa z prawdopodobień­
stwem 0,5, z losowo wybranym partnerem. Wybór osobnika do reprodukcji - np. me­
todą próbkowania deterministycznego. Warunek zatrzymania - zadana liczba pokoleń 
(np. 100).

Etapy 1 4- 4 (nie zachodzi warunek zatrzymania - nie wykonano zadanej liczby po­
koleń) pokazuje tabela 1.
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Tabela 1. Populacja początkowa i generacja pierwszego pokolenia

Nr 
osob 
-nika

Chromosomy 
(losowe warto­

ści)

Fenotyp 
(Xi, x2)

Qi F, Ei=
Qi/Qśr

Liczba 
potom­

ków
Potomki (po działaniu ope­

ratorów genetycznych)

1 10001 01111 17, 15 34 02 1,133 1+0=1 10101 00101
2 10101 00111 21, 07 46 14 1,533 1+1=2 10111 00011, 10100 00001
3 00001 10101 01,21 12 -20 0,400 0+0=0 brak
4 10101 11001 21,25 28 -04 0,933 0+1=1 1111011001
Qśr 30,00

Analizując części całkowite wartości oczekiwanych E\, E2, E2 i Et, widzimy, że osob­
nik nr 1 i osobnik nr 2 będą mieć po jednym potomku. Dalej brakuje nam dwóch 
osobników do zachowania stałego rozmiaru populacji (założyliśmy 4 osobniki), dobie­
ramy je zgodnie z malejącymi wartościami części ułamkowych E\, E2, E2 i Ep. 0,933 
(osobnik 4), 0,533 (osobnik 2), 0,400 (osobnik 3), 0,133 (osobnik 1) - czyli wybrane 
zostaną osobniki numer 4 i numer 2. Załóżmy dalej, że zgodnie z losowaniem z zało­
żonymi prawdopodobieństwami krzyżowania i mutacji wyszło nam, że:
Osobnik nr 1 (kopiowany raz) jest krzyżowany z osobnikiem nr 2, punkt krzyżowania 
- po szóstym bicie, mutowane bity - trzeci i dziewiąty.
Osobnik nr 2 (kopiowany dwukrotnie); raz bez krzyżowania, mutowane są geny: 
czwarty i ósmy; drugi raz - krzyżowanie z osobnikiem nr 4, po siódmym bicie, muto­
wane geny - piąty.
Osobnik nr 4 (raz kopiowany), brak krzyżowania, mutacja genów: drugi, czwarty, 
piąty.

Następuje teraz powrót do etapu 2: liczenie przystosowania osobników nowej po­
pulacji, sprawdzenie warunków zatrzymania i ewentualne generowanie kolejnego po­
kolenia. Pokazuje to tabela 2.

Tabela 2. Generacja kolejnego pokolenia

Nr 
osob 
-nika

Genotyp Fenotyp Qi Fi E?
Qi/Qśr

Liczba 
potom­

ków
Potomki

1 10101 00101 21,05 48 16 1,021 1+0=1 11101 00010
2 10111 00011 23, 03 52 20 1,106 1+0=1 11110 00011
3 10100 00001 20, 01 51 19 1,085 1+0=1 10101 10001
4 1111011001 30, 25 37 05 0,787 0+1=1 11111 00001
Qśr 47.00

Poprawiła się średnia wartość przystosowawcza populacji. Generując kolejne pokole­
nia możemy po pewnym czasie uzyskać rozwiązanie optymalne [11111 00000], czyli 
[31,0], dla takiego osobnika F-h 1-0=31, a Q = 32+31=63.

Algorytm genetyczny szuka dobrego rozwiązania przesuwając populację w obie­
cujące rejony przestrzeni przystosowania (przestrzeni potencjalnych rozwiązań). Na­
leży jednak pamiętać, że mechanizm ten bywa zawodny, np. jeśli mamy do czynienia 
z tzw. zwodniczymi funkcjami (ang. deception functiori). W takich sytuacjach GA 
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może przesunąć populację w złym kierunku i ewolucja jest zbieżna do lokalnego 
optimum [14], Algorytm genetyczny może być stosowany, jeśli dopuszczamy rozwią­
zanie bez gwarancji, że jest ono optymalne, wystarczy nam, że będzie satysfakcjonu­
jące.

1.6 Specjalizowane operatory rekonfiguracyjne
W problemach sekwencyjnych (np. problem komiwojażera) geny w chromosomie są 
wartościami całkowitymi i stanowią numery miast, zaś kolejność genów na chromo­
somie mówi o tym, w jakiej kolejności miasta mają być odwiedzane. Zatem rozwiąza­
niem jest sekwencja genów w chromosomie. Silnym ograniczeniem nakładanym na 
chromosom jest wymóg, by każda wartość genu (z zakresu od 1 do liczby miast) wy­
stąpiła na chromosomie dokładnie jeden raz. Dla tak zdefiniowanego chromosomu 
można stosować operator inwersji (jest to wylosowanie dwóch punktów w chromoso­
mie i odwrócenie odcinka między tymi punktami) lub inne, specjalizowane operatory, 
które łączą w sobie cechy inwersji i krzyżowania. Poniżej omówione są przykładowe, 
podstawowe operatory rekonfiguracyjne.

Inwersja. Jest to stosunkowo prosty operator powoduje, że część genotypu (pomię­
dzy dwoma losowo wybranymi punktami) zostaje uporządkowana w odwrotnej kolej­
ności.

Partially Matched Crossover (PMX): Na chromosomie wybierane są losowo dwa 
punkty. Część chromosomu pomiędzy tymi punktami stanowi tzw. sekcję dopasowa­
nia (ang. matching section) i ta część jest wymieniana pomiędzy reprodukowanymi 
osobnikami. Działanie operatora pokazane jest na rysunku 5. Osobniki II’ i 12’ są po­
tomkami osobników II i 12. W pierwszym kroku, po wylosowaniu sekcji dopasowa­
nia, II’ otrzymuje część chromosomu stanowiącą sekcję dopasowania osobnika 12
II : 1 2 3 | 4 5 1678
I2:432|76 1581

II' : 1 2 3 | 7 6 | 4 5 8 
12' : 7 3 2 | 4 5 I 6 8 1

Rysunek 5. Dwa osobni­
ki przed PMX oraz dwa 

potomne po PMX

(tzn. wartości genów 7 i 6 są umieszczane u II’ na pozy­
cjach odpowiadających sekcji dopasowania). Teraz geny o 
wartościach 4 i 5 (one były w sekcji dopasowania II) zaj­
mują u potomka II’ te miejsca, które u II były zajmowane 
odpowiednio przez geny o obecnych już wartościach 7 i 6. 
W podobny sposób jest tworzony drugi potomek (12’).

Order Crossover (OX): operator zaczyna swoje działanie
od losowego wyboru sekcji dopasowania, podobnie jak po-

Il:123|45|678
I2:432|76|581 -------------------------------------------- m
Il:123|45|oo8§>_
I2:o32|76|o81 |
II : 3 4 5 | o o | 8 1 2 ® t!
I2:276|oo|813t!

II': 3 4 5 | 7 6 | 8 1 2 
12' : 2 7 6 | 4 5 | 8 1 3

o - ‘dziura’

Rysunek 6. Działanie OX

przednia metoda. Różni się jednak w sposobie dopa­
sowywania chromosomów. Geny, które powinny być 
przesunięte do sekcji dopasowania u pierwszego po­
tomka, zostawiają „dziury”. Powstałe „dziury” są prze­
suwane do sekcji dopasowania, a brakujące geny są 
dodawane na koniec chromosomu (rysunek 6). Sekcje 
dopasowania zostają wymienione pomiędzy dwoma 
reprodukowanymi osobnikami. Metoda OX, w odróż­
nieniu od PMX ma tendencję do zachowywania 
względnej pozycji genów.
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11:12345678 
12:43276581

II': 1 - -- -- --
II': 1 - - 4 - - - - 
II': 1 - - 4 - - 7 - 
II': 1 - - 4 - - 7 8
II': 13246578

12' : 4 - -- -- -- 
12': 4 - -- -- -1 
12': 4 - -- -- 81
12': 4 - - 7 - - 8 1 
12' : 4 2 3 7 5 6 8 1

Rysunek 7. Tworzenie 
potomków stosując me­

todę CX

Cycle Crossover (CX): Przy działaniu tego operatora, każdy gen u potomka jest 
wzięty od jednego z rodziców. Potomek jest tworzony według następującego algoryt­
mu (patrz rysunek 7).
1. Bierzemy pierwszy gen od pierwszego rodzica II (w naszym przykładzie jest to 

wartość 1)
2. Potomek ma już pierwszy gen. Teraz należy zapewnić, by 

wartość z pierwszej pozycji 12 była obecna u potomka, 
dlatego też od II należy wziąć gen o wartości równej 
pierwszemu genowi u drugiego rodzica, w naszym przy­
kładzie gen o wartości 4, kopiujemy go na tę pozycję, na 
której znajduje się u II (w przykładzie - na czwarte 
miejsce).

3. Osobnik 12 na czwartym miejscu (zajmowanym u II 
przez wartość 4) ma wartość 7, kopiujemy tę wartość (na 
jej miejsce u II) do tworzonego potomka Ił’.

4. Powtarzamy powyższe czynności (punkty 2 i 3) aż na­
potkamy gen, który już istnieje u tworzonego potomka 
(na miejscu zajmowanym przez 8 u II jest 7, która już 
wcześniej została skopiowana do potomka).

5. Brakujące pozycje u potomka wypełniamy kopiując geny od drugiego rodzica (12). 
Analogicznie tworzony jest potomek 12’.

Można stosować inne (dodatkowe) techniki przyspieszające znalezienie rozwiąza­
nia problemów sekwencyjnych, na przykład różne heurystyki (wykorzystując pewną 
wiedzę o problemie).

2. Programowanie genetyczne
W programowaniu genetycznym (GP - ang. Genetic Programming) osobnik podle­
gający ewolucji nie jest binarnym łańcuchem, lecz złożoną strukturą drzewiastą 
[8],[12]. Zbiór możliwych struktur jest zbiorem wszystkich możliwych kombinacji 
funkcji, które mogą być rekurencyjnie wyprowadzone ze zbioru funkcji 
F = {fx,f2,-,fNp\ o mocy Nr i zbioru symboli terminalnych T = ) o mocy

Nr. Przykłady takich zbiorów, to: F=(AND, OR, NOT, SIN, COS, +, -, *), T=(0, 1, 2, 3, 4, 
5, 6, 7, 8, 9,7t), przykładowa funkcja w postaci drzewa pokazana jest na rysunku 8.
J. Koza [8] zaproponował programowanie genetyczne jako metodę automatycznego 
generowania programów. Węzły w drzewie są funkcjami (lub operatorami) jedno lub 
wieloargumentowymi, a liście są symbolami terminalnymi. Dla takich struktur należy 
inaczej niż w GA zdefiniować krzyżowanie i mutację. Krzyżowanie polega na wy­
mianie poddrzew między dwoma osobnikami (strukturami), węzeł przecięcia jest lo­
sowany w każdym drzewie oddzielnie. Krzyżowanie odgrywa kluczową rolę w GP. 
Mutacja bywa różnie implementowana: losowa zmiana funkcji w węźle, losowa zmia­
na wartości liścia, zamiana wybranego poddrzewa innym, losowo wygenerowanym,
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Rysunek 8. Przykład 
struktury drzewa w 

programowaniu gene­
tycznym: 

/7=SIN(2*n)+8*COS(7r)

zamiana dwóch poddrzew wychodzących z jednego węzła 
(permutacja). Dodatkowo, na drzewach można wykonywać:
• Edycję (upraszczanie) - nie zmienia się znaczenia wyra­
żenia reprezentowanego przez drzewo lecz upraszcza się 
formę (np. x OR x zastępuje się x),
• Enkapsulację (ADF - ang. Automatically Defined Func- 
tion) - wyodrębnianie potencjalnie użytecznego poddrzewa i 
nadanie mu nazwy, tak by można go było stosować jak sym­
bol terminalny. Enkapsulacja zapewnia niepodzielność wy­
branego poddrzewa w wyniku krzyżowania.

Kluczową rolę w GP pełni dobór odpowiednich zbiorów 
funkcji i symboli terminalnych. Wybór zbyt dużej ich liczby powoduje znaczny 
wzrost przestrzeni poszukiwań, jeśli jest ich za mało, lub są źle dobrane dla danego 
problemu, to satysfakcjonujące rozwiązanie nie może być znalezione.

3. Strategie ewolucyjne
Początek strategii ewolucyjnych (ES - ang. Evolutionary Strategy) to lata sześćdzie­
siąte [14], Zadaniem ES, podobnie jak GA i GP, jest rozwiązywanie problemów 
optymalizacyjnych metodą wzorowaną na ewolucji biologicznej. W ES nie stosuje się 
kodowania potencjalnych rozwiązań. Każdy chromosom jest łańcuchem liczb rzeczy­
wistych: bezpośrednio wartości argumentów funkcji celu oraz prawdopodobieństw 
mutacji i rekombinacji. We wczesnych pracach ewoluowano populację składającą się 
z pojedynczego osobnika, a jako czynnik różnicujący potomka od rodzica wykorzy­
stywano mutację. Małe zmiany mutacyjne były bardziej prawdopodobne niż duże. 
Potomek mógł zastąpić rodzica tylko wtedy, gdy był od niego lepszy. Takie podejście, 
w którym potomek konkuruje tylko ze swoim rodzicem nazywane jest strategią dwu- 
elementową (ang. two-membered evolution strategy) i oznaczane jest przez symbol 
(1+1)-ES. Ewolucja populacji y elementowej (gdzie //> 1) nazywana jest strategią 
wieloelementową (ang. multi-membered evolution strategy). W strategii wieloele­
mentowej stosowane jest też krzyżowanie: dwa osobniki są losowo wybierane do re­
produkcji, każdy z jednakowym prawdopodobieństwem. Podobnie jak w strategii 
(1+1)-ES, w jednym pokoleniu produkowany jest tylko jeden potomek, który zastę­
puje najgorszego osobnika w populacji. Jeśli wygenerowany potomek jest gorszy od 
wszystkich w populacji, jest on usuwany i populacja nie zmienia się w tym pokoleniu. 
Taka strategia (produkcja pojedynczego osobnika w jednym pokoleniu) jest nazywana 
(//+1)-ES. W późniejszych aplikacjach ES zostały rozwinięte do postaci znanych pod 
nazwą (u+X)-ES i (g,?0-ES. W strategii (u+X)-ES populacja liczy // osobników, które 
w jednym pokoleniu produkują T potomków. Do populacji tworzącej następne poko­
lenie wybierane są najlepsze osobniki zarówno spośród rodziców jak i potomków. 
Różnica pomiędzy strategiami (u+X)-ES i (ji,X)-ES polega na tym, że w tej ostatniej, 
do następnego pokolenia wybierane są osobniki tylko spośród potomków (jest to po­
pulacja jednopokoleniowa).
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ES były rozwijane jako metoda optymalizacji numerycznej, podczas gdy przed GA 
stawiano wymagania zdolności przeszukiwania. W obu podejściach wykorzystuje się 
darwinowską metodę selekcji oraz populację osobników będących potencjalnymi 
rozwiązaniami. Ważniejsze różnice pomiędzy GA a ES to:
• Reprezentacja osobnika: w klasycznym GA koduje się rozwiązania w postaci bi­

narnego łańcucha, natomiast w ES ewoluują rozwiązania w postaci łańcucha liczb 
rzeczywistych, powiększone o prawdopodobieństwa mutacji i rekombinacji.

• Proces selekcji i reprodukcji: w GA populacja A-elementowa produkuje N potom­
ków, które stanowią następne pokolenie, w ES - populacja //-elementowa produ­
kuje A potomków, przy czym do następnego pokolenia wybieranych jest (w sposób 
deterministyczny) // najlepszych osobników spośród rodziców i potomków razem, 
lub tylko spośród potomków. Selekcja, poza tym, że w ES jest deterministyczna, to 
zachodzi po procesie reprodukcji, natomiast w GA zachodzi przed reprodukcją 
(osobniki są wybierane do reprodukcji) i nie jest deterministyczna.

• W GA, prawdopodobieństwa mutacji i rekombinacji są z reguły stałe dla wszyst­
kich osobników i w czasie całej ewolucji, natomiast w ES są one różne dla różnych 
osobników i ulegają zmianie w czasie ewolucji (same podlegają ewolucji stano­
wiąc część chromosomu).

• W strategiach ewolucyjnych potomki nie spełniające wymaganych warunków są 
eliminowane z populacji, nie ma mechanizmów typu nakładanie kar.

4. Programowanie ewolucyjne
Lawrence Fogel [5] zaproponował ewolucję populacji automatów skończonych w celu 
predykcji zmian środowiska i nazwał to podejście programowaniem ewolucyjnym 
(EP - Evolutionary Programming). Opis środowiska to sekwencja symboli ze skoń­
czonego alfabetu. Zadanie polega na przewidywaniu kolejnego symbolu znając pewną 
ich sekwencję. Miarą przystosowania ewoluujących automatów skończonych jest do­
kładność przewidywania. Każdy osobnik w populacji produkuje jednego potomka. 
Potomek jest zmutowanym rodzicem (nie stosuje się krzyżowania). Mutacja jest to lo­
sowy proces, polegający na:
• zmianie symbolu wejściowego,
• dodaniu nowego stanu,
• usunięciu jednego z istniejących stanów, lub
• zmianie ścieżki pomiędzy stanami (tranzycji).
Decyzja o tym, która mutacja zajdzie podejmowana jest w trakcie tworzenia potomka, 
na podstawie zadanego rozkładu prawdopodobieństwa. Po reprodukcji każdego osob­
nika, populacja chwilowo składa się z podwojonej liczby osobników: rodziców i po­
tomków. Jako następne pokolenie wybierane są najlepsze osobniki z podwojonej po­
pulacji, tak, że zachowany jest stały rozmiar populacji w kolejnych pokoleniach. 
Zwykle stosuje się turniejową metodę selekcji (turniej //-elementowy polega na wy­
braniu n elementów z populacji, zwycięzca - element z największym przystosowa­
niem - zostaje wybrany do następnego pokolenia). W pracach L. FogeFa można zna­
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leźć opisy wielu eksperymentów, w których automatom skończonym stawiano coraz 
trudniejsze zadania predykcji. Eksperymentowano z zastosowaniem programowania 
ewolucyjnego do gier. Eksperymenty z dwuosobowymi grami o sumie zerowej poka­
zały, że EP jest w stanie odnaleźć globalnie najlepszą strategię dla prostych gier i 
niewielkiej liczby graczy (czterech). Prace nad stosowaniem programowania ewolu­
cyjnego są dość liczne, ich krótki przegląd można znaleźć w [5].

W EP nie stosuje się kodowania rozwiązań (podobnie jak w ES), reprezentacja 
wynika wprost z zadania - może to być sieć neuronowa w takiej postaci, jak jest im­
plementowana. Mutacja często bywa zmniejszana w miarę zbliżania się do optimum 
globalnego. Zwykle jest to implementowane w ten sposób, że wariancja mutacji pod­
lega zmianom (zgodnie z zadanym operatorem), czyli sama mutacja podlega ewolucji.
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Streszczenie

Algorytmy genetyczne oraz pokrewne techniki bazujące na ewolucji cieszą się coraz większym 
zainteresowaniem tak teoretyków jak i praktyków. Podejmowane są próby ich wykorzystania 
w zagadnieniach inżynierii projektowej. W pracy tej rozważany jest problem prowadzenia 
połączeń na płytkach drukowanych (PCB) w kontekście możliwości zastosowania metod 
ewolucyjnych. Podstawowy nacisk położony jest na aspekt dostosowania zagadnienia projek­
towego do optymalizacyjnej natury przeszukiwania ewolucyjnego. Zaproponowane podejście 
obejmuje transformację problemu w zadanie wymagające satysfakcji szeregu ograniczeń. 
Przedstawiono i omówiono podstawowy algorytm ewolucyjny, sposób jego dostrojenia do 
specyfiki problemu, a także zastosowane metody obsługi ograniczeń obejmujące karanie, opra­
cowane z wykorzystaniem wiedzy dziedzinowej reprezentację i operatory oraz mechanizm 
krokowej adaptacji wag.

Wstęp
Popularne w ostatnim czasie algorytmy genetyczne oraz inne techniki naśladujące 
mechanizm ewolucji znalazły wiele zastosowań w rozwiązywaniu problemów opty­
malizacyjnych. Ich niewątpliwą zaletą jest połączenie prostoty i ogólności. Umożli­
wiają optymalizację szerokiej klasy problemów: liniowych i nieliniowych, określo­
nych zarówno na ciągłych, dyskretnych oraz mieszanych przestrzeniach poszukiwań, 
nieograniczonych i ograniczonych. W przypadku wielu złożonych problemów szcze­
gólnie interesującą cechą jest elastyczność pozwalającą na wykorzystanie opartych na 
wiedzy dziedzinowej heurystyk, co pozwala na dostrojenie algorytmów ewolucyjnych 
do charakterystyki konkretnego problemu. Dotyczy to w szczególności zagadnień 
związanych z inżynierią projektową, wykazujących dużą złożoność, co czyni je trud­
nymi do rozwiązania klasycznymi metodami algorytmicznymi.

Wyróżniającą tę klasę problemów cechą jest fakt występowanie zbioru ograniczeń, 
których liczba i powiązania stanowiąc rzeczywistej trudności zagadnienia. Obecność 
ograniczeń wpływa znacząco na efektywność każdego algorytmu optymalizacyjnego, 
także technik bazujących na symulowanej ewolucji. W niniejszej pracy omówiono 
algorytm ewolucyjny rozwiązujący przykładowy problem związany z inżynierią pro­
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jektową, wykorzystujący niektóre z szeroko stosowanych technik dotyczących speł­
niania narzuconych na zadanie ograniczeń. Wykorzystano opracowaną w oparciu o 
wiedzę dziedzinową reprezentację oraz operatory genetyczne, a także mechanizm 
krokowej adaptacji wag.

1. Specyfikacja problemu
Algorytmy ewolucyjne znalazły zastosowanie w wielu aspektach projektowania i 
montażu płytek drukowanych (PCB), wliczając projektowanie strukturalne układu, 
selekcję komponentów oraz optymalizację procesu montażu elementów. W pracy tej 
skupiono się na możliwościach wykorzystania technik ewolucyjnych w celu rozwią­
zania problemu prowadzenia połączeń fizycznych na jednowarstwowych płytkach 
PCB, w kontekście zagadnienia optymalizacyjnego z silnymi ograniczeniami.
W problemie tym dane są:
• ograniczony, spójny obszar płaszczyzny zwany dalej płytką drukowaną,
• uporządkowany zbiór punktów lutowniczych P,
• funkcja przyporządkowująca każdemu punktowi ze zbioru /'jego pozycję na płytce 

zadaną parą współrzędnych kartezjańskich f: P—>RxR,
• uporządkowany zbiór połączeń strukturalnych (tj. planowanych) S między punk­

tami ze zbioru P, zadanych jako pary punktów, które powinny zastać połączone fi­
zycznie tj. S = {(pi, P2) | pbpieP, pi i pi są strukturalnie połączone}.

Problem polega na zaprojektowaniu sieci fizycznych połączeń w taki sposób, aby 
dowolne dwa punkty lutownicze zostały fizycznie połączone wtedy i tylko wtedy, 
jeżeli występowało między nimi połączenie strukturalne. Przyjmując, że dla danego 
rozwiązania zbiór F zawiera wszystkie i tylko te pary punktów lutowniczych, między 
którymi istnieje fizyczne połączenie, warunek sukcesu można zapisać następująco:

Vpi,PiGP. (php2)eF<=> (pbpi)eS (1)

Poniższe rozważania oparto o zredukowaną wersję problemu, w której (warunek 0.): 
• płytka składa się z jednej warstwy, w kształcie prostokąta o ustalonych rozmiarach,
• punkty leżą na przecięciach siatki, tj. ich współrzędne zadane są liczbami całko­

witymi,
• fizyczne połączenia mogą być prowadzone tylko wzdłuż nałożonej na powierzch­

nię płytki siatki, zbudowanej z kwadratów o boku równym 1.
Przykład schematu połączeń fizycznych PCB odpowiadającego temu warunkowi 
przedstawia rys.l.
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Rysunek 1: Przykładowy schemat PCB

2. Podejście ewolucyjne
Zastosowanie algorytmu ewolucyjnego do dowolnego zadania wymaga określenia 
sposobu obliczania funkcji celu, reprezentacji osobnika oraz opracowania zestawu 
operatorów genetycznych. Dla sformułowanego czysto projektowego problemu trudno 
spełnić te wymagania w sposób bezpośredni, konieczne jest jego dostosowanie do 
optymalizacyjnej natury przeszukiwania ewolucyjnego. Należy tego dokonać poprzez 
określenie zbioru optymalizowanych współczynników oraz ograniczeń, których speł­
nienie stanowi kryterium określenia projektu jako satysfakcjonujący.

Sposób kodowania osobnika, czyli jego reprezentacja oraz zestaw operatorów 
łącznie określają zestaw potencjalnych rozwiązań problemu możliwych do uzyskania 
w drodze symulowanej ewolucji, czyli przestrzeń rozwiązań. Funkcja oceniająca przy­
stosowanie powstałych osobników, pozwala z kolei na ukierunkowanie ewolucji w 
kierunku rozwiązań, które uważamy za lepsze, a w konsekwencji kieruje poszukiwa­
nia w obszary, gdzie spodziewamy się znaleźć satysfakcjonujące rozwiązanie. Zagad­
nienia te należy rozpatrywać łącznie, szczególnie w przypadku konieczności stosowa­
nia skomplikowanej reprezentacji osobnika, a tym samym złożonego sposobu mapo­
wania genotypu w fenotyp, a także konieczności obsługi nałożonych na problem ogra­
niczeń.

2.1 Reprezentacja
Ze sposobem kodowania osobnika w bezpośredni sposób wiąże się określenie mak­
symalnej dopuszczalnej przestrzeni poszukiwań. Odpowiednio dobrana reprezentacja 
może znacząco zmniejszyć przestrzeń poszukiwań, wpływając tym samym na efek­
tywność algorytmu optymalizacyjnego.

Rozważany problem można rozłożyć na dwie składowe, wynikające z warunku 
równoważności danego wzorem [l] stanowiące niezależne warunki ograniczeń, a 
mianowicie {ograniczenia la. i Ib.):
(la) każde dwa punkty, które są połączone strukturalnie, muszą zostać połączone 

fizycznie,
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(Ib) żadne dwa punkty, które nie są połączone strukturalnie, nie mogą zostać połą­
czone fizycznie.

Najprostszą z możliwości jest wybranie reprezentacji dopuszczającej dowolne, zgodne 
z warunkiem 0. rozwiązania. Osobnik, który spełniłby oba powyższe ograniczenia, 
mógłby zostać uznany za prawidłowy projekt układu połączeń na płytce drukowanej. 
W ten sposób problem został więc sprowadzony do zagadnienia wyewoluowania pra­
widłowych, tj. spełniających ograniczenia la i Ib. osobników.

Zagadnieniu obsługi ograniczeń w algorytmach ewolucyjnych poświęcono wiele 
prac. W pracy [2] sklasyfikowano i przedstawiono 11 mechanizmów pozwalających 
na powstanie w toku symulowanej ewolucji prawidłowych, tzn. spełniających ograni­
czenia, osobników. Zostały one zgrupowane w trzy podstawowe grupy obejmujące 
Zapobieganie, Korygowanie i Presję. Metody związane z Zapobieganiem i Korygo­
waniem pozwalają na stałe zapewnienie zgodności osobników z ograniczeniami, doty­
czą więc tzw. ograniczeń twardych. Z Presją z kolei związana jest klasa ograniczeń 
miękkich, tj. takich, których naruszanie w czasie działania algorytmu nie jest zabro­
nione.

Karanie osobników uważa się za najbardziej ogólną metodę obsługi ograniczeń. 
Mechanizm ten bazuje zazwyczaj na preferowaniu rozwiązań w mniejszym stopniu 
naruszających ograniczenia, co powinno spychać populację w kierunku rozwiązań w 
jak największym stopniu satysfakcjonujących poszczególne ograniczenia. W opraco­
waniu skutecznego mechanizmu karania pomocne mogą okazać się, sformułowane na 
podstawie badań hipotezy, które znaleźć można w pracy [4]:
(a) „kary, które są miarą odległości od poprawności są lepsze niż te, które są prostą 

funkcją liczby naruszonych ograniczeń”,
(b)„w przypadku problemów z kilkoma ograniczeniami oraz kilkoma pełnymi roz­

wiązaniami, kary które są jedynie funkcją liczby naruszonych ograniczeń nie pro­
wadzą zazwyczaj do znalezienia rozwiązania”.

Dodatkowo, w [5] sformułowana jest następująca hipoteza:
(c) „algorytm genetyczny ze zmiennym współczynnikiem kary jest skuteczniejszy od 

algorytmu ze stałym współczynnikiem kary”.
Istnieją także inne metody obsługi ograniczeń, są one jednak w mniejszym lub 

większym stopniu zależne od problemu. Jedną z najbardziej interesujących technik 
jest wykorzystanie tzw. dekoderów, należących do klasy związanej z Zapobieganiem. 
Stanowią one specjalizowane schematy mapowania genotypu na fenotyp, określające 
sposób budowania prawidłowego osobnika na podstawie informacji zawartych w 
chromosomie. Za ich pomocą możliwe jest, wspomniane wcześniej, zredukowanie 
przestrzeni poszukiwań, a także zapewnienie spełnienia jednego bądź kilku narzuco­
nych na problem ograniczeń. Przy wyborze odpowiedniej reprezentacji - dekodera, 
należy wziąć pod uwagę szereg czynników (za [1], wymogi (l)-(5)\.
(1) dla każdego prawidłowego rozwiązania, musi istnieć kodujący je osobnik, 
(2)każdy zdekodowany osobnik, musi odpowiadać prawidłowemu rozwiązaniu,
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(3)każde prawidłowe rozwiązanie musi być reprezentowane przez tę samą liczbę 
możliwych, różnych osobników.

Ponadto, sugeruje się aby:
(4) transformacja osobnika w potencjalne rozwiązanie była szybka obliczeniowo, 
(5)dekoder miał cechę lokalności, tj. małe zmiany w chromosomie powodowały małe 

zmiany w rozwiązaniu.
Opracowanie dekodera spełniającego powyższe wymagania dla złożonych, rze­

czywistych problemów jest zazwyczaj poważnym problemem. Wielu praktyków wy­
korzystuje więc fakt, że analogiczny do zastosowania dekodera efekt osiągnąć można 
poprzez wykorzystanie specjalnie opracowanej reprezentacji oraz zestawu operatorów. 
Założeniem jest tutaj zachowanie poprawności - zgodności z zadanym ograniczeniem 
- wszystkich osobników w populacji. Operatory powinny więc działać w taki sposób, 
aby niemożliwe było otrzymanie osobnika nieprawidłowego poprzez działanie na 
osobnikach prawidłowych. Należy dodatkowo pamiętać o takim wyborze populacji 
początkowej, aby składała się ona wyłącznie z poprawnych osobników.
Stosowanie specyficznej dla problemu reprezentacji oraz specjalizowanych operato­
rów często pozwala na uzyskanie algorytmów ewolucyjnych efektywniejszych niż w 
przypadku technik opartych na karaniu. Zakres istniejących zastosowań jest bardzo 
szeroki, począwszy od optymalizacji numerycznej i klasycznych problemów, jak pro­
blem komiwojażera, przez uczenie maszynowe, aż po przetwarzanie sygnałowe, ro­
botykę, oraz zagadnienia związane z inżynierią projektową.

W tym momencie warto wrócić do określonego wcześniej rozkładu zadania na dwa 
podproblemy, z którymi skojarzone zostały ograniczenia la. i Ib. Istnieje możliwość 
eliminacji jednego z ograniczeń poprzez zastosowanie odpowiedniej reprezentacji 
oraz zestawu operatorów, gwarantujących jego utrzymanie. W tym przypadku wybra­
no warunek la. tj. konieczność fizycznego połączenia wszystkich strukturalnie połą­
czonych punktów. Warunkiem podtrzymywanym jest więc istnienie w populacji jedy­
nie osobników kodujących rozwiązania zawierające wszystkie niezbędne połączenia 
fizyczne, zaś zadanie sprowadza się do znalezienia takiego rozwiązania, które nie 
zawiera nadmiarowych połączeń fizycznych, między punktami niepołączonymi 
strukturalnie, co stanowi warunek Ib.

2.2 Sposób kodowania
Każdy osobnik powinien przedstawiać rozwiązanie zawierające wszystkie wymagane 
połączenia fizyczne - „ścieżki”. Dla zadanego problemu rozwiązanie zawiera n = 
card(S) ścieżek, kodowanych w chromosomie. Pojedyncza ścieżka stanowi połączenie 
pomiędzy dwoma punktami lutowniczymi. Składa się ona z szeregu „segmentów” 
stanowiących pionowe lub poziome odcinki o całkowitoliczbowej długości. Kształt 
ścieżki reprezentowany jest przez skrócony kod łańcuchowy, składający się z ciągu 
par (kierunek, długość), gdzie kierunek określony jest jako zmienna wyliczeniowa o 
wartościach (góra, dół, prawo, lewo), natomiast długość jest liczbą naturalną. Aby 
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możliwe było zakodowanie i zdekodowanie rozwiązania, dla każdego połączenia je­
den z łączonych punktów lutowniczych ustalony jest jako początek ścieżki.

Przykładowo dla najdłuższej (pogrubionej) ścieżki z rys.l. przyjmując jako po­
czątkowy górny punkt otrzymujemy kod w postaci: ((dół,3), (lewo,2), (dół,4), (pra­
wo, 3)).

Rysunek 2: Struktura chromosomu

Reprezentacja ma strukturę hierarchiczną i składa się z komponentów kodujących 
poszczególne ścieżki. Jest to szczególnie wygodne ze względu na intuicyjność opra­
cowanych operatorów genetycznych. Dla ułatwienia, kody ścieżek przedstawione są w 
ustalonej kolejności, co pozwala na ich identyfikacją na podstawie zajmowanej pozy­
cji. Warto jednak zaznaczyć, iż ze względu na nieustaloną liczbę segmentów tworzą­
cych ścieżkę, mamy do czynienia z chromosomem o zmiennej długości.

Rozpatrując cechy powyższej reprezentacji pod kątem wymagań stawianych przed 
klasycznym dekoderem, możemy stwierdzić, iż bezpośrednio spełnione są punkty: 
(l)reprezentacja pozwala na przedstawienie każdego poprawnego rozwiązania, 
(2) każdemu poprawnemu rozwiązaniu odpowiada dokładnie jeden kod, 
(4)z kodu możemy w sposób bezpośredni odtworzyć kształt ścieżek, a tym samym 

całe rozwiązanie.
Wybrana reprezentacja nie wyklucza powstania niepoprawnych ze względu na 

warunek la. osobników, nie jest więc to klasyczny dekoder. Sposób kodowania i de­
kodowania zapewnia jedynie rozpoczynanie się ścieżki w miejscu jednego z łączo­
nych punktów lutowniczych, nie ma natomiast bezpośredniego mechanizmu wymu­
szającego umiejscowienie końca ścieżki w drugim punkcie. Jak już jednak wspomnia­
no możliwe jest wprowadzenie równoważnego mechanizmu, polegającego na utrzy­
mywaniu poprawności wszystkich osobników w populacji.

2.3 Operatory
Aby możliwe było spełnienie wymogu (2), zgodnie z którym każdy zdekodowany 
osobnik musi odpowiadać prawidłowemu (w tym przypadku spełniającemu warunek 
la.) rozwiązaniu, należy zapewnić takie funkcjonowanie operatorów, aby niemożliwe 
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było powstanie nieprawidłowych osobników w wyniku działania na osobnikach pra­
widłowych. Zakładając, że populacja początkowa składa się wyłącznie z osobników 
prawidłowych, tj. składających się ze ścieżek rozpoczynających i kończących się w 
łączonych punktach, pozwoli to na utrzymanie spełnienia warunku la. przez wszyst­
kie wyewoluowane rozwiązania. Wynika z tego, że wszelkie modyfikacje wprowa­
dzane przez operatory, nie mogą prowadzić do relokacji punktu końcowego poszcze­
gólnych ścieżek - stałość punktu początkowego zapewnia sposób kodowania. Opra­
cowany zestaw operatorów obejmuje operator mutacji oraz rekombinacji.

2.4 Mutacja
Operator mutacji działa na poziomie ścieżki tj. modyfikuje wybraną ścieżkę składową 
osobnika. Mechanizm działania wzorowany jest na heurystyce postępowania projek­
tanta obwodów drukowanych. Wprowadzane w konfigurację ścieżki modyfikacje 
polegają na przesunięciu jednego z segmentów ścieżki w kierunku do niego prostopa­
dłym. Wiąże się to zazwyczaj z modyfikacją długości segmentu poprzedniego i na­
stępnego, a czasem z ich utworzeniem lub usunięciem. Typowe sytuacje przedstawio­
ne są na rys.3., gdzie linią przerywaną pokazano wejściową konfigurację ścieżki, 
strzałkami ki

Zaimplementowana operacja mutacji polega na losowym wybraniu dowolnego seg­
mentu ścieżki, z jednakowym prawdopodobieństwem, i przesunięciu go o jedną pozy­
cję w wylosowanym kierunku - góra lub dół w przypadku segmentu poziomego, lewo 
lub prawo w przypadku segmentu pionowego. Pociąga to za sobą konieczność zmiany 
długości, utworzenia, bądź usunięcia poprzedniego i następnego segmentu, bez zmia­
ny ich położenia. Schemat ten daje się łatwo uogólnić poprzez wprowadzenie para­
metru określającego siłę mutacji, od którego uzależniona jest wartość przesunięcia. 
Operator spełnia warunek wykluczenia relokacji punktu końcowego ścieżki, a jedno­
cześnie zapewnia zgodność z wymogiem (5) o lokalności zmian. Zapewnia przeszu­
kanie całej przestrzeni rozwiązań, przez sekwencję mutacji można bowiem uzyskać 
każdą dozwoloną zmianę i tylko dozwoloną zmianę.

Niestety, niektóre, pożądane z punktu widzenia zadania projektowego, modyfika­
cje kształtu ścieżki wymagają sekwencji wielu mutacji, przeprowadzających osobnika 
przez niepożądane z punktu widzenia warunku Ib. obszary przestrzeni poszukiwań 
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charakteryzujące się dużą liczbą przecinających, bądź nakładających się ścieżek. Jest 
to związane z koniecznością przemieszczenia tylko fragmentu jednego z segmentów 
ścieżki, przy pozostawieniu pozostałej jego części na miejscu - sytuację taką przed­
stawia rys.4. Operator mutacji „b” dzieli segment w losowo wybranym punkcie na 
dwie części, z których jedna (także losowo wybrana) podlega przesunięciu. Mimo, iż 
operator pierwotny „a” jest szczególną wersją operatora „b”, zachowano obie wersje, 
wybierane z równym prawdopodobieństwem. Miało to na celu zmniejszenie udziału w 
populacji, osobników składających się z nieregularnych, wielosegmentowych ścieżek, 
generowanych przez ogólniejszą odmianę.

Rysunek 4: Operator mutacji „b”

W przypadku obu operatorów wielkość przesunięcia segmentu losowana jest z zakresu L.s (s 
zadane przez użytkownika), przy czym prawdopodobieństwo wylosowania kolejnych, coraz 
większych wartości jest liniowo malejące. Bezpośrednio preferowane są więc mniejsze przesu­
nięcia.

2.5 Krzyżowanie
Opracowanie operatora rekombinacji utrudnia fakt zmiennej długości chromosomu. 
Jednak i w tym przypadku powstało wiele prac zajmujących się bezpośrednio tym 
zagadnieniem, z których można wymienić choćby [6], Stworzenie operatora krzyżo­
wania, działającego na poziomie pojedynczych ścieżek, byłoby niejasne z punktu wi­
dzenia sposobu kodowania, dopuszczającego zmienną długość chromosomu, jak i 
samego zagadnienia projektowania obwodów drukowanych. Krzyżowanie operuje 
więc na poziomie nadrzędnym, i polega na wymianie całych, niezmienionych ścieżek 
pomiędzy rodzicami. Przebiega analogicznie do krzyżowania jednopunktowego zna­
nego z AG z ta różnica, że jednostką podstawową jest tutaj nie bit, lecz stanowiąca 
komponent tworzący ścieżka. Jak już wspomniano, ścieżki są uporządkowane, a ich 
liczba jest taka sama dla wszystkich osobników, tej samej pozycji w wektorach dwóch 
osobników odpowiada więc to samo połączenie. Ponieważ operator nie modyfikuje 
samych ścieżek, zachowany jest wymóg utrzymania warunku la.
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3. Algorytm ewolucyjny
Zastosowany algorytm bazuje na klasycznym schemacie algorytmu genetycznego. 
Podstawowym krokiem jest utworzenie nowej populacji osobników, czyli potencjal­
nych rozwiązań, na podstawie wyselekcjonowanych, najlepiej dostosowanych przed­
stawicieli poprzedniej generacji. Pseudokod algorytmu przedstawia się następująco:

BEGIN
Inicjuj populacje poprawnymi (spełniającymi warunek la.) 
osobnikami;

Ocena;
WHILE nie znaleziono satysfakcjonującego rozwiązania DO 

Selekcja i Krzyżowanie;
Mutacja;
Ocena;

END WHILE
END

Podstawową cechą algorytmu jest utrzymywanie liczebności populacji na stałym, 
zadanym przez użytkownika poziomie. W każdym kroku algorytmu, obejmującym 
generację nowego pokolenia, należy więc utworzyć stalą liczbę osobników tworzą­
cych nową populację. Wymaga to zdefiniowania funkcji oceny przystosowania dane­
go osobnika, która jest podstawowym kryterium określającym prawdopodobieństwo 
jego wyboru.

Proces tworzenia nowego pokolenia można podzielić na kilka etapów: selekcja 
osobników do reprodukcji, krzyżowanie osobników, mutacje osobników. W tym roz­
wiązaniu fazy selekcji osobników i krzyżowania zostały połączone. Na tym etapie 
wybierane są, metodą losowania z zastosowaniem ruletki, pary osobników. Tworzą 
one pulę przejściową o liczebności takiej jak cała populacja, poprzez bezpośrednie 
skopiowanie pary rodziców, bądź skopiowanie ich potomków powstałych na drodze 
krzyżowania. Prawdopodobieństwo wystąpienia krzyżowania jest określane przez 
użytkownika. Kolejny etap - Mutacja - przetwarza pulę przejściową w nową popula­
cję. Dla każdego osobnika z puli, z wybranym przez użytkownika prawdopodobień­
stwem wywoływany jest operator mutacji. Warto podkreślić dwa fakty: prawdopodo­
bieństwo krzyżowania dotyczy każdej wylosowanej pary, a prawdopodobieństwo 
mutacji dotyczy każdego osobnika jako całości. Ponadto zdecydowano się na zasto­
sowanie mechanizmu pozwalającego na zachowanie najlepszego osobnika w danym 
pokoleniu, poprzez przeniesienie go bez modyfikacji do nowej populacji. Dzięki temu 
najlepsze rozwiązania nie są gubione, jednocześnie mechanizm ten przez swój elita- 
ryzm powoduje skupienie osobników w pobliżu najlepszego.
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3.1 Funkcja oceny
Przystosowanie danego osobnika określa się analizując stopień spełnienia wymagań 
określonych przez cel zadania. W tym przypadku oceniamy rozwiązania pod kątem 
spełniania ograniczenia związanego z warunkiem Ib. Jako podstawową metodę osią­
gnięcia celu, tj. znalezienia rozwiązania satysfakcjonującego oba warunki, zastosowa­
no Presję, a konkretnie - metodę związaną z karaniem osobników za naruszanie nało­
żonych ograniczeń.

Analiza sformułowania problemu wykazuje, że podstawowym źródłem naruszania 
ograniczeń jest przecinanie się ścieżek, co prowadzi w konsekwencji do powstawania 
niepożądanych połączeń fizycznych między punktami nie połączonymi strukturalnie. 
Karanie osobników w zależności od liczby przecięć powinno spowodować presję se­
lekcyjną kierującą ewolucję w kierunku rozwiązań o coraz mniejszej ich liczbie, a w 
konsekwencji, w kierunku satysfakcjonującego rozwiązania. Liczba przecięć określa 
stopień naruszenia ograniczenia (warunek Ib.), czyli odległość osobnika od popraw­
ności, zwaną także kosztem ukończenia, bądź kosztem naprawy. Zgodnie z wspo­
mnianą hipotezą (a) wykorzystanie tego parametru daje lepsze rezultaty niż poprzesta­
nie na samym fakcie naruszenia ograniczenia.

Jednocześnie w bezpośredni sposób minimalizacji podlegać mają także dwa dodat­
kowe parametry: sumaryczna długość wszystkich ścieżek oraz liczba segmentów. Ma 
to na celu preferowanie rozwiązań o krótkich i regularnych ścieżkach. Uzyskana w ten 
sposób większa ilość wolnego miejsca powinna wpłynąć na wzrost prawdopodobień­
stwa korzystnej mutacji, redukującej liczbę przecięć poprzez przesunięcie przecinają­
cego się segmentu w kierunku obszaru nie zajętego przez żadną ścieżkę.

Aby uwzględnić wszystkie wymagania, zamiast bezpośredniego obliczania przy­
stosowania osobnika, wyznaczany jest stopień jego nieprzystosowania, określony 
przez sumaryczną karę. Wartość ta określona jest przez sumę ważoną kar za narusze­
nie ograniczeń i optymalizowanych parametrów oznaczanych jako k,, a dokładnie: 
• ki - liczba przecięć,
• k2 - sumaryczna długość ścieżek,
• k3 - sumaryczna liczba segmentów tworzących ścieżki.
Zestaw ten rozszerzono o dodatkowe parametry związane z wymogiem nie wykra­
czania ścieżek poza dozwolony obszar, określony przez wymiary płytki:
• k4 - liczba ścieżek poza płytką,
• k5 - sumaryczna długość części ścieżek poza płytką.

Parametrom tym przypisano wagi w, odpowiadające ich znaczeniu, tak aby najwy­
żej karane było umieszczanie ścieżek poza dozwolonym obszarem, kolejno mniej - 
przecinanie się ścieżek, długość ścieżek i najmniej liczba segmentów tworzących. 
Stopień nieprzystosowania określa wzór 2:.

(2)
i
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Wyznaczona ocena ma wartość tym większą im gorzej oceniamy danego osobnika, 
zastosowanie ruletki jako mechanizmu selekcji wymaga więc odpowiedniego przeli­
czenia, tak aby prawdopodobieństwo wylosowania osobnika o większej wartości kary 
było mniejsze. Jest to realizowane poprzez wyznaczenie wartości przystosowania jako 
odwrotnie proporcjonalnej do wyznaczonej kary.

gdzie: fj Fj - odpowiednio nieprzystosowanie (kara) i przystosowaniej-tego osobnika 
w populacji

fmin - najmniejsza wartość nieprzystosowania w populacji, pełni rolę 
współczynnika normalizacyjnego.

Cechą tego przekształcenia jest bezpośrednie przełożenie stosunku kar dwóch 
osobników na stosunek prawdopodobieństwa wybrania ich do następnego pokolenia: 
osobnik o ł-krotnie większej karze ma A>krotnie mniejszą szansę wylosowania. Cechy 
tej nie posiada często stosowana metoda wyznaczania przystosowania poprzez odjęcie 
wartości kary od stałej, zgodnie z wzorem F = c -f Ponadto, w przyjętej metodzie 
nie zachodzi potrzeba obsługi przypadków, dla których wyznaczona wartość przysto­
sowania byłaby ujemna.

3.2 Krokowa adaptacja wag
Zastosowanie karania jako mechanizmu obsługi ograniczeń w bezpośredni sposób 
sprowadza problem do zadania optymalizacji. Związane są z tym jednak pewne wady, 
do których należą m.in.:
(a) utrata informacji związana z reprezentacją wiedzy o naruszonych ograniczeniach w 

postaci pojedynczej wartości,
(b)nieefektywność mechanizmu w przypadku problemów rzadkich.

Rozpatrywany problem należy zakwalifikować do klasy problemów rzadkich, gdyż 
pomimo pozbycia się jednego z ograniczeń, w zredukowanej przestrzeni przeszukiwań 
udział rozwiązań poprawnych tj. składających się z rozłącznych ścieżek jest bardzo 
mały. Przeprowadzone testy wykazały skłonność algorytmu do przedwczesnej zbież­
ności i utykania w jednym z lokalnych optimów. Jest to związane ze strukturą prze­
strzeni poszukiwań, w której głębokie, lokalne optima związane z ustaleniem się kon­
figuracji zawierającej niewielką liczbę przecinających się ścieżek otoczone są przez 
silnie karane rozwiązania zawierające wiele przecięć. Należałoby więc wprowadzić 
mechanizm pozwalający na wyprowadzenie populacji z takiego optimum w celu 
zwiększenia zdolności przeszukiwawczych algorytmu.

Opracowany mechanizm bazuje na zaproponowanym w przez Eibena i Hemerta w 
[3] mechanizmie krokowej adaptacji wag (ang. SAW - Stepwise Adaptation of We- 
ights). Wspomniana praca skupia się na problemie określenia wag związanych z twar­
dością bądź priorytetem ograniczeń. Osiągnięcie satysfakcjonującej efektywności 
algorytmu wymaga takiego ustalenia wartości wag, aby odpowiadały rzeczywistej 
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twardości ograniczeń, dzięki czemu spełnienie trudniejszego z ograniczeń będzie sil­
niej premiowane. Wartości te są zazwyczaj ustalane na podstawie wiedzy dziedzino­
wej, ewentualnie dostrajane doświadczalnie. Przeprowadzone przez autorów badania 
wykazały jednak, że z faktu, iż przeszukiwanie ewolucyjne jest procesem dynamicz­
nym składającym się z różnych faz, wynika, że optymalne wartości parametrów algo­
rytmu podlegają zmianom w czasie jego działania. Przedstawiony pomysł polega więc 
na dostosowywaniu wartości wag w czasie rozwiązywania problemu przez algorytm 
ewolucyjny.

Rozpatrzmy następującą postać minimalizowanej funkcji celu (dla n ograniczeń): 
n

f = Ya'X. 0)
/=1

gdzie oznacza wartość kary generowaną przez naruszenie /-tego ograniczenia, a a, 
jest podlegającą krokowej adaptacji wagą związaną z /-tym ograniczeniem. Ideę algo­
rytmu krokowej adaptacji wag przedstawia poniższy pseudokod:

Ustaw początkowe wartości wag a, (a więc postać funkcji f);
WHILE nie znaleziono satysfakcjonującego rozwiązania DO

FOR Tp-kolejnych obliczeń funkcji celu DO
Obliczaj przystosowanie według f;

END FOR
Przedefiniuj f i przelicz przystosowanie osobników; 

END WHILE

Zmiana funkcji przystosowania f polega na dodaniu wartości Aa do wag a, tych 
ograniczeń, które są naruszone przez najlepszego osobnika po Tp krokach obejmują­
cych wyznaczenie przystosowania. Mechanizm powoduje więc zwiększenie priorytetu 
tych ograniczeń, które są na danym etapie optymalizacji najtrudniejsze do spełnienia 
(najczęściej łamane), poprzez zwiększenie presji selekcyjnej nałożonej na wymóg 
poprawności osobnika względem tych ograniczeń. Efektywność tego podejścia po­
twierdza słuszność hipotezy (c) mówiącej, że zastosowanie zmiennych wartości wag 
może dać potencjalnie lepsze rezultaty niż w przypadku stałych ich wartości.

Aby rozwiązać problem związany z utykaniem w optimum lokalnym, warunek Ib. 
o rozłączności wszystkich ścieżek zastąpiono zestawem //-warunków (gdzie n - liczba 
połączeń) dotyczących osobno każdej ze ścieżek. Każdy warunek związany jest z 
wymogiem rozłączności pojedynczej ścieżki (nie przecinania się jej z żadną ścieżką). 
Spełnienie tych ograniczeń przez wszystkie ścieżki, a więc zapewnienie rozłączności 
każdej ze ścieżek, jest równoważne spełnieniu warunku Ib. Z ograniczeniami tymi 
związane są modyfikowane w czasie działania algorytmu wagi - mamy więc po jed­
nym współczynniku a., i=l..n dla każdej ze ścieżek, których wartości będą podlegać 
adaptacji.

Wprowadzenie współczynników ctj wymaga określenia nowego sposobu wyzna­
czania wartości kary za przecięcie ścieżek. W celu wyznaczenia nowej wartości kary 
dla danego osobnika określane są wszystkie punkty przecięć ścieżek, a dla każdego 
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punktu wartość kary wyznacza się jako iloczyn współczynników a, przecinających się 
w tym punkcie ścieżek. Kary za poszczególne przecięcia są sumowane, a ostateczna 
wartość zastępuje we wzorze 2. wartość współczynnika k/ (oryginalnie równą liczbie 
przecięć). Określenie sumarycznej kary jako iloczynu współczynników a, przecinają­
cych się ścieżek powoduje szczególne mocne karanie przecięć ścieżek o wysokich 
współczynnikach kar. Nakłada więc presję na wyeliminowanie przecięć między nimi 
na rzecz słabiej karanych przecięć ze ścieżkami o niskiej wartości współczynnika a.

Zgodnie z ideą Eibena i Hemerta wartości wag należy zmieniać co określoną liczbę 
kroków, w tym przypadku zdecydowano się na modyfikację po każdym pokoleniu. 
Wagi a, podlegają modyfikacji pod warunkiem, że nowe pokolenie nie zawiera lep­
szego, tj. niżej karanego rozwiązania, co wskazuje na możliwe utknięcie w lokalnym 
optimum. Algorytm modyfikacji kar przedstawia się następująco:

Ustaw wartości wag ag dla wszystkich ścieżek na 1;
WHILE nie znaleziono satysfakcjonującego rozwiązania DO 

wyznacz nowe pokolenie;
IF nie znaleziono lepszego rozwiązania THEN 

na podstawie najlepszego osobnika - 
- ustal listę przecinających się ścieżek; 
zwiększ wartości wag a, dla przecinających - 
- się ścieżek o 1;

END IF
END WHILE

Mamy więc początkową wartość współczynników a=l co oznacza, że każdy z wa­
runków rozłączności danej ścieżki jest tak samo ważny, oraz jednostkową modyfika­
cję Aa=l. Modyfikowanie wag można porównać do gromadzenia przez algorytm 
wiedzy o strukturze przestrzeni rozwiązań, wykorzystywanej do sprawniejszego roz­
wiązywania problemu. Należy jednak zaznaczyć, że nie następuje tutaj wyznaczenie 
zestawu najlepszych dla danego problemu wag, które czynią go łatwym do rozwiąza­
nia. Przeprowadzone przez Eibena i Hemerta badania polegające na porównaniu 
efektywności algorytmu wykorzystującego mechanizm SAW oraz algorytmu opartego 
o stałe wartości wag ustalone na podstawie ostatecznych wartości wag algorytmu 
SAW, wykazały dużo wyższą efektywność podejścia adaptacyjnego.

Efektywność mechanizmu krokowej adaptacji wag bazuje raczej na wymuszaniu 
ciągłej zmiany punktu skupienia poszukiwań, co prowadzi do niejawnej dekompozycji 
problemu. Algorytm ewolucyjny wzbogacony o ten mechanizm wykazuje właściwości 
eksploracyjne - ewolucja przeprowadza populację przez szereg optimów lokalnych, tj. 
konfiguracji o niewielkiej liczbie przecinających się ścieżek. Przez cały okres zastoju 
związanego z utknięciem w lokalnym optimum następuje zwiększanie wartości 
współczynników kar a, przecinających się ścieżek. Prowadzi to do jego „eksploatacji” 
poprzez wzrost sumarycznej wartości kary dla osobników z taką konfiguracją przeci­
nających się ścieżek i związane z tym obniżenie ich przystosowania. Po osiągnięciu 
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odpowiedniego poziomu wartości współczynników korzystniejsze stają się konfigura­
cje zawierające być może większą liczbę przecięć, lecz nie zawierające przecięć mię­
dzy dotychczas najczęściej karanymi ścieżkami. Następuje ponowna zbieżność algo­
rytmu do kolejnego optimum lokalnego. Skojarzenie funkcjonowania tego mechani­
zmu z eksploatacją złóż związane jest z faktem obniżania stopnia atrakcyjności obsza­
ru - określonego jako przystosowanie osobników - wskutek pozostawania populacji w 
jego obrębie. Po wyczerpaniu złoża populacja rozbiega się w poszukiwaniu nowego, 
w którym ponownie się skupia.

Wadą zastosowanego rozwiązania jest niedokładność określenia „eksploatowane­
go” obszaru przestrzeni rozwiązań. Jest on zdefiniowany jedynie na podstawie zbioru 
przecinających się ścieżek i podlega jednorodnej eksploatacji przez zwiększanie ich 
współczynników kar, niezależnie od faktycznego położenia zbioru osobników jak i 
samego optimum lokalnego. Aby lepiej określić eksploatowany obszar i umożliwić 
jego opuszczenie poprzez serię nieznacznych modyfikacji osobników w kierunku 
prawidłowego rozwiązania, wprowadzono dodatkowy zestaw adaptowanych współ­
czynników (3, związanych z wszystkimi punktami płytki (leżącymi na przecięciach 
linii siatki). Po ich uwzględnieniu wyznaczanie kary dla j-tego przecięcia polega na 
obliczeniu iloczynu współczynników a, przecinających się w danym punkcie ścieżek 
(tak jak w poprzednim przypadku) oraz współczynnika Pj tego punktu. Wartości 
współczynników Pj ustalane i zmieniane są analogicznie do współczynników ah tj. 
początkowo ich wartość wynosi jeden i zwiększana jest o jeden dla punktów, w któ­
rych znajdują się przecięcia (określonych na podstawie najlepszego osobnika po każ­
dym pokoleniu). Podsumowując, wartość kary za j-te przecięcie dana jest -wzorem 5:.

( \

p,- n% a (5)

gdzie Sj przyjmuje wartości indeksów ścieżek przecinających się wj-tym punkcie. 
Sumaryczna wartość kary za wszystkie przecięcia zastępująca we wzorze 2. współ­
czynnik k/ określający liczbę przecięć, dana jest wzorem 6:.

(6)

gdzie j określa kolejne punkty przecięcia dla konfiguracji danego osobnika.
Wyznaczoną w ten sposób ocenę (karę) określa się w dalszej części dokumentu 

jako adaptacyjną, natomiast wyznaczoną w sposób pierwotny (tj. dla kt równego licz­
bę przecięć) jako rzeczywistą. Ocena rzeczywista odpowiada ocenie adaptacyjnej przy 
ustaleniu wartości wag a, oraz p, na jeden.

3.3 Mechanizm funkcjonowania krokowej adaptacji wag
Następujące po sobie etapy zbiegania do optimum lokalnego oraz jego eksploatacji 
najłatwiej prześledzić na wykresie przedstawiającym zmiany wartości nieprzystoso­
wania najlepszego osobnika w kolejnych pokoleniach przedstawione na rysunku 5ab.
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Analizując przebieg z rys.5a. można dostrzec kolejne etapy szybkiego, w przybli­
żeniu kwadratowego, wzrostu oceny najlepszego osobnika - a więc jego kary. Wzro­
sty te są wynikiem zwiększania wartości wag a, i Pi kar za przecięcia wywołanego 
utknięciem w optimum lokalnym. Są to etapy „eksploatacji” optimum, trwającej aż do 
momentu przekroczenia krytycznej wartości wag pozwalającej na ustalenie się innej 
konfiguracji przecięć czemu towarzyszy gwałtowny spadek wartości kary adaptacyj­
nej.

Rysunek 5: Wartość adaptacyjnej (a) oraz rzeczywistej (b) oceny najlepszego osobnika

Porównując przebiegi przedstawiające adaptacyjną i rzeczywistą ocenę można 
zauważyć, że wytrąceniu populacji z optimum lokalnego (spadek wartości kary adap­
tacyjnej) towarzyszy gwałtowny wzrost rzeczywistej kary najlepszego osobnika, 
zwiększa się więc liczba przecięć. Następnie liczba przecięć ulega redukcji i populacja 
zbiega w kierunku kolejnego optimum lokalnego - obserwujemy „schodkowy” spadek 
wartości rzeczywistej kary. Przebieg algorytmu składa się więc faktycznie z trzech 
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powtarzających się naprzemiennie faz: zbiegania do optimum lokalnego (i), jego eks­
ploatacji (ii) oraz ekspansji w poszukiwaniu nowego optimum (iii). Proces ten kończy 
się w momencie znalezienia optimum związanego z konfiguracja pozbawioną przeci­
nających się ścieżek.

Jeszcze jeden typ zachowania pozostawił wyraźnie widoczny ślad na przebiegach z 
rys.óab. Chodzi tutaj o oscylacje rzeczywistej oceny najlepszego osobnika, której 
towarzyszy wzrost kary adaptacyjnej. Odpowiada to sytuacji naprzemiennego ustala­
nia się dwóch lub większej liczby różnych konfiguracji przecinających się ścieżek, 
które kolejno stają się korzystniejsze by następnie wskutek „eksploatacji” ustąpić 
miejsca następnym. Ostatecznie prowadzi to do ustalenia się innej konfiguracji zwią­
zanej z nowym optimum lokalnym.

Rysunek 6: Wartość adaptacyjnej (a) oraz rzeczywistej (b) oceny najlepszego osobnika
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4. Badania
W tej części pracy zawarte są wyniki badań i ich analiza pod kątem efektywności 
funkcjonowania wprowadzonych mechanizmów. Badania dla wszystkich czterech 
problemów przeprowadzono przy ustaleniu następujących wartości podstawowych 
parametrów algorytmu:
• Prawdopodobieństwo mutacji: 0,8
• Prawdopodobieństwo krzyżowania: 0,1
• Liczebność populacji: 100
Oznacza to, że przeciętnie 80 na 100 osobników z puli przejściowej poddawane było 
pojedynczej mutacji, natomiast 5 na 50 wylosowanych par zastępowane było swoimi 
potomkami przy kopiowaniu do puli przejściowej. Jako moment znalezienia rozwią­
zania określono numer pokolenia, do którego należał pierwszy osobnik pozbawiony 
przecięć. W celu wyznaczenia ostatecznej oceny działanie algorytmu kontynuowano 
do momentu uzyskania osobnika o minimalnej długości i liczbie segmentów tworzą­
cych ścieżki, przy ustaleniu maksymalnej siły mutacji s=l w celu praktycznego wy­
eliminowania możliwości „przekroczenia” jednej ze ścieżek nad inną.

4.1 Problem 1
Liczba punktów lutowniczych 16
Liczba połączeń 8
Uwagi:
• położone blisko siebie punkty lutownicze 

utrudniają prowadzenie ścieżek najkrótszą 
drogą

• duża liczba różnych rozwiązań

Pomiary przeprowadzono dla trzech wartości parametru s określającego maksymalną 
siłę mutacji. Dla każdej wartości siły przeprowadzono 30 pomiarów, notując moment 
rozwiązania problemu oraz ocenę znalezionego rozwiązania. Wartości uśredniono 
(śred.) i wyznaczono ich odchylenie standardowe (odch.).

Rysunek 7ab: Problem 1 - przykładowe rozwiązania, w tym najlepsze - 7a
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L-P- s = 10 s = 5 s = 3

1. pokoleń ocena 1. pokoleń ocena 1. pokoleń ocena
1 77 106,6 140 112,5 412 112,4
2 59 108,3 271 106,5 324 106,7
3 195 104,2 99 106,6 184 106,5
4 408 116,8 280 106,7 248 106,6
5 220 114.3 95 112,4 904 110,9
6 107 104,2 186 106,6 174 112,4
7 308 114,8 133 106,6 127 106,7
8 37 100,6 141 106,7 209 106,6
9 49 104,2 53 100,5 270 106,6
10 105 116,5 161 100.6 312 106,7
11 140 106,7 310 110.8 265 106,7
12 102 106,6 165 106,6 201 102,6
13 62 128,5 275 106,6 160 106,5
14 368 108,3 36 100,5 842 106,6
15 248 100,6 40 104,2 576 114,7
16 263 114,8 155 100,6 394 110,8
17 639 106,7 91 100,6 310 107
18 247 114,6 137 120,4 212 102,6
19 60 104,2 68 108,3 341 106,6
20 225 104,2 642 107 57 100,5
21 43 104,2 343 100,5 122 106,6
22 89 108,3 415 120,4 92 106,6
23 160 108,3 279 120,4 237 106,7
24 341 104,2 79 106,6 95 102,6
25 258 108,3 269 106,8 261 100,5
26 276 110,6 350 106,8 44 100,6
27 73 108,5 82 114,7 202 106,6
28 129 120,4 124 106,7 843 107
29 64 104,2 52 100,6 101 106,6
30 149 110,9 135 106,8 520 106,6

śred. 1833 109,1 186,9 107,4 3013 106,6
odch. 136,5 6,2 134,6 5,8 228,0 3,4

Tabela 1: Wyniki dla problemu 1

Można zauważyć, że dla większych (5,10) wartości maksymalnej siły mutacji roz­
wiązanie znajdowane jest przeciętnie prawie dwukrotnie szybciej niż dla małej warto­
ści siły. Wartość s=3 jest więc w tym przypadku zbyt mała aby umożliwić jednorazo­
wą mutację pozwalającą na pozbycie się niepożądanego przecięcia. Wymagana jest w 
tym przypadku sekwencja mutacji, przeprowadzająca przez silnie karane konfiguracje, 
a tym samym mniej prawdopodobna i wymagająca dłuższego działania mechanizmu 
eksploatacji. Dla tej wartości siły algorytm zbieżny jest z kolei do przeciętnie lepiej 
ocenianych rozwiązań i wykazuje się prawie dwukrotnie mniejszym odchyleniem 
standardowym ich oceny. Związane jest to z faktem bardziej prawdopodobnego, a 
przez to częstszego powstawania konfiguracji zawierającej prowadzone naokoło 
ścieżki w przypadku dużych wartości parametru s. Dla małych wartości siły częściej 
powstają rozwiązania zawierające ścieżki prowadzone pomiędzy punktami lutowni­
czymi, a więc krótsze. Mniejsza liczba oraz zbliżona ocena takich konfiguracji tłuma­
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czy mniejszy rozrzut oceny rozwiązań. Analogiczny wpływ wartości parametru s wi­
doczny jest także dla pozostałych problemów.

4.2 Problem 2
Liczba punktów lutowniczych 10
Liczba połączeń 4
Uwagi:
• jedno najprostsze rozwiązanie wymagające 

prowadzenia ścieżki poziomej pomiędzy 
ścieżkami pionowymi

• stosunkowo dużo miejsca pomiędzy ścież­
kami

Rysunek 8ab: Problem 2 - sytuacja wejściowa (8a) i rozwiązanie (8b)

Tabela 2. zawiera wyniki badań przeprowadzonych dla problemu 2 i czterech różnych 
wartości parametru 5. Zestawiono wartości średnie oraz odchylenia standardowe licz­
by pokoleń potrzebnych do znalezienia rozwiązania. Poza jednym przypadkiem 
wszystkie znalezione rozwiązania odpowiadały wzorowi z rys.8b.

Tabela 2: Wyniki dla problemu 2

5= 10 5 = 5 5 = 3 5 = 1

śred. 1040,7 1856,4 2019,1 4398,7
odch. 711,0 1321,9 924,5 2111,2

Także i w tym przypadku widać tendencję do wzrostu liczby pokoleń koniecznych do 
znalezienia rozwiązania wraz ze zmniejszaniem siły mutacji. Jednak nawet dla najniż­
szej możliwej wartości s=l, odpowiadającej dopuszczeniu przesunięć tylko o jedną 
pozycję, algorytm jest w stanie znaleźć prawidłowe rozwiązanie. Jest to możliwe 
dzięki wprowadzeniu kar pozycyjnych i związanych z nimi współczynników fi, zwie­
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lokrotniających karę za przecinanie się ścieżek w konkretnym miejscu. Wymusza to 
ciągłą zmianę punktu przecięcia dwóch ścieżek umożliwiając ich rozdzielenie poprzez 
sekwencję mutacji wyprowadzającą punkt przecięcia poza koniec jednej ze ścieżek.

4.3 Problem 3
Liczba punktów lutowniczych 38
Liczba połączeń 19
Uwagi:
• duża liczba punktów i połączeń

Tabela 3: Wyniki dla problemu 3

Lp. S = 5 s = 10
1. pokoleń ocena 1. pokoleń ocena

1 3706 334,1 575 342,2
2 516 333,7 6073 344,2
3 4995 340,3 894 362,7
4 1447 325,6 915 333,8
5 1444 333,9 5095 358,9
6 2706 327,7 1445 348,6
7 8548 380,5 1305 345,5
8 1592 352,5 1307 356,9
9 3360 325,5 7425 378,3
10 4082 339,9 558 340,2

śred. 3239,6 339,4 2559,2 351,1
odch. 2334,7 16,6 2587,4 13,1

4.4 Problem 4
Liczba punktów lutowniczych 16
Liczba połączeń 6
Uwagi:
• konieczność ciasnego, równoległego prowa­

dzenia połączeń
• jedno najlepsze rozwiązanie, oraz kilka gor­

szych zawierających ścieżki prowadzone na­
około
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Rysunek 9: Problem 4 - najlepsze rozwiązanie

Tabela 4: Wyniki dla problemu 4

S = 5 s = 10
1. pokoleń ocena 1.pokoleń ocena

śred. 4506,4 228,7 3177,4 234,3
odch. 2162,5 4,4 2275,9 20,1

Konieczność ciasnego prowadzenia ścieżek sprawia, że rozwiązanie tego problemu 
bez mechanizmu kar pozycyjnych okazało się praktycznie niemożliwe. Jest to związa­
ne z faktem istnienia tylko jednego najlepszego rozwiązania, pozbawionego nadmia­
rowego miejsca dla wewnętrznych ścieżek. W wyniku większości mutacji związanych 
z przemieszczeniem któregoś z poziomych segmentów powstają konfiguracje zawie­
rające nakładające się fragmenty ścieżek, silnie karane ze względu na sumowanie się 
kar z każdego punktu przecięcia. Mamy więc do czynienia z głębokim optimum glo­
balnym otoczonym wysoką i rozległą barierą silnie karanych rozwiązań. Podobny 
charakter mają także inne lokalne optima przestrzeni poszukiwań, co sprawia, że jest 
to problem szczególnie trudny do rozwiązania tradycyjnymi metodami ewolucyjnymi. 
Uzyskane wyniki wykazują względnie dużą liczbę pokoleń potrzebnych na znalezie­
nie rozwiązania pozbawionego przecięć. Ponadto należy zwrócić uwagę na fakt, iż 
większość ze znalezionych rozwiązań zawiera jedną lub więcej ścieżek prowadzonych 
naokoło, a rozwiązanie optymalne (pokazane na rys. 9.) znajdowane jest zaledwie w 
kilku procentach przypadków.

Porównując problemy 3 i 4 można zauważyć, że rzeczywista trudność zadania nie 
jest prostą funkcją liczby punktów i połączeń, lecz zależy w dużym stopniu od gęsto­
ści ich położenia. Określa ona nadmiar miejsca dla prowadzenia ścieżek, który wpły­
wa na charakter rozkładu funkcji celu. Konieczność gęstego prowadzenie ścieżek od­
powiada przestrzeń poszukiwań o głębokich i ciasnych optimach lokalnych, z czym 
związany jest dłuższy czas „błądzenia” populacji oraz konieczność dłuższej eksploata­
cji znalezionych optimów lokalnych.
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5. Podsumowanie
Przedstawiony w tej pracy algorytm ewolucyjny dostrojono do rozwiązywania jedne­
go szczególnego problemu związanego z szeroko pojętą inżynierią projektową. Pod­
stawowym zagadnieniem było takie sformułowanie problemu, z którym w sposób 
naturalny związany jest zestaw ograniczeń, aby sprowadzić go do zadania optymaliza­
cyjnego możliwego do rozwiązania za pomocą technik ewolucyjnych. Zakres modyfi­
kacji obejmuje wprowadzenie opartej na wiedzy dziedzinowej strukturalnej reprezen­
tacji oraz zestawu operatorów genetycznych, ich współdziałanie w celu ograniczenia 
przestrzeni poszukiwań oraz redukcji liczby twardych ograniczeń, a także wykorzy­
stanie mechanizmu krokowej adaptacji wag w celu zwiększenia możliwości eksplora­
cyjnych. Źródłem tych modyfikacji były sformułowane w wielu pracach wskazówki i 
hipotezy odnośnie problemu spełniania ograniczeń, które zostały zaadaptowane do 
tego zadania. Wykorzystano zarówno metody polegające na zapewnianiu spełnienia 
ograniczeń w oparciu o specjalnie opracowaną reprezentację i zestaw operatorów, jak 
i metody związane z nałożeniem presji selekcyjnej spychającej populację w kierunku 
obszaru poprawnych rozwiązań. Nie są to oczywiście wszystkie możliwości, jednak 
wybrano je ze względu na ich ogólność (karanie), jak i możliwość wykorzystania wie­
dzy dziedzinowej (reprezentacja, operatory, kary pozycyjne). Warto także zwrócić 
uwagę na sposób dostosowania mechanizmu krokowej adaptacji wag do tego proble­
mu. Widać tutaj możliwość analogicznego zastosowania wszędzie tam, gdzie jedno z 
ograniczeń daje się rozbić na zbiór słabszych ograniczeń, z którymi możemy związać 
podlegające adaptacji wagi. Wyniki badań świadczą o potencjalnej opłacalności takie­
go postępowania. Pozwoli ono być może na efektywne rozwiązywanie zadań trady­
cyjnie określanych jako trudne bądź niemożliwe do rozwiązania za pomocą technik 
ewolucyjnych.
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Streszczenie

Praca poświęcona jest tematyce automatycznego planowania i harmonogramowania. Dokona­
no uporządkowania stosowanych terminów oraz przeglądu stosowanych metod. Na zakończe­
nie omówiono przykład zastosowania algorytmu genetycznego do zadania planowania dyżu­
rów personelu w rzeczywistym szpitalu.

1. Wstęp
Niniejszy rozdział stanowi wprowadzenie do problematyki automatycznego planowa­
nia i harmonogramowania. Zawiera definicje tych pojęć oraz krótkie opisy najczęściej 
badanych problemów.

1.1 Co to jest planowanie?
W języku angielskim istnieje kilka słów oznaczających „plan” i „planowanie”. Rze­
czownik plan odpowiada polskiemu rzeczownikowi „plan”, oznaczającemu „program 
zadań i prac (...), które mają być wykonane w określonym czasie; porządek, rozkład 
zajęć lub czynności przewidzianych do wykonania” (wg Małego Słownika Języka 
Polskiego, PWN 1993). Analogicznie angielski czasownik plan odpowiada polskiemu 
„planować” - układać plany. Oprócz tego w języku angielskim występuje wyraz Sche­
dule (zarówno w znaczeniu czasownikowym jak i rzeczownikowym), który jest naj­
bliższy polskiemu rzeczownikowi „harmonogram” - „(...) opis obrazujący kolejność i 
czas trwania poszczególnych czynności w ogólnym planie pracy” (ibid.) - oraz cza­
sownikowi „harmonogramować” - układać harmonogramy. Oprócz tego język angiel­
ski dysponuje „specjalnym” rzeczownikiem timetable, który oznacza plan zajęć lub 
rozkład jazdy.

W najbardziej ogólnym przypadku harmonogramowanie (scheduling) jest proble­
mem grupowania zasobów (lub po prostu zdarzeń) w pewnych punktach czasowych 
(nazywanych w tej pracy terminami) w danym okresie czasowym, aby osiągnąć pe­
wien określony cel (cele) i/lub spełnić określone założenia (ograniczenia). Układanie
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planów, czy też krócej planowanie (Jimetabling), jest szczególnym przypadkiem har- 
monogramowania (Newall 1999).

1.2 Układanie planów szkolnych i jego warianty
Jednym z najpopularniejszych problemów planowania jest układanie planów dla szkół 
i uczelni. Układanie planu szkolnego jest problemem takiego ustalenia sekwencji 
spotkań studentów z nauczycielami w określonym przedziale czasowym, aby były 
spełnione różnego typu ograniczenia (Schaerf 1995).

Człowiekowi ułożenie planu, w zależności od skali jego złożoności, zajmuje zwy­
kle od kilku godzin do kilku dni. Co więcej, tak skonstruowany plan może być niedo­
skonały pod pewnymi względami, np. uczeń ma między kolejnymi zajęciami wiele 
długich przerw. Z tych powodów zwrócono uwagę na możliwość automatyzacji pro­
cesu układania planów. Pierwsze prace z tej dziedziny powstały w latach sześćdzie­
siątych ubiegłego stulecia (za Schaerf 1995). Od tego czasu powstało i zostało wdro­
żonych wiele aplikacji, efektywnie rozwiązujących problem układania planów.
W literaturze pojawia się wiele wariantów problemu układania planu, różniących się 
zarówno typem szkoły (podstawowa, średnia, wyższa), jak i typem ograniczeń. 
A. Schaerf (l995) dzieli problemy układania planów na trzy klasy:

• Układanie planu lekcji (school timetabling) - ułożenie tygodniowego planu dla 
wszystkich zajęć w szkole tak, aby żaden nauczyciel nie prowadził dwóch zajęć 
w tym samym czasie i na odwrót,

• Układanie planu zajęć na uczelni (course timetabling) - ułożenie tygodniowego 
planu dla wszystkich kursów na uczelni tak, aby uniknąć nakładania się zajęć, 
na które uczęszcza ten sam podzbiór studentów,

• Układanie planu egzaminów (examination timetabling) - ułożenie planu egza­
minów dla zbioru kursów na wyższej uczelni tak, aby uniknąć nakładania się 
egzaminów z przedmiotów, na które uczęszcza ten sam podzbiór studentów.

Blisko powiązany z układaniem planu zajęć jest tzw. podproblem grupowania. Na 
niektórych uczelniach wyższych pewne zajęcia są powtarzane częściej niż raz w tygo­
dniu. W szczególności są to zajęcia wspólne dla dużej liczby studentów różnych wy­
działów (kierunków, specjalności) podzielonych na grupy. Załóżmy, że specjalność Si 
obejmuje wykłady W) i W2, a specjalność S2 kursy Wt i W3. Dodatkowo załóżmy, że 
wykład kursu W2 odbywa się w punkcie czasowym p, a wykład W3 w punkcie q. W 
tym przypadku wykład W) nie może się odbywać ani o czasie p ani q. Jeżeli jednak 
studenci specjalności Si i S2 zostaną podzieleni na dwie grupy, to jedna będzie mogła 
uczęszczać na wykład W, o czasie p a druga o czasie q. Problem podziału studentów 
na grupy przy ustalonym planie zajęć w celu minimalizacji liczby konfliktów nazywa­
ny jest właśnie podproblemem grupowania {grouping subproblem, student sectioning) 
(Schaerf 1995).
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1.3 Planowanie a służba zdrowia
Planowanie personelu {employee scheduling) jest problemem bardzo podobnym do 
układania planów szkolnych. Popularne są tu modele związane ze służbą zdrowia - 
planowanie dyżurów lekarzy różnych specjalności, pracy pielęgniarek i personelu 
technicznego. W tych przypadkach chodzi o ułożenie planu tak, żeby wszystkie termi­
ny w pewnym okresie czasowym (najczęściej w ciągu miesiąca) były obsadzone pra­
cownikami w określony sposób, przy jednoczesnym zapewnieniu równomiernego 
obciążenia pracowników pracą. Opisywany w tej pracy problem jest wariantem pro­
blemu planowania personelu w służbie zdrowia. Oprócz planowania personelu, w 
służbie zdrowia występują również problemy harmonogramowania zadań dla oddzia­
łów intensywnej opieki medycznej, planu operacji chirurgicznych oraz działań specja­
listycznych jednostek diagnostycznych (laboratoriów, ultrasonografów itp.). Przykła­
dy zadań planowania i harmonogramowania w służbie zdrowia można znaleźć w 
(Spyropoulos 2000; Marinagi, Spyropoulos, Papatheodorou i Kokkotos 2000; Oddi i 
Cesta 2000; Valouxis i Housos 2000).

1.4 Wybrane problemy harmonogramowania
Artykuł ten dotyczy głównie problemów układania planów, lecz nie należy zapomi­
nać, że analogiczne metody rozwiązań stosuje się także w zadaniach harmonogramo­
wania. Poniżej opisano kilka popularnych problemów harmonogramowania.

Harmonogramowanie zadań w środowiskach przetwarzania równoległego
Problem ten dotyczy przydziału zadań (procesów) do procesorów w środowisku 
przetwarzania równoległego. System multiprocesorowy jest reprezentowany przez 
nieskierowany, nieważony graf, zwany grafem systemu {system graph). Węzeł grafu 
systemu reprezentuje procesor komputera równoległego w architekturze MIMD, wraz 
z lokalną pamięcią. Krawędzie oznaczają dwukierunkowe kanały komunikacyjne po­
między procesorami i opisują topologię systemu. Zwykle zakłada się, że procesory 
mają tę samą moc obliczeniową, a komunikacja przez kanały nie zużywa czasu proce­
sora (procesorów).

Program równoległy jest reprezentowany przez skierowany acykliczny graf ważo­
ny, zwany grafem sekwencji zadań (precedence task graph) lub grafem programu. 
Węzły w tym grafie reprezentują zadania (procesy) elementarne, które są wykonywa­
ne w kolejności opisanej przez graf. Wagi węzłów oznaczają czas przetwarzania każ­
dego z zadań na jednym procesorze systemu multiprocesorowego, zaś wagi krawędzi 
- czas komunikacji między zadaniami, jeśli zadania wykonują się w sąsiednich proce­
sorach (jeśli zadania wykonują się w tym samym procesorze, to czas komunikacji 
między nimi wynosi 0). Celem harmonogramowania jest takie przydzielenie zadań do 
procesorów, aby została zachowana właściwa kolejność wykonywania zadań oraz 
całkowity czas wykonania programu był jak najmniejszy (Święcicka, Seredyński i 
Jażdżyk 2001).
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Problemy typu job-shop scheduling
Problemy typu job-schop scheduling (JSS) są ważne z praktycznego punktu widzenia. 
W ogólnym przypadku dana jest pewna liczba prac (jobs) do wykonania na pewnej 
liczbie maszyn (często podawany jest przykład obróbki części w fabryce samocho­
dów). Każda z prac składa się z czynności (tasks) i poszczególne czynności muszą być 
wykonywane przez odpowiednie maszyny. W danej chwili każda maszyna może ob­
rabiać tylko jedną część i żadna część nie może być obrabiana przez dwie maszyny 
jednocześnie. Zadanie polega na znalezieniu harmonogramu czynności minimalizują­
cego zadane kryterium (np. całkowity czas pracy maszyn). W ogólnej postaci proble­
mu JSS kolejność wykonywanych czynności jest istotna, w odróżnieniu od problemu 
open-schop scheduling (OSS), gdzie może być dowolna. Najbardziej złożonym przy­
padkiem jest harmonogramów anie dynamiczne {dynamie scheduling), zwane też czę­
sto reharmonogramowaniem (rescheduling), gdzie w czasie pracy maszyn mogą po­
jawiać się dodatkowe czynności do wykonania oraz zadany jest czas, w którym należy 
zrealizować daną czynność. W zależności od tego, czy zmiany pojawiają się w ustalo­
nych chwilach, czy też losowo, mamy do czynienia z reharmonogramowaniem deter­
ministycznym bądź stochastycznym. Jako, że teoretycznie proces reharmonogramo- 
wania może trwać w nieskończoność (gdy ciągle pojawiają się nowe czynności do 
wykonania), stosuje się inne niż w przypadku problemów OSS i JSS kryteria oceny 
jakości rozwiązania. Wszystkie opisane wyżej problemy są NP-trudne (Fang, Ross i 
Corne 1993; Fang, Ross i Corne 1994).

Harmonogramowanie łapania kurczaków
Zagadnienie harmonogramowania łapania kurczaków {chicken catching scheduling) 
zostało opracowane na podstawie rzeczywistego problemu szkockiego przedsiębior­
stwa drobiarskiego. Przedsiębiorstwo ma kilka fabryk (o danej wydajności), z których 
każda dysponuje pewną liczbą ciężarówek określonej (często różnej) pojemności wraz 
z kierowcami oraz pewną liczbą drużyn „łapaczy”. Drużyny łapaczy mogą pracować 
na pół lub pełny etat na jednej z trzech zmian i mają określoną wydajność łapania. 
Podobnie określany jest maksymalny czas pracy kierowców. Zadanie polega na takim 
zaplanowaniu pracy łapaczy i kierowców, poruszających się między fabrykami a po­
łożonymi w różnych miejscach farmami, aby zapewnić ciągłą pracę fabryk. Jednocze­
śnie muszą być spełnione różnego typu ograniczenia (kierowcy nie mogą zbyt długo 
siedzieć za kierownicą bez przerwy, ptaki nie mogą zbyt długo przebywać w klatkach 
transportowych, należy unikać bezczynności łapaczy i kierowców itp.) (Hart, Ross i 
Nelson 1998; Hart, Ross i Nelson 1998).

1.5 Podejścia do problemu i do rozwiązania
Jeżeli układanie ma na celu znalezienie jakiegokolwiek planu spełniającego wszystkie 
zdefiniowane ograniczenia, problem jest wyrażony jako problem poszukiwania (se- 
arch problem). Jeżeli jednak poszukujemy planu, który spełnia wszystkie silne ograni­
czenia (czyli takie, które muszą być spełnione, aby plan był akceptowalny) oraz mini­
malizuje (lub maksymalizuje) funkcję celu, zawierającą ograniczenia słabe, problem 
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wyrażony jest jako problem optymalizacji (optimalization problem). W obu przypad­
kach definiuje się problem podstawowy (underlying problem), który jest problemem 
zawyrokowania, czy istnieje rozwiązanie (w przypadku problemu poszukiwania) lub 
czy istnieje rozwiązanie, dla którego funkcja celu osiąga pewną założoną wartość (w 
przypadku problemu optymalizacji). Zwykle problem podstawowy jest NP-zupełny, 
tak więc idealne rozwiązanie może być znalezione tylko w przypadkach o niewielkich 
rozmiarach (Schaerf 1995).
Wszystkie podejścia do rozwiązania opierają się na pomyśle, aby najpierw umieścić 
na planie zajęcia obłożone najsilniejszymi ograniczeniami, jednak różnią się rozumie­
niem pojęcia „najsilniejsze ograniczenia”. Najprostsze podejście do rozwiązania imi­
tuje sposób rozumowania człowieka - bezpośrednią heurystykę (direct heuristics), 
opartą na kolejnych przyrostach (successive augmentation). Człowiek układa plan 
kolejno dodając jedne zajęcia po drugich, aż wypełni nimi cały plan. Historycznie, 
rozwiązania oparte na tym podejściu powstały najwcześniej. Potem zaczęto stosować 
bardziej ogólne metody, takie jak redukcja do dobrze poznanego problemu kolorowa­
nia grafu. Najpóźniej zaczęto stosować metaheurezy, np. przeszukiwanie tabu, symu­
lowane wyżarzanie czy algorytmy genetyczne (Schaerf 1995).

1.6 Układanie automatyczne a interaktywne
Opinie w kwestii, czy układanie planów może być w pełni automatyczne, różnią się z 
dwóch powodów z dwóch powodów: po pierwsze, czasem trudno wyjaśnić w sposób 
zrozumiały dla programu komputerowego, dlaczego jeden plan jest lepszy od innego; 
po drugie, ponieważ zwykle przestrzeń poszukiwań jest bardzo duża, interwencja 
człowieka może pchnąć poszukiwania we właściwym (lub choćby tylko obiecującym) 
kierunku, którego system mógłby w ogóle nie zbadać, lub mógłby go zbadać po dłu­
gim czasie. Powyższe argumenty przemawiają za budową systemów, które przynajm­
niej pozwalają manipulować swoim wyjściem. Niektóre systemy wymagają częstszej i 
dalej idącej interwencji człowieka, i nazywane są interaktywnymi (lub półautomatycz­
nymi). Ich przeciwieństwem są systemy automatyczne (batch), które działają bez inge­
rencji ze strony człowieka (Schaerf 1995).

2. Modele stosowane w planowaniu
Poniższy rozdział zawiera opis ograniczeń i mierników jakości stosowanych w pro­
blemach planowania oraz matematyczną postać przykładowego problemu typu klasa- 
nauczyciel.

2.1 Możliwe ograniczenia i mierniki jakości w problemach planowania
Układanie planu zajęć na uczelni polega na przypisaniu zbioru wykładów i innych 
form zajęć do pewnej liczby miejsc (sal) i przedziałów czasowych. Podstawową róż­
nicą między planem zajęć na uczelni a planem lekcji w szkołach podstawowych i 
średnich jest fakt, że zajęcia na uczelni mają często przypisane te same zbiory stu­
dentów, podczas gdy zbiory uczniów, przypisanych do lekcji w szkole są prawie zaw­
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sze rozłączne. Jeżeli dwa wykłady (lub inne formy zajęć) dzielą ten sam zbiór stu­
dentów, to nie mogą odbywać się w tym samym czasie. Jest to tzw. ograniczenie silne, 
czyli takie, które musi być spełnione aby plan był akceptowalny, w odróżnieniu od 
ograniczeń słabych (soft constraints), takich jak np. zapewnienie odpowiednio długiej 
przerwy między zajęciami na posiłek lub dojazdy, których złamanie nie pociąga za 
sobą takich konsekwencji. Plan nazywany jest osiągalnym (feasible'), gdy spełnione są 
dla niego wszystkie silne ograniczenia. Ważną rolę w przypadku zajęć na uczelni od­
grywa wielkość, dostępność i wyposażenie sal wykładowych (laboratoriów itp.). Czę­
sto też muszą być wzięte pod uwagę wzajemne relacje między kursami. Warianty tego 
problemu uwzględniają również zajęcia, w których uczestniczy więcej niż jedna grupa 
studentów, niedostępność określonych sal w pewnych terminach, przypisanie z góry 
zajęć do sal i (lub) godzin, uwzględnienie w planie przerw (na dojazdy, posiłki itp.) 
oraz układanie planów dla zajęć o różnym czasie trwania. Miarą jakości planu może 
być jego zwartość (compadness). Plan jest zwarty z punktu widzenia nauczyciela, 
jeżeli poszczególne jego zajęcia są pogrupowane razem tak bardzo, jak to jest możli­
we. Podobnie można zdefiniować zwartość z punktu widzenia ucznia (studenta). Od­
wrotną do zwartości miarą jest rozrzucenie (distribution). Jeżeli jakieś zajęcia odby­
wają się pięć razy w tygodniu (np. języki, matematyka), to niepożądane jest, aby 
wszystkie zajęcia danego przedmiotu odbywały się w tym samym dniu. Odległość 
między zajęciami z danego przedmiotu to właśnie rozrzucenie. Model zwartości i 
rozrzucenia wraz z rozszerzonym modelem ograniczeń silnych można znaleźć w 
(Drexl i Salewski 1997). Zarówno zakres problemów branych pod uwagę podczas 
układania planu, jak rozróżnienie, które z wynikających z nich ograniczeń są silne, a 
które słabe zależy od specyfiki uczelni, dla której plan jest układany.

2.2 Postać matematyczna problemu układania planu lekcji
Poniższy model dotyczy „klasycznego” modelu klasa-nauczyciel w układaniu planów 
lekcji (słowo „klasa” występuje tu w znaczeniu grupy ludzi, a nie sali). Mamy dane m 
klas ci,..., cm, n nauczycieli t/,..., t„ oraz p terminów 1,..., p. Dodatkowo daną mamy 
macierz nieujemnych liczb całkowitych Rmxn, zwaną macierzą wymagań (reąurie- 
ments matrix\ gdzie r^ jest ilością lekcji, jakie daje nauczyciel tj klasie c,. Problem 
polega na przypisaniu lekcji do terminów tak, aby żadna klasa i żaden nauczyciel nie 
uczestniczyli jednocześnie w więcej niż jednej lekcji. Postać matematyczna tego pro­
blemu przedstawia się następująco (de Werra 1997a):

znaleźć Xgk (i= 1,..., nr,j = 1,..., n; k = \,...,p)

takie, że ^xijk=rij
4=1

(i = 1,..., nr,j = 1,..., ń), (1)

IXś 1
7=1

(/ = 1,..., m;k =p), (2)
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ni

^jXijk (j = 1,..., n; k = 1,...,/>),
/=i

Xyi = 0 1ubl (z = 1,..., m;j = 1,..., n; k = \,...,p), (4)

gdzie Xijk = 1 gdy klasa c, i nauczyciel tj spotykają się w terminie k, w przeciwnym 
przypadku Xjk = 0.

Założenie (1) daje pewność, że każdy nauczyciel ma z każdą klasą pewną określo­
ną liczbę lekcji. Założenie (2) daje pewność, że każdy nauczyciel ma co najwyżej 
jedną lekcję w każdym terminie. Założenie (3) zapewnia to samo w stosunku do klasy. 
Dowiedziono, że istnieje rozwiązanie powyższego problemu, pod warunkiem, że ża­
den nauczyciel ani żadna klasa nie mają więcej niżp lekcji.

ni

(5) 
/=!
n

^r<j-P {i=\,...,m). (6)
7=1

Większość teoretycznych rozwiązań i twierdzeń dotyczących powyższego proble­
mu wyprowadzono, korzystając z redukcji instancji problemu do grafu. Szczegóły 
tego podejścia można znaleźć w rozdziale 3.4.

2.3 Problem układania planów lekcji jako zadanie optymalizacji
Problem opisany w rozdziale 2.2 jest problemem poszukiwania, którego rozwiązaniem 
jest każdy osiągalny plan. W rzeczywistości pewien osiągalny plan może być lepszy 
niż inne i celem jest znalezienie optymalnego. Takie podejście zmusza nas do sfor­
mułowania problemu planowania jako zadania optymalizacji z funkcją celu, którą 
będziemy minimalizować (lub maksymalizować).
Najprostsze i najstarsze historycznie jest podejście Jungingera. Postuluje on dodanie 
do problemu poszukiwania następującej funkcji celu

ni n p

minS Z (7)
<=l j=\ k=\

gdzie d,lk jest przypisane do terminów k, w których lekcja nauczyciela tj z klasą c, jest 
mniej pożądana (Schaerf 1995).

W (Colorni, Dorigo i Maniezzo 1990a) zaproponowano bardziej złożoną funkcję 
celu, uwzględniającą kilka aspektów ułożonego planu. Funkcja taka brała pod uwagę 
następujące wielkości (ułożone według zmniejszającej się wagi): koszt dydaktyczny 
(np. rozrzucenie wykładów po różnych dniach tygodnia), koszt organizacyjny (np. 
posiadania nauczycieli zastępczych „w zapasie”) i koszt personalny (np. konkretny 
dzień wolny dla danego nauczyciela). Jeszcze inne podejście opisane jest w (Ross, 
Corne i Fang 1994). Autorzy z każdym złamanym ograniczeniem wiążą określoną 
karę (np. za to, że nauczyciel musi nauczać w terminie, w którym jest niedostępny).
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3. Przegląd metod automatycznego planowania
Rozdział ten zawiera krótki przegląd metod automatycznego planowania opisanych w 
ciągu ostatnich dziesięciu lat.

3.1 Metody heurystyczne
Bezpośrednie heurystyki wypełniają plan, wstawiając do niego po jednym zdarzeniu 
(wykładzie, grupie wykładów, egzaminie itd. - w zależności od wariantu problemu) 
tak długo, aż nie pojawi się żaden konflikt. Od tego momentu zamienia się zdarzenia 
miejscami (lub usuwa się je z planu) tak, aby znalazło się miejsce dla innych (Schaerf 
1995).

Najprostszym podejściem heurystycznym w układaniu planów jest metoda porząd­
kowa (seąuential method), której podstawą jest pewna określona strategia porządko­
wania zdarzeń {event seąuencing strategy). Metoda ta używa heurezy do określenia, 
jak trudne do zaplanowania byłoby rozważane zdarzenie, aby można było ułożyć zda­
rzenia w kolejności malejącej trudności. Oprócz tego podobnej strategii można użyć 
do ułożenia w kolejności dostępnych terminów.

Heurystyczna metoda z nawrotami (heuristic backtracking method) przedstawiona 
np. w (Burkę, Newall i Weare 1998) jest typową metodą porządkową, zastosowaną do 
testowego problemu układania planu egzaminów. Autorzy proponują trzy strategie 
porządkowania zdarzeń: largest degree first, gdzie jako pierwsze są umieszczane na 
planie zdarzenia z największą liczbą zdarzeń kolidujących, largest colour degree first, 
w której w pierwszej kolejności są umieszczane na planie zdarzenia kolidujące z naj­
większą liczbą zdarzeń już zaplanowanych, oraz least saturation degree firs), gdzie na 
początku planowane są zdarzenia z najmniejszą liczbą dostępnych w danym momen­
cie możliwych terminów. Po wybraniu strategii porządkowania w każdej iteracji algo­
rytm umieszcza pierwsze w kolejności zdarzenie na planie w takim terminie, aby 
wartość funkcji celu była jak najmniejsza. W ostatnich dwóch strategiach w przypad­
ku, gdy takich terminów jest wiele, strategia largest degree first jest używana do roz­
strzygnięcia konfliktów. W przypadku, gdy konflikty nadal występują, wybierany jest 
najwcześniejszy termin. (Come i Ross 1995) nazywają to strategią „first-fit”, nato­
miast w strategii „best-fit” wybierany jest najwcześniejszy termin, do którego nie 
przypisano jeszcze żadnych zdarzeń. W tej samej pracy proponowany jest także loso­
wy wybór terminu ze zbioru konfliktów.

Jeżeli nie ma możliwych terminów, należy usunąć kilka (w szczególności jedno) 
zdarzeń z planu. Każdy z terminów (nie tylko tych z przypisanymi zdarzeniami) jest 
badany pod kątem przynależności do jednej z dwóch grup:
a. Zdarzenie nie może być zaplanowane w tym terminie, nawet jeżeli nie byłoby koli­

zji z innymi zdarzeniami w tym lub innych terminach.
b. Zdarzenie nie może być zaplanowane w tym terminie, o ile z planu nie zostanie 

usunięta pewna liczba zdarzeń.
W przypadku a) termin jest odrzucany. Z terminów, należących do grupy b) wybiera­
ny jest ten, który ma najmniejszy koszt (czyli zaplanowanie zdarzenia w tym terminie 
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wiąże się z usunięciem z planu najmniejszej liczby innych zdarzeń). Dodatkowo ist­
nieje mechanizm zapobiegający tworzeniu się pętli bez końca. Polega on na tym, że 
jeżeli zaplanowanie zdarzenia e/ spowodowało usunięcie zdarzenia e2 z terminu p, to 
taka operacja nie może zostać wykonana po raz drugi (ten termin dla zaplanowania 
zdarzenia e, nie jest dłużej brany pod uwagę).

Metody porządkowe mają pewną wadę - dają tylko jedno rozwiązanie, co może 
oznaczać, że istnieje inne, równie dobre lub nawet lepsze. Aby je znaleźć można 
zmieniać strategie porządkowania w kolejnych przebiegach algorytmu lub wprowa­
dzić do czysto heurystycznej metody elementy niedeterministyczne. W (Burkę, Ne- 
wall, Weare 1998) zaproponowano dwie metody wyboru zdarzenia do zaplanowania: 
selekcję turniejową (tournament selection), gdzie generowany jest losowy podzbiór o 
określonej wielkości zbioru jeszcze nie zaplanowanych zdarzeń, a następnie stosuje 
się heurystykę do wybrania „najlepszego” (pierwszego w kolejności) zdarzenia z tego 
podzbioru, oraz selekcję progową {bios selection), gdzie zdarzenia są układane zgod­
nie ze strategią porządkowania, a następnie losowo wybierane jest jedno z pewnej 
liczby najlepszych. Dalsza część algorytmu pozostaje bez zmian. Autorzy wykazali 
wyższość metod łączących heurystyki z elementami losowymi nad metodami czysto 
heurystycznymi oraz podejściem z całkowicie losową strategią porządkowania. Cho­
ciaż heurystyczne metody niedeterministyczne powodują relatywnie małą poprawę 
funkcji celu (do 25%) w stosunku do metod czysto heurystycznych i są bardziej cza­
sochłonne, to autorzy podkreślają, że rozwiązania były szeroko rozrzucone po dużej 
przestrzeni i metody te mogą stanowić dobry kompromis między technikami porząd­
kowymi a bardziej skomplikowanymi i czasochłonnymi podejściami, takimi jak algo­
rytmy genetyczne czy metody przeszukiwania lokalnego.

We wspomnianej wyżej pracy (Corne i Ross 1995) opisują nieco inne podejście. 
Rozróżniają oni dwa rodzaje algorytmów, różniących się strategią wyboru terminu, do 
którego zostanie przypisane zdarzenie, spośród terminów spełniających ograniczenia 
silne i/lub słabe (rozumiane tak, jak to opisano w rozdziale 2.1). W algorytmach „za­
chłannych" {„greedy") wybór terminu odbywa się zgodnie z którąś z wymienionych 
strategii (first-fit, next-fit bądź losowo) oraz „glodnawe” {„peckish”), podobne do 
opisanej wyżej selekcji turniejowej, gdzie ze zbioru wszystkich terminów losowana 
jest pewna ich liczba k i wybierany jest ten, w którym zaplanowanie zdarzenia spowo­
duje najmniej konfliktów. Liczba ta została nazwana zachłannością" („greedness”) 
algorytmu. Dla k=\ wybór jest całkowicie losowy, gdy k zbliża się do liczby wszyst­
kich możliwych terminów, algorytm staje się zachłanny. Dodatkowo algorytmy po­
dzielono na jednorodne {uniform), gdzie brane są pod uwagę zarówno silne, jak i słabe 
ograniczenia, i osiągalne (feasible), gdzie słabe ograniczenia są pomijane. Autorzy 
proponują wymienione algorytmy jako sposoby inicjalizacji populacji dla metod po­
szukiwania opartych o populacje, takich jak algorytmy genetyczne czy niektóre meto­
dy przeszukiwania lokalnego.

Inną metodą w której wykorzystywane są heurystyki jest metoda badania skupisk 
{cluster method). Polega ona na grupowaniu zdarzeń w skupiska, w których zdarzenia 
nie wchodzą w konflikty z innymi zdarzeniami w ramach skupiska. Głównymi pro­
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blemami w tym podejściu jest właściwe przypisanie zdarzeń do skupisk i skupisk do 
terminów (najczęściej dąży się do minimalizacji liczby konfliktów między sąsiednimi 
w sensie terminów skupiskami). Podejście to ma poważne ograniczenia, gdyż po 
ustaleniu zawartości skupisk ułożenie dobrego jakościowo planu może być niemożli­
we. Przegląd metod opartych o skupiska można znaleźć w (Newall 1999).

3.2 Metody przeszukiwania lokalnego (local search techniques[
Jest to grupa metod ogólnego zastosowania do rozwiązywania zadań optymalizacji. 
Wszystkie bazują na pojęciu sąsiada. Jeżeli rozważymy zadanie optymalizacji z prze­
strzenią rozwiązań 5 oraz funkcją celu/, którą będziemy minimalizować, to funkcja N, 
której postać jest zależna od struktury problemu, przypisuje do każdego rozwiązania s 
e S jego sąsiedztwo N(s) ę S. Każde rozwiązanie 5 ’ e N(s) jest nazywane sąsiadem 5.

Algorytmy przeszukiwania lokalnego rozpoczynają działanie od pewnego począt­
kowego rozwiązania so, które jest ustalane losowo, lub otrzymywane w wyniku zasto­
sowania innych metod. Następnie wchodzą w pętlę, w której poruszają się po prze­
strzeni rozwiązań, przechodząc od rozwiązania do jednego z jego sąsiadów. Modyfi­
kację transformującą rozwiązanie w jeden z jego sąsiadów nazywamy ruchem (move). 
Jedną z metod przeszukiwania lokalnego jest metoda steepest descendent, która anali­
zuje wszystkie możliwe ruchy i wybiera ten, dla którego wartość funkcji celu jest 
najmniejsza. Kandydat jest akceptowany tylko w przypadku, gdy wartość funkcji celu 
jest mniejsza niż poprzednia. Algorytm zatrzymuje się, gdy funkcja celu osiągnie mi­
nimum lokalne. Metoda ta wymaga przeszukania całego sąsiedztwa bieżącego rozwią­
zania, w odróżnieniu od metody randomized descendent, która wybiera losowo sąsia­
da i przyjmuje go za nowe rozwiązanie, jeśli zmniejsza on wartość funkcji celu. Jeśli 
tak nie jest, losowany jest kolejny sąsiad. Algorytm kończy się po ustalonej liczbie 
iteracji bez zmiany wartości funkcji celu. Podobnie jak technika steepest descendent 
zatrzymuje się po osiągnięciu lokalnego minimum. Modyfikacją metody randomized 
descendent jest algorytm randomized non-ascendent, (RNA), który akceptuje losowe­
go sąsiada, jeśli wartość funkcji celu jest mniejsza lub równa bieżącej. Ten algorytm 
również kończy się po ustalonej liczbie iteracji bez zmniejszenia wartości funkcji celu. 
Metoda ta może być ulepszona poprzez wprowadzenie ruchów bocznych (sideways 
mores) (Selman, Levesque i Mitchell 1992, za Schaerf 1996), dzięki czemu może 
poruszać się w kierunku minimum przezplaetau (płaskie obszary).
Metoda steepest non-ascendent łączy elementy metody steepest descendent z ruchami 
bocznymi. Wybór między dwoma ruchami jednakowo minimalizującymi funkcję celu 
jest losowy.

W przeszukiwanie tabu (tabu search') algorytm przegląda cały zbiór sąsiadów bie­
żącego rozwiązania. Następnie przyjmuje za bieżące rozwiązanie ten element zbioru, 
dla którego wartość funkcji celu jest najmniejsza, niezależnie od tego, czy wartość ta 
jest lepsza czy gorsza od poprzedniej. Aby uniknąć cykli istnieje tzw. lista tabu (tabu 
list), która jest listą ruchów, których nie wolno wykonać. Lista ta jest zbudowana na 
zasadzie tonącego stosu (zawiera określoną liczbę poprzednich ruchów; kiedy kolejny 
ruch jest dodawany do listy, najstarszy jest usuwany). Oprócz tego istnieje mecha­
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nizm, który pozwala ominąć tabu -jeżeli ruch niesie za sobą znaczną poprawę funkcji 
celu, to pomija się jego status tabu i nowe rozwiązanie jest akceptowane. Precyzyjniej 
rzecz ujmując, definiowana jest funkcja aspiracji {aspiration functiori) A, która dla 
każdej wartości v funkcji celu wyznacza wartość v’, która reprezentuje wartość, którą 
algorytm chciałby osiągnąć po v. Jeżeli przyjmiemy bieżące rozwiązanie s, funkcję 
celu /i rozwiązanie sąsiednie s’, uzyskane przez wykonanie ruchu m, to jeżeli fs ’) < 
^(7(5)), to s’ zostanie zaakceptowane, nawet jeżeli w jest na liście tabu. Algorytm 
kończy się po określonej liczbie iteracji bez poprawy wartości funkcji celu lub gdy 
bieżące rozwiązanie osiągnie określoną wartość funkcji celu (Schaerf 1996; Schaerf 
1995; Weare 1995;Newall 1999).
Symulowane wyżarzanie (simulated annealing) zawsze akceptuje wybranego losowo 
sąsiada, jeżeli wartość funkcji celu jest dla niego równa lub lepsza od bieżącej. Jeżeli 
tak nie jest, to nowe rozwiązanie jest akceptowane z prawdopodobieństwem równym 
e'AI, gdzie A jest różnicą między wartością funkcji celu dla nowego i bieżącego roz­
wiązania, a T parametrem, zwanym temperaturą. Na początku działania algorytmu 
temperatura jest ustawiana na odpowiednio wysoką wartość T„. Po określonej liczbie 
iteracji temperatura jest obniżana o stopień schładzania {cooling ratę) a, taki że 
Tn-a*Tn-i, gdzie 0 < a < 1. Algorytm kończy się, gdy temperatura osiągnie wartość 
bliską 0 i nie będą już właściwie akceptowane żadne zmiany (system jest „zamrożony) 
(Schaerf 1996; Schaerf 1995; Ross i Corne 1995; Michalewicz 1999; Weare 1995; 
Newall 1999; Thompson i Dowsland 1998). W (Thompson i Dowsland 1998) autorzy 
zastosowali symulowane wyżarzanie do rozwiązania problemu układania planu egza­
minów. Jako że zarówno stopień schładzania, jak i postać funkcji sąsiedztwa mają 
duży wpływ na efektywność i jakość rozwiązania w metodach przeszukiwania lokal­
nego, zaproponowano rozwiązanie problemu w dwóch fazach - pierwsza daje plan 
osiągalny, w drugiej z przestrzeni rozwiązań usuwane są wszystkie nieosiągalne roz­
wiązania (co pozwala na jej zawężenie), a pozostała przestrzeń jest przeszukiwana w 
celu znalezienia rozwiązania optymalizującego funkcję ograniczeń słabych. Dodatko­
wo postać funkcji sąsiedztwa w fazie drugiej była dużo bardziej złożona, niż w fazie 
pierwszej (tzw. Kempe chain neighbourhood). Podejście to okazało się słuszne, auto­
rzy wykazali ponadto, że przydatność sąsiedztwa typu Kempe chain nie ogranicza się 
tylko do optymalizacji ograniczeń słabych, ale może także dawać dobre rozwiązania w 
przypadkach, gdzie znalezienie osiągalnego planu jest bardzo trudne.

3.3 Algorytmy genetyczne
Algorytmy genetyczne (AG) są narzędziem optymalizacyjnym ogólnego zastosowa­
nia. Przy ich zastosowaniu można uzyskać dobre jakościowo rozwiązania nawet przy 
zwiększającym się rozmiarze problemu i z tego powodu znalazły wiele różnorodnych 
zastosowań. Dobre wprowadzenie do problematyki algorytmów genetycznych można 
znaleźć w (Michalewicz 1999).

Typowy AG rozpoczyna działanie od losowego wygenerowania początkowego 
zbioru rozwiązań {sf ... , s,,0}, zwanego populacją w chwili 0. Następnie powtarzana 
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jest w pętli procedura, tworząca populację {sf, ... , snl+'} w chwili /+! z populacji w 
chwili t. Aby to uczynić, obliczana jest wartość funkcji celu dla każdego rozwiązania, 
a następnie losowo wybierane jest n (niekoniecznie różnych) rozwiązań w czasie t. 
Prawdopodobieństwo wylosowania danego elementu populacji jest uzależnione od 
wartości funkcji celu dla tego rozwiązania tak, że rozwiązania o wyższej wartości 
funkcji (przy założeniu, że staramy się ją zmaksymalizować) mają większe prawdo­
podobieństwo wylosowania. Następnie wybiera się z określonym prawdopodobień­
stwem rozwiązania do krzyżowania, polegającego na przemieszaniu dwóch rozwiązań 
przez zamianę miejscami odpowiadających sobie fragmentów ich reprezentacji. Do­
datkowo rozwiązania mogą być (z określonym prawdopodobieństwem) poddane mu­
tacji. Mutacja zmienia losowo pewną część rozwiązania. Algorytm kończy działanie 
gdy wykonana zostanie określona liczba iteracji lub najlepsze rozwiązanie osiągnie 
(bądź przekroczy) założoną wartość funkcji celu, albo też przez określoną liczbę itera­
cji wartość funkcji celu nie ulegnie poprawie.
Modyfikacją algorytmów genetycznych są algorytmy mimetyczne. W algorytmach 
mimetycznych po rekombinacji (krzyżowaniu i mutacji) następuje faza przeszukiwa­
nia lokalnego - rozwiązania są kolejno poddawane działaniu wybranego algorytmu, 
aby poprawić ich jakość przed kolejną iteracją właściwego AG. Opis takiego podej­
ścia wraz z danymi eksperymentalnymi można znaleźć w (Newall 1999). Autor, 
oprócz przeszukiwania lokalnego, traktowanego jak operator genetyczny, wprowadza 
pojęcia „lekkiej” (lighf) i „ciężkiej” (heavy) mutacji (mutacja lekka mutuje zdarzenie 
w ramach terminu, ciężka zamienia całe terminy). W pracy można również znaleźć 
porównanie różnych heurystyk przeszukiwania, prosty algorytm heurystyczny oraz 
opis wielofazowego algorytmu ewolucyjnego.

Od początku lat dziewięćdziesiątych prowadzone są intensywne badania nad zasto­
sowaniem algorytmów genetycznych w rozwiązywaniu problemów planowania. Opis 
pierwszych prób wykorzystania AG do układania planu lekcji można znaleźć w (Co- 
lorni, Dorigio i Maniezzo 1990a) oraz (w rozszerzonej wersji) w (Colomi, Dorigio i 
Maniezzo 1990b). Autorzy zastosowali macierzową reprezentację osobnika (rozwią­
zania). Wiersz takiej macierzy odpowiada nauczycielowi, kolumna terminowi, a jej 
elementami są klasy. Użyto trzech operatorów genetycznych: mutacji rzędu k (opera­
tor wybiera dwa sąsiednie ciągi Zr-elementowe z tego samego wiersza macierzy i za­
mienia je miejscami), mutacji dni (zamienia miejscami dwie grupy kolumn macierzy) 
oraz krzyżowania (dla danych dwóch macierzy operator ustawia wiersze pierwszej 
macierzy w porządku malejących wartości tzw. lokalnej funkcji celu, która jest skła­
dową funkcji celu związaną tylko z charakterystyką danego nauczyciela). Uwzględ­
niono wyłącznie silne ograniczenia. Powstały program został z powodzeniem zasto­
sowany na dużej uczelni we Włoszech. Dwa lata później w (Colorni, Dorigio i Manie­
zzo 1992) przedstawiono analizę porównawczą różnych sposobów układania zastoso­
wanych do tego samego problemu w terminach funkcji celu - układania ręcznego, 
algorytmu genetycznego, mimetycznego, symulowanego wyżarzania, symulowanego 
wyżarzania z reinicjacją (temperatura „zamrożonego” systemu była ponownie usta­
wiana na wartość początkową) oraz przeszukiwania tabu (również w wersji z ponow­
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ną inicjacją, tym razem listy tabu). Algorytm genetyczny, a zwłaszcza mimetyczny, 
okazał się dobrą alternatywą dla przeszukiwania tabu, tylko trochę pozostając w tyle 
zarówno pod względem jakości najlepszego rozwiązania, jak i średniej jego jakości. 
Autorzy podkreślają jednak niezwykłą elastyczność AG. Pozostałe metody były zde­
cydowanie gorsze. We wspomnianej pracy wprowadzono również specjalny operator, 
zdolny przekształcać nieosiągalne plany w osiągalne.

Podobną analizę porównawczą AG, symulowanego wyżarzania oraz wariantu algo­
rytmu R.NA przeprowadzili autorzy (Ross i Come 1995). W terminach funkcji celu 
AG okazał się gorszy od metod „klasycznych”, jednak jego elastyczność (którą auto­
rzy mierzą jako odległość Hamminga między różnymi rozwiązaniami tego samego 
problemu proponowanymi przez algorytm) okazała się dużo większa. W pracy tej 
podobnie jak we wcześniejszej (Ross, Corne i Fang 1994) autorzy zastosowali zupeł­
nie inną reprezentację osobnika, nazwaną przez nich bezpośrednią (direct). Osobnik 
jest wektorem symboli o długości 3v (gdzie v jest liczbą zdarzeń), podzielonym na 
trójki. Poszczególne elementy w trójce oznaczają kolejno czas, miejsce i nauczyciela. 
Operatory genetyczne zostały dostosowane do takiej reprezentacji, autorzy zapropo­
nowali również operator mutacji, który wybiera losowo kilka (a nie jedną, jak propo­
nowano wcześniej) wartości mutowanej części rozwiązania, i przyjmuje za nowe roz­
wiązanie tę, która daje największą poprawę funkcji celu. Uwzględniono zarówno 
ograniczenia silne, jak i słabe. Powstały program zastosowano na jednej z angielskich 
uczelni z dobrym rezultatem.

3.4 Redukcja do kolorowania grafu
Podstawy teorii grafów można znaleźć w (Ross i Wright 1996), (Wilson 2000) oraz w 
(Thulasiraman i Swamy 1992). Problem kolorowania węzłów grafu jest jednym z 
klasycznych NP-zupełnych problemów dotyczących grafów. Dla danego grafu G=(E 
E), gdzie Kjest zbiorem węzłów, a E zbiorem krawędzi, problem polega na znalezie­
niu podziału V na jak najmniejszą liczbę klas kolorów takich, że żadne dwa wierz­
chołki nie będą należały do tej samej klasy, jeśli istnieje krawędź między nimi (Wil­
son 2000).

Metody oparte o redukcję do kolorowania grafu są szeroko stosowane w rozwią­
zywaniu problemów układania planów i harmonogramowania. Takie podejścia są 
nazywane harmonogramowaniem chromatycznym {chromatic scheduling) (de Werra 
1997). W typowych problemach układania planów szkolnych poszczególnym zdarze­
niom odpowiadają węzły, istnienie krawędzi między dwoma węzłami oznacza, że 
przypisane tym węzłom zdarzenia nie mogą być zaplanowane w tym samym terminie. 
Kolor węzła reprezentuje termin. Taki model jest dobry dla prostych zadań układania 
planów, może być jednak rozszerzony tak, aby obejmował także ograniczenia słabe. 
Rozszerzenia takie zostały zaproponowane między innymi w (de Werra 1996) i roz­
winięte w (de Werra i Mahadev 1997) oraz (de Werra 1997a) - przedstawienie wy­
magań w postaci multigrafu pozwala uwzględnić zdarzenia z góry przypisane do zbio­
ru możliwych terminów (w szczególności do jednego) i niedostępność określonych 
terminów dla pewnych zdarzeń. W (de Werra 1997a) przedstawiono również sposoby 
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na zapewnienie, że plan będzie zwarty, przez zastosowanie kolorowania krawędzi 
(problem kolorowania krawędzi polega na znalezieniu podziału E na jak najmniejsza 
liczbę klas kolorów tak, aby żadne dwie krawędzie nie należały do tej samej klasy, 
jeżeli dzielą wspólny wierzchołek) (Wilson 2000). W (de Werra 1997b), jak również 
w (de Werra i Mahadev 1997) opisana jest koncepcja zastosowania kolorowania 
ograniczonego (czyli takiego, gdzie każdy z węzłów lub krawędzi ma przypisany 
zbiór kolorów, które może przyjąć) do wyrażenia niedostępności terminów i przypisa­
nia z góry. Ostatnia praca zawiera również propozycję bardziej ogólnego sposobu na 
radzenie sobie z przypisaniem z góry - kolorowanie krawędzi z uwzględnieniem 
kosztu. Praca (de Werra 1996), podobnie jak (de Werra, Hoffman, Mahadev i Peled 
1996) dotyczy głównie problemu job-schop scheduling, znajdują się tam jednak 
(pierwsza praca) uniwersalne modele, pozwalające wyrazić wymagania co do jedno- 
czesności zdarzeń oraz ograniczenia dotyczące zasobów (np. wielkości sal) oraz (dru­
ga praca) opis reprezentacji za pomocą drzew oraz nieco prostszej, ale mniej uniwer­
salnej metody uwidaczniania przypisania z góry za pomocą wcześniejszego pokolo­
rowania określonych wierzchołków (krawędzi). Praca (de Werra 1999) opisuje złożo­
ną reprezentację za pomocą grafów, która może być zastosowana w problemach ukła­
dania planów z wieloma ograniczeniami. Sam autor przyznaje jednak, że opisywane 
przez niego przypadki są wciąż dalekie od rzeczywistości i zbyt mało ogólne. Dlatego 
w dalszej części niniejszego opracowania wymienione są tylko podejścia oparte na 
kolorowaniu węzłów w grafach prostych. Wspomnieć warto jednak wcześniej pracę 
(Hilton, Slivnik i Stirling 2001), gdzie opisana jest reprezentacja za pomocą multigra- 
fu z pętlami i rozwiązanie z zastosowaniem kolorowania krawędzi problemu układa­
nia planu w szkole z wieloma ograniczeniami słabymi (przypisanie z góry i niedostęp­
ność w terminie zarówno dla nauczycieli, jak i zajęć) i miernikami jakości (zarówno 
zwartość, jak i miara rozrzucenia zadań po planie). Autorzy zaproponowali tam rów­
nież skomplikowaną koncepcję conference scheduling (układania planu konferencji).

Istnieje kilkanaście algorytmów i heurystyk stosowanych do rozwiązywania pro­
blemów kolorowania grafów. Część z nich została opisana w rozdziale dotyczącym 
metod heurystycznych, jako że kolejność kolorowania wierzchołków odpowiadają w 
zadaniach układania planów strategiom porządkowania zdarzeń. Przegląd metod sto­
sowanych w kolorowaniu grafów znajduje się w (Weare 1995). Do kolorowania gra­
fów mogą być również stosowane metody przeszukiwania lokalnego oraz metody 
hybrydowe. W (Burkę, Elliman i Weare 1994) autorzy zastosowali kompilację dwóch 
zaawansowanych metod heurystycznych do rozwiązania problemów układania planu 
egzaminów oraz układania planu zajęć na uczelni wraz z rozszerzeniami obejmujący­
mi słabe ograniczenia. Autorzy (Mausser i Magazine 1996) proponują własną metodę 
heurystyczną do rozwiązania jednego z wariantów problemu układania planu egzami­
nów. W pracy (Ćangalović, Kovaćević-Vujćić, Ivanović i Draźić 1998) wykorzystano 
połączenie metody heurystycznej z przeszukiwaniem tabu, co dało bardzo dobre 
efekty.
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3.5 Inne metody
Wśród innych podejść do rozwiązania problemu planowania należy wymienić metody 
oparte o przepływ w sieciach (network flow techniąues). Sieć zdefiniowana jest jako 
skierowany graf ważony, w którym wagi są nieujemnymi liczbami rzeczywistymi 
(waga krawędzi nazywana jest jej przepustowością). Oprócz tego w sieci wyróżnione 
są dwa wierzchołki: źródło -wierzchołek, do którego nie wchodzi żadna krawędź (ma 
tylko krawędzie wychodzące), oraz ujście - wierzchołek, z którego nie wychodzą 
żadne krawędzie. Wiele problemów planowania i harmonogramowania zostało zredu­
kowane do sekwencji przepływów w sieciach. Jednak ze względu na istnienie mniej 
skomplikowanych i bardziej uniwersalnych modeli, nie prowadzi się obecnie zbyt 
wielu badań w tym kierunku. Kompendium wiedzy o sieciach i ich zastosowaniach 
można znaleźć w (Dolan i Aldous 1993).

Innym interesującym pomysłem jest zastosowanie sieci neuronowych w rozwiązy­
waniu problemów planowania. Podstawy teorii sieci neuronowych można znaleźć np. 
w (Osowski 1994) lub (Tadeusiewicz 1993). Sieci neuronowe są uważane za dobre 
narzędzie do rozwiązywania problemów optymalizacji. W latach dziewięćdziesiątych 
pojawiły się propozycje wykorzystania ich na polu planowania. Najczęściej propono­
wano, aby sieć była narzędziem optymalizującym wynik działania innego algorytmu, 
np. kolorowania grafu. Przykład takiego podejścia można znaleźć w (Mausser i Maga- 
zine 1996), wraz z porównaniem z metodą czysto heurystyczną. Co prawda jakość 
planów produkowanych przez sieć neuronową była lepsza od tych uzyskanych meto­
dami heurystycznymi, jednak jak przyznają autorzy, w praktyce podejście to jest nie­
efektywne ze względu na duże zapotrzebowanie sieci neuronowych na moc oblicze­
niową. Metody oparte na sieciach neuronowych są w planowaniu i harmonogramowa- 
niu uważana jest za skomplikowane i stosunkowo mało efektywne, dlatego prace na 
ten temat są niezbyt liczne.

Warto wspomnieć również o metodach opartych o systemy ekspertowe. W podej­
ściach tych buduje się systemy z bazą wiedzy w postaci regułowej. Reguły opisują 
zasady układania planów - w jakiej kolejności umieszczać zdarzenia na planie, jak 
rozwiązywać konflikty itp. Na podstawie zadanych parametrów (zdarzeń, terminów, 
zasobów i dotyczących ich ograniczeń) system układa plan, korzystając z bazy reguł. 
Opis takiego rozwiązania można znaleźć w (Lee i Wu 1995) - przedstawiony tam 
system CLXPERT pomaga układać plany dla uczelni na podstawie danych o nauczy­
cielach, salach i kursach oraz bazy ponad 500 reguł pozyskanych od ekspertów. Sys­
tem działa efektywnie na jednym z tajwańskich uniwersytetów. Nieco inne podejście 
zaproponowano w (Burkę, MacCarthy, Petrovic i Qu 2000). Opisany tam system za­
wiera bazę wcześniejszych przypadków i stara się znaleźć w niej przypadek najbliższy 
zadanym założeniom, a następnie zaadaptować go do bieżących potrzeb stosując algo­
rytm wnioskowania na podstawie przypadków - case based reasoning (CBR). Duży 
nacisk położono na ponowne użycie istniejących przypadków. Do przechowywania 
przypadków w bazie wiedzy zastosowano rozszerzoną reprezentację grafową (tzw. 
grafy atrybutów). Dzięki temu można było wykorzystać własności dotyczące izomor­
fizmu w grafach. System nie został jeszcze zastosowany do rozwiązania realnego pro­
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blemu, ani jego efektywność nie została porównana z innymi metodami. Należy pod­
kreślić, że podejścia oparte o systemy ekspertowe są historycznie najmłodsze wśród 
metod rozwiązywania problemów harmonogramowania i planowania (pierwsze prace 
na ten temat pojawiły się na początku lat dziewięćdziesiątych) i z pewnością wyma­
gają jeszcze wielu badań. Jednak już teraz można stwierdzić, że wyniki prób są obie­
cujące, chociażby ze względu na stosunkowo krótki czas oczekiwania na rozwiązanie.

4. Układanie planu dyżurów na oddziale szpitalnym przy zastoso­
waniu algorytmu genetycznego
Poniższy rozdział zawiera opis rozwiązania prostego problemu planowania dyżurów 
personelu w służbie zdrowia przy pomocy algorytmu genetycznego.

4.1 Opis rzeczywistości
Na oddziale w szpitalu pracuje na stałe kilkunastu lekarzy. Dodatkowo czasem poma­
ga im kilku anestezjologów z innego szpitala. Plan dyżurów układa się w cyklu mie­
sięcznym. Każdego dnia dyżur musi pełnić trzech lekarzy - anestezjolog i dwóch chi­
rurgów. Co najmniej jeden z chirurgów na dyżurze musi mieć drugi stopień specjali­
zacji (w praktyce musi być oprócz tego doświadczony i odpowiedzialny). Według 
przepisów nie można brać kilku dyżurów pod rząd - przy dwóch lekarz spędza w 
szpitalu 56 godzin bez przerwy. W praktyce jednak takie przypadki są dość po­
wszechne - układający dyżury starają się unikać sytuacji, gdy lekarz miałby trzy dy­
żury pod rząd (78 godzin w pracy !), ale takie przypadki również się zdarzają. Przed 
rozpoczęciem układania planu przeprowadza się rozmowy ze wszystkimi lekarzami. 
Określają oni ile mniej więcej chcą mieć dyżurów, kiedy je chcą lub nie chcą mieć, a 
także z kim chcieliby lub nie chcieliby dyżurować. Życzenia lekarzy najczęściej koli­
dują ze sobą, więc konieczna jest pewna swoboda w odbieraniu i dodawaniu dyżurów. 
Po pierwsze dyżury powinny być rozdzielone mniej więcej sprawiedliwie - nie można 
na przykład dać komuś wszystkich dyżurów weekendowych, bo są one cenne (płaci 
się za nie podwójnie, podobnie jak za dyżury we wszystkie dni ustawowo wolne). Po 
drugie, według przepisów lekarza nie można zmusić do odbycia więcej niż ośmiu 
dyżurów w miesiącu (a według zwyczaju kierujący zespołem raczej nie bierze więcej 
niż czterech). Po trzecie trzeba zostawić parę wolnych dyżurów dla lekarzy z 
innego szpitala, jednak ich termin może być ustalany bardziej elastycznie w 
stosunku do lekarzy „miejscowych”. Po czwarte, układaniem dyżurów w 
Święta, Sylwestra itp. rządzą specjalne prawa, które nie są tutaj opisane, ze 
względu na ich marginalne znaczenie.

4.2 Używane dane i reprezentacja rozwiązania
Każdy lekarz ma przypisany odpowiadający mu następujący zestaw danych:

- preferencje towarzyskie - dla każdego innego lekarza określona jest jedna z 
trzech możliwych preferencji towarzyskich („tak”, „nie” i „obojętna”),
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- preferencje czasowe - dla każdego dnia miesiąca, na który plan jest układany, 
określona jest jedna z pięciu możliwych preferencji czasowych (w kolejności od 
najbardziej pożądanej: „koniecznie”, „tak”, „obojętnie”, „nie” i „wykluczone”),

- minimalna i maksymalna liczba dyżurów w miesiącu, które chciałby mieć le­
karz

- znaczniki oznaczające, czy lekarz jest anestezjologiem lub czy może pełnić dy­
żur samodzielnie.

Reprezentacja rozwiązania jest bezpośrednia. Genotyp osobnika ma długość 4d, gdzie 
d jest liczbą dni w miesiącu, na który plan jest układany. Jest to powtórzona d razy 
krotka <n, s,‘, s2, an>, gdzie z? jest identyfikatorem kolejnego terminu (dnia w miesią­
cu), , sn‘ i sn2 są identyfikatorami odpowiednio pierwszego i drugiego chirurga, a an 
jest identyfikatorem anestezjologa.

4.3 Funkcja celu i użyty algorytm
Funkcja celu oparta jest na karze. Za każde złamane ograniczenie na termin, w którym 
ograniczenie zostało naruszone, nakładana jest kara. Kara nakładana jest tylko na 
ograniczenia dotyczące czasu i liczby dyżurów - dyżur w nieodpowiednim czasie 
(negatywna preferencja czasowa), przekroczona liczba dyżurów pod rząd lub przekro­
czona maksymalna liczba dyżurów - wtedy kara nakładana jest na pierwszy i każdy 
następny termin, w którym lekarz przekracza maksymalną liczbę dyżurów, pod wa­
runkiem, że lekarz nie ma na ten termin ustawionej preferencji „koniecznie”. Jeżeli tak 
jest, to algorytm nakłada karę, o ile jest to możliwe, na poprzedni cyklicznie termin z 
tym lekarzem. Podobnie jest w przypadku dyżurów pod rząd - dzięki sprawdzeniu 
poprzedniego i następnego terminu unikamy negatywnego oceniania sytuacji, gdy 
lekarz chce mieć 3 dyżury pod rząd na własne życzenie. Zsumowana ocena poszcze­
gólnych terminów oznacza ocenę planu jako całości. Algorytm ma za zadanie mini­
malizację funkcji celu.

Osobniki inicjowane są losowo, ale tak, aby zostały spełnione wszystkie silne 
ograniczenia:

- lekarze, których wzajemne preferencje towarzyskie będą ustawione na „tak”, 
zawsze będą mieli dyżur ze sobą,

- lekarze, , których wzajemne preferencje towarzyskie będą ustawione na „nie”, 
nigdy nie będą mieli dyżuru ze sobą,

- lekarz, który ma w danym terminie ma ustawioną preferencję czasową „ko­
niecznie” będzie miał dyżur w tym terminie,

- lekarz, który ma w danym terminie ma ustawioną preferencję czasową „wyklu­
czone” nie będzie miał dyżuru w tym terminie,

- anestezjolog nie będzie nigdy pełnił dyżuru na miejscu chirurga i na odwrót,
- wśród dwóch chirurgów na dyżurze przynajmniej jeden będzie miał prawo do 

pełnienia dyżuru samodzielnie.
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Podejście takie można łatwo zastosować, gdyż otrzymywane z wywiadu z lekarzami 
dane są w większości spójne, lub też można względnie łatwo usunąć napotkane nie­
spójności w trybie półautomatycznym. Należy też wspomnieć o stosunkowo niewiel­
kim rozmiarze problemu, co ułatwia zadanie - problem jest prawdopodobnie NP- 
zupełny (wymaga to oczywiście formalnego dowodu, ale przyjmijmy to za roboczą 
hipotezę), więc możemy już na początku zapewnić osiągalność każdego planu.

W każdej iteracji algorytmu poszczególne rozwiązania są oceniane i wybierane do 
następnego kroku zgodnie z zasadami działania algorytmów genetycznych. Następnie 
wybierane są osobniki do mutacji. Mutacja jest kompromisem pomiędzy wersją „lek­
ką” a „ciężką” - mutuje jeden termin (z najgorszą wartością funkcji celu), ale we­
wnątrz terminu są mutowane tylko te elementy (lekarze), które tę wartość obniżają. 
Mutacja nie może pogorszyć wartości funkcji celu - dzięki temu w każdej iteracji 
algorytmu istnieje szansa na „naprawienie” jednego terminu. Dodatkowo, cały czas 
utrzymywana jest osiągalność planu, ponieważ elementy niezmienne (np. dyżury w 
terminie, na który dany lekarz ma ustawioną preferencję „koniecznie”) nie podlegają 
mutacji. Na końcu wybierane są osobniki do krzyżowania - miejsce krzyżowania jest 
wybierane losowo i wybrane osobniki zamieniają się wszystkimi terminami od tego 
miejsca. Algorytm kończy się po określonej liczbie kroków.

4.4 Wyniki eksperymentów
Ze względu na brak ogólnie dostępnych danych testowych (benchmarkowych) dla 
tego specyficznego problemu oraz dużą trudność układania przykładowych zestawów 
danych, eksperymenty były prowadzone na danych rzeczywistych. Wynika z tego 
pewna niedogodność, gdyż co miesiąc powstaje tylko jeden zestaw danych. Jednak już 
eksperymenty z trzema zestawami pokazują pewne prawidłowości.

Podczas badań liczbę iteracji AG określono na 150. Podane wyniki są średnimi z 
trzech różnych zestawów danych, po pięć przebiegów dla każdego zestawu. Każdy 
zestaw zawierał dane dotyczące dwunastu chirurgów (w tym ośmiu samodzielnych) i 
trzech anestezjologów. Wielkość populacji ustalono na 200 osobników. Wykresy 1 i 2 
pokazują wartości funkcji celu dla najlepszego planu w funkcji wykonanych iteracji 
algorytmu. W obu przypadkach prawdopodobieństwo krzyżowania ustawione było na 
0.2 a prawdopodobieństwo mutacji na 1 (wykres 1) i 0.33 (wykres 2). Mutacja w każ­
dym przebiegu algorytmu potencjalnie poprawia funkcję celu związaną z jednym ter­
minem. Wyraźnie widać to na pierwszym wykresie - po trzydziestu iteracjach od roz­
poczęcia wykonywania algorytmu wartość funkcji celu poprawia się niemal trzykrot­
nie. Przy trzykrotnie rzadszej mutacji taka poprawa zajmuje mniej więcej trzykrotnie 
więcej czasu. Należy jednak zauważyć, że jakość planów po 120 przebiegach jest 
praktycznie taka sama, więc z punktu widzenia efektywnego użycia mocy obliczenio­
wej, korzystniejsze jest użycie mniejszego prawdopodobieństwa mutacji.
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Wykres 1 Wartości funkcji celu dla najlepszego planu w funkcji wykonanych iteracji 
algorytmu; prawdopodobieństwo mutacji równe 1; prawdopodobieństwo krzyżowania 

równe 0,2

Wykres 3 pokazuje wartości funkcji celu dla prawdopodobieństwa krzyżowania rów­
nego 0,5 i prawdopodobieństwa mutacji równego 0,33. Krzyżowanie jest operacją o 
złożoności obliczeniowej (zwłaszcza pesymistycznej) dużo mniejszej, niż mutacja, 
jednak wprowadza do planu większe fluktuacje. Mutacja stara się poprawić wartość 
funkcji celu dla jednego terminu w kontekście innych terminów, gdy tymczasem krzy­
żowanie zamienia części planów miejscami, bez rozważania planu jako całości. Wy­
raźnie widać, że zbyt częste krzyżowanie niszczy powolną poprawę, dawaną przez 
mutację.

Na podstawie użytych danych zbudowano również plany metodą tradycyjną (ręcz­
nie). Średnia wartość funkcji celu dla tych planów wynosiła 46,2, jednak uważane 
były przez użytkowników za lepsze od ułożonych automatycznie ze względu na lep­
szy (bardziej sprawiedliwy) rozdział dyżurów weekendowych między lekarzy.
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Wykres 2. Wartości funkcji celu dla najlepszego planu w funkcji wykonanych iteracji 
algorytmu; prawdopodobieństwo mutacji: 0,33; prawdopodobieństwo krzyżowania: 0,2

Wykres 3. Wartości funkcji celu dla najlepszego planu w funkcji wykonanych iteracji 
algorytmu; prawdopodobieństwo mutacji: 0,33; prawdopodobieństwo krzyżowania: 0,5
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4.5 Możliwe modyfikacje algorytmu
Algorytm wymaga pewnych modyfikacji. W pierwszej kolejności należy zmienić 
warunek zakończenia algorytmu tak, aby przerywał swoje działanie po określonej 
liczbie iteracji bez poprawy funkcji celu. Warta rozważenia jest likwidacja krzyżowa­
nia, a raczej zastąpienie go ciężką mutacją (mutującą np. wszystkie w kolejności ter­
miny, w których przekroczona jest maksymalna liczba dyżurów lub maksymalna licz­
ba dyżurów pod rząd). Konieczne jest też rozbudowanie algorytmu o możliwość ukła­
dania dyżurów „pod telefonem” oraz rozszerzenie zakresu możliwych preferencji to­
warzyskich.

5. Podsumowanie
Z pewnością badania nad zastosowaniami metod poszukiwawczych i optymalizacyj­
nych będą kontynuowane. Wiele ze wspomnianych metod wymaga dokładniejszej 
analizy, aby możliwe było uzyskanie rezultatów jeszcze lepszych niż dotychczasowe. 
Szczególnie interesujące wydają się algorytmy genetyczne i ich warianty, ze względu 
na ich niezwykłą elastyczność, niewielkie skomplikowanie i umiarkowany koszt obli­
czeniowy. Przedstawione tutaj rozwiązanie prostego, rzeczywistego problemu za po­
mocą AG jest tego dobrym przykładem.
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Streszczenie

Artykuł prezentuje hybrydowy algorytm, oparty o klasyczny algorytm genetyczny 
i o programowanie genetyczne, umożliwiający wyszukiwanie zależności pomiędzy danymi 
liczbowymi zawartymi w relacyjnych bazach danych. W artykule przedstawione są wyniki 
testów algorytmu wykonanych na danych sztucznie wygenerowanych, jego cechy, a także 
opisany jest przykład zastosowania go do danych rzeczywistych, dotyczących plam na Słońcu.

Wprowadzenie
Wraz z powstawaniem coraz to nowszych baz danych o wciąż zwiększających się 
rozmiarach rosną potrzeby analizy zgromadzonych informacji, ich opisu, klasyfikacji 
oraz znajdowania związków między nimi. Doprowadziło to do rozwoju dziedziny 
Data Mining , mającej na celu dostarczenie skutecznych mechanizmów pozyskiwania 
wiedzy z baz danych. W celu znalezienia zależności funkcyjnych pomiędzy warto­
ściami liczbowymi atrybutów w relacyjnych bazach danych, klasycznie stosuje się 
metody regresji oparte o np. konkretyzację wzorców lub wykrywanie trendów w da­
nych. Metody te są czasochłonne, nieskuteczne przy niedokładnych danych lub małej 
ich ilości i często nakładają duże ograniczenia na postać otrzymanego wzoru [1], Dla­
tego konieczne jest szukanie nowych i bardziej uniwersalnych metod. Pew­
ne możliwości w tej dziedzinie stwarza stosowanie programowania genetycznego - 
odmiany algorytmów genetycznych - opisanej przez J. Kozę [4].

W niniejszym artykule opisany jest hybrydowy algorytm genetyczny, powstały z 
połączenia programowania genetycznego z klasycznym algorytmem genetycznym. 
Przedstawione sąjego właściwości oraz przykład zastosowania do znajdowania zależ­
ności pomiędzy danymi liczbowymi. Testy przeprowadzone zostały na danych zarów­
no sztucznie wygenerowanych, jak i rzeczywistych - dotyczących stopnia aktywności 
słonecznej.

mailto:eszpunar@sunlO.ci.pwr.wroc.pl


70

1. Programowanie genetyczne
Programowanie genetyczne to odmiana algorytmu genetycznego, w którym osobnik to 
zakodowany program, o zmieniającym się w czasie kształcie i rozmiarze [4],[8], Pro­
gram taki zbudowany jest z funkcji i operatorów należących do predefiniowanego 
zbioru F oraz symboli terminalnych z ustalonego zbioru T. Poprawne określenie tych 
zbiorów jest o tyle istotne, że w przypadku niepełnego lub błędnego ich zdefiniowania 
niemożliwe może się okazać odnalezienie rozwiązania [4].

Podobnie jak w klasycznym algorytmie genetycznym, pierwszym krokiem w pro­
gramowaniu genetycznym jest utworzenie populacji początkowej. Osobnika - czyli 
program - można zakodować w postaci drzewa, którego węzły to funkcje należące do 
zbioru F, natomiast liście to symbole terminalne ze zbioru T. Dla każdego węzła ist­
nieje tyle poddrzew, ile argumentów wymaga funkcja znajdująca się w węźle. Istotną 
rolę odgrywa tu określenie maksymalnej głębokości tworzonych drzew. Przy zbyt 
płytkim drzewie może okazać się niemożliwe zakodowanie rozwiązania, zbyt głębokie 
powoduje nadmierny wzrost przestrzeni poszukiwań i utrudnia znalezienie rozwiąza­
nia [4],[8],

Funkcja celu w tym przypadku jest ściśle zależna od rezultatu wykonania progra­
mu, który dany osobnik koduje, na określonym zbiorze danych. Na podstawie warto­
ści funkcji celu następuje selekcja, czyli określane jest, które osobniki i w jakiej licz­
bie przejdą do fazy krzyżowania [4],[8].
Krzyżowanie osobników w programowaniu genetycznym polega na losowym wybo­
rze węzła - punktu krzyżowania u dwóch osobników, a następnie wymianie pomiędzy 
tymi osobnikami poddrzew, których korzeniem są wybrane punkty krzyżowania. Aby 
zapobiegać powstawaniu bardzo dużych drzew zakłada się maksymalną głębokość 
drzewa-potomka. Jeżeli głębokość potomka jest większa niż zakładana, to kopiuje się 
jednego z rodziców do nowej populacji [4],[8].

W algorytmie tym mogą występować dodatkowo inne operacje, takie jak mutacja - 
zmiana losowego poddrzewa na inne, permutacja - zamiana poddrzew wychodzących 
z jednego węzła, czy upraszczanie - niezmienianie znaczenia programu, ale jego 
uproszczenie [4],[8].

2. Algorytm hybrydowy do odnajdowania zależności funkcyjnych 
w danych liczbowych
Prezentowany algorytm zbudowany jest z dwóch algorytmów. Pierwszy z nich (zwany 
dalej PG) oparty jest o programowanie genetyczne, natomiast drugi bazuje na algo­
rytmie genetycznym w klasycznym ujęciu (nazywany jest dalej AG). Hybrydowy 
algorytm ma zastosowanie w relacyjnych bazach danych składających się z n kolumn 
danych liczbowych z określonego zakresu i o określonej dokładności, oznaczonych 
xb Jego zadaniem jest znalezienie postaci funkcji x\J[x2, ...,x„), najlepiej od­
zwierciedlającej potencjalnie istniejącą zależność między kolumnami, przy założeniu, 
że szukana funkcja nie musi być funkcją wszystkich, lecz tylko wybranych kolumn, 
należących do bazy danych [6],[10].
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2.1 Algorytm PG
Funkcję wielu zmiennych można zakodować w postaci drzewa, w którego węzłach 
znajdują się identyfikatory podstawowych operatorów arytmetycznych, natomiast 
liście to identyfikatory kolumn bądź stałych. Taką też postać ma osobnik w algorytmie 
PG. Zbiorem symboli nieterminalnych w tym przypadku jest zbiór F ={+,-,*,/}, nato­
miast zbiór symboli terminalnych składa się z dwóch podzbiorów: W i I, gdzie 
/={x2,..., xn} to zbiór identyfikatorów kolumn natomiast W to zbiór współczynników 

od 0 do 100. Przykład osobnika kodującego zależność 
x/=Xj/(xj+2)+x2 przedstawiony jest na rysunku 1 [6],[10],

(7) ?x2) Osobnik oceniany jest na dwa sposoby. Pierwszy z nich
/ \ polega na tym, że dla każdej krotki w bazie danych obliczana

(x31 (+) jest wartość ze wzoru, jaki koduje dany osobnik, a następnie
obliczana jest wartość bezwzględna różnicy otrzymanego wy- 

(V) niku i wartości w kolumnie wynikowej xt - czyli błąd wartości 
zwróconej przez osobnika, po czym błędy dla wszystkich kro- 

Rysunek 1. Przykład tek są sumowane. Funkcja ta jest wyrażona wzorem:
osobnika Drugi sposób jest podobny, z tym że po obliczeniu błędu liczo­

ne jest, jaki procent wartości w kolumnie wynikowej stanowi błąd, a następnie warto­
ści procentowe dla wszystkich krotek są sumowane i liczona jest ich wartość średnia:

F = Ź \xi - y 'I w
<=i 

gdzie:
N- liczba krotek w bazie danych

- wartość w pierwszej kolumnie dla i-tej krotki 

y' - wartość dla i-tej krotki zwracana przez osobnika

F = 100 * |* / ~ T ' |

N X,'

gdzie:
N- liczba krotek w bazie danych
X { - wartość w pierwszej kolumnie dla i-tej krotki 

y'- wartość dla i-tej krotki zwracana przez osobnika

(2)

Podczas wyliczania wartości zwracanej przez danego osobnika dla danej krotki może 
się okazać, że występuje dzielenie przez zero, wtedy wartość funkcji oceniającej dla 
danego osobnika przyjmuje wartość -1, bez względu na to, jaki wynik otrzymano dla 
pozostałych krotek [6],[10],

Stosowaną metodą selekcji jest metoda elitarna z zachowaniem najlepszych osob­
ników bez zmian. Natomiast mutacja polega na losowej zmianie, zgodnie z określo­



72

nym, niewielkim prawdopodobieństwem, wartości w węzłach i liściach drzew, przy 
czym typ wartości pozostaje zawsze bez zmian, tzn. operator jest zastępowany opera­
torem, kolumna-kolumną, a współczynnik - współczynnikiem [6][10].

Opisany powyżej algorytm testowany był na danych sztucznie wygenerowanych, 
przy wykorzystaniu funkcji oceniającej liczonej ze wzoru (1). Okazało się, że algo­
rytm ten pozwala na dokładne odnalezienie wielu zależności istniejących pomiędzy 
danymi w bazie. Ich przykłady, dla populacji równej 300 osobników i liczby kolumn 
w bazie równej liczbie kolumn występującej we wzorze, liczbie krotek w bazie równej 
100, wraz z potrzebną do odnalezienia zależności liczbą pokoleń pokazane są w tabeli 
1 [6],[10],

Tabela 1. Przykładowe odnalezione zależności

Szukany wzór zależności liczba pokoleń
X|= X2X2X2 3
X|= x4+ x3 x2- x5 8
x,= x2/( x3+ x4) 16
X|= x2+ X2X2- x3/ x2 22
X|= x2+ x3+ X4+ Xj+ x6+ x7+ x8+ x9 31
X|= x2+ x3/ x4— x4/ x2 45
X|=X2-X3/( x4+ x5>- x5 103
X|= x2+ x3/ x4+ x4 x5- (x2+ x4)/ x3 135
X|=10-x2+5x3 137
X| = x2+ x3+ x4x4- x2-x2-x2/( x3-x3) 207
X]= X2+ X3+ X4+ Xj+ X6+ X7+ Xg+ x9+ X2X3X4 375
X|= X2-X2-X2+ X3-X3X3+ X4-X4-X4+ X5X5X5 579

2.2 Cechy algorytmu PG
Algorytm okazywał się skuteczny również w przypadku nadmiarowości kolumn, tzn. 
gdy liczba identyfikatorów kolumn występujących we wzorze, na podstawie którego 
generowane były dane testowe, była mniejsza niż zdefiniowano w bazie danych. Licz­
ba pokoleń potrzebnych do znalezienia rozwiązania przy pewnej liczbie nadmiaro­
wych kolumn jest większa niż w przypadku, gdy kolumn w bazie jest dokładnie tyle, 
co we wzorze. Przykład tej zależności dla wzoru 400 osobników w
populacji i 100 krotek w bazie danych pokazany jest w tabeli 2 [6],[10],

Algorytm można stosować również wtedy, gdy dane w bazie są niedokładne (za­
szum ione). Przeprowadzone zostały testy, w których generowane dane według zada­
nego wzoru zmieniane były o pewną losową liczbę, nie większą niż 10% wartości. 
Porównywana była następnie suma błędów zawarta w bazie danych z wartością funk­
cji oceniającej dla najlepszego osobnika (liczonej wg wzoru 1), która jest sumą błędu 
po wszystkich danych. Okazało się, że odnalezione zależności dają mniejszy błąd niż 
suma błędów w bazie, czyli odnalezione zostały wzory lepiej odzwierciedlające zależ­
ności w bazie niż wzór, na podstawie którego dane były generowane i następnie za-
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Tabela 2. Pomiary przy nadmiarowości kolumn

Liczba nadmiarowych kolumn 0 1 2 3 4 5 6
Liczba pokoleń dla pomiaru 1 9 16 15 17 45 34 107
Liczba pokoleń dla pomiaru 2 7 30 18 16 47 45 23
Liczba pokoleń dla pomiaru 3 8 11 16 25 20 20 51
Liczba pokoleń dla pomiaru 4 9 17 27 20 22 26 38
Liczba pokoleń dla pomiaru 5 6 17 27 11 33 37 32
Liczba pokoleń dla pomiaru 6 12 15 18 31 15 64 26
Liczba pokoleń dla pomiaru 7 10 16 17 25 26 36 18
Wartość średnia 8,71 17,4 19,7 20,7 29,7 37,4 42,1
odchylenie standardowe 1,97 5,91 5,08 6,75 12,4 14,2 30,6

szumiane, np. dla wzoru x\-x2-xyXĄ suma błędów zawartych w bazie wynosiła 
761861,39, natomiast błąd zwracany przez najlepszego osobnika, mającego postać 
X\=X2(\/Xi-XT,')+x2-xyXĄ-S-xi, po 50 pokoleniach wynosił mniej, bo 715182,477 
[6],[10],

Trudności natomiast pojawiały się, gdy we wzorze reprezentującym zależność 
pomiędzy kolumnami występowały współczynniki. Niemożliwe było odnalezienie 
niektórych nawet dość prostych zależności np. Xi=\5-x2+4-X3-23,4-X2/x3 (dla 500 osob­
ników w populacji). Okazało się, że częściowo problem ten można rozwiązać poprzez 
zwiększenie rozmiarów populacji do 5000, np. zależność: xi=\00-X2-x3-x4+\7,5-X4/x3+ 
2-x2, której nie udało się znaleźć przy 500 osobnikach w populacji, przy 5000 odnale­
ziona została w 457 pokoleń. Dla wielu zależności zwiększenie rozmiarów populacji 
było niewystarczające. Aby uczynić algorytm bardziej skutecznym, wprowadzono 
dodatkowy algorytm genetyczny (AG) [6],[ 10].

2.3 Algorytm dostrajający AG
Celem algorytmu opartego na klasycznym algorytmie genetycznym jest dobranie dla 
określonej parametrycznie liczby najlepszych osobników PG, co określoną liczbę 
pokoleń PG, jak najlepszych wartości współczynników, występujących w tych osob­
nikach, bez zmiany struktury drzewa. Ze względu na swój cel, algorytm ten nazwany 
został algorytmem dostrajającym.
Przebieg algorytmu dostrajającego współczynniki jest następujący: dla danego osob­
nika, przekazanego przez PG określa się liczbę współczynników w nim występują­
cych. Jest to długość osobnika w AG. Osobnikiem w AG jest ciąg liczb z pewnego 
zakresu o określonej dokładności (liczbie miejsc po przecinku). Populacja początkowa 
zawiera ciąg utworzony na podstawie dostrajanego osobnika oraz określoną liczbę 
ciągów losowych. Jest ona nieduża, od 100 do 200 osobników. Następnie tak utwo­
rzona populacja podlega cyklicznej selekcji, krzyżowaniu i mutacji przez ok. 70 po­
koleń (wielkość populacji oraz liczba pokoleń określane są parametrycznie) [6],[10],
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Osobniki oceniane są na podstawie tej samej funkcji oceniającej, jaka jest w PG. 
Liczona jest dla danego dostrajanego osobnika ze zmienianymi kolejno współczynni­
kami. Również analogiczny do PG jest wybór osobników do krzyżowania, ale samo 
krzyżowanie jest mniej skomplikowane. Dla pary osobników wybierany jest punkt 
krzyżowania, będący losowym miejscem w ciągu współczynników, po czym wymie­
niane są między osobnikami podciągi. Przykład krzyżowania dwóch osobników o 
długości 5 w AG przedstawiony jest na rysunku 2.

5.2 24 38.1 0.6 12

2.43 4.6 11 45.2 6.7 2.43|4.6 |38.1 10.6 112

5.2 24 11 45.2 6.7

Rysunek 2. Przykład krzyżowania osobników w algorytmie dostrajają­
cym AG

W przeciwieństwie do algorytmu PG, większą role odgrywa tu mutacja. Zapropo­
nowana bowiem została specyficzna postać mutacji, której celem jest umożliwienie 
dobrego dostrojenia również współczynników z pewną liczbą miejsc po przecinku. 
Polega ona na zwiększeniu prawdopodobieństwa małych zmian wartości współczyn­
ników, tzn. jeżeli dana liczba ma podlegać mutacji, to dla każdej cyfry, z której jest 
zbudowana, określane jest prawdopodobieństwo mutacji pojedynczej cyfry, przy czym 
dla cyfr przed przecinkiem dziesiętnym, prawdopodobieństwo jest mniejsze niż dla 
cyfr po przecinku. Poza tym, na im dalszym miejscu po przecinku znajduje się cyfra, z 
tym większym prawdopodobieństwem będzie zmutowana [6],[10].
Po połączeniu algorytmów okazało się możliwe odnalezienie zależności, z którymi 
samo programowanie genetyczne nie radziło sobie , np. dla funkcji x/=sin(x2), dla x2 e 
(0.. 180) wartość funkcji oceniającej liczonej wg wzoru (2), dla najlepszego osobnika 
po 250 pokoleniach, przy dostrajaniu co 20 pokoleń 20 osobników przez 40 pokoleń 
wynosiła 1,52. Gdy natomiast dostrajanie nie było stosowane, wartość funkcji oce­
niającej, po 2000 pokoleń, dla najlepszego osobnika była większa od 50. Poza tym dla 
zależności, do znalezienia których dostrajanie nie było konieczne, połączenie algoryt­
mów przyspieszało ewolucję. Przykładem mogą być badania przeprowadzone dla 
danych wygenerowanych wg wzoru:
x/=l 1,3/x2+1 0-x2r-5,2-X2/(xj+xj)+33,8+x5j-xj'26+ 20(xj+x2)/*5+&ó+ \1(x3+x5')lx2+x3 3.
Bez dostrajania po 165 pokoleniach wartość funkcji oceniającej (wg wzoru (2)) wyno­
siła 9,25, natomiast w ewolucji, startującej z tego samego pokolenia początkowego, w 
której dostrajanych było 15 osobników co 40 pokoleń PG przez 50 pokoleń AG, naj­
lepszy osobnik już po 100 pokoleniach miał przystosowanie równe 1,2 [6],[10].
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3. Testy na danych rzeczywistych
Dane rzeczywiste do badań generowane były na podstawie plików pochodzących z 
obserwatorium astronomicznego w Greenwich (Royal Greenwich Observatory), doty­
czących liczby plam występujących na Słońcu w kolejnych dniach począwszy od 
1874 roku. Algorytm testowany był zarówno pod kątem dokładności przybliżeń za­
leżności pomiędzy sumami plam występujących na Słońcu w kolejnych okresach cza­
su, jak i możliwością zastosowania otrzymanych zależności do przewidywania liczby 
plam w kolejnych odcinkach czasu [10].

3.1 Plamy na Słońcu
Plamy na Słońcu są głównym przejawem i wyznacznikiem stopnia aktywności sło­
necznej, która ma duży wpływ na życie na Ziemi. Informacja o przyszłej liczbie plam 
najistotniejsza jest podczas określania orbit satelitów i przy planowaniu misji załogo­
wych prowadzonych w przestrzeni kosmicznej, gdyż aktywność słoneczna wpływa na 
zmiany gęstości atmosfery ziemskiej wraz z wysokością, a poza tym wysokoenerge­
tyczne cząstki wysyłane przez Słońce są groźne dla człowieka i aparatury elektronicz­
nej. Promieniowanie słoneczne może wyrządzić wiele szkód również na Ziemi, gdyż 
może np. wytworzyć prąd w procesie indukcji w liniach energetycznych i w konse­
kwencji zaburzyć proces przesyłania prądu, a nawet wyrządzić szkody w sieci ener­
getycznej, może także zakłócić pracę radarów i uniemożliwić pomiary geologiczne 
przy użyciu magnetografów oraz powoduje powstawanie zórz polarnych. Liczbę plam 
na Słońcu wiąże się także np. z klimatem czy wybuchami epidemii, ale są to powiąza­
nia na razie niepotwierdzone [5],[2], [7],[11].

Aktywność słoneczna ma charakter mniej więcej cykliczny, tzn. okresowo, co 
około 10,5 roku, na tarczy słonecznej najpierw nie ma plam, potem ich liczba wzrasta 
do pewnego poziomu, po czym znów spada do zera. Wykres miesięcznych sum plam 
w latach 1800-1997 przedstawiony jest na rysunku 3. Na wykresie tym można zauwa­
żyć charakterystyczne maksima i minima sumy liczby plam [5],[7], Przewidywanie 
wielkości maksimum kolejnych cykli jest trudnym zadaniem, nad którym pracuje 
wielu naukowców, z czego największą grupą jest grupa 12-stu ekspertów z USA, 
Wielkiej Brytanii, Australii i Niemiec powołana przy wsparciu NASA przez Centrum 
Badań Przestrzeni Kosmicznej (Space Environment Center) [3]. Nie znana jest do tej
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Rysunek 3. Zmiana miesięcznej liczby plam w cyklu jedenastoletnim 
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pory zależność pomiędzy liczbą plam w poszczególnych odcinkach czasu i nie wia­
domo w jakim stopniu jest to zjawisko losowe.

3.2 Sposób generowania bazy danych
Na rysunku 4. przedstawiony jest ogólny sposób generowania krotek wchodzących w 
skład bazy danych. Dane podzielone są na krotki uczące i testowe. Krotki uczące to 
krotki zawierające dane, wśród których hybrydowy algorytm genetyczny próbuje 
znaleźć zależność funkcyjną. Na krotkach testowych sprawdzane jest, na ile odnale­
ziony wzór sprawdza się dla nowych danych [10].

W celu wygenerowania krotek uczących najpierw wybierany jest okres czasu 
nazywany dalej długością okresu uczącego. Potem ustalana jest liczba atrybu­

tów w krotkach - n. Następnie określana jest długość odcinka czasu oznaczona na 
rysunku 4. jako d^ Wartościami atrybutów od 2 do n są sumy plam występujących w 
odcinkach czasu tej długości. Liczba plam, będąca wartością dla atrybutu pierwszego, 
obliczana jest dla odcinków takiej samej bądź innej długości co <7/, oznaczonej d2. 
Dodatkowo wyznaczana jest długość odcinka p (przesunięcie), która określa odstęp 
czasu pomiędzy okresem, dla którego generowana jest wartość atrybutu n, a okresem 
dla którego generowana jest wartość atrybutu pierwszego [10],

Zgodnie z powyższym, jeśli s(tp, t^) oznacza liczbę plam w okresie (tp,t0, gdzie tp 
to data początkowa, a tk - data końcowa, to dla okresu uczącego (/«,//) wartości atry­
butów od 2 do n dla pierwszej krotki w bazie danych będą następujące:
{ x2 ^(t^to+d^, Xj=s((/«M),(^+2<77)),..., xn=s((t()+(n-2)di)^ 
natomiast wartość w pierwszej kolumnie będzie wynosiła: 
x1=s^t0+(n-l)di+p), (tn+(ji-l)di+p+d2y).
Druga krotka ucząca będzie generowana analogicznie, przy czym t0 przyjmie wartość 
tn+cl:. Ostatnią (k-tą) krotką uczącą będzie krotka, dla której wartość pierwszego atry­
butu liczona jest dla okresu (// ti+d^. [10]

Dla tak utworzonych krotek uczących, algorytm PG + AG szuka zależności 
xi=f(x2,...,x„) pomiędzy danymi zawartymi w bazie danych. Odpowiada to szukaniu 
zależności pomiędzy sumą plam w odcinku czasu długości d2, a sumami plam w n 
kolejnych, poprzedzających dany okres odcinkach czasu długości <7/.

1)) x2 x3 xn-1 xn dane uczące dane testowe

x2 : x3 x4 x2 x3

x2 : x3 xn-1 xn
e) ------

a) - pierwsza krotka ucząca 
b) - druga krotka ucząca 
c) - ostatnia krotka ucząca

d) - pierwsza krotka testująca 
e) - druga krotka testująca

x2 x3 xn-1 xn

Rysunek 4. Generowanie krotek
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Sprawdzone zostaje, na ile dokładną zależność pomiędzy danymi występującymi w 
tak wygenerowanej bazie jest w stanie znaleźć proponowany algorytm, a następnie 
czy za pomocą uzyskanego wzoru można przewidywać liczbę plam w kolejnych okre­
sach, tzn. w okresie (//, ti+m*d2 ), gdzie m=l,2,.. .W tym celu generowane są, analo­
gicznie do krotek uczących, krotki testowe, co również przedstawia rysunek 4. Przy 
generowaniu krotek testowych parametry d/, d2, n oraz p pozostają bez zmian. Pierw­
szą krotką testową jest krotka, dla której wartość pierwszego atrybutu liczona jest dla 
okresu (ti,(ti+d2y), drugą krotką ta, dla której wartość pierwszego atrybutu wynosi s 

itd. [10],

3.3 Przeprowadzone testy
Przeprowadzone testy podzielone zostały na dwie zasadnicze grupy: testy krótkoter­
minowe i testy długookresowe. Testy krótkoterminowe to testy skuteczności przybli­
żania i przewidywania przy wartościach parametrów di i d2 zmieniających się od 30 do 
120 dni, dla przesunięcia p od 0 do 180 dni oraz długości okresu uczącego nie więk­
szej niż 10 lat, w zależności od fazy cyklu jedenastoletniego. W testach długotermi­
nowych dane uczące generowane były na podstawie okresu obejmującego kilka cykli 
jedenastoletnich, czyli więcej niż 10 lat. W eksperymentach tych długości okresów dh 
d2 były większe niż przy testach krótkoterminowych (do 360 dni), a także większe 
było przesunięcie p (do 1800 dni). [ 10]

W testach krótkookresowych bardzo dobre okazało się przybliżenie danych uczą­
cych. Na rysunku 5. przedstawione jest porównanie wartości w kolumnie X|, wyliczo­
nej na podstawie odszukanego przez algorytm wzoru, z wartościami rzeczywistymi, 
przy dwóch różnych wartościach parametrów. Rysunek 5a) dotyczy okresu uczącego 
1933-1939, wartości parametrów di i d2 równych 60 i parametru p równego 0. Ewolu­
cja prowadzona była przez 900 pokoleń. Na rysunku 5b) przedstawione są wyniki dla 
okresu uczącego 1941-1949, wartości parametrów di i d2 równych 90 i parametru p 
równego również 0, po 900 pokoleniach. W testach długoterminowych przybliżenie 
było różne dla różnych okresów uczących, ale nadal zaskakująco dobre. Najlepsze 
przybliżenie uzyskano dla liczby kolumn w bazie równej 21 i parametrów di oraz d2, 
równych 180 dni, dla przesunięcia - równego 900 dni i okresu uczącego - lata 1914- 
1980. Funkcją oceniającą w tym przypadku była funkcja liczona wg wzoru (1), a dane 
zostały przybliżone ze średnim błędem procentowym (odpowiadającym przystosowa­
niu wyliczonemu przy pomocy drugiej funkcji) równym 16,9%. Przykład ten ilustruje 
rysunek 6. [10]

W testach dłogoterminowych uzyskanie dobrego przybliżenia danych było trud­
niejsze i wyniki zależały od wyboru okresu uczącego. Najlepsze przybliżenie danych 
uczących uzyskano dla liczby kolumn 21 i parametrów di oraz d2, równych 180 dni, 
dla przesunięcia równego 900 dni i okresu uczącego obejmującego lata 1914-1980. 
Funkcją oceniającą w tym przypadku była funkcja liczona ze wzoru (1), a dane zostały 
przybliżone ze średnim błędem procentowym (odpowiadającym przystosowaniu wyli­
czonemu przy pomocy wzoru (2)) równym 16,9%. Uzyskane przybliżenie pokazane 
jest na rysunku 7. [10]
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Rysunek 5. Przykład przybliżania wartości dla dwóch różnych okresów uczących

O ile uzyskane wzory, przybliżające dane uczące dobrze odzwierciedlały zależności 
pomiędzy danymi, o tyle nie nadawały się do przewidywania przyszłych wartości 
cyklu jedenastoletniego zarówno jeśli chodzi o przewidywanie z dużym, jak i krótkim 
wyprzedzeniem. W [10] przedstawione zostały szczegółowe wyniki testów i wskazane 
zostały możliwości rozbudowy algorytmu w celu poprawy jego przydatności nie tylko 
do odnajdowania zależności, ale również do przewidywania. Najprawdopodobniej, 
dzięki możliwości zwiększenia liczby kolumn w bazie danych (do 30 lub 40) oraz 
wydłużenia okresu czasu, na podstawie którego generowane są krotki uczące, algo­
rytm mógłby znaleźć taką zależność między danymi, która dobrze by przybliżała dane
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Rysunek 6. Przykład przewidywania dla testu długookresowego

Rysunek 7. Przykładowe przybliżenie w teście długookresowym

historyczne i jednocześnie mogła być stosowana do określania przyszłych wartości. W 
przypadku danych dotyczących plam na Słońcu nie jest jednak możliwe zwiększenie 
okresu uczącego ze względu na brak zapisów o prowadzonych regularnie obserwa­
cjach przed drugą połową dziewiętnastego wieku [10],

4. Podsumowanie
Przeprowadzone eksperymenty pokazały dużą skuteczność przedstawionego algoryt­
mu Data Mining w znajdowaniu zależności między danymi liczbowymi w bazach 
danych. Potwierdziły to badania przeprowadzone zarówno na danych wygenerowa­
nych sztucznie, jak i rzeczywistych, dotyczących sum liczb plam na Słońcu. Algorytm 
znajduje istniejące zależności zarówno w bazach z dużą ilością informacji nadmiaro­
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wych, jak i przy danych niedokładnych - zaszumionych. Dzięki temu bardzo dobrze 
radzi sobie z przybliżaniem szeregów czasowych, reprezentujących przejawy aktyw­
ności słonecznej, mimo iż są one w dużej mierze zjawiskami chaotycznymi. Trafność 
uzyskiwanych rezultatów okazuje się niezależna tak od liczby krotek, jak i kolumn w 
bazie.

Zdolność odnajdowania zależności pomiędzy danymi może być poprawiona, po­
przez zwiększenie zbioru wykorzystywanych przez algorytm funkcji (np. o funkcje 
trygonometryczne) i jednoczesne zwiększenie rozmiarów ewoluujących populacji. 
Podczas eksperymentów zauważono bowiem, że w przypadku uwzględnienia funkcji 
sinus jako potencjalnej operacji, uzyskiwane prognozy były bardziej trafne.
Niewątpliwie możliwe jest skuteczne zastosowanie proponowanej metody do innych 
problemów - wszędzie tam, gdzie wymagana jest analiza związków pomiędzy danymi 
liczbowymi, zgromadzonymi w bazach danych. Algorytm można także łatwo rozsze­
rzać o dodatkowe funkcje i symbole terminalne, specyficzne dla określonego zagad­
nienia. Czyni to przedstawiony system elastycznym i skutecznym mechanizmem po­
zyskiwania wiedzy z baz danych.
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Streszczenie

W artykule omówiono możliwość zastosowania algorytmu genetycznego do poszukiwania 
optymalnej synchronizacji rozkładów jazdy transportu miejskiego. Przedstawiono szczegóły 
konstrukcji algorytmu i realizującego go oprogramowania. Omówiono otrzymane wyniki. 
Porównano możliwości wykorzystania algorytmu genetycznego i przeglądu zupełnego oraz 
podejścia hybrydowego do realizacji zadania.

1. Problem synchronizacji rozkładów jazdy
Obecnie w większości dużych ośrodków miejskich rozkłady jazdy komunikacji zbio­
rowej tworzone są w oparciu o zasadę jednego taktu podstawowego. Oznacza to, że 
wszystkie główne linie tramwajowe, trolejbusowe i autobusowe kursują w jednako­
wych odstępach czasu. W zależności od obciążenia na danej trasie różnicowana jest 
natomiast pojemność taboru [Wys 97].

Takie rozwiązanie ułatwia projektowanie rozkładów jazdy i zapewnianie przesia­
dek na węzłach dla pasażerów - analizie poddać można bowiem jedynie wycinek 
czasu długości jednego taktu (w pozostałym czasie sytuacja będzie analogiczna). 
Wszystkie przyjazdy i odjazdy tramwajów, czy autobusów określane są poprzez prze­
sunięcie względem początku taktu.

Jak łatwo dostrzec, zadanie synchronizacji sprowadza się do znalezienia optymal­
nego zestawu odjazdów poszczególnych linii z punktów początkowych. Ocena roz­
wiązania polega zaś na sprawdzeniu synchronizacji odjazdów w wybranych węzłach 
sieci. I tak, jeżeli takt wynosi np. 15 minut (co oznacza, że wszystkie linie kursują z 
częstotliwością co 15 minut), a w danym punkcie pojawiają się pojazdy 3 linii, to ich 
odjazdy powinny następować w pięciominutowych odstępach. Oceniana jest zatem 
regularność kursowania komunikacji. Przy niskich wartościach taktu (do 20 minut) i 
obsłudze tras przez kilka linii (odstępy między pojazdami około 5 minut) traci bowiem 
znaczenie czas oczekiwania na przesiadkę (pasażer albo na przystanku początkowym
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oczekuje na połączenie bezpośrednie, albo przesiada się nawet kilkukrotnie w razie 
potrzeby, wykorzystując wielość linii między węzłami).
Trzeba przy tym zwrócić uwagę na fakt, iż poszczególne węzły sieci mają różną wagę 
- istotniejsze są np. długie odcinki na przedmieściach, na których znajduje się nawet 
kilkanaście przystanków obsługiwanych przez jeden zestaw linii, niż krótkie odcinki 
w centrum miasta. Waga danego punktu zmienia się również w trakcie dnia - rano 
istotniejszy jest kierunek do centrum, dzielnic przemysłowych, czy akademickich, po 
południu natomiast - centrów handlowych i dzielnic mieszkaniowych.
Rozwiązanie problemu synchronizacji rozkładu jazdy wymagać może jednak 
uwzględnienia dodatkowych ograniczeń:
• w ciągu dnia zmianie może ulegać wartość taktu (np. we Wrocławiu tramwaje w 

szczycie kursują co 12 minut, poza nim co 15 min., wieczorem - co 20 min.). W 
tym przypadku każda pora tworzy praktycznie odrębne zadanie synchronizacji, 
które może być rozwiązywane osobno.

• podobnie, w ciągu dnia zmianie mogą ulegać czasy przejazdu między węzłami 
(dzieje się tak głównie w ośrodkach, w których komunikacja zbiorowa nie ma 
wydzielonych pasów ruchu). Rozwiązanie jest analogiczne - doba dzielona jest na 
pory, w których obowiązują określone zestawy czasów - dla każdego z nich zada­
nie rozwiązywane jest oddzielnie.

• zmienione mogą być rozkłady jazdy tylko niektórych linii (często w przypadku 
remontów rekonstrukcji poddaje się jedynie rozkłady linii o zmienionej trasie). 
Rozwiązaniem jest sztywne uzależnienie odjazdu z pętli początkowej jednej linii 
od startu innej.

• niektóre linie wykorzystują na trasie odcinki jednotorowe, gdzie wyznaczone są 
stałe punkty mijania. Podobnie jak w poprzednim przypadku, rozwiązaniem jest 
sztywne powiązanie startów - w tym przypadku dwóch kierunków jazdy jednej 
linii.

2. Algorytm genetyczny
Zastosowanie algorytmu genetycznego [Gol 1995] do tak postawionego problemu nie 
nastręcza większych trudności. Opisujący osobnika genotyp powinien zawierać ze­
staw startów poszczególnych linii. Funkcja oceniająca natomiast - oceniać równo­
mierność pojawiania się pojazdów komunikacji zbiorowej na wskazanych węzłach, z 
odpowiednimi wagami.
Po uwzględnieniu ograniczeń wymienionych w punkcie 1, przyjęto następującą postać 
genotypu:
• liczba genów będzie równa liczbie niezależnych startów linii - najczęściej jednej 

linii odpowiadać będą dwa geny (pierwszy dla kierunku tam, drugi - z powrotem), 
jednak za odjazdy linii o narzuconej z góry wzajemnej synchronizacji odpowiadać 
będzie tylko jeden gen, podobnie dla dwóch kierunków linii przebiegającej przez 
odcinki z wyznaczonymi sztywnie mijankami.
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• jeden, wybrany gen powinien mieć zawsze wartość zero (istotne są nie same war­
tości startów linii, ale wzajemne przesunięcia między nimi).

• wykorzystując powyższy fakt, przyjęto że wartość zero będzie miał gen „zerowy” 
- będą z nim związane starty linii o rozkładach nie podlegających zmianom (na­
rzuconej synchronizacji).

W trakcie działania algorytmu genetycznego, dane z genotypu przeliczane są na mo­
menty pojawiania się linii na węzłach według wzoru:

= (gG(/) + A J mod T (1)
gdzie:
tlw - moment (w takcie) pojawienia się linii 1 na węźle w;

Scni) ~ gen określający start grupy linii;

G(/) - funkcja wskazująca, do której grupy linii zalicza się linia 1;

p}w - czas przejazdu linii I od punktu początkowego do węzła w;
T - długość taktu.

Następnie, przyjazdy wszystkich linii branych pod uwagę na danym węźle oceniane są 
pod względem regularności:

= R(tl{w,tl2w,...,tlnw,T\ (2)
gdzie:
Ow - ocena synchronizacji na węźle w;

R^t-,,tn,T)~ funkcja oceniająca regularność wystąpień t\+tn w takcie o długości 
T\
tliw - moment (w takcie) pojawienia się linii /, na węźle w;
n - liczba linii branych pod uwagę w ocenie synchronizacji na węźle.

Funkcja oceniająca regularność może być przy tym oparta np. na odchyleniu stan­
dardowym odstępów pomiędzy momentami pojawienia się linii na węźle.
Ogólna ocena rozwiązania sprowadza się do sumy ważonej wyników ocen cząstko­
wych:

m

1=1

gdzie:
O - ogólna ocena rozwiązania;
Owi - ocena synchronizacji na węźle wz;

wwj - waga synchronizacji na węźle wz;
m - liczba branych pod uwagę węzłów.
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Jak widać, algorytm będzie mógł zdecydować się na poświęcenie kilku mniej istot­
nych węzłów sieci, za cenę dobrego rozwiązania na jednym z węzłów podstawowych. 
Z tego też względu bardzo istotny jest rozważny dobór wag synchronizacji na po­
szczególnych węzłach.

W algorytmie założono wykorzystanie krzyżowania jednopunktowego. Sposób 
konstrukcji genotypu zapewnił, iż w procesie krzyżowania nie mogły powstać genoty­
py błędne. Dopuszczono również mutację - losowo wybrany gen mógł zmienić war­
tość o maksymalnie ±12,5%.

3. Realizacja programowa
Podczas implementacji algorytmu oparto się na fikcyjnym takcie 256, co pozwoliło na 
wykorzystanie sprzętowej arytmetyki bajtowej (modulo 256). W związku z tym, przed 
rozpoczęciem obliczeń, wszystkie wartości czasów przejazdu były przeskalowywane 
(przemnożenie przez wartość 256/T).
Każdy gen mógł być więc przechowywany w jednym bajcie, co wpłynęło pozytywnie 
na szybkość obliczeń. Zgodnie z założeniami omówionymi w punkcie drugim, w każ­
dym pokoleniu ewolucji genotyp był normalizowany (po operacji krzyżowania czy 
mutacji wartości wszystkich genów zmniejszane były o wartość genu zerowego).
Funkcję oceniającą oparto na sumowaniu odchyleń odstępów między momentami 
pojawienia się kolejnych linii na węźle od wartości optymalnej (tak np. dla T=12 min. 
i 4 linii optymalny odstęp wynosi 3 minuty).

W trakcie badań testom poddano samo zachowanie się algorytmu genetycznego. 
Na ich podstawie przyjęto, że:
• rozmiar populacji wynosić będzie 1024 osobniki;
• populacja początkowa będzie tworzona losowo;
• przez pierwsze 30 pokoleń nie będzie wykorzystywana mutacja;
• przez kolejne 30 pokoleń prawdopodobieństwo mutacji będzie wynosić 1%;
• począwszy od 61 pokolenia prawdopodobieństwo mutacji będzie 10-procentowe;
• wykorzystywana będzie elitarna metoda selekcji - w każdym pokoleniu gorsza 

połowa populacji zostanie zastąpiona krzyżówkami organizmów lepszych;
• moment zakończenia ewolucji będzie dobierany w zależności od otrzymywanych 

w danym przypadku wyników.

4. Badania na rzeczywistych sieciach tramwajowych
Powstałe oprogramowanie posłużyło do testów na danych pochodzących z dwóch 

dużych polskich ośrodków miejskich - Wrocławia i Poznania. W obu przypadkach 
„kręgosłup” sieci komunikacyjnej stanowią linie tramwajowe. W momencie wykony­
wania badań we Wrocławiu kursowały 23 linie (co 12, 15 lub 20 minut - zależnie od 
pory dnia), w Poznaniu 15 linii (co 10, 15 lub 20 minut - zależnie od rodzaju dnia).

Pierwsze badania wykonano dla Wrocławia, pory III dnia roboczego (od godziny 
12.00 do 17.00). Linie tramwajowe kursują wówczas co 12 minut. W wyborze pory 
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kierowano się opinią pracowników MPK Wrocław, zajmujących się ręcznym opraco­
wywaniem synchronizacji - właśnie ta pora została określona jako najtrudniejsza.

W chromosomie znalazło się 45 genów (23 linie tramwajowe, z których jedna (nr 
17, relacji Klecina - Sępolno) miała narzucone mijanki). Na funkcję oceniającą skła­
dały się 44 oceny cząstkowe (26 związanych z węzłami podstawowymi i 18 - uzupeł­
niającymi). Węzły podstawowe (waga 2) zostały wybrane na liniach dojazdowych do 
centrum, uzupełniające (waga 1) na krótszych odcinkach, w obrębie centrum.

Uzyskane wyniki oceniono wysoko - na 13 węzłów podstawowych, tylko w jed­
nym (Pilczyce) równomierność odjazdów nie była dobra. W przypadku węzłów uzu­
pełniających, regularność była dobra, lub zadowalająca.
Badanie ponowiono, podnosząc wagę węzła Pilczyce do 4, bez zmian pozostałych 
parametrów. Otrzymano praktycznie optymalny rozkład odjazdów na węźle Pilczyce, 
z nieznacznym pogorszeniem synchronizacji na niektórych węzłach uzupełniających.

Po zakończeniu podstawowej fazy badań, wykonano szereg optymalizacji dla ce­
lów kontrolnych i porównawczych. Sprawdzono m.in. działanie algorytmu dla innych 
pór czasowych Wrocławia i sieci tramwajowej Poznania. Uzyskane wyniki były dobre 
lub zadowalające (szczegółowe omówienie znajduje się w [Kwa 99]).

5. Porównanie metod synchronizacji rozkładów jazdy
W trakcie przeprowadzania testów działania algorytmu genetycznego, nawiązana zo­
stała współpraca z działem rozkładów jazdy Miejskiego Przedsiębiorstwa Komunika­
cyjnego we Wrocławiu. W efekcie prac powstało nowe oprogramowanie komputero­
we, wykorzystujące przegląd zupełny. Rozwiązanie takie było możliwe, ze względu 
na bardzo ostre warunki stawiane przez koordynatorów rozkładów jazdy w MPK 
Wrocław. W rezultacie przestrzeń poszukiwań rzędu 1040 zawężana jest maksymalnie 
do 106 przypadków, przy czym dla parzystych wartości taktu (12 i 20 minut) nie prze­
kracza zazwyczaj nawet 30.000 kombinacji.

Nowe podejście oparte jest o operacje macierzowe, zbliżone do rozwiązywania 
układu równań z wieloma niewiadomymi. Ograniczenia narzucane synchronizacji są 
bowiem bardzo ostre - nie tylko zawierają dopuszczalne odstępy między pojawienia­
mi się linii na węźle, ale nawet określają kolejność ich wystąpienia. O trudności pro­
wadzenia takiego zadania optymalizacji świadczyć może fakt, iż w około połowie 
przypadków wykazywana jest niemożliwość realizacji pełnego zestawu warunków.

Na podstawie przeprowadzonych badań i kilkuletniego okresu współpracy z użyt­
kownikiem rzeczywistego systemu, należy stwierdzić, iż zarówno algorytmy gene­
tyczne, jak i przegląd zupełny mogą być z powodzeniem stosowane w poszukiwaniu 
synchronizacji rozkładów jazdy miejskiej komunikacji zbiorowej.
Największe pole zastosowań algorytmów genetycznych mieści się przy tym w przy­
padku sieci o niezbyt dobrze rozpoznanej specyfice - gdzie warunki stawiane syn­
chronizacji sprowadzają się do wskazania punktów, w których ma zostać dokonana 
optymalizacja. Ze wzrostem skomplikowania narzucanych warunków maleje rozmiar 
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przestrzeni poszukiwań - możliwe więc staje się stosowanie technik opartych na prze­
glądzie zupełnym. Należy również wspomnieć o podejściu hybrydowym - możliwości 
wykonania synchronizacji kilku linii w oparciu o przegląd zupełny, a następnie wyko­
rzystania wyników jako danych wejściowych algorytmu genetycznego (optymalizacja 
całości systemu).
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Streszczenie

Artykuł podejmuje zagadnienie generowania muzyki przez program komputerowy 
wykorzystujący algorytm genetyczny jako mechanizm generujący. Autor artykułu musi w 
pewnym stopniu zdefiniować pojęcie muzyki, oceniać w obiektywny sposób to, co nam 
wszystkim wydaje się jak najbardziej subiektywne. Implementacja algorytmu genetycznego 
prezentowanego w artykule nie różni się niczym na poziomie ideowym od powszechnie 
przyjętej formy: oceń pokolenie, wybierz najlepszych, wykorzystaj ich do stworzenia nowego 
pokolenia, jednak tematyka artykułu jest już w dużym stopniu niestandardowa. Do oceny 
potrzebne są kryteria - jeśli chodzi o ocenę muzyki, musimy przyjąć duże założenia 
upraszczające, aby takie kryteria zdefiniować.

Wstęp
Ludzkość zawsze próbowała ułatwić sobie życie zaprzęgając do pracy maszyny. 
Początkowo do najprostszych czynności, potem do coraz bardziej złożonych. Na 
pewnym etapie tych ułatwień ktoś wpadł na pomysł, aby udostępnić dla komputerów 
- czyli maszyn obliczeniowych - dziedziny do tej pory zarezerwowane tylko dla 
człowieka. Sztuka, bo o niej mowa, z natury swojej rzeczy jest nieobliczalna, oddaje 
wnętrze człowieka, jego spontaniczność, intuicję, geniusz, specyficzną wiedzę opartą 
na niematematycznych regułach. Jak z tym wszystkim pogodzić imperatywny 
charakter tego co dzieje się wewnątrz maszyny? Dla wielu - absurd. Podjęte zostały 
już jednak pewne nieśmiałe kroki, aby nauczyć komputer „kultury”, bo to właśnie jej 
przejawem jest sztuka. Bardzo często wykorzystuje się do tego algorytmy genetyczne 
(GA) lub inne metody wzorujące się na naturze. Do tej pory wyniki badań nie są 
najbardziej zachęcające, nie oznacza to jednak, że kierunek badań jest zły. Wszystko 
zależy, jak to zwykle w przypadku GA, od pomysłowości w dobieraniu kształtu 
genotypu oraz operatorów genetycznych. W większości przypadków nie znamy i nie 
chcemy z góry znać przebiegu działania GA. Interesuje nas jedynie efekt - czyli 
zoptymalizowane rozwiązanie.

Naprawdę trudnym zadaniem jest optymalizowanie muzyki. W tym wypadku 
efektem działania GA powinno być oczywiście wygenerowanie muzyki takiej, do
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jakiej przyzwyczajone jest ucho ludzkie, tzn. muzyki, w której panuje pewien 
porządek, jest ona złożeniem porządku w rytmice oraz harmonii. Pomijam tu zupełnie 
kwestię aranżacji, ekspresji czy artykulacji, które też są nieodłączną częścią muzyki, 
ale większy wpływ na nie ma jednak wykonawca a nie kompozytor. Muzyka jest 
akceptowalna wtedy, gdy podoba się, z tego czy innego powodu, słuchaczowi. Owo 
podobanie się zależy tylko od jego indywidualnych preferencji - gustu muzycznego, 
od nastroju chwili, kontekstu w jakim się znajduje i na pewno również od pogody za 
oknem. Ponieważ uwzględnienie wszystkich tych czynników jest rzeczą niemożliwą, 
są to czynniki w większości niemierzalne, musimy podjąć pewne założenia 
upraszczające. W próbie generowania muzyki, pierwszym poczynionym założeniem 
mogłoby być ograniczenie się do gustu jednej i tylko jednej osoby. Jednak i wtedy 
pozostaje do uwzględnienia wiele nie dających się zdefiniować w ścisły sposób pojęć. 
Ograniczmy się więc do osiągnięcia następującego efektu: muzyka pochodząca z 
pierwszych pokoleń (nuty generowane są niemalże losowo) musi być odróżnialna od 
muzyki pochodzącej z pokoleń późniejszych - oczywiście ta druga powinna być 
„muzycznie” doskonalsza.

1. Wprowadzenie w tematykę, czyli jak robią to inni
Z pomysłami innych komputerowych kompozytorów najłatwiej zapoznać się w 
Internecie. Problem generowania muzyki przez maszyny okazuje się bardzo 
popularnym tematem w sieci. Bez żadnych trudności można przyjrzeć się pracom i 
wynikom prac innych autorów. Najbardziej interesujące wydają się być prace 
wykorzystujące algorytmy genetyczne. Autorzy prac przedstawiają struktury 
chromosomów, użyte operatory genetyczne, specyfikację swoich systemów. Dla 
przykładu i rozjaśnienia tematyki przedstawiony zostanie system zaimplementowany 
przez Bruce Jacob’a z uniwersytetu w Michigan.
Bruce Jacob[4] we wstępie do swojego artykułu „Komponowanie z algorytmami 
genetycznymi” próbuje zdefiniować sam proces powstawania muzyki, czyli 
twórczość. Według niego istnieją dwa, nie mające z sobą nic wspólnego, sposoby na 
komponowanie muzyki: błysk (flash) czyli geniusz, impresja, komponowanie niejako 
bez uwzględniania żadnych reguł, sztuka. Drugi sposób to proces iteracyjny, 
polegający na szukaniu najlepszego rozwiązania dzięki ciężkiej i wytrwałej pracy - w 
tym Bruce Jacob widzi szansę dla algorytmu genetycznego. Musimy polegać na 
ciężkiej pracy (hard work) z tego powodu, że nie tylko nie potrafimy modelować 
muzyki, ale nie potrafimy jej w żaden sposób zrozumieć. Ciężka praca Jacob’a 
polegała na wykorzystaniu istniejących już wzorców (motywów) muzycznych do 
generowania wariacji na ich temat. Ogólny zamysł jego projektu przedstawia się więc 
w następujący sposób:
1. zdefiniuj zbiór głównych motywów, które wykorzystasz w procesie kompozycji,
2. komponuj frazy układając motywy w pewne sekwencje,
3. twórz nowe motywy wybierając spośród motywów głównych i tych już 

wykorzystanych we frazach, produkując wariacje na ich temat,
4. połącz frazy w większe części.
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Aby ograniczyć domenę poszukiwań Jacob nie pracuje na poziomie pojedynczych 
nut, a wykorzystuje motywy, czyli struktury wyższego poziomu - mogą być nimi np. 
takty. Cały system wykorzystuje i komponuje więc małe motywy, następnie aranżuje 
je w większe frazy. Wtedy kompozycja staje się o wiele prostszym procesem. W 
systemie Jacoba występują moduły: kompozytor (composer), ucho (ear) i aranżer 
(arranger). Użytkownik systemu definiuje zbiór głównych motywów. Kompozytor 
dokonuje wariacji na ich temat i używa ich do produkcji większych fraz. W 
momencie, gdy motyw dodawany jest do frazy, do akcji wkracza ucho. Jeśli ucho 
stwierdzi, że motyw nie jest odpowiednim składnikiem harmonicznym tej frazy, 
motyw jest usuwany. Gdy istnieje już odpowiednia liczba fraz do wykorzystania, 
aranżer produkuje i ocenia porządki fraz, które są następnie wykorzystywane do 
produkcji nowych i lepszych porządków. Algorytmy genetyczne są użyte w każdym z 
podanych tu komponentów. Parametry tych komponentów zapisane są w 
chromosomach, które to ewoluują właśnie dzięki algorytmom genetycznym.

2. Opis systemu MGen
System do generowania muzyki MGen napisany został w języku 

programowania Java i składa się, podobnie jak system B. Jacob’a, z trzech 
głównych części (rysunek 1):
- Kompozytor (moduł Composer}
- Ucho (moduł Ear)
- Aranżer (moduł SongMaker)

Skomponowane Najlepsze takty 
przekazywane 
są do Aranżera

Działanie GA - 
Ucho ocenia 
kolejne poko­
lenia taktów

SongMaker

Rys. 1. Droga, którą pokonują takty w czasie działania systemu MGen

Moduły te są odpowiedzialne za produkowanie materiału muzycznego. Sama muzyka 
przechowywana jest w specjalnie stworzonej strukturze danych. Struktura ta jest 
czymś, co w terminologii algorytmów genetycznych nazywamy po prostu pokoleniem 
{Generatioń). Jest ona zbiorem taktów, takt to pojedynczy osobnik pokolenia, 
reprezentujący najmniejsze rozwiązanie problemu generowania muzyki. Wszystkie 
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moduły działają w sposób od siebie niezależny (w innym czasie), każdy polega na 
wynikach swego poprzednika w podanej wyżej kolejności (najpierw pracuje 
Kompozytor, potem Ucho, którego wyniki pracy wykorzystuje Aranżer - rysunek 1). 
Algorytm genetyczny wykorzystywany jest jedynie w module Ucho. Ucho ocenia 
występujące w pokoleniu takty, a ocena ta jest podstawą poprawnego działania 
algorytmu genetycznego.

1.1 Opis modułów oraz zastosowanego algorytmu genetycznego

• Moduł Kompozytor
Moduł ten jest odpowiedzialny za przygotowanie początkowej postaci pokolenia 
zawierającego wybraną przez użytkownika liczbę taktów. Komponowanie polega na 
losowym doborze nut (ich wartości rytmicznych jak i wysokości dźwięku), tak aby 
komponowały się one w pojedynczy takt w metrum 4/4. Na moduł Kompozytor 
nałożone są pewne ograniczenia, aby komponowane takty nie przyjmowały' zanadto 
chaotycznej postaci. Komponowanie przeprowadzane jest z rozdzielczością do 16 
części nuty z uwzględnieniem triol ósemkowych i czwórkowych (łącznie 7 rodzajów 
nut ze względu na rytmikę). Wysokość każdej nuty dobiera się losowo na przestrzeni 
trzech kolejnych skal chromatycznych (3 * 12 = 36 różnych dźwięków). Takty 
przyjmują uporządkowaną strukturę rytmiczną dzięki zastosowaniu następującego 
mechanizmu: w danej chwili prawdopodobieństwo wylosowania ostatnio 
wylosowanej wartości rytmicznej jest równe %, z założeniem, że początkowo 
wylosowanie ćwierćnuty jest równe /i. Efektem tego jest powtarzanie się w taktach 
jednej po drugiej tych samych wartości rytmicznych, tak jak to się często dzieje w 
kompozycjach dokonanych przez człowieka (autor nie przeprowadzał żadnych badań 
statystycznych materiału nutowego). Pokolenie stworzone przy pomocy Kompozytora 
przekazywane jest do pracy z algorytmem genetycznym.

• Moduł Ucho
Ucho to zasadnicza część systemu MGen. Dokonuje oceny wszystkich taktów z 
pokolenia, aby algorytm genetyczny mógł prawidłowo działać z wykorzystaniem tych 
ocen jako wartości funkcji celu. Dlatego na poziomie opisu ucha dokonany zostanie 
opis zastosowanego algorytmu genetycznego.

Czym jest ocena taktu?
Ocena rozbita została na trzy części odpowiadające trzem punktom widzenia, według 
których oceniany jest pojedynczy takt:
1. Takt oceniany jest pod względem przynależności jego nut do skali, w której 

chcemy komponować.
W przyjętym w muzyce klasycznej (i każdej późniejszej, oprócz egzotyki typu 
muzyka orientalna) systemie tonalnym istnieje 12 różnych dźwięków: C Cis D Dis E 
F Fis G Gis A B H. W skład skal muzycznych wchodzi najczęściej tylko 7 spośród 
tych dźwięków. Istnieje wiele skal, przykładem skali jońskiej jest gama C dur, w skład 
której wchodzą dźwięki: C D E F G A H. Aby komponować w gamie C dur możemy 
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wykorzystywać jedynie te dźwięki spośród wszystkich 12 na przestrzeni dowolnej 
liczby oktaw. Są to założenia trochę upraszczające, ale w gruncie rzeczy tak właśnie 
jest. Ocena skali jest więc odsetkiem należących do danej skali nut w danym takcie. 
Każdy takt może otrzymać maksymalnie 100 punktów. Ucho ocenia takty według 
aktualnej skali wybranej przez użytkownika, np. skala D dorycka (dorian D).
2. Ocena pod względem współbrzmienia ze sobą nut z każdego taktu.
Problem ten rozwiązano bez sformalizowania zasad rządzących kompozycją harmonii 
utworu. Chociaż jest to w pewnym stopniu możliwe (na Akademiach Muzycznych 
wykłada się przedmioty uczące właściwej kompozycji), autor uznał, że jest to obszar 
wiedzy za mało przez niego poznany i gdyby miał w tej materii wyciągać wnioski, nie 
byłyby one do końca słuszne i prawdziwe. Na przykład, wcale nie jest prawdą, że 
najczęściej występują w bezpośrednim sąsiedztwie ze sobą nuty różniące się tylko o 
jeden stopień skali (bo gdzie mieściłaby się ekspresja budowana przez chociażby 
zaskoczenie?). Muzyka, jak każdy inny rodzaj sztuki może wyrażać ludzkie uczucia, a 
czy człowiek zawsze jest tylko w trochę innym stanie emocjonalnym niż był przed 
chwilą? Dlatego MGen proponuje inne rozwiązanie. Tą propozycją jest stworzenie 
przez użytkownika systemu banku brzmień. Bank ten byłby zbiorem taktów 
wyrażających indywidualne preferencje słuchacza i tym samym stanowiłby niepełną 
funkcję oceniającą wszystkie możliwe takty. Im większy jest rozmiar banku, tym 
dokładniejsza jest ocena muzyki. Gdyby bank zwierał wszystkie możliwe takty z ich 
ocenami, byłby kompletną funkcją oceniającą muzykę, uwzględniającą preferencje 
muzyczne słuchacza. Jest to niewykonalne chociażby dlatego, że liczba wszystkich 
możliwych taktów w systemie MGen jest z równa:

C = Ab, gdzie:
C - liczba różnych taktów, jest to liczba permutacji 48 elementowych z 

powtórzeniami ze zbioru 37 elementowego,
A - liczba różnych możliwych nut, A = 3 * 12 + jedna nuta pusta = 37 nut,
B - maksymalna liczba nut w takcie = 48, zatem: 

C = 3748.
Poza tym, gdybyśmy dysponowali takim bankiem moglibyśmy po prostu wybrać z 
niego najlepsze takty (gdybyśmy mieli tylko czas na przeglądanie tak dużego zbioru 
ocen taktów).
W ostatecznej wersji systemu, takty z każdego pokolenia porównywane są z taktami 
pochodzącymi z banku. Jeśli w takcie z pokolenia wystąpi sekwencja nut z banku, 
jego ocenę zwiększa się o ocenę sekwencji z banku. Oceny taktów w banku pochodzą 
od samego autora tego banku. Każdy takt może otrzymać ocenę z zakresu 0.. 100.

Same takty banku jawią się dla użytkownika jako ciągi liczb z zakresu 1..21 
(Rysunek 2), które odzwierciedlają sekwencje dźwięków wyróżnione przez autora 
banku. Przykładowo, ciąg 1,3,5 dla wybranej przez użytkownika skali C-dur oznacza 
ciąg dźwięków C, E, G. Jeżeli te dźwięki pojawią się w jakimkolwiek 
wygenerowanym takcie w tej właśnie kolejności, to ocena tego taktu wzrośnie o ocenę 
ciągu 1,3,5. Godnym zauważenia jest fakt, że sekwencje z banku (np.: 1,3,5) nie 
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odzwierciedlają bezpośrednio konkretnych nut, a stopnie skali w jakiej aktualnie 
pracuje kompozytor oraz tej, której Ucho używa do oceny taktów.

Rysunek!. Okno edytora banku brzmień

3. Ocena rytmiki zrealizowana jest, podobnie jak wyżej ocena współbrzmienia 
nut, przy pomocy banku rytmów.

W tym wypadku takt jest tablicą 48-elementową. Wypełnione pole tablicy oznacza 
nutę w takcie umiejscowioną w wybranym przez użytkownika miejscu taktu. W banku 
rytmów ostatnia zaznaczona w takcie nuta nie jest brana pod uwagę, stanowi ona 
jedynie ograniczenie długości trwania poprzedniej nuty (w przeciwnym wypadku 
ostatnia nuta dopełniałaby każdą sekwencję wartości rytmicznych do długości trwania 
taktu w metrum 4/4, patrz opis chromosomu w dalszej części pracy).

1.2 Opis algorytmu genetycznego, struktury chromosomu i użytych operatorów
Zastosowany w systemie algorytm genetyczny właściwie nie różni się od 
standardowej postaci algorytmu genetycznego podanej w podręczniku Goldberga[l] 
czy Michalewicza[2]. Pierwsze pokolenie jest pokoleniem niemalże losowym, o 
liczbie osobników zadeklarowanych przez użytkownika. Każde następne pokolenie 
jest reprodukowane z poprzedniego po dokonaniu selekcji metodą ruletki. 
Użytkownik ma możliwość wyboru dowolnej liczby pokoleń, na którą uruchomiony 
zostaje algorytm genetyczny.

• Reprezentacja taktu - reprezentacja chromosomu
Chromosom (takt) to tablica złożona z 48 elementów 16 bitowych (typ short w Javie). 
Każdy element to niezależna nuta. Wartość elementu decyduje o wysokości nuty. 
Położenie elementu w chromosomie decyduje o długości trwania nuty. Każda kolejna 
nuta ogranicza długość trwania poprzedniej nuty. Długość ostatniej nuty ogranicza 
koniec taktu. Zastosowano więc kodowanie całkowitoliczbowe.

Przykład:
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Gdybyśmy chcieli zapisać takt w metrum 4/4 składający się z 4 ćwierćnut o 
wysokości dźwięku C, to wyglądałby on tak jak na Rysunku 3.

Podział taktu na

Podział ćwierć- 
nuty na cztery 

szesnastki

Podział ćwierć- 
nuty na trzy nuty 
trioli ósemkowej

Legenda:
‘ł’,’2’,’3’,’4’ - odległość między kolejnymi liczbami to długość trwania 
ćwierćnuty
‘+’ - odległość między kolejnymi plusami to długość trwania szesnastki, w 
charakterze ‘+’ występują również liczby ‘ 1’,’2’,’3’,’4’
‘t’ - odległość między kolejnymi literkami ‘t’ to długość trwania trioli ósem­
kowych, w charakterze literki ‘t’ występują również liczby ‘ł’,’2’,’3’,’4’

- pozostałe wartości rytmiczne

Rysunek 3. Przykładowy takt w metrum 4/4

Dokładnie widać, że elementy zaczernione reprezentują nuty, ich położenie na 
początku taktu, w %, '/z, i 3Zi części taktu odzwierciedla długość trwania nuty, 
natomiast nie prezentowana tutaj wartość każdego czarnego elementu, decyduje o 
wysokości brzmienia nuty.

• Operatory genetyczne. (Crossoverl, Crossover2, Crossover3, Mutationl, 
Mutation2, Myl)

Crossoverl jest standardowym operatorem krzyżowania zaczerpniętym z Goldberga 
[1] (Rysunek 4). Losowo wybierany jest punkt przecięcia chromosomu (wartość z 
przedziału 0..47). Cięcie decyduje o wyglądzie dwóch taktów - potomków 
uzyskanych z dwóch taktów-rodziców. Należy przy tym zaznaczyć, że przy tej 
operacji możliwa jest zmiana długości trwania nut znajdujących się na końcu 
pierwszej części przecinanego taktu-rodzica. Nowa długość trwania nuty wcale nie 
musi mieć długości standardowej, tzn. takiej, jaką wykorzystuje w swym działaniu 
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Kompozytor (ćwierćnuta, ósemka, ...). W ten sposób w takcie może zaplątać się nuta o 
wartości rytmicznej ósemki z kropką, bądź każda inna nuta, której czas trwania jest 
wielokrotnością trzydziestkidwójki z kropką (każdy takt podzielony jest na 
maksymalnie 48 równych części - patrz opis genotypu). Autor projektu celowo nie 
eliminował tego zjawiska. Doświadczenie pokazało, że nowo powstałe nuty w 
niewielkim stopniu wpływają na nieregularność taktów w pokoleniu. Crossoverl 
sprzężony jest z mutacją Mutationl. W tym operatorze mutacji prawdopodobieństwo 
mutowania odnosi się do każdej, niepustej nuty w takcie. Nuta jest mutowana 
standardowo tylko pod względem wysokości brzmienia nuty (tak aby nowa wartość 
nuty należała do aktualnej skali), opcjonalnie można włączyć jej przemieszczenie się 
w takcie po dokonaniu mutacji (moving in mutation). Nowe położenie nuty wybierane 
jest tu w sposób zupełnie losowy.

Crossover2 jest operatorem bardzo podobnym do operatora Crossoverl, ale 
wzbogacony jest o mechanizm Myl (rys. 5). Mechanizm ten polega na zmianie 
sposobu tworzenia nowych taktów z taktów rodziców. Myl działa z pewnym 
ustalonym prawdopodobieństwem, dotyczącym każdego taktu i polega na zamianie 
kolejności dwóch sklejanych części tworzących nowy takt.
Crossover2 sprzęgnięty jest z innym operatorem mutacji niż Crossoverl. Mutation2 
polega na mutowaniu całego taktu (prawdopodobieństwo mutowania przypada na 
pojedynczy takt) w pewien określony sposób. Losowo wybierana jest jedna nuta z 
taktu, a następnie mutowana jest jej wysokość brzmienia. Zmieniony został, włączany 
opcjonalnie, sposób przemieszczania się nuty w takcie. Nie zachodzi on całkowicie 
losowo, a w następujący sposób: znajdowana jest najdłuższa nuta w takcie, jej długość 
skracana jest do połowy poprzez wstawienie za nią nowej, zmutowanej nuty. Takie 
podejście pozwala na regularne rozmieszczenie się nut w takcie (zapobiega 
grupowaniu się nut koło siebie w takcie).

Dwa takty 
otrzymane 
po krzyżo­
waniu

Dwa takty 
przed krzyżo­
waniem

Rysunek 5. Działanie operatora Crossover2 wzbogaconego o mechanizm Myl
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Crossover3 jest najbardziej wyspecjalizowanym, skomplikowanym i nowatorskim 
operatorem ze wszystkich wykorzystanych w systemie MGen. Jego działanie jest w 
pewien sposób dwupoziomowe. Jak już wiemy, takty oceniane są z trzech 
niezależnych punktów widzenia. Punkty te można podzielić na te oceniające melodię 
(przynależność nut do skali, współbrzmienie nut z sobą) oraz te oceniające rytmikę. 
Idea operatora jest więc taka aby w czasie selekcji stworzyć dwa pokolenia 
rodzicielskie, każde o liczbie osobników równej liczności populacji, gdzie w pierwszej 
puli znalazłyby się takty o najładniejszym brzmieniu, a w drugiej puli takty o 
najlepszej rytmice. Wtedy takty przeznaczone do kolejnego pokolenia byłyby 
krzyżówką taktów z obu pokoleń rodzicielskich.
Crossover3 wykorzystuje więc inny mechanizm selekcji - Selection2. Selection2 
metodą ruletki tworzy dwa pokolenia rodzicielskie: RythmParents i SoundParents. 
Obie pule rodzicielskie nie muszą być zbiorami rozłącznymi. Działanie Crossover3 
jest następujące: w pierwszej fazie działanie operatora jest identyczne z działaniem 
operatora Crossover2, z tą różnicą, że pulą rodzicielską są takty z puli RythmParents. 
Tworzone są takty będące wynikiem krzyżowania taktów o najlepszej rytmice w 
pokoleniu. Następnie, w drugiej fazie, wartości melodyczne nut z taktów są 
nadpisywane wartościami melodycznymi taktów pochodzących z puli rodzicielskiej 
SoundParents. Operator Crossover3 sprzężony jest z wersją mutacji Mutation2.

• Moduł Aranżer^SongMaker)
Jego działanie polega na grupowaniu taktów w większe formy muzyczne (frazy). 
Takty do tworzenia fraz pobiera on z przygotowanego wcześniej przez użytkownika 
banku taktów. Użytkownik, obserwując ewolucję taktów, może wybierać sobie takty 
odpowiadające jego preferencjom i podsyłać je aranżerowi (przycisk Add na ekranie 
głównym aplikacji). Aranżer składa frazy według podanej przez użytkownika formy. 
Forma może mieć przykładową postać:

Formal:abcddabcdd,
gdzie każdy znak odpowiada jednemu taktowi (niekoniecznie różnemu od innych 
znaków). Fraza w tym przypadku budowana jest z czterech części a, b, c oraz d 
składanych przez aranżer w podanej w Formiel kolejności. Przyporządkowanie 
taktów do znaków odbywa się losowo w przestrzeni wybranych przez użytkownika 
taktów (losowanie ze zwracaniem). Aranżer pozwala na zapisanie powstałych fraz do 
pliku Midi oraz odczyt wcześniej powstałych fraz zapisanych w pliku Midi.

3. System MGen w praktyce
Program uruchamia się wykonując plik wsadowy nm.bat z katalogu classes po 
uprzednim upewnieniu się, że w systemie zainstalowany jest JDK w wersji 1.3. Może 
zdarzyć się tak, że nie są ustawione ścieżki do JDK i wtedy warto przekopiować do 
katalogu classes plik java.exe.
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Czynności wykonywane po uruchomieniu programu:
• Przy pomocy Kompozytora należy wygenerować początkowe pokolenie taktów. 

Zalecana wielkość pokolenia to 200 taktów. Po wygenerowaniu pokolenia pojawi 
się jego reprezentacja widoczna w oknie aplikacji. Otrzymane takty można 
odsłuchiwać klikając na ocenę danego taktu i w ten sposób zaznaczając go, a 
następnie naciskając przycisk Start na panelu po lewej stronie okna aplikacji.

• Następnie należy utworzyć banki brzmień i rytmów. Można to zrobić ręcznie 
(menu Bank\EditXXXBank\ ale można też skorzystać z banków przygotowanych 
przez autora wybierając z menu opcje Bank\OpenXXXBank, otworzyć banki 
rbanki.rbk oraz bankl.sbk z katalogu Bank.

• Aby banki te zostały wykorzystane do ocenienia zerowego pokolenia należy 
wybrać opcję Evaluate (żółta ikonka z paska narzędzi lub opcja z menu 
Tools\Evaluate). Po wybraniu tej opcji oceny taktów widoczne na ekranie powinny 
się zwiększyć. Dowodzi to prawidłowego działania banków.

• Możemy teraz przejść do generowania następnego pokolenia klikając niebieską 
ikonkę z paska narzędzi lub dowolną liczbę pokoleń wprzód wybierając opcję z 
menu Tools\Next n Generations. W czasie podróży po pokoleniach możemy 
dowolnie zmieniać parametry algorytmu genetycznego. Dotyczy to zarówno 
zmiany prawdopodobieństwa krzyżowania i mutacji (opcja z menu File\Options) 
jak również możemy włączać i wyłączać mutację taktów (Tools\Mutation) oraz 
przemieszczanie się nut w takcie w czasie mutacji (Tools\Moving in Mutation). 
Dowolnie mogą być również zmieniane banki w czasie działania algorytmu.

• W czasie ewolucji pokoleń należy również dostarczać wybrane przez nas takty 
aranżerowi (SongMaker) do komponowania większych fraz. Dokonujemy tego 
klikając na ocenę dowolnego taktu a następnie na przycisk Add na panelu po lewej 
stronie okna aplikacji. Aranżer SongMaker można w dowolnej chwili resetować, 
tzn. usuwać wszystkie podesłane mu wcześniej takty (Tools\ResetSoundMaker).

• W celu uruchomienia SongMaker'a wybieramy opcję z menu Tools\SongMaker. 
Wpisujemy formułę i klikamy przycisk Create. Po tym możemy odsłuchać 
stworzoną frazę (Play) lub zapisać ja do pliku .midi (Save).

4. Analiza wyników, wnioski dotyczące systemu MGen
W trakcie powstawania systemu autor spotkał się z wieloma zjawiskami 
charakterystycznymi dla AG. Dla wybranej zbyt małej populacji początkowej, takty 
bardzo szybko się do siebie upodobniały. Aby temu zaradzić włączono pierwszą 
wersję mutacji (Mutationl). Nie był to jednak operator właściwy dla przyjętej 
reprezentacji taktów. Zbyt chaotyczne jego działanie prowadziło do grupowania się 
nut koło siebie w jednym miejscu taktu, przez co takty sprawiały wrażenie 
nieskładnych i mocno przypadkowych. Również pierwsza wersja krzyżowania 
(Crossoverl) nie dopuszczała do przepływu nutek z jednej strony taktu na drugą.
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Dopiero wprowadzenie drugiej wersji krzyżowania doprowadziło do ciągłego wzrostu 
ocen w populacji przy zachowaniu różnorodności taktów. Operator Myl pozwolił na 
przepływ nut z początku na koniec taktu i odwrotnie (operator Myl wywoływany jest 
z prawdopodobieństwem 0.01 dla każdego zachodzącego krzyżowania). Druga wersja 
mutacji, oprócz zmiany wysokości nut, odpowiedzialna stała się za losowe rozbijanie 
leżących zbyt blisko siebie nut.

Pierwsza wersja krzyżowania dawała mało ciekawe wyniki. Najciekawsze wyniki 
osiągnięto stosując drugą i trzecią wersję krzyżowania.
Proponowane prawdopodobieństwa dla operatorów oraz inne parametry algorytmu:
• Prawdopodobieństwo krzyżowania, pcross = 0.99
• Prawdopodobieństwo pmut = 0.05
• Liczebność osobników w pokoleniu, size_of_generation = 200 (ciekawe efekty 

uzyskiwano również dla mniejszych pokoleń - liczba osobników rzędu 40).
• Liczba generacji - proponowane jest obserwowanie kolejnych pokoleń i wybór z 

nich taktów do aranżera na bieżąco (liczba taktów w aranżerze może być dowolna, 
optymalnie 5 - 10). W razie upodobnienia się osobników proponowane jest 
zwiększenie prawdopodobieństwa mutacji i włączenie algorytmu na około 10 
pokoleń.

5. Implementacja systemu MGen
System MGen napisany został w języku programowania Java, który jest językiem 
bardzo mocno zorientowanym na programowanie obiektowe. Dlatego naturalnym 
stało się zaimplementowanie wszystkich modułów systemu jako klas języka Java. Oto 
krótki opis głównych klas systemu wraz z diagramem UML (rys. 6):

Klasa Takt - klasa modelująca takt w metrum 4/4. Jej instancje to tablice 48 
elementów typu Short.

Klasa Generation - klasa, której obiekt to tablica obiektów klasy Takt. Jedna ze 
zmiennych stanu obiektu klasy Generation, NoJGeneration, to zmienna określająca 
numer pokolenia, które zawiera sam obiekt. Jedna z metod obiektu, metoda 
NextGeneration(), dokonuje przejścia obiektu w stan nowego pokolenia

Rysunek 6. Diagram klas (UML) systemu MGen
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Klasa Kompozytor - odpowiedzialna jest za generowanie materiału muzycznego. 
Jedna z jej metod jako argument przyjmuje obiekt klasy Takt i wypełnia go 
wygenerowanymi nutami

Klasa Ear - klasa będąca częścią klasy Generation. Odpowiedzialna jest za ocenę 
wszystkich taktów wchodzących w skład klasy Generation.

Klasa SongMaker - klasa odpowiedzialna za tworzenie większych fraz z taktów 
pochodzących z ewolucji, a przekazanych do SongMaker'a z klasy Generation.

6. Podsumowanie
Ocena muzyki musi mieć charakter wyłącznie jakościowy i taka jest również postać 
tego artykułu. Wyniki działania algorytmu dostępne są w plikach .midi i bynajmniej 
nie służą one do słuchania a jedynie do dalszej ich obróbki (brak interpretacji ze 
strony odtwórcy a jedynie suchy zapis materiału nutowego). Pliki .midi są 
pełnowartościowym zapisem materiału muzycznego, dlatego stworzona przez 
generator muzyka może być w dowolny sposób wykorzystywana i aranżowana w 
dalszym procesie obróbki. Prawda jest taka, że jej wykorzystanie zależy tylko i 
wyłącznie od pomysłowości i umiejętności ludzi zajmujących się muzyką na stałe i w 
sposób profesjonalny.
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Streszczenie
W pracy omówiono zastosowanie algorytmów genetycznych w procesie komponowania mu­
zyki. W punkcie pierwszym postaramy się znaleźć odpowiedzieć na pytanie, czym właściwie 
jest proces komponowania. Rozdział drugi jest krótkim wstępem do algorytmów genetycznych. 
Punkty trzy, cztery, pięć oraz sześć omawiają dokładnie istotę działania algorytmu komponują­
cego opartego na AG. W końcowym rozdziale przypatrzymy się bliżej otrzymanym wynikom.

Wstęp
Komponować - to słowo słyszeli wszyscy ale co ono dokładnie oznacza? Cytując za 
[6]: „komponować - tworzyć dzieło sztuki (zwłaszcza muzycznej); rozmieszczać od­
powiednio elementy (dzieła), układać z nich harmonijną całość”. „Tworzyć dzieło 
sztuki” - taki termin zadowoli każdego ale jak go przenieść do świata algorytmów 
genetycznych. Pojęcie to (dzieło sztuki) nie dość, że jest niejednoznaczne, to na do­
datek „przeogromne” - łączy w sobie elementy socjologii, psychologii oraz filozofii. 
Dlatego też w dalszych rozważaniach skupimy się na drugiej części definicji.

Zastanówmy się przez chwilę co pcha człowieka, aby „rozmieszczać odpowiednio 
elementy” oraz „układać z nich harmonijną całość”. Ciśnie się od razu na usta, iż ma 
on inwencję (twórczą). No dobrze, ale, drążąc dalej temat, czymże jest inwencja? Na­
suwają się dwie odpowiedzi: jest to przebłysk geniuszu (lub przypływ inspiracji) bądź 
też jest to proces stopniowego, krok po kroku, budowania dzieła (ciężka praca). O ile 
tego pierwszego nie umiemy zamodelować i nie uczynimy tego tak długo dopóki nie 
pojmiemy czym jest geniusz (bądź inspiracja), o tyle ten drugi, z samej swojej istoty, 
daje się łatwo zalgorytmizować.

W wydaniu elektronicznym, algorytmy próbujące naśladować działania podejmo­
wane przez człowieka podczas komponowania muzyki, obejmują swym zasięgiem 
wiele technik: od prostych metod stochastycznych jak w M and Jam Factory, aż do 
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skomplikowanych systemów ekspertowych, takich jak EMI Davida Cope’a czy Cy- 
pher Roberta Rowe’a ([8], [10]).
Systemy EMI oraz Cypher działają na podobnej zasadzie - generują muzykę analizu­
jąc utwory stworzone przez człowieka. O ile jednak EMI analizuje dane wejściowe z 
gotowych kompozycji, o tyle system Rowe’a otrzymuje na wejściu dane od muzyka 
grającego na żywo. Rowe przy tym odróżnia transformacyjne komponowanie muzyki 
od komponowania opartego na generowaniu. Chociaż jego Cypher zawiera oba ele­
menty, swoje działanie opiera głównie na pierwszym sposobie - pobiera dane wej­
ściowe od użytkownika, poddaje je serii transformacji, otrzymując na wyjściu coś 
pochodnego (ale niekoniecznie podobnego).

1. Algorytmy genetyczne oraz komponowanie muzyki - gdzie 
związek ?
Popularną metodą rozwiązywania problemu, szukania odpowiedzi na pytanie, czy - w 
ogólności - uzyskania zbioru spełniającego postawione wymagania, jest konwersja 
tegoż problemu (pytania) do postaci „problemu przeszukiwania”. Idea jest następują­
ca: przeszukanie całego zbioru możliwych rozwiązań tak, aby znaleźć jedno (rozwią­
zanie) najlepiej odpowiadające zadanym kryteriom. Jednakże, aby proces poszukiwa­
nia nie trwał niepomiernie długo, co mogłoby mieć miejsce przy sprawdzaniu wszyst­
kich elementów zbioru potencjalnych rozwiązań, należy ten zbiór ograniczyć. Zazwy­
czaj czynność ta jest najtrudniejszym etapem przy stosowaniu techniki przeszukiwa­
nia.

Komponowanie muzyki można właśnie rozważać jako taki problem: bierzemy pod 
uwagę zbiór wszystkich możliwych kompozycji (który jest nieskończenie wielki) jako 
przestrzeń poszukiwań, z kryterium postawionym jako: „znaleźć kompozycję (lub 
prościej frazę'), która brzmi dobrze”. Niestety, przestrzeń ta jest kompletnie nieupo­
rządkowana co, mówiąc w przenośni, powoduje, że dobre rozwiązania mogą leżeć 
obok kompletnie niedobrych (w sensie: brzydkich, złych). Zmiana tylko kilku nut we 
frazie może ją uczynić o wiele mniej interesującą pomimo, iż obie „wyglądają” prak­
tycznie identycznie. Właściwości te implikują, że proces poszukiwania rozwiązania 
jest trudny oraz nie dający się łatwo przewidzieć.

Do rozwiązania problemów przeszukiwania dobrze nadają się algorytmy genetycz­
ne ([3], [2]), technika oparta na mechanizmach doboru naturalnego oraz dziedziczno­
ści. Algorytm rozpoczyna działanie z losowo wygenerowanymi rozwiązaniami danego 
problemu i używając odpowiednika biologicznej rekombinacji szuka coraz to lepszych 
rozwiązań. Potencjalne rozwiązania przedstawiane sąjako chromosomy składające się 
z al lei i, które to zbudowane są z liczb (ciągów liczb, bitów - w zależności od proble­
mu). W takim przypadku rekombinacja jest po prostu procesem tworzenia nowego 
chromosomu na podstawie alleli zawartych w chromosomach rodziców. Ewolucja 
rozwiązań (w kierunku „lepszych”) odbywa się poprzez wybieranie ciągów, które

'fraza - odcinek melodii, obejmujący kilka taktów, stanowiący wyodrębnioną całość. 
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najlepiej odpowiadają postawionemu kryterium (kryteriom) i krzyżowanie ich. Pomi­
mo elementu losowości, algorytmy genetyczne nie sprowadzają się do zwykłego błą­
dzenia przypadkowego. Wykorzystują one efektywnie przeszłe doświadczenia do 
określenia nowego obszaru poszukiwań o spodziewanej podwyższonej wydajności.

Jedną z pierwszych prób wykorzystania algorytmów genetycznych do kompono­
wania muzyki były działania podjęte przez Homera i Goldberga ([4], [7], [9]). Stwo­
rzyli oni AG służący do transformacji tematów muzycznych. Sekwencja prostych 
operacji, w z góry określonej liczbie kroków, miała za zadanie przeprowadzić począt­
kową frazę do frazy pożądanej (również zadanej). Operacje obejmowały wstawianie, 
usuwanie oraz rotację (całego tematu) nut. Każdy osobnik w populacji był sekwencją 
tychże operacji. W celu obliczenia wskaźnika przystosowania, dana sekwencja opera­
cji była wykonywana na początkowej („wejściowej”) frazie w celu wygenerowania 
frazy wynikowej („przetransformowanej”). Następnie, funkcja celu brała pod uwagę 
dwa czynniki, oceniając osobnika tym wyżej im bardziej efekt jego działania (fraza 
przetransformowana) był podobny do frazy pożądanej oraz im bardziej liczba kroków 
transformacji była bliższa do zadanej.

Inny algorytm zaprezentował Horowitz ([5], [7], [9]). W przeciwieństwie jednak 
do poprzedników nie zajmował się on melodiami lecz rytmami. Ocena osobników 
odbywała się dwustopniowo. Najpierw podlegały one działaniu algorytmu genetycz­
nego z określoną funkcją celu, a następnie otrzymane w ten sposób wyniki były oce­
niane przez człowieka i to ta ocena wpływała na dalszą ewolucję. Funkcja celu użyta 
w AG była ważoną sumą tego, jak bardzo dany osobnik (rytm) różni się od podanych 
(pożądanych) wartości takich jak synkopa2, stopień akcentowania taktu (ang. downbe- 
at - akcentowana miara taktu), stopień powtórzenia oraz kilku innych czynników.

2 synkopa - termin muzyczny oznaczający przeniesienie akcentu z mocnej części taktu na jego 
słabą część.
3 progresja - termin muzyczny dotyczący przeniesienia danej melodii lub struktury harmo­
nicznej o określoną odległość w górę lub w dół skali muzycznej. Progresja jest często stosowa­
nym przez kompozytorów środkiem konstrukcyjnym.

Najgłośniejszym i najbardziej znanym przykładem połączenia AG z muzyką jest 
praca autorstwa Johna Bilesa [1], Jego program, GenJam, generujący jazzowe „so­
lówki”, jest bazującym na algorytmach genetycznych modelem tego jak początkujący 
muzyk jazzowy uczy się improwizacji. Działanie algorytmu opiera się na kilku (róż­
nych) hierarchicznie „poukładanych” populacjach, zawierających potencjalne, nowe 
muzyczne pomysły. Wszystkie te populacje służą do zbudowania jednej partii solo­
wej. Każda melodia („solówka”) odgrywana przez program jest na bieżąco oceniana 
przez człowieka (określanego mianem mentora). Wskaźnik przystosowania tejże me­
lodii (osobnika) jest zwiększany za każdym razem gdy użytkownik wciśnie klawisz 
‘g’ (ang. good), a zmniejszany gdy użytkownik naciśnie ‘b’ (ang. bad). Używając 
różnorodnych operatorów genetycznych oraz danych podanych przez mentora (m.in. 
użyte akordy, progresja3), algorytm tworzy nowe populacje, które z dużym prawdopo­
dobieństwem zawierają „lepsze” (bardziej obiecujące) pomysły.



102

Dalsza część pracy prezentuje algorytm zastosowany w systemie MUZG (od MU- 
Zyczne Geny).

2. Budowa osobnika w programie MUZG
Strukturę genotypu, który odpowiada pojedynczej nucie, przedstawia rysunek 1. Pole 
notę (nuta) oznacza wysokość dźwięku, pole duration (okres, czas trwania) określa 
długość dźwięku, a pole volume (głośność) odpowiada za głośność danej nuty.

Rysunek 1. Budowa genotypu

notę duration volume

Wszystkie trzy pola mogą przyjmować tylko wartości całkowitoliczbowe.
Na rysunku 2 zaprezentowano budowę osobnika. Chromosomem (ciągiem kodo­

wym) w tym osobniku jest (tablica) melody. Pole parent to dwuelementowa tablica w 
której zapisywane są numery rodziców (przykładowo dla populacji liczącej 250 osob­
ników, numer rodzica jest liczbą z przedziału [0,249]). W polu fitness zapamiętywane

Rysunek 2. Budowa osobnika

Wartości pomocnicze melody parent fitness

jest przystosowanie danego osobnika. W polu wartości pomocnicze przechowywane 
są takie informacje jak: tonacja, ilość oktaw z których osobnik może losować dźwięki 
itp.

3. Operatory genetyczne - krzyżowanie i mutacja
Aby lepiej zrozumieć ideę krzyżowania i mutacji, prześledźmy działanie obu tych 
operatorów krok po kroku. Zacznijmy od operatora krzyżowania.

Załóżmy, że mamy dwa „osobniki” (tak naprawdę mamy tylko odpowiednik pola 
melody z rysunku 2) takie jak na rysunkach 3 i 4. Przerywaną linią zaznaczono punkt 
krzyżowania. W wyniku otrzymamy osobnika z rysunku 5a.

Patrząc uważnie na powstałego po krzyżowaniu osobnika, łatwo spostrzec błąd w 
pierwszym takcie. Ma tu miejsce następująca sytuacja - w wyniku krzyżowania w 
nowo powstałym osobniku otrzymaliśmy niewłaściwe (niedozwolone) wartości czasu 
trwania dźwięku (duration). W takiej sytuacji należy zastosować procedurę, która 
podzieli wartość duration na kilka mniejszych, dozwolonych wartości, dodając przy 
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okazji (jeśli zachodzi taka potrzeba) nowe pozycje w tablicy melody. Operacja ta w 
pewnym stopniu, ingeruje w ewolucję („psuje”) osobnika, ale przy przyjętym sposobie 
kodowania ciężko byłoby znaleźć inne rozwiązanie. Ostateczny wynik krzyżowania 
przedstawia rysunek 5b. W tym przypadku wystarczyło zamienić ćwierćnutę na 
ósemkę.

Po powyższym przykładzie widać, iż działanie operatora krzyżowania opiera się 
głównie na „kopiowaniu” melodii. Inaczej mówiąc, z zadanym prawdopodobieństwem 
sprawdzamy czy krzyżowanie w ogóle zachodzi, wybieramy losowo punkt krzyżowa­
nia (przerywana linia na rysunkach 3 i 4) i ostatecznie właśnie kopiujemy melodię.

Rysunek 4. Osobnik nr 2

Rysunek 5b. Wynik krzyżowania (poprawiony)



104

Przejdźmy teraz do omówienia operatora mutacji. Zasadniczym elementem tego 
operatora jest zmiana wysokości dźwięku. Operacja ta ma podstawowe znaczenie dla 
algorytmu z opcją „wariacje” lub „schemat” (patrz niżej). Rysunek 6a prezentuje 
działanie tego kroku, przy założeniu, że osobnik poddany działaniu operatora jest taki 
jak na rysunku 5b.

Drugim elementem procedury mutacji jest zmniejszanie głośności oraz łączenie 
(scalanie) nut. Ma to zapobiegać powstawaniu efektu objawiającego się „nadmiernym 
wypełnieniem” taktu nutami. Chodzi o to, iż wraz z kolejnymi iteracjami algorytmu 
genetycznego, ulega zapełnieniu tablica melody, co przy odsłuchu bardziej przypomi­
na szybką zmianę częstotliwości dźwięku (oczywiście wszystko zależy od tempa) niż 
melodię (inaczej: użytkownik „nie widzi” w takim osobniku melodii co wpływa 
oczywiście na jego ocenę). Zjawisko to wynika, jak się łatwo domyślić, z dużej liczby 
losowo wygenerowanych osobników początkowych. Rysunek 6b przedstawia osobni­
ka po wykonaniu tego kroku mutacji.

Rysunek 6b. Operator mutacji - „łączenie” nut

4. Funkcja celu
Funkcja celu jest „wielostopniowa”. Pod pojęciem „wielostopniowa” należy tutaj ro­
zumieć nie tylko ilość kryteriów oceniających ,ale także to iż niektóre z kryteriów nie 
oceniają osobnika (jako całości), a jedynie sąsiednie nuty (nie są to więc tak elementy 
oceniające w sensie algorytmów genetycznych). Funkcja celu zostanie omówiona krok 
po kroku dokładnie w takiej kolejności w jakiej oceniane są osobniki.

Zaczynamy od sprawdzenia nie osobników, ale poszczególnych nut (i ich „sąsia­
dów”). Po pierwsze, sprawdzamy jakie jest „prawdopodobieństwo” danej długości 
trwania dźwięku. W celu uzyskania dobrych (czytaj: prostych) melodii, przyjęto, że 
najczęściej występują ósemki oraz ćwierćnuty.
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Następnie, porównujemy dwie nuty pod kątem wysokości dźwięków (im mniejsza 
różnica między wysokościami tym lepiej). W tym miejscu należy zwrócić uwagę na 
„wyjątek”: dźwięki o tej samej wysokości są oceniane gorzej od dźwięków różniących 
się co do wysokości.

Po trzecie, funkcja celu bada parametr duration dwóch sąsiadujących nut. Im więk­
sza jest różnica tym gorzej (przykładowo: trzydziestkadwójka sąsiadująca z całą nutą 
jest mało prawdopodobna i przez to źle oceniana).

Teraz przystępujemy do oceny całego osobnika.
Zaczynamy od sprawdzenia „wypełnienia” frazy (tablicy metody). Tutaj przyjęto, że 
bardziej równomierne rozłożenie oceniane jest wyżej. Oznacza to, że np. fraza zbu­
dowana z dwóch taktów, jeden składający się z samych trzydziestekdwójek, drugi z 
całej nuty jest oceniany niżej niż dwutaktowa fraza zbudowana z samych ósemek. Na 
marginesie: z całą pewnością istnieją tysiące kompozycji, w których występują frazy 
podobne do pierwszej, ale każde poczynione tutaj założenie jest pewnym (często dość 
sporym) uproszczeniem.

Następnie znajdujemy najczęściej powtarzającą się wartość (dominantę) duration. 
Kolejnym krokiem jest sprawdzenie odchylenia standardowego długości. Czynność ta 
łączy się z poprzednią. W zależności od parametrów możemy otrzymywać melodie od 
prostych (co, na przykład, oznacza cztery takty po dwie półnuty każdy) do bardziej 
skomplikowanych.

Ostatecznie badamy odchylenie standardowe wysokości. W tym miejscu możemy 
wpływać na melodię, dążąc do uzyskania coraz prostszych (np. dwa dźwięki grane 
naprzemiennie) lub coraz bardziej różnorodnych (w zależności od parametru progra­
mu).

5. Działanie algorytmu genetycznego w programie MUZG
Mając powyższe struktury danych oraz procedury możemy przejść do omówienia 
istoty działania algorytmu. Postępowanie tutaj przedstawione jest zbliżone do prostego 
algorytmu genetycznego zaprezentowanego w książce [2],
Pierwszą czynnością jaką należy wykonać, jest ustawienie parametrów algorytmu 
genetycznego (takich jak prawdopodobieństwo krzyżowania czy mutacji). W tym 
miejscu należy zaznaczyć, iż podobnie jak ma to miejsce w innych przypadkach algo­
rytmów ewolucyjnych w sztuce, prawdopodobieństwo mutacji powinno być znacznie 
większe od standardowego (jeśli za standardowe przyjmiemy przedział między <0,01; 
0,02>). Jest to spowodowane tym iż to właśnie mutacja jest operacją, posuwającą 
nasze muzyczne poszukiwania naprzód.

Następnie musimy wybrać metodę selekcji. Również i tutaj musimy się zatrzymać 
na chwilę. W programie zostały zaprogramowane trzy metody selekcji: według reguły 
ruletki, turniejowa oraz losowa według reszt bez powtórzeń. Po przeprowadzeniu sze­
regu eksperymentów okazało się, że najlepsze rezultaty daje metoda turniejowa (patrz 
wykres 2).
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Po wykonaniu przez użytkownika dwóch powyższych kroków do działania przy­
stępuje komputer. Generuje on populację początkową, a następnie powtarza operacje 
selekcji, krzyżowania i mutacji (dla całej populacji) n razy, gdzie n jest parametrem 
użytkownika.
Ostatnią fazą algorytmu jest ocena (zatwierdzanie) wyniku. Jeśli otrzymany rezultat 
działania AG zadowala użytkownika, jest on zatrzymywany. W przeciwnym przypad­
ku należy powtórzyć powyższe kroki.

Warto zaznaczyć, iż algorytm genetyczny nie generuje „całej muzyki” (całej kom­
pozycji) na raz. Pojedyncze wywołanie algorytmu genetycznego produkuje jedynie 
melodie, z których to dopiero użytkownik składa cały utwór. Inspiracją do takiego 
podejścia była (oczywiście oprócz prostoty funkcji celu) znana w informatyce (i nie 
tylko) metoda „dziel i rządź”. Ale uwaga: jest to spore ograniczenie (i uproszczenie) i 
należy wątpić, aby taką metodą udało się zbudować bardziej rozbudowany utwór.

Ponadto, zastosowano dwa dodatkowe mechanizmy mające na celu poprawienie 
uzyskiwanych wyników.
Pierwszy to wariacje4. Przez wariacje rozumiemy tutaj tylko zmianę tematu. Istotę 
działania oddaje następujący algorytm:

• Przeprowadź algorytm genetyczny (z zadanymi parametrami) w celu znalezie­
nia tematu (fraza, która będzie zmieniana).

• Ze znalezionego tematu (który, w kategoriach AG, jest najlepszym osobnikiem 
uzyskanym w powyższym kroku) utwórz nową populację.

• Przeprowadź jeszcze raz algorytm genetyczny dla tak utworzonej populacji. 
Podczas działania algorytmu czynnikiem zmieniającym osobniki jest mutacja, 
która zmienia wysokość dźwięku nut.

Metoda ta daje zdecydowanie najlepsze rezultaty. Powody takiego stanu rzeczy wy­
dają się być intuicyjnie jasne.

Po pierwsze, fraza służąca za temat wariacji jest już oceniona („dobra”; nie wy­
chodzimy od populacji początkowej wygenerowanej losowo).

Po drugie zaś, mutacja nie zmienia wszystkich nut. Uzyskujemy w ten sposób frazę 
zbudowaną z kilkukrotnie powtórzonego tematu podstawowego (przez co łatwiej 
„wpada w ucho”, a co za tym idzie, fraza taka jest wyżej oceniana), w której mutacja 
dokonała niewielkich zmian.

Drugi mechanizm, bardzo podobny do wariacji, polega na odpowiednim sposobie 
tworzenia populacji początkowej. Metoda ta sprowadza się do wygenerowania jedne­
go osobnika całkowicie losowo, następnie na zapisaniu jego budowy (mówiąc obra­
zowo - zapamiętujemy „gdzie we frazie są nuty”) i na tej podstawie generowania

wariacje - forma muzyczna oparta na zmianach tematu, reprezentatywna dla muzyki kla- 
syczno-romantycznej (temat z wariacjami), także technika kompozytorska. Temat wariacji 
mógł być tworzony przez kompozytora lub przejęty z dzieła innego twórcy. Liczba wariacji nie 
była ściśle określona. Każda z kolejnych wariacji była przekształceniem tematu polegającym 
m.in. na figuracji partii melodycznej lub partii lewej ręki, zmianach harmonicznych, wprowa­
dzeniu techniki polifonicznej, zmianach rytmu i metrum.



107

reszty populacji początkowej, losując już tylko wysokość dźwięków dla poszczegól­
nych osobników. Dla tak uzyskanej populacji wykonujemy algorytm genetyczny. 
Wielką zaletą tej techniki jest większa różnorodność uzyskiwanych melodii. Z począt­
ku może się to wydawać dziwne. Wytłumaczenie jest proste - w momencie gdy mamy 
całą populację wygenerowaną losowo, mutacja, wraz z postępem działania algorytmu, 
sprowadza osobniki do prostych, „podobnych” melodii (w przypadku doświadczeń z 
„progiem” równym „ćwierćnucie”, większość melodii -około 90% - była zbudowana 
wyłącznie z ćwierćnut oraz z ósemek). W momencie zastosowania tej metody, podob­
nie jak przy wariacjach, mutacja „pcha” algorytm w poszukiwaniu jak najlepszej me­
lodii, w ramach przyjętego układu.

6. Wyniki
Na wykresie 1. przedstawiono zmianę wskaźnika przystosowania w zależności od 
liczby osobników. Widać wyraźnie, że wraz ze wzrostem liczby osobników, algorytm 
szybciej znajduje dobre rozwiązania. Niestety, koszt tego jest znaczny (patrz tabela 2). 
Parametry, dla których uzyskano omawiane wyniki zostały zebrane w tabeli 1. W tym 
miejscu należą się również dwa zdania wyjaśnienia na temat zbieżności wszystkich 
średnich wartości przystosowania (avg_50, avg_250 i avg_500) do (mniej więcej) 
jednej wartości. Jak można się domyślać, za taką sytuację odpowiada długość chro­
mosomu. Przy tak niewielkiej liczbie taktów (długości chromosomu), dość „rygory­
styczna” funkcja celu, ostatecznie zawsze znajdzie „podobne” osobniki.

Tabela 1. Parametry algorytmu genetycznego dla omawianych wyników

Parametr Wartość
długość chromosomu 4 (czyli cztery takty)

ilość iteracji 250

prawdopodobieństwo krzyżowania 0,95

prawdopodobieństwo mutacji 0,2

metoda selekcji losowa według reszt bez powtórzeń

Tabela 2. Średni czas działania algorytmu w zależności od liczby osobników

Liczba osobników Średni czas działania

50 « 2,1 s
250 ~ 8,04 s

500 «14,98 s

Na wykresie numer dwa zaprezentowano wpływ metody selekcji na otrzymywane 
rezultaty. Potwierdza się to co zostało powiedziane wcześniej - najlepsze rezultaty 
otrzymuje się metodą turniejową. Powód jest prosty: metoda ta „pozbywa” się osobni­
ków o małym wskaźniku przystosowania, przez co wraz z kolejnymi iteracjami, osob­
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niki podlegająjuż praktycznie tylko mutacji (jest to skrót myślowy: ponieważ więk­
szość populacji jest podobna (efekt turnieju), krzyżowanie prawie nic nie wnosi do 
poszukiwań). Jak wiemy z paragrafu o wariacjach, takie poszukiwania, zazwyczaj 
osiągają najwyższy wskaźnik przystosowania. Wszystkie pozostałe parametry są takie 
same jak dla algorytmu z wykresu numer jeden.
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Wykres 1. Zmiana wskaźnika przystosowania w zależności od ilości osobników
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nia przystosowania dla całej populacji oraz wskaźnik przy­
stosowania najlepszego z osobników dla metody losowej 
według reszt bez powtórzeń;

avg_rw, max_rw - (ang. roulette wheel) wartość średnia 
przystosowania dla całej populacji oraz wskaźnik przysto­
sowania najlepszego z osobników dla metody wyboru we­
dług reguły ruletki;

avg_t4, max_t4 - wartość średnia przystosowania dla całej 
populacji oraz wskaźnik przystosowania najlepszego z 
osobników dla metody turniejowej; rozmiar turnieju: 4;

Wykres 2. Zmiana wskaźnika przystosowania w zależności od metody wyboru
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