
100100511495

£

Centrum Wiedzy i Informacji
Naukowo-Technicznej Politechniki Wrocławskiej

SYSTEMY CZASU RZECZYWISTEGO
SCR’99

ZBIGNIEW HUZAR

Wprowadzenie do języka UML

Zakopane 1999

7’0 tz-

B I 1J i | X
WYDZIAŁOWEGO ZAKŁADU IIWuaMaIW
Wydział Informatyki i Zarządzania
Politechniki Wrocławskiej

Biblioteka Główna i OW
Poli

00027298

BW-8
Warszawa 1999

© Copyright by Zbigniew Huzar, Warszawa, 1999

Redaktor: Jan Chudzikiewicz

Projekt okładki: Piotr Chęć
31 5 7 0 7/4

Wydawca: Instytut Automatyki i Robotyki
Wydział Cybernetyki
Wojskowa Akademia Techniczna
00-908 Warszawa 49, ul. Kaliskiego 2
tel. (0-22) 685-95-52, fax (0-22) 666-90-41
http://www.iar.wat.waw.pl

Druk: BEL Studio Sp. z o.o„ 01-355 Warszawa, ul. Powstańców Śląskich 67 B

tel./fax (0-22) 665-92-22

ISBN 83-912747-4-8

http://www.iar.wat.waw.pl

Spis treści

1. Uwagi wstępne.. 5
2. Podstawowe pojęcia modelowania.. 13
3. Elementy języka.. 23

3.1. Klasyfikacja.. 23
3.2. Elementy strukturalne.. 24
3.3. Elementy behawioralne... 35
3.4. Elementy grupujące i objaśniające... 37
3.5. Relacje..i„................................ 38

4. Diagramy klas i diagramy obiektów.. 43
5. Diagramy przypadków użycia... 44
6. Diagramy interakcji... 46
7. Diagramy stanów... 49
8. Diagramy aktywności.. 58
9. Diagramy implementacyjne... 61

10. Diagramy pakietów... 63
11. Wybrane standardowe elementy UML................... 64
12. Elementy metamodelu UML... 67
13. Metodyka ROPES... 68

13.1. Analiza.. 69
13.2. Projektowanie... 73

Literatura... 78

Wprowadzenie do języka UML

1. Uwagi wstępne

Język UML (ang. Unified Modeling Language) jest uniwersalnym językiem

przeznaczonym do specyfikacji, wizualizacji i konstruowania modeli oprogramowania

oraz do tworzenia dokumentacji powstającej w procesie wytwarzania oprogramowania.

Język opiera się na stosowanym w ostatnim okresie podejściu obiektowym w

wytwarzaniu oprogramowania. Prekursorami UML są rozwijane od końca lat

osiemdziesiątych języki specyfikacji obiektowych, wśród których największą rolę

odegrały języki związane z metodą 00AD (ang. Object-Oriented Design with

Applications) Grady Boocha, metodą OMT (ang. Object Modelling Techniques) Jima

Rumbaugh oraz OOSE (ang. Object-Oriented Software Engineering) Ivara Jackobsona.

Właśnie wysiłek wymienionych autorów, którzy podjęli wspólne przedsięwzięcie w

ramach firmy Rational Software Corporation, doprowadził w 1996 roku do opracowania

pierwszych wersji UML. We wrześniu 1997 roku powstała, najbardziej obecnie

rozpowszechniona wersja 1.1, oraz pod koniec 1998 roku, opisywana w materiale,

ostatnia wersja 1.3. UML był opracowywany z szerokim udziałem producentów

oprogramowania, a także we współpracy z wpływową organizacją OMG (ang. Object

Management Group) - międzynarodową grupą zrzeszającą producentów

i użytkowników oprogramowania, zaangażowaną w opracowywanie i promocję

standardów związanych z technologią obiektową.

Szerokie zaangażowanie wielu organizacji w powstanie i rozwój UML jest miarą

dojrzałości technik obiektowych, a także wyrazem oczekiwania na ich wykorzystanie w

wytwarzaniu oprogramowania na skalę przemysłową. Oznacza to nie tylko opracowanie

języka, lecz również metod oraz narzędzi wspomagających proces wytwarzania

oprogramowania wykorzystujących ten język.

UML jako język modelowania może być użyty we wszystkich zasadniczych fazach

cyklu wytwarzania oprogramowania. W szczególności oznacza to jego wykorzystanie

do:

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 5

Wprowadzenie do języka UML

• specyfikacji analizowanych systemów,

• specyfikacji projektowanego oprogramowania,

• konstruowania (projektowania) oprogramowania,

• wizualizacji i dokumentowania artefaktów związanych z wytwarzaniem

oprogramowania; pod pojęciem artefaktu rozumie się tutaj informację

wykorzystaną bądź wytworzoną w trakcie procesu tworzenia oprogramowania.

Dodatkowymi celami branymi pod uwagę podczas projektowania UML było

dostarczenie ekspresywnego, uniwersalnego języka, który byłby językiem

rozszerzalnym, modyfikowanym stosownie do konkretnych potrzeb. Uniwersalizm

oznacza tu, że ma UML dostarczać pełnego repertuaru abstrakcyjnych, dobrze

zdefiniowanych pojęć związanych z procesem wytwarzania oprogramowania.

UML wyrasta z dotychczasowej praktyki wytwarzania oprogramowania, ale jest

niezależny zarówno od konkretnych języków programowania jak i od konkretnych

metod tworzenia oprogramowania. UML nie narzuca więc konkretnej metody, ale

zachęca jednak do iteracyjnego i przyrostowego procesu wytwarzania oprogramowania,

opartego na analizie przypadków użycia (usług elementarnych) oraz ukierunkowanego

na architekturę projektową. Opracowanie UML stało się bodźcem do opracowania

metod i narzędzi wspomagających stosowanie tych metod. Między innymi firma

Rational Software Corporation opracowała metodę (ang. Rational Objectory Process) i

związany z nią pakiet oprogramowania wspomagający tworzenie oprogramowania. Inne

metody i narzędzia przygotowały firma Select oferując kolejną wersję pakietu Select

Enterprise 6.0 oraz firma i-Logix, wytwórca znanego pakietu Statemate, oferując pakiet

Rhapsody. Pakiety te nie są jeszcze całkiem dojrzałe, gdyż nie umożliwiają wszystkich

prezentacji, które dopuszcza UML.

Definicja języka UML, przedstawiona w dokumentach [17], [18], [20] jest

częściowo formalna. Formalnie zdefiniowano abstrakcyjną składnię bezkontekstową

oraz ograniczenia kontekstowe, wyrażane jako formuły pomocniczego języka OCL

(ang. Object Constraint Language) [19], który jest klasycznym językiem predykatów

6 VI Konferencja Systemy Czasu Rzeczywistego. Zakopane 1999

Wprowadzenie do języka UML

pierwszego rzędu. Semantyka UML, tworząca tzw. metamodel, jest natomiast

przedstawiona w języku naturalnym, przy czym zasadniczymi pojęciami służącymi do

wyjaśniania elementów języka są tzw. metaklasy oraz metarelacje. Pojęcia te są

uogólnieniem pojęcia klas i relacji, czyli tych elementów, które mająbyć definiowane.

Ten sposób definiowania języka może być uważany za błędny, gdyż polega na

definiowaniu nieznanego przez nieznane. To samo pojęcie, na przykład pojęcie klasy,

występuje raz w roli pojęcia definiowanego, a drugi raz, nazywane metaklasą, występuje

w roli pojęcia wyjaśniającego. Sytuacja ta wymaga bliższego wyjaśnienia. Z definicją i

użyciem języka UML wiążą się cztery poziomy abstrakcji, w oryginalnych

dokumentach standaryzacyjnych nazywane poziomami architektury metamodelu. Są to:

• meta-metamodel,

• metamodel,

• model (abstrakcyjny),

• model użytkowy.

Najwyższy poziom abstrakcji - poziom meta-metamodelu - odnosi się do języka

służącego do definiowania UML. Poziom niższy - poziom metamodelu- odnosi się do

definicji języka. Zatem meta-metamodel zawiera język potrzeby do definiowania UML,

czyli względem UML jest jego metajęzykiem. Kolejny niższy poziom - poziom modelu

- odnosi się do definicji modelu interesującego nas systemu, wyrażonej za pomocą

języka UML. Wreszcie poziom najniższy - poziom modelu użytkowego - odnosi się do

konkretnej komputerowej reprezentacji modelu, na przykład reprezentacji dostarczanej

przez pakiet wspomagający wytwarzanie oprogramowania.

Przedstawioną architekturę metamodelu można byłoby zastosować do opisu języka

programowania. Poziom meta-metamodelu odpowiadałby metajęzykowi służącemu do

opisu języka, poziom metamodelu - opisowi języka, poziom modelu - tekstowi

źródłowemu programowu napisanego w tym języku, a poziom modelu użytkowego -

postaci wykonywalnej tego programu.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 7

Wprowadzenie do Języka UML

W opracowanych standardach uwagę skoncentrowano na poziomie metamodelu,

domyślnie zakładając znajomość meta-metapoziomu. Akceptacja architektury

metamodelu oznacza więc, że aby zrozumieć metamodel czytelnik powinien mieć

ogólne pojęcie klasy, właściwie metaklasy. Natomiast studiując metamodel może

upewnić się, że pojęcie klasy w UML jest uściśleniem jego rozumienia metaklasy.

Obecnie trudno byłoby UML uznać za język ostatecznie ukształtowany. Poza

przedstawionymi brakami dotyczącymi nie w pełni zdefiniowanej semantyki, należy

zwrócić uwagę jeszcze na dwa aspekty.

Z jednej strony UML jest bogatym, w pewnym sensie nadmiernie bogatym

językiem. Oznacza to, że niektóre mechanizmy języka można uznać za nadmiarowe.

Przypomina to sytuację jaka towarzyszyła wczesnej fazie rozwoju języków

programowania. Przykładowo, definiowany w latach sześćdziesiątych język

programowania Algol-60 posiadał wiele barokowych instrukcji złożonych, które

ostatecznie zostały wyeliminowane w Pascalu powstałym na początku lat

siedemdziesiątych. Zasadniczą przyczyną nadmiarowości jest włączenie do języka wielu

mechanizmów, z których każdy oddzielnie może nie być nadmiarowy, ale - posiadając

wspólne elementy - powodują powstanie nadmiarowości. Praktycznym skutkiem

nadmiarowości mogą być niejednoznaczności w interpretacji modeli powstałych w

wyniku swobodnego składania elementów języka.

Z drugiej strony można też wskazać na pewne niedostatki UML, które nie

pozwalają na wyrażanie pewnych własności, które są możliwe do wyrażenia w innych

językach specyfikacji [8],

Jeszcze jedna ważna okoliczność jest związana z praktycznym użytkowaniem

języka przy pomocy pakietów wspomagających. Pakiety takie nie zawsze implementują

wszystkie mechanizmy języka, specyficznie interpretują pewne szczególne sytuacje i

często dołączają własne pomocnicze mechanizy.

Pamiętając przytoczone uwagi, czytelnik powinien więc wykazywać ostrożność i

dociekliwość przy posługiwaniu się językiem. Jednocześnie należy oczekiwać, że w

8 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

najbliższych lat będą pojawiać się nowe, udoskonalone wersje UML.

Zasadniczym celem materiału jest przybliżenie podstawowych pojęć języka i

wskazanie na możliwości ich użycia w procesie wytwarzania oprogramowania.

Nieformalnie, miejsce języka w procesie wytwarzania ilustruje rys. 1.

Rys. 1. Ilustracja miejsca UML w procesie wytwarzania oprogramowania

W uproszeniu zakłada się, że proces ten składa się z trzech faz: analizy wymagań,

projektowania, implementacji. Punktem wyjścia do całego procesu jest wstępny opis

problemu. Kolejna faza bazuje na wynikach fazy poprzedniej i dostarcza informacji dla

fazy następnej. Ponadto, każda faza opiera się na pewnej pragmatyce postępowania,

która decyduje o metodyce postępowania - na przykład o wyborze języków prezentacji

wyników, narzędzi wspomagających. Niezbędna tu wiedza pochodzi oczywiście spoza

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 9

Wprowadzenie do języka UML

dziedziny, która jest źródłem rozwiązywanego problemu. W wyniku realizacji kolejnych

faz powstają pewne dokumenty - odpowiednio: specyfikacja, projekt i oprogramowanie

systemu. Każdy z tych dokumentów stanowi pewien fragmentaryczny opis całego

systemu. Inaczej: każdy z nich jest pewnym modelem przedstawiającym cały system z

pewnego punktu widzenia (z pewnej perspektywy). UML jest językiem, który pozwala

na wyrażanie wszystkich takich modeli. Modele te są symbolicznie zaznaczone po

prawej stronie rys. 1 w postaci zestawu - pakietu - pewnych diagramów i ewentualnych

komentarzy.

UML jest językiem graficzno-tekstowym. Oznacza to, że w modelu systemu

opisywanego w języku UML występują symbole graficzne i tekstowe. Zasadniczo przy

tworzeniu modelu główną rolę mają odgrywać symbole graficzne, a symbole tekstowe

mają stanowić ich uzupełnienie. Symbole graficzne wykorzystuje się do budowy

specyficznych grafów - diagramów.

diagram

Graficzne przedstawienie zbioru elementów modelu, najczęściej prezentowane w

postaci grafu, w którym wierzchołki reprezentują elementy modelu, a łuki -

zachodzące pomiędzy nimi relacje. Wyróżnia się diagramy: klas, obiektów,

przypadków użycia, sekwencji, współdziałania, stanów, aktywności, komponentów

i rozmieszczenia.

Na diagramach a także poza diagramami mogą występować teksty. Teksty mogą

mieć charakter formalny lub nieformalny. Formalne tekstowy mogą być wyrażane w

dowolnym języku formalnym, na przykład w języku OCL [19], a nieformalne - w

dowolnie ustalonym języku. Informacje tekstowe mogą dotyczyć elementów diagramu,

czyli pojedynczych wierzchołków lub łuków, bądź też diagramów jako całości, a nawet

kolekcji diagramów.

Uwaga

Przedstawiona wyżej definicja diagramu, wyróżniona w postaci przesuniętego

akapitu, jest tłumaczeniem odpowiedniej pozycji słownika pojęć UML [20].

10 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

Konwencja ta będzie zachowana w dalszej części opracowania.

UML jest językiem rozszerzalnym. Oznacza to, że UML zawiera mechanizmy,

które można wykorzystać w celu zdefiniowania nowych konstrukcji przystosowanych

do konkretnych zastosowań. Obecnie zdefiniowano dwa standardowe rozszerzenia

języka UML: Objectory Process oraz Business Engineering [20]. Rozszerzenie języka

oznacza modyfikację semantyki elementów metamodelu. Pojęcie rozszerzenia UML

należy odróżnić od pojęcia wariantu UML. Pod pojęciem wariantu rozumie się

specjalizację języka, która zachowuje semantykę pojęć metamodelu języka.

Ściśle biorąc rozszerzenie języka odnosi się tylko do składni, gdyż polega na

wprowadzeniu nowego symbolu graficznego lub słowa. Natomiast z punktu widzenia

semantyki wprowadzenie nowego elementu wiąże się nie z rozszerzeniem, ale z

uściśleniem znaczenia istniejącego już elementu.

Efektem każdej z faz jest pewien model systemu budowany z określonego punktu

widzenia - określonej perspektywy. Model jest przedstawiany za pomocą odpowiednio

dobranego zestawu diagramów oferowanych przez UML wraz z uzupełniającą

informacją tekstową.

Niektóre spośród diagramów są przeznaczone do konkretnych faz, inne mogą być

używane w różnych fazach. Na przykład, diagramy przypadków użycia (być może

lepszym określeniem byłoby - diagramy usług) są przeznaczone do fazy analizy

wymagań, a diagramy komponentów i rozmieszczenia są związane z fazą

implementacji, natomiast diagramy klas i stanów mogą być wykorzystywane w zasadzie

we wszystkich fazach.

Diagramy współdziałania i sekwencji noszą również wspólną nazwę diagramów

interakcji, zaś diagramy komponentów i rozmieszczenia - diagramów implementacji.

UML dopuszcza również użycie innych rodzajów diagramów. Przykładem są tu

diagramy pakietów. Pełnią one rolę pomocniczą w każdej fazie wytwarzania

oprogramowania i zasadniczo służą do zestawiania w całość różnych innych diagramów

i pojęć pomocniczych, umożliwiając w ten sposób tworzenie dokumentacji prac nad

VI Konferencja Systemy Czasu Rzeczywistego. Zakopane 1999 11

Wprowadzenie do języka UML

oprogramowaniem - służą do przedstawiania modeli systemów. Dodatkowo, w

przypadku złożonych systemów, mogą służyć do przedstawiania modeli ich

komponentów - podsystemów.

Przykładowo, rola UML w procesie wytwarzania oprogramowania - przy

założeniu jego podziału na fazy analizy, projektowania oraz implementacji - może być

widziana następująco.

Celem fazy analizy jest opis systemu z punktu widzenia jego przyszłych

użytkowników. Widzą oni system przez zestaw usług, których system dostarcza oraz

przez sposób komunikacji z system podczas korzystania z tych ushig. Model systemu

jest tu przedstawiany przez diagram przypadków użycia, który przedstawia usługi

systemu oraz łączące je relacji oraz tzw. aktorów reprezentujących obiekty z otoczenia

systemu. Obiektami tymi mogą być użytkownicy, urządzenia pomiarowe lub

wykonawcze, lub inne systemy. Diagram przypadków użycia jest zwykle uzupełniany

nieformalnym opisem znaczenia poszczególnych przypadków (usług) oraz łączących ich

relacji. Interpretacja przypadków użycia wymaga zbudowania diagramów klas, które

wyrażają aspekty statyczne, oraz diagramów interakcji, które wyrażają aspekty

dynamiczne modelu.

W fazie projektowania tworzy się model, w którym wyraża się sposób reprezentacji

i funkcjonowania elementów modelu uzyskanego w poprzedniej fazie. Przy

definiowaniu tego modelu bierze się pod uwagę dostępne środki i związane z nimi

ograniczenia. Do definiowania modelu projektu można używać tych samych diagramów

co w fazie poprzedniej, a także diagramów komponentów i rozmieszczenia.

Faza implementacji, rozumiana tylko jako faza programowania, w zasadzie nie

wykorzystuje diagramów UML. Dopuszcza się jednak użycie języków programowania

w niektórych diagramach do definiowania znaczenia pewnych elementów, na przykład

do definiowania metod na diagramach klas.

12 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

2. Podstawowe pojęcia modelowania

UML jest językiem, przy pomocy którego opisuje się modele interesujących nas

systemów. W rozdziale przedstawia się określenia pojęć dotyczących modelowania.

Pojęcia te są potrzebne do właściwego rozumienia dowolnego języka modelowania oraz

do poprawnego posługiwania się takim językiem. Z tego względu pojęcia dotyczące

modelowania są przedmiotem zainteresowania instytucji standaryzacyjnych. Zebrane i

komentowane niżej terminy i pojęcia bezpośrednio związane z UML są kojarzone z

odpowiednimi terminami i pojęciami opracowanymi w ramach prac prowadzonych

przez ISO nad modelem systemów przetwarzania rozproszonego ODP (ang. Open

Distributed Processing) [10].

Modelowanie, czyli tworzenie pewnego modelu odnosi się do wybranej dziedziny.

Zarówno wybrany fragment pewnej dziedziny, jak i zbudowany model stanowią pewne

systemy. Model jest systemem stanowiącym tylko pewne odzwierciedlenie systemu z

wybranej dziedziny. Model jest więc pewną abstrakcją modelowanej dziedziny.

Związek pomiędzy modelem a modelowaną dziedziną zależy od przyjętego punktu

widzenia - od wybranej perspektywy modelowania.

dziedzina
Obszar wiedzy lub działalności charakteryzujący się specyficznym zbiorem pojęć i

terminologią.

model

Semantycznie spójna abstrakcja systemu.

system
Zbiór wspólnie powiązanych jednostek w celu wykonywania wspólnych zadań.

System może być opisywany przez jeden lub więcej modeli odzwierciedlających

różne perspektywy widzenia systemu. W przypadkach złożonych system może być

przedstawiony jako złożenie podsystemów.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 13

Biblioteka
Pol. Wrocł.

Wprowadzenie do jeżyka UML

podsystem

Zbiór elementów opisujących zachowanie innych, zagnieżdżonych w nich

elementów.

To czym są jednostki składowe modelu (systemu) zależy od przyjętych zasad

dekompozycji i abstrakcji. W UML mogą to być, na przykład, obiekty (faza analizy),

komponenty lub węzły (faza projektowania).

Pojęcie dekompozycji bezpośrednio w UML nie występuje. Dekompozycja polega

na przedstawieniu charakterystyki bytu przez odwołanie się do charakterystyk innych

bytów - jego części składowych. Pozwala to na oddzielne rozpatrywanie najpierw części

składowych, a następnie całości w terminach odpowiedniego połączenia tych

składowych.

abstrakcja

Specyficzna charakterystyka bytu, która pozwala na jego wyróżnienie wśród

innych bytów. Abstrakcja ustala rozgraniczenia pomiędzy bytami względem

perspektywy przyjętej przez obserwatora.

Abstrakcję określa się również jako proces bądź jako efekt procesu polegającego na

usuwaniu nieistotnych szczegółów w celu uzyskania uproszczonego opisu

interesującego systemu.

Dekompozycja i abstrakcja są dwoma podstawowymi sposobami redukowania

złożoności podczas modelowania.

perspektywa

Projekcja modelu, w której ujęte są elementy istotne z danego punktu widzenia

(poziomu abstrakcji), a pominięte są wszelkie inne elementy.

UML jest językiem modelowania. Podczas tworzenia oprogramowania przechodzi

się przez kolejne fazy, które charakteryzują się specyficznymi perspektywami.

Przykładami perspektyw w metodzie Unified Software Development Process [2] są:

• perspektywa usługowa (ang. use case view),

14 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

• perspektywa projektowania ogólnego (ang. design view),

• perspektywa projektowania szczegółowego (ang. process view),

• perspektywa implementacyjna (ang. implementation view),

• perspektywa instalacyjna (ang. deployment view).

Inne perspektywy wyróżnia model ODP [10]. Są to:

• perspektywa przedsięwzięcia (ang. enterprise view),

• perspektywa informacyjna (ang. information view),

• perspektywa obliczeniowa (ang. computation view),

• perspektywa inżynierska (ang. engineering view),

• perspektywa technologiczna (ang. technological view).

okres modelowania

Odnosi się do tego co występuje w fazie modelowania w procesie wytwarzania

oprogramowania. Obejmuje czas analizy i projektowania. Czas modelowania

należy odróżniać od czasu wykonywania obliczeń.

Model powinien odzwierciedlać dwa aspekty systemu - strukturę systemu oraz

jego działanie (funkcjonowanie). Inaczej, model powinien odzwierciedlać aspekt

statyczny i dynamiczny.

aspekt modelu

Skupienie się na szczególnych właściwościach metamodehi.

strukturalny aspekt modelu

Aspekt modelu koncentrujący się na strukturze obiektów w systemie, włączając w

to ich typy, klasy, relacje, atrybuty i operacje.

architektura
Struktura organizacyjna systemu. Architektura może być rekursywnie

dekomponowana na części, które współdziałają ze sobą przez wspólne interfejsy,

musi też określać relacje zachodzące pomiędzy częściami oraz określać

ograniczenia dotyczące ich łączenia ze sobą.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 15

Wprowadzenie do języka UML

RM ODP [10] określa architekturę jako zestaw reguł definiujących strukturę

systemu oraz związki pomiędzy jego częściami składowymi.

behawioralny aspekt modelu

Aspekt modelu, który skupia się na zachowaniu instancji (obiektów) w systemie,

włączając w to ich metody, współdziałania i historie stanów.

zachowanie
Obserwowane efekty operacji lub zdarzenia, włączając w to ich wyniki.

Pojęcie zachowania, chociaż bardzo ważne, bywa rozumiane różnie. RM ODP [10]

określa zachowanie (obiektu) jako zbiór akcji (czegoś co może się zdarzyć) wraz ze

zbiorem ograniczeń dotyczącym ich wystąpień. Należy przy tym zaznaczyć, że termin

’akcja’ w RM ODP obejmuje znaczenie ‘akcji’, a także ‘zdarzenia’ w sensie UML.

Szczegółową analizę pojęć w UML i w RM ODP przedstawia praca [11].

Wydaje się, że najbardziej wyczerpujące pojęcie zachowania wprowadza LOTOS

[15], Po pierwsze wyróżnia się system oraz jego zewnętrznego obserwatora. Następnie

określa się to, co obserwator może dostrzec obserwując system, czyli obserwowalne

efekty. Przy tych ustaleniach zachowanie (procesu - odpowiednika obiektu) rozumie się

jako zbiór wszystkich ciągów efektów, które są możliwe do zaobserwowania. Ogólnie,

efekty które obserwator może dostrzegać to zmiany stanów systemu lub interakcje

(komunikacje) systemu z jego otoczeniem. Założenie, że obserwuje się stany systemu

oznacza, że ma się jakieś wyobrażenie systemu. Przyjęcie takie założenia jest właściwe

na przykład podczas testowania istniejącego systemu. Natomiast w przypadku

specyfikowania tworzonego dopiero systemu, bardziej odpowiednie jest założenie

obserwacji interakcji systemu z otoczeniem i abstrahowanie od jakiejkolwiek wiedzy o

budowie systemu.

Pojęcie zachowania w UML nie jest ani tak wyczerpujące, ani też tak precyzyjne

jak w LOTOSie. Stąd pojawiają się w UML inne uzupełniające pojęcia, na przykład

scenariusz, rozumiany jako ‘ciąg akcji ilustrujących zachowanie’.

16 W Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

Zasadniczymi elementami modelu - modelami bytów z wybranej dziedziny są

klasy i obiekty. Chociaż obiekty można w pewnym sensie uważać za pojęcia pierwotne,

to język UML wprowadza pojęcie obiektów jako pojęcie pochodne od pojęcia klasy.

Należy pamiętać, że klasy i obiekty - jako elementy zasadnicze - są elementami

składowymi wielu modeli wyrażalnych w UML, ale nie są elementami jedynymi. Obok

nich występują także:

• interfejsy,

• przypadki użycia,

• grupy współdziałania,

• komponenty,

• węzły (jednostki rozmieszczenia).

Pojęcie te są omówione w następnych rozdziałach.

element modelu

Element stanowiący abstrakcję wyprowadzoną z modelowanego systemu.

klasa

Opis zbioru obiektów posiadających takie same atrybuty, operacje, metody, relacje

i semantykę. Klasa może używać interfejsów do definiowania zestawu operacji

oferowanych jej środowisku.

Podane określenie klasy wprowadza pewne niejednoznaczności interpretacyjne.

Ogólnie, pojęcie klasy bywa rozumiane na trzy sposoby:

• Klasa jako pewien zbiór (kolekcja) ustalonych elementów (obiektów). W tym

sensie klasa ma ustalać konkretny zbiór obiektów.

• Klasa jako typ. W tym sensie klasa to pewien predykat, który jest albo nie jest

spełniony dla danego elementu.

• Klasa jako wzorzec. W tym sensie klasa jest szablonem, według którego można

generować elementy (obiekty).

Klasa w UML z pewnością nie ma pierwszego znaczenia - konkretnego zbioru

elementów (nazywanego też ekstensją). Czasem to znaczenie może być rozumiane

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 17

Wprowadzenie do języka UML

trochę inaczej, jako uniwersum dla danych rozważali, czyli jako zbiór wszystkich

potencjalnych bytów. Pozostałe dwa znaczenia są używane w UML, przy czym kontekst

użycia wskazuje, o które znaczenie chodzi. Na przykład, podczas wprowadzania klas na

etapie analizy używa się pojęcia klasy jako typu, natomiast na etapie programowania

klasy są używane głównie jako wzorce.

Użycie klasy jako typu jest podobne do traktowania tego pojęcia w taki sam sposób

jak, na przykład, w ujęciu słownika języka polskiego są rozumiane pojęcia ogólne ‘koń’,

‘zwierzę’ itp. W każdym z tych przypadków słowo ‘koń’ czy ‘zwierzę’ nie określa

konkretnego konia czy konkretnego zwierzęcia, ale raczej klasę abstrakcji na

określonym domyślnie uniwersum. W ścisłym rozumieniu typ jest pewnym predykatem.

Pozwala to na uściślenie wielu pojęć. Oznacza to, że dany obiekt jest obiektem danej

klasy A, gdy spełnia odpowiedni predykat PA. Stąd wynika, na przykład, pojęcie

podklasy. Jeżeli klasa A jest określona przez predykat PA oraz klasa B jest określona

przez predykat PB, taki że PA => PB, to mówimy, że klasa A jest podklasą klasy B.

Użycie klasy jako wzorca jest podobne do odlewania pewnych wyrobów

metalowych z tej samej, być może w pewnym zakresie zmienianej, formy. Ścisłym

odpowiednikiem wzorca jest pewien tekst oraz algorytm, który na podstawie tego tekstu

i ewentualnych dodatkowych parametrów generuje nowy tekst reprezentujący nowy

obiekt.

Rozumienie klasy jako typu i jako wzorca prowadzi do różnych konsekwencji.

Elementami klasy, jako typu, mogą być w zasadzie dowolne byty pod warunkiem, że

posiadają pewne własności określone przez odpowiedni predykat. Natomiast

elementami klasy jako wzorca są „podobne” byty różniące się co najwyżej pewnymi

parametrami.

Niezależnie od tych niejednoznaczności, wątpliwości budzi określenie, że obiekty

w klasie mają takie same relacje i semantykę. Można to rozumieć tylko na pewnym

poziomie ogólności, na przykład - w przypadku relacji - można mówić co najwyżej o

jednakowej ich sygnaturze.

18 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

sygnatura
Nazwa i parametry własności behawioralnej. Opcjonalnie sygnatura może zawierać

parametr zwrotny (parametr odpowiedzi).

W dokumentach standaryzujących ODP [10] dokonuje się wyraźnego rozróżnienia

pomiędzy wymienionymi trzema znaczeniami. Pojęciu zbioru odpowiada termin class,

pojęciu wzorca - termin template, natomiast ostatniemu z analizowanych znaczeń

odpowiada pojęcie typu - type. Typ jest tu rozumiany jako pewien predykat, który dla

danego argumentu, w szczególności może nim być obiekt, jest albo nie jest spełniony,

co pociąga stwierdzenie, że obiekt jest albo nie jest obiektem danego typu.

obiekt

Obiekt jest jednoznacznie identyfikowalnym bytem, ściśle rozgraniczonym od

swego otoczenia, ukrywający własny stan i zachowanie. Stan obiektu jest

reprezentowany przez jego atrybuty oraz relacje z innymi obiektami, a zachowanie

jest reprezentowane przez operacje, metody i maszyny stanowe. Obiekt jest

instancją klasy.

W ujęciu ontologicznym obiekt jest bytem o własnej tożsamości, tzn. jest bytem,

który istnieje i jest odróżnialny od innych bytów. Odróżnialność bytów można osiągać

na różne sposoby, najczęściej osiąga się to przez nadanie im unikatowych nazw. Na

gruncie konkretnego języka pojęcie bytu jest uściślane przez przydanie mu

specyficznych właściwości, np. przez atrybuty czy operacje.

Stan obiektu jest na ogół rozumiany jako wartościowanie jego atrybutów oraz

relacji. Stan obiektu należy odróżniać od stanu maszyny stanowej, która może być

związana z danym obiektem. Stany maszyny stanowej, w najprostszym przypadku, są

określone jako partycja na zbiorze wszystkich stanów obiektu, czyli na zbiorze

wszystkich wartościowań atrybutów i relacji obiektu. W przypadkach bardziej

złożonych stan maszyny może dodatkowo ujmować historię obiektu. Warto zaznaczyć,

że historię obiektu daje się również wyrazić przez dołączenie dodatkowych atrybutów

(atrybutów historycznych), wówczas pojęcie stanu maszyny można nadal traktować

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 19

Wprowadzenie do języka UML

traktować jako partycję na zbiorze wartościowań rozszerzonego zbioru atrybutów i

relacji obiektu.

Model systemu, złożony w pewien sposób z powiązanych ze sobą obiektów, ma

opisywać funkcjonowanie poszczególnych składowych oraz ich współdziałanie ze sobą

oraz z otoczeniem systemu. Funkcjonowanie składowych systemu jest opisywane w

terminach wykonywanych akcji i aktywności, a współdziałanie przez opis wymiany

komunikatów (wiadomości). UML nie definiuje jawnie otoczenia systemu, lecz skupia

się na opisie współdziałania systemu z otoczeniem. Współdziałanie polega na

wzajemnej wymianie informacji - przesyłaniu komunikatów - przez dobrze

zdefiniowany interfejs. Akt komunikacji pomiędzy systemem a jego otoczeniem, czy też

pomiędzy składowymi systemu, jest przykładem akcji.

akcja

Wykonywalna, niepodzielna (atomowa) czynność obliczeniowa, której wynikiem

jest zmiana stanu systemu lub dostarczenie pewnej wartości.

Akcja w UML ma na ogół zerowy czas trwania. W UML za akcję uważa się także

ciąg akcji. Jest to niezręczność definicji powodująca niepotrzebną komplikację pojęcia,

chociaż wynika to z oczywistej obserwacji, że ciąg czynności o zerowym czasie

wykonywania ma także zerowy czas realizacji.

Wyróżnia się następujące akcje:

• akcję wywołania operacji,

• akcję przekazania wyniku obliczeń operacji,

• akcję wysłania sygnału,

• akcję kreacji obiektu,

• akcję normalnego kasowania obiektu,

• akcję awaryjnego kasowania obiektu,

• akcję przypisania,

• akcję o interpretacji nieokreślonej w UML.

20 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

To co zdarza się w danym momencie jest określone w UML jako zdarzenie.

Efektem akcji może być wykreowanie zdarzenia.

Pojęcie akcji w RM ODP jest rozumiane podobnie: jako coś, co się zdarza. Może to

być interakcja, czyli przekazanie informacji pomiędzy dwoma komponentami lub akcja

wewnętrzna, co skutkuje tylko zmianą stanu. Tak jak w UML, akcja w ODP jest

niepodzielna.

aktywność

Podzielna (nieatomowa) czynność obliczeniowa zdefiniowana w obrębie maszyny

stanów.

W odróżnieniu od akcji aktywność jest czynnością obliczeniową zajmującą na ogół

niezerowy czas. Akcje mogą być elementami aktywności. Mogą w nich występować

sekwencyjnie lub równolegle.

zdarzenie

Specyfikacja istotnego wystąpienia mającego przyporządkowanie w czasie i w

przestrzeni.

Istotną właściwością zdarzenia jest związanie z danym momentem, a zatem jego

natychmiastowość. Szczególnymi rodzajami zdarzeń wyróżnianych w UML są: odbiór

sygnału, odbiór wywołania operacji, upływ zadanego okresu czasu oraz zmiana stanu

(rozumiana na przykład jako spełnienie pewnego predykatu).

Warto zwrócić uwagę, że w UML nie wyróżnia się, na przykład, zdarzenia

wysłania sygnału (asynchronicznego komunikatu). Należy to uznać za niedostatek

języka, gdyż nie pozwala to, na przykład, na wyrażanie własności czasowych wiążących

moment wysłania sygnału z momentem jego odbioru.

Zdarzeniu jest zawsze przyporządkowany moment czasu jego wystąpienia, a

ponadto może mu być przyporządkowana nazwa oraz zestaw wartości.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 21

Wprowadzenie do języka UML

komunikat (wiadomość)

Przekazanie informacji pomiędzy obiektami związane z oczekiwaniem, że

spowoduje to pewną akcję po stronie odbierającej. Komunikatem jest wywołanie

operacji i wysłanie sygnału. Odbiór komunikatu jest zwykle traktowany jako

wystąpienie pewnego zdarzenia.

Specyfikacja ta określa nie tylko rodzaj komunikacji - wysłanie sygnału,

wywołanie operacji, utworzenie lub skasowanie obiektu, ale także role nadawcy i

odbiorcy w obrębie danego połączenia komunikacyjnego, oraz informacje

przekazywane pomiędzy nadawcą a odbiorcą. W UML dopuszcza się zarówno

synchroniczny jak i asynchroniczny sposób komunikacji pomiędzy nadawcą a odbiorcą.

interfejs

Deklaracja zbioru operacji, które łącznie definiują pewien zestaw usług

oferowanych przez instancję (przypadku użycia, obiektu lub komponentu).

Interfejs jest ogólną charakterystyką pewnego spójnego zestawu usług

reprezentowanych przez wybrane operacje danego przypadku użycia obiektu lub

komponentu. Obiekt lub komponent mogą mieć wiele interfejsów.

System w danym momencie jest scharakteryzowany przez swój stan, który determinuje

zachowanie się (funkcjonowanie) systemu w przyszłości. Stan systemu jest określony

przez stany wszystkich jego obiektów składowych.

stan

Sytuacja w czasie życia obiektu, scharakteiyzowana przez pewien warunek,

wykonywaną aktywność lub oczekiwanie na pewne zdarzenie.

Sytuację obiektu w danym momencie opisuje stan jego maszyny stanowej.

Podsumowując, system (bądź jego model) może być opisywany wyłącznie z punktu

widzenia zewnętrznego albo wewnętrznego obserwatora. Obserwator zewnętrzny

opisuje system przez określenie jego usług oraz jego zachowania, natomiast obserwator

wewnętrzny opisuje system przez określenie jego stanów i przejść pomiędzy stanami w

wyniku reakcji na zachodzące zdarzenia.

22 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

3. Elementy języka

3.1. Klasyfikacja

Elementy języka UML można pogrupować w trzy kategorie:

• elementy’ podstawowe,

• elementy wiążące,

• diagramy.

Podstawowe elementy, z których buduje się model danego systemu można

podzielić na następujące cztery podkategorie:

• elementy’ strukturalne, na które składają się:

(a) klasy,

(b) interfejsy,

(c) grupy współdziałania,

(d) przypadki użycia,

(e) klasy aktywne,

(f) komponenty,

(g) węzły,

• elementy behawioralne, na które składają się:

(a) interakcje,

(b) maszyny stanów,

• elementy grupujące - zawierające tylko pakiety,

• elementy objaśniające - zawierające tylko notki.

Elementy wiążące, które służą do wiązania elementów podstawowych przy

tworzeniu modelu, obejmują następujące relacje:

• zależności,

• asocjacji,

• generalizacji,

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 23

Wprowadzenie do języka UML

• realizacji.

Diagramy służą do wizualizacji tworzonych modeli. Zasadniczą częścią każdego

diagramu jest pewien graf etykietowany, z którego wierzchołkami - elementami

podstawowymi - i krawędziami - elementami wiążącymi - są związane dodatkowe

informacje wyrażane w postaci tekstowej. Zestaw diagramów służy do budowy modelu

rozważanego systemu.

Zestaw diagramów do prezentacji modelu lub jego fragmentów obejmuje:

• diagramów klas (class diagrams),

• diagramów obiektów (object diagrams),

• diagramów przypadków użycia (use case diagrams),

• diagramów sekwencji (sequence diagrams),

• diagramów współdziałania (collaboration diagrams),

• diagramów stanów (stale diagrams),

• diagramów aktywności (activity diagrams),

• diagramów komponentów {component diagrams),

• diagramów rozmieszczenia (deployment diagrams).

Diagramy klas, obiektów, przypadków użycia, komponentów i rozmieszczenia

służą do wyrażania aspektów statycznych tworzonych modeli, natomiast diagramy

sekwencji, współdziałania, stanów i aktywności służą do wyrażania ich aspektów

dynamicznych.

Diagramy sekwencji i diagramy współdziałania noszą wspólną nazwę diagramów

interakcji. Natomiast diagramy komponentów i diagramy rozmieszczenia noszą wspólną

nazwę diagramów implementacji.

3.2. Elementy strukturalne

Klasy

Elementy strukturalne stanowią komponenty modeli budowanych w różnych

fazach tworzenia oprogramowania. Zasadniczym pojęciem jest definiowana już
24 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

wcześniej klasa, jako opis zbioru obiektów posiadających takie same atrybuty, operacje,

metody, relacje i semantykę. Na poziomie metamodelu klasa jest szczególnym rodzajem

klasyfikatora. Dokładniej, pomiędzy pojęciem klasy a pojęciem klasyfikatora na

metamodelu zachodzi relacja generalizacji - klasa jest metaklasą specyficzną, a

klasyfikator - metaklasą ogólną. Elementy klasyfikatora nazywamy instancjami.

Instancjami klasy są obiekty.

klasyfikator

Mechanizm opisujący własności behawioralne i strukturalne elementów

modelowania. Klasyfikatorami są klasy, aktorzy, komponenty, typy danych,

interfejsy, węzły, sygnały, podsystemy i przypadki użycia. Klasy są najbardziej

ogólne spośród wszystkich klasyfikatorów, co intuicyjnie oznacza, że pozostałe

klasyfikatory można rozumieć jako klasy z pewnymi ograniczeniami dotyczącymi

ich treści lub użycia.

atrybut

Nazwana właściwość klasyfikatora, określająca zestaw wartości, które mogą

przyjmować instancje klasyfikatora.

Pojęcie atrybutu odnosi się ogólnie do wszystkich klasyfikatorów. Klasyfikator jest

pojęciem pomocniczym (z metamodelu), które obejmuje: interfejsy, klasy, typy danych i

komponenty.

Atrybut ma swoją nazwę, a ponadto z atrybutem wiążą się następujące cechy

(metaatrybuty):

• typ.
• widzialność (publiczny, chroniony, prywatny),

• zakres wartości (instancja typu),

• zakres własności (wartość atrybutu wspólna dla całej klasy, czy indywidualna

dla obiektów klasy),

• krotność atrybutu określająca liczbę wartości atrybutu przyporządkowaną

każdemu jego właścicielowi,

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 25

Wprowadzenie do języka UML

• sposób zmiany wartości atrybutu (brak ograniczeń, tylko odczyt, tylko

dołączanie nowych wartości).

operacja

Usługa dostarczana przez obiekt, która manifestuje się przez odpowiednie

zachowanie obiektu. Operacja ma sygnaturę, która określa jej dopuszczalne

parametry.

Operacja ma swoją nazwę, listę parametrów formalnych i typ zwracanego wyniku

obliczeń, a ponadto z operacją wiążą się następujące cechy:

• rodzaj dostępu (sekwencyjny, pośredni, równoległy),

• polimorfizm (polimorficzna, niepolimorficzna)

• zakres (operacja wspólna dla całej klasy, czy indywidualna obiektów klasy),

• widzialność (publiczna, chroniona, prywatna).

Pojęcie operacji należy odróżniać od pojęcia metody, która jest implementacją

operacji. Z każdą operacją może być związana jej specyfikacja wyrażona formalnie lub

nieformalnie. Może też być określony skutek jej wywołania (zmiana lub brak zmiany

wartościowania atrybutów), czy jest polimorficzna (jedna czy wiele implementacji).

metoda

Implementacja operacji. Określa algorytm lub procedurę, która dostarcza wyniku

operacji.

Metoda posiada cechy operacji, a ponadto może być z nią skojarzone zachowanie

definiowane przez odpowiednią maszynę stanową, treść wyrażana nieformalnie lub w

wybranym języku programowania lub grupa współdziałania określająca jej

implementację.

Graficzną reprezentację klas przedstawia rys. 2. Kolejny rys. 3 przedstawia notację

określającą dalsze szczegóły związane z klasami. Poza sekcją dla nazwy, która musi być

zawsze, oraz sekcjami dla atrybutów i operacji, dopuszcza się wprowadzanie

dodatkowych sekcji, np. sekcji dla definiowania wyjątków, odpowiedzialności klasy itp.

Omówione klasy nazywa się klasami konkretnymi w odróżnieniu od klas szablonowych.

26 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

Klasy szablonowe bezpośrednio nie określają konkretnej klasy. Definiują one konkretne

klasy dopiero po ukonkretnieniu, czyli po ustaleniu wartości odpowiednich parametrów

genetycznych klas szablonowych. Używa się jeszcze pojęcia klas abstrakcyjnych. Klasy

abstrakcyjne nie służą do określania konkretnych obiektów, w UML pełnią one

pomocniczą rolę przy definiowaniu innych klas.

«Stereotyp»
Nazwa klasy

atrybut: typ

operacjaO
operacja(lista_arg): typ

«Stereotyp»
Nazwa klasy

atrybut: typ

operacja!)
operacja(lista_arg): typ

exceptions
wyjątek()

Rys. 2. Podstawowa notacja klas

Rys. 3. Widzialność i zasięg atrybutów i operacji, klasy parametryzowane

relacja

Semantyczne powiązanie pomiędzy elementami modelu, na przykład: relacja

asocjacji lub generalizacji.

Pojęcie powiązania odnosi się ogólnie do dowolnych klasyfikatorów.

Pojęcie semantyki, odnoszące się do klasy jest rozumiane nieformalnie. Pośrednio

semantykę można określić przez ustalenie odpowiedzialności związanej z klasą. Pojęcie

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 27

Wprowadzenie do jeżyka UML

odpowiedzialności - poza postacią notki - nie ma w UML bezpośredniej reprezentacji,

natomiast z tego pojęcia wynikają własności dynamiczne klasy.

odpowiedzialność

Kontrakt lub zobowiązanie klasy lub innego elementu.

Odpowiedzialność jest przede wszystkim pojęciem metodycznym. Pojęcie

kontraktu nie jest definiowane w UML, jest natomiast uwzględniane przez RM ODP.

Kontrakt jest umową zawieraną pomiędzy serwerem a klientem (klasą a jej

użytkownikami), która może zawierać:

• specyfikację ról i związanych z nimi interfejsów,

• określenie jakości usług,

• ustalenie okresów ważności umowy,

• wskazanie zachowań koniecznych, dopuszczalnych, zabronionych itp.

Ostatecznie zobowiązania i kontrakty związane z odpowiedzialnością znajdują

swoje odzwierciedlenie w zachowaniu, które ma swą reprezentację w UML w postaci

diagramu stanów lub diagramu aktywności związanego z daną klasą.

Klasy aktywne

Klasa aktywna to klasa, której obiekty posiadają jeden lub więcej procesów lub

wątków, i przez to mogą przejawiać działania sterujące. Proces oraz wątek nie są

pojęciami występującymi na poziomie metamodelu. Są użytecznymi pojęciami podczas

tworzenia szczegółowego projektu oprogramowania.

klasa aktywna

Klasa której instancje są obiektami aktywnymi.

obiekt aktywny

Obiekt posiadający własny wątek sterowania i mogący inicjować sterowanie.

Klasy aktywne mają reprezentację graficzną różniącą się od reprezentacji innych

klas tylko pogrubioną krawędzią bloków.

28 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

proces

Jednostka równoległości (ciąg czynności obliczeniowych) w językach

programowania lub w systemach operacyjnych. Jest to również standardowy

stereotyp wskazujący na sposób implementacji aktywnego obiektu jako procesu.

Ogólnie, podane określenie nie jest jedynym znaczeniem kojarzonym ze słowem

proces. Proces może też oznaczać wykonywanie pewnych czynności, na przykład,

wykonywanie obliczeń pewnego algorytmu, lub wytwarzanie oprogramowania.

wątek

Pojedyncza ścieżka wykonania programu lub inna reprezentacja przepływu

sterowania. Także stereotyp dla implementacji aktywnego obiektu jako „lekkiego”

procesu.

Wątek może być uważany za szczególny rodzaj procesu. Zasadnicza różnica

pomiędzy wątkiem i procesem jest związana z ich mechanizmami synchronizacji i

komunikacji. W porównaniu do procesów wątki mają te mechanizmy ograniczone, co

powoduje, że wykorzystywanie wątków wymaga od ich użytkowników przestrzegania

pewnych ograniczeń, zwykle chodzi o zagwarantowanie wykluczającego się dostępu do

wspólnej pamięci.

Typy danych

typ danych

Opis zbioru wartości, bez wyróżnionej tożsamości. Typy danych mogą być

predefiniowane (standardowe) lub definiowane przez użytkowników.

Elementarnymi typami predefiniowanymi są liczby, napisy, oraz wartości czasowe.

Typami definiowanymi przez użytkownika są typy wyliczeniowe.

Typ danych w UML jest rozumiany inaczej niż w językach programowania, gdzie

przez typ rozumie się pewien zbiór wartości oraz pewien zbiór związanych z nim

operacji. Typ danych w językach programowania ma swoją tożsamość co oznacza, że

można kreować różne typy posiadające ten sam zbiór wartości i ten sam zbiór operacji.

Natomiast w UML kreowanie nowego typu, którego zbiór wartości byłby identyczny ze

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 29

Wprowadzenie do języka UML

zbiorem wartości istniejącego już typu, na przykład typu całkowitoliczbowego, nie ma

sensu, gdyż pomiędzy różnymi zbiorami całkowitoliczbowymi nie ma odróżnienia.

Pojęcie interfejsu było wyjaśnione wcześniej. Interfejs może być

przyporządkowany przypadkowi użycia, klasie lub komponentowi ma swoją nazwę.

Interfejsy nie muszą być rozłączne.

Graficznie interfejs przedstawia się kółkiem. Rys. 4 przedstawia klasę i pakiet

powiązane relacją asocjacji z interfejsami.

Rys. 4. Przykład klasy pakietu z interfejsami

Grupy współdziałania

Pojęcie grupy współdziałania zostało wprowadzone w wersji UML 1.3.

grupa współdziałania

Opis zbioru obiektów i ich powiązań, które współdziałając ze sobą w pewnym

otoczeniu implementują zachowania przypadku użycia lub operacji. Grupa

współdziałania ma część statyczną i dynamiczną. Część statyczna opisuje role

obiektów i ich powiązań, które mogą pełnić w instancji grupy współdziałania.

Część dynamiczna zawiera opis przepływu w czasie komunikatów pomiędzy

obiektami w celu realizacji wspólnych obliczeń.

W poprzednich wersjach UML pojęcia tego nie było. Jest ono przydatne dla

powiązania kolejnych faz wytwarzania oprogramowania. Można jawnie określać relacje

pomiędzy elementem modelu fazy wcześniejszej z grupą współdziałania, która jest jej

implementacją i która stanowi fragment modelu fazy późniejszej. Na przykład, można w

ten sposób wskazywać na grupę współdziałania jako realizatora przypadku użycia lub

operacji. Zbiór grup współdziałania implementujących operacje danej klasy można

traktować jako implementację klasy.

30 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

Aspekty statyczne grupy można wyrażać wykorzystując diagramy klas lub

obiektów, zaś aspekty dynamiczne - wykorzystując diagramy interakcji.

Na rys. 5 grupa współdziałania 1 jest realizacją pewnej operacji wskazanej klasy

(powiązanie przez relację realizacji), zaś grupa współdziałania 2 - przez relację

zależności ukonkretnioną stereotypem «refine» - jest określona jako pewne uściślenie

grupy 1.

Klasa

operacjall)
opcracja2()
operacja3()

/ Grupa
\ współdziałania 1

--------------------- -
realizacja

«reflne»

i'' Grupa N
współdziałania 2

Rys. 5. Przykład wykorzystania grup współdziałania

Uogólnieniem pojęcie grupy współdziałania jest parametryzowana grupa

■współdziałania. Konkretyzacja parametryzowanej grupy wyznacza konkretną grupę

współdziałania. Zwykle podstawowymi jej parametrami są klasyfikatory. Konkretyzacja

polega na powiązaniu parametrów formalnych z konkretnymi klasyfikatorami.

Pojęcie to jest przydatne do określania tzw. wzorców projektowych. Na rys. 6 jest

przedstawiony przykład parametryzowanej grupy współdziałania oraz oparty na niej

wzorzec.

Przypadki użycia

Przeznaczeniem przypadków użycia jest opis systemu bądź jego części z punktu

widzenia użytkownika. Z pragmatycznego punktu widzenia przypadki użycia mogą

stanowić opis funkcjonalnych wymagań użytkownika dla mającego powstać systemu,

bądź mogą stanowić opis funkcjonowania istniejącego już systemu. Użytkowników

reprezentują aktorzy.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 31

Wprowadzenie do języka UML

przypadek użycia (usługa)

Specyfikacja sekwencji akcji, z włączeniem sekwencji alternatywnych i sekwencji

wyjątkowych, które system, podsystem lub klasa może wykonać współdziałając ze

swoim otoczeniem reprezentowanym przez zewnętrznych aktorów.

Przypadek użycia jest opisem zbioru skończonych ciągów akcji - scenariuszy,

które system wykonuje po ich inicjacji przez użytkownika systemu i które mają

dostarczyć użytkownikowi oczekiwanego wyniku. Inaczej: przypadek opisuje pewną

usługę, którą system świadczy użytkownikowi. Termin ‘przypadek użycia’

rozpowszechnił się już dosyć szeroko, chociaż właściwszym terminem byłaby właśnie

‘usługa’ lub ‘zestaw usług’, co lepiej oddaje znaczenie pojęcia. W opisie uwagę zwraca

się na interakcje zachodzące pomiędzy opisywanym systemem a jego otoczeniem.

Jednym z rodzajów akcji jest bowiem wywołanie operacji, które - dokonywane przez

aktora zewnętrznego - jest początkiem sekwencji akcji należących do przypadku użycia.

Rys. 6. Przykład parametryzowanej grupy współdziałania a) wzorzec b) konkretyzacja

32 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

Zwykle przypadek użycia zawiera sekwencję podstawową, która opisuje ciąg akcji

podczas wykonywania pewnej usługi przy założeniu pewnych typowych warunków,

oraz sekwencje dodatkowe, które opisują przebieg realizacji usługi w przypadku zajścia

nietypowych warunków.

W sekwencji akcji umieszcza się znaczniki rozszerzeń określające miejsce, w

którym dana sekwencja może się rozgałęzić bądź rozszerzyć o inny ciąg. Ze

znacznikiem może opcjonalnie być związany warunek, który określa kiedy to może

nastąpić i jaki ciąg ma być wybrany do rozgałęzienia lub do wstawienia. Znaczniki

można umieszczać w postaci listy poniżej nazwy przypadku użycia - rys. 6.b.

Przypadki użycia, tak jak inne klasyfikatory, mogą mieć atrybuty, operacje i

metody. Mogą być opisywane przez diagramy interakcji, diagramy aktywności lub

diagramy stanów. Instancją przypadku użycia jest pojedynczy ciąg akcji - pojedynczy

scenariusz.

Przypadki użycia, jako klasyfikatory, mogą być w relacji z innymi klasyfikatorami

- aktorami lub innymi przypadkami użycia.

aktor

Spójny zestaw ról, które pełnią użytkownicy podczas interakcji z przypadkami

użycia. We współpracy z danym przypadkiem użycia aktor może pełnić tylko jedną

rolę.

rola
Nazwane, specyficzne zachowanie bytu występującego w danym kontekście. Rola

może być statyczna, np. rola końca asocjacji, bądź dynamiczna, np. rola

współdziałania.

Aktorzy reprezentują obiekty (inne systemy lub ludzi), które są poza

modelowanym systemem, czyli należą do otoczenia systemu reprezentowanego przez

przypadki użycia.

Na rys. 6.a pomiędzy aktorem a przypadkami użycia (przypadki 1 oraz 3) zachodzą

asocjacje. Pomiędzy przypadkiem 1 a 2 zachodzi relacja zależności «extend», zaś

VI Konferencja Systemy Czasu Rzeczywistego. Zakopane 1999 33

Wprowadzenie do języka UML

pomiędzy przypadkiem 1 a przypadkiem 3 - relacja zależności «include». Natomiast

pomiędzy przypadkami 4 i 2 zachodzi relacja generalizacji.

Asocjacje wiążące aktora z przypadkami użycia (1 oraz 3) określają z których

usług aktor może korzystać.

Relacja zależności «extend» oznacza, że przypadek użycia 2 zawiera sekwencje

akcji, które - w przypadku spełnienia odpowiednich warunków - mogą być wstawiane

do sekwencji akcji należących do przypadku użycia 1 w miejscach określonych przez

odpowiednie znaczniki.

Relacja zależności «include» oznacza, że sekwencje akcji należące do przypadku

użycia 1 są wstawiane w miejsca wskazane przez odpowiednie znaczniki do sekwencji

akcji przypadku użycia 3.

Relacje zależności «extend» oraz «include» są tzw. stereotypami. Pojęcie

stereotypu jest wyjaśniane dalej, intuicyjnie rola stereotypu polega na uściśleniu

znaczenia pewnego elementu języka, tu dotyczy to relacji zależności.

Relacja generalizacji oznacza, że przypadek specjalizowany (przypadek 2) może

definiować dodatkowe atrybuty, operacje, sekwencje akcji, a także może wstawiać w

dowolne miejsca sekwencji należących do przypadku bazowego (przypadek 4)

dodatkowe ciągi akcji.

Rys. 7. Przykłady przypadków użycia

Komponenty i węzły

Komponenty oraz węzły, reprezentując oprogramowanie i sprzęt, służą do budowy

34 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

modeli implementacyjnych.

komponent

Fizyczna, przemieszczalna część systemu, stanowiąca moduł realizujący pewien

zbiór interfejsów. Komponent reprezentuje fizyczną część implementacji systemu,

włączając w to moduły programowe (źródłowe, binarne lub wykonywalne) lub ich

odpowiedniki, na przykład skrypty lub pliki z komendami.

węzeł

Węzeł jest fizycznie funkcjonującym obiektem reprezentującym zasoby

obliczeniowe, dysponujące co najmniej pamięcią a często również jednostkami

przetwarzającymi. Działające obiekty i komponenty mogą być ulokowane w

węzłach.

Reprezentację graficzną komponentów i węzłów przedstawia rys. 8.

i—5
. -.... J—“ Komponent Węzeł

Rys. 8. Notacja dla komponentów i węzłów

3.3. Elementy behawioralne

Elementy behawioralne służą do opisu zachowań. Można takiego opisu dokonywać

na dwa sposoby: przez określanie pewnych ciągów wiadomości (komunikatów)

wymienianych pomiędzy współdziałającymi elementami bądź przez określanie ciągów

stanów, przez które przechodzą wybrane elementy. Interakcje służą do tworzenia

pierwszego rodzaju, zaś maszyny stanowe do drugiego rodzaju opisów.

interakcja
Specyfikacja przesyłania wiadomości pomiędzy obiektami lub innymi instancjami

w celu wykonania konkretnego zadania. Interakcja jest definiowana w kontekście

grupy współdziałania.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 35

Wprowadzenie do języka UML

Obiekty oraz inne instancje należące do grupy współdziałania komunikują się ze

sobą, w celu realizacji wspólnego zadania. Komunikacja polega na przesyłaniu

wiadomości, którymi mogą być sygnały lub wywołania operacji. Odbiór wiadomości

jest pewnym zdarzeniem, zatem interakcja określa pewną kolejności zachodzenia

zdarzeń. Pośrednio, do interakcji zalicza się również inne zdarzenia, którymi są

zdarzenia czasowe, określające upływ pewnych chwil, np. momentów

przeterminowania, oraz zdarzenia określające zajście pewnych warunków, np.

spełnienie zadanego predykatu w rezultacie wewnętrznych aktywności obiektu.

sygnał

Specyfikacja asynchronicznej komunikacji pomiędzy obiektami. Sygnał może mieć

parametry wyrażone jako jego atrybuty.

Sygnał jest jawnie nazwanym klasyfikatorem. Instancja komunikatu reprezentuje

nazwany zestaw wartości (komunikat) przekazywany pomiędzy obiektami. Przesłanie

sygnału następuje w wyniku wywołania operacji sygnału przez dowolny obiekt. Sygnał

może być kierowany do dowolnego zbioru obiektów-odbiorców. W zamierzeniu sygnał

jest rozgłaszany do wielu odbiorców. Ponieważ jednak jest wysłany w trybie

asynchronicznym oznacza to, że może dotrzeć do odbiorców w różnych chwilach czasu.

Pomiędzy sygnałami może zachodzić relacja generalizacji. Klasa lub interfejs mogą

zawierać sygnał w swych deklaracjach, wskazując w ten sposób

Interakcje są skojarzone z przepływem wiadomości w obrębie konkretnej grupy

współdziałania. Można je opisywać za pomocą diagramów sekwencji i diagramów

współdziałania.

maszyna stanowa

Specyfikacja sekwencji stanów, przez które podczas swego istnienia przechodzi

obiekt lub grupa współdziałania. Przejścia pomiędzy stanami są reakcją na

zachodzące zdarzenia, przejściom tym mogą towarzyszyć akcje podejmowane

przez obiekt lub grupę współdziałania. Maszyna stanowa może opisywać

36 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

zachowanie klasy, grupy współdziałania, metody lub może opisywać zachowanie

konkretnej instancji.

Maszyna stanowa jest uogólnieniem automatu skończonego. Uogólnienie polega na

wprowadzeniu wartościowań ustalonego zbioru atrybutów. Oznacza to, że

przechodzeniu pomiędzy stanami może towarzyszyć zmiana wartościowań atrybutów.

3.4. Elementy grupujące i objaśniające

Jedyną konstrukcją służącą do grupowania różnego rodzaju elementów są pakiety.

Dzięki pakietom jest możliwa dekompozycja tworzonych modeli i panowanie nad

problemami związanymi ze złożonością projektu wytwarzania oprogramowania.

Zasadniczym przeznaczeniem pakietu jest użycie go do definiowania systemu i

podsystemów. Zarówno w obrębie systemu jak i podsystemu może być wiele modeli,

stanowiących ich wyobrażenie z różnych punktów widzenia (perspektyw).

pakiet

Mechanizm ogólnego przeznaczenia służący grupowaniu elementów. Pakiety mogą

być zagnieżdżane w innych pakietach. System może być reprezentowany jako

pakiet najwyższego poziomu, w którym jest zawarte wszystko, co należy do

systemu.

Pakiet wprowadza pewną przestrzeń nazw dla zagnieżdżonych w nim elementów,

tzn. ich nazwy, w obrębie pakietu, są jednoznacznie rozróżniane.

Fakt, że pakiet zawiera pewne elementy formalnie oznacza zachodzenie relacji

silnej agregacji, w której pakiet pełni rolę agregatu. Z pakietem są związane zasady

uwidoczniania (private, protected, public) i udostępniania (export. import) jego

elementów. Pakiety mogą pozostawać ze sobą w relacji generalizacji.

Wyróżnia się tylko jeden rodzaj elementów objaśniających - tzw. notki. Służą one

różnym celom: objaśnianiu, komentowaniu, opisywaniu, uwagom itp. Mogą one być

wiązane z dowolnymi elementami tworzonych modeli.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 37

Wprowadzenie do języka UML

ZZL.
Pakiet Notka

Rys. 9. Notacja dla pakietów i notek

3.5. Relacje

Elementy modelu mogą być w różny sposób powiązane ze sobą - mogą pomiędzy

nimi zachodzić pewne relacje.

relacja

Semantyczne połączenia pomiędzy elementami modelu, na przykład: relacja

asocjacji lub generalizacji.

Pojęcie relacji jest określone bardzo ogólnie - można rozumieć je jako dowolną relację,

w sensie mnogościowym, pomiędzy pewnymi zbiorami elementów. Wyróżnia się cztery

specyficzne relacje o ściślej określonym znaczeniu. Są to relacje:

• zależności,

• generalizacji,

• asocjacji,

• realizacji.

Relacja zależności jest określona bardzo ogólnie. W zasadzie relacja ta powinna

być wykorzystywana z podaniem konkretnego znaczenia. Znaczenie takie można nadać

relacji przez jej powiązanie z odpowiednim stereotypem. Wśród relacji zależności

wyróżnia się, m.in., relację uściślenia, śladowalności.

zależność

Relacja pomiędzy dwoma elementami modelowania polegająca na tym, że zmiana

w jednym - niezależnym elemencie, pociąga zmianę w drugim - zależnym

elemencie.

38 W Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

 Wprowadzenie do Języka UML

Relacja uściślenia ma służyć do wyrażania powiązań pomiędzy elementami modelu

powstającego, m.in., w fazie projektowania i implementacji oprogramowania.

uściślenie

Relacja wskazująca na pełniejszą specyfikację czegoś, co było wcześniej

wyspecyfikowane na pewnym poziomie szczegółowości. Na przykład, klasa

zdefiniowana w fazie projektu jest uściśleniem odpowiedniej klasy zdefiniowanej

w fazie analizy.

Relacja śladowalności ma wskazywać na powiązanie elementów w procesie

projektowym. Może, na przykład, dla pewnej klasy wskazywać na inne klasy które były

brane pod uwagę przy jej definiowaniu.

Inny rodzaj relacji określa generalizacja:

generalizacja

Relacja pomiędzy elementem ogólnym a specyficznym. Element specyficzny jest

całkowicie zgodny z elementem ogólnym i zawiera dodatkową informację.

Egzemplarz elementu specyficznego może być użyty wszędzie tam, gdzie

dopuszcza się egzemplarz elementu ogólnego.

Relacja generalizacji określa powiązanie pomiędzy dwoma elementami, w

szczególności pomiędzy klasami - klasą ogólną i klasą specyficzną. Obiekty klasy

specyficznej dziedziczą własności strukturalne i behawioralne - atrybuty i operacje -

obiektów klasy ogólnej. Relacja generalizacji jest głównie wykorzystywana na etapie

tworzenia modelu. Pozwala ona na usystematyzowanie tworzenia modelu metodą

zstępującą, a z drugiej strony pozwala na wykorzystywanie wcześniej zbudowanych

modeli. Ten ostatni wzgląd wiąże się z postulatem zastępowalności sformułowanym

przez Liskov (Lis ko v Substitution Principle):

Egzemplarz nadklasy musi być całkowicie zastępowalny odpowiednim

egzemplarzem podklasy.

Spełnienie tego postulatu polegające na zdefiniowaniu elementu specyficznego

tylko przez dołączenie dodatkowych atrybutów lub operacji jest oczywiste, natomiast

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 39

Wprowadzenie do języka UML

jego spełnienie w odniesieniu do zachowań zastępowanych obiektów jest trudne.

Rozszerzenie zachowania obiektu należy wiązać z pewnym rozszerzeniem maszyny

stanowej, która reprezentuje jego zachowanie. Okazuje się, że nasuwające się

możliwości, np. dowolne dołączenie nowego stanu lub nowego łuku do maszyny

stanowej, nie gwarantują zachowania postulatu zastępowalności.

Asocjacja jest relacją, która może zachodzić pomiędzy dwoma lub więcej klasami

- albo ogólniej - pomiędzy klasyfikatorami. Zwykle tę relację utożsamia się z

możliwością nawigacji (przechodzenia) pomiędzy elementami asocjacji, tzn. pomiędzy

obiektami powiązanymi asocjacją. Relacja służy do wyznaczenia struktury między

składowymi obiektami modelu. Może być relacją binarną, temamąlub wyższego rzędu.

asocjacja

Semantyczna relacja pomiędzy dwoma bądź więcej klasyfikatorami, które

ustanawiają połączenia pomiędzy ich instancjami.

Relację asocjacji nazywa się także związkiem, a elementy relacji asocjacji nazywa

się powiązaniami. Asocjacji na diagramach klas może, poza nazwą, towarzyszyć

informacja o liczności i rolach jej końców. Rys. 10. przedstawia asocjację o nazwie

zatrudnienie wiążącą klasy o nazwach Instytucja i Osoba. Czarny trójkąt przed nazwą

asocjacji wskazuje na uporządkowanie argumentów tej relacji. Zakładając, że klasy

traktujemy jako pewne zbiory, relację tę można wyrazić w następującej postaci:

zatrudnienie c Osoba x Instytucja. Wtedy też role można traktować jako funkcje:

pracownikim^) = {praceOsoba I <prac, mst>e zatrudnienie}

pracodawcalprac) = {inste Instytucja I <prac, ms\>c zatrudnienie}

Niech card(A) oznacza liczność elementów zbioru A. Wtedy liczność końca asocjacji

związanej z rolą pracownik oznacza, że

1 <card(pracownik(mst)) < <»,

zaś liczność końca związanego z rolą pracodawca oznacza, że

card(pracoćZawca(prac)) < °o.

Nazwy asocjacji oraz nazwy ról są opcjonalne. W przypadku braku nazwy roli jest ona

40 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

przyjmowana domyślnie jako nazwa klasy na tym samym końcu powiązania. Natomiast

brak podanej liczności oznacza domyślnie liczność równą 1. Inne informacje dotyczące

asocjacji można podawać w postaci ograniczeń. Przykład ograniczenia jest podany na

rys. 10. Ograniczenie to wskazuje na to, że dany obiekt klasy Konto może być w

asocjacji albo z obiektem klasy Osoba albo z obiektem klasy Instytucja.

Rys. 10. Przykłady oznaczeń związanych z asocjacją

Szczególnymi rodzajami asocjacji są agregacja oraz silna agregacja. Intencją jest tu

powiązanie ze sobą we wspólną całość instancji należących do różnych klasyfikatorów.

agregacja

Rodzaj binarnej asocjacji pomiędzy klasyfikatorami, która określa relację „całość-

część” pomiędzy agregatem (całością) a jego częściami.

Oznacza to, że egzemplarz należący do klasyfikatora reprezentującego “całość”

zawiera - jako swoje komponenty - elementy należące do klasyfikatora

reprezentującego “część”. W przypadku klas, wartościami atrybutów obiektu

zagregowanego mogą być obiekty należące do klas reprezentujących „części”. Relacja

agregacji jest tranzytywna i antysymetryczna. Antysymetryczne musi być też złożenie

relacji agregacji.

Szczególnym rodzajem agregacji jest silna agregacja.

silna agregacja
Relacja agregacji, w której elementy składowe należą tylko do jednego elementu

macierzystego, a okres ich życia zawiera się okresie życia elementu macierzystego.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 41

Wprowadzenie do języka UML

Elementy składowe mogą być kreowane po utworzeniu elementu macierzystego.

Raz utworzone istnieją i są kasowane wraz ze swoim element macierzystym. Mogą

też być kasowane przed momentem kasowania elementu macierzystego.

Agregacja może być rekursywna.

klasa złożona

Klasa będąca w relacji w relacji silnej agregacji z jedną lub więcej klasami.

obiekt złożony

Obiekt reprezentujący “całość”, którego elementami są inne obiekty reprezentujące

“części”.

realizacja

Semantyczny relacja pomiędzy dwoma klasyfikatorami, w którym jeden z

klasyfikatorów specyfikuje kontrakt gwarantowany przez drugi klasyfikator.

Relacja realizacji może być, z jednej strony, uważana za pewnego rodzaju relację

zależności, z innej zaś strony przypomina generalizację. Z uwagi na te skojarzenia jest

ona reprezentowana przez strzałkę rysowaną przerywaną linię i z trójkątnym grotem.

Zestawienie graficznych symboli relacji przedstawia rys. 11.

Rys. 11. Symbole graficzne relacji

Asocjacja

Generalizacja

Realizacja

Zależność

Agregacja

42 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

4. Diagramy klas i diagramy obiektów

diagram klas

Diagram zawierający kolekcję deklaratywnych (statycznych) elementów modelu,

takich jak klasy (i ich zawartość), typy, interfejsy oraz grupy współdziałania wraz z

relacjami zależności, generalizacji, asocjacji.

Poza wymienionymi elementami, na diagramach klas mogą znajdować się jeszcze

inne oznaczenia, np. liczności relacji. Diagramy klas służą do wyrażania statycznego

aspektu budowanych modeli. Diagramy takie mogą powstawać w różnych sytuacjach

projektowych, np. podczas tworzenia słownika pojęć, modelowania grup

współdziałania, modelowania logicznego schematu baz danych. Behawioralne aspekty

diagramów klas mogą przedstawiać związane z nimi diagramy maszyn stanów

i diagramy interakcji.

Rys. 12. Przykład diagramu klas

VI Konferencja Systemy Czasu Rzeczywistego. Zakopane 1999 43

Wprowadzenie do języka UML

Uwaga

Diagramy klas odgrywają w UML rolę szczególną. Z jednej strony są one

elementem języka, czyli należą do metamodelu, z drugiej strony diagramy klas, a

dokładniej diagramy metaklas, są elementami opisu języka. Klasy są instancjami

metaklas.

diagram obiektów

Diagram zawierający obiekty i zachodzące pomiędzy nimi relacje w danej chwili

czasu. Może być uważany za szczególny przypadek diagramu klas lub diagramu

współdziałania. Diagram obiektów odnosi się do określonej chwili istnienia

systemu. Natomiast diagram klas nie odnosi się do konkretnej chwili istnienia

systemu, lecz określa dopuszczalne relacje jakie mogą zajść w dowolnej chwili

istnienia systemu.

Asocjacje na diagramach klas mogą na swych końcach zawierać dwa rodzaje

informacji. Pierwsza określa tzw. liczność, czyli liczbę elementów (obiektów) klas,

które mogą być powiązane ze sobą. Druga nazywa odpowiednie role asocjacji.

5. Diagramy przypadków użycia

diagram przypadków użycia (usług)

Diagram przedstawiający relacje pomiędzy przypadkami użycia (usługami) a

aktorami w obrębie systemu.

Diagram przypadków użycia (rys. 13) przedstawia tylko strukturę przypadków

użycia, przez pokazanie łączących ich relacji oraz relacji pomiędzy przypadkami użycia

a aktorami, którzy reprezentują użytkowników systemu. Przypomnijmy, że przypadek

użycia jest opisem zbioru skończonych ciągów interakcji - scenariuszy, które system

wykonuje po ich inicjacji przez użytkownika systemu, i które mają dostarczyć

użytkownikowi oczekiwanego wyniku. Zatem znaczenie poszczególnych przypadków

użycia jest opisywane za pomocą diagramów interakcji (pojedyncze scenariusze) oraz

44 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do Języka UML

diagramów maszyn stanów (zbiór wszystkich scenariuszy). Przypadki użycia należące

do jednego diagramu można zamykać w pakiety.

Rys. 13. Diagram przypadków użycia

Pomiędzy przypadkami użycia mogą zachodzić relacje generalizacji, np. przypadek

5 jest specjalizacją przypadku 3, oraz relacje zależności określone przez standardowe

stereotypy «include» i «extend».

Aktor jest także standardowym stereotypem stanowiącym specjalizację klasy.

Reprezentuje on spójny zestaw ról użytkownika systemu, przy czym podczas pracy z

danym przypadkiem użycia, aktor może wystąpić tylko w jednej roli.

Asocjacje pomiędzy aktorami a stereotypami określają możliwości komunikacji.

Relacja generalizacji pomiędzy przypadkami użycia oraz stereotypy «extend» oraz

«include» były wyjaśnione wcześniej.

Stereotyp «extend» oznacza, że przypadek użycia, od którego prowadzi strzałka

(przypadek 4) rozszerza zachowanie reprezentowane przez przypadek użycia, do

którego strzałka wchodzi (przypadek 3). Scenariusz należący do przypadku 3 może

posiadać znacznik, który - w przypadku spełnienia odpowiednich warunków - wskazuje

na inny dalszy przebieg scenariusza. Alternatywne przebiegi, odpowiednio znakowane,

są zgromadzone w przypadku 4. Jeżeli podczas realizacji pewnego scenariusza z

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 45

Wprowadzenie do języka UML

przypadku 3, w miejscu znacznika, jest spełniony związany z nim warunek, wówczas

realizowany jest odpowiedni scenariusz z przypadku 4, a po jego zakończeniu następuje

powrót do miejsca znakowania w przypadku 3.

Stereotyp «include» oznacza, że przypadek 3 w jawnie wskazanych miejscach

swoich scenariuszy włącza odpowiednie scenariusze należące do przypadku 5.

6. Diagramy interakcji

diagram sekwencji

Diagram przedstawiający, uporządkowane w kolejności czasowej, interakcje

obiektów. W szczególności przedstawia obiekty uczestniczące w tych interakcjach

i kolejność wymienianych wiadomości.

diagram współdziałania

Diagram pokazujący interakcje pomiędzy połączonymi instancjami (obiektami lub

komponentami). Inaczej niż diagram sekwencji, diagram współdziałania pokazuje

relacje pomiędzy instancjami. Diagram nie wyróżnia osi czasu, dlatego sekwencje

wymienianych wiadomości określa się przez etykietowanie wiadomości kolejnymi

liczbami. Etykietowanie takie musi przebiegać oddzielnie w ramach równoległych

wątków.

Inaczej niż diagramy współdziałania, diagram sekwencji przedstawia

uporządkowanie czasowe, lecz nie przedstawia relacji pomiędzy obiektami. Diagram

sekwencji może istnieć w formie ogólnej (generycznej), opisującej różne możliwe

scenariusze, oraz w formie konkretnej, opisującej konkretny scenariusz. Postać

generyczna różni się od postaci konkretnej tym, że posiada dodatkowe napisy, często w

postaci pseudokodu, które odnoszą się do fragmentów scenariusza i określają w jakich

warunkach i ile razy mogą być te fragmenty powtarzane.

Diagramy sekwencji i diagramy współdziałania przedstawiają, w różny sposób,

podobną informację.

46 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

Z każdym obiektem jest związana tzw. linia życia rysowana w postaci pionowej

przerywanej linii. Początek linii odpowiada momentowi wykreowania obiektu, a jej

koniec, dodatkowo zaznaczony symbolem X, odpowiada momentowi skasowania

obiektu. Podwójna linia oznacza okres aktywności obiektu. Przesyłane komunikaty -

wywołania operacji obiektów - są przedstawiane strzałkami. Początek i koniec strzałki

są oznakowane symbolami literowymi, które reprezentują zdarzenia. Ogólnie, zdarzenie

wysłania komunikatu i zdarzenie odbioru nie muszą nastąpić w tej samej chwili. Jeżeli

czasy wystąpienia zdarzeń mają spełniać pewne ograniczenia, to można je wyrażać w

postaci formuł zapisywanych w nawiasach klamrowych, obok linii życia obiektu.

Przykłady diagramów sekwencji przedstawiają rys. 14 i rys. 15.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 47

Wprowadzenie do Języka UML

Rys. 15. Diagram sekwencji - przykład

Są na nim pokazane kreowanie i kasowanie obiektów, rekursywne wywołanie

przez obiekt swoich operacji, rozdzielanie i łączenie wątków, warunkowe

przekazywanie sterowania. Strzałki ciągłe reprezentują wywołania operacji, a strzałki

przerywane reprezentują przesyłanie odpowiadających im wyników wyliczeń.

Na rys. 16 pokazano prosty przykład diagramu współdziałania. Jest to diagram

obiektów etykietowany strzałkami przedstawiającymi przepływ komunikatów.

Scenariusz reprezentowany przez diagram jest ciągiem kolejno numerowanych

komunikatów.

48 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

1: Żądanie windy do góry
8: Żądanie piętra 8Pasażer 1

2: Podświetl przycisk
6: Otwórz drzwi
9: Podświetl przycisk
10: Otwórz drzwi

System
windy

4: Kolejkuj żądanie
7: Drzwi otwórz i zamknij
11: Drzwi otwórz i zamknij
16: Drzwi otwórz i zamknij

5: Podświetl przycisk
12: Otwórz drzwi
14: Podświetl przycisk
16: Otwórz drzwi

3: Żądanie jazdy w dół
8: Żądanie piętra 1

Pasażer 2

Rys. 16. Przykład diagramu współdziałania

7. Diagramy stanów

diagram stanów

Diagram przedstawiający maszynę stanową.

maszyna stanowa

Specyfikacja sekwencji stanów, przez które podczas swego istnienia przechodzi

obiekt lub grupa współdziałania. Przejścia pomiędzy stanami są reakcją na

zachodzące zdarzenia, przejściom tym mogą towarzyszyć akcje podejmowane

przez obiekt lub grupę współdziałania. Maszyna stanowa może opisywać

zachowanie klasy, grupy współdziałania, metody lub może opisywać zachowanie

konkretnej instancji.

Przypomnijmy, że zdarzeniami wyróżnianymi w UML są: odbiór wywołania

operacji, odbiór sygnału, zdarzenie czasowe, zdarzenie spełnienia warunku. Dodatkowo

wyróżnia się zdarzenia kreacji i kasowania obiektu. Zdarzenia te można traktować jako

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 49

Wprowadzenie do języka UML

specyficzny rodzaj wywołania operacji kierowanej do klasy. Należy też zwrócić uwagę

na to, że nie wyróżnia się jako zdarzenia wysłania sygnału. Ponieważ sygnały są

przekazywane w trybie asynchronicznym, moment wysłania i moment odbioru sygnału

nie muszą być takie same. Podobnie dotyczy to wywołani operacji w trybie

asynchronicznym.

Diagramy stanów są reprezentowane w postaci grafu. Ich elementami składowymi

są wierzchołki, reprezentujące stany, i łączące je hiki, reprezentujące przejścia. Stany

mogą być zagnieżdżane. Wyróżnia się zagłębianie stanów sekwencyjnych i stanów

równoległych. Oba rodzaje zagłębień stanów pochodzą od map stanów Harela i

stanowią istotny mechanizm redukcji liczby stanów przy opisie zachowania obiektu

opartego na wykorzystaniu maszyn stanowych.

Wyróżnia się następujące rodzaje wierzchołków:

• pseudo-stany, wśród których są stany początkowe, łączniki historyczne płytkie i

głębokie, stany równoległego rozgałęzienia, złączenia i synchronizacji oraz stany

rozgałęzienia warunkowego;

• stany synchronizujące;

• stany właściwe, które mogą być:

- stanami złożonymi, tzn. stanami, w których są zagnieżdżone inne stany;

gdy jego podstanami są stany równoległe, inaczej regiony, to jest on

nazywany stanem równoległym;

- stanami elementarnymi, tzn. stanami nie zawierającymi innych stanów,

- stany końcowe;

• opcjonalnie, tylko w przejściowym okresie wyznaczania mapy stanów, używa

się tzw. stanów łączówkowych.

Wymienione rodzaje stanów zestawiono na rys. 17.

Pseudostany pełnia rolę pomocniczą. Niektórych z nich można by nie używać

kosztem skomplikowania diagramu stanów. Pseudostan początkowy wskazuje tylko na

właściwy stan początkowy. Rola łączników historycznych uwidacznia się podczas

50 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

powtórnego przechodzenia do wskazywanych przez nie stanów właściwych.

pseudostan początkowy

pseudostan końcowy

stan synchronizujący

łącznik historyczny „płytki”

łącznik histoiyczny „głęboki”

stan rozgałęzienia/zlączenia

rozgałęzienie warunkowe

stany lączówkowe

Rys. 17. Notacja graficzna stanów

Równoległe rozgałęzienie i złączenie oraz stan synchronizujący pozwalają na

tworzenie, łączenie i synchronizację podstanów (regionów) w obrębie stanów

złożonych.

Stan łączówkowy reprezentuje inną maszynę stanową. Wejście do tego stanu

oznacza rozpoczęcie zachowania zgodnego z tą maszyną. Po zakończeniu jej działania

następuje wyjście ze stanu łączówkowego.

Wierzchołki i łuki mogą być etykietowane - są z nimi związane dodatkowe

informacje. Z wierzchołkami jest związana informacja o akcjach jakie można

wykonywać podczas przebywania w danym stanie, zaś z łukami - informacja o

warunkach i zdarzeniach jakie muszą wystąpić, aby nastąpiło przejście pomiędzy

wierzchołkami, a także informacja o dodatkowych akcjach, które mogą wystąpić

podczas takich przejść.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 51

Wprowadzenie do języka UML

Poza nazwą i ewentualnie stanami zagnieżdżonymi, z danym stanem właściwym

wiążą się:

• lista akcji wejściowych, wykonywanych bezpośrednio po przejściu do danego

stanu,

• aktywność wewnętrzna, wykonywana podczas przebywania danym stanie, przy

czym rozpoczyna się ją po wykonaniu akcji wejściowych; jeżeli aktywność

zakończy się, to może to spowodować przejście do innego stanu, pod

warunkiem, że istnieje odpowiednie przejście wyzwalane przez zdarzenie

reprezentujące zakończenie aktywności; jeżeli nastąpi zdarzenie

wyprowadzające z danego stanu przez zakończeniem aktywności, to jest ona

przerywana,

• lista akcji wyjściowych, wykonywane bezpośrednio przy wychodzeniu z danego

stanu, przy czym rozpoczyna się je dopiero po zakończeniu aktywności aktualnie

wykonywanych w obrębie stanu,

• lista zdarzeń odroczonych - zdarzeń, które są rejestrowane podczas przebywania

danym stanie, ale ich obshiga (reakcja na te zdarzenia) jest odkładana, aż do

momentu przejścia do następnego stanu, w których nie sąjuż dalej odraczane,

• lista zdarzeń wewnętrznych, których zajście nie powoduje wyjścia z danego

stanu; zdarzeniom wewnętrznym nie towarzyszy więc wykonywanie akcji

wyjściowych i wejściowych; lista zdarzeń wewnętrznych związana z danym

stanem odnosi się również do stanów zagnieżdżonych w tym stanie.

Stan właściwy może mieć reprezentację graficzną pokazaną na rys. 18.

Stan synchronizujący może być etykietowany liczbą. Stan synchronizujący zlicza

różnicę pomiędzy liczbą wejść a liczbą wyjść ze stanu. W początkowej konfiguracji

maszyny (p. dalej) licznik ten jest równy zero. Każde wejście do stanu zwiększa wartość

licznika o jeden pod warunkiem, że nie przekroczy to liczby, którą jest etykietowany.

Każde wyjście ze stanu zmniejsza wartość licznika o jeden pod warunkiem, że jest ona

większa od zera.

52 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

entry/akcja-we-1, akcja-wc-k
exit/ akcja-wy_l,akcja-wy_m
zdarzenie-wewnętrzne- 1/akcja-1

zdarzenie-wewnętrzne-n/akcja-n
zdarzenie-1/defer

zdarzenie-m / defer
do / aktywnośćwewnętrzna

Rys. 18. Pełna postać opisu stanu właściwego

Łącznik rozgałęziający jest etykietowany formułą, a wyjścia są etykietowane

wartościami logicznymi. W momencie wejścia do łącznika oblicza się wartość formuły i

jest wskazywane odpowiednie wyjście

Zdarzenie jest obserwowalnym wystąpieniem w czasie (zdarzenia są

natychmiastowe). Wyróżnia się cztery rodzaje zdarzeń:

• odbiór sygnału (wiadomości wysyłanej w trybie asynchronicznym),

• odbiór wywołania operacji (wiadomości wysyłanej w trybie synchronicznym),

• zmiany stanu (zmiany wartości pewnego predykatu z wartości false na true),

• upływ określonego momentu przeterminowania (wyznaczonego względnie lub

bezwzględnie).

Zdarzenia odbioru sygnału i wywołania operacji mogą mieć parametry, służące do

przekazywania danych.

Z danym łukiem wiążą się zawsze:

• wierzchołek źródłowy, z którego łuk wychodzi,

• wierzchołek docelowy, do którego łuk prowadzi.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 53

Wprowadzenie do języka UML

Ponadto, z lukiem mogą być powiązane dodatkowe informacje:

• zdarzenie wyzwalające, które inicjuje przejście pomiędzy wierzchołkami (w

odróżnieniu od klasycznych map stanów dopuszcza się tylko jedno zdarzenie

wyzwalające),

• dozór logiczny, określony na zbiorze wartości atrybutów obiektów należących

do modelu systemu, którego prawdziwość warunkuje przejście,

• opcjonalna akcja, która jest wykonywana, gdy następuje przejście,

albo

• zdarzenie czasowe oznaczające upływ czasu określonego przez pewne

wyrażenie.

Brak dodatkowych informacji oznacza, że przejście z wykorzystaniem danego luku

następuje autonomicznie, po zakończeniu aktywności wewnątrz stanu, z którego łuk

wychodzi.

Etykieta luku - przejście - może przyjąć jedną podanych niżej postaci:

Nazwa-zdarzenia^Lista-parametrów] [Dozór] / Lista-akcji

after(Wyrażenie-czasowe) [Dozór] / Lista-akcji

when(Warunek-czasowy) [Dozór] / Lista-akcji

gdzie poszczególne elementy Nazwa-zdarzenia, Lista-parametrów,Dozór, Lista-akcji,

oczywiście w odpowiednich zestawach, są elementami opcjonalnymi. Wyrażenie-

czasowe określa długość odcinka czasu, np. 10 sek. Warunek-czasowy jest wyrażeniem,

którego wartość logiczna zależy od bieżącego czasu, np. data = 99.12.31. Dwie ostatnie

formy etykiety luku określają zdarzenia czasowe, nazywane też zdarzeniami

przeterminowania.

W ustalonej chwili czasu mapa stanów, albo - wygodniej - maszyna stanów

znajduje się w pewnej konfiguracji stanów. Konfiguracja stanów określa pewien

podzbiór wierzchołków reprezentujących stany aktywne - stany, w których przebywa

maszyna. W przypadku, gdy maszyna przebywa w stanie złożonym dla określenia

konfiguracji nie wystarczy tylko wskazanie tego stanu jako stanu aktywnego, ale

54 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

również wszystkich jego podstanów aktywnych. Konfiguracja stanowi więc pewne

drzewo wierzchołków, którego korzeniem jest wierzchołek reprezentujący najbardziej

zewnętrzny stan, a jego liśćmi są wierzchołki reprezentujące stany elementarne.

Semantykę maszyny stanów wyraża się przez określenie przejść pomiędzy

konfiguracjami maszyny stanów. Przejścia pomiędzy konfiguracjami są złożeniem

(sekwencyjnym lub równoległym) dwóch rodzajów przejść pomiędzy wierzchołkami:

przejść niskopoziomowych (pojedynczych), związanych z lukami prowadzącymi od

wierzchołków reprezentujących stany elementarne, oraz - wysokopoziomowych

(grupowych), związanych z lukami prowadzącymi od lub do wierzchołków

reprezentujących stany złożone.

Początkową konfigurację wyznaczają początkowe stany domyślne. Są to stany

wskazane przez hiki prowadzące od pseudostanów początkowych. Jeżeli tak

wskazywany stan SS jest stanem złożonym sekwencyjnym, to do konfiguracji

początkowej należy także jeden z jego podstanów S wskazywany jako domyślny stan

początkowy w obrębie podstanów stanu SS. Jeżeli wskazywany stan SR jest stanem

złożonym równoległym, to do konfiguracji początkowej należą wszystkie jego podstany

Si, Sn wskazywane jako domyślne stany początkowe w obrębie podstanów

równoległych stanu SR. Z każdym stanem wiąże się więc zbiór jego domyślnych

podstanów. Zbiór ten, podobnie jak cała konfiguracja maszyny stanów, ma strukturę

drzewa.

Przejścia pomiędzy konfiguracjami są wyznaczone przez następujące zasady.

Wyjście ze stanu może nastąpić jeżeli:

- dany stan jest aktywny, tzn. należy do bieżącej konfiguracji maszyny,

- wystąpiło zdarzenie wskazane na łuku wyprowadzającym ze stanu lub nastąpił

moment przeterminowania i prawdziwy jest dozór związany z hikiem,

- zakończone zostały wszystkie aktywności w obrębie stanu, a hik

wyprowadzającym ze stanu nie jest etykietowany zdarzeniem oraz prawdziwy

jest związany z tym hikiem dozór.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 55

Wprowadzenie do języka UML

Jeżeli w danej chwili możliwe są różne wyjścia, to wybór wyjścia może być

niedeterministyczny lub oparty o dodatkowo wprowadzone reguły, np. w oparciu o

nadane priorytety.

Wyjściu ze stanu prostego towarzyszy wykonanie akcji umieszczonych na liście

akcji wyjściowych danego stanu, następnie wykonywana jest akcja związana z

wybranym hikiem, a następnie wykonywane są akcje wejściowe stanu, do którego

następuje przejście. Jeżeli wyjście następuje w momencie trwania aktywności w obrębie

stanu, wówczas aktywność taka zostaje przerwana.

Wyjście ze stanu złożonego oznacza również wyjście ze wszystkich jego

podstanów. Pociąga to wykonanie ciągu akcji wyjściowych, poczynając od akcji dla

stanów najbardziej zagnieżdżonych. Ciąg ten jest wyznaczony jednoznacznie w

przypadku zagnieżdżania stanów sekwencyjnych, natomiast w przypadku zagnieżdżania

stanów równoległych odpowiadające im akcje mogą się przeplatać.

Wejściu do stanu prostego towarzyszy wykonanie akcji wejściowych związanych z

tym stanem, a następnie rozpoczyna się ewentualne wykonywanie związanych z nim

aktywności.

Wejście do stanu złożonego pociąga wchodzenie do jego podstanów i towarzyszy

temu wykonanie ciągu akcji wejściowych związanych z tymi podstanami. Ciąg ten jest

określony jednoznacznie w przypadku wchodzenia do podstanów sekwencyjnych. W

przypadku wchodzenia do podstanów równoległych ciąg ten jest przeplotem akcji

należących do tych podstanów.

Jeżeli wejście następuje do łącznika historycznego zagnieżdżonego w pewnym

stanie S, to aktywnymi w stanie S stają się:

- domyślne podstany początkowe stanu S, gdy wejście do S następuje po raz

pierwszy,

- domyślne stany początkowe stanu wskazywanego przez łącznik historyczny

„płytki”, gdy wejście do S następuje po raz kolejny,

56 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

- ostatni zestaw stanów aktywnych przed opuszczeniem stanu S, gdy wejście do S

następuje po raz kolejny, a łącznik historyczny jest łącznikiem „głębokim”.

Przejścia wysokopoziomowe mają priorytet nad przejściami niskopozi omowy mi.

Przejścia pomiędzy stanami, w odróżnieniu od klasycznych map stanów, nie muszą

być natychmiastowe. Wynika to z faktu, że przejściom towarzyszy wykonywanie akcji,

które w porównaniu do aktywności są czynnościami niepodzielnymi i mogą jednak

wymagać pewnego czasu.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 57

Wprowadzenie do języka UML

8. Diagramy aktywności

diagram aktywności

Specyficzny rodzaj diagramu stanów, w którym wszystkie lub większość stanów są

stanami aktywności, i w którym wszystkie lub większość przejść pomiędzy stanami

jest powodowana zakończeniem wykonywania aktywności.

stan aktywności

Stan reprezentujący wykonywanie aktywności, na przykład wykonanie operacji.

Stany aktywności odpowiadają stanom wykonywania programu. W przypadku

programu współbieżnego stany odnoszą się do stanów poszczególnych procesów

składowych całego programu. Pojęcie stanu aktywności należy odróżniać od stanu

obiektu. Aktywności mogą na siebie wpływać przez wysyłanie i odbiór zdarzeń.

Diagram aktywności ma postać grafu, którego wierzchołkami - poza stanami

aktywności - są również stan początkowy, końcowy, rozgałęzienia i złączenia

równoległego oraz rozgałęzienia warunkowego i kolekcyjnego. Wierzchołki inne od

stanów aktywności reprezentują więc pewne akcje pomocnicze. Wierzchołki

reprezentujące stany aktywności są zwykle etykietowane nazwami tych aktywności, a

wierzchołki rozgałęzienia warunkowego - wyrażeniami wyboru. Łuki grafit nie są na

ogół etykietowane. Nie dotyczy to łuków wychodzących z wierzchołka rozgałęzienia

warunkowego, które określają warunki przejścia do następnych stanów. Wyjście z

danego stanu i przejście do innego stanu następuje w momencie zakończenia związanej

z nim aktywności. Przykład diagramu aktywności przedstawia rys. 20.

Zakończenie aktywności może też być wynikiem reakcji na odbierane zdarzenia.

Zdarzenia, które pojawiają się w czasie trwania aktywności mogą być przez nią

obsługiwane albo odraczane, tzn. są tylko zapamiętywane z przeznaczeniem do obsługi

przez inną aktywność. Jeżeli zdarzenie wygenerowane w danej chwili nie jest

obsługiwane ani odraczane przez żadną z aktualnie wykonywanych aktywności, to jest

gubione. Natomiast w przypadku przeciwnym, gdy istnieje wiele potencjalnych reakcji

na zdarzenie, wybór odpowiedniej reakcji jest niedeterministyczny. Można wybór ten

58 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

uściślić przez wprowadzenie dodatkowych zasad. Wysyłanie i odbiór zdarzeń na

diagramie aktywności jest reprezentowane przez dodatkowe wierzchołki - rys. 21.

Rys. 20. Przykład diagramu aktywności

Wysianie
zdarzenia

Deklaracja
zdarzenia

odraczanego

Odbiór
zdarzenia

Rys. 21. Wysyłanie i odbiór zdarzeń na diagramie aktywności

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 59

Wprowadzenie do języka UML

Zasadniczo, graf aktywności jest interpretowany jako opis przepływu sterowania

pomiędzy aktywnościami. Diagram aktywności umożliwia też opis przepływu danych

pomiędzy aktywnościami. Jest to uwidocznione na diagramie w postaci dodatkowych

wierzchołków reprezentujących przesyłane obiekty (prostokąty rysowane ciągłą linią)

oraz przez dodatkowe łuki (rysowane przerywanymi strzałkami) wskazujące drogi

przesyłania obiektów pomiędzy aktywnościami.

Diagram aktywności z przepływem danych jest pokazany na rys. 22.

Dodatkowym elementem na tym diagramie są tzw. linie rozgraniczenia

odpowiedzialności wskazujące obszary grafu podzielone na aktywności wykonywane

przez różnych wykonawców, w pokazywanym przykładzie przez Klienta, Sprzedawcę

i Magazyn. Na diagramie zwracają też uwagę wierzchołki reprezentujące złączenie

równoległe; ich lukami wejściowymi i tukami wejściowymi mogą być zarówno łuki

reprezentujące przepływ sterowania jak i łuki reprezentujące przepływ danych.

Rys. 22. Diagram aktywności z przepływem sterowania i przepływem danych

60 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

9. Diagramy implementacyjne

diagram komponentów

Diagram pokazujący komponenty i zależności pomiędzy nimi; odzwierciedla

statyczny aspekt perspektywy implementacyjnej.

diagram rozmieszczenia

Diagram przedstawiający konfigurację węzłów przetwarzających oraz

umieszczonych w nich komponentów. Przedstawia on statyczną strukturę systemu

z punktu widzenia perspektywy instalacyjnej.

Komponent reprezentuje zestaw zasobów programowych i informacyjnych.

Przykładami takich zasobów są moduły programowe (źródłowe lub wykonywalne),

biblioteki procedur, bazy danych lub ich odpowiedniki, np. skrypty lub pliki z

komendami. Komponent realizuje pewne usługi, które udostępnia za pośrednictwem

swoich interfejsów (interfejs jest zbiorem operacji). Komponent ma w systemie swoją

reprezentację fizyczną i może być w systemie przemieszczalny. Szczególną rolę

w komponentach pełnią zadania. Zadanie jest to obiekt aktywny, czyli taki, który

posiada własne sterowanie (wątek lub proces) niezależne od innych zadań. Zadania są

wykonywane równolegle.
Pomiędzy komponentami mogą zachodzić relacje zależności, generalizacji,

asocjacji i realizacji.

Przykład diagramu komponentów przedstawia rys. 23.

। । Szeregowanie ------ ^3 rezerwacja

I । —i Graficzny
I । I interfejs

aktualizacja

Rys. 23. Przykład diagramu komponentów

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 61

Wprowadzenie do języka UML

Wskazuje się tu pewne relacje (przerywane strzałki) zależności pomiędzy

komponentami a ich interfejsami, przy czym bezpośrednio z samego diagramu nie

wynika znaczenie tych relacji. Znaczenie takich relacji można ustalić przez

wprowadzenie odpowiednich stereotypów.

Diagram rozmieszczenia zawiera węzły i komponenty oraz zachodzące pomiędzy

nimi relacji zależności i asocjacji.

Węzeł jest fizycznym obiektem reprezentującym środowisko wykonawcze - sprzęt

komputerowy wraz z oprogramowaniem operacyjnym. Węzeł powinien dysponować co

najmniej pamięcią, często ma jednostki przetwarzające. Przykładowo, węzłami są

komputer z systemem operacyjnym, procesor z pamięcią, pamięć dyskowa.

Przykład diagramu rozmieszczenia przedstawia rys. 24.

Rys. 24. Przykładowy diagram rozmieszczenia

62 W Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

10. Diagramy pakietów

Diagramy pakietów nie należą do standardowych diagramów UML. Są one często

przydatne w procesie modelowania i służą do grupowania aertefaktów, na przykład do

definiowania podsystemów - części modelowanego systemu.

pakiet

Mechanizm ogólnego przeznaczenia służący grupowaniu elementów. Pakiety mogą

być zagnieżdżane w innych pakietach. System może być wyobrażany jako pakiet

najwyższego poziomu, w którym jest zawarte wszystko co należy do systemu.

podsystem

Zbiór elementów opisujących zachowanie innych, zagnieżdżonych w nich

elementów. Może być modelowany zarówno jako pakiet jak i klasa. Podsystem

może posiadać interfejsy, przez które udostępnia usługi pozostałej części systemu.

Diagram pakietów składa się z pakietów oraz relacji zależności, asocjacji i

generalizacji.

Przykład diagramu pakietów przedstawia rys. 25., który składa się z trzech

podsystemów: Dostawa, Sterowanie i Zbyt powiązanych relacją zależności. Podsystem

Sterowanie jest systemem złożonym i zawiera dwa podsystemy składowe: Sterowanie

podajnikiem oraz Sterowanie taśmą.

Rys. 25. Przykładowy diagram pakietów

VI Konferencja Systemy Czasu Rzeczywistego. Zakopane 1999 63

Wprowadzenie do języka UML

11. Wybrane standardowe elementy UML

UML jest językiem rozszerzalnym, co pozwala na jego adaptację do różnych, z

góry nieprzewidywalnych sytuacji projektowych. Mechanizmami rozszerzeń są

stereotypy, wartości znakowane (stałe) oraz ograniczenia. Pewne rozszerzenia są w

UML zdefiniowane jako standardowe.

stereotyp
Nowy rodzaj elementu modelującego, który rozszerza semantykę metamodelu.

Stereotyp musi bazować na wybranych typach i klasach istniejących w

metamodelu. Stereotypy mogą tylko rozszerzać semantykę (uściślać) lecz nie

naruszać istniejących (predefiniowanych) typów i klas. Pewne stereotypy są w

UML zdefiniowane jako standardowe.

Stereotyp oznacza nowy rodzaj elementu modelującego, bazującego na wybranych

typach i klasach istniejących w metamodelu. Definicja stereotypu polega na uściśleniu

semantyki wybranego elementu. Każdy stereotyp ma nazwę, dla wyróżnienia

zapisywaną w cudzysłowach postaci « ». Zamiast nazwy można też wprowadzać

specyficzną ikonę. Nazwa stereotypu jest umieszczana przy symbolu graficznym

elementu, który był podstawą do jego definicji. Poniżej przedstawiono w tabeli tylko

kilka spośród ponad sześćdziesięciu standardowych stereotypów.

Niektóre przedstawiane stereotypy, w ścisłym sensie nie są stereotypami. Są tylko

słowami kluczowymi, które występują w metamodelu, natomiast ich rola przy tworzeniu

modelu jest taka sama jak stereotypów w ścisłym sensie. Dlatego odróżnia się je

zapisując ich nazwy czcionka pochyłą, podczas gdy nazwy pozostałych zapisuje się

czcionką prostą. Różnica pomiędzy tymi dwoma kategoriami stereotypów jest więc

subtelna i z praktycznego punktu widzenia można jej nie dostrzegać.

64 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

Nazwa / ikona Element
odniesienia Znaczenie

«actor» klasa Określa spójny zbiór ról, które reprezentuje
użytkownik przypadku użycia.

«call» relacja
zależności

Określa, że jedna operacja wywołuje drugą operację.

«exception» klasa Oznacza zdarzenie, które może być przez operację
wygenerowane bądź przejęte do obsługi.

«executable»
SJ komponent

Oznacza komponent wykonywalny - komponent może
być wykonywalny w węźle.

«precondition» ograniczeń
ie

Oznacza ograniczenie, które musi być spełnione przez
wywołaniem operacji.

«responsibility
» notka Oznacza kontrakt lub zobowiązanie związane z klasą.

«subsystem» pakiet
Oznacza kolekcje elementów, z których pewne
elementy specyfikują zachowanie imiych elementów
należących do tej kolekcji.

«system» pakiet Oznacza pakiet reprezentujący całość modelowanego
systemu.

«type» klasa
Oznacza abstrakcyjną klasę używaną tylko do
specyfikacji struktury lub zachowania, ale nie do
implementacji zbioru obiektów.

«use» relacja
zależności

Oznacza, że semantyka jednego elementu zależy od
semantyki części publicznej drugiego elementu.

wartość znakowana

Bezpośredni opis właściwości w postaci pary nazwa-wartość.

Wartość znakowana (stała) jest parą złożoną z etykiety (nazwy) oraz przypisanej jej

wartości. Nazwa może być dowolnym tekstem, a wartość ma również formę tekstową i

może być elementem dowolnie ustalonego zbioru. Parę taką zapisuje się w postaci

etykieta = wartość i można ją przypisać dowolnemu elementowi modelu. Znaczenie

stałej zależy od kontekstu. Nie należy stałej traktować jako atrybutu elementu, np.

obiektu. Standardowo wyróżniono cztery etykiety opisane w tabeli poniżej.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 65

Wprowadzenie do języka UML

Nazwa stałej Element
odniesienia Znaczenie

documentation wszystkie
elementy

Oznacza komentarz, opis lub wyjaśnienie
dotyczące elementu, z którym jest związana

location większość
elementów

Oznacza węzeł lub komponent, w którym jest
umieszczony dany element

persistence
klasa

asocjacja
atrybut

Oznacza, że po zakończeniu procesu tworzenia
danej instancji jej stan zostaje zachowany

semantics klasa
operacja Określa znaczenie klasy lub operacji

ograniczenie
Semantyczny warunek lub zawężenie.

Ograniczenie ma postać tekstu, pisanego w języku naturalnym lub formalnym, na

przykład w języku OCL (Object Constraint Language), który jest językiem predykatów

przystosowanym do definiowania metamodelu UML. Wyrażenie takie może być

związane z jednym lub wieloma elementami modelu i uściśla lub ogranicza semantykę

tych elementów. Wyrażenie ma postać komentarza (notki) połączonego linią przerywaną

z elementami których dotyczy, może też mieć postać wyrażenia ujętego w nawiasy

klamrowe, umieszczonego obok elementu, którego dotyczy. W tabeli poniżej

przedstawiono trzy spośród dziewięciu standardowych ograniczeń.

Ograniczenie Element
odniesienia Znaczenie

complete relacja
generalizacji

Oznacza, że w modelu wyspecyfikowano
wszystkich potomków danej klasy

or asocjacja

Oznacza, że w zbiorze asocjacji wiążących
klasę z innymi klasami, mogą w konkretnym
powiązaniu wystąpić element należące tylko do
jednej z tych asocjacji.

transient instancja
powiązanie

Oznacza, że instancja lub powiązanie jest
tworzone okresowo podczas trwania pewnych
interakcji

66 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

12. Elementy metamodelu UML

Opis języka UML należy rozpatrywać w kontekście wyznaczonym przez

czteropoziomową architekturę metamodelowania. Są to poziomy:

• meta-metamodelu,

• metamodelu,

• modelu abstrakcyjnego,

• modelu użytkowego.

Definicja UML mieści się na poziomie metamodelu. Modelowi abstrakcyjnemu

odpowiada pewien model napisany w UML, a modelowi użytkowemu odpowiada

skompilowana postać tego modelu. Natomiast najbardziej abstrakcyjny poziom meta-

metamodelu obejmuje swym zasięgiem język, w zasadzie metajęzyk, użyty do definicji

języka UML.

Podobny podział pojęć odnoszących się do modelowania obiektowego został

przyjęty przez OMG w ramach architektury Meta-Object Facility.

Mówiąc o standardzie języka UML mamy na uwadze metamodel. Metamodel

grupuje wszystkie elementy języka w trzy podstawowe grupy obejmowane przez trzy

podstawowe pakiety pokazane na rys. 26, z których dwa zawierają jeszcze podpakiety.

Pakiet Foundation zawiera trzy podpakiety.

Podpakiet Core zawiera główne elementy strukturalne: klasyfikatory (klasy,

komponenty, węzły), ich zawartość (atrybuty, operacje, metody, parametry) oraz

relacje (generalizacji, asocjacji, zależności).

Podpakiet Data Types opisuje typy danych wykorzystywane w metamodelu.

Podpakiet Extension Mechanisms opisuje stereotypy, ograniczenia i stałe (wartości

znakowane).

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 67

Wprowadzenie do Języka UML

Rys. 26. Struktura pakietów metamodelu UML

Pakiet Behavioural Elements zawiera cztery podpakiety.

Podpakiet Common Behaviour opisuje sygnały, operacje i akcje.

Podpakiet Collahorations opisuje grupy współdziałania, interakcje, komunikaty,

role klasyfikatorów oraz asocjacje.

Podpakiet Use Cases opisuje aktorów i przypadki użycia.

Podpakiet State Machines opisuje strukturę maszyn stanowych - stany zdarzenia,

sygnały, tranzycje pomiędzy stanami, oraz modele aktywności.

Pakiet Model Management opisuje pakiety, modele oraz podsystemy.

13. Metodyka ROPES

UML jest niezależny od przyjętej metody wytwarzania oprogramowania i dlatego

jest wykorzystywany w wielu metodach, np. Rational Unified Process, Unified Software

Development Process, Catalysis, ROPES.

68 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

W projektowaniu systemów czasu rzeczywistego godną polecenia jest metoda

ROPES (Rapid Oriented Process for Embedded Systems), która wyróżnia iteracyjnie

powtarzane fazy: analizy, projektowania, implementacji i testowania. Fazy dzieli się

jeszcze na podfazy jak pokazano na rys. 27.

Rys. 27. Spiralny proces wytwarzania oprogramowania według metody ROPES

Celem pojedynczego cyklu jest wytworzenie pewnego prototypu systemu. Cykle

powtarza się aż uzyskany prototyp całkowicie spełnia oczekiwania użytkownika. Celem

każdej z faz jest zbudowanie pewnego modelu budowanego systemu. Model otrzymany

w jednej fazie jest uściślany lub uzupełniany w fazie następnej.

13.1. Analiza

Analiza wymagań

Celem analizy wymagań jest określenie wymagań funkcjonalnych i

niefunkcjonalnych systemu. Wymagania funkcjonalne mają określić usługi

wytwarzanego systemu, a wymagania niefunkcjonalne mają, między innymi,

określić jakość tych usług. Miarą jakości usług mogą być dostępność,

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 69

Wprowadzenie do języka UML

niezawodność, bezpieczeństwo, zabezpieczenie przed niepowołanym dostępem, i

wreszcie - wymagania czasowe. UML nie oferuje szczególnych mechanizmów do

wyrażania wymagań niefunkcjonalnych. Można je oczywiście wyrazić za pomocą

komentarzy w języku naturalnym.

Przy stosowaniu podejścia obiektowego analiza wymagań jest oparta na

przypadkach użycia. Zbiór przypadków użycia związanych z danym systemem wyraża

się za pomocą diagramów przypadków użycia.

W początkowej fazie analizy tymi obiektami są: system traktowany jako całość

oraz obiekty zewnętrzne. W dalszej analizie, gdy system zostaje zdekomponowany na

obiekty wewnętrzne, dekompozycji ulegają także przypadki użycia.

Pojedyncze scenariusze - instancje przypadku użycia - przedstawia się za pomocą

diagramów interakcji, a zbiór wszystkich scenariuszy związany z przypadkiem użycia

wyraża odpowiednia maszyna stanów.

Model systemu, który powstaje w wyniku analizy wymagań zawiera diagram

przypadków użycia, diagramy interakcji i diagramy maszyn stanów, a także może

zawierać inne diagramy, np. diagramy klas.

Model systemu ma służyć określeniu podstawowych funkcji oraz protokołów

komunikacji pomiędzy systemem a jego otoczeniem, a także określeniu podstawowych

czasowych charakterystyk wymiany informacji pomiędzy systemem a otoczeniem.

Diagram przypadków użycia pozwala na charakterystykę strumieni komunikatów

napływających od aktorów do systemu. Mogą one dotyczyć intensywności napływu

komunikatów i sposobu synchronizacji aktorów z przypadkami użycia. Charakterystyki

te mają postać stereotypów specjalnie zdefiniowanych dla systemów czasu

rzeczywistego. Przykładem standardowych stereotypów są aktorzy, relacje zależności

«include» oraz «extend» pomiędzy przypadkami użycia, zaś przykładami stereotypów

specyficznych są charakterystyki strumieni komunikatów «periodic» oraz «aperiodic»

występujący na diagramie przypadków użycia.

70 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do Języka UML

Diagram sekwencji pozwala na informowanie o związkach czasowych pomiędzy

napływającymi komunikatami a odpowiadającymi im reakcjami, czy też - ogólniej -

pomiędzy wyróżnionymi zdarzeniami. Relacje te wyraża się w postaci formuł, w

których występują odwołania do momentów występowania wyróżnionych zdarzeń.

Diagramy stanów także wyrażają własności czasowe, ale czynią to z punktu widzenia

obiektu, który w trakcie swego życia ma reagować na zachodzące zdarzenie, w tym na

upływ czasu. Najczęściej ograniczenia czasowe wyrażają się przez okresy

przeterminowania związane z oczekiwaniem w danym stanie na zajście określonych
zdarzeń.

Charakterystyka strumienia komunikatów

Komunikaty ze źródła do miejsca odbioru mogą napływać periodycznie (stereotyp

«periodic») lub aperiodycznie (stereotyp «aperiodic»). W przypadku napływu

periodycznego komunikaty napływają regularnie w zadanych odstępach czasu, ale

odstęp ten może się zmieniać w pewnym zakresie - może mieć fluktuacje.

Charakterystyka napływu aperiodycznego (sporadycznego) jest bardziej urozmaicona.

Napływ może być nieregularny, ale mogą być scharakteryzowane okresy pomiędzy

kolejnymi komunikatami. Charakterystyką taką może być:

- maksymalna liczba komunikatów w pewnym okresie czasu,

- minimalny odstęp czasu pomiędzy kolejnymi komunikatami,

- probabilistyczny rozkład czasu pomiędzy komunikatami.

Gdy napływ komunikatów jest lawinowy (wiązkowy) wówczas odstępy czasu

pomiędzy kolejnymi komunikatami mogą być dowolnie małe, ale powinna być znana

maksymalna liczba komunikatów w pojedynczej wiązce. Gdy napływ jest ograniczony,

wówczas jego charakterystyka jest określona przez minimalny lub przez średni odstęp

czasu pomiędzy kolejnymi komunikatami.

Sposób współdziałania komunikujących się obiektów

Ogólnie synchronizacja może dotyczyć grupy obiektów. UML przyjmuje

możliwość synchronizacji tylko pomiędzy dwoma obiektami: obiektem-nadawcą i

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 71

Wprowadzenie do Języka UML

obiektem-odbiorcą komunikatu. W języku UML wymiana komunikatów pomiędzy parą

współpracujących obiektów może opierać się na następujących schematach.

Współpraca synchroniczna polega na tym, że obiekty na okres wykonania operacji

ustalają pomiędzy sobą spotkanie. Możliwe są następujące trzy schematy takiej

współpracy.

- Obiekt-usługobiorca wywołuje operację i czeka tak długo, aż obiekt-

ushigodawca zacznie wykonywać operację i przekaże obliczone wyniki.

- Obiekt-usługobiorca wywołuje operację i czeka tak długo, aż obiekt-

usługodawca potwierdzi wywołanie operacji.

- Obiekt-usługobiorca wywołuje operację i czeka na potwierdzenie wywołania

operacji przez zadany okres przeterminowania. Jeżeli potwierdzenie to nie

zostanie dostarczone do obiektu-usługobiorcy przed upływem okresu

przeterminowania, obiekt ten przerywa połączenie i wznawia swoją aktywność.

Współpraca asynchroniczna polega na tym, że jeden obiekt wysyła sygnał do

innego obiektu (lub do grupy obiektów) i nie czekając na odbiór tego sygnału

kontynuuje swą aktywność.

Analiza systemowa i obiektowa

Analiza systemowa polega na dekompozycji systemu na części składowe

(mechaniczne, elektroniczne, programowe) i przypisaniu im odpowiednich funkcji i

zachowań. Analiza taka występuje zwłaszcza przy projektowaniu systemów

wbudowanych i polega, między innymi, na wyodrębnieniu sensorów i urządzeń

wykonawczych. Bardzo często z uwagi na prostą strukturę systemów, analizę tę można

pominąć. Analizę obiektową dzień się na analizę strukturalną - której celem jest

zidentyfikowanie jednostek strukturalnych (klas i obiektów oraz grupujących je

pakietów), oraz na analizę behawioralną - której celem jest określenie zachowań

poszczególnych jednostek strukturalnych.

Z punktu widzenia wymagań czasowych odnoszących się do całego budowanego

systemu istotna jest dekompozycja tych wymagań na wyłonione składowe i obiekty. Dla

72 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

każdego z tych elementów należy scharakteryzować własności czasowe otoczenia -

własności czasowe strumieni komunikatów, schemat synchronizacji oraz wymagane

czasy odpowiedzi. Wymagania te można wyrazić w UML w taki sam sposób jak w

przypadku analizy wymagań, czyli przez diagramy interakcji oraz diagramy stanów.

13.2. Projektowanie

W projektowaniu wyróżnia się trzy podfazy różniące się stopniem szczegółowości

podejmowanych decyzji. Są to kolejno: projektowanie ogólne (ponad-obiektowe),

projektowanie pośrednie (między-obiektowe) i projektowanie szczegółowe (wewnątrz-

obiektowe). Rys. 28. symbolicznie ilustruje trzy poziomy szczegółowości

odpowiadające trzem wymienionym podfazom.

Projektowanie ogólne (ponad-obiektowe)

Celem projektowania ogólnego jest określenie architektury systemu, czyli

składowych systemu i wzajemnego ich powiązania. Wyróżnia się trzy rodzaje

składowych: zadania, komponenty i węzły. Za pomocą pakietów można je dowolnie

grupować ze sobą.

Zadanie jest to obiekt aktywny, czyli taki, który posiada własne sterowanie (wątek lub

proces) niezależne od innych zadań. Zadania są wykonywane równolegle.

Komponent reprezentuje zestaw zasobów programowych i informacyjnych.

Projektowanie ogólne polega na określeniu struktury środowiska wykonawczego

oraz na rozmieszczeniu w tym środowisku tworzonego oprogramowania. Wynikiem

projektowania jest wydzielenie zadań, przypisanie ich wraz z obiektami biernymi do

komponentów, a następnie rozlokowanie komponentów w węzłach systemu.

Węzeł jest fizycznym obiektem reprezentującym środowisko wykonawcze - sprzęt

komputerowy wraz z oprogramowaniem operacyjnym.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 73

Wprowadzenie do Języka UML

Projektowanie ponad-obiektowe
Zakres: procesory, pakiety, komponenty, zadania

Projektowanie między-obiektowe
Zakres: etudy współdziałania

Projektowanie wewnątrz-obiektowe
Zakres: klasy

Nazwa Klasy

Atrybuty

Operacje

Węzeł

Rys. 28. Trzy poziomy projektowania

Właściwy podział na zadania ma krytyczny wpływ na wydajność systemu. W

zasadzie wszystkie obiekty wyłonione w fazie analizy są równoległe względem siebie.

W praktycznie spotykanych sytuacjach nie ma potrzeby, aby wszystkim obiektom

przypisywać rolę zadań, gdyż zwiększa to stopień równoległości systemu i na ogół

pociąga wzrost kosztów. Niektóre obiekty, ze względu na swą funkcję muszą być

zadaniami. Przykładowo dotyczy to obiektów, które są odpowiedzialne za komunikację

z otoczeniem systemu, czy też obiekty obsługujące niezależne urządzenia. Podział na

zadania można więc traktować jako wynik analizy polegającej na tym, czy można dany

obiekt, bez istotnego wpływu na wydajność systemu, pozbawić własności

współbieżności i dołączyć do pewnej wspólnej puli obiektów. Z takiej puli, w danej

chwili, na skutek zewnętrznej decyzji, może być wykonywany co najwyżej jeden obiekt.

Wiadomo bowiem, że zwiększenie stopnia równoległości może tylko do pewnego

stopnia może zwiększyć wydajność całego systemu.

74 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

Zadania i sposób współpracy zadań może być przedstawiony przez diagram

obiektów (aktywnych) lub przez diagram stanów równoległych. Komponenty i

zachodzące między nimi relacje oraz węzły są ukazane na diagramach

implementacyjnych - diagramie komponentów, oraz diagramie rozmieszczenia, który

ukazuje rozlokowanie komponentów w węzłach. Poszczególnym komponentom można

przyporządkować przypadki użycia. Zestawienie wymienionych diagramów wyznacza

model architektury systemu.

Dodatkowymi aspektami, które są brane pod uwagę w projektowaniu ogólnym, i

które powodują poszerzenie funkcji systemu, są: obsługa sytuacji wyjątkowych,

bezpieczeństwo (zapobieganie sytuacjom hazardowym) oraz tolerowanie błędów

obliczeń (niezawodność obliczeń).

Z punktu widzenia wymagań czasowych stawianych projektowanemu systemowi

konieczne jest sprawdzenie, czy podjęte decyzje zapewnią spełnienie wymagań

wyrażonych w modelu w fazie analizy. Ze względu na złożoność analiza taka nie jest tu

omawiana. Warto tylko zaznaczyć, że podstawowe potrzebne charakterystyki to

wydajność przetwarzania węzłów i przepustowość wiążących ich łączy. Wydajność

przetwarzania węzłów należy oszacować na podstawie wymagań czasowych zadań

umieszczanych w węzłach. Przepustowość łączy pomiędzy węzłami szacuje się na

podstawie charakterystyk strumieni komunikatów generowanych przez umieszczone w

węzłach zadania. Dodatkowo, w odniesieniu do pojedynczych węzłów należy

zaprojektować szeregowanie wykonywanych w nim zadań.

Projektowanie pośrednie (między-obiektowe)

Celem projektu ogólnego jest zdekomponowanie przypadków użycia na grupy

współdziałania. Grupa współdziałania jest zbiorem powiązanych klasyfikatorów (klas,

interfejsów, typów danych oraz komponentów) przeznaczonych do realizacji

przypadków użycia lub operacji.

Natomiast celem projektu pośredniego jest uściślenie modelu systemu otrzymanego

w fazie projektowania ogólnego. Zwykle polega to na wprowadzeniu dodatkowych

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 75

Wprowadzenie do języka UML

obiektów pośredniczących pomiędzy istniejącymi już obiektami. Konieczność

pośrednictwa może wynikać z własności środowiska wykonawczego, na przykład dwa

obiekty powiązane asocjacją mogą zostać umieszczone w dwóch różnych węzłach, bądź

też może wynikać z potrzeby optymalizacji funkcjonowania, na przykład może zaistnieć

potrzeba wprowadzenia obiektu zarządzającego pracą węzła.

Specyficznym postępowaniem w tej podfazie, a także w podfazie poprzedniej, jest

wykorzystywanie wzorców projektowych. Wzorzec jest pewną abstrakcją grupy

współdziałania. Konkretyzacja wzorca wyznacza pewną grupę współdziałania. Grupa

współdziałania jest elementem języka UML, natomiast nie jest nim pojęcie wzorca

projektowego.

Stosowanie wzorców znacznie upraszcza proces projektowania, gdyż sięga się po

rozwiązania sprawdzone, często o znanych oszacowaniach ich parametrów

wydaj nościowych.

Projektowanie szczegółowe (wewnątrz-obiektowe) i implementacja

Jest to faza ściśle związana z implementacją. Projektowanie szczegółowe

koncentruje się na obiektach - na sposobach reprezentacji ich atrybutów, przyjęciu

strategii realizacji powiązań między obiektami, wyborze konkretnych algorytmów

realizacji operacji, przyjęciu zasad obsługi sytuacji wyjątkowych. Implementacja polega

na reprezentacji atrybutów obiektu i zapisie opracowanych algorytmów dla jego operacji

w wybranym języku programowania.

Uwagi końcowe

Przedstawiono tylko wybrane zagadnienia związane z projektowaniem systemów,

w których istotne jest spełnianie warunków czasowych. Spośród diagramów

występujących w UML szczególna uwaga, poza diagramem przypadków użycia,

powinna być skupiona na diagramach interakcji i diagramach maszyn stanów. Pozwalają

one na wyrażanie własności czasowych budowanych systemu.

W fazach analizy i projektowania dwa szczególne problemy wymagają

rozwiązania. Pierwszy - to stwierdzanie zgodności pomiędzy diagramami interakcji a

76 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

Wprowadzenie do języka UML

diagramami maszyn stanowych, które należą do tego samego modelu systemu, tzn.

modelu na danym poziomie analizy lub projektowania. Drugi problem to stwierdzanie,

że model bardziej szczegółowy spełnia wymogi czasowe określone przez model

ogólniejszy.

W fazach projektowania szczegółowego i implementacji zasadniczym problemem

jest stwierdzenie, czy wydajność węzłów i sieci transmisji danych pozwala na spełnianie

warunków czasowych podczas wykonywania zaprojektowanego oprogramowania.

Pozycjami, które stanowią bardzo dobre wprowadzenie zarówno do UML jak i

projektowania systemów czasu rzeczywistego są książki Douglassa [4], [5]. Druga z

nich dodatkowo zawiera informację o produkcie firmy i-Logix - pakiecie Rhapsody,

który jest profesjonalnym narzędziem wspomagającym wytwarzanie oprogramowania

czasu rzeczywistego.

VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999 77

Wprowadzenie do języka UML

Literatura

[1] Booch G., Rumbaugh J„ Jacobson L, The Unified Modeling Language User Guide, Addison-

Wesley, 1998.

[2] Booch G., Rumbaugh J.. Jacobson I., The Unified Software Development Process, Addison-

Weslcy. 1999.

[3] Booch G., Rumbaugh J„ Jacobson I., The Unified Modeling Language. User Manuał, Addison-

Wesley, 1999.

[4] Douglass B.P., Real-Time UML, Addison-Wesley, 1998.

[5] Douglass B.P., Doing Hard Real, Developing Real-Time Systems with UML. Addison-Wesley,

1999.

[6] Ericsson H.-E., Penker M., UML Toolkit, John Wiley & Sons, Inc., 1997.

[7] Górski J. (red.). Inżynieria oprogramowania w projekcie informatycznym, Mikom, 1999.

[8] Hnatkowska B„ Huzar Z„ Synchronizacja grupowa w UML, Materiały II Krajowej Konferencji

„Metody i systemy komputerowe w badaniach naukowych i projektowaniu inżynierskim”, 329-

334, CCATIE, Kraków 1999.

[9] ' Huzar Z., Magott J., Wymagania czasowe w obiektowym procesie wytwarzania oprogramowania,

Informatyka, grudzień 1999.

[10] Open Systems Interconnection --Basic Reference Model of Open Distributed Processing,

ISO/IEC DIS 10746-2.

[11] Relationship of the Unified Language to the Reference Model of Open Distributed Processing,

Systemhouse Corporation, 1997, .http://enterprise.Systemhouse.com/UML-ODP

[12] D’Souza D.F., Wills A.C., Objects, Components and Frameworks with UML. The Catalysis™

Approach, Addison-Wesley, 1999.

[13] Subieta K., Obiektowość w projektowaniu i bazach danych, Akademicka Oficyna Wydawnicza,

1998.

[14] Szmuc T., Motet G., Specyfikacja i projektowanie oprogramowania czasu rzeczywistego.

Krakowskie Centrum Informatyki Stosowanej, CCATIE 6, Kraków 1998.

[15] Szmuc T., Zaawansowane metody tworzenia oprogramowania czasu rzeczywistego, Krakowskie

Centrum Informatyki Stosowanej, CCATIE 15, Kraków 1998.

[16] Turner K.J. (ed.), Using Fornal Techniques. Introduction to Estelle, Lotos and SDL, Wiley,

1993.

[17] UML Notation Guide, Yersion 1.3, Rational Software Corporation, October 1998.

78 VI Konferencja Systemy Czasu Rzeczywistego, Zakopane 1999

http://enterprise.Systemhouse.com/UML-ODP

Wprowadzenie do języka UML

[18] UML Semantics, Yersion 1.3, Rational Software Corporation, October 1998.

[19] UML Object Constraint Language Specification, Yersion 1.3, Rational Software Corporation,

October 1998.

[20] UML Extension for Objectory Processfor Software Engineering, Yersion 1.1, Rational Software

Corporation, 1997.

[21] UML Summary, Yersion 1.3, Rational Software Corporation, October 1998.

Biblioteka ri
.v- Główna BW-8

VI Konferencja Systemy Czasu Rzeczywistego. Zakopane 1999 79

BIBLIOTEKA GŁÓWNA

315707

Raport dostępności

		Nazwa pliku:

		Huzar_wprowadzenie_do_jezyka_uml.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

