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Przedmowa

W monografii przedstawiono język specyfikacji formalnych LOTOS oraz omówiono 
na tym tle czasowe i wydajnościowe rozszerzenia języka.

Historia powstania języka LOTOS sięga końca lat osiemdziesiątych ubiegłego wieku. 
W tym okresie, zwłaszcza w ramach ISO, prowadzono intensywne prace nad ar­
chitekturą otwartych sieci komputerowych. Głównymi elementami opracowanego 
modelu referencyjnego ISO/OSI (Open Systems Interconnectiori) był hierarchiczny 
układ warstw funkcjonalnych i związane z nimi pojęcia usług i protokołów 
warstwowych. Potrzeba precyzyjnego opisu usług i protokołów stała się inspiracją do 
opracowania formalnych technik specyfikacji. Pod egidą ISO uruchomiono między­
narodowe projekty, których rezultatem było opracowanie trzech języków specyfikacji: 
SDL [Belina, Hogrefe 1989], ESTELLE [ISO 9074] oraz LOTOS [ISO 8870], 
Przegląd i porównanie tych języków zawiera książka [Turner 1993].

Pierwszy z nich - SDL - jest językiem półformalnym, opartym na notacji graficznej. 
Konstrukcja języka bazuje na koncepcji maszyn skończenie stanowych. Był on rozwi­
jany od początku lat siedemdziesiątych, najpierw przez nieistniejący już obecnie 
komitet CCITT {International Consultative Committee on Telegraph and Telephony), 
a później przez CCITT we współpracy z ISO. Wersja SDL-92 jest przedstawiona 
w rekomendacji Z100 [CCITT 1992],

Język ESTELLE jest językiem formalnym, stanowiącym - od strony notacyjnej - 
pewnego rodzaju rozszerzenie imperatywnych języków programowania. Modelem, na 
którym jest oparta konstrukcja języka, są automaty skończone. ESTELLE jest opisany 
między innymi w pracach [Budkowski 1992], [Budkowski, Dembiński 1987, 1989].

LOTOS jest również językiem formalnym, abstrahującym od języków programowa­
nia, opartym na solidnych, algebraicznych podstawach matematycznych. Na podstawy 
te składają się dwa elementy:

• koncepcja algebraicznej specyfikacji abstrakcyjnych typów danych, oparta na 
pracach H. Ehriga [Ehrig, Mahr 1985],

• koncepcja specyfikacji behawioralnych (oparta na pracach R. Mil ner) zawartych 
w języku CCS [Milner 1980],

Oprócz bezpośredniego wykorzystania do specyfikacji standardów sieciowych, każdy 
z wymienionych języków dał początek pracom, których wynikiem było opracowanie 
metodyk posługiwania się nimi przy specyfikacji systemów rozproszonych, opra­
cowanie narzędzi wspierających tworzenie i badanie specyfikacji, a także narzędzi do 
transformacji specyfikacji w implementację oprogramowania.

Początkowo wydawało się, że języki te będą wykorzystywane nie tylko do specy­
fikacji standardów sieciowych, ale także w specyfikacji i projektowaniu dowolnych 
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systemów rozproszonych. Tak się jednak nie stało, a głównym powodem było to, że 
języki te, powstające w końcu lat osiemdziesiątych ubiegłego stulecia, opierały się na 
paradygmacie projektowania strukturalnego i zostały zdominowane przez języki 
oparte na wyłaniającym się w tym okresie paradygmacie obiektowym. Współcześnie 
rola tych języków uległa zmianie, gdyż projektowanie systemów informatycznych 
prowadzi się na podstawie podejścia obiektowego, a najpowszechniej używanym 
językiem do specyfikacji i projektowania jest język UML, utworzony w połowie lat 
dziewięćdziesiątych, który ciągle się rozwija. LOTOS rozwijał się równolegle z ję­
zykiem UML; na początku bieżącego dziesięciolecia powstała rozszerzona wersja 
języka E-LOTOS [ISO/IEC 15437, 2001], istotnie modyfikująca sposób reprezentacji 
typów danych, ale - poza zmianą składni - pozostawiająca część behawioralną języka 
w zasadzie bez zmian.

Niezależnie od zastosowań praktycznych język LOTOS dał początek wielu pracom 
badawczym, do których między innymi należy rozwój algebr procesowych, dających 
podstawy dla analizy modelowej (model checking), formalnej semantyki aktualnie 
rozwijanych języków specyfikacji i projektowania, a także narzędzi wspomagających 
ich użycie [Garavel 1998], [Garavel, Lang, Mateescu 2001],

Wyróżnia się dwie wersje języka LOTOS: wersją bazową, która skupia się tylko na 
specyfikacji zachowań, abstrahując od komunikowanych danych, oraz wersję pełną, 
uwzględniającą komunikowane dane, a tym samym obejmującą definiowanie typów 
danych.
Zawartość książki jest następująca:

W rozdziale 1. przedstawiono tło dalej prowadzonych rozważań.

W rozdziałach 2. i 3. zaprezentowano język CCS oraz jego czasowe rozszerzenia. Na 
tle rozszerzeń czasowych spotykanych w literaturze przedstawiono opracowaną przez 
autora propozycję czasowego rozszerzenia CCS.

W dwóch kolejnych rozdziałach przedstawiono klasyczną wersję języka LOTOS. 
W rozdziale 4. omówiono abstrakcyjne typy danych, a w rozdziale 5. zawarto pełną 
prezentację języka LOTOS. Przykłady ilustrujące konstrukcje języka i ich zasto­
sowanie pochodzą z wcześniejszych prac autora.
Zastosowania języka zaprezentowano w dwóch kolejnych rozdziałach: w rozdziale 6. 
omówiono ogólne zasady prezentacji standardów sieciowych w języku LOTOS, 
a w rozdziale 7. - metodykę stosowania języka. Podobnie jak w poprzednich dwóch 
rozdziałach rozważania są ilustrowane przykładami z prac autora.
W rozdziale 8. przeprowadzono krytyczną analizę semantyki pewnych konstrukcji 
języka LOTOS i zaproponowano pewną semantykę alternatywną. Opiera się ona na 
wspólnych pracach autora i Ludwika Kuźniarza.
Czasowe i wydajnościowe rozszerzenia języka LOTOS przedstawiono w kolejnych 
dwóch rozdziałach. W rozdziale 9. zaprezentowano dwa rozszerzenia czasowe: 
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pierwsze jest oparte na pracach, które powstawały w ramach projektów pod egidą 
ISO i które ostatecznie znalazły swój wyraz w definicji rozszerzonego języka 
LOTOS, drugie natomiast jest wynikiem prac autora prowadzonych wspólnie 
z Janem Magottem.

W rozdziale 10. omówiono rozszerzenie wydajnościowe języka LOTOS, którego 
podstawą były prace prowadzone wspólnie z Janem Magottem.

W ostatni rozdziale 11. krótko omówiono związki pomiędzy LOTOSem a innymi 
technikami formalnymi.

Książka powstała w znacznym zakresie na podstawie prac indywidualnych autora oraz 
prowadzonych we współpracy z kolegami z Politechniki Wrocławskiej. Główny udział 
we wspólnych pracach ma profesor Jan Magott z Instytutu Informatyki, Automatyki 
i Robotyki, któremu składam serdeczne podziękowania za lata współpracy. Dziękuję 
również za współpracę i inspirację drowi Ludwikowi Kużniarzowi, drowi inż. 
Zdzisławowi Spławskiemu i dr inż. Bogumile Hnatkowskiej z Instytutu Informatyki 
Stosowanej.

Zbigniew Huzar
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1. Wstęp

1.1. Wytwarzanie oprogramowania

Oprogramowanie (system oprogramowania) jest zwykle fragmentem systemu infor­
matycznego, składającego się z oprogramowania i sprzętu, który dla oprogramowania 
stanowi środowisko wykonawcze.

Cykl życia systemu informatycznego jest zestawem czynności związanych z jego wytwa­
rzaniem i użytkowaniem - od chwili podjęcia decyzji o jego wytworzeniu, przez kon­
strukcję, wdrożenie, eksploatację, aż do wycofania z użycia. Cykl życia oprogramowania 
należy widzieć na tle życia systemu informatycznego. Ponieważ wytwarzanie oprogra­
mowania jest zwykle znacznie bardziej złożone niż projektowanie części sprzętowej, czę­
sto cykl życia systemu informatycznego utożsamia się z cyklem życia oprogramowania.

Do grupy tradycyjnych modeli cyklu życia oprogramowania można zaliczyć [Beh- 
forooz, Hudson 1996], [Jaszkiewicz 1997], [Górski 2001], [Szejko 2002], [Linger, 
Lipson, McHugh, Mead, Sledge 2002]: klasyczny model kaskadowy i różne jego wa­
rianty - model V, model spiralny, model przyrostowo-ewolucyjny. Wśród wymie­
nionych modeli cyklu życia oprogramowania szczególną rolę odgrywa klasyczny mo­
del kaskadowy, nazywany także wodospadowym, gdyż znajduje odzwierciedlenie 
w różnych metodykach wytwarzania oprogramowania.

Model kaskadowy (rys. 1.1) wyróżnia następujące fazy życia oprogramowania:

• analizę domenową albo dziedzinową, niekiedy też nazywaną analizą biznesową,
• analizę wymagań,
• projektowanie,
• implementację albo kodowanie,
• walidację,
• instalację,
• konserwację (utrzymanie),
• wycofanie z użytkowania.

Cztery fazy - analizę wymagań, projektowanie, implementację i walidację - wyróżnia 
się jako fazy stanowiące cykl wytwarzania oprogramowania - fragment cyklu życia 
oprogramowania.

Analiza dziedzinowa (domenowa, biznesowa) wiąże się z miejscem - organizacją 
lub instytucją, dla której ma powstać system informatyczny. System taki angażuje 
ludzi, sprzęt komputerowy i oprogramowanie, realizując pewien obieg i przetwa­
rzanie danych. Celem analizy jest ustalenie zasad funkcjonowania danej organiza­
cji, ustalenie tych jej fragmentów, które mają być poddane informatyzacji, a także 
określenie ogólnych oczekiwań w stosunku do mającego powstać systemu.
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Analiza wymagań odnosi się do przewidywanego systemu informatycznego. Polega na 
rozpoznaniu tych wszystkich aspektów rzeczywistości, które mogą mieć wpływ na postać 
oczekiwanego systemu lub na sposób jego budowy, wdrożenia bądź funkcjonowania. 
Wynikiem analizy jest określenie wymagań użytkownika do systemu informatycznego.

Rys. 1.1. Model kaskadowy cyklu życia oprogramowania

Projektowanie polega w pierwszej kolejności na określeniu architektury systemu in­
formatycznego, czyli składowych systemu i wzajemnego ich powiązania. Wyróżnia 
się składowe sprzętowe - węzły (komputery lub urządzenia wejścia-wyjścia) i składo­
we informacyjne - komponenty (programy, bazy danych, biblioteki programowe). 
Komponenty są odpowiednio rozmieszczane w węzłach. Powiązania między węzłami 
mogą być realizowane przez pojedyncze łącza lub sieci komunikacyjne. Powiązania 
pomiędzy komponentami opierają się na wzajemnym świadczeniu usług. W następnej 
kolejności projektowanie polega na szczegółowej specyfikacji poszczególnych składo­
wych architektury. Specyfikacja powinna jednoznacznie określić rodzaj wymaganego 
sprzętu oraz funkcje poszczególnych komponentów oprogramowania tak, aby można 
napisać odpowiedni kod w wybranym języku programowania. Faza projektowania 
może być złożona, dlatego niektóre metodyki dekomponują projektowanie na podfazy, 
na przykład metodyka ROPES [Douglass 1999], opisana też w pracy [Huzar 2001], 
wyróżnia projektowanie ogólne, pośrednie i szczegółowe.
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W ramach implementacji wyróżnia się dwa rodzaje czynności: kodowanie i testowanie 
wstępne. Kodowanie polega na napisaniu tekstu programów odpowiednich kompo­
nentów w wybranych językach programowania, a testowanie wstępne polega na eks­
perymentalnym sprawdzeniu czy system działa poprawnie. Wyróżnia się przy tym 
testowanie jednostkowe, polegające na oddzielnym sprawdzeniu poprawności po­
szczególnych komponentów programowych, oraz testowanie integracyjne, polegające 
na sprawdzeniu poprawności współpracy wszystkich komponentów.

Faza walidacji ma na celu sprawdzenie czy zbudowany system działa poprawnie 
w środowisku użytkownika oraz czy rzeczywiście spełnia jego oczekiwania. Spraw­
dzenie to polega na wykonaniu testów akceptacyjnych. W testowaniu w poprzedniej 
fazie chodziło o stwierdzenie czy system działa zgodnie ze specyfikacją ustaloną pod­
czas projektowania, w obecnej fazie idzie natomiast o stwierdzenie spełnienia oczeki­
wań użytkownika, które - w odróżnieniu od specyfikacji projektowych - być może nie 
zostały całkowicie precyzyjnie ustalone w wymaganiach użytkownika. Przeprowadza­
ne tu testowanie ma charakter walidacyjny, natomiast testowanie w fazie implementa­
cyjnej ma charakter weryfikacyjny.

Faza instalacji wiąże się z wdrożeniem zrealizowanego i wytestowanego systemu 
w środowisku użytkownika. Wdrażanie nowego systemu może polegać na okresowym 
jednoczesnym funkcjonowaniu systemu starego i nowego. Jest to strategia kosztowna, ale 
bezpieczna dla funkcjonującej instytucji. Możliwe są oczywiście inne strategie, lecz z ich 
zastosowaniem wiąże się potrzeba oszacowania ryzyka niepowodzenia przedsięwzięcia.

Faza konserwacji (utrzymania') jest związana z eksploatacją oprogramowania. Wy­
konywanymi tu czynnościami są generacja i instalacja oprogramowania w konkretnym 
środowisku wykonawczym, rekonfiguracja oprogramowania powodowana zmieniają­
cymi się warunkami eksploatacji, usuwanie zauważonych błędów, a także modyfika­
cje oprogramowania na skutek zmieniających się wymogów użytkowych. W przypad­
ku istotnych modyfikacji należy dokonać powrotu aż do fazy analizy. Właśnie ten fakt 
jest główną wadą modelu, gdyż błędy poczynione w etapie analizy wymagań powo­
dują duże straty finansowe.

Fazy te - w zasadzie - występują po sobie kolejno; wynikowe artefakty - dowolne 
informacje w materialnej postaci - danej fazy stanowią podstawę do prac w fazie na­
stępnej. W praktyce często fazy nakładają się na siebie, a dodatkowo dopuszcza się 
powroty z danej fazy do faz wcześniejszych w celu poprawek, uściśleń lub uzupełnień 
wcześniej opracowanych artefaktów (rys. 1.1). Przyczyną powrotu może być wykrycie 
niespójności, niejednoznaczności lub braku określoności w artefaktach poprzednich 
faz. Powroty do faz wcześniejszych pociągają za sobą dodatkowe koszty, dlatego stale 
udoskonala się metody wytwarzania oprogramowania tak, aby redukować potrzebę 
powrotów do wcześniejszych faz.

Model kaskadowy wprowadza nie tylko pewną kolejność wykonywania różnych czynno­
ści, ale także określa pewne ramy organizacyjne związane z wyznaczaniem zespołów, 
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przydzielania im odpowiednich zasobów i rozliczania rezultatów prac. Model jest pod­
stawą do wyróżnienia różnych kategorii specjalistów zaangażowanych w budowę i funk­
cjonowanie systemów informatycznych, dlatego wyróżnia się na przykład analityków, 
projektantów, programistów, inspektorów, administratorów czy konserwatorów.

1.2. Specyfikacja wymagań

Precyzyjna specyfikacja wymagań jest niezbędna nie tylko do uzyskania systemu 
oprogramowania odpowiedniej jakości, ale także do efektywności całego cyklu wyt­
warzania oprogramowania [Wallace, Recker 2001], Zwykle wyróżnia się specyfikację 
wymagań funkcjonalnych i niefunkcjonalnych, ale spotyka się także inne podejścia 
[Sawyer, Kotonaya 2001]. Można wyróżnić przynajmniej trzy grupy podejść dotyczą­
ce tego, co specyfikacja powinna ujmować:

• normy ISO (International Organization for Standardization) serii 9621,
• normy IEC (International Electrotechnical Commission) serii 50-191 i 300, odno­

szące się do systemów związanych z bezpieczeństwem,
• inne dotyczące specyficznych systemów, na przykład systemów ekspertowych 

czy systemów informacyjnych.

Najszersze jest podejście odzwierciedlone w serii norm ISO 9621, które specyfikację 
wymagań rozpatruje w kontekście jakości systemu oprogramowania. Wyróżnia się tu 
sześć głównych charakterystyk jakości, które z kolei dzieli się na 21 podcharakte- 
rystyk. Głównymi charakterystykami i ich wybranymi podcharakterystykami są:

• funkcjonalność, jako podstawowa charakterystyka, obejmuje następujące podcha­
rakterystyki: dostarczenie odpowiednich funkcji (usług) wraz z zapewnieniem 
dostarczania odpowiednio dokładnych wyników obliczeń, współdziałanie z in­
nymi systemami, zabezpieczenie przed nieuprawnionym dostępem do danych.

• niezawodność, rozumiana jako zdolność do świadczenia usług w określonych wa­
runkach na odpowiednim poziomie efektywności, obejmuje: dojrzałość, odpor­
ność na awarie, zdolność przywracania ze stanu po awarii,

• użytkowalność, reprezentując punkt widzenia użytkowników systemu, odnosi się 
do: łatwości nauczenia posługiwania się systemem, łatwości użytkowania, atrak­
cyjności usług dla użytkownika,

• efektywność, odnosząc się do związku pomiędzy wydajnością systemu a stop­
niem wykorzystywania zasobów, obejmuje własności czasowe (szybkość reakcji, 
przepustowość), wykorzystywanie zasobów systemu,

• konserwowalność, odnosząc się do nakładu pracy potrzebnego do utrzymania 
i modyfikacji systemu, obejmuje takie podcharakterystyki, jak: analizowalność, 
modyfikowalność, testowalność,

• przenośność, charakteryzując zdolność oprogramowania do przenoszenia do in­
nych organizacji czy platform wykonawczych, wskazuje na podcharakterystyki: 
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adaptowalność, instalowalność, współistnienie z innym oprogramowaniem, za­
stępowalność.

Dodatkowo zakłada się, że w ramach każdej z charakterystyk mogą być definiowane 
podcharakterystyki określające zgodność oprogramowania ze specyficznymi standar­
dami lub zaleceniami.

Normy serii ISO 9621 definiują dokładniej wymienione charakterystyki i podcharak­
terystyki oraz proponują zestaw metryk, którymi można się posługiwać w celu ich 
ilościowej oceny. Specyfikacja systemu (w terminach normy ISO specyfikacja jego 
jakości) jest wyrażona przez zbiór pożądanych wartości metryk [Dubielewicz, Hnat- 
kowska, Huzar, Tuzinkiewicz 2006].

Normy IEC dotyczą systemów związanych z bezpieczeństwem, które często są syste­
mami czasu rzeczywistego [Douglass 1998, 1999]. Specyfikacja wymagań obejmuje 
wymagania funkcjonalne i niefunkcjonalne, które z kolei dzielą się na dwie kategorie:

• wydajnościowe,
• wiarygodnościowe.

Do wymagań wydajnościowych można na przykład zaliczyć: przepustowość systemu, 
czasy reakcji i czasy obsługi użytkowników. Tego rodzaju wymagania są oczywiście 
związane z budową systemów czasu rzeczywistego, ale także z budową systemów nie- 
czasowych.

Na wymagania wiarygodnościowe składają się: dyspozycyjność, niezawodność, bez­
pieczeństwo (safety) i ochrona (security).

Dyspozycyjność jest miarą gotowości systemu do użycia. Przykładami systemów 
o ostrych wymogach dyspozycyjności są system sterowania reaktorami w elek­
trowniach jądrowych czy system sterowania międzynarodowym lub międzymiasto­
wym ruchem telekomunikacyjnym. Systemy takie powinny pracować całą dobę bez 
przerw, przez wszystkie dni roku.

Niezawodność określa odpowiednio długie okresy czasu bezawaryjnej pracy. Bezpo­
średnio pojęcia niezawodności nie można odnosić do oprogramowania, gdyż opro­
gramowanie może być tylko poprawne albo niepoprawne, ale oprogramowanie, 
funkcjonując w zawodnym środowisku wykonawczym, powinno przewidywać awa­
rie środowiska wykonawczego i reagować na ich zajście w taki sposób, aby zacho­
wać poprawność wykonywanych funkcji. Przykładami systemów, z którymi wiąże 
się taki wymóg, są systemy sterowania rakietami kosmicznymi.

Wymóg bezpieczeństwa wiąże się w pewnym zakresie z wymogiem niezawodności. 
Oznacza on również odpowiednie reagowanie na awarie, przy czym nie chodzi o awa­
rie środowiska wykonawczego, ale o awarie w otoczeniu systemu, na które system 
powinien reagować. W razie zaistnienia takich awarii system powinien podejmować 
działania specyficzne, odbiegające od rutynowych. Przykładem może być system ste­
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rowania reaktorem atomowym, który w przypadku stwierdzenia zajścia krytycznych lub 
niedopuszczalnych zjawisk w reaktorze powinien rozpocząć procedurę awaryjnego 
wyłączenia reaktora. Na ogół wymóg bezpieczeństwa odnosi się do tych systemów, 
których funkcjonowanie jest związane z bezpieczeństwem ludzi lub środowiska.

Ochrona (zabezpieczenie) systemów wiąże się z zapobieganiem nieupoważnionemu 
dostępowi i manipulacji na danych pamiętanych w systemie. Systemy bankowe lub 
osobowe są typowymi przykładami systemów, w których zabezpieczenie odgrywa 
szczególną rolę.

Oprócz wymogów wydajnościowych i wiarygodnościowych mogą być formułowane 
inne, na przykład ważnym wymogiem, który można obecnie spotkać, w stosunku do 
wielu systemów jest skalowalność. Skalowalność oznacza, że w przypadku rozbudo­
wy system zachowuje poprzednio wymienione wymogi. Skalowalność może być peł­
na lub częściowa, w zależności od tego czy żąda się zachowania wszystkich, czy tylko 
niektórych wymogów. Można na przykład żądać, aby w przypadku zwiększenia liczby 
użytkowników system gwarantował stałe czasy obsługi, zachowywał dyspozycyjność 
oraz niezawodność itp.

W przypadku systemów specyficznych istotne mogą być inne charakterystyki. Na 
przykład w systemach ekspertowych ważne jest uzyskanie odpowiedzi w ustalonym 
limicie czasu, a także czytelne przedstawienie procesu wnioskowania, w systemach 
informacyjnych natomiast ważną cechą jest łatwość formułowania zapytań i precyzja 
udzielanych odpowiedzi.

Wymagania niefunkcjonalne mogą się odnosić nie tylko do jakości systemu, ale także 
do procesu jego wytwarzania. Wymagania takie mogą się odnosić metodyki projekto­
wania, używanych narzędzi wspomagających, sposobu dokumentowania, gromadzenia 
i udostępniania artefaktów itp.

1.3. Modele systemów

Współczesne metody wytwarzania systemów oprogramowania opierają się na para­
dygmacie modelowania obiektowego. Oznacza to, że cykl wytwarzania oprogramo­
wania jest postrzegany jako proces budowy ciągu modeli.

Model jest pewnym odzwierciedleniem wybranej dziedziny - jest pewną abstrakcją 
modelowanej dziedziny, świadomym uproszczeniem modelowanej dziedziny, a upro­
szczenie to zależy od przyjętego punktu widzenia - od wybranej perspektywy mode­
lowania.

Perspektywa, która jest punktem wyjścia przy tworzeniu modeli, określa te aspekty 
należące do modelowanej dziedziny, które są istotne dla danego modelu, i te, które 
należy pominąć. Perspektywa ustala też stopień szczegółowości przedstawiania wy­
branych aspektów.
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Od modelu oczekuje się, że odzwierciedla dwa różne aspekty modelowanego systemu: 
aspekt statyczny i aspekt dynamiczny. Rozdzielenie obu tych aspektów można trakto­
wać jako zastosowanie zasady abstrakcji. Aspekt statyczny odnosi się do struktury 
modelowanego systemu, czyli ukazuje zbiór elementów składowych wraz z wiążący- 
mi je relacjami. Aspekt dynamiczny (behawioralny) odnosi do zachowania systemu, 
czyli do obserwowalnych efektów jego działania w czasie.

Językiem, który obecnie jest używany najpowszechniej do reprezentacji modeli 
obiektowych w procesie wytwarzania oprogramowania jest UML (Unified Modeling 
Language) [UML 2003], UML ma wiele zalet, ale ma także pewne ograniczenia. 
Głównym jego ograniczeniem jest to, że w fazie analizy wymagań pozwala 
w zasadzie tylko na definiowanie wymagań funkcjonalnych. Dodatkowo jego słaboś­
cią jest brak formalnej semantyki. Omawiany w książce język LOTOS nie jest języ­
kiem obiektowym, chociaż ma wiele cech wspólnych z językami obiektowymi [Hnat- 
kowska 1998]. W stosunku do języka UML jest językiem uboższym, gdyż jest tylko 
językiem specyfikacji funkcjonalnych, podczas gdy UML jest językiem specyfikacji 
i projektowania. LOTOS ma natomiast nad językiem UML wyraźną przewagę w za­
kresie precyzyjnej i kompletnej specyfikacji zachowań. LOTOS jest ponadto językiem 
wykonywanym, co pozwala na szybkie prototypowanie, testowanie i analizę specyfi­
ko wanych zachowań.

Systemy informatyczne są ogromnie zróżnicowane. Istnieje wiele klasyfikacji koncen­
trujących się na wybranych aspektach ich architektury lub zastosowań. Spotyka się na 
przykład podziały systemów na:

• sprzętowe/programowe,
• jedno-Zwieloprocesorowe,
• sekwencyjne/wielowątkowe,
• tradycyjne/czasu rzeczywistego,
• wbudowane/lokalne/rozproszone.

Przedstawiony podział nie jest jednorodny, ukazuje on raczej bogactwo wewnętrznych 
własności i zastosowań systemów informatycznych.

Ze względu na zakres dalej prowadzonych rozważań przedstawimy inną, abstrakcyjną 
klasyfikację modeli systemów z punktu widzenia ich współpracy z otoczeniem. 
W klasyfikacji tej system jest traktowany jako czarna skrzynka, która komunikuje się 
z otoczeniem przez wyróżnione punkty komunikacji - bramki komunikacyjne. Takie 
widzenie skupia się na usługach systemu, a nie na tym, w jaki sposób usługi te są re­
alizowane. Klasyfikacja wyróżnia trzy kategorie systemów [Huzar, Spławski 1989], 
[Schneider 2004]:

• transformacyjne,
• interakcyjne,
• reaktywne.
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Działanie systemów transformacyjnych polega na przetworzeniu zadanej wartości 
wejściowej i wygenerowaniu pewnej wartości wyjściowej. Wartości wejściowe i wyj­
ściowe są elementami pewnych wskazanych zbiorów. Wartości te mogą być warto­
ściami złożonymi. Nie wnikając w ich wewnętrzną strukturę i przyjmując, że X jest 
zbiorem wartości wejściowych, a Y wyjściowych, schemat funkcjonowania systemów 
transformacyjnych można określić bądź jako funkcję częściową f: X —> Y, bądź jako 
relację R ę X x Y. Przez funkcję f jest opisywany system deterministyczny, jeśli 
j\x) - y, to oznacza, że dla danej wejściowej wartości x system generuje y jako war­
tość wyjściową. Częściowość funkcji oznacza, że dla wartości wejściowej x, dla której 
funkcja /'jest nieokreślona, system nie kończy działania i nie dostarcza tym samym 
wyniku końcowego. Przez relację R jest opisywany system niedeterministyczny, jeśli 
<x, y> e R, to dla danej wejściowej wartości x system może generować y jako wartość 
wyjściową. Jeśli dla danego x e X nie istnieje y & Y takie, że <x, y> & R, to oznacza, 
że - podobnie jak w przypadku funkcji - system nie dostarcza wyniku końcowego.

Działanie systemów interaktywnych jest bardziej złożone niż systemów transformacyj­
nych. System nie wytwarza pojedynczej wartości, ale współdziała ze swoim otocze­
niem. Współdziałanie odbywa się za pośrednictwem bramek komunikacyjnych, przez 
które otoczenie kieruje dane wejściowe do systemu, a system po ich przetworzeniu ge­
neruje dane wyjściowe do otoczenia. System przyjmuje dane wejściowe, a dopiero po 
ich przetworzeniu, i ewentualnym wygenerowaniu danych wyjściowych, jest gotowy 
do pobrania kolejnych danych wejściowych. Istotne we współdziałaniu systemu z oto­
czeniem jest to, że kolejna wymiana danych odbywa się po zakończeniu przetwarzania 
przez system poprzednio wymienionych danych. Działanie systemu nie musi się za­
kończyć po skończonej liczbie takich cykli. Przyjmując, jak w przypadku systemów 
transformacyjnych, że X jest zbiorem wartości wejściowych, a Y wyjściowych, sche­
mat funkcjonowania deterministycznych systemów reaktywnych można wyrazić przez 
funkcję o sygnaturze f: X Y , gdzie X jest zbiorem skończonych ciągów nad X. 
System interaktywny przetwarza nie pojedyncze wartości, ale ciągi wartości. Chara­
kteryzująca system funkcja f musi przy tym spełniać warunek domkniętości prefik­
sowej

jeżeli /Ui, ..., x„) = V], ..., y,„ oraz f(xh ..., x,„ x„+l) jest określona, 
to /Ul, ..., x,„ x„+1) = Yi, ..., y,„ y„+h

Dla niedeterministycznych systemów interaktywnych schemat ich działania określa 
się za pomocą relacji R c X x Y , spełniającej analogiczny warunek.

Działanie systemów reaktywnych jest jeszcze bardziej złożone niż systemów inter­
aktywnych. Wynika to z nałożenia na system dodatkowych ograniczeń czasowych. 
System nie tylko powinien generować wartości wynikowe, ale generować je w od­
powiednim czasie, a otoczenie może kierować do systemu kolejne wartości wejściowe 
w dowolnie określonych chwilach, niezależnie od tego, czy system przetworzył po­
przednio do niego skierowane wartości wejściowe. Wejścia i wyjścia systemu sąokre- 
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ślone parami: wartość, chwila czasowa. Wprowadzając zbiór chwil czasowych T, wraz 
z relacją porządku częściowego <, oraz oznaczając, jak poprzednio, X jako zbiór war­
tości wejściowych, a Y wyjściowych, schemat funkcjonowania deterministycznych 
systemów reaktywnych może być wyrażony funkcją o sygnaturze

f:(XxT)*^(YxT)\

Funkcja może być określona tylko dla ciągów wejściowych <xh 6>, ..., <x„, t„> ta­
kich, że z, < ... < t„. Ten sam warunek czasowego uporządkowania spełniają również 
ciągi wyjściowe. W taki sposób określona funkcja musi spełniać określony wcześniej 
warunek domkniętości prefiksowej.

Systemy interaktywne i reaktywne najczęściej nie produkują określonego wyniku, lecz 
reagują na dane kierowane do nich z otoczenia, w którym funkcjonują (przykładem 
programów tego typu są systemy operacyjne, systemy rezerwacji biletów, poczty elek­
tronicznej itp.).

Głównym przedmiotem naszego zainteresowania będą systemy reaktywne. Wśród 
nich należy wyróżnić dwie kategorie systemów:

• systemy z silnymi ograniczeniami czasowymi,
• systemy ze słabymi ograniczeniami czasowymi.

Do systemów z silnymi ograniczeniami czasowymi zalicza się te systemy, dla których 
muszą być zawsze spełnione zadane ograniczenia czasowe. Naruszenie tych ograni­
czeń może powodować niepożądane, katastrofalne skutki. Przykładami takich syste­
mów są systemy sterowania elektrowniami jądrowymi, systemy awioniki lotniczej, 
czy też ogólniej - systemy związane z bezpieczeństwem. Brak reakcji lub spóźniona 
reakcja na pewne zdarzenia może powodować na przykład awarię elektrowni lub nie­
bezpieczeństwo utraty sterowności samolotu.

Do systemów ze słabymi ograniczeniami czasowymi zalicza się te systemy, dla któ­
rych zadane ograniczenia czasowe powinny być spełnione, ale których naruszenie, 
powodując pewne straty, nie pociąga jednak katastrofalnych skutków. Przykładami 
takich systemów są systemy obsługi bankowej czy rezerwacji biletów. W takich przy­
padkach żąda się wprawdzie obsługi użytkownika w pewnym ograniczonym czasie, 
ale przekroczenie takiego ograniczenia, na przykład czasu reakcji, skutkuje tylko znie­
cierpliwieniem klienta.

1.4. Specyfikacja funkcjonalna systemów oprogramowania

Specyfikacja funkcjonalna opisuje zewnętrznie dostrzegalne efekty działania progra­
mu. Możliwe są dwa sposoby rozumienia tych efektów [Huzar, Spławski 1989]: 
pierwszy zakłada, że obserwowalne są zmiany stanów systemu, drugi - że obserwowa­
ne są interakcje pomiędzy systemem a jego otoczeniem. Obserwacja stanów zakłada 
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wgląd we wnętrze systemu, natomiast obserwacja interakcji jest punktem widzenia 
użytkownika systemu - mówimy w tym przypadku, że obserwujemy zachowanie sys­
temu. W dalszym ciągu zakładamy, że interesuje nas wyłącznie punkt widzenia ze­
wnętrznego obserwatora systemu.

Opis zachowania systemu jest konieczną składową specyfikacji systemu. Wymagania 
funkcjonalne są określane na dwa powiązane ze sobą sposoby:

Sposób pierwszy odwołuje się do pojęcia usług systemu. System opisuje się tu przez 
określenie usług, jakich system dostarcza, a także usług, z jakich ma korzystać. Samą 
usługę wyraża się w terminach zachowań - ciągów komunikatów wymienianych po­
między usługobiorcą a usługodawcą w celu realizacji żądanej usługi. Pojęcie usługi 
jest wygodne i naturalne przy opisie szerokiej klasy systemów służących wspoma­
ganiu jednostek administracyjnych czy gospodarczych.

Sposób drugi odwołuje się bezpośrednio do pojęcia zachowań systemu. Jest to sposób 
naturalny przy specyfikacji systemów sterujących, na przykład obiektami technologi­
cznymi. W tym przypadku wskazuje się na zachowania wymagane, a także można 
wskazywać na inne zachowania jako dopuszczalne lub zabronione.

Dla uproszczenia będziemy dalej prowadzić rozważania, zakładając, że schemat funk­
cjonowania systemu jest funkcją. Nie ogranicza to ogólności rozważań w tym sensie, 
że przedstawiane rozważania będzie można również zastosować do systemów, których 
schemat funkcjonowania jest określony relacją. Opis systemu oznacza więc opis funk­
cji wyrażającej jego schemat funkcjonowania. Podobnie jak w przypadku definio­
wania dowolnych zbiorów, istnieją dwa podejścia definiowania funkcji [Huzar 2002]:

• rekursywne,
• ekstensjonalne.

Podejście pierwsze - rekursywne {algorytmiczne, wykonywalne) - polega na przedsta­
wieniu sposobu generowania wszystkich wartości funkcji na podstawie przyjętego 
zestawu wartości dla wybranych argumentów.

Podejście drugie - ekstensjonalne (logiczne) - polega na zdefiniowaniu funkcji przez 
określenie jej własności.

Za obu podejściami kryje się rozmaitość wykorzystywanych języków i metod.

Do pierwszego podejścia należą metody wykorzystujące pojęcia abstrakcyjnych ma­
szyn stanowych (rozszerzeń automatów skończonych) [Bórger, Stark 2003], [Harel, 
Marelly 2003] etykietowanych systemów przejść oraz algebr procesowych [Baeten, 
Middelburg 2002], [Hermanns, Herzog, Katoen, 2002], Do grupy tej można także 
zaliczyć sieci Petriego i różnorodne ich rozszerzenia [Reisig 1988], [Girault 2003], 
[Magott 2005],

Do drugiego podejścia należą metody oparte na logikach klasycznych i modalnych. 
Należą do nich na przykład logika programów Hoare’a [Huzar 1989], [Apt, Olderog 
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1991] i rachunek najsłabszych warunków wstępnych Dijkstry [Dijkstra 1978], mające 
zastosowanie do systemów transakcyjnych. Do systemów interaktywnych i reaktyw­
nych są stosowane różne formy logiki temporalnej [Hennessy, Milner 1985], [Manna, 
Pnueli 1992], [Clark, Emerson, Sistla 1983], a także inne, jak na przykład logika dyna­
miczna [Harel 1979], [Harel, Kozen, Tiuryn 2000] czy p.-rachunek [Schneider 2004],

Oba podejścia są w pewnym sensie komplementarne i dlatego bardzo często do opisu 
systemu stosuje się oba podejścia. Podejście rekursywne jest wprawdzie bardzo wy­
godne przy przechodzeniu od specyfikacji do implementacji, ale bezpośrednio jest 
trudne do analizy, w celu sprawdzenia czy ma pewne pożądane własności. Podejście 
logiczne - odwrotnie - bezpośrednio może wyrażać pożądane własności, natomiast 
bezpośrednio jest trudne do przekształcenia w implementację. Jednoczesny opis wy­
konywalny i logiczny wprowadza redundancję, co pomaga w uzyskaniu większej wia­
rygodności, ale jednocześnie wymaga stwierdzenia zgodności obu opisów.

Do specyficznych kategorii własności systemów, które wyraża się w sposób eksten- 
sjonalny należą między innymi własności:

• bezpieczeństwa,
• żywotności,
• trwałości,
• bezstronności (uczciwości).

Własność bezpieczeństwa jest tutaj rozumiana, inaczej niż poprzednio (p. 1.3), jako nie­
zmiennik wyrażający to, że w działaniu systemu nigdy nie osiągnie się niepożądanej 
sytuacji (nigdy nie zdarzy się coś złego). Określenie tego, co jest złe, zależy oczywiście 
od konkretnego systemu, na przykład że program nigdy nie zablokuje swego działania.

Własność żywotności jest niezmiennikiem wyrażającym to, że w działaniu systemu 
zawsze osiągnie się pożądaną sytuację (zawsze zdarzy się coś dobrego). Na przykład 
program zakończy swoje działanie lub osiągnie określony stan.

Trwałość odnosi się do stabilizacji pewnych własności. Oznacza to, że pewna włas­
ność będzie trwale zachodzić od pewnego momentu czasu działania systemu. Na 
przykład będą trwale przechowywane raz zarejestrowane dane.

Bezstronność oznacza, że pewna własność będzie w czasie działania systemu zacho­
dzić nieskończenie wiele razy. Własność ta jest wyprowadzona z analizy działania 
systemów równoległych i wyraża postulat, że każdemu z równoległych procesów sys­
tem operacyjny będzie przydzielał dostęp do procesora.

W dalszym ciągu nie będziemy się zajmować własnościami logicznymi, a będziemy 
się głównie opierać na algebrach procesowych, w ramach podejścia wykonywalnego, 
które się odnoszą do systemów interaktywnych i reaktywnych.

Algebry procesowe są rozwijane od początku lat osiemdziesiątych ubiegłego stulecia. 
Za pionierskie można uznać prace Hoare’a związane z procesami CSP [Hoare 1978, 
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1985], Milnera - wprowadzające rachunek CCS [Milner 1980], [Milner 1989] czy też 
prace [Bergstra, Klop 1985], [Baeten, Bergstra, Smolka 1995] definiujące algebrę 
ACP. Początkowo algebry związane głównie z systemami interaktywnymi zostały 
przeniesione na grunt systemów reaktywnych. Przykładem pracy pokazującej zasto­
sowanie ACP do specyfikacji systemów czasu rzeczywistego jest [Groote 1990]. Hi­
storię prac nad rozwojem algebr procesowych przedstawia raport [Baeten 2004].

Obecnie można wyróżnić trzy kategorie algebr procesowych: czasowe, probabilisty­
czne i stochastyczne.

Algebry czasowe powstały jako uogólnienie klasycznych algebr procesowych przez 
wprowadzenie do algebry pojęcia czasu i akcji czasowych. Różnice pomiędzy alge­
brami czasowymi dotyczą przyjmowanych modeli czasu (czas ciągły i dyskretny) oraz 
interpretacji wykonywania akcji czasowych. Przykładami są algebry oparte na wcze­
śniej wymienionych językach: ACP [Baeten, Bergstra 1991], CSP [Schneider 1995], 
LOTOS [Bolognesi, Lucidi, Trigilla 1995], [Leduc, Leonard 1995], Powodem rozwo­
ju algebr czasowych była potrzeba dostarczenia formalnego języka specyfikacji sys­
temów reaktywnych, czyli specyfikacji zachowań i związanych z nim ograniczeń cza­
sowych. Algebry czasowe są właściwym narzędziem specyfikacji systemów czasu 
rzeczywistego z silnymi ograniczeniami czasowymi. Przegląd prac dotyczących algebr 
czasowych zawiera publikacja [Nicollin, Sifakis 1992].

Algebry probabilistyczne są specjalizacją algebr czasowych polegającą na zastąpieniu 
niedeterminizmu występowania akcji probabilizmem. Takie podejście umożliwia ba­
danie wydajności specyfikowanych systemów, a zwłaszcza wyliczanie charakterystyk 
probabilistycznych [Hermanns, Herzog, Katoen 2002], Algebry probabilistyczne są 
właściwym narzędziem specyfikacji systemów czasu rzeczywistego ze słabymi ogra­
niczeniami czasowymi. Przykładami takich algebr są: dla ACP [Baeten, Bergstra, 
Smolka 1995], dla CSP [Hanson, Jonsson 1990] oraz dla LOTOSa [Miguel, Fernan- 
dez, Vidaller 1993],

Kolejne uogólnienie algebr procesowych - algebry stochastyczne - polega na wpro­
wadzeniu akcji o stochastycznej charakterystyce czasów wykonania. Algebry te stano­
wią właściwe narzędzie analizy systemów kolejkowych. W odróżnieniu od innych 
mechanizmów, na przykład stochastycznych sieci Petriego, umożliwiają one kompo­
zycyjną specyfikację i generację łańcuchów Markowa. Przykładami takich algebr są: 
TIPP [Gótz, Herzog, Rettelbach 1993], PEPA [Hilston 1996], EMPA [Bernardo, Gor- 
rieri 1998], a dla LOTOSa [Rico, Bochmann 1991],

Głównym obszarem zastosowania algebr czasowych jest specyfikacja systemów czasu 
rzeczywistego z silnymi ograniczeniami czasowymi, natomiast algebr probabili­
stycznych i stochastycznych - systemy ze słabymi ograniczeniami czasowymi.

W ostatnim okresie, oprócz rozwijania klasycznych algebr ACP, CCS i CSP, powstała 
nowa grupa algebr procesowych, do których należą między innymi n-rachunek Mil- 
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nera [Milner 1999] oraz rachunek otoczeń (ambient calculus) Cardelliego i Gordona 
[Cardelli, Gordon 1998].

1.5. Metody formalne w procesie wytwarzania systemów
Wytwarzanie systemów informatycznych jest złożonym procesem. Różne metodyki 
definiują strukturę takich procesów przez określenie faz (etapów), czynności i wyni­
kowych artefaktów. Współcześnie dominujące obiektowe metodyki wytwarzania sys­
temów oprogramowania opierają się na paradygmacie modelowania. Oznacza to, że 
proces wytwarzania systemów oprogramowania jest widziany jako pewien ciąg po­
wiązanych ze sobą modeli. Typowe powiązania pomiędzy modelami to relacja uściśle­
nia i realizacji.

W różnych miejscach procesu wytwarzania znajdują zastosowanie metody formalne.

Formalność metody oznacza w pierwszej kolejności formalność języka użytego do 
opisu modeli. Oznacza to, że język ma ściśle zdefiniowaną składnię i semantykę, dzię­
ki czemu opis systemu w tym języku może być precyzyjny i jednoznaczny. Język po­
winien mieć dostateczną siłę ekspresji po to, aby dało się tworzyć modele kompletne z 
punktu widzenia przyjętej perspektywy. Jednocześnie powinien być możliwie abs­
trakcyjny, aby unikać wnikania w szczegóły dotyczące implementacji systemu.

Powody stosowania metod formalnych są przynajmniej dwa: po pierwsze - formaliza­
cja modeli umożliwia precyzyjne formułowanie i badanie ich własności, oraz po dru­
gie - umożliwia definiowanie transformacji pomiędzy modelami. Oznacza to, że me­
tody formalne w wytwarzaniu oprogramowania stosuje się do:

• pisania specyfikacji formalnych,
• dowodzenia własności tych specyfikacji,
• wyprowadzania implementacji na podstawie specyfikacji,
• weryfikacji zgodności implementacji względem specyfikacji.

Metody formalne mają zalety, ale mają też wady: w stosunku do języków naturalnych 
lub półformalnych są mniej ekspresywne i są sztywne - wymagają ścisłego, ograni­
czonego sposobu posługiwania się nimi podczas tworzenia modeli.

Stosowanie metod formalnych jest szczególnie uzasadnione w przypadku systemów 
współbieżnych, związanych z bezpieczeństwem, a także w przypadku definiowania 
pewnych standardów. Właśnie potrzeba ścisłego zdefiniowania standardów systemów 
otwartych ISO/OSI doprowadziła pod koniec lat osiemdziesiątych ubiegłego wieku do 
podjęcia prac nad rozwojem formalnych technik specyfikacji usług i protokołów sieci 
komputerowych. Powstały wówczas, rozwijane do dzisiaj, techniki formalne FDT 
(Formal Description Teclmigues), do których zalicza się ESTELLE, SDL oraz LO­
TOS [Turner 1993], Właśnie LOTOS, ze względu na swoje walory elegancji i ścisło­
ści podstaw, został wybrany jako przedmiot niniejszej monografii.
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Korzyści, jakie wynikają z posługiwania się nimi, oprócz precyzji i jednoznaczności, 
to możliwość badania sensowności modeli, to znaczy czy istnieje dla nich jakakolwiek 
interpretacja (czy model nie jest sprzeczny), czy mają wskazane własności. Dodatkowo 
ich stosowanie jest warunkiem koniecznym przy konstrukcji systemów wspomagają­
cych wytwarzanie oprogramowania. Ta ostatnia okoliczność staje się szczególnie 
ważna, gdyż rosnący stopień złożoności wytwarzanych systemów informatycznych 
wymaga coraz bardziej silnego wsparcia przy badaniu i transformacji modeli.

1.6. LOTOS w specyfikacji standardów sieci komputerowych
LOTOS powstał w ramach prac standaryzacyjnych, prowadzonych przez ISO pod 
koniec lat osiemdziesiątych XX wieku, w zakresie sieci komputerowych. Pierwotnym 
rezultatem prac ISO w tym okresie było opracowanie modelu referencyjnego ISO/OSI 
otwartych sieci komputerowych [ISO 7498], z czego wyłonił się problem definio­
wania standardów usług i protokołów sieciowych. Działające w ramach podkomitetu 
ISO/TC97/SC16, a później w ramach ISO/TC97/SC21, grupy robocze postawiły za 
cel opracowanie matematycznych podstaw umożliwiających:

• pisanie jasnych, jednoznacznych i zwartych specyfikacji standardów sieciowych,
• weryfikację poprawności specyfikacji,
• analizę własności specyfikacji,
• konstruowanie oprogramowania na podstawie specyfikacji,
• badanie zgodności implementacji ze specyfikacją.

Rezultatem prowadzonych prac było opracowanie języków formalnych ESTELLE 
[ISO 9074] i LOTOS [ISO 8870] oraz półformalnego języka SDL [Belina, Hogrefe 
1989]. Wyniki prac spełniają tylko częściowo zarysowane wcześniej zamierzenia, 
gdyż ograniczają się do opracowania samych języków specyfikacji, z pominięciem 
pozostałych zagadnień. Należy jednak podkreślić, że były prowadzone - poza bez­
pośrednim nadzorem ISO - inne prace nad zrealizowaniem pozostałych, wymienio­
nych poprzednio, zamierzeń. Język LOTOS został uznanym międzynarodowym 
standardem.

LOTOS jako narzędzie formalnej specyfikacji spełnia postulaty, których oczekuje się 
od dowolnego języka formalnych specyfikacji. Sama formalność języka oznacza, że 
ma on jednoznacznie zdefiniowaną składnię i semantykę, co pozwala na niesprzeczną 
i jednoznaczną specyfikację danego systemu. Specyfikacja jest też abstrakcyjna, co 
oznacza, że nie określa ani nie narzuca szczegółów implementacji systemu. Ważnym 
aspektem formalności jest również to, że sama specyfikacja, traktowana jako pewien 
abstrakcyjny obiekt, może być przedmiotem analizy metodami matematycznymi.

Język specyfikacji powinien być dostatecznie ekspresywny, aby w pełni opisywać 
odpowiednią klasę obiektów. W przypadku języka LOTOS chodziło o możliwość 
opisu usług i protokołów w poszczególnych warstwach modelu referencyjnego. Oka­
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zało się, że LOTOS, spełniając te wymogi, może być narzędziem specyfikacji prak­
tycznie dowolnych systemów rozproszonych.

Język specyfikacji, ze względu na złożoność specyfikowanych systemów, powinien 
dostarczać zestawu mechanizmów strukturalizacji tworzonych opisów, mających do­
brze ugruntowane intuicje. Dobrze zestrukturalizowana specyfikacja podnosi czytel­
ność i ułatwia jej pielęgnację.

Język ESTELLE bazuje na imperatywnych koncepcjach spotykanych w tradycyjnych 
językach programowania (punktem odniesienia był tu Pascal), język LOTOS wyko­
rzystuje natomiast idee abstrahowania danych i zachowań, zrodzone na przełomie lat 
siedemdziesiątych i osiemdziesiątych ubiegłego wieku. Są nimi:

• koncepcja algebraicznej specyfikacji abstrakcyjnych typów danych,
• koncepcja specyfikacji behawioralnych, tzn. opisu zachowania systemów poprzez 

zbiór ciągów oddziaływań systemu ze swoim otoczeniem.

Abstrakcyjne typy danych mają w literaturze współczesnej wiele różnych modeli. 
Typy danych, które adaptowano na potrzeby języka LOTOS, pochodzą od języka al­
gebraicznych specyfikacji ACT ONE, opracowanego w Uniwersytecie Technicznym 
w Berlinie Zachodnim pod kierunkiem H. Ehriga [Ehrig, Mahr 1985].

Opis zachowania systemów opiera się na koncepcjach zaproponowanych przez 
R. Milnera z Uniwersytetu w Edynburgu, zawartych w języku CCS [Milner 1980], 
System jest traktowany jako pewien obiekt (zestaw równolegle działających proce­
sów), który poprzez pewne punkty interakcji (bramki, porty) wymienia dane ze swoim 
otoczeniem.

Specyfikacja systemu rozproszonego w LOTOSie składa się z:

• specyfikacji abstrakcyjnych typów danych (komunikatów wymienianych po­
między systemem a jego otoczeniem),

• specyfikacji zachowań, czyli specyfikacji behawioralnej.

Ważną rolę w rozwijaniu formalnych technik opisu oprogramowania odegrał projekt 
SEDOS (Software Environment for the Design of Open Distributed Systems), realizo­
wany pod koniec lat osiemdziesiątych, w ramach europejskiego programu ESPRIT 
[van Eijk, Vissers, Diaz 1989]. Prace przyczyniły się do ostatecznej standaryzacji 
języka i weryfikacji jego praktycznej przydatności, a ponadto opracowano programo­
we narzędzia służące między innymi do edycji i symulacji specyfikacji oraz do wspo­
magania tworzenia implementacji na podstawie specyfikacji.

W języku LOTOS przedstawiono pełny opis wielu powszechnie stosowanych standar­
dów, na przykład:

• IEEE Connectionless Interneting Protocol,
• ISO Network Service,
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• ISO Transport Protocol,
• ISO Transport Service,
• ISO Session Protocol,
• ISO Session Service,
• ISO Presentation Protocol,
• ISO Transaction Protocol.

Opisano także niektóre proponowane standardy, które nie znalazły jednak szerszego 
zastosowania: standardy usług i protokołów transferu plików i zadań.

Pod koniec lat dziewięćdziesiątych ubiegłego wieku, na bazie zdobytych doświad­
czeń w stosowaniu języka, rozpoczęto prace nad czasowym rozszerzeniem LOTOSa. 
Znalazły one wyraz w propozycji standardu [ISO/IEC FDIS 15437, 2001]. Standard 
nowego języka, nazywanego E-LOTOS, oprócz wprowadzenia czasu, wprowadza 
różne modyfikacje i usprawnienia, wśród których najistotniejsza jest zmiana specy­
fikacji danych. Przyjęto pragmatyczne podejście do definiowania typów danych 
uwzględniające sposoby definiowania stosowane we współczesnych językach pro­
gramowania.

1.7. Zakres monografii

W monografii przedstawiono język LOTOS, jego zastosowania, a także jego rozsze­
rzenia, które umożliwiają wykorzystanie języka w procesie specyfikacji i projektowa­
nia systemów czasu rzeczywistego. Omawiane są dwa rodzaje rozszerzeń - rozsze­
rzenia czasowe, które umożliwiają specyfikowanie systemów czasu rzeczywistego 
z silnymi ograniczeniami czasowymi, oraz rozszerzenia wydajnościowe, które umożli­
wiają analizę wydajnościową systemów czasu rzeczywistego ze słabymi ograniczenia­
mi czasowymi.

Zawartość książki jest następująca:

Dwa kolejne rozdziały - 2. oraz 3. - dotyczą języka CCS oraz jego rozszerzeń czaso­
wych. Prezentacja języka i jego rozszerzeń jest sformalizowana. Opis semantyki jest 
oparty na strukturalnym podejściu operacyjnym.

W rozdziale 4. omówiono abstrakcyjne typy danych w LOTOSie.

Na informacjach z rozdziałów 2. i 4. opiera się rozdział 5., w którym opisano język 
LOTOS.

W rozdziale 6. omówiono najważniejsze zastosowanie języka LOTOS jako języka 
specyfikacji standardów sieciowych, a w rozdziale 7. - metodykę użycia języka 
LOTOS w procesie tworzenia i testowania specyfikacji. Przedstawiono także krótko 
narzędzia programowe wspomagające wykorzystanie języka.
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W rozdziale 8. skupiono się na pewnej własności języka LOTOS, którą można uważać 
za niepożądany efekt - tak zwane ukryte blokady - wynikający z przyjętego sposobu 
komunikacji i synchronizacji.

W dwóch następnych rozdziałach omówiono rozszerzenia języka LOTOS: w rozdzia­
le 9. zaprezentowano dwa rozszerzenia czasowe, a w rozdziale 10. - rozszerzenie wy­
dajnościowe LOTOSa.

W ostatnim rozdziale 11. omówiono związki LOTOSa z innymi metodami formalny­
mi i półformalnymi, a zwłaszcza z językiem UML.
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2. Język CCS

2.1. Wstęp

W tym rozdziale przedstawiono język CCS (Calculus of Communicating Systems), 
który był podstawą do opracowania języka LOTOS. CCS powstał na bazie prac 
R. Milnera, inspirowanego wcześniejszymi pracami prowadzonymi przez Hoare’a nad 
językiem programowania współbieżnego CSP (Communicating Sequential Processes) 
[Hoare 1978, 1985]. Przeznaczeniem CCS było formalne specyfikowanie zachowania 
systemów interaktywnych. W dojrzałej postaci przedstawił go Milner w książce [1980], 
Wcześniejsze prace Milnera były inspiracją zwłaszcza dla jego współpracowników 
z Uniwersytetu w Edynburgu, na przykład: [Hennessy, Plotkin 1979, 1980], [Plotkin 
1981], [Hennessy 1988], [Hennessy, Reagan 1991], były też podstawą dalszych prac 
Milnera [1989, 1999], jak i prac w innych ośrodkach, na przykład [Parrow 1985],

Systemy interaktywne (zob. rozdz. 1.) są szeroką kategorią systemów informatycz­
nych, stanowiącą uogólnienie klasycznych systemów transformacyjnych. Działanie 
systemów transformacyjnych można opisać zależnością funkcyjną lub relacyjną po­
między początkowymi i końcowymi stanami systemu. Tymczasem występują syste­
my, w których nie chodzi o osiągnięcie pewnego stanu końcowego, lecz o to, aby bie­
żące działanie systemu, rozumiane jako jego współdziałanie ze swoim otoczeniem, 
było zgodne z określonym wzorcem. Przykładem takich systemów są systemy opera­
cyjne, systemy rezerwacji biletów, sieci komputerowe itp. W przypadku takich syste­
mów konieczne jest inne podejście do opisu ich działania, nazywane podejściem be­
hawioralnym.

Podejście to polega na opisie działania systemu przez opis komunikacji, która może 
zachodzić pomiędzy systemem a jego otoczeniem. System jest widziany jako „czarna 
skrzynka”, która wykonuje w swoim wnętrzu pewne nieobserwowalne czynności obli­
czeniowe - akcje wewnętrzne i komunikuje się ze swoim otoczeniem przez obserwo- 
walną wymianę danych na swoich bramkach (portach) - wykonywanie akcji komuni­
kacyjnych (rys. 2.la).

W podejściu behawioralnym nacisk kładzie się na komunikację. Pojedyncza komuni­
kacja jest wynikiem interakcji, czyli realizacji dwóch synchronizujących się akcji ko­
munikacyjnych - akcji wysłania i akcji odbioru danych - na bramce systemu. Jedna 
z akcji (akcja wysłania lub odbioru) jest wykonywana przez system, a druga (akcja 
odbioru lub wysłania) - przez jego otoczenie. Rezultatem interakcji jest wymiana po­
między systemem a jego otoczeniem pewnego zestawu danych.

Interakcja jest czynnością elementarną, to znaczy nie może być przerywalna ani dzie­
lona. Ponieważ nie uwzględnia się przy tym czasu trwania interakcji, zakłada się, że 
interakcja wykonuje się natychmiastowo.
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a)
b)

Zbiór oferowanych 
akcji komunikacyjnych

Wykonanie akcji 
komunikacyjnej 
lub 
wykonanie akcji 
wewnętrznej

Nowy zbiór oferowanych 
akcji komunikacyjnych

Rys. 2.1. System interaktywny jako „czarna skrzynka” (a), schemat zmiany stanów systemu (b)

Działanie systemu interaktywnego przebiega zgodnie z następującym schematem 
(rys. 2.Ib): W danym momencie czasu system znajduje się w pewnym stanie. 
Z punktu widzenia otoczenia systemu stan określa zbiór oferowanych akcji komuni­
kacyjnych. Jeżeli otoczenie skorzysta z pewnej oferowanej akcji komunikacyjnej, 
zostanie zrealizowana odpowiednia interakcja, w wyniku której nastąpi przesłanie 
pewnych danych oraz nastąpi zmiana stanu systemu. W nowym stanie system oferu­
je otoczeniu nowy zbiór akcji komunikacyjnych, po czym powtarzają się opisane 
czynności. Zmiana stanu może również nastąpić bez interakcji z otoczeniem, na 
skutek wykonania przez system akcji wewnętrznej. Dla otoczenia zajście takiej akcji 
wewnętrznej może być zauważone tylko przez zmianę zbioru oferowanych akcji 
komunikacyjnych.

System reaktywny może być też widziany jako „szara skrzynka” (rys. 2.2). Oznacza 
to, że system składa się z mniejszych „czarnych skrzynek”, które są powiązane ze 
sobą wewnętrznymi bramkami, przeznaczonymi do komunikacji wewnętrznej. Kon­
cepcja „szarej skrzynki” pozwala na dekomponowanie złożonego systemu reakty­
wnego na elementy składowe. Elementy składowe systemu, podobnie jak cały system, 
nazywa się procesami lub agentami. Składowe procesy systemu można również 
dekomponować dalej, przedstawiając je jako złożenie innych podprocesów, a tych 
z kolei jako dalszych podprocesów itd.

Interakcje pomiędzy systemem a jego otoczeniem bądź pomiędzy jego procesami 
składowymi można przedstawiać na dwóch poziomach szczegółowości. Na poziomie 
ogólnym interakcja jest traktowana tylko jako zdarzenie komunikacyjne zachodzące na 
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danej bramce. Na poziomie szczegółowym interakcja jest określona jako zdarzenie 
komunikacyjne, któremu towarzyszy wymiana wskazanych danych.

Rys. 2.2. System reaktywny jako ..szara skrzynka"

Odpowiednio do tych poziomów szczegółowości język CCS ma dwie wersje: wersję 
bazową, która przedstawia interakcje z pomijaniem danych wymienianych, i wersję 
pełną, która dane te uwzględnia. W dalszym ciągu rozdziału prezentację języka CCS 
ograniczono do wersji bazowej.

Specyfikacja systemu interaktywnego jest dokonywana z punktu widzenia zewnętrz­
nego obserwatora systemu i polega na określeniu zbioru wszystkich możliwych ciągów 
interakcji, jakie mogą zachodzić, w czasie jego życia, pomiędzy nim a jego otoczeniem.

Specyfikacja jest wyrażana przez tak zwane wyrażenia behawioralne języka CCS. 
Stanowią one rekursywne złożenie akcji komunikacyjnych. Akcje mogą być powią­
zane różnymi operatorami składni, a rekursja jest wyrażana przez wywoływanie pro­
cesów (lub agentów).

Proces reprezentuje system lub jego składową, która przez własne bramki może się 
komunikować ze swoim otoczeniem. W danym stanie proces oferuje swemu otoczeniu 
pewne akcje komunikacyjne. To, która z tych akcji zostanie wykonana, zależy od syn­
chronizacji procesu z otoczeniem. Po zsynchronizowaniu się akcji następuje ich rea­
lizacja (interakcja), po czym proces przechodzi do kolejnego stanu, w którym przed­
stawia swemu otoczeniu nową ofertę akcji komunikacyjnych.

Znaczeniem wyrażeń behawioralnych jest zachowanie systemu, określone przez zbiór 
ciągów interakcji, jakie zachodzą pomiędzy systemem a jego otoczeniem. W przypad­
ku nietrywialnych systemów reaktywnych zbiór takich ciągów jest często nieskoń­
czony, a ciągi mogą mieć nieskończoną długość.
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2.2. Składnia i nieformalna semantyka

Przedstawiona składnia języka odbiega w drobnych szczegółach od oryginału. Zostało 
to podyktowane chęcią zachowania konwencji stosowanej przez język LOTOS. Róż­
nice te natomiast nie zmieniają semantyki języka.

Wprowadźmy następujące oznaczenia:

Niech G oznacza dowolny, co najwyżej przeliczalny, zbiór - nazywany zbiorem nazw 
bramek komunikacyjnych.

Zbiór akcji wejściowych (bez uwzględniania przesyłanych danych) będziemy ozna­
czać przez G?, akcji wyjściowych przez G\ oraz przez A sumę wejściowych i wej­
ściowych akcji komunikacyjnych, czyli A = G? u G!.

Dodatkowo wprowadzamy akcję r, którą będziemy nazywać akcją wewnętrzną. Akcja 
wewnętrzna reprezentuje pewną czynność obliczeniową lub komunikacyjną, która - 
wykonywana wewnątrz systemu - nie jest widoczna dla jego otoczenia.

Zbiór wszystkich akcji oznaczamy Act = A u {r}. Zbiór A jest zbiorem akcji, których 
zajście jest obserwowalne przez otoczenie systemu, natomiast rjest akcją, której zaj­
ście jest nieobserwowalne przez otoczenie systemu.

Akcję wejściową na bramce ge G będziemy oznaczać jako gl (g?e GT), akcję wyjścio­
wą na bramce geG jako g! (g!eG!); ta sama bramka może być użyta do realizacji 
akcji wejściowej lub wyjściowej. Akcje g‘l oraz g! nazywa się akcjami komplemen­
tarnymi.

Jeżeli aeA, to jej akcję komplementarną oznacza się a, oczywiście a -a. Dla akcji 
wewnętrznej f = T.

Bramka, na której jest realizowana akcja oeA, będzie oznaczana przez gate(a). Akcje 
komplementarne a oraz Ct synchronizują się na tej samej bramce, dlatego gate(a) = 
= gate( a ). Jeżeli SęA.toz definicji gate (S) = ^J^Jg6zre(a)}.

Przez Proc oznaczymy zbiór nazw procesów. Każdy proces ma swoją definicję, 
a zbiór definicji procesów Def jest określony następująco:

D •. = piP.B\D,/U.P.B (2.1)

gdzie:
De Def, PeProc jest nazwą procesu,
Be Beh jest wyrażeniem behawioralnym, stanowiącym treść procesu.

Zbiór wyrażeń behawioralnych Beh, w notacji BNF, jest określony następująco:

B ::= 0 | P | BAS | BfJ] | (BO | a; B. | B, || B, \B}+B, (2.2) 
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gdzie:
B, Bi, B2e Beh, Pe Proc, S ęzA, aeA oraz f: G —> G jest funkcją przemianowania 
(zmiany nazwy) bramek komunikacyjnych. Kolejność wprowadzenia operatorów 
odpowiada malejącej kolejności priorytetów ich użycia;
0 jest stałą reprezentującą proces pusty, to znaczy taki, który nie oferuje swemu 
otoczeniu żadnych akcji komunikacyjnych.
P jest instancją procesu. Każdy proces, oprócz procesu pustego, ma dokładnie 
jedną definicję wyrażoną w postaci pP.B (P jest jego nazwą, a B jest pewnym wy­
rażeniem behawioralnym, nazywanym treścią procesu).

Operator p w definicji rekursywnej pP.B wiąże wszystkie wolne wystąpienia nazwy 
procesu P w treści procesu B. Zachowanie definiowane przez wyrażenie pP.B jest 
takie same jak zmodyfikowanego wyrażenia B, w którym każde wystąpienie P jest 
zastępowane przez pP.B.

Wolne wystąpienia nazw procesów określa funkcja pomocnicza FProc : Beh —> 2/>™, 
która dla danego wyrażenia behawioralnego B wyznacza zbiór wolnych nazw proce­
sów. Jest ona zdefiniowana rekursywnie w tabeli 2.1.

Tabela 2.1

B FProc(B)

0
P

0
{PJ

pP-B, 
BAS 
^[/l
(Si) 
a; B\
B, || B2
B । + Bi

FProc(BA\{P}
FProc(B})
FProclBA
FProcjBj
FProclBA
FProc(Bj) U FProc(B2)
FProc(Bj u FProc(B2)

W wyrażeniu BAS, gdzie SczA, \ jest operatorem przesłaniania (restrykcji). Operator 
ten wyklucza komunikację wyrażenia behawioralnego B{ z jego otoczeniem na bram­
kach gate(S~). Inaczej: wyrażenie BAS nie może się komunikować ze swoim otocze­
niem na bramkach gate(S).

B|[/] jest wyrażeniem, w którym nazwy bramek akcji zostają przemianowane przez 
funkcję /: G —> G; dla akcji a, w wyrażeniu B\, bramka gate(a) = g zostaje zastąpio­
na bramką f(g). Zakładamy, że funkcja f jest bijekcją, to znaczy funkcją wzajemnie 
jednoznaczną. W wyrażeniu B|[/] symbol [/] jest operatorem przemianowania para- 
metryzowanym funkcją f.
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Nawiasy w wyrażeniu (SJ służą grupowaniu i strukturalizacji wewnętrznej wyrażeń. 
Zachowanie wyrażenia (B,) jest dokładnie takie jak wyrażenia Bh

Wyrażenie a; B^ jest nazywane wyrażeniem prefiksowania akcją a wyrażenia B\ albo 
krótko - wyrażeniem prefiksującym. Symbol ; jest operatorem prefiksowania. Wyra­
żenie a\ B} oferuje swemu otoczeniu tylko jedną akcję komunikacyjną a. Jeżeli akcja 
ta zostanie zaakceptowana przez otoczenie, to po jej wykonaniu kolejne oferty komu­
nikacyjne są określone przez wyrażenie Bh

Wyrażenie złożenia równoległego B\ || B2, gdzie || jest operatorem złożenia równole­
głego, zachowuje się tak, jak zachowują się jednocześnie wyrażenia B\ oraz B^ to 
znaczy oferuje swemu otoczeniu akcje komunikacyjne oferowane przez wyrażenie B\ 
oraz przez wyrażenie B2. Oba wyrażenia, poza tym że oferują akcje komunikacyjne 
swemu otoczeniu, dodatkowo mogą się wzajemnie komunikować. Komunikacja taka 
wymaga synchronizacji dwóch komplementarnych akcji na wspólnej bramce.

Wyrażenie wyboru B\ + B2, gdzie + jest operatorem wyboru, zachowuje się jak B} albo 
B2. Wybór zachowania zależy od otoczenia wyrażenia B} + B2, które wskazuje na Bt 
albo B2, wybierając do realizacji albo jedną z akcji oferowanych przez Bh albo jedną 
z akcji oferowanych przez B2.

Definicja 2.1
Specyfikacja zachowania w języku CCS jest zdefiniowana jako para

Spec = < Bo, Defp > (2.3)

gdzie: B{}eBeh jest początkowym wyrażeniem behawioralnym, a DefPE Def jest 
skończoną listą definicji pewnych procesów Pt, ..., P„.
Definicja procesu o nazwie P, (i - 1, ..., n) ma postać pP,.B,, gdzie wyrażenie be­
hawioralne B^Beh jest treścią procesu. Każdy proces, którego instancja występuje 
w wyrażeniach behawioralnych Ba, ..., B„ ma swoją definicję w zbiorze Def. In­
stancje procesów o tej samej nazwie mają jedną wspólną definicję.

Wprowadzamy funkcję pomocniczą FAct : Beh —> Act, która dla danego wyrażenia 
behawioralnego B wyznacza zbiór akcji obserwowalnych. Funkcja jest zdefiniowana 
rekursywnie w tabeli 2.2.

Funkcja umożliwia zdefiniowanie dwóch rodzajów specyfikacji:

Definicja 2.2
Specyfikację Spec = <B^, Def>, dla której FAct(Bf) = 0 nazywamy specyfikacją 
komunikacyjnie zamkniętą, a komunikacyjnie otwartą w przypadku przeciwnym.

System, którego specyfikacja jest komunikacyjnie otwarta, jest systemem, którego 
funkcjonowanie jest uwarunkowane działaniem jego otoczenia, działanie (obliczenie) 
systemu, którego specyfikacja jest komunikacyjnie zamknięta, jest natomiast nieza­
leżne od jego otoczenia (system nie komunikuje się ze swoim otoczeniem).
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Tabela 2.2

B FAct(B)
0 0
P FAct(Bi) gdzie pP.Bi
BP-Bi FAct(Bi)
Bt\S FAct(Bi)\S,)
Bdf] FAct(Bi)[f}
(B,) FAct(Bi)
a-, B\ {«} u FAct(Bó
Bi || FAct(Bi) u FAct(B2)
51 4- ^2 FAct(Bi) u FAct(B2)

*’ Symbol \ występuje w prawej kolumnie w roli 
odejmowania mnogościowego, w lewej kolumnie 
natomiast występuje w roli operatora restrykcji.

Czasem jest dogodne operowanie wyrażeniami behawioralnymi w pewnych posta­
ciach kanonicznych.

Wyrażenie behawioralne B jest w sekwencyjnej postaci normalnej, gdy przyjmuje postać
B=Y B,=B,+... + B„ (2.4)....n) > । « v ' 

gdzie:
Bi to składowe sekwencyjne wyrażenia B, 
symbol = oznacza równoważność (identyczność) tekstową.

Wyrażenie behawioralne Sjest w równoległej postaci normalnej, gdy przyjmuje postać

SH.en.o... „1S,\SS(B1||...||B„)\S (2.5)

gdzie B, to składowe równoległe wyrażenia B.

2.3. Semantyka operacyjna

Semantyka operacyjna specyfikacji Spec = < Bo, Def > jest definiowana w sposób stru­
kturalny na podstawie definicji składniowych wyrażeń behawioralnych. Definicja 
opiera się na pojęciu etykietowanego systemu przejść postaci

TS(Spec) = < Beh, Act, Tr, Ba> 
gdzie:

Beh jest zbiorem wyrażeń behawioralnych;
Act jest zbiorem akcji;

(2.6)

Tr = ={——» c Beh^Beh | ae Act} jest rodziną relacji przejść pomiędzy wyra­
żeniami behawioralnymi.
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Przejście postaci
B{—^B2

oznacza, że proces, którego stan jest reprezentowany wyrażeniem behawioralnym 
B\, w wyniku realizacji akcji aeAct, zmienia swój stan na stan reprezentowany 
wyrażeniem B2. Jeżeli a jest akcją obserwowalną, to jej wykonanie i stowarzy­
szone z nią dane zostają wymienione pomiędzy systemem a jego otoczeniem, jeże­
li natomiast ćzjest akcją wewnętrzną, to przejściu od Bt do B2 towarzyszy komu­
nikacja wewnętrzna, która nie jest widoczna dla otoczenia procesu;
Bo jest początkowym wyrażeniem behawioralnym.

Rodzina relacji przejść jest definiowana na podstawie rekursji strukturalnej, to znaczy 
każdemu operatorowi wyrażenia behawioralnego odpowiada pewien aksjomat lub 
reguła systemu aksjomatycznego.

Aksjomaty mają postać ustalonych przejść (schematów przejść) pomiędzy wyrażenia­
mi behawioralnymi. Przesłankami i wnioskami reguł są wybrane przejścia. Dodat­
kowo z regułami wiąże się warunek ich stosowania.

Reguły zapisuje się w postaci 

gdzie:
B'——>B" (z = 1, 2) sąprzejściami-przesłankami,

B, —^—sB2 jest przejściem-konkluzją, 
wrzr jest warunkiem stosowania reguły.

Aksjomat jest szczególną postacią reguły, gdy zbiór przesłanek jest pusty, dlatego 
aksjomaty zapisuje się w postaci przejścia-konkluzji.

Proces pusty - brak aksjomatów i reguł.

Instancja procesu

^P.B-^B' .
—------ -------— (R-ins)

P—^B

Rekursja

B[P-^P.B]-^B' .
---------- -— -----;------  (R-rec) 

jtlP.B—^B

gdzie [P::- B’] jest pomocniczym operatorem (jednokrotnego) zastąpienia teksto­
wego. Notacja postaci B[P::~ B'] oznacza modyfikację wyrażenia B, polegającą na 
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tekstowym zastąpieniu każdego wolnego wystąpienia nazwy procesu P w wyrażeniu B 
wyrażeniem B'.

Reguła (R-ins) stwierdza, że wywołanie (instancja) procesu ma zachowanie takie same 
jak jego treść. Reguła (R-rec) stwierdza natomiast, że zachowanie procesu rekursywnego 
P jest określone przez treść tego procesu, zmodyfikowaną w taki sposób, że każde wolne 
wystąpienie jego nazwy jest zastąpione tekstowo przez treść tego samego procesu P.

Restrykcja

B—^B' 
B\S—^B'\S

gate(a)£ S (R-resj

B—^B' 
B\S—^B'\S

gate(a)e S (R-res^

Pierwsza reguła restrykcji (R-res\) dotyczy akcji nienależącej do zbioru przesłania­
nych akcji - wykonanie takiej akcji jest obserwowalne. Druga reguła (R-res2) dotyczy 
akcji ze zbioru akcji przesłanianych - jej wykonanie jest nieobserwowalne, jest trak­
towane jako wykonanie akcji wewnętrznej.

Przemianowanie

B a >B' f(gY dlaa = g\

f(gY d\aa = gl
(R-ren)

Reguła stwierdza, że zachowanie wyrażenia behawioralnego B[f] z bramkami prze­
mianowanymi funkcją f jest takie jak zachowanie wyrażenia B zmodyfikowanego 
w taki sposób, że każda akcja na danej bramce g zostaje zastąpiona akcją na bramce 
f(g).

Nawiasy

B—^B' 
(B)—^B'

gdzie B = B\+B2 (R-P^

B—^B' 
(B)^^(B')

gdzie B = B\ ||B2 (R-pY

Z użyciem nawiasów wiążą się dwie reguły, gdyż ich zastosowanie polega na grupo­
waniu wyrażeń wyboru lub wyrażeń złożenia równoległego. W przypadku pierwszym 
- reguła (R-p\) - wyrażenie (B\ + B2), wykonując pierwszą akcję, dokonuje wyboru 
jednego z wyrażeń składowych, a zatem przechodzi do wyrażenia, w którym nie ma 
potrzeby dalszego użycia nawiasów, gdyż występuje tylko jedno wyrażenie składowe. 
Wykonanie natomiast dowolnej akcji przez wyrażenie złożenia równoległego (Bt || B2) 
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(R-pari)

(R-parj)

pozostawia oba wyrażenia składowe, które dalej powinny być ujęte w nawiasy - regu­
ła (R-p2).

Prefiksowanie akcją

a\B—^B (A-pre)

Zachowanie wyrażenia prefiksowanego akcją a\ B jest opisane aksjomatem, który 
stwierdza, że po wykonaniu akcji preftksującej a dalsze zachowanie wyrażenia jest 
określone przez zachowanie wyrażenia B.

Złożenie równoległe

Bi \\b2-^b;\\b2

b2—^b2
Bt \\B2^^Bt || B2

B}—^B' B2—^B2
Bi ||b2^^||£

Dwie pierwsze reguły (R-paró) i (R-par2) odnoszą się do przypadku, gdy jedna ze 
składowych złożenia równoległego wykonuje akcję, druga składowa natomiast nie 
wykonuje żadnej akcji. Oznacza to, że jeśli jest wykonywana akcja komunikacyjna, to 
partnerem komunikacji jest otoczenie wyrażenia B\ || B2. Wynikiem realizacji takiej 
akcji jest modyfikacja składowej, która uczestniczy w akcji, i pozostawienie bez zmia­
ny drugiej składowej. Reguła (R-par$ dotyczy przypadku, gdy obie składowe uczest­
niczą w realizacji pary komplementarnych akcji komunikacyjnych. Wówczas rezulta­
tem realizacji jest odpowiednia modyfikacja obu składowych.

Wybór

(R-pary)

B2—^B2
b}+b2—^b'2

(R-ch^

Reguły (R-ch\) i (R-ch2) odzwierciedlają dwa przypadki odnoszące się do wyboru 
jednej akcji, należącej albo do Bh albo do B2. Wybór takiej akcji determinuje, że dal­
sze zachowanie przebiega zgodnie z wyrażeniem, do którego należy wybrana akcja. 
Wybór zależy całkowicie od otoczenia wyrażenia Bt + B2, gdy obie składowe oferują 
wyłącznie akcje komunikacyjne. Gdy natomiast obie składowe oferują tylko akcje 
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wewnętrzne, na przykład jak dla wyrażenia r; B\ + r; B2, wybór jednej z tych akcji 
wewnętrznych jest niedeterministyczny i nie zależy od otoczenia.

Podane aksjomaty i reguły umożliwiają zdefiniowanie ciągów akcji, które generuje 
dana specyfikacja Spec.

W celu zdefiniowania tych ciągów wprowadźmy oznaczenia:

Z - zbiór wszystkich ciągów skończonych nad zbiorem Z; ciąg pusty będzie ozna­
czany przez E,

Z™ - zbiór wszystkich ciągów nieskończonych nad zbiorem Z.

Jeżeli s}eZ' oraz s2eZ* u Z°°, to przez SiaS2 będziemy oznaczać konkatenację tych 
ciągów.

Ciąg tranzycji (obliczenie) generowany przez system przejść TS(Spec) ma postać

^B2...-^Bn (2.7a)
lub

Bo —^Bt —^B2...—(2.7b)

gdzie:
Bojest początkowym wyrażeniem specyfikacji Spec,
Bn w przypadku obliczenia skończonego (2.7a) jest wyrażeniem końcowym, to 
znaczy takim, dla którego nie istnieją przejścia do innych wyrażeń.

Dla dwóch wyrażeń behawioralnych B, B’&Beh oraz dla skończonego ciągu akcji 
seAct , gdzie 5 = ćZ| ... a,,, zapis

B-s-^B' (2.8)

oznacza, że wyrażenie behawioralne B'jest osiągalne z wyrażenia B przez ciąg akcji 5, 
czyli

BB,,...^,,., »B—^B,...—^^B,,_,—^->B' (2.9)

Będziemy mówić, że z wyrażenia B ciąg akcji 5 prowadzi do pewnego wyrażenia 
osiągalnego, co zapisuje się

B-s-^ (2.10)

gdy 3 B' • B—■$—> B'.

Zbiór {B'| 3 B' • B—5—> B'} jest zbiorem wyrażeń behawioralnych osiąganych z wy­
rażenia B.

Dla 56 Act°° zbiór wszystkich jego początkowych podciągów oznaczmy przez

pref^s) = {s'c.Act | Bs"eAcf° • 5 = 5'A s" } (2.11)
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Definicja 2.3
Specyfikacja Spec - <B0, Decl> generuje zbiór ciągów akcji

Seq(Bo) = SeqFin(B0) o SeqInf(B0) (2.12)

gdzie:

SeqFin(B0) = {seAcf | Bo—s—>} (2.13)

Seqlnf(B0) = {se AcF I Vs'epref (s) • Bo —s'—>} (2.14)

Zbiór ciągów Seq(B0) może być uważany za pełną semantykę wyrażenia behawio­
ralnego Bo, gdyż bierze pod uwagę wszystkie ciągi, w których występują zarówno 
akcje obserwowalne, jak i nieobserwowalne. Inny rodzaj semantyki bierze pod uwagę 
tylko ciągi akcji obserwowalnych. W celu przedstawienia tej semantyki wprowadzimy 
dodatkowe pojęcia.

Najpierw wprowadzimy relację przejść obserwowalnych pomiędzy wyrażeniami be­
hawioralnymi dla s = a\ ... A", oznaczaną

B=s^B' (2.15)

i zdefiniowaną następująco:

B =£=*B'oznacza, że istnieje, być może pusty, ciąg przejść

Bn——>B}——>B2...——)Bn dla n^Nat (2.16)

gdzie: B = Bo oraz B'= B„.

B -a=>B', dla o^A, oznacza, że istnieją B| oraz B2, takie że

B —E^B[ a B,—(X—^B2 a B2 =£^B' (2.17)

Dalej, dla s=a{ ... c^eA*

B=s^B' (2.18)

oznacza, że

3 B| ... B„ • B -a^B} a ... a B„ =a,,^B' (2.19)

oraz

B =$=> (2.20)

oznacza, że

BB'»B=s^ B' (2.21)
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Niech seAct* będzie postaci 5 = Tk° a^' a2Tk2... anrk", gdzie

Tk‘ =tt...t dla k^Nat oraz i = 0, 1,n 
kj razy

są podciągami złożonymi wyłącznie z akcji wewnętrznych. Przez s"bx oznaczmy pod­
ciąg ciągu 5 złożony z akcji obserwowalnych, czyli

s“bx = ai ... a„.

W szczególności anbx = a, gdy a^r, oraz auhx = e w przypadku przeciwnym.

Definicja 2.4
Specyfikacja Spec = <B0, Decl> generuje zbiór obserwowalnych ciągów akcji

SeqObs{B^ = SeqObsFin(B0) u SeqObslnf (Bo) (2.22)
gdzie:

SeqObsFin(B0) = {seA* | B0=s^} (2.23)

SeqObsInf (B^) = {seAcr“ I Vs'Epref(s) • Bq=s'^> } (2.24)

W dalszej części będziemy rozpatrywać wyrażenia dozorowane behawioralne, okre­
ślone przez definicję 2.5.

Definicja 2.5
Wyrażenie behawioralne B nazywa się wyrażeniem dozorowanym, jeśli każde wy­
stąpienie instancji dowolnego procesu, z wyjątkiem procesu pustego, w wyrażeniu 
B, jest prefiksowane akcją.

Pojęcie wyrażenia dozorowanego eliminuje pewne niewygodne, „patologiczne” wy­
rażenia, których interpretacja jest co najmniej kłopotliwa. Przykładami takich wyrażeń 
są instancje procesów opartych na definicjach:

JlP.P

pQ.(a - B + Q)

HP.Q pQP

Czasem również rozważania ogranicza się do wyrażeń zbudowanych regularnie.

Definicja 2.6
Dozorowane wyrażenie behawioralne B nazywa się wyrażeniem regularnie zbudo­
wanym, jeśli dla dowolnego procesu P występującego w B o definicji pP.BP jego 
treść Bp nie zawiera rekursywnego wystąpienia operatora ||.
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Pojęcie wyrażenia regularnie zbudowanego eliminuje natomiast sytuacje, gdy kolejne 
przejścia od danego wyrażenia prowadzą do nieograniczonej rozbudowy wyrażenia. 
Rozpatrzmy na przykład proces

^P.(a-P\\ b; 0)
Wywołaniu tego procesu może towarzyszyć ciąg tranzycji

(a: P || b\ 0)—((a; P || b; 0) || b; 0) (((a; P || b; 0)|| b; 0)|| b; 0) -^...

w którym następuje nieograniczone rozwijanie wyrażenia.

2.4. Relacje równoważności

Tekstowe porównanie wyrażeń behawioralnych nie pozwala bezpośrednio na stwierdze­
nie, czy stanowią one różną reprezentację takich samych zachowań. Podstawą do stwier­
dzania równoważności zachowań dwóch wyrażeń jest następujący punkt widzenia:

jeżeli jedno z wyrażeń jest zdolne do wykonania pewnej akcji a, a następnie do 
wykonywania akcji zgodnie z nowym wyrażeniem B, to drugie - równoważne mu 
wyrażenie - musi być również zdolne do wykonania tej samej akcji a, a następnie 
do zachowania się zgodnie z wyrażeniem, które jest równoważne wyrażeniu B.

Tego rodzaju równoważność zachowań jest określana mianem równoważności bisy- 
mulacyjnej. Podane dalej definicje uściślają to pojęcie, a ponadto rozróżniają pojęcie 
silnej i słabej bisymulacji.

Definicja 2.7
Relację binarną R ę Beh1 nazywa się bisymulacją, jeśli dla każdej pary wyrażeń 
behawioralnych <Bh Bi>eR i dowolnych akcji aeAct spełnione są następujące 
warunki:

a) jeżeli Bt —-—> B{, to 3B( • B2 ——> B2a< B{, B'-, >e R

b) jeżeli B7 ——>B2. to SB," • B, ——>B\/\ < B\,B'Z >e R

Definicja 2.8
Dwa wyrażenia B| oraz Bz są bisymulacyjnie silnie równoważne, co oznacza się 
B, ~ B7, gdy istnieje bisymulacja R taka, że <B|, By>eR.

Z definicji wynika, że relacja - jest relacją silnej bisymulacji, gdy

~ “def jest relacją bisymulacji} (2.25)

Relacja silnej bisymulacji traktuje akcje komunikacyjne w taki sam sposób jak akcje 
wewnętrzne i dlatego w przypadku, gdy akcje wewnętrzne są obserwowalne, nie za­
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chodzą własności, których można by w tym przypadku oczekiwać, na przykład relacja 
ta nie zachodzi pomiędzy wyrażeniami a, r, B oraz ar, B. Uzasadnia to wprowadzenie 
relacji słabej bisymulacji, która jest określona następująco:

Definicja 2.9
Relację binarną S ę Beh2 nazywa się słabą bisymulacją, jeśli dla każdej pary wy­
rażeń behawioralnych <B|, B2> i dowolnych akcji a&Act są spełnione następujące 
warunki:

a) jeżeli Bt ——^B,, to BB2 • B2 =a"hx=> B2/\< B{,B2 >e S
b) jeżeli B2 ——»B2, to • Bt =a"b^ B'^ < B{, B2 >e S

Definicja 2.10
Dwa wyrażenia B} oraz B2 są obserwacyjnie równoważne, co oznacza się Bt = B2, 
gdy istnieje słaba bisymulacja S taka, że <Bt, B2>e S.

Oznacza to, że relacja = jest relacją obserwacyjnej równoważności, gdy

~ =def jest relacją słabej bisymulacji} (2.26)

Należy zauważyć, że równoważność obserwacyjna nie sprowadza się do zwykłego 
pomijania akcji wewnętrznych w porównywanych wyrażeniach behawioralnych. Na 
przykład dwa wyrażenia cz; B oraz t; a; B są równoważne obserwacyjnie, ale dwa 
wyrażenia cą; B{ + r; a2, B2 oraz ar, B\ + a2, B2 nie są równoważne obserwacyjnie.

Łatwo sprawdzić, że zarówno bisymulacja, jak i słaba bisymulacja są relacjami rów­
noważności na zbiorze wyrażeń behawioralnych, czyli że są relacjami zwrotnymi, sy­
metrycznymi i przechodnimi. Dodatkowo relacja silnej bisymulacji jest kongruencją, 
relacja obserwacyjnej bisymulacji kongruencją natomiast nie jest.

Relacja kongruencji nad dowolnym zbiorem termów Term jest zdefiniowana nastę­
pująco:

Definicja 2.11
Niech t^cTerm będzie podtermem termu t\E.Term, co dalej będziemy zapisywać 
subt{t\, t\), oraz niech ^będzie termem, który powstaje z termu f| przez tekstowe 
zastąpienie podtermu termem t'-,, czyli t2 = z,[ rf ]•
Relacja równoważności R nad dowolnym zbiorem termów Term jest kongruencją, 
jeżeli z faktu, że <t\, t2 >eR wynika, że <t\, t2>eR.

Uwaga: Operator zastąpienia tekstowego [6:=^] należy odróżniać od poprzednio 
wprowadzonego operatora zastąpienia tekstowego [P::=P].
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Jeżeli jako zbiór termów rozpatrzymy zbiór wyrażeń behawioralnych Beli oraz wyra­
żenie behawioralne Bt zmodyfikujemy w taki sposób, że pewne jego podwyrażenie 
B{zastąpimy podwyrażeniem B2, to otrzymane w ten sposób nowe wyrażenie B2 
pozostaje w relacji R z wyrażeniem B\, jeśli tylko podwyrażenia B\ oraz B2 są ze 
sobą w relacji R.

Definicja 2.12
Dwa wyrażenia behawioralne B{ oraz B2 s^kongruencyjnie obserwacyjnie równo­
ważne, co zapisujemy B} =c B2 Jeśli są spełnione następujące warunki:
a) B\ — B2,
b) dla dowolnego wyrażenia B takiego, że subt(B\, B), jeżeli Bt ~ B2, to

B = B[Bi := B2]

Kongruencyjna równoważność obserwacyjna pozwala na stwierdzenie, że dwa wyra­
żenia behawioralne, kongruencyjnie równoważne obserwacyjnie można wzajemnie 
zastępować w dowolnym wyrażeniu bez obawy zmiany obserwowanego zachowania 
całego wyrażenia.

Bezpośrednio z definicji relacji wynika, że

~q=cq = (2.27)

2.5. Prawa równościowe

Jednym ze sposobów badania równoważności wyrażeń behawioralnych jest porów­
nanie grafów wyrażeń osiągalnych dla tych wyrażeń - jest to podejście algorytmiczne. 
Algorytm badania silnej równoważności bisymulacyjnej jest efektywny obliczeniowo 
- ma złożoność wielomianową. Podobnie, przy pewnych ograniczeniach (zbiory 
Seq(B\) i Seq(B\) odpowiadające porównywanym wyrażeniom muszą być skończone), 
efektywny jest algorytm badania słabej równości bisymulacyjnej [Milner 1989], 
a przegląd wcześniejszych prac na ten temat zawiera między innymi publikacja [Bolo- 
gnesi, Smolka 1987],

Inny sposób badania równoważności polega na tekstowych przekształceniach wyrażeń 
opartych na regułach równościowych - jest to podejście algebraiczne [Milner 1989].

System dowodowy składa się ze zbioru aksjomatów i reguł wnioskowania. Aksjomaty 
przyjmują postać równości

B\ = B2,

gdzie symbol = może oznaczać jedną z równoważności: ~, =c, =.

Zbiór reguł, ze względu na własności równoważności, obejmuje reguły zwrotności, 
symetrii i przechodniości:
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Bi=Bt

B\ = B2
Bz = B}

= B^ B2 ~ By
Bi = B3

Poniżej przestawiono zbiór aksjomatów dla badania kongruencyjnej 
obserwacyjnej =c.

Aksjomaty dla operatora wyboru:

B । + B2 ~ B2 +B ।

Bi + (Bz + B^) (Bi + B2) + B2

B + B^ B

B + 0~B

Aksjomaty dla operatora prefiksowania akcją:

et; t; B~c a; B

t;B + B~c t; B

a; (Bi + t; B2) + et; B2 ~c a; (Bi + t; B2)

Aksjomaty dla operatora restrykcji:

B\S =c B jeżeli gate(S) n gate(FAct(B)) = 0

B\Si\S2^ B\(S!US2)

(Bi || B2)\S ~c Bi\S\\ B2\S

jeżeli gate(S) n gate(FAct(Bi)) o gate(FAct(B2)) = 0

B[f]\S^B\r'(S)[f]

Aksjomaty dla operatora przemianowania:

B[id] B

B[f] =c B[/'] jeżeli f\sale(Facl(B)) =f IgflMFnczfB))

#[/][f ] ~c B[f °f] gdzie 0 jest symbolem złożenia funkcji

(Bi || B2)[f] B|[/] || Bz[f] jeżeli funkcja f jest bijekcją

(R-refl)

(R-sym)

(R-trans)

równoważności

(Ai-ch)

(A2-ch) 

(Ay-ch) 

(Aą-c/i)

(Ai-pre) 

(A2-pre) 

(Arpre)

(Ai-res)

(A2-res)

(Ay-reś) 

(A^-res)

(Ai-ren) 

(Az-ren) 

(Ayren)

(A-ren)
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Aksjomaty dla operatora kompozycji równoległej:

B. || B, B21| 5,

Bi || (M B3)-c(Bi||B2)|| B,

B || 0 = B

(Arpar) 

(A?-par) 

(Arpar)

Zbiór reguł specyficznych dla kongruencyjnej równoważności obserwacyjnej obej­
muje reguły związane z rekursją

pP.B
P B

(Ri-rec)

Reguła R\-rec stwierdza, że wywołanie (instancja) procesu jest równoważna treści 
procesu.

B[P:-X\ Q~CB[Q: = X\ 

P~ Q

gdzie X jest wyrażeniem 
regularnie zbudowanym

(R2-rec)

Reguła (R2-rec) jest szczególnym przypadkiem reguły podanej niżej. Reguła ta odnosi 
się do zbioru wzajemnie rekursywnie zdefiniowanych procesów. Wymaga ona wpro­
wadzenia pomocniczych oznaczeń. Niech

P^ ..... P„

Q=Q^Q„

x^ XI,...,X„ 
wówczas

pP.B[P::=X] pQ.B[Q::=X] 

P- Q
gdzie X jest wyrażeniem 
regularnie zbudowanym

(R^-rec)

2.6. Twierdzenie o ekspansji

Badanie równoważności wyrażeń behawioralnych często prowadzi się po uprzednim 
sprowadzeniu ich do postaci normalnych. Przedstawione niżej prawo o ekspansji po­
kazuje, jak można wyeliminować z wyrażenia operatory złożenia równoległego.

Prawo (twierdzenie) o ekspansji dotyczy wyrażeń behawioralnych w normalnej posta­
ci równoległej

M6|1.2... „}Bi\S^(B} ||...||B„)\S

Możliwe są dwa rodzaje tranzycji wyrażenia B do wyrażenia następnego.
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Pierwszy rodzaj polega na tranzycji tylko jednego z wyrażeń składowych. Możliwe 
jest to wówczas, gdy akcja jest wynikiem komunikacji wyrażenia B na bramce spoza 
zbioru S, czyli

|| -. || B' ||... || B„) \ 51 B, B' a gate(a)i s}

Drugi rodzaj tranzycji jest wynikiem komunikacji pomiędzy dwoma składowymi wy­
rażenia B, przez bramkę ze zbioru S, czyli jest przejściem do jednej z sytuacji opisa­
nych wyrażeniem behawioralnym

||... || B' ||... || B' ||... || B„) \ S | B, B' a Bj B' a i < j a gateW e 5}

Zachodzi zatem twierdzenie:

Twierdzenie 2.1
Jeżeli

B=(B, ||...||B„)\S

to
B ^^(B, ||... || B' ||... || B' ||... || B„) \ 5 | B, -^B' a Bj B' a i < ./}

+ II - II B' II - II I B> B'* 5}
Znaczenie twierdzenia polega na tym, że umożliwia ono krokową transformację wyra­
żenia behawioralnego do postaci, która zawiera tylko operatory prefiksowania akcją 
i operatora wyboru. Transformacja taka, oczywiście, nie dla każdego wyrażenia koń­
czy się uzyskaniem wyrażenia w tej postaci o skończonej długości.

2.7. Uwagi końcowe

W tym rozdziale przedstawiono podstawowe informacje o języku CCS. Na bazie CCS 
opracowano pewne nowe wersje, między innymi CCS oraz SCCS [Fencott 1996], 
Ten ostatni język jest odpowiednikiem języka SCCS (Synchronous Calculus of Com- 
municating Systems) opracowanego przez Milnera [1983]. Zasadnicza różnica pomię­
dzy językami dotyczy sposobu opisu semantyki: semantyka SCCS jest semantyką 
przeplotową, natomiast SCCS* - semantyką w pełni równoległą.

Wersje te powstały na gruncie rozważań na temat sposobu opisu semantyki języka. Przed­
stawiona semantyka języka CCS jest semantyką przeplotową. Oznacza to dwie rzeczy:

• tranzycje pomiędzy wyrażeniami następują w wyniku zajścia tylko pojedynczej 
interakcji,
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• interakcje, które mogą zachodzić równocześnie, są reprezentowane zbiorem cią­
gów tranzycji, stanowiących wszystkie permutacje tych interakcji.

Wykorzystany opis przeplotowej semantyki operacyjnej opiera się na klasycznym już 
obecnie podejściu strukturalnej rekursji, zaproponowanej w pracach Plotkina [Plotkin, 
Hennessy 1979], [Plotkin 1981]. Zaletą semantyki przeplotowej jest prosta formali­
zacja, wadą natomiast, że może się wydawać nienaturalna.

Język CCS " jest pewną modyfikacją CCS, jego semantyka jest semantyką pełnej rów­
noległości (truły concurrency semantic). Tranzycje w tej semantyce są widziane jako 
rezultat jednoczesnego zajścia wielu interakcji. Formalnie, jednocześnie zachodzące 
interakcje są reprezentowane wielozbiorami akcji. Semantyka pełnej równoległości 
jest wprawdzie naturalna, ale stwarza kłopoty techniczne przy analizie i dowodzeniu 
własności wyrażeń behawioralnych. Związki pomiędzy przeplotowym i nieprzeploto- 
wym (równoległym) podejściem do definiowania semantyki sieci procesów omawia 
na przykład Dembiński [1997].

Język SCCSjest synchroniczną wersją języka CCS . Synchroniczna wersja wprowa­
dza niejawnie czas dyskretny. Czas jest podzielony na kolejne przedziały, w których 
mogą zachodzić interakcje. W danym odcinku czasu proces albo wykonuje akcje, albo 
bezczynnie czeka na kolejny odcinek czasu. Proces nie może jednak czekać bezczyn­
nie, jeśli nie jest to wyrażone jawnie. Opóźnianie oczekiwania na wykonanie akcji 
musi być wyrażone jawnie za pomocą dodatkowo wprowadzonej akcji jednostkowego 
opóźnienia. Rozszerzenie języka polega w pierwszej kolejności na wprowadzeniu tej 
dodatkowej akcji jednostkowego opóźnienia, a w następnej - na odpowiedniej defini­
cji semantyki.

Różne rodzaje relacji równoważności służące do porównywania procesów są szeroko 
omawiane, między innymi w pracach: [Bolognesi, Smolka 1987], [De Nicola, Hen­
nessy 1984], [Hennessy 1988], [Milner 1989],

Od specyfikacji w języku CCS, jak i w innych językach algebraicznych, oczekuje się 
spełnienia pewnych własności, jak bezpieczeństwa, żywotności, bezstronności itp. 
(zob. rozdz. 1.). Własności takie wyraża się w językach logiki, dla których są skon­
struowane odpowiednie systemy dowodzenia. W niniejszej monografii zagadnień tych 
się nie porusza. Są one omawiane między innymi w pracach: [Ciarkę, Emerson, Sistla 
1983], [Hennessy, Reagan 1991], [Manna, Pnueli 1992],
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3. Rozszerzenia czasowe CCS

3.1. Wstęp

Specyfikacja systemów czasu rzeczywistego musi dysponować pojęciem czasu. Czas 
do specyfikacji, dokładniej do języka specyfikacji, można wprowadzać w sposób nie­
jawny lub jawny.

Z niejawnym wprowadzeniem czasu mamy do czynienia w językach SCCS i SCCS ”, 
wspomnianych w zakończeniu poprzedniego rozdziału. Wynika to z założenia, że 
działanie systemu, w tym wykonywanie akcji, odbywa się w kolejnych okresach, wy­
znaczonych podziałem czasu globalnego zegara na kwanty czasu. Przy takim podej­
ściu modelowany jest właściwie nie czas, ale „tykanie” globalnego zegara. W okresie 
pomiędzy kolejnymi „tyknięciami” specyfikacje procesów muszą jednoznacznie okre­
ślać, czy proces wykonuje jakieś akcje, czy też czeka do następnego „tyknięcia”. Po­
dejście takie może być odpowiednie tylko do niektórych systemów, wydaje się na 
przykład właściwe do modelowania synchronicznych układów cyfrowych, których 
działanie, z założenia, jest synchronizowane globalnym zegarem. Nie jest natomiast 
wystarczające do specyfikacji systemów czasu rzeczywistego.

Jawnie można wprowadzać czas na dwa sposoby:

Pierwszy polega na przypisaniu każdej akcji pewnego odcinka czasu przeznaczonego 
na jej realizację. Akcje komplementarne mają, oczywiście, jednakowy czas trwania. 
Akcje, które w danym momencie są oferowane, ale nie mogą być wykonane, muszą 
być opóźniane albo do momentu synchronizacji z akcjami komplementarnymi, albo do 
momentu wycofania ich oferty. Podejście takie ma odzwierciedlenie w wielu językach 
programowania czasu rzeczywistego.

Drugi sposób polega na wyróżnieniu dwóch rodzajów akcji: natychmiastowych 
i czasowych. Akcja czasowa wprowadza opóźnienie o zadany odcinek czasu. W ten 
sposób staje się możliwe modelowanie akcji komunikacyjnych, których realizacja 
zajmuje pewien odcinek czasu. Mianowicie czasową akcję komunikacyjną, która 
ma trwać pewien odcinek czasu, można modelować jako sekwencyjne złożenie 
trzech akcji:

• akcji natychmiastowej, reprezentującej początek realizacji akcji komunikacyjnej,
• akcji czasowej, reprezentującej wykonanie akcji komunikacyjnej (wymianę da­

nych pomiędzy komunikującymi się partnerami),
• akcji natychmiastowej, reprezentującej zakończenie akcji komunikacyjnej.

Akcje opóźniające można interpretować dwojako. Interpretacja silna oznacza, że pro­
ces po upływie opóźnienia musi wykonać akcję natychmiastową, interpretacja słaba 
oznacza natomiast, że może wykonać taką akcję.
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Drugi sposób wprowadzania czasu do języka specyfikacji ma dwie zalety. Pierwsza 
wiąże się z tym, że takie rozszerzenie nie modyfikuje istotnie znaczenia istniejących 
operatorów języka, a druga wyraża się w tym, że użycie czasu w wielu systemach 
czasu rzeczywistego wiąże się z oczekiwaniem na pewne akcje.

Z pojęciem czasu wiąże się struktura czasowa - zbiór wartości chwil czasowych wraz 
z pewnym uporządkowaniem. Strukturą czasową nazywa się parę

SC-<T, <> (3.1)

gdzie <Q T~ jest relacją porządku, która porządkuje chwile w sensie chwila wcześ­
niej sza-później sza.

Jeżeli < jest relacją porządku częściowego (to znaczy jest zwrotna, antysymetryczna 
i przechodnia), to mamy do czynienia ze strukturą czasu rozgałęzionego, a jeśli jest 
relacją porządku liniowego (to znaczy jest zwrotna, antysymetryczna, przechodnia 
i spójna), to mamy do czynienia ze strukturą czasu liniowego.

Strukturę czasową nazywa się gęstą, gdy

\/t\^T • ^ty^T • T • (6 ty —t\ < ty /\ ty < ty) (3.2)

dyskretną prawostronnie, gdy

Vt^T • Vty£ T • ((t| ty /\ ty)^>

(3ty& T • (t| ł^A /| / Zj)a—>3^46 T* (tj^ Z4 A ty ty A ty £4)) (3.3)

dyskretną lewostronnie, gdy

Vt^T • Vty^ T • (Z । ty A 11 ty)^>

(3^6 T • {ty ty ty ty) —i3Z4^ T • (Z4 Z2 A ty Z4 A ty^ ty)) (3.4)

Przykładem zbioru, na którym można zbudować strukturę ciągłą, jest zbiór liczb wy­
miernych, a dyskretną - zbiór liczb naturalnych. W dalszej części rozdziału zakłada 
się dyskretną lewo- i prawostronnie strukturę czasu liniowego. Wykorzystuje się ja­
ko zbiory chwil zbiór liczb naturalnych Nat lub zbiór liczb wymiernych Wym z rela­
cją porządku < w zbiorze liczb naturalnych lub liczb wymiernych, n < in oznacza: 
chwila n nie jest późniejsza od chwili m. Strukturami czasowymi są zatem <Nat, < > 
oraz <Wym, < >. Na strukturach tych są też wykonywane operacje dodawania i bra­
nia minimum dwóch chwil czasowych.

3.2. TCCS - wprowadzenie

Język TCCS {Tinied CCS) jest czasowym rozszerzeniem CCS, polegającym na za­
stosowaniu drugiego z omówionych wyżej sposobów wprowadzania czasu do języka.
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Operuje on dwoma rodzajami akcji języka CCS, czyli akcjami komunikacyjnymi 
i akcją wewnętrzną, które są realizowane natychmiastowo, oraz dodatkowo wprowa­
dza akcje czasowe, których realizacja wymaga pewnego odcinka czasu. Akcja czaso­
wa wprowadza opóźnienie o zadany odcinek czasu.

Czasową akcję komunikacyjną a w języku TCCS, która ma trwać odcinek czasu t. 
modeluje się jako sekwencyjne złożenie trzech akcji

aStart; (r); aEnd
gdzie:

aStart oraz aEnd są akcjami natychmiastowymi z języka CCS,
(/) jest nowo wprowadzoną akcją czasową (opóźniającą).

Z wprowadzeniem akcji czasowych - jak wspomniano wcześniej - wiążą się dwie 
możliwe interpretacje dotyczące momentów wykonywania akcji. Pierwsza interpre­
tacja - silniejsza - oznacza, że rozpoczęcie akcji czasowej musi nastąpić natychmiast 
po zakończeniu poprzedzającej ją akcji. Druga interpretacja - słabsza - oznacza, że 
rozpoczęcie akcji czasowej może nastąpić w dowolnym momencie po zakończeniu 
poprzedzającej ją akcji. Wyróżnia się więc dwie wersje języka TCCS: silną - sTCCS 
(strong TCCS) [Molier, Tofts 1989] i słabą - wTCCS (weak TCCS) [Tofts 1989].

Opisywana tu wersja języka TCCS [Fencott 1996] jest wersją pośrednią, gdyż 
- przyjmując silną interpretację opóźnień - wprowadza dodatkowe mechanizmy 
uelastyczniające tę interpretację. Potrzeba ich wprowadzenia wynika z faktu, że 
wyłączne stosowanie silnej interpretacji opóźnień powoduje znaczne ograniczenie 
ekspresji języka.

Pierwszy z dwóch wprowadzonych mechanizmów pozwala na określenie czy dana 
akcja musi być wykonana natychmiast w najwcześniejszym możliwym momencie, czy 
też może oczekiwać na wykonanie dowolnie długo. Akcje, które mogą oczekiwać na 
swoją realizację dowolnie długo, wyróżnia się składniowo przez podkreślenie ich na­
zwy. Nazwy akcji natomiast, które muszą być wykonywane w najwcześniejszym moż­
liwym momencie nie są podkreślane. W sekwencyjnym złożeniu akcji

a; Y

akcja a musi być wykonana natychmiast, akcja 2? w dowolnym momencie po zakoń­
czeniu akcji a, natomiast akcja /natychmiast po zakończeniu akcji

Drugi mechanizm polega na wprowadzeniu, oprócz operatora + z języka CCS, dodat­
kowego rodzaju operatora wyboru reprezentowanego symbolem ++. Potrzeba dodat­
kowego operatora wiąże się ze sposobem reagowania na upływ czasu. Operator + jest 
nazywany słabym, a ++ - silnym operatorem wyboru. Różnice w ich interpretacji wy­
jaśnia przykład. Niech będzie dany proces

Z/P.((3); a-P + {5)-/3- P)
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Obie części składowe wyrażenia wyboru są prefiksowane akcjami opóźnienia (3) oraz 
(5). Operator + dopuszcza wybór obu części składowych tego wyrażenia, przy czym 
czyni to w sposób następujący: Jeżeli po upływie opóźnienia 3 jednostek czasu od wy­
wołania procesu P nastąpi realizacja akcji a, to następnie jest powtarzane wykonanie 
wywołania P. Jeżeli natomiast po upływie 3 jednostek czasu akcja rznie zostanie wy­
konana, to następuje opóźnienie o dalsze 2 jednostki czasu (do zakończenia opóźnie­
nia wyrażanego akcją czasową (5)), po czym musi nastąpić realizacja akcji fi, a po jej 
wykonaniu następuje ponowne wywołanie procesu P.

Jeżeli operator + zastąpimy operatorem ++, to interpretacja procesu

/zP.((3); «; p ++ (5); fi-, P)

będzie całkiem inna. Operator dopuszcza mianowicie wybór tylko tej części składowej, 
która jest opóźniana krócej. W naszym przykładzie oznacza to, że może być wybrana 
tylko lewa składowa (3); a\ P, natomiast prawa składowa (5); fi', P nigdy nie będzie wy­
brana. Po upływie zatem opóźnienia 3 jednostek czasu od wywołania procesu P musi 
nastąpić realizacja akcji a, a następnie będzie powtarzane wykonanie wywołania P.

3.3. TCCS - definicja formalna

TCCS wprowadza nową kategorię semantyczną - dziedzinę czasową w postaci stru­
ktury relacyjnej

<Time, <, +> (3.5)
gdzie:

Time jest dowolnym zbiorem przeliczalnym, zwykle przyjmuje się, że jest to zbiór 
liczb naturalnych,
< jest relacją porządku liniowego na zbiorze Time,
+ : Time2 —> Time jest operacją dodawania.

Symbol + jest przeciążony, w zależności od kontekstu wyznaczonego przez jego ar­
gumenty oznacza funkcję dodawania bądź operator wyboru wyrażeń behawioralnych.

Składnia zbioru wyrażeń czasowych behawioralnych TBeh języka TCCS, w notacji 
BNF, jest określona następująco:

B ::= 0 | 0 | P | B\S | B[/] | (B) | a; B | (t); B | a~, B | B || B | B + B| B ++ B (3.6) 

gdzie:
Be TBeh, Pe Proc, S ę A,f: G —> G to funkcja przemianowania bramek akcji, 
te Time jest długością czasu opóźnienia. Kolejność wprowadzenia operatorów od­
powiada malejącej kolejności ich priorytetów.

Lista definicji procesów czasowych TDef jest określona tak samo jak dla bezcza- 
sowego CCS.
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Semantyka operacyjna specyfikacji czasowej TSpec = <Ba, DefP>, gdzie: BQeTBeh, 
a TDefPe TDef jest listą definicji procesów czasowych, jest definiowana na podstawie 
czasowego etykietowanego systemu przejść postaci

TS{TSpec} = <TBeh, TAct, Time, TTr, Bo> (3.7)
gdzie:

TBeh jest zbiorem czasowych wyrażeń behawioralnych,
TAct = Act u {(0 11 e Time} jest zbiorem akcji,
Tńnejest zbiorem chwil,
TTr = {——>QTBehxTBeh\ae Act}u{—QTBehxTBeh\te Time}jest ro­

dziną relacji przejść pomiędzy wyrażeniami behawioralnymi,
Bq jest początkowym wyrażeniem behawioralnym.

Przejście postaci (symbol akcji a nad strzałką)

Bl—^B2 (3.8)

zwane przejściem akcyjnym, oznacza - jak w przypadku CCS - że proces, którego stan 
jest reprezentowany wyrażeniem behawioralnym B^eTBeh, w wyniku realizacji akcji 
ae TAct, zmienia się na stan reprezentowany wyrażeniem B2e TBeh.

Przejście natomiast postaci (symbol upływu czasu t pod strzałką)

(3.9)

zwane przejściem czasowym, oznacza, że proces, którego stan jest reprezentowany 
wyrażeniem behawioralnym B^eTBeh, w wyniku upływu odcinka czasu o długości 
te Time, zmienia się na stan reprezentowany wyrażeniem B2e TBeh.

Rodzina relacji przejść jest definiowana rekursywnie. Zbiór aksjomatów i reguł dla 
TCCS jest w zasadzie rozszerzeniem odpowiedniego zbioru dla CCS. Rozszerzenie 
jest związane z dołączeniem przejść czasowych.

W zbiorze reguł dotyczących przejść akcyjnych rozszerza się reguły dotyczące opera­
tora wyboru. Mianowicie reguły (R-ch) odnoszą się teraz do obu operatorów wyboru + 
oraz ++, czyli

dla ope {+,++} (R-ch)

Wprowadza się też dodatkowy aksjomat dla akcji, których rozpoczęcie może być do­
wolnie opóźniane

a\B—(A-pre)

Zbiór aksjomatów i reguł dotyczących przejść czasowych jest dosyć złożony. Bezpo­
średnio wprowadza się następujące aksjomaty i reguły:
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Opóźnianie

0-—>0 a, B------>a;B
— / — — t —

Prefiksowanie akcją czasową

(t + 5); B——>(5); B

B- ----------- /------------  
(t + s),B_____ > B '________ t+s

(A-del)

(Art-pre)

{Az-t-pre)

(R-t-pre)

Dalszy zestaw reguł wymaga użycia pomocniczych własności, stwierdzających czy 
dane czasowe wyrażenie behawioralne może być opóźniane o zadany odcinek czasu.

Niech prawdziwość formuły del(B, t), gdzie del jest predykatem, oznacza, że czasowe 
wyrażenie behawioralne B może być opóźniane o odcinek czasu t, czyli że po upływie 
t jednostek czasu od dowolnie ustalonej chwili wyrażenie B będzie oferować swojemu 
otoczeniu ten sam zbiór akcji komunikacyjnych. Predykat del jest zdefiniowany rekur- 
sywnie przez następujący zbiór aksjomatów i reguł:

del(Q, t) 

del(a\ B, t) 

del((t); B, s)

del(B,tQ) 
delfty, B.s)

deRB^t) 
del(B} + B2,t)

dla s<t

dla s<R+ t

dla z = 1,2

deRB^t) del(B2,t) 
deRBt++B2,t)

deRB^t) deRB^t)
deRB, || B2ą)

deRB,t)
deRB\S,t)

del(B,t)
delWYt)

del(B,0 „ n D—^-2 dla uP.B
del(P.t)
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Wybór czasowy

B}—^B{
-^del(B2,f)

By+ B2 z ^B{

B^------~ 1 —del(By,t)
^+B2 —

Bt t > B\

^B2

B,------

+ B~) , >B\ 1 B1

By , > Bj Bn ——)Bn*■ t “
B^ Ił Br) , > Bj + Z?2

Złożenie równoległe czasowe

B} B{ B2 B2

By || B2-r^BfilB'

Restrykcja czasowa

B_>B' _______ l_-----------  
B\S____>B'\S 

/

Przemianowanie czasowe

B------ >B' 
/

(Rl-t-ch) 

(R2-t-ch) 

(R3-t-ch) 

(R3-t-ch)

(R-t-par) 

(R-cres) 

(R-t-ren)

Instancja procesu czasowa

B----- >B'
------— dla uP.B
P----- >BI

B----- >B'
------ '■ .....- dla u P.B
B----->Pt

(Rl-t-ins)

(R2-t-ins)

Wprowadźmy oznaczenie: niech
By —at—Bo, 

gdzie ate TAct, oznacza

oraz
B, —‘3—^ B2, gdy ateAct,

By ——> B2, gdy at£ Act.
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Ciąg tranzycji (obliczenie) generowany przez czasowy system przejść TS(TSpec) ma 
postać

Bq Clt \—} B\ B2 •••  Fn (3.10a)
lub

B^—at।—B\ —rzC—^2 ••• ~—atu—Fn—(3.I0b) 
gdzie:

Bojest początkowym wyrażeniem specyfikacji TSpec,
B„ w przypadku obliczenia skończonego (a) jest wyrażeniem końcowym, to zna­
czy takim, dla którego nie istnieją przejścia do innych wyrażeń.

Z zastosowaniem poprzednio wprowadzonych oznaczeń określa się następujące zbiory 
ciągów:

Definicja 3.1
Specyfikacja czasowa TSpec = <Bn, TDecl> generuje zbiór ciągów akcji

TSeq(B^ = TSeqFin(B0) u TSeqlnf(B^ (3.11)

gdzie:
TSeqFin(B^ = {st&(Ad u Time) | Bo—st—>} (3.12)

TSeqInf(B^ = {ste (Ad u Time)°° I pref(st) • Bo —Jt'—>} (3.13)

3.4. RTCCS - wprowadzenie

Język RTCCS jest oryginalnym rozszerzeniem czasowym języka CCS [Huzar 1996]. 
Rozszerzenie opiera się na dwóch głównych założeniach:

• wszystkie akcje (w tym akcje wewnętrzne) są akcjami czasowymi, ich realizacja 
może wymagać niepustego okresu czasu,

• zachodzenie akcji obserwowalnych jest wynikiem synchronizacji komunikują­
cych się procesów, co oznacza, że rozpoczęcie realizacji pary komplementarnych 
akcji czasowych jest wyznaczone momentem ich synchronizacji, a zainicjowana 
komunikacja pary procesów jest nieprzerywalna.

Przyjmuje się model relatywnego, gęstego czasu globalnego. Dziedzina czasowa Time 
jest reprezentowana przez liczby wymierne.

Przedstawiane tu rozszerzenie ogranicza się do synchronicznej komunikacji dwóch 
procesów. W pracy [Huzar 1996] rozpatruje się model ogólniejszy, dopuszczający 
synchroniczną komunikację więcej niż dwóch procesów. Do takiego modelu współ­
pracy procesów wrócimy w następnych rozdziałach.

Niech A będzie zbiorem obserwowalnych akcji komunikacyjnych oraz niech i będzie 
nieobserwowalną akcją wewnętrzną. Niech Ad - A u {i}. Każdej akcji aeAd 
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przypisuje się pewien zbiór zl(a) dopuszczalnych czasów wykonywania. Zakłada 
się, że ueA(a) jest wartością dodatnią. Założenie to wyklucza sytuacje, że w pewnej 
chwili, gdy akcje mają zerowy czas wykonywania, może być wykonywana nieskoń­
czona liczba akcji.

Zbiór Del = {A(a) | aeAct}, gdzie Ala) ę Time\{0}, nazwiemy zbiorem własności 
dynamicznych akcji.

Zbiór zdarzeń czasowych jest określony jako TimeEv = Time X Act.

Realizacja akcji czasowej a będzie reprezentowana dwoma zdarzeniami czasowymi: 
zdarzenie czasowe reprezentujące początek akcji a jest parą<z;„ a>, natomiast zdarzenie 
reprezentujące zakończenie akcji - parą<tA., i>, gdzie tk, tpe Time oraz (tk - tp)e A(a).

W przypadku szczególnym realizację akcji wewnętrznej i reprezentują dwa zdarzenia 
czasowe: <tp, i> oraz <tk, i>.

Para komunikujących się akcji wykonuje się wspólnie przez dowolny odcinek czasu, 
dlatego uściślamy pojęcie czasowych akcji komplementarnych. Akcje a, PeAct są ak­
cjami komplementarnymi, gdy a = P, w takim samym znaczeniu jak w języku CCS, 
to znaczy jedna z nich jest akcją wejściową, a druga akcją wyjściową na tej samej 
bramce, oraz dodatkowo, gdy A(a)rsA(P) * 0, co oznacza, że obie akcje dopusz­
czają ten sam czas realizacji. Należy zwrócić uwagę, że czas realizacji komplementar­
nych akcji może być wyznaczony niejednoznacznie - w takim przypadku mamy do 
czynienia z niedeterminizmem wyboru czasu wykonywania.

W dalszej części, gdy będziemy mówić o realizacji komplementarnych akcjach czaso­
wych a oraz a , będziemy zawsze zakładać, że wspólny okres ich realizacji mg Time 
spełnia warunek mg 4(a) n zl(«).

3.5. RTCCS - definicja formalna

Składnia
Przez Proc oznaczymy zbiór nazw procesów.

Zbiór wyrażeń behawioralnych RTBeh, w notacji BNF, jest określony następująco:

B;:=0\P\B\S\B[f] \ (B) \ oc, B \ S(u) , B \ B \U\ B \ B + B (3.14)

gdzie: Be RTBeh, Pe Proc, S, U Q A, aeAct oraz f-.G-^r G jest funkcją przemianowa­
nia bramek akcji. Kolejność wprowadzenia operatorów odpowiada malejącej kolej­
ności ich priorytetów.

Zbiór list definicji procesów RTDef jest określony następująco:

RTD ■. = iuP.B\RTD, juP.B (3.15)
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Składnia wprowadza dwie konstrukcje, które są inne od konstrukcji języka CCS. Są 
to: wyrażenie opóźnienia J(u); B oraz zmodyfikowana forma złożenia równoległego 
B |(7| B. Ich znaczenie jest następujące:

Wyrażenie opóźniające ó(u\, B w danym momencie t nie oferuje swemu otoczeniu 
żadnej akcji komunikacyjnej, natomiast po upływie odcinka czasu długości u oferuje 
akcje komunikacyjne reprezentowane przez wyrażenie B.

Wyrażenie złożenia równoległego Bt |(/| B2, gdzie |I/| jest operatorem złożenia rów­
noległego parametryzowanego podzbiorem akcji U, zachowuje się tak, jak zachowu­
ją się jednocześnie wyrażenia Bt oraz B2. Dodatkowo wyrażenia te mogą się wza­
jemnie komunikować przez swoje akcje komplementarne tylko na bramkach ze 
zbioru gate(Uj.

Pojęcia dozorowanego i regularnie zbudowanego wyrażenia są rozumiane tak samo 
jak dla CCS.

Specyfikacja zachowania w języku RTCCS jest zdefiniowana jako para

RTSpec = <B0, RTDefP> (3.16)
gdzie:

B^RTBeh jest początkowym wyrażeniem behawioralnym,
RTDef^RTDef jest skończoną listą definicji pewnych procesów czasu rzeczywi­
stego Ph ..., P„.

Definicja procesu o nazwie Pi (i = 1, ..., n) ma postać /uP,.B„ gdzie wyrażenie beha­
wioralne B^RTBeh jest treścią procesu. Każdy proces, którego instancja występuje 
w wyrażeniach behawioralnych Bo, B„ ma swoją definicję w zbiorze RTDef. Instan­
cje procesów o tej samej nazwie mająjedną wspólną definicję.

Semantyka
Semantyka operacyjna specyfikacji czasu rzeczywistego RTSpec = <B(}, RTDefP> jest 
definiowana na podstawie czasowego etykietowanego systemu przejść postaci

TS(RTSpec) = <Conf, TimeEv, RTTr, Co> (3.17)
gdzie:

Conf= RTBeh x Time jest zbiorem konfiguracji czasowych; para <B, t>e Conf re­
prezentuje specyfikowany system, poczynając od chwili t - wyrażenie behawio­
ralne B określa zachowanie tego systemu od chwili t, 
Act jest zbiorem zdarzeń czasowych,
RTTr ę Con/*. TimeEv X Conf jest relacją przejścia pomiędzy czasowymi wyra­
żeniami behawioralnymi (relację zmian konfiguracji),
Co jest konfiguracją początkową, czyli parą<B0. to> (Po jest początkowym wyra­
żeniem behawioralnym, t0 - chwilą początkową).
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Trójka «Bt, t\>, <t2, a>, < B2, t2 » 6 RTTr, nazywana przejściem, będzie zapisywa­
na w postaci

><B2,t2>

albo, nieco krócej, w postaci

< Bf.t^ ——> < B2,t2>,

gdzie Ag TimeEv.

Przejście oznacza, że system ze swoją konfiguracją <rh B\>, odnoszącą się do chwili 
ti, na skutek zajścia zdarzenia czasowego <t2, a>w chwili t2, gdzie r, < t2. zmienia swą 
konfigurację na <t2, B2>.

Relacja przejścia pomiędzy czasowymi wyrażeniami behawioralnymi jest definiowana 
rekursywnie przez podany niżej zbiór aksjomatów i reguł. Reguły te są budowane 
według następujących założeń:

• komunikacja odbywa się dokładnie pomiędzy dwoma procesami,
• synchronizacja pomiędzy komunikującymi się procesami następuje w najwcześ­

niejszym możliwie momencie (as soon as possible principle),
• dwa zsynchronizowane komunikujące się procesy pozostają powiązane ze sobą 

przez wspólnie ustalony odcinek czasu.

W konstrukcji reguł będą wykorzystane pewne funkcje pomocnicze zdefiniowane 
rekursywnie w tabeli 3.1.
Tabela 3.1

B F(B) C(B)
0 0 0
P F(B) dla pP.B C(B) dla pP.B

B\S F(B)\S u h(F(B) n 5) C(B)\S a h(C(B) n S)
B\f] F(B)[f] C(W]
(B) F(B) C(B)

a-, B {a) 0
3(u)\B {i}*’ {i}*’
B, |[/| B2 F(Bl)uF(B2) C(B^\U o C(B2)\U ci F(Bi) o F(B2) n U
b} + b2 F(Bi) a F(B2) C(B}) u C(B2)

1 Natychmiastowa akcja wewnętrzną i wynika z przyjętego sposobu reprezentacji realizacji 
akcji 8(u) przez zdarzenia czasowe <tp, i> oraz <tk, i>.

Pierwsza funkcja F: RTBeh —> Act służy do wyznaczania, dla danego wyrażenia beha­
wioralnego B, zbioru tych akcji, które są oferowane przez wyrażenie do wykonania 
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h(U) =

w pierwszej kolejności. To, która spośród tych instancji akcji zostanie wybrana do wy­
konania, zależy od decyzji otoczenia wyrażenia B. Także czas zainicjowania wybranej 
akcji zależy od otoczenia, przy czym - w razie zbyt długiego odraczania inicjacji akcji 
- może wcześniej nastąpić akcja wewnętrzna.

Druga funkcja C: RTBeh —> Act wyznacza podzbiór tych akcji, które mogą być wyko­
nywane jako pierwsze, niezależnie od gotowości otoczenia wyrażenia B.

Występująca w tabeli pomocnicza funkcja h jest zdefiniowana następująco:

0 dla U = 0
{i} dlat/^0

Należy zwrócić uwagę na to, że dowolna akcja a^Act w wyrażeniu behawioralnym B 
może mieć wiele wystąpień (instancji). Jeżeli oe F(B) lub ctE C(B), to może to ozna­
czać wiele wystąpień tej akcji, które spełniają warunki określone przez definicje funk­
cji Foraz C. Na przykład wyrażenie B postaci

a; P; Pi + a; a; P2

ma trzy wystąpienia akcji a, z czego dwa wystąpienia - pierwsze wystąpienia a po 
lewej i po prawej stronie wyrażenia B - należą do zbioru F(B) ={ a}.

Następne dwie funkcje, zdefiniowane w tabeli 3.2, są związane z wyznaczaniem 
upływu czasu.

Tabela 3.2

B Age^B, u) Ev(B)

0 0 oo

a; B a; B °° dla ctEA

3(u'};B 3(u' -u); B gdy u"> u u' gdy u'> 0

P Age(B, u) dla ^P.B Ev(B) dla juP.B

B\S Age(B, u)\S J 0 gdy C(B)riS *0
|£v(B) gdy C(B)nS = 0

Age(B, w)[/]
Ev(B)

W
Age(B, u)

Ev{B)

Bi |Ć7| B2 J 0 gdy C(B)nt//0
Age(Bt, u) [Ó7| Age(B2, u) [min (Ev(Bl), Ev(B2)) gdy C^B) n U = 0

B । + Bi
Age(Bi, u) + Age(B2, u) min(Ev(Bt), Ev(B2\)
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Pierwsza z nich Age : RTBeh X Time —> RTBeh określa transformację wyrażenia beha­
wioralnego na skutek samego upływu czasu przy braku zajścia zdarzeń czasowych.

Druga funkcja Ev : RTBeh —> Time wyznacza dla danego wyrażenia behawioralnego 
najwcześniejszy moment czasu względem bieżącej chwili, w którym może nastąpić 
zmiana konfiguracji niezależna od otoczenia wyrażenia. Zmiana ta jest wynikiem zaj­
ścia zdarzenia czasowego niezależnego od otoczenia wyrażenia.

Mając wyżej zdefiniowane funkcje, można zdefiniować rekursywnie relację zmian 
konfiguracji.

Proces pusty - brak aksjomatów.

Instancja procesu

< /uP.B,t>—^<B',t'>
<P,t>—^<B',t’>

(R-ins)

Rekursja

< B[P juP.B],t >B'
<juP.B,t>-^B'

(R-rec)

gdzie notacja postaci B[P ::= B'] oznacza modyfikację wyrażenia B, polegającą na tek­
stowym zastąpieniu każdego wolnego wystąpienia nazwy procesu P (zob. tab. 2.1) 
w wyrażeniu B wyrażeniem B'.

Restrykcja

<B,t> ><B,t'> f x _
------------------------------------ ------ gate(a) £ S
<B\S,t> .. ><B'\S,t'>

(Rt-res)

<B,t> ><B',t'> t x
--------------------- -------------------- gate(a)eSaseCIB)
<B\S,t> ><B'\S,t>

(Ri-res)

Przemianowanie

<B,t> <,a^<Bjt'> A - [fW dlaa^g!
-------------------- r-—--------------------- gdzie
<B[f],t> ><B'[f],t'> [/(g^ dlaa^g?

(R-ren)

Prefiksowanie akcją

<a;B,t> ><8{uy,B,t'> dlar<f (A\-pre)

Opóźnienie

<8{u),B,t> > < B,t + u > (Ai-pre)
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Złożenie równoległe

<Bl\\B2,t> > < B{ | [U] | Age(B2,t'-t),t' >
dla a i U ^t' < Ev(B-,) (Rrpar)

__________ <B2,t>~--—><B2,t'>__________
< B} \\ B2,t> > <Age{B[,t'-t)\[U]\B2,t'>

dla ał U a t' < Ev(Bx) (R2-par)

<B[,t>-^^<B',t'>

<B2,t> ><B2,t'>

< B} || B2,t> > < X I [^] I >
dla ae U (Rypar)

Reguła Rypar odnosi się do synchronizacji akcji czasowych. Wiąże się z nią założenie 
o komplementarności synchronizujących się akcji czasowych. Synchronizacja nastę­
puje w pierwszym możliwym momencie. Reguła nie określa natomiast ani sposobu 
wyboru wspólnego czasu realizacji akcji a i a, ani nie określa jawnie wybranego 
czasu. Konsekwencją wyboru wspólnej wartości czasu jest następująca własność wy­
rażeń B\ i B2 :

Własność
Niech 8(ii\); B" oraz B” będąpodwyrażeniami wyrażeń B{ oraz B2, taki­
mi że:

B\ = B' [a; B" := Bf]

B2 = B2 [a- B2 := 8(u2Y B2]

wówczas H| = u2.

Do reguły Rypar można dołączyć dowolny mechanizm takiego wyboru - determini­
stycznego lub probabilistycznego.

Wybór

------- dla ?'<£V(5J (.RyCli)
<B{+B2,t> <,a> ><B[,t'> 

n <t‘.q> n’
2’------------7---------22-------- dla t'<Ev(BA {R2-ch)

<B. + B2,t>-^L^<B'2,t'>

Podane aksjomaty i reguły generują ciągi przejść czasowych, które wyznaczają se­
mantykę specyfikacji.



Rozszerzenie czasowe CCS 59

Ciąg tranzycji (obliczenie) generowany przez czasowy system przejść TS(RTSpec) ma 
postać

< Btt,ta> < B^> > < B^t,> - > < B„,tn> (3.18a)
lub

<B0,t„> ——< B^t,> ...^^^ < B^t,^... (3.18b)

gdzie:
t\<h< ... t„< ...

Bojest początkowym wyrażeniem behawioralnym,
<B(}, Zo> jest konfiguracją początkową specyfikacji RTSpec,
< B,„ t„> w przypadku obliczenia skończonego (a) jest konfiguracją końcową to 
znaczy taką z której nie ma przejścia do innych konfiguracji.

Definicja 3.1.
Specyfikacja czasowa RTSpec - <B0, RTDecl> generuje zbiór ciągów akcji

RTSeq(B{}) = RTSeqFin(B0) u RTSeqInf(Bn), (3.19)
gdzie:

RTSeqFin(B0) = {cG Conf | <B0, tQ>—c^} (3.20)

RTSeqlnf(Ba) = {cg Conf°° I Vc'Gpref(c) • <B0, r0> —c '->} (3.21)P

Zdefiniowana semantyka jest semantyką przeplotową czasu rzeczywistego. Przeplot 
odnosi się do zdarzeń występujących w tej samej chwili.

Bezpośrednio z reguł definiujących relację przejścia wynika, że kolejne przejścia są 
uporządkowane czasowo. Na ogół moment przejścia z danej konfiguracji do następnej 
zależy od otoczenia wyrażenia. Jeżeli specyfikacja jest komunikacyjnie zamknięta, to 
zachodzi lemat:

Lemat 3.1
Jeżeli specyfikacja reprezentowana wyrażeniem behawioralnym B jest komunika­
cyjnie zamknięta oraz istnieje przejście

<B,t>—^<B',t'>, (3.22)

to czas t’ jest wyznaczony jednoznacznie.

Dowód jest przedstawiony w pracy [Huzar 1996].

Niech Del\ oraz DeF będą dwoma zbiorami własności dynamicznych akcji komuni­
kacyjnych. Będziemy mówić, że Del\ jest podzbiorem DeF, co oznaczamy Del\ ę 
^DeF, gdy dla każdego aeAct zachodzi żl|(o) ę Zachodzi oczywista wła­
sność
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Lemat 3.2
Dla dowolnego wyrażenia behawioralnego B jeżeli Del\ ę Del^ to RTSeq(B) ę 
ę RTSeq(B).

3.6. RTCCS - przykłady
Rozpatrzymy teraz serię prostych przykładów ilustrujących stosowanie reguł semanty­
cznych.

Przykład 1
Niech \ P, t0> będzie konfiguracją początkową, mamy wówczas następujący 
ciąg tranzycji czasowych

<^P.a,P,t0 > ></jP.6(uYP,tl > ><^P.P,ti + u>

po którym następuje powtórzenie tego ciągu z przesunięciem czasowym. Oczy­
wiście to < t\ < t| + u oraz «6Zl(a).

Przykład 2
Dla konfiguracji początkowej

<a; B\ + S(u); B?, r0>

możliwe są dwa ciągi tranzycji

<a;B{ + 3(u),B2,tQ > —> < J(w,)',Bi,t] > ——> < B},y +u} >

gdzie /| < u, oraz

<a,Bx + 3(u);B2,t() >—B2,t{) + u>

Analizowane wyrażenie behawioralne

a; Bt + 3(u); Bi

ma interesującą własność, reprezentuje ono mianowicie mechanizm przetermino­
wania. Składowa 3(u\, B2 wyznacza okres przeterminowania o długości u. Jeżeli 
w odcinku czasu u od momentu osiągnięcia konfiguracji <a \ B{ + 3(u); B2, t0> nie 
zostanie zainicjowane wykonanie akcji a, to w chwili r0 + u nastąpi przejście do 
konfiguracji <B2, tQ + u>, a tym samym zostanie wykluczona możliwość wykona­
nia wyrażenia a, Bt.

Przykład 3
Rozpatrzymy teraz konfigurację zawierającą wyrażenie behawioralne ze złoże­
niem równoległym

<a,Bx + 3(u2);B2 |[{a}]|rz;B3 +b,B4, t0 >
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Dla pierwszej składowej złożenia równoległego, zgodnie z przykładem 2., są mo­
żliwe dwa przejścia. Podobnie dwa przejścia są możliwe dla drugiej składowej. 
Dla całego natomiast wyrażenia złożenia równoległego jest możliwe tylko jedno 
przejście

<a;B} + 3(u2y,B21 [{a}] | a;B3 +b',B4,t0 > —><<?(«);B1|[{a}]| 8(u);B3,t0 >

Wynika to z faktu, że para akcji a raz a synchronizuje się w chwili r(), podczas gdy 
pozostałe akcje mogą zajść dopiero później.

Kolejne przejścia są postaci:

<8(u);Bl\[{a}]\8(uy,B3,tn> >

<B} |[{a}]|5(M);ą,t0+M> 

< B} |[{a}]|B3,t0 + w>

Specyfiką tych przejść jest dwukrotne wystąpienie akcji wewnętrznej <t0 + u, i>, 
oddzielnie w każdej z równoległych składowych wyrażenia behawioralnego. Wy­
nika to z przyjętych zasad reprezentacji czasowych akcji komunikacyjnych. Ze 
względu na przeplotowy charakter semantyki kolejność wystąpienia tych akcji jest 
oczywiście dowolna.

Przykład 4
Rozpatrzymy teraz trzy przypadki konfiguracji z wyrażeniem przesłaniania. Pier­
wsza konfiguracja ma postać

<(g; B1|[{g}]| a; B2 + b', By>\{a}, t>

Na podstawie reguł dla restrykcji możemy wyprowadzić dwa przejścia:

<(a\B{\[{a}]\a-B2+b\B3)\{a}j^ | [{a}] 18(uy,B2)\{a],t >

dla u& A(ay oraz

< (a\Bx | [{a}] | a\B2 + b;B3)\ {«),? > —-’h> > < (a;Bi | [{«}] |8(uy,B3)\ {a},t >

dla we A{b).

Druga konfiguracja ma postać

<(a\ Bjf{zz}]| g; B2+ b; B8\{b], t>

Różni się ona od pierwszej konfiguracji tylko przesłanianą akcją. Dla konfiguracji 
tej jest możliwe tylko jedno przejście
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Nie jest natomiast możliwe przejście związane z wykonaniem akcji b. Przejście to 
nie jest możliwe, gdyż - zgodnie z przyjętą zasadą komunikacji - w jej realizacji 
muszą uczestniczyć dwaj partnerzy. Proces a\ B||[{a}]| a; B^ + b\ B^ jest gotowy 
do wykonania akcji a oraz b, przy czym możliwość wykonania akcji a nie zależy 
od otoczenia tego procesu. Proces (tz; Bi|[{ćz}]| a\ B^ + b\ B3)\[b] nie może nato­
miast wykonać akcji b, gdyż - z powodu restrykcji - nie ma możliwości komuni­
kacji ze swym otoczeniem na bramce b.

Wreszcie trzecia konfiguracja ma postać

<(rz; B)\{a}, t>

Z poprzedniego wyjaśnienia wynika, że nie ma dla niej żadnej możliwości przej­
ścia do innej konfiguracji, co oznacza, że konfiguracja wyraża sytuację blokady 
(zakleszczenia).

Przykład 5
Przykład dotyczy systemu komunikujących się zdalnie agentów reprezentowanego 
diagramem na rysunku 3.1.

Rys. 3.1. Struktura przykładowego systemu

Agent Producent wysyła wiadomości do agenta Konsument za pośrednictwem 
agenta System komunikacyjny. Po wysłaniu wiadomości Producent oczekuje na 
potwierdzenie jej odbioru przez Konsumenta, a po otrzymaniu tego potwierdze­
nia wysyła kolejną wiadomość. System komunikacyjny nie jest jednak nieza­
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wodny, gdyż linie komunikacyjne, które wchodzą w jego skład, mogą przeka­
zywane od nadawcy wiadomości przesyłać do odbiorcy bez zniekształceń albo 
je gubić.

System komunikacyjny składa się z Nadawcy i Odbiorcy, połączonych dwiema li­
niami - Wiadomość' oraz Wiadomości - do przesyłania wiadomości i jedną linią 
- Potwierdzenie - do przekazywania potwierdzeń.

Wspólnym modelem każdej z linii jest proces postaci

Linia f.iLinia.s\ (r; Linia + Linia)

gdzie uL > 0 jest stałą charakteryzującą linię. Konkretne linie są zdefiniowane na­
stępująco jako wywołania procesów Linia'.

Potwierdzenie =del Linia

Wiadomość' =M Linia[S'/s, r^r],

Wiadomości Linia[s2/s, r2/r],

Nadawca odbiera wiadomość od Producenta i przesyła ją najpierw linią Wiado­
mość', a następnie oczekuje na potwierdzenie odbioru wiadomości przez Odbiorcę 
na linii Potwierdzenie. Jeśli potwierdzenie otrzyma, powtarza działanie, pobierając 
od Producenta kolejną wiadomość. Jeżeli natomiast nie otrzyma potwierdzenia 
w określonym czasie, to ponownie przesyła tę samą wiadomość linią Wiadomości 
i znów oczekuje na potwierdzenie jej odbioru na linii Potwierdzenie. Jeśli potwier­
dzenie takie otrzyma, rozpoczyna ponownie cykl pracy, pobierając od Producenta 
kolejną wiadomość, a w przypadku przeciwnym powtarza wielokrotnie wysłanie 
tej samej wiadomości linią Wiadomości, aż do otrzymania potwierdzenia jej od­
bioru linią Potwierdzenie.

Proces Nadawca jest zdefiniowany jako

Nadawca /jN.we; ó'i; (r; N + ó(uN)', N')

gdzie

A" =m jUN'.si, (r;N + S(uN); N'),

Odbiorca oczekuje na wiadomość z linii Wiadomość'. Po jej otrzymaniu wysyła 
potwierdzenie jej odbioru linią Potwierdzenie, a odebraną wiadomość przekazuje 
do Konsumenta. Następnie oczekuje nadejścia wiadomości na linii Wiadomość' 
lub Wiadomości. Otrzymanie wiadomości na linii Wiadomość' oznacza, że Na­
dawca po otrzymaniu potwierdzenia poprzednio wysłanej wiadomości przesyła 
kolejną, nową wiadomość. Otrzymanie natomiast wiadomości na linii Wiadomości 
oznacza, że Nadawca powtarza wysyłanie wiadomości, gdyż nie otrzymał po­
twierdzenia jej odbioru. W tym przypadku Odbiorca ponownie przesyła potwier­
dzenie odbioru wiadomości, ale nie przesyła jej już do Konsumenta.
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Proces Odbiorca jest zdefiniowany następująco:

Odbiorca p.0. r], s\ wy, O'
gdzie

O' =det ptO' .(O + r2, s', O')

System komunikacyjny jest równoległym złożeniem procesów: Nadawca, Odbior­
ca, Wiadomość], Wiadomość^ i Potwierdzenie.

System komunikacyjny =def
(Nadawca

|[{*i, s2, r}]|
(Wiadomość] |[0]| Wiadomość] |[0]| Potwierdzenie)

|[{n, r2, s}]|
Odbiorca)\{r, r}, r2, s, sb ą}-

I wreszcie, cały system jest zdefiniowany jako wyrażenie behawioralne, stanowią­
ce złożenie równoległe procesów Producent, Konsument i System komunikacyjny.

System =def
(Producent |[{we}]| System komunikacyjny |[{ wy}]| Konsument)\{we, wy}

3.7. Uwagi końcowe
W tym rozdziale przedstawiono dwa czasowe rozszerzenia języka CCS. Pierwsze 
z nich - język TCCS - jest rozszerzeniem polegającym na wprowadzeniu akcji na­
tychmiastowych i opóźniających, drugie - język RTCCS - na wprowadzeniu wyłącz­
nie akcji czasowych wraz z niedeterministycznym mechanizmem wyznaczania czasu 
realizacji akcji komplementarnych.

Skupiono się na semantyce języków. Wprowadzenie czasu do języka znacznie kompli­
kuje definicję jego semantyki - nie daje się stosować bez ograniczeń semantyki prze­
plotowej. Złożoność definicji wynika z konieczności uwzględnienia upływu czasu 
i lokowania w czasie zachodzących zdarzeń.

Ograniczono się do przedstawienia przykładów zastosowania tylko języka RTCCS, gdyż 
przykłady ilustrujące język TCCS, a także innych, skojarzonych z nim języków, można 
znaleźć w literaturze, na przykład: [Molier, Tofts 1989], [Tofts 1989], [Fencott 1996],

Warto przypomnieć, że równolegle do prac nad językiem CCS i jego czasowymi roz­
szerzeniami, były prowadzone prace nad czasowymi rozszerzeniami języka CSP [Ho- 
are 1985], [Roscoe 1998], na przykład: [Reed, Roscoe 1986], [Wang 1991], [Reed, 
Roscoe 1999], oraz dla języka ACP [Baeten, Bergstra, Smolka 1995], na przykład: 
[Groote 1990], [Baeten, Bergstra 1991], [Schneider 2004],

Przykład czasowego rozszerzenia języka CSP, nazywanego RTCSP, wraz z systemem 
specyfikowania i dowodzenia poprawności, przedstawiono w monografii [Huzar 1989].
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4. Abstrakcyjne typy danych w LOTOSie

4.1. Podstawowe pojęcia algebraiczne

Elementarny typ danych w znaczeniu wąskim jest utożsamiany z pewnym zbiorem 
wartości. Elementarny typ danych w znaczeniu szerokim, które jest tu używane, jest 
zbiorem wartości wraz ze zbiorem operacji na tych wartościach. Matematycznym 
modelem elementarnych typów są jednorodzajowe algebry abstrakcyjne. Mając do 
dyspozycji pewien repertuar typów elementarnych, można tworzyć nowe, złożone 
typy - ich modelem matematycznym są wielorodzajowe algebry abstrakcyjne.

LOTOS wykorzystuje algebraiczne podejście do definiowania abstrakcyjnych typów 
danych. Z tego względu poniżej przypomina się podstawowe pojęcia algebraiczne. 
Przegląd tych pojęć oparto na książce [Ehrig, Mahr 1985], Informacje z tego zakresu 
można znaleźć także w innych pozycjach, na przykład [Tiuryn 2003].

Definiowanie algebry abstrakcyjnej rozpoczyna się od opisu jej struktury, wyrażonej 
przez sygnaturę.

Sygnaturą algebry nazywa się parę

Sig =def <S, OP> (4.1)
gdzie:

Sjest niepustym zbiorem rodzajów, czyli identyfikatorów (nazw) nośników algebry, 
OP jest zbiorem deklaracji operacji.

Deklaracja operacji będzie zapisywana w postaci

op : s1 s2 ... s„ —> s (4.2)
gdzie:

op jest identyfikatorem (nazwą) operacji,
5i s2 ... sn jest listą, której elementy s2, ..., s„eS są identyfikatorami (nazwami) 
rodzajów argumentów,
se Sjest identyfikatorem (nazwą) rodzaju wartości operacji.

Deklaracja operacji o nazwie op wskazuje na nazwy zbiorów jej argumentów i nazwę 
zbioru jej wartości. Jeżeli op jest operacją zeroargumentową, czyli stałą, to jej dekla­
racja ma postać

op . s (4.3)

Zakłada się, że każda deklaracja operacji ma różną nazwę operacji, dlatego dalej, za­
miast pisać (op : S| s2... s„ —> s)e OP, będzie się pisać krótko ope OP.

Może być wiele algebr mających tę samą sygnaturę. Konkretna algebra nad daną syg­
naturą może być uważana za interpretację sygnatury.
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Algebrą nad sygnaturą Sig, krótko Sig-algebrą, nazywa się parę

ALG =def<A, F> (4.4)
gdzie:

A =dei {A, | 56 5} jest rodziną zbiorów zwanych nośnikami lub dziedzinami algebry, 
F =dcf {f«p | opeOP} jest rodziną funkcji zwanych operacjami algebry, przy czym 
każdej deklaracji operacji opeOP

op : 5| s?... s„ —> 5 (4.5)
odpowiada funkcja

f^-.A^.^A^^A, (4.6)

Czasem jest wygodnie wyróżnić stałe (operacje zeroargumentowe) od pozostałych 
operacji, wówczas algebrę zapisuje się w postaci

ALG=def <{A..... ,Ak}, {cb ..., c„,} u {/h ...,/,}> (4.7)
gdzie:

{Ab..., A*}, dla keNat\{0}, jest rodziną nośników algebry,
{cb ..., c,„}, dla meNat, jest zbiorem operacji zeroargumentowych,
{/u • ••,/>}>, dla «6Ato\{0}, jest zbiorem pozostałych operacji.

Dwie algebry o tej samej sygnaturze Sig nazywa się algebrami podobnymi. Zbiór 
wszystkich algebr podobnych nazywamy klasą Szg-algebr.

Jeżeli rodzina A zawiera tylko jeden nośnik, to mówimy o algebrze jednorodzajowej, 
a w przeciwnym razie o algebrze wielorodzajowej.

Rodzina podzbiorów {Av° | 565} takich, że A,0 ę A, dla seS, wyznacza podalgebrę 
ALCf, gdy zbiory te są zamknięte ze względu na wszystkie operacje algebry ALG.

Jeżeli rodziny {A,() | 56 5} oraz {A,1 | 56 0} wyznaczają dwie podalgebry ALG? oraz ALG' 
algebry ALG, to rodzina ich iloczynów {A/n A,1 | 56 5} wyznacza również podalgebrę 
algebry ALG. Ogólniej - iloczyn dowolnego zbioru podalgebr danej algebry jest także 
podalgebrątej algebry.

Dla dowolnie przyjętej rodziny zbiorów {A,° | 56 5} istnieje najmniejsza podalgebra za­
wierająca tę rodzinę.

Homomorfizmeni algebry ALGa = <{A, | 56 5}, {f„p | opeOP}> w algebrę podobną 
ALGb = <{B, 156 5}, {grv | ope OP}> nazywamy zbiór takich odwzorowań

H = det{h,:A^B, 15 65} (4.8)

że dla każdego działania fup -.A x...xAs -» Avdla op&OP i dowolnych argumentów 

a. 6 A, ,..., a„ 6 A, zachodzi i 5| ' n \n

hAf„p fal — an )) = S„P fal)« -. hs„ (an )) (4.9)
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Homomorfizm algebr zapisuje się w postaci

H : ALGa -> ALG u (4.10)

Algebrę ALG nazywa się algebrą wolną w klasie Szg-algebr, jeśli istnieje dla niej taka 
rodzina zbiorów generatorów {A,° | seS} o takiej własności, że każda rodzina odwzo­
rowań {/ : A° —> Bs | sgS}, gdzie {Bs | seS} jest rodziną nośników dowolnej Sig- 
-algebry, daje się rozszerzyć do homomorfizmu {hx : Ax —> Bx | seS}. Zbiór {A.t° | seS} 
nazywa się zbiorem generatorów wolnych.

4.2. Algebra termów

Z każdą algebrą jest związany pewien zbiór napisów, które powstająze złożenia sym­
boli stałych, zmiennych i operacji algebry. Zbiór ten nazywa się zbiorem termów i jest 
definiowany następująco:

Niech V, będzie zbiorem zmiennych rodzaju A, dla seS, co będzie zapisywane w po­
staci v: Av.

Dalej, zamiast pisać rodzaj A„ będzie się pisać krótko rodzaj.?.

Zbiorem wszystkich zmiennych jest
V=UK (4-11)

Działania zeroargumentowe, czyli stałe, także mają swój rodzaj. Stała c : —> A., jest 
rodzaju s, czyli jest elementem zbioru A, dla se S.

Zbiór termów rodzaju s, dla seS, dla algebry wielorodzajowej ALG nad zbiorem 
zmiennych V, oznaczany Termx(V), jest zdefiniowany rekursywnie w sposób następu­
jący:

• jeżeli c: —>A„ to c e Termx(V),
• V, Q Termx(V),
• jeżeli napisy ..., tk są termami rodzajów ..., sk oraz

/:AV| x...xA,. Av (4.12)

jest działaniem ^-argumentowym, to napis postaci/(Z|,..., t„) jest termem rodzaju s, 
czyli f(th ..., tn)eTemix(V).

Zbiór wszystkich termów dla algebry wielorodzajowej ALG nad zbiorem zmiennych 
V, oznaczany Term(V\ jest określony jako mnogościowa suma

Tenn(V) = |J Term v (V) (4.13)
vg5
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Zbiór termów nad pustym zbiorem zmiennych, czyli Term(0), nazywa się zbiorem 
termo w stałych.

Zauważmy, że zbiór termów jest wyznaczony jednoznacznie przez samą sygnaturę 
algebry, algebry podobne mają więc te same zbiory termów.

Zbiór termów Term(V) nad ustalonym zbiorem zmiennych V, generowany przez alge­
brę ALG = <A, F> o sygnaturze Sig = <S, OP>, może być podstawą do utworzenia 
nowej algebry wielorodzajowej, zwanej algebrą termów, która jest podobna do alge­
bry ALG.

Algebrę termów
ALGrerm =def < ATer mi ^Tenn^ (4.14)

dla algebry ALG definiuje się następująco:
ATerm = {Term,(V) | sgS} jest rodziną nośników algebry termów,
FTen„ = {| ope OP} jest zbiorem operacji algebry termów, przy czym operacja 
f,P ma sygnaturę

f)p : Term^ (V)x...xTerm, (V) —> Term,(V)

gdy deklaracja operacji ma postać: op : s, ... s„ —> s, (n > 0) i jest zdefiniowana 
następująco:

jeżeli tj e Term,. (V), dla j = 1, ..., n, to ..., t„) =der op(ti, ..., t„).

Każdemu nośnikowi Ą, i każdej operacji op w algebrze ALG odpowiadają nośnik 
TermV) i operacja f,p w algebrze termów ALGrem-

Algebra termów w klasie S;g-algebr wyróżnia się tym, że jest algebrą wolną.

4.3. Algebra ilorazowa termów
Termy mają interpretację, która - w zależności od wartościowania zmiennych - przy­
pisuje im wartość odpowiedniego rodzaju.

Wartościowanie zmiennych jest wyrażane przez funkcję v o sygnaturze

v:V^A (4.15)
gdzie:

V = V, oraz A = A s

przy czym zmiennej v : K można przyporządkowywać wartości tylko ze zbioru A,.

Niech WARv(f) oznacza wartość termu t przy wartościowaniu v. Funkcję WAR,., obli­
czającą wartości termów przy wartościowaniu v, można zdefiniować rekursywnie 
w sposób następujący:
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• jeżeli term jest postaci x, gdzie x jest zmienną, czyli V, to WARv(x) = v(x),
• jeżeli term jest postaci c, gdzie c jest stałą, to WARv(c) = c,
• jeżeli term jest postaci f(t\, ..., tk), gdzie/jest ^-argumentowym działaniem, 

a ti,..., tk są termami, to WARv(J(ti.. tk)) =f(WARv(ti), ..., WAR„(tk)).

Zauważmy, że wartość termu stałego t nie zależy od wartościowania v. Dla termu 
stałego i dowolnych dwóch wartościowań v oraz v ' zachodzi zatem

WARr(t) = WAR^t). (4.16)

Niech WAR(t) oznacza wartość termu stałego t. Na zbiorze termów stałych rodzaju s 
definiuje się relację binarną =„ określoną następująco:

jeżeli 6, Tennx(0), to t\ =x t2 wtedy i tylko wtedy, gdy WAR(tj) = WAR(t2).

Relacja =, jest oczywiście relacją równoważności i wyznacza podział zbioru termów 
stałych rodzaju .s na klasy abstrakcji. Do jednej klasy abstrakcji należą wszystkie termy 
tego samego rodzaju, które reprezentują tę samą wartość. Przez Termx(0)l=x będziemy 
oznaczać zbiór ilorazowy termów wyznaczony przez relację równoważności =v.

Relacja równoważności =v ma następującą własność:

jeżeli tx., t'. są termami rodzaju Sj oraz /. =v. dla j - 1, ..., n,

to f„p (tX[..... tx„) =. f„p (t'X]...... t'Sn) dla ope OP.

Rodzinę relacji równoważności {=, | seS} nazywa się kongruencją. Kongruencja jest 
podstawą do zdefiniowania algebry, nazywanej ilorazową algebrą termów stałych dla 
algebry ALGTe„n.

Definicja ilorazowej algebry termów, ALGrem jest następująca:

ALG Term Arenn yFTerm > (4.17)
gdzie:

ATerm= {Termv(0)/= v| seS} jest rodziną zbiorów ilorazowych termów rodzajów

Frerm= { f „p | opeOP} jest zbiorem operacji ilorazowej algebry termów, 

przy czym operacja f ma sygnaturę

f op :TermXi(0')/=X[ x...xTermSi(0')/=x^Term^0)/=  ̂ (4.18)

gdy deklaracja operacji ma postać: op : s2... s„ —> 5, i jest zdefiniowana następująco: 

jeżeli [tje Term,. (0)/ =x., dlaj = 1, ..., n, to f„p([?,], ..., [?„]) =def 1/^(6, ..., Ą,)];

[ {,] oznacza klasę abstrakcji w zbiorze ilorazowym Terms (0)/ =s.., generowaną 

przez term tj.
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Algebra fermów jest homomorficzna względem ilorazowej algebry termów, to znaczy 
istnieje homomorfizm H : ALGTem —* ALGrerm.

4.4. Specyfikacja równościowa typów abstrakcyjnych

Typy danych w LOTOSie specyfikuje się przez podanie sygnatury algebry oraz wła­
sności jej operacji. Semantyką takiej specyfikacji jest pewna konkretna algebra - ilo­
razowa algebra termów generowana przez specyfikację. W bieżącym podrozdziale 
przedstawiono nieformalnie składnię specyfikacji typów danych, a jej semantykę 
- w następnym podrozdziale.

Specyfiką definicji typów w LOTOSie jest równościowe definiowanie własności ope­
racji. Jest to podejście algebraiczne, inne od podejścia spotykanego w większości ję­
zyków specyfikacji, a zwłaszcza programowania polegającego na definiowaniu opera­
cji jako procedur.

W języku LOTOS podstawowa forma specyfikacji typu danych ma następującą stru­
kturę:

type Nazwa_typu is
sorts Lista_nazw-rodzajów
opns Lista_symboli_operacji
eqns Lista_równości

endtype

(4.19)

Nazwajtypu jest identyfikatorem. Listy są ciągami odpowiednich elementów oddzie­
lonych separatorami.

Listajtazw-rodzajów jest ciągiem identyfikatorów rodzajów oddzielanych przecin­
kami, a Lista_symboli_operacji - ciągiem symboli operacji oddzielanych wierszami. 
Obie te listy wyznaczają sygnaturę algebry.

Na przykład specyfikacja:

type NatLog is
sorts nat, log
opns z : : -> nat

suce :: nat -> nat
pred : nat -> nat
plus : nat, nat -> nat
minus : nat, nat -> nat

P ' -> log
neg : log -> log
impl log, log -> log
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r : nat, nat -> log
mr : nat, nat -> log

endtype
określa sygnaturę algebry dwurodzajowej o nazwie NatLog, z nośnikami o nazwach 
nat i log oraz z operacjami: dwiema zeroargumentowymi o nazwach z i p, trzema jed- 
noargumentowymi o nazwach suce, pred i neg oraz pięcioma dwuargumentowymi 
o nazwach plus, minus, itnpl, r i mr.

Sama sygnatura pozwala na wyznaczenie zbioru termów algebry. Dla typu NatLog, 
jeśli x, y są zmiennymi rodzaju nat, to termami rodzaju nat są na przykład

succ(x), z, plus(x,y), plus(succ(zj, succ(x)).

Dwie pierwsze listy definiują sygnaturę algebry, trzecia natomiast lista Lista_równości 
definiuje własności wprowadzonych operacji. Własności te definiuje się rekursywnie 
za pomocą zbioru równości. Wyróżnia się dwa rodzaje równości: równość zwykłą 
i warunkową.

Równość zwykła ma postać
t\ = h (4.20)

gdzie: r,, r2 są dowolnymi termami tego samego rodzaju, a symbol = oznacza równość 
semantyczną termów. Jeżeli termy są tego samego rodzaju s, to symbol równości = 
oznacza to samo, co poprzednio symbol =,. Równość zwykła jest takiego rodzaju jak 
jej termy składowe.

Równość warunkowa ma postać
ei,..„ e„=>e (4.21)

gdzie ..., e„, e są zwykłymi równościami. Równość warunkowa jest takiego samego 
rodzaju jak rodzaj równości e.

Przykładowa Lista_równości, stanowiąca uzupełnienie podanej wyżej sygnatury, ma 
postać

type NatLog is 
sorts nat, log
opns z : -> nat

suce : nat -> nat
pred : nat -> nat
plus : nat, nat -> nat
minus : nat, nat -> nat
P : > log
neg : log -> log
impl : log, log -> log
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r : nat, nat -> log 
mr : nat, nat -> log

eqns
forall x : nat, y : nat, a : log, b : log 
ofsort nat

plus(x, y) = plusly, x) ;
plus(succ(x), y) = succ(plus(x, y)) ;
pred^z) = z ;
pred(succ(x) = x ;
minus(x, z) = z ;
niinus(x, succ(y)) = pred(minus(x, y))

ofsort log
neg(neg(b) = b ;
impl(p, p)=p ;
impllp, neglp)) = neg(p) ;
impl(neg(p), a) = p ;
r(x, x) = p ;
mr(z, x)=p ;
mr(succ(x), succ(y)) = ntr(x, y) ;

endtype
Dwie listy równości są poprzedzone wierszem forall, wprowadzającym po dwie 
zmienne rodzaju nat i log, oraz przedzielone wierszami ofsort, określającymi rodzaje 
występujących równości. Ogranicznikiem końca równości jest tu średnik. W przykła­
dzie występują tylko zwykłe równości, następny przykład specyfikacji wykorzystuje 
także równości warunkowe

type NatX is
sorts nat
opns z : -> nat

suce : nat: -> nat
plus : nat nat -> nat

eqns
forall x : nat, y : nat, t: nat
ofsort nat

plus(x, z) = x ;
plus(x, y) = plusly, x) ;
plus(x, y) = t => plus(succ(x), y) = succ(f) ;

endtype
Równości definiują własności algebry, a dokładniej własności jej operacji.
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4.5. Semantyka specyfikacji typów
W abstrakcyjnym ujęciu specyfikacja typu jest widziana jako trójka

TSpec = der <S, OP, Eq> (4.22)

gdzie: <S, OP> jest sygnaturą, a Eq jest zbiorem równości.

Specyfikacja typu określa zatem sygnaturę i własności algebry, ale nie wyznacza jaw­
nie konkretnej algebry. Algebr o danej sygnaturze może być nieskończenie wiele, 
podobnie nieskończenie wiele może być algebr o wskazanych własnościach. Pośród 
wszystkich algebr o danej sygnaturze i danych własnościach wskazuje się na szcze­
gólny rodzaj algebr, zwanych algebrami początkowymi. Charakteryzując je niefor­
malnie, można stwierdzić, że są to te algebry, które mają wszystkie wskazane włas­
ności i tylko te własności, które są wyrażone odpowiednimi równościami - inaczej: są 
to algebry, które nie spełniają żadnych dodatkowych równości. Dwie różne algebry 
początkowe są izomorficzne. Standardowo spośród wszystkich algebr początkowych 
wybiera się ilorazową algebrę termów. Algebra ta jest generowana przez specyfikację 
typu danych. Przedstawione niżej rozważania pokazują sposób generacji ilorazowej 
algebry termów na podstawie analizy specyfikacji.

Zbiór równości Eq, składających się na specyfikację typu danych TSpec, wyznacza sy­
stem dowodowy

D-rspec = < GrEqTSpec, AxEqTs/m; InfEqrSim > (4.23)

gdzie: GrEqTSim: jest pewnym zbiorem równości stałych, AxEqTSpcc - zbiorem równości 
aksjomatów, lnfEqTSpec - zbiorem reguł wnioskowania. Definicje poszczególnych ele­
mentów są następujące:

Niech dane będą termy tt i t oraz zmienna x. Notacja ::= r] oznacza modyfikację 
termu rb polegającą na tekstowym zastąpieniu każdego wystąpienia zmiennej x w ter­
mie h przez term t. Dalej będziemy rozpatrywać tylko takie termy t, które są termami 
stałymi, czyli teTermTSpec (0).

Jeżeli ee Eq jest zwykłą równością postaci t\ = T oraz te TermrSim (0), to równość

= r2[x::=f] (4.24)

jest instancją równości e i oznaczamy ją e[x ::= t].

Jeżeli eeEq jest warunkową równością postaci eb ..., e„ => e oraz teTermrSpei. (0), to 
instancją tej równości jest równość warunkowa postaci

Ci[x ::= t], ..., e„[x ::= t] => e[x ::= z] (4.25)

Jeżeli instancja równości nie zawiera zmiennych, to nazywamy ją instancją stalą.

GrEqTSpec jest zbiorem wszystkich stałych instancji zwykłych równości występujących 
w specyfikacji TSpec.
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Jeżeli e^Eq jest zwykłą równością, to AxEq(ej oznacza zbiór wszystkich stałych in­
stancji równości e, jeżeli natomiast eeEq jest równością warunkową, to AxEq(e) jest 
zbiorem pustym. Przez ID oznaczmy zbiór wszystkich równości stałych postaci t = t, 
wówczas

AxEqrSim = [jAxEq(e)uID (4.26)
eeEq

Jeżeli eeEq jest zwykłą równością, to InfEq(ej jest zbiorem pustym, jeżeli natomiast 
eeEq jest równością warunkową postaci et ,...,en =>e, to lnfEq(e) oznacza zbiór 
reguł wnioskowania postaci

/ e

(4.28)

(4.29)

(4.30)

gdzie są stałymi instancjami równości e...... ,e„,e osiągniętymi przez pod­
stawienie za zbiór zmiennych V występujących w tych równościach termów stałych 
Ternirspe, (0).

Przez Inf oznaczmy zbiór reguł wnioskowania postaci

?l = l2
t2 = 6

dla wszystkich termów stałych th t2

= t2,t2 = t2
= t2

dla wszystkich termów stałych t\, t2, h

6 =t'„
opf[,...,t„) = opf{,...,t'nj

dla wszystkich operacji opeOP zn>Qi dla wszystkich termów stałych r„ t' rodzaju 
.y, dla i = 1,..., n, wówczas

InfEqTSim = \JlnfEq(e)u Inf (4.31)
eEEq

Dwa termy stałe t, i t2 nazywa się termami kongruentnymi względem specyfikacji
TSpec, co zapisujemy w postaci t\ =Tspec t2, wtedy i tylko wtedy, gdy D I- = t2, czyli 
gdy w systemie dowodzenia D istnieje dowód równości tt = t2.

Relacja kongruencji wyznacza podział zbioru termów stałych TernirSpi.c (0) na klasy 
abstrakcji. Klasa abstrakcji generowana przez term t jest określona jako zbiór

M-del {f| f=7W t} (4.32)
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Zbiór klas abstrakcji termów stałych danego rodzaju 5, oznaczany Termf0)l=„ wy­
znacza zbiór wartości rodzaju i ilorazowej algebry termów

Arspec “def <AtSpw FfSpec> (4.33)

zdefiniowanej następująco:

• ArsPec = {Termf0) /=s | seS} jest rodziną zbiorów ilorazowych termów rodzajów 
5G S,

• Frspec = {f„p | opeOP} jest zbiorem operacji ilorazowej algebry termów, przy 
czym operacja f„p ma sygnaturę

f„p :Termx(0)/ =X} x...xTermx (0)/ =s —>Termx(0)/ =x (4.34)

gdy deklaracja operacji ma postać: op : s2 ... s„ —> 5 i jest zdefiniowana następu­
jąco: jeżeli [r;]e Temx (0)/ =A. dlaj = 1,..., n, to

Z7,([n], .... [ą,]) =dcf [op(ti,..., /„)]. (4.35)

4.6. Strukturalizacja specyfikacji

Podstawową techniką stosowaną podczas tworzenia złożonych specyfikacji typów 
danych jest ich strukturalizacja. Język LOTOS oferuje dwa zasadnicze mechanizmy 
struktura!izacji: rozszerzanie specyfikacji i specyfikacje parametryzowane (gene- 
ryczne). Oba mechanizmy będą omówione nieformalnie na podstawie prostych 
przykładów.

Rozszerzanie specyfikacji polega na definiowaniu nowego typu danych jako rozsze­
rzenia wcześniej zdefiniowanego typu. Rozpatrzmy przykład - załóżmy, że dana jest 
specyfikacja typu:

type Boolean is
sorts Bool
opns true, false : -> Bool

not : Bool -> Bool
_and_ , _or_, _xor_, _implies_, _ijf_ : Bool, Bool -> Bool 

eqns
forall x, y : Bool
ofsort Bool

not(true) = false ;
notlfalse) - true ;
x and true = x ;
x and false = false ;
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x or true = true ;
x xor y = {x and not(y) or (y and not(x)) ;
x implies y = y or not(x) ;
x iffy = U implies y) and ( v implies x) ;

endtype
Specyfikacja definiuje typ Boolean - jednorodzajową algebrę Boole’a - standardowy 
typ logiczny w większości języków programowania. Typ ten jest częścią składową 
wielu innych typów, na przykład liczb naturalnych. Symbole podkreśleń po lewej 
i prawej stronie operacji dwuargumentowych wskazują na użycie notacji wrostkowej 
(zamiast standardowej przedrostkowej).

Nowy typ NatY można zdefiniować, odwołując się do typu Boolean, w sposób nastę­
pujący:

type NatY is Boolean
sorts nat
opns z : -> nat

suce : nat: -> nat
plus : nat nat -> nat
eq : nat nat -> Bool
gt: nat nat -> Bool

eqns
forall x : nat, y : nat, t: nat
ofsort nat

plus(x, z) = x ;
plus(x, y) = plus(y, x) ;
plus(x, y) = t => plus(succ(x), y) = succ(f) ;

ofsort Bool
zeq z = true ;
z eq succ(x) -false ;
succ{x) eq z = false ;
z gt z = false ;
z gt succ(x) = true ;
succ(x) gt succ(y) = x gty ;

endtype
Przedstawiona specyfikacja jest równoważna następującej rozwiniętej tekstowo specy­
fikacji:

type NatY is
sorts Bool, nat
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opns true, false 
not 
_and_, or_ 
z : -> nat

-> Bool
Bool -> Bool
Bool, Bool -> Bool

suce : nat: -> nat
plus : nat nat -> nat 
eq : nat nat -> Bool 
gt: nat nat -> Bool

eqns
forall x, y : Bool, x : nat, y : nat, t: nat 
ofsort Bool

not(true) =false 
notffalse) = true 
x and true = x 
x and false = false 
x or true = true 
x or false = x

ofsort nat
plus(x, ź) =x
plus(x, y) = plus(y, x)
plus(x, y) = t => plus(succ(x), y) = succ(f) 

ofsort Bool
zeq z = true 
z eq succ(x) = false 
succ(x) eq z =false 
zgtz=false 
z gt succ(x) - true 
succ(x) gt succ(y) - x gt y

endtype
Specyfikacja w formie rozwiniętej, nazywanej też specyfikacją w formie kanonicznej, 
powstaje przez tekstowe połączenie specyfikacji typu Boolean z nowym tekstem. Ta­
kie połączenie tekstów daje jednoznaczny efekt, pod warunkiem unikalności nazw 
rodzajów i operacji.

Specyfikacje typów nazywamy specyfikacjami rozłącznymi, gdy ich sygnatury mają 
rozłączne zbiory rodzajów i operacji.

Gdy specyfikacje nie są rozłączne, należy dokonać odpowiedniego przemianowania 
nazw, do czego służy pomocnicza konstrukcja przemianowania:
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type Stara_nazwa_typu is Nowa_nazwa_typu
sortnames Stara_nazwa_rodzaju for Nowa_nazwa_rodzaju

opnames Stara_nazwa_operacji for Nowa_nazwa_operacji

endtype

Konstrukcja wprowadza nowy typ o nowej nazwie, który od typu starego różni się 
tylko nazwami rodzajów i nazwami operacji.

W przypadku wielu złożonych typów okazuje się często, że ogólna struktura tworzą­
cych je elementów nie zależy od elementów składowych. Jest tak na przykład w przy­
padku tablic, plików, stosów czy kolejek, używa się wówczas typów sparametryzowa- 
nych, ich specyfikacja ma postać:

type Nazwajtypu is
formalsorts Lista_nazw_rodzajów
formalopns Lista_symboli_operacji
formaleąns Lista_równości
sorts Lista_nazw_rodzajów
opns Lista_symboli_operacji
eqns Lista_równości

endtype

Jest to rozszerzona tekstowo forma specyfikacji kanonicznej, wprowadzająca formalne 
parametry, którymi mogą być rodzaje, operacje i równości. Typ sparametryzowany 
staje się typem konkretnym po zastąpieniu jego parametrów formalnych parametrami 
aktualnymi. Służy do tego konstrukcja aktualizacji typu postaci:

type Nazwa-typu is Nazwa-typu-sparametryzowanego
actualizedby Nazwa-typu using

Lista _podstawień_rodzajów
Lista _podstawień_operacji

endtype

gdzie podstawienie_rodzaju ma postać:

sortnames nazwa_rodzaju for nazwa_rodzajuformalnego

podstawienie_operacji ma postać:

opnames nazwa_operacji for nazwa_operacjiformalnej



Abstrakcyjne typy danych w LOTOSie 79

Dobrą ilustracją obu tych konstrukcji jest specyfikacja stosu formalnego i jego uaktu­
alnienia. Najpierw specyfikujemy stos jako typ sparametryzowany, niezależny od typu 
elementów, na których operuje: 

type Stos is 
formalsorts 
formalopns 
sorts
opns

pusty 
odczyt 
ze_stosu 
na_stos

elem
eO : -> elem
stos

: -> stos
: stos -> elem
: stos -> stos
: stos elem -> stos

eqns
forall e : elem, s : stos

ofsort elem
odczytlpusty) - eO 
odczyt(na_stos(s, e)) = e

ofsort stos
ze_stosu(pusty) = pusty
ze_stosu(na_stos(s, e)) = s

endtype

Rodzaj elem oraz stała eO są parametrami formalnymi typu Stos, przyporządkowanie 
im konkretnego niesparametryzowanego rodzaju oraz wskazanej wartości tego rodzaju 
pozwala na definicję konkretego typu stosowego. Na przykład stos liczb naturalnych 
uzyskamy, podając specyfikację:

type StosNat is Stos actualizedby NatLog using
sortnames nat for elem
opnnames z for eO

endtype

LOTOS definiuje pewien zestaw typów predefiniowanych, zestawionych w bibliotekę 
typów standardowych. Do specyfikacji tych typów można się odwoływać przez wska­
zanie nazwy typu, z zaznaczeniem, że jest to typ należący do biblioteki typów standar­
dowych. Odwołanie to ma postać:

library Nazwa jypu_standardowego
endlib
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Zbiór specyfikacji niesparametryzowanych typów daje się sprowadzić do postaci ka­
nonicznej. Polega to wykonaniu następujących kroków:

• każdą specyfikację złożoną, to znaczy taką, w której występują omówione kon­
strukcje strukturalne, należy przekształcić do specyfikacji kanonicznej,

• nazwy w zbiorze specyfikacji typów należy przemianować w taki sposób, aby 
otrzymać zbiór typów rozłącznych,

• listy wszystkich rodzajów oraz listy wszystkich symboli operacji występujących 
w specyfikacjach składowych należy połączyć we wspólne listy.

Semantyka zbioru specyfikacji typów jest zdefiniowana jako semantyka jego postaci 
kanonicznej.

Podczas stosowania równościowego definiowania własności operacji pojawiają się 
dwa problemy. Problem pierwszy wiąże się z pytaniem, czy podany zestaw równości 
jest kompletny - czy uwzględnia wszystkie potrzebne własności. Problem drugi wiąże 
się z pytaniem, czy podany zestaw własności jest niesprzeczny, czyli czy operacje 
mają niepustą semantykę. Ogólnie są to problemy nierozstrzygalne, co oznacza, że nie 
istnieją algorytmy do automatycznego badania własności zupełności i niesprzeczności.

Typy danych w językach specyfikacji i programowania są definiowane jeszcze na inne 
sposoby. Dominujące podejście, nazwane tu podejściem „programistycznym”, polega 
na zdefiniowaniu pewnej liczby typów elementarnych, na przykład typy liczbowe, 
napisowe, logiczne. Każdy typ elementarny ma określony zbiór wartości oraz okre­
ślony zbiór operacji. Typy elementarne można składać ze sobą, definiując w ten spo­
sób typy złożone, które można składać ze sobą ponownie, definiując coraz bardziej 
rozbudowane typy. Typowymi sposobami składania typów jest tworzenie rekordów 
(krotek), ciągów, zbiorów. Specyfiką takiego podejścia jest to, że związane z nimi 
zbiory operacji są ograniczone w zasadzie tylko do operacji selekcji elementów skła­
dowych typów złożonych. Operacje, które w omawianym podejściu algebraicznym 
stanowią element integralny definiowanych typów, można definiować poza definicją 
typu, na przykład w postaci definicji procedur.

Należy zwrócić uwagę na jeszcze jedną różnicę pomiędzy podejściem algebraicznym 
a „programistycznym”. Operacje w podejściu algebraicznym muszą być funkcjami 
całkowicie określonymi, podejście „programistyczne” dopuszcza natomiast definio­
wanie operacji, które mogą być funkcjami określonymi częściowo.

4.7. Przykłady specyfikacji

Przedstawiony dalej zestaw przykładów specyfikacji typów opiera się na typach wy­
branych z biblioteki typów języka LOTOS. Spośród wybranych typów bibliotecznych, 
dwa typy Element oraz BasicNaturalNumber są nieco zmodyfikowane, w celu dosto­
sowania do potrzeb dalszych rozdziałów. Przedstawiamy specyfikację typu reprezen­
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tującego zbiór operacji mnogościowych na zbiorze elementów dowolnie ustalonego 
typu. Typ ten, nazwany Set, jest typem parametryzowanym, a inne przedstawiane tu 
typy pełnią rolę pomocniczą - są niezbędne do jego specyfikacji. Typami pomocni­
czymi są typy: Boolean, Element, NaturalNumber. Pierwszy z tych typów był przed­
stawiony w poprzednim podrozdziale.

Typ Element jest typem złożonym, jest on rozszerzeniem typu Boolean-.

type Element is Boolean
formalsorts Elem
formalopns _eqEl_, _neEl_ : Elem, Elem -> Bool
formaleqns forall x, y : Elem

ofsort Elem
x eqEl y = true => x = y ;

ofsort Bool
x = y => x eqEl y = true ;
x neEl y = not(x eqEl y) ;

endtype

Modyfikacja typu Element względem specyfikacji standardowej polega tu na wyko­
rzystaniu typu Boolean zamiast typu parametryzowanego FBool.

Typ Element reprezentuje dowolnie określoną zbiorowość, w której operacje eqEl oraz 
neEl mają służyć stwierdzaniu, czy dwa elementy tej zbiorowości są jednakowe czy 
różne. Zbiorowość tę, reprezentowaną formalnym rodzajem Elem, i podobnie operacje 
formalne eqEl, neEl można ukonkretnić. Ukonkretniony typ zachowuje wszystkie 
własności operacji określone równościami formalnymi.

Typ NaturalNumber jest również typem złożonym. Do jego definicji jest wymagany 
wcześniej zdefiniowany typ Boolean oraz typ BasicNaturalNumber definiowany poniżej:

type BasicNaturalNumber is
sorts Nat
opns 0 : -> Nat

Suce, Pred : Nat -> Nat
_+_, , _**_ : Nat, Nat -> Nat

eqns forall m, n : Nat
ofsort Nat

Pred(Q) = 0 ;
Pred(Succ(n.y) = n ;
m + 0 = ni ;
m + Succ(n) = Succ(m) + n ;
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m * 0 = 0 ;
m * Succ(n) = m + (m * n) ;
m ** 0 = Succ(0) ;
m ** Succ(n) = m * (m ** n) ;

endtype

Modyfikacja typu BasicNaturalNumber względem specyfikacji standardowej polega 
tu na wprowadzeniu operacji Pred. Operacja ta jest zdefiniowana jako funkcja całko­
wicie określona, co wynika - jak wspomniano wcześniej - z ogólnych własności de­
finicji operacji poprzez równości. Odbiega to od powszechnie przyjmowanego zna­
czenia tej operacji, która dla argumentu 0 jest nieokreślona.

Definicja typu NaturalNumber przedstawia się następująco:

type NaturalNumber is BasicNaturalNumber, Boolean
opns _eq_, _ne_ , _lt_, _le_, _ge_, _gt_ : Nat, Nat -> Bool 
eqns forall m, n : Nat

ofsort Bool
0 eq 0 = true ;
0 eq Succ(m) = false ;
Succ(m) eq 0 = false ;
Succ(n) eq Succ(m) = n eq m ; 
m ne n = not(m eq n) ;
0 It 0 = false ;
0 It Succ(n) = true ;
Succ(n) It 0 = false ;
Succ(m) It Succ(n) = m It n ;
m le n = (m It n) or (m eq ii) ;
m ge n = not(m It n) ;
m gt n = not(m le n) ;

endtype

Mając zdefiniowane typy składowe, możemy przedstawić specyfikację parametryzo- 
wanego typu zbiorowego Set:

type Set is Element, Boolean, BasicNaturalNumber
sorts Set
opns {} : -> Set

Insert, Reniove, _lsln_, _NotIn_, _NotIn_ : Element, Set -> Set
_Union_, _Ints_, _Minus_ : Set, Set -> Set
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_eq_, _ne_, _lncludes_, _JsSubsetOf_ : Set, Set -> Bool
Card : Set -> Nat

eqns forall x, y : Eleni, s, t: Set
ofsort Set

Insert{x, Insert(x, s) = Insert(x, s) ;
lnsert(x, Insert(y, s)) = Insertiy, Insert(x, s)) ;
Remove(x, {})={} ;

x eq y = true =>
Remove(x, Insert{y, s)) = Remove(x, s)) ;

x ne y = true =>
Remove(x, Insertfy, s)) = Insert(y, Remove(x, s)) ;
{} Union s-s ;
Insert{x, s) Union t = lnsert(x, s Union t) ;
{} Ints s = {}

x Isln t = true =>
lnsert(x, s) Ints t = Inserty, s Ints t) ;

x Notln t = true =>
Insert(x, s) Ints t = s Ints t ;
s Minus {} = 5 ;
i- Minus lnsert(x, t) = Remove(x, 5) Minus t ;

ofsort Bool
x Isln {} =false ;

xeqy =>
x Isln Insertiy, s) = true ;

x ne y =>
x Isln Insert(y, s)=x Isln s ;
x Notln s = not(x Isln s) ;
s Includes {} = true ;
s Includes Insert(x, t) = (x Isln s) and (s Includes t) ;
s IsSubsetOf t = t Includes s ;
5 eq t = (s Includes t) and (t Includes s) ;
s ne t = not(s eq t) ;

ofsort Nat
Card{ {}) = 0 ;

x Notln s = true =>
CardUnsert(x, s) = Succ(Card(s)) ;

endtype
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Typ parametryczny Set można w różny sposób ukonkretniać. Przyjmując na przykład, 
że nośnikiem będzie zbiór liczb naturalnych, odpowiednia specyfikacja przyjmie po­
stać:

type SetOfNaturalNumbers is Set
actualizedby NaturalNumber using

sortnames
Nat for Elem

opnames
eq for eqEl 
ne for neEl 

endtype

4.8. Uwagi końcowe

Abstrakcyjne typy danych były przedmiotem wielu prac i wielu ujęć, na przykład: 
[Burstall, Goguen 1982], [Tatcher, Wagner, Wright 1982], Omówione w niniejszym 
rozdziale podejście oparte na ACT ONE wybrano dlatego, że znalazło odzwierciedle­
nie w języku LOTOS.

Warto też dodać, że abstrakcyjne typy danych były również uwzględnione w począt­
kowych pracach nad językiem specyfikacji SDL: [ITU-T, 1999], [Elllsberg, Hogrefe, 
Sarma 1997],

Przedstawione podejście równościowego definiowania abstrakcyjnych typów danych 
ma eleganckie matematyczne podstawy, ale ma także wady. We wcześniejszej części 
rozdziału zwrócono już uwagę na dwa ograniczenia wewnętrzne:

Pierwsze wiąże się z tym, że w obrębie abstrakcyjnego typu danych możliwa jest defi­
nicja tylko takich operacji, które są funkcjami całkowitymi. Praktycznie bardzo często 
posługujemy się funkcjami częściowo określonymi wraz z mechanizmami obsługi 
wyjątków.

Drugie wiąże się z koniecznością sprawdzania niesprzeczności i kompletności (zu­
pełności) zdefiniowanych typów. Ponieważ badanie równoważności termów dla 
dowolnej algebry jest problemem nierozstrzygalnym, nie można użytkowników 
wspomagać w pełnym zakresie odpowiednimi narzędziami programowymi. Osta­
tecznie zatem obowiązek sprawdzenia niesprzeczności spoczywa na użytkowniku 
języka. Dodatkowo, stosowane w implementacji różne strategie przekształcania 
zbioru równości w zbiór reguł systemu dowodzenia, a także stosowania tego syste­
mu mogą prowadzić do różnych wyników - podczas, gdy jeden system może dawać 
odpowiedź „tak” albo „nie” na zadane pytanie, inny może dawać odpowiedź „nie 
wiem”.



Abstrakcyjne typy danych w LOTOSie 85

Problem zupełności jest jeszcze bardziej złożony, gdyż wymaga dodatkowo określenia 
„bazy” odniesienia, czyli tego, względem czego jest badana zupełność.

Można jeszcze wskazywać na inne wady. Na przykład strukturalizacja typów nie za­
pobiega możliwości rozproszenia podobnych rodzajów i operacji w wielu miejscach, 
a każda funkcja definiowana w typie jest widziana jako globalna - nie ma możliwości 
deklarowania funkcji jako lokalnych, dodanie nowej równości może istotnie zmienić 
semantykę typu.

Zwraca się jeszcze uwagę na to, że - ze względu na zamierzony zakres zastosowania 
języka LOTOS - intelektualny wysiłek potrzebny do zrozumienia podstaw teoretycz­
nych nie pozostaje w proporcji do praktycznych zamierzeń, na przykład do specyfi­
kacji komunikatów protokołu komunikacyjnego. Dla wielu użytkowników abstrak­
cyjne typy danych pozostają raczej problemem niż rozwiązaniem.

Wymienione problemy związane z użyciem równościowej specyfikacji abstrakcyjnych 
typów danych były jedną z przyczyn rewizji języka LOTOS [Garavel, Sighireanu 
1996a], [Garavel, Sighireanu 1996b] i opracowania wersji rozszerzonej E-LOTOS 
[ISO/IEC FDIS 15437, 2001], W nowej wersji języka zdecydowano się na wpro­
wadzenie mieszanych mechanizmów definiowania typów danych; są pozostawione, 
nieco zmodyfikowane, mechanizmy abstrakcyjnych typów danych, wraz z dołączony­
mi wybranymi mechanizmami specyfikacji typów danych z funkcjonalnego języka 
programowania ML [Milner, Tofte, Harper 1990],

Podobnie postąpiono w rozwoju języka SDL - do wcześniej wprowadzonych abstrak­
cyjnych typów danych dołączono typy danych spotykane w imperatywnych językach 
programowania (języki C i C++).

Dodatkowo narzędzia programistyczne wspomagające projektowanie w SDL umożli­
wiły stosowanie notacji ASN.l (Abstract Syntax Notation One). ASN.l jest językiem 
formalnym do zapisu składni abstrakcyjnej typów danych oraz do kodowania danych 
w postaci ciągów zero-jedynkowych. Jako standard ISO jest opisany w serii norm 
ISO/IEC 8824-3, 4 oraz ISO/IEC 8825-1, 2, a przystępny jego opis zawiera książka 
[Kosmulska-Bochenek 2002].



86

5. LOTOS - opis języka

5.1. Akcje komunikacyjne

Specyfikacja systemu rozproszonego w LOTOSie jest traktowana jako proces. Proce­
sy są podstawową jednostką strukturalizacji specyfikacji. Opisywany system przedsta­
wia się jako hierarchię procesów, z których najbardziej zewnętrzny reprezentuje cały 
system, a procesy w nim zagnieżdżone reprezentują składowe tego systemu. Komuni­
kacja jest niepodzielną czynnością, podczas której pomiędzy procesem a jego otocze­
niem następuje przepływ danych. Realizacja komunikacji wymaga synchronizacji ko­
munikujących się procesów.

Proces w LOTOSie, podobnie jak proces w CCS, w danym stanie oferuje swemu oto­
czeniu zbiór ofert komunikacji. Oferta komunikacji ma postać akcji. Realizację akcji 
nazywa się interakcją. Każdej interakcji towarzyszy synchronizacja oraz wymiana 
informacji. Szczególnym rodzajem jest interakcja, której towarzyszy pusta wymiana 
danych, czyli interakcja ograniczająca się tylko do synchronizacji komunikujących się 
partnerów. Takie właśnie zdarzenia są dopuszczalne w omawianym tutaj LOTOSie 
bazowym - podzbiorze pełnego języka LOTOS.

Mechanizmy komunikacji w LOTOSie, w porównaniu do komunikacji w CCS, są 
znacznie rozbudowane. Wynika to z dwóch powodów: po pierwsze, oprócz syn­
chronizacji komunikujących się procesów, mamy do czynienia z wymianą danych, 
a po drugie - oprócz komunikacji bilateralnej dopuszcza się także komunikację multi- 
lateralną. Z tych powodów definicja akcji komunikacyjnych jest bardziej złożona. 
Niech, jak poprzednio, G oznacza dowolny, co najwyżej przeliczalny zbiór nazw bra­
mek. Wyróżnia się elementarne i strukturalne akcje komunikacyjne.

Akcje elementarne mają postać:

g ! t oraz g? x: s (5.1)

gdzie:
ge G oznacza nazwę bramki,
e jest pewnym wyrażeniem - termem stałym (zob. poprzedni rozdział),
x jest zmienną,
j> jest identyfikatorem rodzaju.

Pierwsza z tych akcji, nazywana elementarną akcją wyjścia, polega na wysłaniu, przez 
proces realizujący tę akcję, wartości wyrażenia t przez bramkę g, element It nazy­
wamy wyjściowym elementem komunikacyjnym. Druga z tych akcji, nazywana ele­
mentarną akcją wejścia, polega na odbiorze, przez proces realizujący tę akcję, pewnej 
wartości rodzaju t z bramki g i przypisaniu tej wartości zmiennej x, element ? x : 5 na­
zywamy wejściowym elementem komunikacyjnym.
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Najprostszy przypadek komunikacji, w której uczestniczą dwa procesy (komunikacja 
bilateralna), wymaga, aby jeden z nich był gotowy do realizacji elementarnej akcji 
wejścia, a drugi - elementarnej akcji wyjścia. Akcje te muszą być zgodne, tzn. obie 
muszą się odnosić do tej samej bramki, a wyrażenie e w akcji wyjścia musi być takie­
go samego rodzaju jak zmienna x w akcji wejścia. Realizację pary zgodnych akcji na­
zywa się interakcją.

W bardziej ogólnym przypadku komunikacja pary procesów może polegać na reali­
zacji innych zestawów akcji elementarnych. Możliwości te są zgromadzone w tabe­
li 5.1, w której przedstawiono komunikację pomiędzy dwoma procesami p oraz q.

Tabela 5.1

Lp. Akcja 
w procesie p

Akcja 
w procesie q Warunek zgodności akcji Wynik realizacji akcji

1 g 11 glys sort(t) = .v y := Id
2 g^.s g't sortuj = .v x := Id
3 g I h g ! t2 IM = [dl

4 g^x:st g?y. '2 ,V| = s.
x := v, y := v, 

gdzie v jest dowolną 
wartością rodzaju s.

Funkcja sort(0 oznacza rodzaj wyrażenia (termu) t.

Przypomnijmy, że - zgodnie z rozważaniami poprzedniego rozdziału - wartością ter­
mu stałego t jest klasa abstrakcji [r], określona na zbiorze termów stałych rodzaju 5.

Oznaczenie x := v jest przypisaniem wartości v zmiennej x. Używanym w LOTOSie 
zmiennym można przypisywać wartości tylko jednokrotnie, co znaczy, że raz przypi­
sanej wartości nie można już zmieniać - LOTOS jest językiem aplikatywnym.

Wspólnym warunkiem realizacji akcji, niezapisanym w tabeli 5.1, jest - podobnie jak 
w przypadku języka CCS - synchronizacja obu procesów p oraz q. Dwa pierwsze 
przypadki ujęte w tabeli odpowiadają omówionemu wyżej przesłaniu wartości po­
między dwoma procesami. W trzecim przypadku procesy nie przesyłają pomiędzy 
sobą żadnych wartości, a tylko synchronizują się wzajemnie. Czwarty przypadek ob­
razuje interakcję, której wynikiem jest wygenerowanie, w sposób niedeterministyczny, 
pewnej wartości wspólnie zapamiętanej przez oba procesy.

Bardziej rozbudowaną akcją komunikacyjną jest akcja strukturalna. Akcje struktu­
ralne służą do przekazywania, podczas jednej interakcji, zestawu wartości, a nie 
tylko pojedynczej wartości, jak w przypadku akcji elementarnych. Akcja struktu­
ralna ma postać

g ot\ a,... ak dla k > 0 (5.2)
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gdzie 0Ci są wcześniej określonymi elementami komunikacyjnymi postaci (5.1), czyli

?x,:s, lub ! Ą. (5.3)
Dwie akcje strukturalne:

gai a2... ak oraz (5.4)

są zgodne wtedy i tylko wtedy, gdy k = l oraz dla każdego i = 1, ..., k akcje elemen­
tarne g Oi oraz g /3j są zgodne w sensie tabeli 5.1.

Realizację pary akcji, czyli interakcję, będziemy oznaczać

g vh..., vk (5.5)

gdzie v, jest wartością przesłaną lub wygenerowaną przez elementy komunikacyjne a, 
oraz Pi dla i = 1,..., k.

Najbardziej ogólna postać akcji strukturalnej przedstawia się następująco:

g ax a2... ak [c] (5.6)

gdzie c jest predykatem - wyrażeniem logicznym, czyli termem rodzaju Bool. Predy­
kat c zawęża dopuszczalne wykonania tej akcji tylko do tych interakcji, które spełniają 
ten predykat.

Dla akcji g ax a2... ak wyznaczmy zbiór zmiennych V, występujących w wejściowych 
elementach komunikacyjnych

V = {x, | = ? x,: sh i = 1,..., k}. (5.7)

Niech V = {x7| ,...,Xj }, wówczas interakcjag vh ..., vk musi spełniać warunek

albo krótko

D t- c[x, ::= r, ,..., x, '.'.-t, ]-true

D I- c[x, ::=t: ,...,X: : = t, ]L Jl Jl Jm Jm 1

(5.8)

(5.9)

gdzie Vj =[/7 ] dla i = 1, ..., m. Symbol H, zgodnie z oznaczeniami rozdziału 4., 

oznacza istnienie dowodu równości w systemie dowodzenia D, generowanym przez 
specyfikację typów danych.

Dotychczas omawiano komunikację, w której uczestniczyły tylko dwa procesy. 
LOTOS dopuszcza interakcje, w których bierze udział większa liczba procesów. Zbiór 
akcji jest zbiorem akcji zgodnych, jeżeli istnieje wspólna interakcja, która jest reali­
zowalna przez każdą z tych akcji.

Oprócz opisanych wyżej akcji komunikacyjnych, podobnie jak w CCS, wyróżnia się 
w LOTOSie jeszcze akcje wewnętrzne, oznaczane symbolem i. Akcja wewnętrzna jest 
odzwierciedleniem pewnej czynności obliczeniowej lub komunikacyjnej, która 
- z punktu widzenia zewnętrznego obserwatora procesu - jest całkowicie niewidocz­
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na. Akcja zachodzi autonomicznie na skutek decyzji pewnego obiektu wewnętrznego 
danego procesu. Dla zewnętrznego obserwatora procesu akcja wewnętrzna jest nieob- 
serwowalna, a informacja o zajściu akcji i mówi tylko o tym, że we wnętrzu procesu 
wykonano pewne obliczenie lub zaszła pewna komunikacja.

5.2. Procesy i wyrażenia behawioralne

Składnia LOTOSa jest rozszerzeniem składni CCS. Rozszerzenie wynika z:

• uwzględnienia przekazywania danych,
• wprowadzenia dodatkowych operatorów wyrażeń behawioralnych, wynikających 

między innymi z wprowadzenia komunikacji multilateralnej (oprócz bilateralnej),
• rozbudowania deklaracji procesów i typów.

Szkieletowa postać definicji procesów w postaci kanoniczej przedstawia się następu­
jąco:

process nazwa„procesu \lista_bramek„formalnych] 
(lista_formalnych„parametrów„wartościowych) : 

funkcjonalność := (5.10)
wy rażenie „behawioralne

endproc

W przypadku procesów kanonicznych zakłada się, że nie mają one lokalnych definicji 
typów lub procesów wewnętrznych, zakłada się natomiast, że ich wspólnym kontek­
stem jest kanoniczna specyfikacja typów danych. Procesy te dysponują więc rodzaja­
mi i operacjami należącymi do kanonicznej specyfikacji typów danych.

Definicje typów omówiliśmy w rozdziale poprzednim, obecnie omówimy wyrażenia 
behawioralne stanowiące treści procesów.

Słowa kluczowe wyróżnia się wytłuszczoną czcionką, a symbole pomocnicze - kur­
sywą.

Poszczególne elementy definicji procesów mają znaczenie następujące:

Listajbramek„formalnych, postaci ..., g,„ dla n > 0, oraz g, gj, dla i T j, określa 
nazwy formalne bramek, przez które proces może się komunikować ze swoim oto­
czeniem. Instancja procesu o zadanej definicji musi nazwy formalne zastąpić nazwami 
aktualnymi.

Procesy mogą dysponować zmiennymi lokalnymi, których wartościowanie może być 
ustalane w momencie tworzenia instancji procesu. Służy do tego lista„formalnych„pa­
rametrów „wartościowych, postaci ją : sb ...,x„: s„, dla n > 0, gdzie xb ..., są zmien­
nymi, a 5b ..., s„ są rodzajami tych zmiennych.
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Funkcjonalność procesu charakteryzuje sposób kończenia działania procesu i przyj­
muje jedną z postaci:

noexit
(5.11) 

exit(sb s„) dla n > 0.

Pierwsza postać oznacza, że proces albo nigdy się nie kończy, albo - kończąc się - 
staje się procesem nieaktywnym. Druga postać oznacza, że jeśli proces się kończy, to 
produkuje zestaw wartości rodzajów ..., s„, które może przekazać do zainicjowania 
innego procesu - jego następnika.

Pojęcie funkcjonalności odnosi się także do wyrażeń behawioralnych, dlatego pow- 
staje wymóg, by funkcjonalność procesu była zgodna z funkcjonalnością wyrażenia 
behawioralnego stanowiącego jego treść.

Zbiór wyrażeń behawioralnych Beh jest określony następująco:

B ::= stop | 
i;5i | 
g ai a2... ą; B} | 
g at a2... O4[c]; Bi | 
exit(zh ..., t„) |
Bi » accept %i : . ....... x„.  s„ in B21
Bt [ ] B21
hidegi, ...,g„ inBi |

<512)
Bi |[g1;...,g,.]|S2|
[c ] -> Bi |
letxi = ?i, ...,x„=r„inB| |
choiceg in [gt.......g„] Bi |
choice i [] Bi |
par g in [g,, ...,g„] |[h,, ...,/i,„]|B, | 

...gnM......... ^)|
(Bi)

Symbole B, Bi, B2 oznaczają wyrażenia behawioralne, g, h (z ewentualnymi indeksa­
mi) oznaczają bramki komunikacyjne, ..., x„- zmienne, ..., s„ - rodzaje oraz 
fi, ..., t„,~ termy.

W przypadku wyrażenia exit(/i, ..., t„) symbol r, (i = 1, ..., n) może dodatkowo 
przyjmować postać any s,. Symbol any s, służy na oznaczenie dowolnego termu 
rodzaju s,.
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Zbiór wyrażeń behawioralnych musi spełniać ograniczenia kontekstowe, wynikające 
z wymagań funkcjonalnych. Po oznaczeniu przez funct(B) funkcjonalności wyraże­
nia B ograniczenia te można przedstawić tabelą 5.2.

Tabela 5.2

B funct(B) Warunek zgodności

stop noexit
a; Bt funct^Bt) a - dowolna akcja

exit(/b ..., t„) exit( ,V|.......s„) sort(t}) = sh ..., sort(t„) = s„

Bt » accept X| : .s,, ..., x„: s„in B2 funct(B2) funct(B\) - exit( .r,,..., ,s„)

BA]B2 funct^B^ /wnc7(B|) =funct(B2)

hideg,, ...,g„ in B, funct^B^

Bt [> B2 funct(B\) funct(B\) =funct(B2)

Bi |[gi, ■■■, g„]| B2 funct(Bt) funct(B\) =funct(B2)

[c ] -> B, f'unct(B\)

letX| = /b ..., x„- /„in B| funct(B\)

choicegin [g,, ...,g„] B, funct(B\)

choice x [] B| funct(Bi)

par gin [g,, ..., g„] |[/i,, ..., A„,]| B, funct(Bi)

p[g...... , funct(B\) gdzie B| - treść procesu p

(Bt) funct(B\)

Znaczenie poszczególnych konstrukcji wyrażeń behawioralnych przedstawiają się 
następująco:

stop jest procesem elementarnym reprezentującym proces pusty, to znaczy taki, który 
nie oferuje swemu otoczeniu żadnych akcji komunikacyjnych.

Prefiksowanie akcją wewnętrzną i; B oznacza zachowanie, na które składa się wyko­
nanie akcji wewnętrznej, a dalsze zachowanie jest określone przez wyrażenie beha­
wioralne B. Podobne znaczenie mają prefiksowanie akcją komunikacyjną bez ogra­
niczenia g CC] a2 ... ap B i z ograniczeniem g a2 ... «*[c]; B, to znaczy po 
wykonaniu akcji w wyniku synchronizacji z otoczeniem dalsze zachowanie jest okre­
ślone przez wyrażenie behawioralne B.

Wyrażenie exit(/|, ..., /„) jest procesem elementarnym, którego jedyną czynnościąjest 
obliczenie wartości termów th ..., t„ i przekazanie ich do innego procesu, który jest 
jego następnikiem. Wyrażenie to należy odróżnić od tekstu exit(ób ..., s„), który ozna­
cza funkcjonalność.
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Pełne wyjaśnienie roli procesu exit(rb t„) wiąże się z wyrażeniem złożenia aktywu­
jącego postaci: Si » accept X| : x„: s„in B2.

Operator binarny » oznacza sekwencyjne wykonanie wyrażeń najpierw wyrażenia 
Bh a następnie wyrażenia accept X| : ...,x„: s„in B2.

Od wyrażenia B\ wymaga się, aby miało ono funkcjonalność exit(S|, s„), czyli aby - 
kończąc się - produkowało zestaw wartości vh v„ rodzajów $|, s„. Oznacza to, że
wyrażenie B] - kończąc się - ma wykonać proces exit(tb ..., t„). Proces ten wytworzony 
zestaw wartości przekazuje do wyrażenia accept Aj : $], ...,x„: s„ in B2 za pośrednictwem 
specjalnej, lokalnej bramki komunikacyjnej. Bramka ta jest oznaczana jako S. Interakcja 
pomiędzy wyrażeniami po lewej i prawej stronie operatora » ma postać: Sv}, v„. 
Zachowanie reprezentowane przez wyrażenie B] » accept Aj : .sj, ..., x„: 5,, in B2 jest 
sekwencyjnym złożeniem zachowań jego wyrażeń składowych.

Zachowanie reprezentowane przez wyrażenie wyboru B\ [] B2 jest mnogościową sumą 
zachowań wyrażeń składowych. Oznacza to, że wyrażenie oferuje swemu otoczeniu 
akcje obu wyrażeń składowych, a po wyborze akcji należącej do jednego z tych wyrażeń, 
np. B], dalsze zachowanie przebiega zgodnie z zachowaniem określonym przez Bt.

Wyrażenie przesłaniania hide gi.......g„ in B{ oznacza, że bramki gb ..., g„ mogą być 
użyte do komunikacji tylko wewnątrz wyrażenia B. Bramki te nie mogą być wykorzy­
stane do komunikacji z otoczeniem tego wyrażenia. Komunikacja na dowolnej z tych 
bramek, przez zewnętrznego obserwatora wyrażenia hide gb ..., g„ in Bt, będzie trak­
towana jako akcja wewnętrzna.

Zachowanie wyrażenia złożenia deaktywującego Bt [> B2 można nieformalnie opisać 
jako zachowanie dwóch równoległych procesów reprezentowanych wyrażeniami B\ 
oraz B2. Proces reprezentowany przez B\ wykonuje się aż do chwili, gdy rozpocznie 
działanie proces reprezentowany wyrażeniem B2. Jeżeli B} zakończy działanie zanim 
działanie rozpocznie B2, oznacza to zakończenie działania całego wyrażenia B} [> B2. 
Jeżeli natomiast B2 rozpocznie działanie przed zakończeniem B\, to następuje prze­
rwanie działania B} i dalsze zachowanie przebiega zgodnie z B2.

Wyrażenie złożenia równoległego B\ |[gb ..., g„]| B2 oznacza dwa równoległe procesy 
reprezentowane wyrażeniami B\ oraz B2. Bramki g,, ..., g„ służą do synchronizacji 
tych procesów, co oznacza, że w każdej komunikacji z udziałem tych bramek muszą 
jednocześnie uczestniczyć B\ oraz B2.

Wyrażenie złożenia równoległego ma dwie szczególne postaci: B} ||| B2 oraz B, || B2. 
Pierwsza z nich jest równoważna wyrażeniu B\ |[ ]| B2, co oznacza, że zbiór wspól­
nych bramek komunikacyjnych jest pusty, czyli procesy reprezentowane przez B\ oraz 
B2 nie synchronizują się ze sobą. Druga - jest równoważna B, |[gh ..., g„]| B2, gdzie 
{gi, g,,} oznacza zbiór wszystkich bramek, czyli że procesy reprezentowane przez 
B| oraz B2 muszą się synchronizować ze sobą podczas każdej komunikacji.
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Wyrażenie dozorowane [c ] -> B} reprezentuje takie zachowanie jak B}, pod warun­
kiem, że prawdziwy jest predykat c. Jeżeli predykat c jest fałszywy, znaczeniem całe­
go wyrażenia jest proces pusty.

Wyrażenie let X, = Z|, ..., x„ = t„ in B\ definiuje lokalne wartościowania zmiennych 
wykorzystywane w wyrażeniu Bp

Wyrażenie niedeterministycznego wyboru bramki choice g in [gb ..., g„] Bt oznacza 
niedeterministyczne zastąpienie bramki g jedną z bramek gi, g„. Zachowanie wy­
rażenia choice g in [gb ..., g„] Bi jest takie, jak wyrażenia Bp w którym bramkę g 
zastąpiono dowolną z bramek g,, g„.

Wyrażenie niedeterministycznego wyboru wartości choice x: s [] Bt oznacza przypi­
sanie zmiennej x niedeterministycznie ustalonej wartości rodzaju 5. Zachowanie repre­
zentowane przez to wyrażenie jest takie, jak zachowanie wyrażenia Bp zmodyfikowa­
nego w ten sposób, że zmiennej x jest przypisana pewna wartość rodzaju 5.
Wyrażenie powielenia bramki par g in [gb g„] |[//b ..., h„,]\ Bi oznacza //-krotne 
złożenie równoległe powielonego zmodyfikowanego wyrażenia Bp Kolejna modyfi­
kacja wyrażenia Bi polega na zastąpieniu bramki g bramką g„ dla i = 1, n, nato­
miast bramki hp ..., h,„ są parametrami złożenia równoległego.

Wyrażenie p[h{ , ..., hn](tp ..., ?„,) jest instancją procesu o definicji

process p[gb ..., g„] (x,: s,.......x„,:s,„) : exit(sj, ..., s*) := B
endproc

gdzie:
B jest treścią procesu,
hp ..., //„jest listą bramek aktualnych, 
tp jest listątermów rodzajów sb ..., s,„.

Zachowanie reprezentowane przez to wyrażenie jest takie jak zachowanie wyrażenia 
B, zmodyfikowanego w taki sposób, że nazwy bramek gb ..., g„ zostają zastąpione 
nazwami hp ..., h„ a zmiennym X|: sb .... x,„: s,„ zostająprzypisane wartości tp ..., tm.

5.3. Semantyka operacyjna
Kanoniczna specyfikacja zachowania jest określana jako para BSpec = <po, Proc>, 
gdzie p^ jest procesem początkowym, a Proc - zbiorem definicji procesów. Kon­
tekstem specyfikacji zachowań jest specyfikacja typów TSpec.

Semantyka operacyjna specyfikacji jest definiowana w sposób strukturalny na pod­
stawie definicji składniowych wyrażeń behawioralnych. Wynikiem definicji seman­
tyki jest etykietowany system przejść postaci

TS^Spec) = <Beh, Act, Tr, Bn> 
gdzie:

Beh jest zbiorem wyrażeń behawioralnych,

(5.13)
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Act = {g v|geGu {J}, yeTerm-rspec (0)} u {z} jest zbiorem interakcji,
Tr = { —2—> | aeAct] jest zbiorem relacji przejść,
Bo jest treścią procesu początkowego p0.

Uwaga: Symbol i oznacza akcję wewnętrzną, natomiast i oznacza zdarzenie realizacji 
akcji wewnętrznej.

Zbiór relacji przejść Tr jest definiowany rekursywnie za pomocą następującego ze­
stawu aksjomatów i reguł:

Proces pusty stop - brak aksjomatów.

Prefiksowanie akcją wewnętrzną B = i; Bi

B—'-^B} (A-prehfi

Prefiksowanie akcją komunikacyjną B s g a2 ... Q^[c]; Bi

B—^44—>[% ■-1 x ]B (A-prec„mfi
*■ J\ Jm Jm *

wtedy i tylko wtedy, gdy:
v- = [r.], gdy a, sJr.oraz Ą jest termem stałym, dla i = 1,..., n,

v,€ Terms (0)/ =v. , gdy s ?%. ; 5., dla z = 1, ..., n,

Xj jest zmienną taką, że = 1xJ : s^, dla i = 1,..., n, 

oraz

D I- c[X: ::-t: ,..., x< ::-t, ] L 71 71 ’ 7m 7„, J

Proces zakończenia B = exit(r,, ..., Z„)
B —> stop (A-exit)

wtedy i tylko wtedy, gdy:

v. = [/.], gdy tj jest termem stałym, dla i = 1, ..., n,

v,e Term (0)/ =x., gdy t, = any sh dla i = 1,..., n.

Sekwencyjne złożenie B = B\ » acceptAj : ..., x„: s„ in B2

B a > B'
------------------------------------ !---------------------- name(a) # 5 (R-accept\)
B—‘-^B^» accept : ^,..., : s„ in B2

B__ yB'
------ 7---- 1------------------- 1--------- gdzie ] = v,,..., [Z„ ] = v„ (R-acceptT)
B------ >[%! ..,x„ ■■.= t„]B2



LOTOS - opis języka 95

Wybór B = Bi [ ] Bz

B—^B'
(R-choicei)

B2—^B2
b—^b2 (R-choicez)

Przesłonięcie B = hide gi, g„in B\

Bi~^B'i J z A ,
' « J gdyname(a)g{g1,...,g„)

B—^By
(R-hidei)

Bi~^B{ , . . .
' i J gdyname(a)e{gi,...,g„} 

B——^Bi
(R-hidez)

Złożenie deaktywujące B = B\ [> B2

D « . D/r. D gdyname(a)^5
D z £>2

(R-disi)

B,—^^—>5)'
(R-dis2)B Sv'-Vu >B{

B2—^B2 
b-^b2

(R-dis2)

Złożenie równoległe B = B\ |[gh ..., g„]| B2

Bi—^B'. u z x r
(R-pari)...... s.ii^ ^^«.)cls„.

(R-par2)
«^|[S...... S.1IĄ

Bi^^B{

B, B^
(R-par3)

b^b;Hs.....sJ|b;
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Wyrażenie warunkowe B = [c ] -> B\

—!—------ y- gdy D I- c (R-cond)
B------ > B}

Lokalne wartościowanie zmiennych B = let X\ = ...,x„ = t„ in Bi

[Xi:-ti,...,xn::^tn]Bi 2BL (Rdet)
B—^B{

Niedeterministyczny wybór bramki B = choice g in [gh ..g„] [] B\

dla i = 1, n (R-gate)
B—^B'

Niedeterministyczny wybór wartości B = choice x : s [] B\

JA db t Term ^ ęR-val)
B—^B{

Powielenie bramki B = par g in [g ।, ..g„] |[/zi, ..h,„]| Bi

lRmae} 
B—^Bf

Instancja procesu B = p[gi, ..gn](ti, ..., t,„)

[x, -=tl,...,xlll::=t,l,]Bl[hi ::= g^,..,^ ::= gBf
B—^B{

(R-inst) 
gdzie B| jest treścią procesu o specyfikacji

processp[hi, ..., h„](xi : sh x„: sd: ... := B( endproc
Podobnie jak w przypadku języka CCS, specyfikacja w LOTOSie generuje zbiory cią­
gów akcji. Różnica w definicji wynika z różnicy definicji specyfikacji, gdyż w przy­
padku CCS specyfikacja jest rozumiana jako para: wyrażenie behawioralne i zbiór de­
finicji procesów, natomiast w przypadku LOTOSa specyfikacja jest rozumiana jako 
para: definicja wyróżnionego procesu i zbiór definicji pozostałych procesów. Ponie­
waż wyróżniony proces początkowy w specyfikacji w LOTOSie może mieć różne 
instancje, stąd:

Definicja 5.1
Specyfikacja BSpec = <p0, Proc>, gdzie p0 jest procesem o definicji

processp[hi, ..., hn](xi: s{, xm : 5,,,)) : funp := Bp endproc
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generuje rodzinę zbiorów ciągów akcji:

Seq(p[g}, ...,g„](Zi,

= SeqFin(p[g{, ..., £„1(0, t„,)) U Seqlnf(p[gh ...,g„](t....... , t,„)) (5.14)

gdzie: g\, gn są dowolnymi bramkami, a rb t,„- dowolnymi termami stały­
mi rodzajów s,„.

Podobnie definiuje się rodzinę zbiorów ciągów akcji obserwowalnych:

SeqObs(p[gt, ...,g„](th ...,1,,,))

= SeqObsFin(p[gh g„](th ..., t„,))

U SeqObsInf(p[g\, ...,g„](r,, (5.15)

5.4. Graf tranzycji

Grafy są jedną z często stosowanych form wizualizacji. Stosuje się je także do wizu­
alizacji obliczeń (zachowań) wyrażeń behawioralnych.

Graficzną reprezentacją relacji tranzycji dla wyrażeń behawioralnych są grafy tran­
zycji. Graf tranzycji definiujemy jako etykietowany graf skierowany, którego wierz­
chołki są etykietowane wyrażeniami behawioralnymi, a łuki - interakcjami, w taki 
sposób, że łuk pomiędzy wierzchołkami etykietowanymi wyrażeniami B, oraz Bi jest 
etykietowany interakcją g ... v„ taką, że B^ —Graf tranzycji dla danego 
wyrażenia behawioralnego B jest grafem, którego jeden z wierzchołków, wyróżniony 
jako wierzchołek początkowy, jest etykietowany wyrażeniem B, a pozostałe wierz­
chołki są wierzchołkami osiągalnymi z wierzchołka początkowego.

Oczywiście nawet dla prostych wyrażeń behawioralnych grafy tranzycji mogą być 
nieskończone. Ilustruje to przykład przedstawiający specyfikację komórki pamięci, 
która może pamiętać jedną wartość określonego rodzaju - dla ustalenia uwagi przyj- 
miemy, że będzie to rodzaj nat. Na komórce można wykonywać dwie operacje. Ope­
racja wpisania wartości powoduje umieszczenie wskazanej wartości, co przyczynia się 
do utraty poprzednio pamiętanej wartości. Operacja odczytu dostarcza wartości pa­
miętanej w komórce bez zmiany jej zawartości:

process Komórka[we, wy] (z : nat): noexit := 
we ? x : nar, Komórka[we, wy](x)

[] wy ! z; Komórka[we, wy] (z)
endproc

Powołanie instancji procesu wymaga określenia początkowej zawartości komórki, na 
przykład: Komórka[a, ł>](0).
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Graf tranzycji dla wyrażenia Komórka[a, Z>](0) jest oczywiście nieskończony, przy­
kładowy jego fragment przedstawiono na rysunku 5.1.

Rys. 5.1. Przykładowy graf tranzycji

Powodem nieskończoności grafu jest nieskończony zbiór interakcji, a w konsekwencji 
nieskończoność wyrażeń behawioralnych, w naszym przykładzie, instancji tego same­
go procesu Komórka, które różnią się od siebie tylko wartościowaniem lokalnych 
zmiennych - parametrów formalnych procesu. W celu wyeliminowania tego rodzaju 
różnorodności wyrażeń wprowadzamy pojęcie zredukowanego grafu tranzycji.

Definicja 5.2.
Dwa wyrażenia 5, oraz B2 są strukturalnie równoważne wtedy i tylko wtedy, gdy

[x, ::= *,..., x„ ::= *]£, s [y, ;:= *,.... y,„ ::= *]B2

gdzie: {x(, ..., x„} oraz {yb ..., y,„} są zbiorami zmiennych występujących w wy­
rażeniach Bi oraz B2, * jest wybranym symbolem służącym do tekstowego zastą­
pienia zmiennych, a = jest relacją równoważności tekstowej

Relacja równoważności strukturalnej dla wyrażeń jest oczywiście relacją równoważ­
ności.

Wierzchołkami zredukowanego grafu tranzycji są klasy abstrakcji określone przez 
relację strukturalnej równoważności na zbiorze wierzchołków grafu tranzycji. Klasę 
równoważności generowaną przez wyrażenie B będziemy oznaczać

Ui ::= *, ...,x„ ::= *]B

Łuki zredukowanego grafu tranzycji są określone następująco: wszystkie łuki w grafie 
tranzycji prowadzące od wierzchołka B} do wierzchołka B2, etykietowane interakcjami 
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g V| ... v„, są reprezentowane w zredukowanym grafie tranzycji jednym łukiem prowa­
dzącym od wierzchołka reprezentującego klasę abstracji [xi ::= *, ..., x„ ::= *]B, do 
wierzchołka reprezentującego klasę abstrakcji [x, ::= *, ..., x„ ::= *]B2, etykietowanym 
schematem interakcji postaci g .

ii razy

W przypadku akcji wewnętrznych łuki prowadzące pomiędzy wierzchołkami zredu­
kowanego grafu tranzycji są etykietowane symbolem i.
Wynikiem redukcji grafu tranzycji z rysunku 5.1 jest zredukowany graf tranzycji na 
rysunku 5.2a.

Rys. 5.2. Przykładowe zredukowane grafy tranzycji

b)

Kolejny przykład przedstawia bufor jednopozycyjny, który różni się od poprzednio 
rozważanej komórki tym, że odczyt wprowadzonej wartości powoduje skasowanie za­
wartości bufora

process Bufl[we, wy] : noexit :=
we? x : naf, wy! x; Buf 1 [we, wy]

endproc

Zredukowany graf tranzycji dla instancji procesu Buf 1 [we, wy] przedstawiono na ry­
sunku 5.2b. Bufora jednopozycyjnego można użyć jako elementu składowego do bu­
dowy dwupozycyjnego bufora przesuwnego:

process Buf2[we, wy] : noexit :=
hide w in

Bufl[we, w] |[w]| Bufl[w, wy]
where

process Bufl[we, wy] : noexit :=
we? x : Naf, wy! x; BufI[we, wy]

endproc
endproc
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Uogólnieniem jest bufor n-pozycyjny, gdzie n >1, o postaci

process Buf [we, wy](n: Nat): noexit :=
[n = 1] -> Buf][we, wy]

[] hide w in [n > 1] -> Bufl[we, w] |[w]| Buf [w, wy](minus(n, succ{z)) 
where

process Buf] [we, wy] : noexit :=
wel x : Naf, wy! x; Bufl[we, wy]

endproc
endproc

Rys. 5.3. Zredukowany graf tranzycji 
dla instancji procesu Buf [we. wyj(3)

Zredukowany graf tranzycji dla instancji procesu Buf [we, wy](3) ma postać pokazaną 
na rysunku 5.3, gdzie poszczególnym wierzchołkom odpowiadają następujące wyraże­
nia behawioralne:
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v0 : hide w, w'in Bufl[we, w] |[w]| Bufl[w, w3 |[w3| Bufl[w\ wy]
vl : hide w, w'in w *; Bufl[we, w] |[w]| Bufl[w, w^ |[w3| Bufl[w', wy]
v2 : hide w, w'in Bufl[we, w] |[w]| w' *; Bufl[w, w^ |[w3| Bufl[w', wy]
v3 : hide w, w' in w *; Bufl[we, w] |[w]| w' *; Bufl[w, w3 |[wj| Bufl[w', wy]
v4 : hide w, w'in Bufl[we, w] |[w]| Bufl[w, w3 |[w3| wy *; Bufl[w', wy]
v5 : hide w, w'in w *; Bufl[we, w] |[w]| Bufl[w, w3 |[w3| wy *; Bufl[w', wy]
v6 : hide w, w'in Bufl[we, w] |[w]| w' *; Bufl[w, w3 |[w3| wy *; Bufl[w', wy]
v7 : hide w, w'in Bufl[we, w] |[w]| Bufl[w, wj |[w3| Bufl[w', wy]

Zwróćmy uwagę, że rekursywne zagnieżdżenie operatora przesłonięcia wymaga prze­
mianowania przesłanianych bramek, stąd użycie konstrukcji:

hide w, w'in Bufl[we, w] |[w]| Bufl[w, wj |[w3| Bufl[w', wy]

Kolejny przykład jest interesujący z dwóch względów. Po pierwsze - stos był zdefi­
niowany w poprzednim rozdziale jako typ danych, natomiast tu jest zdefiniowany jako 
proces - jest to ilustracja ogólniejszego stwierdzenia, że typ danych może być mode­
lem dowolnego programu sekwencyjnego. Po drugie - przykład pokazuje, że zreduko­
wany graf tranzycji może być nieskończony.

process BStos[pusty, szczyt, ze_stosu, na_stos] : noexit :=
( pusty ! true', exit
[] na_stos 1 x : elem; Stos[pusty, szczyt, ze_stosu, na_stos](x)

) » BStos[pusty, szczyt, ze_stosu, na_stos] 
where

process Stos\pusty, szczyt, ze_stosu, na_stos](x : elem) : exit := 
pusty \falsc, Stos[pusty, szczyt, ze_stosu, na_stos](x)

[] szczyt ! x\ Stos[pusty, szczyt, ze_stosu, na_stos](x)
[] ze_stosu: exit
[] na_stos 2 y : elem',

Stos[pusty, szczyt, ze_stosu, na_stos](y)
» Stos[pusty, szczyt, ze_stosu, na_stos](x)

endproc
endproc

Przykład stosu reprezentuje sytuację, kiedy zredukowany graf tranzycji nie jest skoń­
czony (rys. 5.4). W celu skrócenia zapisu wyrażeń behawioralnych na rysunku zamiast 
pełnych nazw procesów i bramek użyto tylko ich skrótów.
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Rys. 5.4. Nieskończony zredukowany graf tranzycji

Przyczyną nieskończoności zredukowanego grafu tranzycji jest rekursja, w której 
występują operatory złożenia równoległego złożenia aktywującego lub deaktywują- 
cego.

Wystarczającymi, ale niekoniecznymi, warunkami skończoności są:

• Jeżeli wyrażenie behawioralne Bt |[...]|B2 jest podwyrażeniem treści procesu p, to 
ani B|, ani B2 nie zawierają wywołania procesu p lub wywołań innych procesów, 
które pośrednio lub bezpośrednio wywołują proces p.

• Jeżeli wyrażenie behawioralne B, [> B2 lub » B2 jest podwyrażeniem treści 
procesu p, to B, nie zawiera wywołania procesu p lub wywołań innych procesów, 
które pośrednio lub bezpośrednio wywołują proces p.

5.5. Strukturyzacja specyfikacji

Specyfikacja behawioralna jest zbiorem definicji procesów z wyróżnioną definicją 
procesu początkowego. Złożone specyfikacje behawioralne są strukturalizowane. 
Przyjęta konwencja strukturalizacji jest odzwierciedleniem podejścia zstępującego 
- od ogółu do szczegółu. Znajduje to odzwierciedlenie w następującym szkielecie spe­
cyfikacji:
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specification nazwa_specyfikacji[lista_braniek_formalnych\
(lista-formalnych „parametrów-wartościowych): 
funkcjonalność

definicjajtypu

definicja_typu
behavior

wyrażenie-behawioralne
where

definicja_procesu

definicja _procesu
endspec

Nazwą wyróżnionego procesu początkowego jest nazwa_specyfikacji, jego parametra­
mi są lista_bramek_formalnych oraz lista_parametrów_wartościowych, a jego treścią 
jest wyrażenie-behawioralne. Dodatkowo specyfikację, podobnie jak każdy proces, 
charakteryzuje funkcjonalność, określająca sposób jego kończenia się.

Definicje typów danych, opisane w poprzednim rozdziale, są typami globalnymi spe­
cyfikacji, które mogą być wykorzystywane przez procesy składowe specyfikacji. Typy 
mogą być typami standardowymi, pochodzącymi z biblioteki typów. W przypadku 
użycia typów standardowych typt,..., typ,, ich deklaracja ma postać:

library typ},..., typ,, endlib

Po słowie kluczowym where występuje lista definicji procesów. Szkieletowa postać 
definicji procesów przedstawia się następująco:

process nazwa„procesu \lista_bramek-formalnych]
(lista-formalnych-parametrów-Wartościowych) : 

funkcjonalność := 
wyrażenie-behawioralne 

where
definicje-lokalne

endproc

Każdy proces może mieć opcjonalnie własne definicje-lokalne, które są definicjami 
typów lub procesów wewnętrznych.

Każda specyfikacja strukturalna może zostać przetransformowana do postaci kano­
nicznej. Proces takiej transformacji, nazywany spłaszczaniem specyfikacji, jest przed­
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stawiony w [ISO 8807], Spłaszczanie polega na takiej zamianie nazw bramek i proce­
sów, aby stały się one unikalne w ramach całej specyfikacji, inaczej: chodzi o przenie­
sienie wszystkich definicji lokalnych na jeden poziom globalny. W podobny sposób 
można dokonać spłaszczenie typów, to znaczy przeniesienia ich definicji na jeden 
globalny poziom. Semantyka dowolnej specyfikacji strukturalnej jest równoważna 
semantyce jej transformacji do postaci kanonicznej.

Przykład złożonej specyfikacji opisuje funkcjonowanie automatu sprzedaży biletów 
parkingowych. Scenariusz pracy urządzenia jest następujący: Działanie automatu skła­
da się z dwóch faz: płacenia (proces Płacenie) i wydania biletu (proces Wydanie). 
W pierwszej fazie użytkownik deklaruje wartość biletu, który chce uzyskać, wprowa­
dzając odpowiednią wartość przez bramkę kwota (akcja kwotalk : nat). Pomijamy tu 
szczegóły wpisywania wprowadzonej wartości. Następnie następuje płacenie, które 
polega na wrzucaniu kolejnych monet, aż do momentu, gdy ich wartość osiągnie przy­
najmniej zadeklarowaną wartość biletu (akcja monetalm -.nat). Przed osiągnięciem 
tego momentu użytkownik może się wycofać z transakcji przez interakcję na bramce 
wycofaj (akcja wycofaj, której nie towarzyszy wymiana danych), po czym następuje 
przejście do drugiej fazy - do zwrotu wprowadzonej wartości (akcja reszta\r). Jeżeli 
użytkownik nie wycofa się i wpłaci pełną kwotę, także następuje przejście do drugiej 
fazy - wydania biletu i ewentualnej reszty.

specification Parkomat[kwota, moneta, wycofaj, reszta, bilet, wyłącz] : noexit

Płacenie [kwota, moneta, wycofaj] 
Wydanie[bilet, reszta] 
Parkomat[kwota, moneta, wycofaj, reszta, bilet, wyłącz] 

) [> (i; stop [] wyłącz', stop) 
where

process Płacenie [kwota, moneta, wycofaj] : exit(nat) := 
kwota 1 k : nat\
Pobierz[nioneta, wycofaj](k, 0) 

where
process Pobierz[moneta, wycofaj](k : nat, s : nat) : exit(nat, nat) := 

( [5 < k ] -> moneta ? ni :naf, Pobierz[moneta, wycofaj](k, s + m) 
[] [s = k)] -> exit(^, 0) 
[] [nor(s < k )] -> exit(&, s-k) 
[] wycofaj', exit(0, 5)

endproc(*Pobierz*)
endproc(* Płacenie*)
process Wydanie[bilet, reszta]: exit :=

behavior
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let k : nat, s : nat in
[k > O and r > 0] -> bilet! k: reszta ! r; exit

[] [£ > O and r = 0] -> bilet ! k; exit
[] [k = O and r > 0] -> reszta! r, exit

endproc (*Wydanie*)
endspec (*Parkomat*)

Przedstawiony model uwzględnia dodatkowo możliwość przerwania pracy parkomatu 
albo przez wyłączenie - akcja wyłącz, albo z powodu awarii - akcja wewnętrzna i.
Kolejny przykład jest specyfikacją systemu sortującego. Działanie tego systemu opie­
ra się na algorytmie sortowania przez wtłaczanie. Koncepcja algorytmu jest następują­
ca: Niech

c» = <a\, ..., a„>

będzie nieposortowanym ciągiem elementów - dalej zakładamy, że są to liczby natu­
ralne, reprezentowane typem standardowym NaturalNumber. Ciąg c() będziemy prze­
kształcać kolejno w ciągi cą, ..., c„. Ciąg ck, dla k = 1, ..., n, stanowi posortowany ciąg 
początkowych k elementów, czyli at...... ak, ciągu c(). Ciąg c„ będzie zatem posorto­
wanym ciągiem wszystkich elementów ciągu c0. Przekształcanie ciągów cą, ..., c„ od­
bywa się według następujących zasad:

• Ciąg ci =def<ai>.
• Jeżeli utworzono ciąg ck = <a ,...,a- >, gdzie zj, ..., zj jest permutacją 1, .... k, 

to bierze się element ak+i z ciągu c0 i następnie, przeglądając ciąg ck od pozycji 
pierwszej do ostatniej, znajduje się w nim taką pozycję m, że

Gm -I A + l 'm
i ciąg q+i wyznacza się jako

c,. = <a,■ ,..., a, ,a,..,a, ,...,a, > A + l '| 'm-l ’ *+!’ lk

System sortujący opisywany w LOTOSie działa w taki sposób, że przez jedną ze 
swych bramek wczytuje się kolejne liczby nieposortowanego ciągu, a następnie - 
przez drugą bramkę - wyprowadza się ciąg posortowany. Parametrem specyfikacji jest 
liczba określająca długość sortowanego ciągu

specification Sortowanie[we, wy] (z?: Nat) : noexit 
library Boolean, NaturalNumber endlib

behavior
Wtłaczanie[we, wv](zz, 0)

where
process Wtłaczani e[we, wy](z : Nat,j : Nat) : noexit:=
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[Shcc(O) It z] -> hide p in
Bufl[we, p](i,j) |[p]| Wtłaczame[p, wy](Pred(i), Succ(j))

[] [Swcc(0) eq z] -> Bufl[we, wy](i,j)
endproc
where

process Bufl [we, wy] (z: Nat,j : Nat): noexit :=
(* Komentarz: instancja procesu odpowiada ustalonej pozycji w sortowanym 

ciągu i służy do wprowadzenia pierwszego elementu na tę pozycję. Para­
metr i oznacza numer pozycji liczonej od lewej do prawej strony (rys. 5.5); 
parametr j jest dopełnieniem i do liczby n, będącej długością sortowanego 
ciągu. *)

we ? x:Nat; Buf2[we, wy](x, Pred(i),j)
endproc
where

process Buf2[we, wy](a: Nat, i: Nat, j : Nat) : noexit :=
(* instancja procesu służy do porównywania elementu wczytanego od 

lewego sąsiada - instancji procesu Bufl - z elementem zapamięta­
nym i przesłania większego z nich do sąsiada po prawej stronie 
(rys. 5.5) *)

[0 It z] -> we ? x : Nat;
( [x le a] -> wy\a ; Buf2[we, wy](x, Pred(i),j)
[] [a le x] -> wy!x ; Buf2[we, wy](a, Prędki), j)

[] [z eq 0] -> Buf3[we, wy](a,j)
endproc
where

process Buf3[we, wy] (a: Nat ,j : Nat): noexit :=
(* instancja procesu służy do wyprowadzania elementów posor­

towanego ciągu do sąsiada po prawej stronie (rys. 5.5) *)
[0 It j] -> wy ! a ; we!x:Nat; Buf3[we, wy](x, Pred(j))

[ ] [j eq 0] -> wy\a ; stop
endproc

endproc
endproc

endproc
endspec

Na rysunku 5.5 przedstawiono strukturę systemu sortującego wyrażoną przez powią­
zanie instancji procesów Bufl. Warto zwrócić uwagę na to, że w przedstawionej po­
staci system daje możliwość równoległego wykonywania wielu operacji porównują­
cych - wynika to z równoległego złożenia instancji procesów.
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Rys. 5.5. Struktura systemu sortującego

5.6. Uwagi końcowe

W tym rozdziale przedstawiono, w sposób tylko częściowo sformalizowany, opis 
składni i semantyki języka LOTOS. Pełny opis zawiera dokument standaryzacyjny 
[ISO 8870]. Wcześniejsza jego wersja jest zawarta w opracowaniach: [Brinksma 
1988], [Bolognesi, Brinksma 1989]. Dokładny opis projektu, w ramach którego pro­
wadzono prace nad LOTOSem, przedstawia książka [van Eijk, Vissers, Diaz 1989].

Przykłady ilustrujące zostały zaczerpnięte między innymi z prac [Huzar, Kuźniarz 
1990a, 1990b, 1990c],

Język LOTOS był punktem odniesienia do definiowania innych języków specyfikacji 
formalnych. Przykładem próby definiowania języka ukierunkowanego na specyfikację 
systemów rozproszonych zgodnych ze standardami [ISO/IEC 10746-2, 1995], [1SO/IEC 
10746-3, 1995] jest rozprawa doktorska [Hnatkowska 1998]. Zdefiniowany język 
O-LOTOS ma wprawdzie taką samą siłę ekspresji jak LOTOS (abstrakcyjna imple­
mentacja jest zdefiniowana jako transformacja języka O-LOTOS na język LOTOS), 
ale umożliwia zwiększenie efektywności fazy analizy wytwarzania oprogramowania, 
a uzyskana specyfikacja może być wykorzystana podczas projektowania interfejsu 
użytkowego.

LOTOS był również stosowany do definiowania semantyki innych języków. Przykła­
dem jest praca [Hnatkowska, Huzar 2001], przedstawiająca semantykę diagramów 
stanów języka UML [UML 1.3, 1999] w postaci wyrażeń behawioralnych LOTOSa.

Zastosowaniom LOTOSa towarzyszył rozwój metodyk i narzędzi programistycznych. 
Głównymi europejskimi ośrodkami uczestniczącymi w tego rodzaju przedsięwzię­
ciach były uniwersytety w Madrycie i Liege, a przede wszystkim INRIA Rhóne-Alpes 
(Institut National de Recherche en Informatiąue et en Automatięue) - instytut, w któ­
rym opracowano najbogatsze środowisko (zob. rozdz. 7.) wspomagające specyfiko- 
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wanie i badanie własności specyfikacji w LOTOSie. Poza Europą ośrodkiem zajmują­
cym się LOTOSem jest uniwersytet w Ottawie. Informacje o różnych ośrodkach zwią­
zanych z LOTOSem można uzyskać między innymi na stronach internetowych:

http://www.inrialpes.fr/vasy/elotos/
http://www-run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos
http://www.cs.stir.ac.uk/~kjt/research/well/

Podobnie jak każdy język, LOTOS ulegał ewolucji. Głównymi przyczynami ewolucji 
były krytyka stosowanego podejścia do typów danych (skomentowana w zakończeniu 
poprzedniego rozdziału) oraz potrzeba specyfikowania ograniczeń czasowych. Od 
1997 roku prowadzono prace, które w 2001 roku zakończyły się ustanowieniem no­
wego standardu E-LOTOS [ISO/IEC 15437:2001],

http://www.inrialpes.fr/vasy/elotos/
http://www-run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotoshttp://www.cs.stir.ac.uk/%7Ekjt/research/well/
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6. Specyfikacja usług i protokołów sieciowych

6.1. Elementy modelu referencyjnego ISO/OSI

Głównym obszarem zastosowań języka LOTOS, opracowanego w ramach ISO [ISO 
8807] jako jedna z formalnych technik opisu standardów sieciowych, jest specyfikacja 
usług i protokołów.

Sieć komputerowa jest systemem. Powiązania pomiędzy elementami systemu tworzą 
jego strukturę. Z systemem jest związany cel funkcjonowania, z tego względu system 
jest niepodzielną całością. Oznacza to, że każdy, dowolnie wyodrębniony podzbiór 
elementów ma wpływ na funkcjonowanie systemu, ale żaden z podzbiorów nie ma 
wyłącznego wpływu, czyli usunięcie dowolnego elementu nie pozwala pozostałym 
elementom na pełną realizację celu systemu. Elementami składowymi złożonych sys­
temów mogą być inne systemy - jego podsystemy.

Struktura sieci komputerowej jest wyznaczona przez zbiór komputerów połączonych 
ze sobą łączami komunikacyjnymi. Składowe komputery, ze względu na ich wewnę­
trzną złożoność, określa się również jako systemy - podsystemy sieci komputerowej. 
Celem funkcjonowania sieci komputerowej jest umożliwienie użytkownikom dostępu 
do usług informacyjnych i obliczeniowych, oferowanych przez współpracujące syste­
my komputerowe.

Możliwość właściwego funkcjonowania sieci komputerowej zapewnia zbiór standar­
dów określających zasady, które powinny być akceptowane przez wszystkie współpra­
cujące systemy komputerowe. Podstawowym odniesieniem dla wszystkich tworzo­
nych standardów jest model referencyjny ISO/OSI (Open Systems Interconnection) 
[ISO 7498], nazywany też modelem architektury otwartych systemów komputero­
wych. Otwartość jest tu rozumiana jako gotowość do współpracy systemu kompute­
rowego z każdym innym systemem, który spełnia określone wymagania. Istota mo­
delu referencyjnego ISO/OSI polega na przyjęciu standardowej dekompozycji funkcji 
systemów otwartych. Poniżej omówiono krótko model ISO/OSI, gdyż przyjęte tu 
ogólne zasady są akceptowane także przez inne modele [Comer 1997].

Dekompozycja funkcji polega na wprowadzeniu liniowo uporządkowanego zestawu 
warstw funkcjonalnych (usługowych) systemów otwartych. Model OSI wyróżnia siedem 
takich warstw, nazywanych - poczynając od najniższej do najwyższej - warstwą: fi­
zyczną, liniową, sieciową, transportową, sesyjną prezentacyjną! aplikacyjną (rys. 6.1).

Warstwy pozostająze sobą w relacji usługodawca-usługobiorca. Warstwa wyższa jest 
usługobiorcą usług sąsiadującej warstwy niższej - usługodawczej. Warstwa najniższa 
nie korzysta już z usług innej warstwy, a warstwa najwyższa dostarcza swych usług 
użytkownikom, którzy stanowią element otoczenia systemu.
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Usługi i funkcje wykonywane w obrębie poszczególnych warstw szczegółowo zostały 
omówione między innymi w pracach [Bilski, Dubielewicz 1991, 1993].

Usługi danej warstwy są definiowane przez zbiór poleceń usługowych, za pomocą 
których warstwa wyższa komunikuje się z warstwą niższą. Polecenia są abstrakcyjne 
w tym sensie, że nie określają one sposobu implementacji, są tylko specyfikacjami 
pewnych funkcjonalności (usług).

Warstwę reprezentuje zbiór stacji partnerskich (peer entities). Stacje te, realizując 
usługi żądane od warstwy wyższej, współpracują ze sobą poprzez wymianą danych. 
Wymiany tej nie dokonują bezpośrednio, lecz za pośrednictwem obiektów partner­
skich w niższych warstwach (rys. 6.1).

Otwarty 
system 

komputerowy

7-podsystem7-stacja 7-stacja

Otwarty 
system 

komputerowy

5-stacja5-stacja

-

4-stacja .

3-stacja

4-stacja

3-stacja

4-warstwa

2-stacja 

ZEZ 
1-stacja

2-stacja

1-stacja

2-podsystem

1-podsystem I

W

Medium transmisyjne

Rys. 6.1. Architektura warstwowa modelu ISO/OSI

Zasady współpracy stacji partnerskich określa się mianem protokołu danej warstwy.
Protokół można uważać za abstrakcyjną implementację usługi danej warstwy.
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Zbiór n dolnych warstw, dla n = 1, 7, stanowi n-podsystem sieci komputerowej.
Stwierdzenie, że stacja z warstwy n+1 korzysta z usług warstwy n, oznacza w istocie, 
że stacja korzysta z usług n-podsystemu. Realizacja polecenia skierowanego przez sta­
cję z danej warstwy może pociągać zaangażowanie stacji w warstwach niższych, za­
równo po stronie systemu otwartego, z którego zostało skierowane polecenie, jak i po 
stronie systemu otwartego, z którym współpracuje dana stacja.

Strukturę powiązań pomiędzy stacjami danego systemu otwartego zilustrowano na 
rysunku 6.2.

Rys. 6.2. Powiązania stacji 
w sąsiednich warstwach

Dany system otwarty może w danej warstwie mieć wiele stacji partnerskich. Należące 
do jednej warstwy stacje mogą współpracować ze sobą. Zasadniczy schemat współ­
pracy polega na tym, że stacje ustalają ze sobą połączenie na pewien okres, w trakcie 
którego mogą wymieniać pomiędzy sobą ustalone dane. W połączeniu najczęściej 
uczestniczą dwaj partnerzy, z których jeden jest inicjatorem, a drugi respondentem 
połączenia, ale możliwe są także połączenia z udziałem wielu partnerów. Każde po­
łączenie ma swój identyfikator. W trakcie trwania połączenia wyróżnia się trzy fazy: 
faza nawiązania połączenia, podczas której ustala się warunki współpracy, fazę za­
sadniczą, w której prowadzi się wymianę danych i fazę rozłączenia, kiedy stacje po­
twierdzają zakończenie współpracy. Połączenie jest identyfikowane przez zbiór iden­
tyfikatorów końców połączeń CEP (Connection End Point Identifier). Współpraca 
stacji może się też odbywać bez ustanawiania połączeń i polega na przesyłaniu bez 
zapowiedzi danych od danej stacji do innej o wskazanym adresie.

Stacje partnerskie danej warstwy nie komunikują się bezpośrednio, lecz za pośred­
nictwem stacji warstw niższych. Stacje sąsiadujących warstw, w tym samym systemie 
otwartym, są ze sobą powiązane za pośrednictwem punktów dostępu do usług SAP 
(Service Access Point). Identyfikator danego punktu dostępu do usług n warstwy na­
zywa się n-adresem. Punkt dostępu jest związany dokładnie z jedną n-stacją i może
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□ Końcowy punkt połączenia (CEP)

być związany z wieloma (n+l)-stacjami. Oznacza 
to, że pojedynczy punkt dostępu do usługi może 
służyć do jednoczesnego przekazywania wielu 
strumieni poleceń, a pojedyncza (zz)-stacja może 
być zaangażowana w jednoczesne prowadzenie 
komunikacji pomiędzy wieloma (/z+l)-stacjami, 
czyli utrzymywanie (n)-połączeń (zob. rys. 6.3).

Rys. 6.3. Końcowe punkty połączeń 
dla (n+l)-stacji w punkcie dostępu do usługi

(/i+l)-stacja kieruje polecenia żądania do (zz)-stacji przez wybrany punkt dostępu do 
usługi. Polecenia mają nazwę i ewentualne parametry, (n)-stacja przyjmuje polecenia 
żądania i, po ich zrealizowaniu, przekazuje poleceniem zwrotnym informację o wyko­
naniu lub niewykonaniu polecenia żądania.

Opis usług (n)-warstwy polega więc - jak określono to wyżej - na zestawieniu pole­
ceń żądań i poleceń zwrotnych, jakie mogą być wymieniane pomiędzy (/t+l)-stacją 
a (n)-stacją, oraz na podaniu dopuszczalnych ciągów wymiany tych poleceń.

Określenie protokołu (n)-warstwy - jako abstrakcyjnej implementacji usług - wy­
maga, w pierwszej kolejności, określenia świadczonych usług, czyli (n)-usług oraz 
wykorzystywanych usług, czyli (n-l)-usług. Następnie wymaga definicji komuni­
katów protokołowych (PDU - Protocol Data Unit), czyli danych, które wymieniają 
pomiędzy sobą stacje (zz)-warstwy, oraz reguł transformacji tych komunikatów na 
polecenia usługowe do warstwy niższej. Wymaga wreszcie określenia dopuszczal­
nych ciągów wymian komunikatów protokołowych oraz akcji wykonywanych przez 
(n)-stacje.

(n+1 )-stacje wymieniają pomiędzy sobą komunikaty protokołu (n)-warstwy, dalej 
w skrócie oznaczane jako (n+l)-PDU. Komunikaty te są wymieniane za pośrednic­
twem (zz)-stacji, do której (n+l)-stacja kieruje polecenia w postaci ustalonej przez 
interfejs pomiędzy stacjami. Komunikaty interfejsu - (zz)-IDU {Interface Data Unit) 
- składają się z części sterującej - (/z)-ICI (Interface Control Information) oraz 
części usługowej - (n)-SDU (Service Data Unit), którą jest jednostka protokołowa 
(/z+l)-PDU (zob. rys. 6.4). Komunikat interfejsu odebrany przez (zz)-stację jest da­
lej przekształcany, co polega - w pierwszej kolejności - na wyodrębnieniu części 
sterującej i serwisowej, a następnie na przygotowaniu komunikatu protokołu 
(n)-PDU. Komunikat (zz)-PDU przenosi, jako swoją część, komunikat (>/+l)-PDU 
oraz informację sterującą protokołu (n)-warstwy - (zz)-PCI {Protocol Control In­
formation).
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Rys. 6.4. Odwzorowanie jednostek danych 
pomiędzy dwiema sąsiednimi warstwami

6.2. Reprezentacja modelu referencyjnego

Specyfikacje usług i protokołów sieciowych w LOTOSie mają pewne wspólne włas­
ności. W tym podrozdziale przedstawiono nieformalnie tylko uproszczone zasady repre­
zentacji elementów statycznych i dynamicznych modelu ISO/OSI w języku LOTOS.

Granice pomiędzy warstwami modelu OSI są w LOTOSie reprezentowane przez po­
jedynczą bramkę. Przyjęto następującą konwencję symboli bramek reprezentujących 
poszczególne warstwy:

• warstwa fizyczna - ph
• warstwa liniowa - dl
• warstwa sieciowa - n
• warstwa transportowa -1
• warstwa sesyjna - s
• warstwa prezentacyjna - p
• warstwa aplikacyjna - a

Wszystkie akcje komunikacyjne z udziałem punktu dostępu do usługi (/i)-SAP, o iden­
tyfikatorze adres rodzaju IdentyfikatorSAP, są odwzorowywane w klasę akcji języka 
LOTOS o postaci:

n\adres ...
lub

nladr: IdentyfikatorSAP...
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Rodzaj Identyfikator powinien być elementem abstrakcyjnego typu danych gwarantu­
jącego co najmniej rozróżnialność adresów. Na przykład definicja odpowiedniego 
typu może mieć postać

type Identifier is Boolean
sorts IdentifierSAP
opns someAddress : -> IdentifierSAP

anotherAddress : IdentifierSAP -> IdentifierSAP
_eq_, _ne_ : IdentifierSAP , IdentifierSAP -> Bool

eqns forall x, y : IdentifierSAP ofsort Bool
x eqy = true ;
someAddress eq anotherAddress(x) =false ;
anotherAddress(x) eq someAddress- false ;
anotherAddress(x) eq anotherAddress(y) = x eq y ;
x ne y = not(x eq y) ;

endtype
Podana specyfikacja wskazuje tylko istotne własności, które powinien mieć typ. Mia­
nowicie operacja zeroargumentowa someAddress wyznacza pewien ustalony iden­
tyfikator, a operacja jednoargumentowa anotherAddress jest generatorem nowych, 
unikatowych identyfikatorów.

Końcowy punkt połączenia (n)-CEP, o identyfikatorze połączenie rodzaju Identyfika- 
torCEP, związany z powyższym punktem dostępu, a dokładniej wszystkie akcje 
z udziałem tego punktu, są odwzorowywane w klasę akcji

n\adres\idCEP...
lub

nladr: IdentyfikatorSAPlid : IdentyfikatorCEP...

Do rodzaju IdentyfikatorCEP odnoszą się takie same postulaty jak do rodzaju Identyfi- 
katorSAP.

Polecenia usługowe odwzorowuje się w akcje postaci

n! adres! idCEP lpolec(...) 
lub

nladr : IdentyfikatorSAPlid : IdentyfikatorCEPlpolec : ServicePrimitive

gdzie poleci...) jest termem rodzaju ServicePriniitive. Polecenia usługowe są różne dla 
stacji różnych warstw. W celu wyjaśnienia rozumienia termów reprezentujących pole­
cenia rozpatrzmy przykład podzbioru poleceń usługowych, które służą do nawiązywa­
nia połączenia pomiędzy stacjami warstwy sesji. Specyfikacja odpowiedniego typu ma 
postać
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type SessionServiceConnectionPrimitive is 
SessionAddress, SessionReqms, SessionData

sorts SSCP
opns SCONreą, SCONind, SCONcnf, SCONrsp : 

SAddress, SData, SReqms -> SSCP
SCadr : SSCP -> SAddress
SCdata : SSCP -> SData
SCreqms : SSCP -> SRqms

eqns forall adr : SAddress, data : SData, reqni: SReqms
ofsort SAddress
SCadr(SCONreq{adr, data, reqms}) = adr ;
SCadr(SCONind(adr, data, reqms)) = adr ;
SCadrjSCONcufiadr, data, reqms)) = adr ;
SCadr(SCONrsp(adr, data, reqms)) = adr ;
ofsort SData
SCdata(SCONreq(adr, data, reqms)) = data ;
SCdatajSCONindjadr, data, reqms)) = data ;
SCdatajSCONcnfiadr, data, reqms)) = data ;
SCdata(SCONrsp(adr, data, reqms)) = data ;
ofsort SReqms
SCreqtns(SCONreq(adr, data, reqms)) = reqms ;
SCreqtnsjSCONind(adr, data, reqms)) = reqms ;
SCreqms(SCONcnf(adr, data, reqms)j = reqms ;
SCreqms{SCONrsp(adr, data, reqms)) = reqms ;

endtype

Przedstawiony typ abstrakcyjny SessionServiceConnectionPrimitive wraz z pozosta­
łymi typami, których jest rozszerzeniem, pochodzą ze standardu ISO dotyczącego 
warstwy sesji. Typy SessionAddress, SessionReqms, SessionData, które nie są tu defi­
niowane, służą do zdefiniowania parametrów poleceń usługowych SCONreq, SCO- 
Nind, SCONcnf, SCONrsp. Typy te reprezentują odpowiednio adresy końców ustana­
wianych połączeń sesyjnych, danych wymienianych podczas połączenia sesyjnego 
oraz danych sterujących do ustanawiania parametrów połączenia sesyjnego. Wpro­
wadzone operacje służą tylko do selekcji elementów poleceń usługowych.

Usługi (n)-warstwy przedstawia się, podając opis funkcjonowania (n)-stacji. (/j)-stacja 
- pośrednicząc pomiędzy (n+1)-warstwą a (n-l)-warstwą- przekształca (n)-polecenia 
usługowe na (n-l)-polecenia usługowe. Specyfikację zachowania (n)-stacji przedsta­
wia się w LOTOSie jako proces, który powinien spełniać trzy rodzaje ograniczeń:
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• ograniczenie dopuszczalnych sekwencji wymian poleceń usługowych pomiędzy 
(n)-stacjąa (n+l)-warstwą- G-ograniczenie,

• ograniczenie dopuszczalnych sekwencji wymian poleceń usługowych pomiędzy 
(n)-stacją a (n-1)-warstwą- D-ograniczenie,

• ograniczenie dopuszczalnych sekwencji wymian poleceń usługowych pomiędzy 
(/?+l)-warstwą i (n-1)-warstwą- GD-ograniczenie.

Zakładając, że każde z wymienionych ograniczeń jest reprezentowane odpowiednim 
wyrażeniem behawioralnym, strukturę całego procesu można przedstawić w uprosz­
czonej postaci

process (n)-stacja[g, d\
(GldSAP : GIdentyfikatorSAP, DldSAP : DldentyfikatorSAP):
noexit :=

G-ograniczenia[g](GIdSAP : GIdentyfikatorSAP)

IWI
GD-ograniczenia[g, d](GIdSAP : GIdentyfikatorSAP,

DldSAP : DldentyfikatorSAP)

G-ograniczenia[d\(DIdSAP: DldentyfikatorSAP)
endproc

gdzie: g, d są nazwami bramek, a GIdentyfikatorSAP oraz DldentyfikatorSAP są ro­
dzajami reprezentującymi zbiór identyfikatorów punktów dostępu do usługi odpo­
wiednio warstwy n oraz n-1.

W uproszczeniu usługi (n)-warstwy reprezentuje instancja procesu o podanej wyżej 
definicji z dowolnym wyborem parametrów aktualnych. Możemy usługi te wyrazić 
w postaci definicji nowego procesu

process (n)-usługi[g\ : noexit := 
hide d in
choice GldSAP : GIdentyfikatorSAP []

choice DldSAP : DldentyfikatorSAP [] (n)-stacja[g, d](GIdSAP, DidSAP) 
endproc

Uproszczenie przedstawionego schematu stacji wiąże się z pozostaniem <7 jako bramki 
wewnętrznej, podczas gdy w standardowej postaci bramki takiej się nie używa. Od­
powiedni przykład przedstawiono w następnym podrozdziale.

Protokół (n)-warstwy reprezentuje w LOTOSie wyrażenie, które jest złożeniem rów­
noległym procesów reprezentujących przynajmniej dwie (n)-stacje oraz wyrażenia 
reprezentującego (n-l)-usługi. Uproszczony schemat takiego wyrażenia ma postać



Specyfikacja usług i protokołów sieciowych 117

process (n)-protokół[g] : noexit :=
hide d in

( (n)-stacja[g, d](GId\SAP, Did^SAP}

101
(n)-stacja[g, d](GidzSAP, Did^SAP)

)
|M|

(n-l)-usługi[d]
endproc

6.3. Przykłady specyfikacji

Podano dwa przykłady, które stanowią opis prostych usług komunikacyjnych, przy 
czym pierwszy ma charakter wprowadzający, a drugi nawiązuje do istniejącego stan­
dardu opisu usług warstwy transportowej.

Przykład 1

Opisujemy warstwę świadczącą usługi niezawodnej komunikacji, która opiera się na 
usługach warstwy dostarczającej zawodnych usług komunikacyjnych (zob. rys. 6.5).

Rys. 6.5. Architektura systemu transferu

Zakłada się, że w danej chwili pomiędzy użytkownikami może być prowadzona tylko 
jedna komunikacja.
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Specyfikacja usług świadczonych przez warstwę wyższą WW

Warstwa ma za zadanie przesyłanie komunikatów, wysyłanych pomiędzy dwoma 
użytkownikami, nazywanymi Użytkownik-A oraz Użytkownik-B.

Dostęp do warstwy odbywa się przez przekazywanie poleceń usługowych na bramce 
unzt (usługi niezawodnego transferu). Specyfikacja typu określającego polecenia usłu­
gowe jest następująca:

type PoleceniaWW is DaneWW, Boolean
sorts PolWW
opns weWW, wyWW : DaneWW -> PolWW 

zawartośćWW: PolWW -> DaneWW 
jestWeWW: PolWW -> Bool 
jestWyWW: PolWW -> Bool

eqns forall dane : DaneWW
ofsort DaneWW
zawartośćWW(weWW(dane)) = dane', 
zawartośćWW(wyWW(dane)) = dane', 
ofsort Bool
jestWeWW(weWW[daneWW)) = truć, 
jestWeWW(wyWW(daneWW)) =false; 
jestWy WW(wy WW(daneWW)) = truć, 
jestWy WW(weWW(daneWW)) =false\

endtype

gdzie DaneWW jest nazwą rodzaju i niezdefiniowanego tu typu określającego dane 
przesyłane w warstwie WW.

Operacja weWW służy do przekazania danych do przesłania, a wyWW - do odebrania 
przesłanych danych. Operacje jestWeWW oraz jestWyWW służą do rozpoznawania, 
czy dane polecenie usługowe jest operacją weWW czy wyWW.

Akcje wykonywane na tej bramce mogą mieć jedną z postaci:

unzt UdSAP \idCEP \polWW
unzt \idSAP \idCEP Ipol: PolWW [jestWeWW]
unzt \idSAP \idCEP Ipol: PolWW [jestWyWW]

gdzie:

idSAP jest identyfikatorem punktu dostępu do usług warstwy WW, rodzaju WWI- 
dentSAP,

idCEP jest identyfikatorem połączenia w warstwie WW, rodzaju WWIdentCEP,
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polWW jest poleceniem usługowym (termem generowanym w ramach typu Polece- 
niaWW),

[jestWeWW] oraz [/esrWyWW] są opcjonalnymi warunkami ograniczającymi inter­
akcje zachodzące na bramce uznt.

Świadczone usługi można wyspecyfikować za pomocą procesu

process UslugiNiezawTran[unzt]{idA : WWIdentSAP, idB : WWIdentSAP, 
idAB : WWIdentCEP) : noexit :=

unzt! idA! idABlwefkom WW);
unzt! idB! idABlwyfkom WWj;
UsługiNiezawTran[unzt](idA, idB, idAB)

endproc

Usługi warstwy wyższej polegają na niezawodnym transferze pomiędzy dwoma jej 
użytkownikami, mającymi dostęp do wskazanych punktów dostępu do usługi o iden­
tyfikatorach idA oraz idB, w ramach ustanowionego połączenia o identyfikatorze 
idAB. Pierwszy identyfikator idA wskazuje na użytkownika, który w transferze pełni 
rolę nadawcy, a drugi idB wskazuje na odbiorcę.

Specyfikacja wykorzystywanych usług warstwy niższej WN

Warstwa niższa dostarcza usług zawodnego transferu. Tak samo jak poprzednio, wy­
różnia się komunikaty normalne i puste. Przesyłanie komunikatów za pomocą zawod­
nego medium może gubić normalne komunikaty, ale nie może ich powielać ani prze­
kłamywać. Przesyłanie komunikatów pustych jest natomiast niezawodne. Warstwa 
niższa WN komunikuje się z warstwą wyższą WW przez bramkę uzt.

Dostęp do warstwy odbywa się przez przekazywanie poleceń usługowych na bramce 
uzt (usługi zawodnego transferu). Specyfikacja typu określającego polecenia usługowe 
jest następująca:

type PoleceniaWN is DaneWN, DaneWW
sorts PolWN
opns pusty : -> DaneWW

poprawny, zgubiony : -> DaneWN
weWN, wyWN : DaneWW -> PolWN
potwierdzenie : DaneWN -> PolWN 
zawartośćWN : PolWN -> DaneWN

eqns forall daneWN : DaneWN, daneWW : DaneWW
ofsort DaneWN
zawartośćWN(potwierdzeniefdaneWN)) = daneWN;
zawartośćWNlpotwierdzeniefdaneWN)) = daneWN;
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ofsort jDaneWW
zawartośćWN(weWN{daneWW)) = daneWW', 
zawartośćWN(wyWN(daneWW)) - daneWW', 
ofsort Bool
jestWeWN(weWN(daneWW)) = true\
jestWeWN(wyWN(daneWW)) -false;
jestWyWN(wyWNidaneWW)) - true', 
JestWyWN(weWN(daneWW)) =false', 

endtype

Stała pusty służy do modelowania zgubionego komunikatu. Stałe poprawny i zgubiony 
są wartościami służącymi do potwierdzania, czy komunikaty zostały przesłane popraw­
nie, czy też zostały zgubione. Operacje weWN i wyWN mają znaczenie takie jak weWW 
i wyWW, z tym że odnoszą się do punktów dostępu do usług do warstwy niższej. Analo­
giczna uwaga odnosi się do operacji zawartośćWN oraz jestWeWN i jestWyWN.

Akcje wykonywane na bramce uzt mogą mieć postać analogiczną do akcji wykonywa­
nych na bramce unzt.

Usługi zawodnego transferu można wyspecyfikować za pomocą procesu

process UslugiZawTrans[uzt](idA : WNIdentSAP, idB : WNIdentSAP, 
idAB'. IdentCEP)

: noexit :=
uzt '.idA '.poi 7pol ;PolWN [jestWeWN(pol)]',

( i; uzt 'idB \poł \wyWN(zawartość(pol))', 
UsługiZawTrans[uzt](idA, idB, idAB) 

[] i; uzt'.idB'.pol'.wyWN(pusty)', 
UsługiZawTrans[uzt](idA, idB, idAB) 

)
[] uzt '.idA '.pot '.weWN(pusty)',

uzt '.idB '.poi '.wyWN(pusty)-,
UsługiZawTrans[uzt](idA, idB, idAB)

[] uzt'. IdB '.pot 7poi .PolWN \jestWeWN(pol)]\
( i; uzt '.idA '.pot'. wyWN(zawartość(pol))\

UsługiZawTrans[uzt](idA, idB, idAB)
[] i; uzt '.idA '.pot \wyWN(pusty)', 

UsługiZawTrans[uzt](idA, idB, idAB) 
)

[] uzt'.idB'.poł\weWN(pusty)\
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uzt! id A '.poi'. wy WN(pusty);
UsługiZawTrans[uzt](idA, idB, idAB)

endproc

Zawodność transferu jest modelowana za pomocą akcji wewnętrznych i prefiksują- 
cych składowe behawioralnego wyrażenia wyboru.

Specyfikacja protokołu

Zadaniem protokołu jest zapewnienie niezawodnej transmisji komunikatu od nadawcy 
do odbiorcy.

Zdefiniowanie stacji WW wymaga określenia dwóch procesów pomocniczych. Okreś­
lają one dwie role, jakie może pełnić stacja podczas świadczenia usługi transferu da­
nych - może to być rola nadawcy albo rola odbiorcy

process Nadajnik[unzt, uzt](idA : WWIdentSAP, idB : WWIdentSAP, 
idAB : WWIdentCEP) : noexit := 

unztMdAMdABlpol: PolWW [jestWwWW]', 
uzt'.idB'.idAB'.wyWN(zawartośćWW(pol)) ;
Potwierdzenie[uzt](idA, idB, idAB, zawartośćWW(pol))

where
process Potwierdzenie[uzt](idA : WWIdentSAP, idB : WWIdentSAP, 

idAB : WWIdentCEP, dane : DaneWW) : noexit := 
uzt '.idB '.idAB I poi: PolecenieWN [jestWeWN]’,
( [zawartośćWN(pol) = zgubiony] ->

uzt!idB!idAB'.przyjmij(z.awartość(pol)) ;
Potwierdzenie[uzt](idA, idB, idAB, koni)

[] [zawartośćWN(pol) = poprawny] ->
Nadajnik[unzt, uzt](idA, idB, idAB)

)
endproc

endproc

Proces określający rolę odbiorcy ma postać

process Odbiornik[unzt, uzt](idA .'WWIdentSAP, idB : WWIdentSAP, 
idAB : WWIdentCEP) : noexit :=

uzt '.idA '.idAB Ipol: PolWN [jestWyWN]-,
( [not(z.awartośćWN(pol) = pusty)] ->

unzt '.idB '.idAB \wyWW(zawartość(pol)) ;
unzt '.idA '.idAB \wyWNj(poprawny) ;
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Odbiornik[unz.t, uzt](idA, idB, idAB)
[] [zawartośćWN(pol) = pusty] ->

unzt! idA! idAB! wyślij(zgubiony);
Odbiornik[unzt, uzt](idA, idB, idAB)

endproc

Specyfikację stacji można przedstawić jako następujący proces

process WWstacja[unzt, uzt]{idA : WWIdentSAP, idB : WWIdentSAP, 
idAB : WWIdentCEP): noexit :=

Odbiornik[unzt, uzt](idA, idB, idAB) [] Nadajnik[unzt, uzt\(idA, idB, idAB) 
where

process Nadajnik[unzt, wzt](...)...
process Odbiomik[unzt, uzt](...)...

endproc

Stacja w danej chwili może tylko wysyłać albo odbierać dane.

Specyfikacja protokołu ma postać

process WWprotokół[unzt](idA : WWIdentSAP, idB : WWIdentSAP, 
idAB : WWIdentCEP) : noexit := 

hide uzt in
WWstacja[unzt, uzt](idA, idB, idAB)

|[«zz]| UsługiZawodnegoTran[unzt, uzt](idA, idB, idAB) 
where

process WWstacja[unzt, uzt](...).....
process UsługiZawodnegoTran[unzt, »zt](...)....

endproc

Przykład 2
W przykładzie opisano szkielet usług transportowych. Pokazano strukturę usług - na­
wiązywanie połączenia, transfer danych, rozłączenie. Dla uproszczenia opisano tylko 
nazwy poleceń usługowych z pominięciem ich parametrów, z wyjątkiem poleceń do­
tyczących nawiązania połączenia transportowego (TConlnd) oraz transferu danych 
(TDatalnd). Typ definiujący transportowe polecenia usługowe jest określony jako 
suma mnogościowa typów reprezentujących różne kategorie poleceń:

type T-polecenie is TConReq, TConlnd, TConResp, TConConf, 
TDataReq, TDatalnd, TDisReq, TDisInd

endtype
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Definicji poszczególnych kategorii poleceń dalej nie definiujemy, dla czytelności za­
kłada się natomiast, że nazwy rodzajów dla tych typów są takie same jak nazwy ty­
pów. Z poleceń dowolnych kategorii można, oczywiście, selekcjonować ich argumen­
ty. W przedstawianych specyfikacjach użyte operacje selekcji są oddzielnie komen­
towane.

Nie podaje się też specyfikacji typów punktów dostępu do usług TPDU, końcowych 
punktów połączeń KPP oraz transportowych jednostek usługowych TPU.

Pierwszy z przedstawianych opisów pomija dodatkowo zarządzanie przesyłanymi da­
nymi [Bilski, Dubielewicz 1991, 1993]

specification ProsteUsługiTransportowe[t\
type TPDU is.... endtype
type KPP is.... endtype
type TJU is.... endtype
type T-polecenie is TConReq, TConlnd, TConResp, TConConf, 

TDataReq, TDatalnd, TDisReq, TDisInd 
endtype 
behaviour

T-usługi[t\
where

process T-usługi[t]: noexit :=
Updul : TPDU Ikppl : KKP ? prym : TConReq\
( T-usługi[t]

III
let pdu2 : TPDU = przeznaczeniePDU(prym) in
(* przeznaczeniePDU jest selektorem jednego z parametrów 

polecenia usługowego prym, które jest żądaniem nawiązania 
połączenia

*)
(OtwórzPołączenie[t\(pdul, kppl, pdu2)
» accept kkp2 : KPP in

TransferDwukierunkowy[t](pdul, kppl, pdu2, kpp2)
[> ZamkmjPołączenie[t\(pdul, kppl,pdu2, kpp2) )

)
where

process OtwórzPołączenie[t\
(pdul : TPDU, kppl : KPP, pdu2 : TPDU):

exit(KPP) := 
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t \pdu2 lkpp2 : KPP \TConlnd(pdul) ;
(* jest tu pokazany jawnie parametr pdu 1 polecenia TConlnd *)
( t \pdu2 \kpp2 \TConResp ;

t \pdul Ikppl \TConConf \ 
ex\t(kpp2)

[] t lpdu2 \kpp2 YTDislnd ;
stop

)
endproc
process TransferDwukierunkowy[t]

(pdul : TPDU, kppl : KPP,pdu2 : TPDU) :
exit(KPP) :=

JednokierunkowyTransfer\t\(pdul, kppl, pdu2, kpp2)

III
JednokierunkowyTransfer[t](pdu2, kpp2, pdul, kppl)

where
process JednokierunkowyTransfer\t\

(pdul : TPDU, kppl : KPP, pdu2 : TPDU, kpp2 : KPP) : 
noexit :=

t \pdul \kppl Iprym : TDataReą ;
JednokierunkowyTransfer[t\(pdul, kppl, pdu2, kpp2)

[] t \pdu2 \kpp2 ?prym : TDatalnd ;
JednokierunkowyTransfer[t\(pdul, kppl, pdu2, kpp2)

endproc
endproc
process Zamknij Połączenie[t]

(pdul : TPDU, kppl : KPP,pdu2 : TPDU) :
noexit(A7V) :=

t \pdul \kppl \TDisReq ;
Zamknij[t](pdu2, kpp2)

[] t \pdu2 \kpp2 \TDisReq ;
Zamknij[t](pdu 1, kppl)

where
process Zamknij[t](pdu : TPDU, kpp : KPP) : noexit(AiPP) :=

t \pdu \kpp \TDisReq ; stop
[] t \pdu \kpp \TDislnd ; stop
[] t \pdu \kpp Iprym : TDataReq ; Zamknij[t](pdu, kpp)



Specyfikacja usług i protokołów sieciowych 125

[] t Ipdu \kpp Iprym : TDatalnd; Zamknij[t]fpdu, kpp)
endproc

endproc 
endproc 

endspec

Specyfikacja ProsteUsługiTransportowe[t\ jest definicją najbardziej zewnętrznego 
procesu. Definicja ta określa używane typy, a zasadnicząjej częścią jest definicja pro­
cesu T-usługi[t], Usługi transportowe polegają na przesyłaniu danych przez połączenie 
transportowe, określone przez dwa identyfikatory końcowych punktów połączenia 
przypisanych do, być może tych samych, punktów dostępu do usług. Realizacja usług 
przebiega w trzech fazach: ustanawiania połączenia, transferu danych, zwalniania po­
łączenia. W pierwszej fazie obowiązuje zasada potwierdzania realizacji poleceń. 
Oznacza to, że polecenie żądania nawiązania połączenia TConReq, skierowane do 
warstwy transportowej przez inicjatora ustanowienia połączenia, dociera od warstwy 
transportowej do adresata w postaci polecenia wskazania TConlnd. Adresat odpowia­
da na tę propozycję poleceniem TConResp, kierowanym do warstwy transportowej, 
która przekazuje je do inicjatora w postaci polecenia TConCnf. W fazie nawiązywania 
połączenia, oprócz wskazania adresata, negocjowane są parametry transferu danych. 
Zaprezentowana wyżej specyfikacja nie przedstawia negocjowanych parametrów. 
W pozostałych fazach żądanie przesłania danych TDataReq oraz żądanie zwolnienia 
połączenia TDisReq przez jednego z partnerów połączenia są przekazywane przez 
warstwę transportową do drugiego partnera, odpowiednio w postaci poleceń TDatalnd 
oraz TDisInd, których nie trzeba już potwierdzać.

Warto zwrócić uwagę na funkcjonalności procesów reprezentujących poszczególne 
fazy transferu. Procesy OtwórzPołączenie oraz Zamknij Połączenie mają funkcjonal­
ność exit, natomiast proces TransferDwukierunkowy - funkcjonalność noexit. Bezpo­
średnio oznacza to, że proces TransferDwukierunkowy nie kończy się, ale nie oznacza 
to, że faza transferu danych ma trwać nieograniczenie długo, gdyż jest ona przerywana 
przez proces ZamknijPołączenie - złożenie deaktywujące

TransferDwukierunkowy[f](pdul, kppl, pdu2, kpp2)
[> 7amknijPołączenie[t](pdul, kppl, pdu2, kpp2) j

Jak wspomniano, przedstawiona specyfikacja jest uproszczona, nie uwzględnia wszy­
stkich ograniczeń nałożonych na usługi transportowe. Dodatkowe ograniczenia, które 
należy uwzględnić, można wyrazić przez rozbudowę tej specyfikacji. Poniżej przed­
stawiono przykład takiej rozbudowy, która wiąże się z koniecznością zapewniania 
przesyłania danych do odbiorcy w takiej kolejności, w jakiej wysyła je nadawca.

Rozbudowa polega na wprowadzeniu procesu, który nadzoruje wprowadzanie i wy­
prowadzanie do kolejki przesyłanych danych. Podstawowym typem, wykorzystywa­
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nym przez ten proces, będzie Kolejka. Generyczny (sparametryzowany) typ kolejkowy 
ma następującą definicję

type Kolejka is Boolean
formalsorts element
sorts kolejka
opns pustaKolejka : -> kolejka

dołącz : element, kolejka -> kolejka
pierwszy : kolejka -> element
usuńPierwszy : kolejka -> kolejka
jestPusta : kolejka -> Bool

eqns forall x, y : element, q : kolejka
ofsort element
pierwszy(dolącz(x, pustaKolejka) = x ;
pierwszy(dolącz{x, dołączmy, q)) = pierwszyldołączly, q)) ;
ofsort kolejka
usuńPierwszy(dolącz(x, pustaKolejka)) = pustaKolejka ;
usuńPierwszy(dolącz(x, dolączty, q)) =

dołącz(x, usuńPierwszy(dołącz(y, q)));
ofsort Bool
jestPusta(pustaKolejka) = true ;
jestPusta(dolącz{x, q)) -false ;

endtype

Przedstawiony typ wymaga aktualizacji, formalny rodzaj element powinien być zastą­
piony rodzajem reprezentującym transportowe jednostki usługowe, co może mieć 
postać

type KolejkaTJU is Kolejka
actualizedby TJU using
sortnames tju for element

endtype
gdzie tju jest nazwą rodzaju wcześniej wprowadzonego, ale niezdefiniowanego typu 
TJU.

Nowa wersja specyfikacji różni się tylko definicją procesu T-usługi, w którym po­
jawia się nowy proces składowy ZarządcaKolejki, a pozostałe procesy składowe po- 
zostają niezmienione

process T-usługi[t] : noexit :=
t'lpdul : TPDU ?kppl : KKP ? prym : TConReq\
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( T-usługi[t]
III

let pdu2 : TPDU = przeznaczeniePDU(prym) in 
(Otwórz.Połączenie[t](pdul, kppl,pdu2)
» accept kkp2 : KPP in

ZarządcaKolejki[t](pdul, kppl,pdu2, kpp2, pustaKolejka)
II

ZarządcaKolejki[t](pdul, kppl,pdu2, kpp2, pustaKolejka)

( TransferDwukierunkowy(t](pdul, kppl, pdu2, kpp2) 
[> ZamknijPołączenie[t](pdul, kppl, pdu2, kpp2))

)
)

where
process OtwórzPołączenie\f\

(pdul : TPDU, kppl: KPP, pdu2 : TPDU):
exit(ATP) :=

endproc
process TransferDwukierunkowy[t\

(pdul : TPDU, kppl : KPP, pdu2 : TPDU): 
eiat(KPP) :=

endproc
process ZamknijPołączenie[t]

(pdul : TPDU, kppl : KPP, pdu2 : TPDU):
noexit(£PP) :=

endproc
process Zarz.ądcaKolejki[t](pdul : TPDU, kppl : KPP,

pdu2 : TPDU, pdu2 : TPDU, q : kolejkaTJU):
noexit :=

t \pdul \kppl Iprym : TDataReq ;
ZarządcaKolejki(t}(pdul, kppl, pdu2, kpp2, dołącz(dane(prym), q))

[] [not(jestPusta(q)] -> t \pdu2 lkpp2 2prym : TDatalnd(pierwszy(q));
(* jest tu jawnie pokazany parametr pierwszy(q) polecenia TDatalnd *)
ZarządcaKolejki[t](pdul, kppl, pdu2, kpp2, usuńPierwszy(q))

endproc
endproc
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Nowe ograniczenie reprezentowane przez proces ZarządcaKolejki, dokładniej przez 
dwie instancje tego procesu po obu stronach połączenia, jest składane równolegle 
z procesem TransferDwukierunkowy.

6.4. Uwagi końcowe

W tym rozdziale omówiono zwięźle model referencyjny ISO/OSI i zasady wykorzy­
stania języka LOTOS do reprezentacji usług i protokołów. Prezentacja ma charakter 
nieformalny, odwołujący się do wprawdzie do prostych przykładów, ale dobranych 
tak, aby zilustrować możliwości języka i przedstawić pewne przyjęte konwencje jego 
zastosowania. Bardziej szczegółowe omówienie zasad i konwencji zawiera książka 
[van Eijk, Vissers, Diaz 1989]. Przykłady opracowano na podstawie pracy [Huzar 
1990],

Specyfikacja standardów sieciowych, poza normami dotyczącymi modelu ISO/OSI 
oraz wybranych standardów internetowych, na przykład:

• IEEE Connectionless Interneting Protocol,
• ISO Network Service,
• ISO Transport Protocol,
• ISO Transport Service,
• ISO Session Protocol,
• ISO Session Service,
• ISO Presentation Protocol,
• ISO Transaction Protocol,
• ISO File Transfer Service and Protocol,
• ISO Job Transfer and Manipulation Service and Protocol,

była również przedmiotem wielu innych prac, na przykład: [van Eijk, Vissers, Diaz 
1989], [Schneider 1996], [Comer 1997],
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7. Metodyka specyfikowania

7.1. Proces specyfikowania
Systematyczne tworzenie systemu oprogramowania powinno się odbywać zgodnie 
z przyjętą metodyką. Wyznacza się więc pewne etapy, które - niezależnie od kon­
kretnej metodyki - obejmują specyfikację, projektowanie i implementację. Każdy 
z etapów może się składać z wielu kroków. W dalszym ciągu skupimy się tylko na 
etapie specyfikacji w LOTOSie. Etap ten może się składać z sekwencji kroków, któ­
rych rezultatem są kolejne specyfikacje:

Spec\, Specz,..., Spec,,

Pierwsza specyfikacja Speci powstaje zwykle na podstawie opisu tekstowego w języku 
naturalnym lub w języku formalnym, a ostatnia Spec,, powinna prowadzić przynaj­
mniej do prototypu implementacji.

Pomiędzy specyfikacjami powinny zachodzić odpowiednie relacje. Kolejne specyfi­
kacje są rozwinięciami lub uszczegółowieniami specyfikacji wcześniejszych. Pomię­
dzy dwiema sąsiednimi specyfikacjami Spec^, i Speck(k = 2, ..., n) można wyróżnić, 
jako podstawowe, następujące rodzaje zależności:

• Speck może być strukturalnym uściśleniem Speck_], Przedstawiony w postaci 
„czarnej skrzynki” opis systemu lub jego fragmentu może być zastąpiony opisem 
w postaci „szarej” lub „białej skrzynki”. Pomiędzy specyfikacjami powinna za­
chodzić relacja równoważności obserwowalnej (zob. p. 7.2) lub równoważności 
testowej (zob. p. 7.3).

• Speck może być restrukturyzacją Speck_\. Przedstawiony w postaci „białej 
skrzynki” opis systemu lub jego fragmentu może być zastąpiony opisem w po­
staci innej „białej skrzynki”, której wewnętrzna struktura może lepiej od­
powiadać potrzebom projektowym. Również w tym przypadku pomiędzy spe­
cyfikacjami powinna zachodzić relacja równoważności obserwowalnej lub 
testowej.

• Speck może być rozszerzeniem Speck^. Rozszerzenie jest oczywiste tam, gdzie 
proces specyfikowania rozpoczyna się od ustalenia podstawowych zachowań, 
a w kolejnych krokach specyfikację uzupełnia się dodatkowo zidentyfikowanymi 
zachowaniami. Jeżeli na przykład specyfikacja Speck~\ jest reprezentowana przez 
wyrażenie behawioralne Bk.i, to specyfikacja Speck może być reprezentowana 
przez wyrażenie Bk_[ [] B, gdzie B jest wyrażeniem reprezentującym dodatkowe 
zachowania.

• Speck może być redukcją Speck^. Redukcja, chociaż jej stosowanie może się wy­
dawać niepotrzebnie restryktywne, często się przydaje, gdy specyfikacja ma być 
bezpośrednio przetransformowana w implementację systemu. W takich sytu­
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acjach redukcja może służyć do eliminacji dopuszczalnych wcześniej opcji lub 
niedeterminizmu, który dopuszcza specyfikacja. Od implementacji najczęściej 
oczekuje się własności niedeterminizmu. Specyfikacja Spec^i może na przykład 
dopuszczać zachowania reprezentowane wyrażeniem behawioralnym a; Bi [] a; B2, 
a specyfikacja Speck postaci a; B2 będzie wyrażać pewną decyzję projektową 
- postępowania zgodnie z wyrażeniem B2, gdy nastąpi realizacja akcji a.

7.2. Równoważność obserwacyjna

Zdefiniowane w rozdziale 2. relacje równoważności dla języka CCS mają swoje od­
powiedniki w języku LOTOS. Pojęcia silnej i słabej bisymulacji dla LOTOSa są defi­
niowane tak samo, jak poprzednio dla CCS (definicje 2.7 i 2.9). Podobnie definiuje się 
relację kongruencyjnej równoważności obserwacyjnej (definicja 2.12).

Przypomnijmy: wyrażenia Bi oraz B2 są bisymulacyjnie silnie równoważne, co ozna­
cza się B} ~ B2, gdy istnieje relacja bisymulacji R taka, że <Bi, B2>eR, oraz są obser­
wacyjnie równoważne, co oznacza się Bi = B2, gdy istnieje słaba bisymulacja S taka, 
że <Bi, B2>eS.

Kongruencyjna równoważność obserwacyjna Bi B2 oznacza, że te dwa wyrażenia 
behawioralne można wzajemnie zastępować w dowolnym wyrażeniu (kontekście) bez 
zmiany obserwowanego zachowania całego wyrażenia.

Badanie kongruencyjnej równoważności obserwacyjnej można prowadzić analitycznie 
na podstawie odpowiednich praw. Poniżej przestawiono zbiór aksjomatów do badania 
kongruencyjnej równoważności obserwacyjnej [ISO 8807]:

Prawa dla prefiksowania akcją

g...1x:s... [c]; B ~ g../ly : s... [x:=y][c]; [x:=y]B
g..P x : 5... [c]; B =c choice x : 5 [] g... \x,B
g lti...lt„ [c];B=e[c] ->g [c];B

Prawa dla wyboru

Bi [] B2 B2 [] Bi
Bi [] {B2 [] Bj) (Bi [] B2) [] B,
B [] B = B
B [] stop B
[x := e]B [] choice x : 5 [] B choice x : 5 [] B

jeśli [e]6 Termx(0)/ =v,

choice x : 5 [] B B jeśli x nie jest zmienną wolną w B
choice x : s [] exit(..„ x,...) =c exit(..„ any, ...)
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Prawa dla złożenia równoległego

W zapisie tych praw będą stosowane następujące konwencje: symbol | oznacza tu ope­
rator złożenia równoległego z dowolnym ciągiem bramek synchronizujących, 1,1^ 
są ciągami bramek synchronizujących, przez set(l) będzie oznaczany zbiór elementów 
listy l, a przez FG(B) - zbiór bramek wolnych wyrażenia behawioralnego B (funkcja 
FG nie jest tu definiowana; jej definicja jest oczywista - zob. na przykład definicje 
funkcji FAct w tabeli 2.2 oraz FB w tabeli 3.1).

B, | B2 =c B21 B,
B, |(B2|B3) ^(BjB^lB,
exit(t..... . t„) | exit(tp ' exit(r,,..., t„)

gdy n = m, [r,] = [r'] lub tj = any s oraz sort(Ą) = 5 dla i = 1,..., n 

exit(t|,..., | exit(r[,..., t'^ stop w przeciwnym przypadku

exit(...) | stop =c stop
Bi |[/|]| B2 =c 6, |[/|] | B2 jeśli Zf zawiera te same elementy, co

B1|[/|]|B2 b, |[Z,z] i b2 jeśli set( l't )

By |[/]| B2 Bt || B2
= set(h) n (set(FG(Bi)) u set(FG(B2))) 

jeśli set(FG(B\)) u set(FG(B2)) c set(l)
Bi |[ ]| B2 Bi Ul B2

Prawa dla złożenia aktywującego

Symbol »* oznacza dowolne złożenie aktywujące, to znaczy przekazujące dowolne 
zestawy wartości pomiędzy składowymi wyrażenia aktywującego:

stop »* B stop
exit » B i; B
exit(Z|,..., t„) » accept a,: ..., a„: s„ in B =c i; [a, := r,,..., x„ := t„]B
(B| » B2) » B3 Bi » (B2 » B3)
B »* stop B Ul stop

Prawa dla złożenia deaktywującego

stop [> B B
exit(...) [> B exit(...) [] B
(Bi [> B2) [> B3 - B, [> (B2 [> B3)
(Bi [>B2) [] B2^cBi[> B2
B [> stop =c B
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Prawa dla przesłonięcia

hide l in B =c hide V in B
hide / in B =c hide l' in B
hide / in B =L B
hide l in hide /' in B «c hide l" in B
hide l in g\t( ...!z„; B =c i; hide l in B
hide ling, B g; hide l in B

jeśli P zawiera te same elementy, co l 
jeśli set(l') = set(l} n FG(B) 
jeśli set(l) n FG(B) = 0
jeśli setU") = set(l)<Jset(r)
jeśli ge setll)
jeśli g£ set(l)

hide / in B} [] B? hide l in B, [] hide l in B2
hide / in B, |[/']| B2 =c (hide l in B,) |[/']| (hide / in B2)

jeśli set(l) n set(P) = 0
hide l in B, »" B2 =c (hide / in Bt) »’ (hide l in B2)
hide l in Bi [> B2 =c (hide / in B|) [> (hide / in B2)

hide l in [c] -> B = [c] -> (hide l in B)

Prawa dla dozorów

[c] -> B ~c B jeżeli c = true
[c] -> B =c stop jeżeli c = false

Prawo dla instancji procesu

B[ A,, h,„]( t,. ..., t„) =c [a,:= t|, ...,x„:= Z„]B[ g,:= ht, g,„;= h,„]
jeśli
process p[ g],5„,](xi: 5|,x„: s„) : funkcjonalność := B endproc

Prawa dla przemianowania bramek

Niech [5] oznacza dowolne przemianowanie bramek postaci [gi::= h\, g,F-= hH],
gdzie g, g/dla i j (i,j = 1, .... n). Przemianowanie to wyznacza funkcję przemiano­
wania bramek S, określoną następująco:

S(gi) = hi dla z = 1, n

S(g) = g dla g * g, dla / = 1,n

stop[S] ~c stop
exit(...)[5] =c exit(...)
(a; B)[5] S(a); B[S]
(B, [] B2)[5]=cB,[S] [] B2[5]
(B| |[/]| B2)[S] B|[S] |[/]| B2[S] jeśli Sjest iniekcją na FG^B^ u FG^Bf) u setjl)
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(B1»łB2)[5]-cB1[5]»*B2[5] 

(B, [>B2)[S>CB,[S] [>B2[S]
(hide /' in B)[S] =c hide l in B[S]
B[S] = B
BlS^B&i]
B[Si][S2]^B[SloS2]

jeśli Sjest iniekcją na FG(B) u /'oraz S(l') = / 
jeśli S jest identycznością na FG(B)
jeśli S,(g) = S2(g) dla geFG(B)
gdzie ° jest symbolem złożenia funkcji

Prawa dla akcji wewnętrznych

a ; i ; B a ; B
B [] i ; B ~c i ; B
a,(Bt [] i; B2) [] a; B2 =a; (B, [] i; B2)
[x := t]B [] choicex.s [] i; B =c choicex:s [] i; B jeśli [t]e Terms(0)/ =x

7.3. Równoważność testowa i implementacyjna

Badanie czy pomiędzy dwiema specyfikacjami zachodzi relacja równoważności ob­
serwacyjnej jest równie trudne, jak weryfikacja poprawności programów względem 
danych specyfikacji. W przypadku specyfikacji, dla których odpowiadający etykieto­
wany system przejść jest skończony, istnieją algorytmy badania spełnialności relacji 
równoważności obserwacyjnej, nie ma natomiast takich algorytmów dla dowolnych 
etykietowanych systemów przejść. Nawet przy prostych specyfikacjach, z powodu 
eksplozji stanów, algorytmy okazują się nieefektywne obliczeniowo [Turner 1993]. 
Z tych powodów weryfikację zastępuje się testowaniem. Praktyczne podejście do ba­
dania równoważności obserwacyjnej specyfikacjami stosuje pojęcie równoważności 
testowej.

Relacja równoważności testowej dwóch specyfikacji oznacza, że specyfikacji tych nie 
można rozróżnić przez testowanie pewnym zbiorem testów TEST. Dla dwóch zbiorów 
testów takich, że TEST\ ę TEST2, jeśli dwie specyfikacje są równoważne testowo 
względem TEST2, to są również równoważne testowo względem TESTt.

Jeśli dwie specyfikacje są równoważne obserwacyjnie, to są także, oczywiście, rów­
noważne testowo. Odwrotna implikacja natomiast nie zachodzi. Jeżeli zbiór testów 
jest dostateczny (odpowiednio duży), to zachodzenie równoważności testowej pociąga 
zachodzenie równoważności obserwacyjnej specyfikacji. Problem określenia zbioru 
testów jest trudny. Podstawowa trudność wynika z tego, że dostateczny zbiór testów 
jest często nieskończony albo - w przypadku skończoności - zbyt duży, aby przepro­
wadzać pełne testowanie. Generowanie odpowiednich testów jest oddzielnym, trud­
nym problemem [Behforoz, Hudson 1996], [Górski 1999], [Maciaszek 2004], Stosuje 
się wielorakie techniki automatycznej generacji testów. Dla języka LOTOS istnieją 
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środowiska programistyczne, w pewnym zakresie wspomagające generację testów, na 
przykład w środowisku LOLA [Quemada, Pavón, Fernandez 1989] lub CADP [Ga­
ra vel, Lang, Mateescu 2001],

Relacja równoważności testowej abstrahuje od wewnętrznej struktury specyfikacji, 
skupiając się tylko na komunikacji na zewnętrznych bramkach.

Test dla instancji specyfikacji o funkcjonalności noexit postaci

..., g„](rh ..., t,„)

można określić jako instancję dowolnego procesu postaci

..., g„, sukces](...)

Układem testującym specyfikacji Spec nazywamy wyrażenia behawioralne postaci:

Spec[g{,..., g„](/|,..., tm)
|[#u — gJl

..., g,„ sukces](...)

Układ testujący dla specyfikacji o funkcjonalności exit jest postaci:

Spec[gi, ..., g„](ti,..., t,„) » sukces-, stop

Test[g}, ..., g,„ sukces]^...)

Każde obliczenie układu testującego, które zakończy się zajściem zdarzenia na wy­
różnionej bramce sukces, oznacza zakończenie testu z powodzeniem. Jeżeli natomiast 
obliczenie zakończy się, ale na bramce sukces nie zajdzie zdarzenie, oznacza to nie­
powodzenie testu.

Dwie specyfikacje deterministyczne są równoważne testowo względem pewnego zbio­
ru testów (wyrażonego instancjami procesów), jeżeli dla dowolnego procesu testują­
cego obliczenie układu testującego dla obu specyfikacji kończy się zawsze tym sa­
mym rezultatem (powodzenie albo niepowodzenie).

Dwie specyfikacje niedeterministyczne są równoważne testowo względem pewne­
go zbioru testów, gdy dla dowolnego procesu testującego istnieje obliczenie koń­
czące się sukcesem (niepowodzeniem) dla jednej ze specyfikacji, wówczas także 
istnieje obliczenie kończące się sukcesem (niepowodzeniem) dla drugiej specy­
fikacji.

Z podanych określeń bezpośrednio wynika, że badanie równoważności testowej spe­
cyfikacji niedeterministycznych jest bardziej złożone od badania specyfikacji deter­
ministycznych.

Wyrażenia behawioralne LOTOSa mogą być przedmiotem badania, ale mogą także 
być wykorzystane do definiowania testów budowanego systemu na podstawie jego 
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tekstowej specyfikacji. W przypadku takich opisów często mamy do czynienia 
z dwoma rodzajami testów: z testami akceptacyjnymi i testami odrzucającymi. Testy 
akceptacyjne określają dopuszczalne zachowania systemu podczas współdziałania 
z otoczeniem. Testy odrzucające określają natomiast zbiory zdarzeń, których system 
w danym stanie nie powinien akceptować.

Pojedynczy test akceptacyjny wyznacza pojedynczy ciąg zdarzeń zdefiniowany jako 
proces o strukturze

process TestAkceptujący[g\, ..., g,„ sukces] : noexit :=
e\ ; ... ; e,„; sukces ; stop

endproc

gdzie e^ dla i = 1, ..., m, jest akcją komunikacyjną na jednej z bramek gh ..., g„.

Pojedynczy test odrzucający, stosowany do danego stanu testowanego systemu, jest 
zdefiniowany jako proces o strukturze

process TestOdrzucający[gh ..., g,„ sukces] : noexit :=
; stop

[] ; stop

[] em ; stop
[] i ; sukces ; stop

endproc

gdzie e, mają znaczenie jak poprzednio, ale zajście któregokolwiek z nich oznacza 
niepowodzenie testu, gdyż testowany system akceptuje to, czego nie powinien. Dodat­
kowo należy przyjąć, że w tym teście akcje komunikacyjne mają priorytet wyższy od 
priorytetu akcji wewnętrznej, co oznacza, że akcja wewnętrzna jest wykonywana tylko 
wtedy, gdy nie można wykonać żadnej akcji komunikacyjnej.

Pomiędzy specyfikacją a implementacją systemu powinien zawsze zachodzić odpo­
wiedni związek. W przypadku specyfikacji wyrażonej w LOTOSie związek ten jest 
określony jako relacja implementacji.

Relacja implementacji jest określana [Brinksma, Scollo 1986], [Turner 1993] jako 
połączenie dwóch relacji: relacji redukcji i rozszerzenia. Połączenie to należy rozu­
mieć jako zastosowanie jednej z tych relacji lub ich złożenie w dowolnej kolejności. 
Kolejność składania relacji odzwierciedla kolejność podejmowania decyzji projekto­
wych podczas tworzenia implementacji.

Relacja redukcji oznacza eliminację ze specyfikacji niedeterminizmu powodowanego 
istnieniem akcji wewnętrznych. Polega to na przepisaniu specyfikacji z ustaleniem 
opcjonalnych wyborów.
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Relacja rozszerzenia oznacza taką rozbudowę specyfikacji, która dopuszcza nowe, 
zachowując wszystkie stare zachowania. Inaczej: dopuszcza dołączenie do specyfi­
kacji nowych funkcjonalności.

Obie relacje są wyrażane przez odpowiedzi na tzw. testy akceptująco-odrzuceniowe, 
które stanowią sekwencyjne połączenie dwóch poprzednio zdefiniowanych testów: 
testów akceptujących i testów odrzuceniowych. Testy te mają sprawdzać akceptację 
danych sekwencji obserwowalnych zdarzeń, a po ich zajściu odrzucanie pewnych 
zbiorów zdarzeń. Mają one następującą strukturę

process TestAkceptującoOdrzuceniowy[gi, ..., g,„ sukcesAkcept, sukcesOdrz] : 
noexit :=

akcept i ; ... ; akcept m ; sukcesAkcept;
( odrz\ ; stop

[] odrz?; stop

[] odrzk; stop
[] i; sukcesOdrz ; stop

)
endproc

gdzie: akcepty dla i = 1, .... ni, oraz odrzj, dla i = 1, ..., k, są akcjami komunikacyjnymi 
na jednej z bramek gi,..., g„.

Specyfikacja Speci jest testowo zgodna ze specyfikacją Spec?, jeśli dowolny test ak- 
ceptująco-odrzuceniowy, zbudowany w taki sposób, że jego część akceptująca jest 
testem dla specyfikacji Spec?, a część odrzucająca jest oparta na dowolnym zbiorze 
akcji obu specyfikacji, jest testem akceptująco-odrzuceniowym dla specyfikacji Spec\, 
to jest także testem akceptująco-odrzuceniowym dla specyfikacji Spec?.

Specyfikacja Spec? jest rozszerzeniem specyfikacji Spec\, jeżeli obie specyfikacje są 
testowo zgodne oraz SeqObs(Spec\) ę SeqObs(Spec?).

Specyfikacja Spec?]est redukcją specyfikacji Spec\, jeżeli obie specyfikacje są testowo 
zgodne oraz SeqObs(Spec?) ę SeqObs(Speci').

Na zakończenie warto wspomnieć, że - oprócz języka LOTOS - do definiowania te­
stów można używać innych języków. Standardem ISO do specyfikacji testów dla sys­
temów komunikacyjnych jest zwłaszcza TTCN (Tree and Tabular Combined Nota- 
tion) [ISO/IEC 9646-3, 1998],

7.4. Style specyfikowania

LOTOS jest przeznaczony przede wszystkim do tworzenia specyfikacji zachowań 
systemów. Wyróżnia się dwie kategorie specyfikacji: specyfikacje ekstensjonalne 
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i intensjonalne. Specyfikacje ekstensjonalne są formułowane w oderwaniu od przy­
szłej implementacji, w tym sensie, że specyfikacja nie narzuca ograniczeń na strukturę 
przyszłej implementacji. Struktura specyfikacji intencjonalnej jest natomiast sugestią 
postaci przyszłej implementacji. Podany podział jest nieco umowny, gdyż wszystkie 
specyfikacje w LOTOSie, jako wykonywalne, można traktować jako prototyp imple­
mentacji. W ramach każdej z tych kategorii można wyróżnić po dwa style specyfiko­
wania - dla specyfikacji ekstensjonalnych:

• monolityczny,
• zorientowany na ograniczenia,

a dla specyfikacji intensjonalnych:
• zorientowany na maszyny stanowe,
• zorientowany na zasoby (inaczej: zorientowany na implementację).

Styl monolityczny wiąże się z twierdzeniem o ekspansji, z którego wynika, że dowolne 
wyrażenie behawioralne, na drodze pojedynczych transformacji, daje się sprowadzić 
do postaci, która zawiera tylko operatory wyboru i prefiksowania akcją. Twierdzenie 
o ekspansji dla języka CCS przedstawiono w rozdziale 2. Siła ekspresji języka 
LOTOS jest taka sama jak języka CCS, dlatego twierdzenie o ekspansji odnosi się 
także do języka LOTOS. Jeżeli stosowanie transformacji opisanych twierdzeniem 
o ekspansji prowadzi do skończonej długości wyrażenia behawioralnego, to jest ono 
zapisane w stylu monolitycznym. Styl monolityczny dopuszcza też użycie operatora 
rekursji procesów do definiowania pętli. Na ogół konstruowanie specyfikacji wiąże się 
z wyobrażeniem drzewa zachowań budowanego systemu. Można uznać ten styl za 
bardziej abstrakcyjny od pozostałych.

W stylu zorientowanym na definiowanie ograniczeń specyfikacja jest złożeniem rów­
noległym procesów, przy czym każdy proces wyznacza pewien zbiór ograniczeń, któ­
re muszą być łącznie zachowane przez cały system. Oznacza to, że zachowanie pro­
cesu składowego specyfikacji jest ograniczone zachowaniem innych procesów, 
z którymi dany proces się synchronizuje. Gdy procesy składowe nie synchronizują się 
ze sobą, obserwowalne zachowania systemu są pewnego rodzaju „sumą” - przeplotem 
zachowań procesów składowych, gdy natomiast procesy składowe synchronizują się 
ze sobą, obserwowane zachowanie systemu jest pewnym „przekrojem” zachowań 
procesów składowych. Podstawową konstrukcją jest złożenie równoległe procesów, 
często używane do synchronizacji multilateralnej. Drugą konstrukcją jest predykat 
ograniczający akcje komunikacyjne.

Styl zorientowany na definiowanie ograniczeń jest stosowany w przypadku podejścia 
zstępującego do tworzenia specyfikacji, jak na przykład w definiowaniu standardów 
sieci komputerowych (zob. rozdz. 6.).

Styl zorientowany na maszyny stanowe polega na przedstawieniu specyfikacji jako 
pewnej sekwencyjnej maszyny stanowej (automatu skończonego z pamięcią). Przy 
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takim podejściu wyklucza się użycie konstrukcji złożenia równoległego. Można wy­
różnić dwie odmiany stylu, różniące się sposobem identyfikacji stanów maszyny sta­
nowej. Pierwsza polega na wykorzystaniu zmiennych do identyfikacji stanów, a druga 
- na wykorzystaniu procesów. Schematycznie pierwsza odmiana prowadzi do specy­
fikacji, których treść przyjmuje schemat

process Spec, ...](stan : int): ... :=
[stan = 0] -> ar, Spec[...](l)

[] [stan = 1] -> az, Spec[...](2)

[] [sron = N] -> a,;, Spec[...](N)
endproc

gdzie ah dla i = 1, ..., N, są akcjami wykonywanymi w przejściach pomiędzy stanami. 
Poszczególne stany są reprezentowane wywołaniami procesów Spec[...](J) dla j = 0,..., N.

Schemat specyfikacji w drugiej odmianie ma postać

process Spec[ ...] : ... :=
Stan0[...](...)

where
process Stan0[...] : ... :=

ar, StanJ[...]
[] az, Stan2[...]

endproc

process StanN[ ...] : ... := 
br, Stanl[...]

[] bz, Stan2[...]

endproc
endproc

Tak jak w poprzedniej odmianie, ah a2, ..., b{, b2, ... są akcjami wykonywanymi 
w przejściach pomiędzy stanami, poszczególne stany są reprezentowane instancjami 
procesów Stanj[...].

Styl zorientowany na definiowanie maszyn stanowych jest podobny do stylu mono­
litycznego w tym, że wykorzystuje w zasadzie ten sam zestaw operatorów języka. 
Może być zalecany wtedy, gdy zależy nam na bezpośredniej transformacji specyfi­
kacji w program.
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Styl zorientowany na zasoby jest najbardziej intuicyjnym, powiązanym z implementacją 
stylem specyfikowania. W tym podejściu specyfikowany system jest widziany jako 
zbiór komunikujących się procesów. Procesy reprezentują elementy składowe (moduły 
albo zasoby) systemu, które mają współpracować ze sobą za pośrednictwem wspólnych 
bramek. Synchronizacja procesów odzwierciedla zachodzącą pomiędzy nimi ko­
munikację i dlatego mamy do czynienia tylko z synchronizacją par procesów. Operator 
przesłonięcia służy do przesłaniania komunikacji wewnętrznych składowych procesów. 
Styl ten jest stosowany w przypadku podejścia wstępującego do tworzenia specyfikacji.

Często w obrębie jednej specyfikacji mamy do czynienia z kilkoma stylami. Sytuacja 
taka występuje w dalej przedstawionym przykładzie, w którym możemy odnaleźć 
zastosowanie stylu zorientowanego na definiowanie maszyn stanowych i zorientowa­
nego na zasoby.

7.5. Przykładowy problem
Rozpatrzmy prosty system przydziału zwrotnych zasobów, na który składają się: ma­
gazyn zasobów, magazynier i dyspozytor. Z systemu korzystają klienci, którzy zwra­
cają się dyspozytora z zapotrzebowaniem na określoną ilość zasobów. Dyspozytor, na 
podstawie analizy stanu magazynu zasobów, podejmuje decyzję o ilości zasobów dla 
danego zapotrzebowania. W szczególności, odmawiając przydziału, ilość przydzielo­
nych zasobów określa jako liczbę zero. Po uzyskaniu decyzji o przydziale, klient 
zwraca się do magazyniera po odbiór zasobów, przedstawiając mu decyzję. Magazy­
nier pobiera z magazynu zasoby i przekazuje je klientowi. Klient po wykorzystaniu 
zasobów, za pośrednictwem magazyniera, zwraca je do magazynu.

Tak bardzo ogólnie sformułowany system można ukonkretniać, przypisując specyficz­
ną interpretacją jego elementom. Może to być na przykład element systemu banko­
wego, w którym magazynem jest skarbiec, magazynierem - kasjer, dyspozytorem - 
pracownik banku upoważniony do udzielania pożyczek, a klientami - osoby fizyczne 
lub prawne.

Strukturę systemu zasobów przedstawiono na rysunku 7.1. Elementy składowe komu­
nikują się ze sobą przez bramki, z których wnk, dec, poż, zwr służą do udostępniania 
usług systemu, a pozostałe są wewnętrznymi bramkami systemu.

W przypadku wstępującego tworzenia specyfikacji może być zastosowany styl zorien­
towany na zasoby. Załóżmy, że wcześniej zostały utworzone specyfikacje procesów 
modelujących składowe elementu systemu

process Magazyn[stanS, stanN, daj, masz](n: Naf) : noexit := ... endproc 
process Magazynier[pob, zwr, daj, masz] : noexit := ... endproc 
process Dyspozytor[zap, dec, stanS, stanN] : noexit := ... endproc 
process Klient[zap, dec,pob, zwr] : noexit := ... endproc
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Klient

Rys. 7.1. Struktura prostego systemu zasobów

Pomijamy dalej treści niektórych procesów, ograniczając się tylko do przedstawienia 
ich sygnatur. Stosując styl zorientowany na zasoby, definicje te można potraktować 
jako elementy składowe (zasoby), które służą do utworzenia specyfikacji całego sys­
temu. Specyfikacja taka, zgodna z rysunkiem 7.1, ma postać

Klient[zap, dec, pob, zwr] 
llzap, dec, pob, zwr]| 

hide stanS, stanN, daj, masz in 
( Dy spożyto r[zap, dec, stanS, stanN] 

|[]|
Magaz.ynier[pob, zwr, daj, masz] 

)
| [stanS, stanN, daj, znasz] |

Magazyn[stanS, stanS, daj, masz]
Specyfikacje procesów składowych można uzyskać, stosując styl zorientowany na de­
finiowanie maszyn stanowych. Rozważmy na przykład definicje dwóch procesów 
Magazyn oraz Dyspozytor

process Magazyn[stanS, stanN, daj, masz](n : int): noexit := 
stanS !n; Magazyn[stanS, stanN, daj, masz](n)

[] stanN Im : inf, Magazyn[stan, daj, masz}{tn}
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[] daj Im : inf, Magazyn[stan, daj, masz](n)
[] masz Im : inf, Magazyn[stan, daj, masz](n + m)

endproc
process Dyspozytor[zap, dec, stanS, stanN] : noexit := 

zap lid : Identyfikator lilość : inf, 
stanS ?zapas : inf, 
( [ilość < zapas] -> 

( declidlilość’,
stanN [(zapas - ilość)',
Dyspozytor[zap, dec, stanS, stanN]

[] v, dec[id[Q\
Dyspozytor[zap, dec, stanS, stanN] 

)
[] [zapas < ilość] -> dec\id\Q', Dyspozytor[zap, dec, stanS, stanN] 

)
endproc

W przedstawionej specyfikacji, dla czytelności, wykorzystano typ całkowitoliczbowy 
(inf) w tradycyjnej programistycznej notacji.

Łatwo zauważyć, że struktura wyrażenia będącego treścią procesu Magazyn stanowi 
odmianę stylu, polegającą na wykorzystaniu zmiennych do identyfikacji stanów ma­
szyny stanowej - wartościowanie występującej w tym wyrażeniu zmiennej n reprezen­
tuje stan procesu. Podobne uwagi można odnieść do drugiego z procesów.

Przedstawiony przykład jest ilustracją nie tylko różnych stylów specyfikowania, ale 
służy również do omówienia jeszcze innych problemów.

Problem pierwszy wiąże się z przyjętym interfejsem komunikacyjnym pomiędzy pro­
cesami, a zwłaszcza komunikacji procesu Klient z systemem zasobów. Przyjęta 
w przykładzie koncepcja interfejsu różni się do koncepcji przedstawionej w rozdziale 6. 
Poprzednio komunikacja pomiędzy warstwami sieci komputerowej odbywała się za 
pośrednictwem jednej bramki, obecnie komunikacja odbywa się za pośrednictwem kilku 
bramek. Łatwo zauważyć, że pomiędzy takimi formami interfejsu daje się ustanowić 
wzajemnie jednoznaczny związek. Jeżeli mianowicie przyjąć, że komunikaty wymie­
niane pomiędzy dwoma procesami za pośrednictwem jednej bramki mają postać 

polecenie(argumenf)
gdzie zbiór różnych poleceń jest skończony, a argumenty mają określone typy, to ko­
munikacja może się odbywać za pośrednictwem zbioru bramek, z których każda odpo­
wiada dokładnie jednemu poleceniu. Wysłanie więc lub odebranie takiego komunikatu 
będzie wyrażone odpowiednio przez akcje komunikacyjne:

polecenie ! argument lub polecenie 1 argument: typ. 
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Drugi problem wynika z niedeterminizmu i nieokreśloności w specyfikacji. W przy­
kładzie własności te odnoszą się do definicji procesu Dyspozytor.

Z treści procesu Dyspozytor wynika, że dyspozytor może, ale nie musi, przydzielić 
zasoby w żądanej ilości tylko wtedy, gdy liczba zasobów w magazynie jest większa od 
liczby żądanej. W wyniku realizacji akcji wewnętrznej i dyspozytor odmawia przy­
działu zasobu. Pozostawienie niedeterminizmu w treści procesu przesłania sposób 
podejmowania przez dyspozytora odpowiedniej decyzji. Takie użycie niedeterminizmu 
jest typowym sposobem przesłaniania procesów decyzyjnych w procesie tworzenia spe­
cyfikacji. Inny problem jest związany z przypadkiem, gdy zapas = ilość. Jest to problem 
nieokreśloności - dla tego przypadku definicja nie określa zachowania procesu.

Eliminacja obu przypadków - niedeterminizmu i nieokreśloności - może być podsta­
wą konstrukcji kolejnej specyfikacji. Eliminacja niedeterminizmu prowadzi do nowej 
specyfikacji, na przykład

process Dyspozytor l[zap, dec, stanS, stanN] : noexit :=
zap lid : Identyfikator lilość : int;
stanS Izapas : int;
( [ilość < zapas] ->

dec\id\ilość;
stanN [(zapas - ilość);
Dyspozytorl [zap, dec, stanS, stanN]

[] [zapas < ilość] -> dec[id[Q; Dyspozytorl[zap, dec, stanS, stanN] 
)

endproc
Łatwo zauważyć, że proces Dyspozytor jest testowo zgodny z procesem Dyspozytorl 
oraz SeqObs(Dyspozytorl) c SeqObs(Dyspozytor), proces Dyspozytorl jest zatem 
redukcją procesu Dyspozytor.

Eliminacja nieokreśloności, która nadal pozostaje w procesie Dyspozytorl, prowadzi 
na przykład do specyfikacji

process Dyspozytor2[zap, dec, stanS, stanN] : noexit :=
zap lid : Identyfikator lilość : int;
stanS Izapas : int;
( [ilość < zapas] ->

dec\id\ilość;
stanN \{zapas - ilość);
Dyspozytor2[zap, dec, stanS, stanN]

[] [zapas < ilość] -> dec\id\Q; Dyspozytor2[zap, dec, stanS, stanN] 
)

endproc
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Podobnie jak wcześniej, proces Dyspozytor! jest testowo zgodny z procesem Dyspo­
zytor? oraz SeqObs(Dyspozytorl) Q SeqObs(Dyspozytor?), proces Dyspozytor? jest 
zatem rozszerzeniem procesu Dyspozytor!.

Trzeci problem to rozwinięcie specyfikacji, polegające na dopuszczeniu jednoczesnej 
obsługi wielu klientów. Jednoczesna obsługa wymaga takiej modyfikacji procesów 
Dyspozytor i Magazyn, aby były one zdolne do równoległej obsługi klientów. Poniżej 
pokazano tylko modyfikację ostatniej wersji procesu Dyspozytor?

process Dyspozytor3[zap, dec, stanS, stanN] : noexit :=
choice id: Identyfikator in 

zap Ud ?ilość : inf, 
stanS ?zapas : inf, 
( [ilość < zapas] -> 

dec\id\ilość\ 
stanN \(zapas - ilość)-, 
Dyspozytor3[zap, dec, stanS, stanN]

[] [zapas < ilość] -> decUdłO; Dyspozytor3[zap, dec, stanS, stanN] 
)

|[]|
Dyspozytor3[zap, dec, stanS, stanN]

endproc
Przedstawiona wersja jest bardzo „rozrzutna”, gdyż wywołanie procesu pociąga za 
sobą nieograniczoną liczbę równoległych, niezależnych, to znaczy niekomunikujących 
się ze sobą, kopii procesu Dyspozytor3. Każda z kopii będzie się komunikować tylko 
z jednym procesem Klient o ustalonym identyfikatorze. Proces Dyspoz.ytor3 jest roz­
szerzeniem procesu Dyspozytor?.

7.6. Środowiska wspomagające specyfikowanie w LOTOSie

Rozwojowi LOTOSu towarzyszył rozwój środowisk programowych wspomagających 
używanie języka do specyfikowania i projektowania systemów oprogramowania. 
Przykładem jednego z najwcześniejszych jest pakiet LOLA (od LOtos LAboratory), 
opracowany na uniwersytecie w Madrycie [Quemada, Pavón, Fernandez 1989], udo­
stępniany w Internecie w wersji na komputery typu IBM PC.

Obecnie najbardziej rozwinięty jest pakiet CADP - akronim oznaczający począt­
kowo C/ESAR/ALDEBARAN Development Package, obecnie stanowiący rozwinię­
cie od Construction and Analysis of Distributed Processes. Jest on wynikiem prac, 
prowadzonych od początku lat dziewięćdziesiątych ubiegłego wieku, w INRIA 
(Institut National de Recherche en Informatique et en Automatique), we współpra­
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cy z innymi ośrodkami europejskimi i kanadyjskimi [Garavel, Lang, Mateescu 
2001],

Pakiet CADP, umożliwiając pisanie specyfikacji w LOTOSie, pozwala na analizę włas­
ności tworzonych specyfikacji oraz na automatyczną generację i testowanie programów. 
Pakiet składa się z modułów działających w otwartym środowisku OPEN/C/ESAR. Śro­
dowisko przyjmuje format BCG (Binary Coded Graphs) reprezentacji etykietowanych 
systemów przejść oraz oferuje kolekcję bibliotek i programów związanych z tym for­
matem.

Głównymi modułami funkcjonującymi w środowisku OPEN/C^ESAR są:

• Kompilatory CAESAR i CAESAR.ADT - służące do translacji specyfikacji 
w LOTOSie w kod w języku programowania C. Pierwszy z nich dokonuje trans­
lacji części behawioralnej specyfikacji w LOTOSie na kod w języku C, a drugi 
kompiluje abstrakcyjne typy zdefiniowane w specyfikacji na typy i funkcje ję­
zyka C.

• Symulator OCIS - umożliwiający wizualizację i śledzenie obliczeń specyfikacji 
napisanych w LOTOSie. Dopuszcza kilka form wizualizacji (m.in. ciągi i drzewa 
zdarzeń, diagramy sekwencji), różne sposoby prowadzenia obliczeń (m.in. praca 
krokowa, według zadanych scenariuszy), modyfikację i rekompilację specyfika­
cji).

• Analizator ALDEBARAN - służący do weryfikacji systemów komunikacyjnych 
reprezentowanych w postaci etykietowanych systemów przejść. Umożliwia on 
redukcję etykietowanych systemów przejść względem wybranych relacji równo­
ważności (różnych relacji bisymulacji) i stwierdzanie równoważności zreduko­
wanych etykietowanych systemów przejść, opartych na algorytmach Paige- 
Tarjana [Paige, Tarjan 1987] oraz Fernandeza-Mouniera [Fernandez, Mounier 
1995],

• EVALUATOR - weryfikator formuł temporalnych, który pozwala na sprawdze­
nie, czy specyfikacja w LOTOSie ma własności dające się wyrazić w językach 
logiki temporalnej, między innymi: HML [Hennessy, Milner 1985], CTL [Ciar­
kę; Emerson, Sistla 1983], ACTL [de Nicola, Vaandrager 1990] i LTAC [Queil- 
le, Sifakis 1983].

• Generator testów TVG - służy do wyprowadzania zestawu testów ze specyfikacji 
formalnej na podstawie celu testu. Cel testu określa się przez wskazanie stanów 
akceptujących albo stanów odrzucających.

• Graficzny interfejs EUCALYTUS - umożliwiający jednolity dostęp do zintegro­
wanych modułów.

Pakiet CADP ciągle się rozwija. Są dwa zasadnicze kierunki rozwoju:

Pierwszy wynika z zamiaru integracji różnych formalnych języków specyfikacji, dla­
tego przyjęto etykietowane systemy przejść jako jednolitą formę abstrakcyjnej repre­
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zentacji specyfikacji, gdyż możliwe jest sprowadzenie do niej nie tylko specyfikacji 
w LOTOSie, ale także w innych językach formalnych, na przykład: SDL i UML/RT.

Drugi kierunek wiąże się z przystosowaniem narzędzia do potrzeb przemysłowych. 
Zwraca się uwagę na efektywność narzędzi tak, aby mogły dokonywać analiz spe­
cyfikacji o odpowiednio dużych rozmiarach, a także aby uwzględniać te języki spe­
cyfikacji, które znajdują uznanie i zastosowanie w przemyśle, stąd między innymi, 
wynika uwzględnienie języków SDL i UML/RT.

7.7. Uwagi końcowe

W tym rozdziale dokonano przeglądu stylów tworzenia specyfikacji w języku LO­
TOS. Ponieważ tworzenie specyfikacji może być procesem wieloetapowym, zaryso­
wano problemy związane z porównywaniem kolejno po sobie następujących specyfi­
kacji. Zagadnienia te są dokładniej omawiane w wielu publikacjach, między innymi 
w: [Vissers, Scollo, van Sinderen 1988], [Brinksma 1989], [Logrippo, Probert, Ural 
1990], [Garavel, Sifakis 1990], [Vissers, Scollo, van Sinderen, Brinksma 1991], [Le- 
duc 1992]. Przeglądowym podsumowaniem tych prac jest książka [Turner 1993].

Style specyfikowania zilustrowano oryginalnym, prostym przykładem, który pokazu­
je, że w specyfikacji stosunkowo prostego zagadnienia stosuje się pewną mieszaninę 
stylów elementarnych. Wydąje się, że nie jest to szczególna własność języka LOTOS, 
ale można ją odnieść również do innych technik, nie tylko formalnych. Brak jedno­
rodnego stylu, albo - ogólniej - uniwersalnej metodyki stosowania języka LOTOS nie 
tylko w specyfikacji, ale w projektowaniu i implementacji systemów, jest jedną 
z przyczyn krytycznych ocen języka wyrażanych przez przedstawicieli przemysłu 
[Logrippo 2000], [Babich, Deonto 2002],

Badanie równoważności testowej, omówione w rozdziale bardzo ogólnie, było przed­
miotem wielu prac, na przykład: [De Nicola, Hennessy 1984], [Bolognesi, Smolka 
1987].

Samo testowanie jest natomiast przedmiotem między innymi norm ISO. W powiąza­
niu z rozwojem formalnych technik specyfikacji opracowano język TTCN (Tree and 
Tabular Combined Notation) specyfikacji testów. Norma [ISO/IEC 9646-3, 1998] jest 
jedną z wcześniejszych szeregu norm dotyczących TTCN-1, standardu, który prakty­
cznie wyszedł z użycia. Obecnie prace nad rozwojem tej grupy standardów są pro­
wadzone pod auspicjami ETSI (European Telecommunications Standards Institute). 
Ich wynikiem jest opracowanie grupy standardów TTCN-3, a także technik i narzędzi 
testowania - szczegółowe informacje na ten temat można znaleźć między innymi na 
stronach internetowych:

http://www.etsi.org
http://www.ttcn-3.org

http://www.etsi.org
http://www.ttcn-3.org
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8. Problem blokad w LOTOSie

8.1. Ukryte blokady

Standardowa semantyka języka LOTOS, przedstawiona w rozdziale 6., ma pewien 
defekt, który można określić mianem ukrywania blokad [Huzar, Kuźniarz 1993]. Każ­
da semantyka jest formalną reprezentacją pewnych postulatów w LOTOSie, podobnie 
jak w CCS, dotyczących sposobu komunikacji procesów.

Specyfikacja w LOTOSie wyznacza kolekcję procesów. Dany proces wykonuje akcje 
komunikacyjne, synchronizując się z innymi procesami, które stanowią jego otocze­
nie, bądź wykonując akcje wewnętrzne. Akcje wewnętrzne mogą być określane jaw­
nie lub mogą być rezultatem przesłonięcia komunikacji pomiędzy procesami składo­
wymi danego procesu. Intencja związana z akcją wewnętrzną, stanowiącą wynik 
przesłonięcie komunikacji, jest następująca:

jeżeli na przesłoniętej bramce nastąpiła komunikacja pomiędzy procesami (co naj­
mniej dwoma!), to akcja taka, z punktu widzenia obserwatora niedostrzegającego 
przesłoniętej bramki, jest dostrzegana jako akcja wewnętrzna.

Standardowa semantyka tymczasem postulatu tego nie spełnia. Rozpatrzmy wyrażenie 
behawioralne postaci

g a\ a2... ak,B

gdzie: a2... ak są elementami komunikacyjnymi związanymi z akcją na bramce g. 
Jedyną możliwą tranzycją dla tego wyrażenia jest, oczywiście, tranzycja wynikająca 
z komunikacji na bramce g

g at a2... ak\ B—■> B' (8.1)

Tranzycję tę interpretujemy następująco: wyrażenie g a2 ... ak-, B w rezultacie wy­
konania akcji komunikacyjnej na bramce g (to znaczy na skutek synchronizacji ze 
swoim otoczeniem i wymianie odpowiednich wartości) będzie się dalej zachowywać 
zgodnie z wyrażeniem B', które jest modyfikacją wyrażenia B, wynikającą z podsta­
wienia za zmienne wolne występujące w akcji g ct\ a2 ... ak komunikowanych wartości 
- aksjomat (A-pre,

Rozpatrzmy teraz wyrażenie behawioralne postaci

hide g in g a\ a2... ak; B (8.2)

Z aksjomatu (A-pre oraz reguły (R2-hide) wynika, że zachodzi tranzycja

hide g in g; cą a2... ak; B ——» hide g in B’ (8.3)
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gdzie B' ma być odpowiednią modyfikacją wyrażenia B. Nasuwa się pytanie: jaka to ma 
być modyfikacja? Ponieważ nie zachodzi tu komunikacja z innym procesem, wejścio­
wym elementom komunikacyjnym można przypisać, w niedeterministyczny sposób, 
dowolne wartości odpowiadających im typów; semantyka obserwacyjna hide g in g; 
«i a2... o^; B jest więc równoważna semantyce obserwacyjnej wyrażenia choice x: s [] B.

Nasuwa się pytanie: jak interpretować tranzycję (8.3)? Nie można jej traktować tak jak 
tranzycji (8.1), gdyż na bramce g nie zachodzi komunikacja z innym procesem, ale 
jednocześnie postać wyrażenia B'jest taka jak w przypadku poprzednim. Nasuwa się 
natomiast sugestia, by wyrażenie hide g in g; a2 ... ak; B interpretować jako wyra­
żenie z wewnętrzną blokadą, czyli takie wyrażenie, które nie oferuje swemu otoczeniu 
żadnych komunikacji i jednocześnie nie może wykonać żadnej akcji wewnętrznej.

Zauważmy jednocześnie, że wyrażenie behawioralne postaci

hide g in g?x : s; B, |[g]|gfi; B2

nie stwarza wątpliwości interpretacyjnych. W tranzycji

hide g in g?x : s; B, |[g]|g!r;B2 hide gin |[g]| B2

akcja wewnętrzna wyraża przesłonięcie komunikacji pomiędzy wyrażeniami składo­
wymi złożenia równoległego.

Spełnienie postulatu, aby właściwie interpretować wyrażenie przesłonięcia bramki 
prowadzi do nowej semantyki języka. Semantyka ta jest przedstawiona w następnym 
podrozdziale.

8.2. Semantyki zmodyfikowane

Przedstawiono dwa rozwiązania problemu w postaci dwóch równoważnych semantyk.

Rozwiązanie 1

Zasadnicza idea, na której opiera się pierwsza semantyka, jest następująca: Aksjomat 
(A “PP^c-omm)

g oą a2... ak\ B—> B'

przedstawia tylko potencjalną tranzycję. Tranzycja ta powinna zajść tylko wtedy, gdy 
znajdzie się komunikacyjny partner na bramce g. Dlatego tranzycję postaci

B,—^^B2 (8.4)

zastąpimy tranzycjami postaci

B, > B2 (8.5)
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gdzie n>l jest dodatkowym parametrem etykiety, oznaczającym liczbę procesów uczest­
niczących w komunikacji na bramce g. Jeżeli n = 1, to tranzycja jest tylko potencjalna 
-jej zajście jest uwarunkowane kontekstem, jeżeli n > 1, to tranzycja może zajść.

Nowy etykietowany system przejść jest postaci

TS[(Spec) = <Beh, Act{, Tr}, Bn> (8.6)
gdzie:

Beh jest, jak poprzednio, zbiorem wyrażeń behawioralnych,
Acr, = {<n, g v> | n>l, geG u {6}, veTemirspec (0)} {<h *>} jest zbiorem in­
terakcji,
Tr\ = { —| aeActi} jest zbiorem relacji przejść,
Bo jest treścią procesu początkowego p0.

Zbiór aksjomatów i reguł jest modyfikacją TS^Spec), która - oprócz wprowadzenia 
dodatkowego parametru etykiety tranzycji - zmienia tylko aksjomaty oraz dwie reguły 
systemu TS(Spec).

Prefiksowanie akcją wewnętrzną B = i; B\

B <"'!>~^Bi (Arpre„„)

Prejtksowanie akcją komunikacyjną B = g a^ a2 ... cą[c]; B{

B^^^[Xi ::=ti ]B.
L Jl Jl ’ Jm Jm J 1

{Al -precomm)

wtedy i tylko wtedy, gdy:
vi = [Ą-J» gdy a, si/.oraz Ą jest termem stałym, dla i = 1,..., n,

v,e Term,.. {0)1 =, gdy aj = ?Xj : Sj, dla i = 1, ..., n,

Xj jest zmienną taką, że aj = 1 Xj : Sj , dla i = 1, ..., n.

oraz
D I- c[x, ::-t: ,..., x, ::=t, ] L Jl J\ * ’ Jm Jm J

Proces zakończenia B s exit(7i,..., t„)

B —<l’,>—» stop

Przesłonięcie B = hide . .......   g„ in 5,
D <n,a> . n'
4———4 gdy name(a)e {g,,..., gj (Rrhided
n--------- --------- n.

<n,a> o'
——------gdy name{a)e {g^..., g,,}, n>l {Rrhide2)
-------- -------- n.
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Istotna jest tu reguła (Ri-hidez), gdyż wprowadza ograniczenie na możliwe tranzycje - 
wyklucza ona tranzycję dla wyrażenia postaci hide g in g cą Oh ... oik; B.

Złożenie równoległe B = Bt |[gb g„]|

--^--1----------- — góy nanieś\g„...,gn,3} (R^-par^

B2 >B2 

5
gdy name(a)i {g. (Rrpar.J

Bt <"'“> >B{

B2 ę'2
gdy name(a)e [g{,..., gn,3] (Rrpar3)

Reguła (Ri-par3) różni się od reguły (R-par3) tylko tym, że wprowadza liczenie pro­
cesów uczestniczących w akcji na tej samej bramce.

Semantyki akcyjna i obserwacyjna są definiowane tak, jak w przypadku semantyki 
standardowej.

Rozwiązanie 2

Drugie rozwiązanie zakłada, że postać tranzycji nie ulega zmianie, lecz wprowadza się 
funkcje pomocnicze, które służą do definiowania ograniczeń na zachodzenie tranzycji. 
Są to funkcje:

F: Beh -> 2C

C: Beh -> 2G
(8.7)

Ich definicje są zawarte w tabeli 8.1. W definicji funkcji C wykorzystuje się funkcję 
pomocniczą h, określoną następująco:

h(Z) =
(0 gdy Z = 0 

[{i} gdyZ*0
(8.8)

Funkcja F(B) dla wyrażenia behawioralnego B wyznacza zbiór tych jego akcji, które 
ze względu na składnię mogą być wykonane w pierwszej kolejności. To, która z tych 
akcji zajdzie jako pierwsza, zależy od otoczenia danego wyrażenia. Funkcja C(B) wy­
znacza natomiast na podstawie zbioru F(B) podzbiór tych akcji wewnętrznych, które 
mogą być wykonane niezależnie od otoczenia wyrażenia B.
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Tabela 8.1

B F(B) C(B)
stop 0 0
i;B> {i} {•}

ga{ a,,^ (g) 0
exit(t..... . t„) {i} {i)

Bt » acceptx,: ó h ..., 
x„: s„ in B2 FIBO C{B.)

Bt[]B2 C(B|)u C(B2)

hideg...... . g„inB| F(Bt)\{ 
mBJnfg!, ...,g„})

C(B1)\{g1,...,g„ |uC(B2)\ 
(g,, ...,g„ }uF(B,)nF(B2) 

n{ gh ...,g„})
B, [> B2 F(Bi) u F(B2) C(Bt) u C{B2)

Bi |[gi, ...,g„]|B2 F^B^uF^) C(BMg^...,gn}^h(C(B') 
^{gu -.-gj)

k]->Bi F^B.) C{B.)
let*| = rb ...,x„ = r„inB| F(Bt) C{B\)
choice gin[gi.......g„] B} F(B|[g|/g]) u...u FfBdg^g]) C{B}[gJg})u ...kj C{BAg,Jg])

choice x : s [] B\ F^B,) C(B{)
parg in [g........g„] 

|[/2i,...,A,„]|Bl FtB^gdg]) o ... u F(B,[g„/g]) CiBAgJg]^ -^C(B,[g„lg\)

p[gi. ■ ••,gJOi, HBdg,//!,,...,^,/^]) C(B\[gJh\, ..., gjh,,})

(5i) F^B^ C(BX)

Etykietowany system przejść jest postaci

TS2(Spec) = <Beh, Act, Tr2, Bo> (8.9)

gdzie inaczej, w stosunku do semantyki standardowej, jest zdefiniowana tylko relacja 
tranzycji. Jest ona określona przez taki sam zbiór aksjomatów jak semantyka stan­
dardowa i tylko ma inną regułę dla przesłonięcia.

Przesłonięcie B = hide gi, ..., gn in B\ 

B—^B{
gdy name^i {g,,g„} (Ri-hidei)

b—^b' gdy name(a)E [g^..., gJnC^) (R2-hicie2)
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Reguła (R^-hidei), przez wykorzystanie funkcji C, wprowadza ograniczenie na możli­
we tranzycje.

Semantyki akcyjna i obserwacyjna są definiowane tak, jak w przypadku semantyki 
standardowej.

Oznaczając przez Seą^B) oraz Seq2(B) zmodyfikowane obliczenia, można pokazać, że 
są one równoważne, czyli Seq\(B) = Seq2(B).

Twierdzenie i dowód równoważności są przedstawione w artykule [Huzar, Kuźniarz 
1993].

Rozwiązanie drugie jest bardziej eleganckie i bliższe prezentacji standardowej seman­
tyki, dlatego rozważania dalszej części rozdziału są oparte na nim. Zmodyfikowany 
zbiór ciągów akcji generowany przez wyrażenie behawioralnego B będziemy ozna­
czać dalej przez Seq,nml{B).

8.3. Wykrywanie blokad

Blokada jest niepożądaną własnością specyfikacji. Z punktu widzenia zewnętrznego 
obserwatora zachowania reprezentowanego przez dane wyrażenie behawioralne blo­
kada jest nieodróżnialna od zakończenia aktywności wyrażenia.

W rozważaniach prowadzonych w dalszej części rozdziału ograniczymy się do bazo­
wej wersji języka LOTOS, która abstrahuje od wartości komunikowanych pomiędzy 
procesami. Ograniczenie to wynika przede wszystkim stąd, że daje ono możliwość 
jednoznacznego rozstrzygnięcia o zachodzeniu blokad na podstawie analizy tekstu 
specyfikacji. W przypadku natomiast pełnej wersji języka pojawianie się blokad może 
zależeć od konkretnego obliczenia związanego ze specyfikacją, a przebieg obliczenia 
zależy od komunikowanych wartości.

Składnia uproszczonej wersji języka jest następująca:

B ::= stop | i; B} | g; 5, | exit | S, » B21 ^ [ ] B21 hideg,, ..., g„ inB, | 
[>B2\Bi |[g,, ...gJlBjptg,, ..„gJKB,)

W wersji tej rezygnujemy również z konstrukcji:
choicegin [g,, ...,g„]5|
par gin [g,, ...,g„] |[/i,, ...,h,„]\Bt

gdyż można je wyrazić za pomocą konstrukcji pozostałych.

Najpierw rozpatrzmy dwa przykłady, które wyjaśnią rozumienie behawioralnego wy­
rażenia z blokadą:

g; stop | [g, ń] | ń; stop
hide g in g; stop
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Pierwsze z wyrażeń jest wyrażeniem z blokadą zarówno w sensie semantyki standar­
dowej, jak i semantyki zmodyfikowanej, drugie natomiast jest wyrażeniem z blokadą 
tylko w sensie semantyki zmodyfikowanej.

Mamy również inne wyrażenia, które - nie będąc wyrażeniem stop - są semantycznie 
jemu równoważne, będąc pewnym złożeniem procesów stop, na przykład:

stop [] stop
stop [> stop

Wprowadzimy rodzinę wyrażeń STOP, zdefiniowaną rekursywnie następująco:

stop ::= stop j' stop []srop T stoP |[5]| stoP T hide g in stop j' 
stop » stop j' stop [>stop j' (stop)

gdzie stop jest metazmienną.

Rodzina STOP wyznacza ten zbiór wyrażeń behawioralnych, wewnątrz których nie 
ma akcji komunikacyjnych i które są równoważne procesowi pustemu. Rodzinę tę bę­
dziemy odróżniać od zbioru wyrażeń z blokadą, wewnątrz których są wprawdzie akcje 
komunikacyjne, ale nie mogą być zrealizowane.

Definicja 8.1
Wyrażenie behawioralne B jest wyrażeniem z blokadą wtedy i tylko wtedy, gdy 
spełnia predykat D(B), zdefiniowany następująco:

D(B) =«• (Seq,„ml(B) = 0 a Bi STOP) (8.11)

Tabela 8.2

B P(B)
1 2

stop 0
i; 5, P(Bi)
g’, Bi P(Bi)
exit 0

Bi » B2 P(Bi)uP(B2)
Bi [] B2 P(Bi)uP(B2)

hide#h ..., g„ in B} P(Bi)
Bi [> B2 P(Bi)uP(B2)

Bi |[£i, ...,£„]| B2 P(Bi)uP(B2)
plg...... , Aj {Pi

(Bi) P(Bi)

Rozpatrując dane wyrażenie, jesteśmy zainteresowani nie tylko tym, czy wyrażenie jest 
wyrażeniem z blokadą, ale także tym, czy wyrażenia osiągalne z danego mogą być rów­
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nież wyrażeniami z blokadami. Rozważania będą ograniczone do wyrażeń regularnie 
zbudowanych. Wyrażenia te zdefiniujemy tu ściśle, wprowadzając następujące pojęcia:

Mówimy, że proces p wywołuje bezpośrednio proces q, jeżeli wywołanie procesu q jest 
zawarte w wyrażeniu Bp, stanowiącym treść procesu p. Przez CALL ę Proc x Proc, 
gdzie Proc jest zbiorem nazw procesów danej specyfikacji, oznaczmy relację bezpo­
średniego wywołania procesów

CALL = {<p, q> | q^ P(Bp)}

gdzie zbiór P^Bp) jest zdefiniowany tabelą 8.2.

Niech CALL+ będzie tranzytywnym domknięciem relacji CALL.

Definicja 8.2
Wyrażenie behawioralne B jest regularnie zbudowane, gdy dla każdego procesu 
pe Proc jest spełniony warunek: dla każdego podwyrażenia wyrażenia Bp, stano­
wiącego treść procesu p, postaci

B\ op Bi, dla ope {|[S]|, », [>},

jeśli q& u P(B^, to <q, p>£ CALL+.

Lemat 8.1
Jeżeli wyrażenie B jest regularnie zbudowane, to zbiór wyrażeń osiągalnych z B 
jest skończony.

Dowód (szkic)
Szczegółowy dowód, przeprowadzony metodą indukcji strukturalnej, jest prosty, 
ale uciążliwy - przy rozpatrywaniu kolejnych postaci wyrażenia B indukcja prze­
biega względem długości ciągu tranzycji. Główna idea jest natomiast prosta: jeżeli 
wyrażenie B jest regularnie zbudowane, to rekursywne wywołania procesów są 
skończone. Istotnie, liczba wyrażeń, do których może nastąpić tranzycja z wyraże­
nia regularnie zbudowanego B, jest skończona. Dla dowolnego procesu p&Proc 
każde z podwyrażeń wyrażenia B, jeśli zawiera wywołanie jakiegoś procesu, to 
- z definicji wyrażenia regularnego - nie prowadzi ani bezpośrednio, ani pośred­
nio do wywołania procesu p. Zbiór wyrażeń osiągalnych z wyrażenia B jest zatem 
również skończony.

Wprowadzamy dwie kategorie wyrażeń z blokadą: wyrażenia silnie i słabo blokujące.

W celu sprecyzowania tych pojęć w zbiorze SeqFin(B) wyróżnimy zbiór ciągów ter­
minalnych - podzbiór zbioru ciągów skończonych wyznaczanego przez semantykę 
akcyjną

SeqTerm(B) =def {s^SeqFin(,B) | -ds'* s'* Ea 5 A s' eSeqFin(B)} (8.12)
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Uwaga: Jeżeli wyrażenie B jest regularnie zbudowane, nie oznacza to skończoności 
zbioru ciągów terminalnych SeqTerm{B).

Wyrażenie behawioralne B jest silnie blokujące wtedy i tylko wtedy, gdy spełnia pre­
dykat

SD(B) =def SeqInf(B) = 0 a Vse SeqTerm(B) • B —B' a D(B') (8.13)

Oznacza to, że semantyka wyrażenia nie ma nieskończonych ciągów tranzycji, a każ­
dy skończony terminalny ciąg tranzycji z wyrażenia B prowadzi do wyrażenia z blo­
kadą.

Wyrażenie behawioralne B jest słabo blokujące wtedy i tylko wtedy, gdy spełnia pre­
dykat

WD(B) =det 3se SeąTermjB) • B —B' a D{B') (8.14)

Oznacza to, że dla wyrażenia istnieje skończony ciąg tranzycji terminalnych, który 
z wyrażenia B prowadzi do wyrażenia z blokadą.

Przykład 8.1
W celu zilustrowania wyrażeń blokujących rozpatrzmy następujące wyrażenia be­
hawioralne:

B} = a; stop
B2 = a-, stop |[o, b]| b; stop
Bi, = hide a in a; stop
Bą = a; P[a] gdzie process P[a] := a; P end
B$ = a; P[a] [] b; stop
B, = B, [] B2
By = Bą [> B2
Bs — Bą [> a\ B2

Semantyka klasyczna oraz zmodyfikowana tych wyrażeń przedstawiają się na­
stępująco:

Seq(B}) = Seą^Bt) = {«}
Seq(B2) = Seą^ilB^ = 0
Seq{B2)-{i} natomiast Seqmmi(B2) = 0
Seq(B^ = SeqIIU)(i{B^ = {a, aa, ..., aa ... a ,...} o {aa ... a ...}
Seq(B5) = Seqmmi(Bj) = {b, a, aa, ..., aa ... a, ...} u {aa ... a ...}
Seq{B6) = Seq,mKi(B^ = {a, aa, ..., aa ... a, ...} o {aa ... a ...}
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Seq{B2) = Seqmod(Bf) = {a, aa, ..., aa ... a, ...} u {aa ... a ...}
Seq(Bf) = Seqm,d(B$) = {a, aa, .... aa ... a, ...} u {aa ... a ...}

Zbiory ciągów terminalnych wyznaczonych dla zmodyfikowanej semantyki:
SeqTerm„u,d{B^ = {a}
SeqTerin,md(B2) = 0
SeqTermm,d{Bf) = 0
SeqTermmid{Bf) = 0
SeqTermimd(Bf) = {&}
SeqTermm„d(B^ = 0
SeqTerm,md(Bf) = 0
SeqTermmnd(Bf) = {a, aa, ..., aa ... a, ...}

Zauważmy, że chociaż

Seqm>d(B-i) Seqim)d(Bff
to
SeqTerm„mfBz) * SeqTerm„md(Bf).

Na podstawie definicji łatwo obliczyć warunki silnego i słabego blokowania (tab. 8.3).

Tabela 8.3

B SD(B) WD(B)

B\ fałsz fałsz
b2 prawda prawda
By prawda prawda
B, fałsz fałsz
B, fałsz fałsz.
Bb fałsz. fałsz
B, fałsz fałsz
Bi fałsz. prawda

Z definicji wynika, że badanie czy dane wyrażenie jest silnie lub słabo blokujące wy­
maga zbadania, czy zbiór ciągów SeqInf(B) jest niepusty oraz czy zbiór ciągów 
SeqTerm(B') prowadzi do wyrażeń z blokadą.

Teraz przedstawiamy dwa algorytmy związane z tymi dwoma badaniami. W prezen­
tacji algorytmów będziemy wykorzystywać dla danego wyrażenia behawioralnego B 
zbiór wyrażeń, który bezpośrednio po nim następuje w wyniku wykonania pojedyn­
czej tranzycji

Succ(B) = {B' | BaeAct • B—-—>B'} (8.15)
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Dla danego wyrażenia B zbiór ten można wyznaczyć się na podstawie zbioru aksjoma­
tów i reguł określających relację tranzycji w systemie przejść.

Algorytm badania czy zbiór ciągów SeqInf(B) jest niepusty przedstawimy w postaci 
rekursywnego obliczania wartości funkcji logicznej NotEniptySeqlnf(B). Funkcja obli­
cza wartość prawda, gdy zbiór Seqlnf(B) jest niepusty, oraz fałsz, w przypadku prze­
ciwnym. Jej definicja wyraża się przez funkcję pomocniczą NESI(B, pred), gdzie pred 
jest zmienną pomocniczą, której wartościami są podzbiory wyrażeń behawioralnych.
Definicja jest przedstawiona w samowyjaśniającej się konwencji programistycznej

NotEmptySeqlnfB) := NESI(B, 0)

gdzie:

NESl(B,pred) :=
begin

if F(B) = 0 then return(/«A’) endif; - 1
for B’eSucc(B) do

if B'e pred then returnów w/a) endif; - 2
endfor;

pred := predu {B};
for B'eSucc(B) do

if NESI(B', pred) then return(praWa) endif; - 3
endfor;
return(/a/.sz); - 4

end ;

Objaśnijmy algorytm. Parametr formalny pred reprezentuje zbiór wyrażeń behawio­
ralnych, które w pewnym obliczeniu, prowadzącym do wyrażenia B, mogą wyrażenie 
to poprzedzać. Oznacza to, że istnieje obliczenie postaci

B, g| >B2 ■ ■ —->B3 ...B,,., a" >B (8.16)

gdzie B|, B2, ..., B„_ \Epred. Początkową wartością parametru pred jest zbiór pusty.

Algorytm, badając zbiór następników Succ(B), kończy się na mocy lematu, gdyż zbiór 
wyrażeń osiągalnych z danego wyrażenia B jest skończony. Zakończenie algorytmu 
następuje w czterech przypadkach:

W pierwszym przypadku (linia z etykietą 1) algorytm kończy się obliczeniem war­
tości fałsz, gdy wyrażenie B spełnia warunek F(B) = 0. Oznacza to, oczywiście, że 
Seq„mt(B) = 0, więc i SeqInfm)d(,B) = 0.
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W drugim przypadku (linia z etykietą 2) algorytm kończy się obliczeniem wartości 
prawda, gdy napotka się wyrażenie B', osiągalne z B, które może prowadzić do pewnego 
wyrażenia ze zbioru pred. Oznacza to, że istnieje pętla - obliczenie nieskończone.

Jeśli nie stwierdzi się istnienia pętli, przechodzi się do obliczania wartości funkcji NESI 
dla wyrażeń ze zbioru Succ(B), w poszerzonym zbiorze poprzedników pred u {B}. Jeśli 
B'&Succ(B), oznacza to istnienie obliczenia

B{ a' >B2 >B3 ...B,,^ a'<-yB—^B' (8.17)

W tym przypadku (linia z etykietą 3) zakończenie algorytmu następuje, gdy stwierdzi 
się, że wartość funkcji NESI dla pewnego wyrażenia B'&Succ(B) jest prawdą. Jeśli 
natomiast dla wszystkich wyrażeń ze zbioru Succ(B) wartość funkcji NESI jest fał­
szywa, to oznacza, że wartość tej funkcji jest również fałszywa dla wyrażenia B (linia 
z etykietą 4).

Drugi algorytm bada, czy wyrażenie jest silnie blokujące. Jest on przedstawiony w po­
staci rekursywnego obliczania wartości funkcji logicznej StrongDeadock(B). Funkcja 
oblicza wartość prawda, gdy zbiór SeqFin(B) jest pusty i każde wyrażenie osiągalne 
z B, które nie ma następników, nie należy do zbioru wyrażeń STOP, czyli spełnia pre­
dykat SD. W przypadku przeciwnym funkcja oblicza wartość fałsz. Jej definicja wyra­
ża się za pomocą poprzednio zdefiniowanej funkcji NotEmptySeqInf(B) oraz nowej 
funkcji SD(B, pred), gdzie pred jest zmienną pomocniczą, której wartościami są pod­
zbiory wyrażeń behawioralnych.

StrongDeadock(B) :=
begin

if NotEmptySeqInf(B) then return(/hfcz); endif;
SD{B, 0);

end ;
gdzie:

SD(B, pred) :=
begin

if Succ(B)\pred = 0
then

if B&STOP then return(/dfcz) endif
else

for B'eSucc(B) do
if not SDfB ’, pred u SuccfB)) then return(/ćdsz) endif 

endfor;
return(prawda);

end ;
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Obliczenie czy wyrażenie jest słabo blokujące jest przedstawione w postaci rekur- 
sywnego obliczania wartości funkcji logicznej WeakDeadock{B). Funkcja oblicza 
wartość prawda, gdy istnieje wyrażenie osiągalne z B, które nie ma następników, 
nie należy do zbioru wyrażeń STOP, czyli spełnia predykat SD, a w przypadku 
przeciwnym funkcja oblicza wartość fałsz. Jej definicja wyraża się za pomocą 
funkcji WD(B, pred), gdzie pred jest zmienną pomocniczą, której wartościami są 
podzbiory wyrażeń behawioralnych.

WeakDeadock(B) := WD(B, 0);

gdzie:

WD(B, pred) :=
begin

if Suce (B)\pred = 0
then

if Suce (B) = 0 a Bi STOP then return(prawJa) endif
else

for B'iSucc(B) do
if WD(B', pred u Succ(B)) then return(prawr/a) endif

endfor;
return(/a£sz);

end

Przeprowadzona analiza blokad dotyczyła wyrażeń behawioralnych bazowej wersji 
języka LOTOS, abstrahującej od wartości komunikowanych pomiędzy procesami. 
Komunikacja wartości może być przyczyną nowych sytuacji, w których następują 
blokady. Rozpatrzmy przykład prostego wyrażenia

a ! true; stop |[«]| a \false\ stop

Jest to wyrażenie z silną blokadą, chociaż jego odpowiednik w bazowym LOTOSie
a-, stop |[a]| a-, stop

jest wyrażeniem wolnym od blokad. Wynika z tego oczywisty wniosek, że przeprowa­
dzona analiza określa warunki konieczne, ale niewystarczające do oceny zachodzenia 
blokad w wyrażeniach behawioralnych. Równie oczywiste jest to, że nie jest możliwa 
analiza blokad dla pełnego LOTOSa oparta wyłącznie na analizie tekstowej, bez ana­
lizy obliczenia wyrażenia.

Warto natomiast zaznaczyć, że przedstawione algorytmy wykrywania blokad można, 
po prostej korekcie, zastosować do bazowego, oryginalnego LOTOSa. Korekta wyni­
ka z różnicy semantyk, wyrażających się funkcją Suce.
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Związki pomiędzy blokadami w obu wersjach języka są oczywiste: jeżeli dla wyra­
żenia behawioralnego B w wersji oryginalnej zachodzi SD(B) (albo WD(B\), to także 
zachodzi SD(B) (albo WD(B)) w wersji zmodyfikowanej.

8.4. Uwagi końcowe

W tym rozdziale omówiono specyficzny problem ukrytych blokad w standardowej se­
mantyce języka LOTOS, wynikający z niekonsekwentnego traktowania komunikacji 
między procesami. Skorygowana semantyka, pozbawiona tego defektu, była przed­
miotem artykułu [Huzar, Kuźniarz 1993], Raport [Huzar, Kużniarz, Łach 1997] przed­
stawia implementację algorytmów wykrywania blokad w zmodyfikowanym języku 
LOTOS. Implementację oparto na języku programowania ML [Milner, Tofte, Harper 
1990],

Warto zaznaczyć, że w języku LOTOS problem blokad występuje niezależnie od 
omawianych tu blokad ukrytych. Na przykład takim wyrażeniem z blokadą jest

hideg, gi ing; B{ |[g]|gi; B2

Do wykrywania blokad w standardowym LOTOSie można stosować opisany w po­
przednim rozdziale pakiet CADP [Garavel, Lang, Mateescu 2001].
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9. Rozszerzenia czasowe LOTOSa

9.1. Wstęp

Przedstawiony w poprzednich rozdziałach język LOTOS nie pozwala na specyfikację 
systemów czasu rzeczywistego. Czas może być modelowany tylko jakościowo za pomo­
cą akcji wewnętrznych. W tym rozdziale zaprezentowano dwa podejścia do czasowego 
rozszerzenia języka LOTOS. Podejścia te różnią się sposobem modelowania akcji.

Pierwsze podejście zakłada, że akcje są natychmiastowe, a ich własności czasowe 
określają przedziały czasu, w których akcje te mogą zachodzić. Dokładniej: z akcją 
komunikacyjną wiąże się przedział czasu, w którym ta akcja może nastąpić, natomiast 
z akcją wewnętrzną jest związany przedział czasu, w którym akcja musi zajść. Podej­
ście to było prezentowane między innymi w artykułach: [Bolognesi, Lucidi 1992], 
[Leduc, Leonard 1992], [Quemada, Azcorra, Frutos 1990], znalazło też odbicie 
w nowej wersji języka E-LOTOS [ISO/IEC FDIS 15437], Wspólnym elementem tych 
prac było założenie, że wszystkie rodzaje akcji są akcjami natychmiastowymi.

Dla akcji komunikacyjnej wprowadza się notację

g{tinT.. r+] (9.1)

która oznacza, że akcja może zajść w przedziale czasu t~.. t+, gdzie 0 < t" < t+. Jeżeli 
akcja na bramce g nie zajdzie w zadanym przedziale czasu, to po jego upływie już 
zajść nie może.

Podobną notację wprowadza się dla akcji wewnętrznej i akcji exit

i {t in r".. r+) exit {? in C.. r+] (9.2)

W odróżnieniu od akcji komunikacyjnej, notacja oznacza, że akcja musi zajść w prze­
dziale czasu t~.. t+, gdzie 0 <t~ < t+. Jeżeli akcja nie zajdzie przed chwilą t+, to musi 
zajść w chwili t+.

Opis akcji czasowych i komunikacji zachodzącej w czasie rzeczywistym wymaga po­
jęcia chwil i przedziałów czasowych. Chwile czasowe będą się odnosić do momentów 
rozpoczynania i kończenia akcji, przedziały zaś będą się odnosić do opóźnień i czasów 
przeterminowania. Zakładamy przy tym strukturę liniowego i gęstego czasu abso­
lutnego. Dla ukonkretnienia przyjmujemy, że dziedziną takiej struktury jest zbiór liczb 
wymiernych, dalej oznaczany symbolem Time. Strukturę taką można zdefiniować jako 
typ abstrakcyjny [Huzar, Magott 1997a].

Przedstawione podejście to ma tę zaletę, że pozwala na zachowanie zgodności z LO- 
TOSem bezczasowym, jego wadą wydaje się brak naturalności, co może powodować 
większą złożoność specyfikacji.
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Drugie podejście do czasowego rozszerzenia LOTOSa zakłada istnienie akcji czaso­
wych i było przedstawiane w pracach: [Huzar 1991], [Huzar, Magott 1995a], [Huzar, 
Magott 1995b], [Huzar, Magott 1996], [Huzar, Magott 1997a], [Huzar, Magott 
1997b], Własności czasowe akcji, podobnie jak w przypadku języka RT-CSS (rozdz. 3.), 
są wyrażane przez zbiór dopuszczalnych czasów wykonywania się akcji.

Dla uproszczenia rozważania będą odnoszone do takiej samej bazowej wersji języka 
LOTOS, jaką rozpatrywano w rozdziale 8. (8.5). Czasowe rozszerzenie tej wersji bę­
dzie oznaczane dalej jako język RT-B-LOTOS. Rozszerzenie polega na wprowadze­
niu dwóch elementów:

• zastąpieniu akcji (bezczasowych) akcjami czasowymi,
• wprowadzeniu nowego rodzaju akcji, zwanej akcją przeterminowania.

Akcje na bramce g (podobnie akcje wewnętrzne i) będą zastąpione akcjami czaso­
wymi g[A] (odpowiednio i[zl]), gdzie A^Time oznacza zbiór dopuszczalnych czasów 
wykonania akcji czasowej. Wykonaniu akcji czasowej towarzyszą takie dwie chwile 
czasowe: rozpoczęcia oraz zakończenia r2, że t2 - A Dla uproszczenia rozważań 
będziemy zakładać, że różnym akcjom czasowym na bramce g będzie zawsze odpo­
wiadać taki sam zbiór A, różnym czasowym akcjom wewnętrznym mogą natomiast 
odpowiadać różne zbiory A.

Zakładamy, że akcje czasowe są nieprzerywalne: akcja raz rozpoczęta musi być wy­
konana do końca.

Komunikacja zbioru n akcji czasowych na bramce g przebiega w dwóch fazach. 
W pierwszej fazie akcje oczekują na synchronizację. Synchronizacja następuje w naj­
wcześniejszej możliwej chwili, zgodnie z zasadą ASAP (As Soon As- Possible). 
W chwili nastąpienia synchronizacji, co będzie modelowane zajściem zdarzenia 
czasowego <t\, g-beg>, rozpoczyna się faza druga - faza wymiany danych, która trwa 
do chwili r2, takiej, że 6 - t^A. Zakończenie tej fazy będzie modelowane zajściem 
zdarzenia czasowego <t2, g-end>.

Nowa akcja czasowa - akcja przeterminowania - ma postać timeout(J), gdzie Se Time. 
Jest to akcja, której realizacja rozpoczyna się w momencie jej zaoferowania r, i trwa 
przez odcinek czasu 3. Rola tej akcji polega na sygnalizacji upływu odcinka czasu dłu­
gości 3, mierzonego od momentu rozpoczęcia akcji. Wykonanie akcji przetermino­
wania będzie modelowane tylko zajściem zdarzenia czasowego <t2, timeout>, określa­
jącego jej zakończenie w chwili tz = 6 + 3, jej rozpoczęcie natomiast nie będzie wy­
różniane odrębnym zdarzeniem.

W tym rozdziale przedstawiono oba podejścia do czasowego rozszerzenia LOTOSa, przy 
czym - w celu uproszczenia - ograniczono się tylko do wersji bazowej języka, do­
datkowo z wyłączeniem niektórych konstrukcji, na przykład choice, let, accept. Podej­
ście pierwsze jest reprezentowane przez TE-B-LOTOS, a drugie przez RT-B-LOTOS.
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9.2. Składnia i semantyka języka TE-B-LOTOS

Uproszczona, ograniczona do części bazowej, bez komunikacji danych, wersja języka 
TE-B-LOTOS ma następującą składnię:

Q ::= stop |exit{/ in d~..d+} | g{t in d~.. d+}; Q\ i{r in d~.. d+}-, | wait(J); Q\

0j [] 021 01 |[/?]| 021 hide /? in 21 01 » 021 01 [> 021p[gi,g»] | (9.3)

(Q)\Age(d,Q)

Symbole 0, 0i, Qo są metazmiennymi, oznaczającymi wyrażenia behawioralne; będą 
one często używane zamiast symboli B, B\, ..., w celu bezpośredniego odróżnienia 
wyrażeń języka TE-B-LOTOS od języka RT-B-LOTOS.

Ostatni element przedstawionej składni Age(d, Q) nie należy do języka TE-B-LOTOS, 
to znaczy konstrukcji tej nie używa się podczas tworzenia specyfikacji. Jest on nato­
miast stosowany jako element pomocniczy podczas definiowania semantyki języka, 
dlatego, ściśle traktując, składnia przedstawia rozszerzony język TE-B-LOTOS, na­
zywany dalej TE-B-LOTOS+. Zbiór wyrażeń behawioralnych języka TE-B-LOTOS* 
będzie oznaczany przez TEBeh*, a zbiór wyrażeń języka TE-B-LOTOS - przez 
TEBeh.

Deklaracje procesów będą miały postać

process P[S] : funkcjonalność := P endproc

gdzie: Pt Proc, SeSeqG oraz PeTEBeh, a funkcjonalność przyjmuje jedną z postaci 
exit albo noexit. Zbiór deklaracji procesów będzie oznaczany przez Decl.

Specyfikacja TESpec w języku TE-B-LOTOS jest określona tak samo, jak specyfika­
cja w LOTOSie bazowym, to znaczy składa się z dwóch elementów:

• czasowego wyrażenia behawioralnego Pe TEBeh,
• zbioru deklaracji procesów Decl = {Dt, ..., D,,}. Elementarne procesy stop i exit 

nie wymagają, oczywiście, deklaracji. Zakładamy przy tym, że realizacja procesu 
exit jest natychmiastowa, proces stop trwa natomiast nieskończenie długo.

Semantyka języka jest wyznaczana przez etykietowany system przejść

TES(RTSpec) = <TEBeh+, TEvent, TETrans, P> (9.4)
gdzie:

TEvent= {g | ge G u {exz7)} u {/} u {dI deTimej

TETrans = { ——> c TEBeh* KTEBeh* | ee G u {exz7} u {/}}

u{ ——> £ TEBeh+ X TEBeh* | Je Time}

jest zbiorem relacji przejść.
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Wyróżnia się dwa rodzaje przejść: zdarzeniowe —£—» i czasowe ——>.

Przejście zdarzeniowe Q—e—^Q' oznacza, że wyrażenie Q może się zaangażować 
w wykonanie akcji e, a po jej wykonaniu dalsze zachowanie jest określone przez wy­
rażenie Q\ Przejście czasowe Q——>Q' oznacza, że wyrażenie Q może być opóź­

niane przez odcinek czasu o długości d, a dalsze jego zachowanie jest określone przez 
wyrażenie Q'.

Dalej będą stosowane oznaczenia:
Q—> oznacza, że istnieje Q' takie, że Q—L-^Q',

Q!——> oznacza, że nie istnieje Q' takie, że Q—

[Z ::= t']Q oznacza, że ograniczenia czasowe dotyczące akcji występujących 
w wyrażeniu Q są zmodyfikowane tekstowo w taki sposób, że zmienna t jest za­
stępowana tekstowo wyrażeniem t'.

Zbiór relacji przejść TETrans jest definiowany rekursywnie za pomocą przedstawio­
nego niżej zestawu aksjomatów i reguł.

Aksjomaty dla prefiksowania akcją komunikacyjną:

g{t in O..d+}; Q। —[Z ::= 0]Q} (TE-prec<mm.i)

g{t in d + d..d++ d}\Qi —g{t in d~..d+}-, [Z ::= t + r/](2i (TE-precomn.2)

g{t in d~..d*}; 0, —stop gdy d > d+ (TE-prec„mm.2)

g{t in d\.d+ + d};Ql d > g{t in O..J+}; [Z ::= t + d]Qt gdy d>d~ (TE-prea)limh4)

Aksjomat (TE-prec,mm.2) odnosi się do sytuacji, gdy akcja na bramce g nie została wy­
konana w przedziale czasu d~.. d+. Oznacza to zablokowanie dalszych obliczeń całego 
wyrażenia prefiksowanego akcją na bramce g.

Aksjomaty dla prefiksowania akcją wewnętrzną:

i{rinO..tZ+}; (2i ——» [z::=0](2i (JE-preinM)

i{zinJ“ + d..d++ d}; (2i —> i{zind~.. d+}; [z ::= t + d](2i (TE-preiM,2)

i{zin<F..t/+ + d}\ (2i ——> i{z in 0..t/+}; [z ::= t + z/]0i gdyd>d (TE-pre,,,,.^

Aksjomaty dla procesu exit:

exit{z in O..J+}—» stop (TE-exit{)

exit{zin d~ + d..d++ d}\ <2i ——> exit{zin d~..d+} (TE-exit2)



164 Rozdział 9

Age(d, P) zachowuje się tak, jakby zachowywało się wyrażenie P po upływie odcinka

exit{r in d ..d+}; stop gdy d> d+

exit{/ in O..d+ + d}; Q\ d > exit{t in O..J+}

(TE-exity)

(TE-exit4)

Aksjomat i reguły dla prefiksowania opóźnieniem:

P—^P'
(TE-wait[)

wait(0);P—t—tP'

wait(r/'+ J); P ——> wait(<7'); P’ (TE-waiP)

P—-^P' 
d (TE-waity)

wait(J );P d+d. >P

Reguły dla wyboru B = P[]Q:

13
 

da
 

(O
 

eo
 

“1
3

&S
 

>e
 

>3
 

0̂
5

\ \
 

to
 

\ \
to (O

(TE-choice\)

(TE-choicei)

(TE-choice-s)
B—7-t^P'[]Q' 

d+d

Reguły dla prefiksowania przesunięcia czasowego:

P—-^P" P"—^P' 
d (TE-agey)

Age(d,P)^^P'

P ,, >P'
d+d (TE-age2)

Age{d ,P) d >P

czasu d. Jeśli PI——, oznacza to, że Age(d, P) jest procesem nieaktywnym, równo­

ważnym stop.
Reguły dla złożenia równoległego B =P | [5] | Q:

P—^P'
B-^P'\[S]\Q

Q^-^Q'

(TE-parA

(TE-par-y)
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P—^P' Q—^Q' 
B-^P'\[S]\Q' 

p^p' Q^Q'

B—j—>P'\[S]\Q'

Reguły dla przesłonięcia B = hide S in P:

p —^P'
g e set(S)

B-^-->hide S in P'

P —^P'
g e set(S)

B-^- hide Sin P'

P—-^P' 
a

Wg e set(S) • (PI—^/sWP'Wd'<d • (P—P' => P'/—^)

B——> hide Sin P'
(l

(TE-par^)

(TE-par^

(TE-hide^

(TE-hiden)

(TE-hideJ)

Ostatnia reguła oznacza, że przesunięcie czasu może nastąpić, co najwyżej, do naj­
wcześniejszego wystąpienia akcji komunikacyjnej, a akcje na przesłoniętych bram­
kach są wykonywane zgodnie z zasadą maksymalnego postępu (as soon as possible).
Reguły dla złożenia aktywującegoB=P»Q:

P—^P'
——-——----— g.event±exit (TE-acceptC)

B i iP'^Q (TE-accept,)

P—P', PWP"Wd' <d* (P——^P" => P"! ex" >)
------ ------------------------------------------------- *---------------------------- (TE-acceph) 

B-^P'»Q '

Ostatnia reguła oznacza, że przesunięcie czasu może nastąpić pod warunkiem, że nie 
jest realizowana akcja exif, akcja ta jest wykonywana zgodnie z zasadą maksymalnego 
postępu.

Reguły dla złożenia deaktywującego B = P[> Q:

P—^P'
-------------------- g.event*exit (TE-disi)
B-^-^P[>Q

Q^^Q' 
B-^Q'

(TE-disi)
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P
B-^-^P'

P^P\Q^Q'

B-^P'»Q'

Reguły dla wywołania procesu B = p [h,,..., hn ]:

GLg^...... 8,r--=M-^Q' 
B^^Q'

Q[g! ...... gn ■■=h„]—r^Q' 

B^Q'

(TE-disi)

(TE-disĄ)

(TE-insti)

(TE-instz)

9.3. Wybrane własności języka TE-B-LOTOS

Własności języka TE-B-LOTOS są zgodne z własnościami języka LOTOS. Należą do 
nich własności zdefiniowane dla LOTOSa w podrozdziale 7.2.

Zachodzi też twierdzenie o ekspansji. Wprowadzimy następujące oznaczenia:

Pt jest skrótem zapisu P^ gdzie zj,..., z„G/.
/e Z

22 | c}, gdzie c jest wyrażeniem logicznym, wyznacza podzbiór podwyrażeń skła-
/€/

dowych wyrażenia 22 które spełniają warunek c.
iel

Niech będą dane dwa czasowe wyrażenia behawioralne w normalnej sekwencyjnej 
postaci normalnej:

P-£“iUin<-<};^[]^..d^^Pj InJ = 0 
ie / Je J

(9.5)
Q = ^bk{tkmd;:..d{}-,Qk KnL = 0

keK leL

Twierdzenie o ekspansji pokazuje, że różne złożenia takich wyrażeń daje się również 
wyrazić w sekwencyjnej postaci normalnej.

Twierdzenie 9.1
Zachodzą następujące równoważności w sensie relacji silnej bisymulacji: 
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dla złożenia równoległego:

P|[5]|2~ |[S]| Age(r, ,0)k.ev^^ set(S)u {exit}}
iE/

[] ^{bk kindk-dk };(Qk I ki I Ag^k ’I bk event £ Set(s)u {^11 

kEK

"=M0)k = a, = bk A

fe/
ci.evente. set(S)/\keK]

[] £iy{tj in<..<}; {Pj | [S] | Age(tj,0)

leL

dla złożenia deaktywującego:

Pl>Q~ Q
11 21^/16 ind, Age(t,■,2)) | a,,eventi set(S')u{exit}}

iel

[]Sk{Mnd~..d,}};^k,event = exit}

[] z i jUj ind- ..d*};(P] [> Age(tj, Q))
jej

dla złożenia aktywującego:

P»Q~ S«,.{r,in<..<};(^ »Age(ti,Q))
iEl

[] Siyind-..d;]-,(Pj » Age(tj,Q))

dla przesłonięcia:

hide S in P ~ {a, {tj in d[. .d^}; hide S in P, | a, .event g set(S) u {exit}}
fe/

[] ^{i{t, indf.z?^};hide S in Pj \aj.evente set(S)u{exit}} 
fe/

[] ^ijt; ind[..d^};hide S in Pj
jej

dla opóźnienia:

wait(d);P ~ ^a,{r, inrf,"..d^};[?, ::=?,• -d]Pj
iel

[]yjij{tjmd;..d;}-,[ti-tj-d]Pj
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dla przesunięcia czasowego:

Age(d,P)~ ^aft^ndj -d..dj -d};[r, ::=r, + d]Pj 
iel

n in< -d..< -d};[r,. -.^t, +d]Pj 
Jej

9.4. Składnia i nieformalna semantyka języka RT-B-LOTOS

Wprowadźmy oznaczenia:

G - zbiór nazw bramek obserwowalnych,
Proc - zbiór nazw procesów,
Time - dziedzina chwil czasowych,
TBeh - zbiór czasowych wyrażeń behawioralnych.

Zbiór wszystkich akcji czasowych jest zdefiniowany jako suma mnogościowa

Act = ]g[J] | g&G, A^Time} u{i[zl] | AęTime} u {timeout(J) | <5e Time} (9.6)

Niech SeqG oznacza zbiór takich ciągów nad zbiorem G, w których nie ma powtórzeń 
dwóch tych samych nazw bramek, to znaczy

SeqG = {gb ..., g„\g.eG, g,*gj dla i ^j, n = 0, 1, ...} (9.7)

Jeżeli ReSeqG oraz R = gh ..., g,„ to set(R) = { gb ..., gn} oraz len(R) = n dla n > 0.

Deklaracje procesów będą miały postać

process P[S] '.funkcjonalność := B endproc

gdzie: PeProc, SeSeqG oraz BETBeh, a funkcjonalność przyjmuje jedną z postaci 
exit albo noexit. Zbiór deklaracji procesów będzie oznaczany przez Decl.

Instancją procesu będzie wyrażenie postaci BU?], gdzie ReSeqG oraz len(R) = len(S). 
Wyrażenie to jest szczególną postacią czasowego wyrażenia behawioralnego. Zbiór 
wszystkich czasowych wyrażeń behawioralnych TBeh, w notacji BNF, jest określony 
następująco:

B stop I exit I g[J]; B, I i[d]; B, I timeout(ó); Bi I Bi » B21 B{ [] B2 I
(9.8)

hide R in Bx | B} [> B21 B| |[7?]| B21 P[B] | (B,)

gdzie: B, Bi, B2& TBeh, P^Proc, RE.SeqG. Kolejność wprowadzenia operatorów odpo­
wiada malejącej kolejności ich priorytetów.

Nieformalnie semantyka czasowych wyrażeń behawioralnych, oprócz czasowej roz­
ciągłości akcji, jest podobna do semantyki wyrażeń LOTOSa standardowego. Dodat­

g%25e2%2580%259e/g.eG
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kowe różnice wynikają z wprowadzenia akcji przeterminowania. Bezpośrednio sama 
akcja timeout(J) oznacza opóźnienie o odcinek czasu długości 8. Obecność natomiast 
tej akcji w różnych kontekstach ma wpływ na przebieg obliczeń. Rozpatrzmy na przy­
kład trzy wyrażenia behawioralne, w których może ona wystąpić:

g[żl]; By [] timeout(J); B2 (9.9)

By [> timeout(^); B2 (9.10)

By |[/?]| timeout(J); B2 (9.11)

Pierwsze wyrażenie (9.9) reprezentuje następujące zachowanie: jeżeli w odcinku cza­
su o długości 8, mierzonym od momentu jego przygotowania, rozpocznie się reali­
zacja akcji czasowej na bramce g, to dalsze zachowanie - jak przy konstrukcji wyboru 
- przebiegnie zgodnie z wyrażeniem By, w przypadku natomiast przeciwnym w mo­
mencie upływu odcinka czasu ^rozpocznie się realizacja wyrażenia B2.

Drugie wyrażenie (9.10) reprezentuje następujące zachowanie: jeżeli w odcinku czasu 
o długości 3, mierzonym od momentu jego przygotowania, nie nastąpi zakończenie 
wyrażenia By, to w momencie upływu odcinka czasu 3 nastąpi jego przerwanie i roz­
pocznie się realizacja wyrażenia B2.

W przypadku natomiast trzeciego wyrażenia (9.11) akcja przeterminowania odgrywa 
tylko rolę opóźnienia momentu rozpoczęcia wykonania wyrażenia B2.

Dwa pierwsze wyrażenia są typowymi konstrukcjami, które można spotkać w językach 
programowania czasu rzeczywistego, na przykład w języku Ada 95 [Huzar i inni 1998],

Definiowany język zawiera te same źródła niedeterminizmu, co LOTOS standardowy 
- dotyczy to konstrukcji wyboru oraz selekcji zestawów komunikujących się proce­
sów. W rozważaniach przyjmujemy niedeterministyczny wybór czasów wykonania 
akcji czasowej ze zbioru A, określającego dopuszczalne czasy wykonania. Możliwe są 
też inne sposoby, na przykład wybór losowy zgodnie z zadanym rozkładem praw­
dopodobieństwa, tak jak to przedstawiono w artykule [Huzar, Magott 1997a].

Specyfikacja RTSpec w języku RT-B-LOTOS jest określona tak samo jak specyfikacja 
w LOTOSie bazowym, to znaczy składa się z dwóch elementów:

• czasowego wyrażenia behawioralnego Be TBeh,
• zbioru deklaracji procesów {Dy, ..., D,,}, gdzie D^Decl. Elementarne procesy stop 

i exit nie wymagają oczywiście deklaracji. Zakładamy przy tym, że realizacja pro­
cesu exit jest natychmiastowa, proces stop trwa natomiast nieskończenie długo.

9.5. Semantyka formalna języka RT-B-LOTOS
Semantyka operacyjna specyfikacji jest definiowana w sposób strukturalny na pod­
stawie definicji składniowych wyrażeń behawioralnych.
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Wprowadzenie czasu powoduje, że w wyrażaniu semantyki konieczne staje się rozwa­
żanie przejściowych sytuacji, w których oczekuje się jedynie na upływ czasu. Z tego 
względu wprowadza się pomocniczą akcję opóźnienia, oznaczaną delay(g, ó), gdzie 
geG u {i}, której jedynym znaczeniem jest opóźnianie akcji na bramce g o zadany 
odcinek czasu J.

Wprowadzenie akcji opóźniającej rozszerza zbiór wyrażeń behawioralnych. Rozsze­
rzony zbiór czasowych wyrażeń behawioralnych, oznaczany XTBeh, w notacji BNF, 
jest zdefiniowany następująco: Niech B jest metazmienną reprezentującą wyrażenie 
behawioralne ze zbioru TBeh, a XB, XB\, XB2 są metazmiennymi reprezentującymi 
zbiór wyrażeń XTBeh, wówczas

XB ::= B | delay(g, S); B | XB{ |[S]| XB21 hide 5 in XB | XB»B | XB [> B (9.12)

Rozszerzony zbiór wyrażeń behawioralnych służy do przedstawiania konfiguracji za­
chodzących w trakcie obliczeń - są to zarówno konfiguracje zasadnicze, reprezento­
wane przez wyrażenia behawioralne języka RT-B-LOTOS, jak i konfiguracje pomoc­
nicze, reprezentowane przez rozszerzone wyrażenia behawioralne. Składnia wyrażeń 
rozszerzonych jest zdefiniowana tak, aby uwzględniać tylko możliwe do osiągnięcia 
konfiguracje pomocnicze. Nie jest na przykład możliwa do osiągnięcia konfiguracja, 
która byłaby reprezentowana przez wyrażenie XB\ [] XB2, gdyż oznaczałaby przejścio­
wą konfigurację, w której trwa realizacja wyrażeń po obu stronach operatora wyboru. 
Jest to oczywiście niemożliwe, gdyż realizacja wyrażenia behawioralnego z opera­
torem wyboru prowadzi do wyboru tylko jednego wyrażenia składowego.

Wprowadzamy zbiór nazw zdarzeń czasowych Event, zdefiniowany jako

Event = {g-beg | ge G} u {g-end\g&G} u {i-beg, i-end, exit, timeout} (9.13) 

Jeżeli Se.SeqG, to

Evevt(S) = {g-beg | ge se^S)} u {g-end | ge set(S)} (9.14)

Zbiór zdarzeń czasowych TEvevt jest zdefiniowany jako produkt

TEvevt - Time X Event

Jeżeli e = <t, h>& TEvent, to

e.time = t oraz e.event = h.

Dla specyfikacji RTSpec = < {B, {£>,, ..., £>„}> etykietowany system przejść czaso­
wych jest zdefiniowany jako

RTS(RTSpec) = <XBeh, TEvent, RTrans, B> (9.15)
gdzie

RTrans = { —> ę XBehx XBeh | ee TEvent} jest zbiorem relacji przejść.
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Zbiór relacji przejść RTrans jest definiowany rekursywnie za pomocą przedstawio­
nego niżej zestawu aksjomatów i reguł. W regułach występuje kilka funkcji pomocni­
czych.

Pierwsza z nich, funkcja o sygnaturze

First: XTBeh -> 2C

dla danego rozszerzonego czasowego wyrażenia behawioralnego B, wyznacza zbiór 
bramek, które są przygotowane do komunikacji. Definicję funkcji przedstawiono 
w tabeli 9.1.

Tabela 9.1

B First(B)

stop 0
exit 0

gMJ; Bt {#}
iMJ; Bt 0

delay(^, 8); Bi (geGu {i)) 0
timeout(Ą; Bt 0

Bt [] B2 First(B0 U First(B2)

imi b2 (First(BA\set(S)) O (First(B2)\set(S'» 
u (First(Bi) n First(B2) n set(S)

hide S in B^ First{B\)\set{S)

P[^]
FirstiBx[S.:=R]) 

Bt jest treścią procesu P
Bt» B2 First(B\)
B । [> Bi First(BA u First(B2)

(5.) First(B\)

Dwie następne funkcji o sygnaturach:

Age : XTBeh X Time —> XTBeh

Next: XTBeh —> Timem

służą do modelowaniu upływu czasu. Pierwsza z nich, Age(B, 3), transformuje rozsze­
rzone czasowe wyrażenie behawioralne w nowe wyrażenie, które jest tylko rezultatem 
upływu czasu o odcinek 8.

Druga funkcja, Next(B), dla danego rozszerzonego czasowego wyrażenia behawioral­
nego B, wyznacza, poczynając od danej chwili, najwcześniejszy moment, w którym 



172 Rozdział 9

może się rozpocząć akcja czasowa, niezależnie od otoczenia wyrażenia B. Zbiór war­
tości funkcji Time^ = Time u {°°}, gdzie element <» ma następujące własności:

V/e Time • +

Jeżeli najwcześniejszy moment akcji czasowej dla wyrażenia B zależy wyłącznie od 
jego otoczenia, to wartość funkcji jest zdefiniowana jako Next(B) = <». Funkcje są 
zdefiniowane w tabeli 9.2.

Tabela 9.2

B Age(B, 5) Next(B)

stop stop oo

exit exit oo

gM; By oo

0
delay(g, Ą); By 

geGu(i) delay(g, 3y - 8y, By2) 3y

timeout(Ą); By timeout(Ą - 8)\ By2) s^
By [] B2 Age(By, 3) [] Age(B2,3)* min(Next(By), Next(B2))

B. |[5]| B2 Age(By, 3) \[S]\Age(B2, 3)3} min(Next(By), Next(B2))

hide S in By hide 5 in Age(By, 3)4) 0 gdy First(By) n set(S) * 0
Next(By) w przypadku przeciwnym

F[B]
Age(By[S ::= R], 3) 41 

By jest treścią procesu P
Next(By[S ::= /?])

By » B2 Age(By,3)» B2i} Next(By)
B ] [> S? Age(By,8)(>Age(B2, 3)^ min(Next(By), Next(B2))

(By) Age(By,3)4} Next(By)

Zdefiniowane tylko dla 3=0.
Zdefiniowane tylko dla 3< 3y.
Zdefiniowane tylko dla 3< min(Next(Bt), Next(B2))-
Zdefiniowane tylko dla 3<min(Next(By).

Wreszcie ostatnia funkcja pomocnicza, o sygnaturze

Abort: XTBeh -> XTBeh

dokonuje transformacji rozszerzonego czasowego wyrażenia behawioralnego B, która 
odzwierciedla konsekwencje zerwania obliczeń wyrażenia. Jedynym powodem zerwa­
nia obliczenia jest zastosowanie konstrukcji złożenia deaktywującego By [> B2. Jeżeli 
wyrażenie B2 rozpocznie swą aktywność, to musi nastąpić zakończenie wyrażenia Bj. 
Ponieważ akcje czasowe są nieprzerywalne, zakończenie wyrażenia By nie następuje 
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w momencie rozpoczęcia wyrażenia fi2, lecz dopiero wówczas, gdy zakończą się 
wszystkie aktualnie wykonywane akcje czasowe wyrażenia B], Taki łagodny model 
zrywania obliczenia (soft abortion) wyrażenia behawioralnego wyraża funkcja Abort, 
zdefiniowana w tabeli 9.3.

Tabela 9.3

B Abort(B)

stop stop
exit stop

stop
stop

delay(g, S); Bi geGu {i} delay(g, Sy stop
timeout(ó); Bt stop

Bi [] B2 Abort(BA [] Abort(B2)
[]i[F2];B2 stop

Bi |[5]| B2 AborRBj) |[S]| Abort(B2)
hide S in Bi hide 5 in AborRBA

P[5]
Abort(Bi[S :■.= /?]) 

B\ jest treścią procesu P
B\ » Bi Abort(B\)
Bi [> B2 Abort(Bi) |[0]| Abort^Bj)

(5.) Abort(B\)

Proces pusty stop - brak aksjomatów.

Proces zakończenia B = exit
B > stop (RT-exit)

gdzie t > 0.

Proces exit wykonuje się natychmiast, jeśli tylko w jego otoczeniu istnieją już przygo­
towane procesy, które się z nim synchronizują. W przypadku przeciwnym proces exit 
oczekuje na synchronizację.

Prefiksowanie akcją komunikacyjną B = g[żl]; B\

B <M^.<->delay(g, S),Bl (RT-pre,,mm)

gdzie ?>0, Se A i geG.

Akcja komunikacyjna rozpoczyna się w chwili synchronizacji z otoczeniem, co może 
nastąpić w dowolnym momencie t > 0, i trwa odcinek czasu Se A, uzgodniony przez 
komunikujące się procesy.
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Prefiksowanie akcją wewnętrzną B = i[zl]; B,

B >delay(;,ó-);B, (RT-preinl)

gdzie Je A

Akcja wewnętrzna rozpoczyna się w chwili jej zaoferowania otoczeniu i trwa odcinek 
czasu Je A ustalony przez proces zawierający akcję, bez wpływu otoczenia.

Prefiksowanie akcją opóźniającą B = delay(g, fi); B^

B (RT-preM„fi

Rozpoczęta akcja opóźniająca trwa nieprzerwanie, aż do zakończenia.

Prefiksowanie akcją przeterminowania B = timeout(J); B\

B {RT-preti„mM)

Rozpoczęta akcja przeterminowania kończy się po upływie zadanego odcinku czasu fi, 
ale - w odróżnieniu od akcji wewnętrznej - może być przerwana: wynika to z dalej 
przedstawionych reguł dotyczących konstrukcji wyboru i złożenia deaktywującego.

Wybór B = B\[] B2

{RT-choice^) 
B—^B'

jeśli e.time < Next(B2) oraz
e.event = g-beg, dla ge G u {i} lub e.event = timeout

b2—^b2 .
—------------ (RT-choice->)
B^^B2

jeśli e.time < Next(B\) oraz
e.event = g-beg, dla gE G u {i} lub e.event = timeout

Reguły opisujące wybór sprowadzają się do stwierdzenia, że wybiera się to wyrażenie 
składowe, dla którego najwcześniej zajdzie zdarzenie czasowe. W przypadku równo­
czesnego wystąpienia zdarzeń dla obu wyrażeń składowych wybór jest niedetermini- 
styczny.

Złożenie równoległe B = B\ |[S]| B2

------ ----------------------------------- (RT-part)
B —> B{ | [5] | Age(B2, e.time) 

jeśli e.event£ Event(S) o {exźt} oraz e.time < Next(B2)
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B2——>B2
B——>Age(B} .e.time) |[S] | B2

(RT-par2)

jeśli e.event£ Event(S) U {exźt} oraz e.time < Next(B\)

fi C—>B}

B2 e >B2
b^-^b;\[s]\b2

(RT-par^

jeśli e.eventeEvent(S) u {exit} oraz e.time < min(Next(B}), Next{B2))

Dwie pierwsze reguły opisują transformację złożenia równoległego, gdy nastąpi zda­
rzenie czasowe w jednym z wyrażeń składowych, które nie angażuje wspólnych bra­
mek komunikacyjnych. Najwcześniejsze zajście takiego zdarzenia powoduje odpo­
wiednią transformację składowej, w której ono zaszło; transformacja drugiej 
składowej polega natomiast tylko na modyfikacji wynikającej z upływu czasu.

Trzecia reguła dotyczy sytuacji, gdy zachodzi zdarzenie związane ze wspólną bramką 
komunikacyjną obu składowych wyrażenia.

Przesłonięcie B = hide S in B\

Bt ^'-^--^B'
B <0J'beg> >B'

(RT-hide\)

dla ge set(S)

B, 
B >B'

{RT-hidei)

dla gE set(S) oraz t > 0

fi ' > fi 

B^^B{
(RT-hidei)

dla e.event£set(S)

Reguły dotyczące przesłonięcia wynikają z przyjęcia semantyki standardowego języka 
LOTOS, a nie języka zmodyfikowanego, przedstawionego w rozdziale 8. Dwie pierw­
sze reguły są odpowiednikiem pojedynczej reguły (RT-hide^ dla języka LOTOS 
i wynikają stąd, że pojedyncza akcja w języku LOTOS jest reprezentowana dwoma 
zdarzeniami czasowymi w RT-B-LOTOS. Trzecia reguła jest taka sama jak druga 
reguła dla języka LOTOS.
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Instancja procesu B = F[S] 

gjg-g]—^g; 
g—^g;

(RT-inst)

gdzie g| jest treścią procesu P.

Obliczenie instancji procesu przebiega tak jak obliczenie zmodyfikowanego wyra­
żenia g|, stanowiącego treść procesu. Modyfikacja polega na zastąpieniu listy bramek 
formalnych R listą bramek aktualnych S - oznaczenie gj/? ::= 5],

Złożenie aktywujące B = Bt» B2

B—^B{» B2
(RT-enabli)

jeśli e.event exit

g, >B[ (RT-enablz)

Przedstawione reguły, oprócz wprowadzenia zdarzeń czasowych, nie różnią się od 
reguł dla złożenia aktywującego dla języka LOTOS.

Złożenie deaktywujące B = B\ [> B2

b^^b;
B ——> B{[> Age(B2,e.time)

(RT-disC)

jeżeli e.event * exit oraz e.time < Next(B2)

:^^B{ 
p <0,mi7> v n'

(RT-disj)

B2—^B2 
B—^AbortęB^^^B^

(RT-dis3)

Pierwsza reguła dotyczy sytuacji, gdy najwcześniej zachodzącym jest zdarzenie czasowe 
w składowej gb Transformacja całego wyrażenia jest w tym przypadku podobna do sy­
tuacji opisanej regułą R-par\ dla złożenia równoległego. Druga reguła, dotycząca również 
składowej B\, ale zajścia zdarzenia kończącego tę składową, jest taka sama jak odpo­
wiednia reguła dla języka LOTOS. Trzecia reguła jest specyficzna tym, że zajście zda­
rzenia rozpoczynającego g2 uruchamia działania zmierzające do zakończenia składowej 
gi, dokładniej - do dokończenia wszystkich aktualnie trwających akcji czasowych.
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Nawiasy B =(Bi) 

B{ —■'—*B}
(RT-brace)

Warto porównać sposób definiowania języka RT-B-LOTOS z definiowaniem języka 
TE-B-LOTOS.

Pierwsza różnica odnosi się do tranzycji: w języku RT-B-LOTOS mamy do czynie­
nia tylko z jednym rodzajem tranzycji związanych ze zdarzeniami czasowymi, 
w TE-B-LOTOS są natomiast dwa rodzaje: tranzycje czasowe i tranzycje zdarzenio­
we. Druga różnica dotyczy postaci reguł: w języku TE-B-LOTOS występują reguły 
z przesłankami negatywnymi (trzecia reguła dla przesłonięcia i dla złożenia aktywują­
cego), których nie ma w RT-B-LOTOSie. Reguł z przesłankami negatywnymi [Groote 
1990] udało się w RT-B-LOTOSie uniknąć, dzięki wprowadzeniu funkcji Next, która 
- w razie braku komunikacji z otoczeniem - wyznacza najwcześniejsze zdarzenie 
powodujące tranzycję.

Podobieństwem w obu sposobach definiowania jest wprowadzenie języków pomocni­
czych, stanowiących rozszerzenie TE-B-LOTOSa - chodzi o TE-B-LOTOS+, oraz 
RT-B-LOTOSa - chodzi o rozszerzony zbiór wyrażeń behawioralnych XTBeh. W obu 
przypadkach powodem rozszerzeń jest opis sytuacji przejściowych podczas wykony­
wania tranzycji.

9.6. Wybrane własności języka RT-B-LOTOSa

Etykietowany system przejść czasowych RTS(RTSpec) wyznacza zbiór obliczeń dla 
specyfikacji RTSpec. Obliczenie jest zdefiniowane jako skończony albo nieskończony 
ciąg tranzycji postaci:

B —^B^ —^B2...—^Bn (9.16a)

B —^B,—L̂ B2...—^B„—S^... (9.16b)

gdzie: Bt, B,„ ...eXBeh, ..., e„, e„+i, ...eTEvent.

Semantykę akcyjną i obserwowalną definiuje się podobnie jak we wcześniej rozważa­
nym przypadku języka LOTOS (rozdz. 5.).

Na podstawie definicji relacji tranzycji i definicji zbioru wyrażeń XTBeh (9.12) łatwo 
sprawdzić, że zachodzi własność:

Twierdzenie 9.2

Dla obliczenia skończonego postaci (9.16a) Bne TBeh.
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Dowód

Wystarczy zauważyć, że dowolne wyrażenie behawioralne BeXTBeh\TBeh za­
wiera przynajmniej jedną akcję opóźnienia delay. Z definicji zbioru wyrażeń 
XTBeh (9.12) i funkcji First (tab. 9.1) wynika, że każda akcja opóźnienia jest ele­
mentem zbioru First^B). Akcja delay prefiksuje pewne podwyrażenie wyrażenia 
B. Zachodzą tu tylko następujące możliwości:

B = delay(g, B}
B = delay(g, B{ [] B2
B = delay(g, <5); B} |[S]| B2
B = delay(g, J); Bt » B2
B = delay(g, J); B[ [> B2

W każdym z tych przypadków istnieje tranzycja z wyrażenia B do innego wyra­
żenia. Jeśli zatem BeXTBeh\TBeh, to B nie może być wyrażeniem końcowym 
skończonego obliczenia.

Należy zwrócić uwagę na to, że w definiowaniu semantyki zastosowano konwencję 
czasu względnego. Oznacza to, że moment zachodzenia kolejnego zdarzenia czaso­
wego jest odniesiony do chwili osiągnięcia wyrażenia behawioralnego, z którego na­
stępuje tranzycja pod wpływem tego zdarzenia. Jest to konwencja wygodniejsza od 
konwencji czasu bezwzględnego, która była stosowana w definiowaniu semantyki 
języka RT-CCS (rozdz. 3.). Chwila t,, dla i = 1,2, ..., w której nastąpiła tranzycja do 
wyrażenia B, wynosi

t, = e\.time + ... + ei.time

Porównując definicję semantyki LOTOSa bezczasowego i czasowego, łatwo zauwa­
żyć podobieństwo reguły tranzycji. Semantyka standardowego języka LOTOS jest 
semantyką przeplotową, to znaczy wyznacza ona zbiór obliczeń, w których pewne 
akcje mogą być przestawione w permutacje. Wprowadzenie czasu wyklucza możli­
wość takiego podejścia i wymaga semantyki prawdziwie równoległej (true concurren- 
cy semantic). Taka jest właśnie semantyka języka RT-B-LOTOS. Semantyka ta różni 
się od semantyki przeplotowej tym, że na zbiór obliczeń wyznaczonych przez seman­
tykę przeplotową narzuca pewne ograniczenia na dopuszczalne ciągi akcji (zdarzeń 
czasowych). Ograniczenia te mają postać warunków dopuszczających stosowanie 
poszczególnych reguł. W warunkach tych występują, jako zasadnicze, funkcje po­
mocnicze związane z modelowaniem upływu czasu.

Język RT-B-LOTOS zachowuje część własności języka LOTOS (wyrażonych w p. 7.2) 
dotyczących silnej bisymulacji.

Twierdzenie 9.3
Zachodzą następujące związki:
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Prawa dla wyboru

[] B2 ~ B2 [] Br

Br [] (B2 [] Bj) ~ (Br [] B2) [] B,

B[]B~B
B [] stop ~ B

Prawa dla złożenia równoległego

Br |[S]|B2~B2|[5]|B1

Br |[S]|(S2 |[Z?]| Z?3) ~ (Bi |[SW

exit |[S] | stop ~ stop

Prawa dla złożenia aktywującego

stop » B ~ stop
(B\ » Bj) » B2 ~ B\ » (B2 » Bj)

B » stop ~ B |[0]| stop

Prawa dla złożenia deaktywującego

stop [> B ~ B

exit [> B ~ exit [] B
(B,[> B2) [> B,~Br [> (B2 [> 53)

(B{ [> B2) [] B2 ~ Br [> B2

B [> stop ~ B

Prawa dla przesłonięcia

hide S in B ~ hide S' in B jeśli set(S') = set(S) n FG(B)

hide S in B ~ B jeśli set(S) n FG(B) = 0

gdzie FG(B) jest zbiorem bramek, które występują w wyrażeniu B jako bram­
ki wolne, to znaczy niezwiązane operatorem przesłonięcia (formalna definicja 
funkcji FGjest tu pominięta).

hide S in hide S’ in B ~ hide S" in B

hide S in g[A] ; B ~ i[zl] ; hide S in B 

hide S in g[zl]; B ~ g[zl] ; hide S in B

jeśli set(S'j = set(S) u set(S')

jeśli ge set(S)

jeśli g^set(S)

hide S in Br [] B2 ~ hide 5 in Br [] hide 5 in B2
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hide S in B, |[S']| B2 ~ (hide 5 in B,) |[5']| (hide S in B2)

jeśli set(S) n set(S’) = 0

hide 5 in B| » B2 ~ (hide S in B,) » (hide S in B2)
hide S in B, [> B2 ~ (hide 5 in B() [> (hide S in B2)

Prawo dla instancji procesu

B[5] ~ B[S/B] jeśli process p[ B] : funkcjonalność := B endproc

Dowód
Pełny dowód, oparty na indukcji strukturą, jest długi i uciążliwy, ze względu na 
dużą liczbę przypadków wymagających rozważenia. Poniżej przedstawiamy tylko 
szkic dowodu, przy czym ograniczymy się tutaj tylko do własności dla złożenia 
równoległego.

Rozpatrzmy równość wyrażającą przemienność złożenia równoległego

B, |[S]|B2~ B2|[S]|B,

Wynika ona z reguł tranzycji (RT-parj), (RT-parf) i (RT-parf). Na podstawie tych 
reguł zawsze jako pierwsze do obliczenia jest wybierane zdarzenie czasowe, 
spośród zdarzeń oferowanych przez B| i przez B2, które występuje najwcześniej. 
Reguła (RT-part) dotyczy przypadku, gdy najwcześniej jest oferowane zdarzenie 
czasowe przez wyrażenie Bt, które nie angażuje bramki ze zbioru set(S), czyli 
zachodzi niezależnie od wyrażenia B2. Podobnie reguła (RT-parf) dotyczy przy­
padku najwcześniejszego zdarzenia niezależnego oferowanego przez B2. Reguła 
(RT-parj) dotyczy natomiast przypadku, gdy najwcześniejsze zdarzenie czasowe 
zachodzi z udziałem obu składowych, czyli gdy jest zaangażowana bramka ze 
zbioru set(S). Gdy najwcześniejsze zdarzenia oferowane przez B| i przez B2 lub 
jednocześnie przez oba te wyrażenia odnoszą się do tej samej chwili, mamy niede- 
terminizm, co wyraża się zbiorem obliczeń, w których zdarzenia te występują 
w przeplocie.

Po wykonaniu tranzycji wynikających z uwzględnienia najwcześniejszego zdarze­
nia czasowego e

B, | [S] |B2 —> Bfl [5] |B2 oraz B2| [5] |B, B'21 [S] |Bf

znajdujemy się w sytuacji podobnej do analizowanej, to znaczy kolejne zdarzenie 
czasowe, które mogą wygenerować wyrażenia BflfBjlB^oraz B^t^HBfsą takie 
same, czyli B^SJlBÓ- B21 [5] |Bf. Zatem B| |[S]| B2 ~ B2 |[S]| B|.

Druga równość, wyrażająca łączność

B^ |[5]| (B2 |[B]| B3) ~ (B, |[S]| B2) |[/?]| B, 
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zachodzi, podobnie jak równość pierwsza, na mocy tych samych reguł tranzycji: 
jako pierwsze jest zawsze wybierane zdarzenie czasowe najwcześniejsze spośród 
zdarzeń oferowanych przez składowe Bh B2, B2, a po jego zajściu osiągnięte nowe 
wyrażenia oferują te same zbiory kolejnych zdarzeń czasowych.

Trzecia równość

exit |[S]| stop ~ stop
jest oczywista.

Dla języka RT-LOTOS nie zachodzą natomiast inne równoważności, na przykład dla 
akcji wewnętrznych, takie jak:

B [] i[4] ; B = i[4] ; B

g[Ą] ; (5, [] i[4] ; [] gtĄ] ; B2 ; (B, [] i[4] ; B2)

gdzie symbol = oznacza dowolną z relacji ~, =c, =. Podobnie dla akcji exit

exit » B =c i; B

Dla języka RT-LOTOS nie zachodzi, niestety, także twierdzenie o ekspansji, to znaczy 
złożenie wyrażeń w sekwencyjnej postaci normalnej nie zawsze daje się sprowadzić do 
wyrażenia w sekwencyjnej postaci normalnej. Warto rozpatrzyć ilustrujący to przykład.

Niech będą dwa wyrażenia behawioralne w normalnej postaci sekwencyjnej:

P = a[AaV,Px [] b[Ah] \P2

0 = c[4];P3[] b[Ah]-P<

Dla wyrażenia postaci P |[Z?]| Q twierdzenie o ekspansji, stanowiące odpowiednik 
twierdzenia o ekspansji dla języka LOTOS, miałoby w tym przypadku postać:

P |[B]| Q ~ «[41; (Pi |U>]| Q) [] d4]; (Pj M P) [] b[Ah]; (P2|[Z>]| P4)

Tymczasem rozpatrzmy przejścia do nowego wyrażenia; możliwe są następujące sytuacje:

1. Jako pierwsze zachodzi zdarzenie czasowe a, które nie jest związane z bramką 
synchronizującą P z Q.

2. Jako pierwsze zachodzi zdarzenie czasowe b na bramce synchronizującej P lQ.
3. Jako pierwsze zachodzi zdarzenie czasowe c, które nie jest związane z bramką 

synchronizującą P z Q.

W przypadku pierwszym, po rozpoczęciu akcji czasowej a[4L następnymi akcjami są 
nie tylko zakończenie akcji a, ale także - jeszcze przed zakończeniem akcji a - rozpo­
częcie akcji c. Przedstawiona postać twierdzenia o ekspansji tej ostatniej możliwości 
nie przewiduje.
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9.7. Język RT-LOTOS

Język RT-B-LOTOS został wprowadzony przede wszystkim w celu zwartego przed­
stawienia prawdziwie równoległej semantyki, bez uwzględnienia typów danych, które 
nie mają zasadniczego wpływu na definicję semantyki. Przyjmując definicję języka 
RT-B-LOTOS, można łatwo - w oczywisty sposób - rozszerzyć ją po dołączeniu ty­
pów danych do języka. W zastosowaniach praktycznych wymagamy zwykle języka 
dysponującego danymi, dlatego na podstawie definicji (9.8) dokonamy oczywistego 
rozszerzenia składni czasowych wyrażeń behawioralnych. Zakładamy przy tym, że 
definicja i semantyka typów danych są zgodne z odpowiednimi definicjami podanymi 
w rozdziale 4.

Zbiór wyrażeń behawioralnych, oznaczany RT-TBeh, jest zdefiniowany, za pomocą 
notacji BNF, w sposób następujący:

B ::= stop | exit | gax...a,,[4]; B} | i[zl]; Bx | timeout(ó); Bx | Bx » B21

B\ [] B21 hide R in B{ | Bx [> B21 Bx |[/?]| B21 P[R] | (B,) | [c] -> Bx

gdzie: B, Bx, B2 są metazmiennymi, ax ...On (n > 0) są elementami komunikacyjnymi 
zdefiniowanymi tak jak dla akcji strukturalnych (5.2), c jest predykatem - wyrażeniem 
logicznym, czyli termem rodzaju Bool.

Postać specyfikacji w języku RT-LOTOS jest zgodna ze składnią języka LOTOS i nie 
wymaga oddzielnej definicji.

Nieprzedstawianą tutaj formalnie semantykę specyfikacji można łatwo wyprowa­
dzić na podstawie definicji języka LOTOS, przedstawionej w rozdziale 5., i defini­
cji języka RT-B-LOTOS, przestawionej w bieżącym rozdziale.

W przedstawionych definicjach abstrahujemy od sposobu wyboru czasu wykonania 
akcji. W zastosowaniach, jak wspominaliśmy, przyjmuje się różne mechanizmy wy­
boru. Ze względu na potrzeby dalej rozważanego przykładu specyfikacji założymy tu 
sposób wynikający z podziału akcji komunikacyjnych na dwie kategorie: akcje czynne 
i akcje bierne [Bernardo, Gorrieri 1998]. Akcje czynne to akcje, z którymi jest zwią­
zany zbiór dopuszczalnych czasów wykonania (tak samo jak dotychczas rozważane 
akcje czasowe). Akcje bierne nie mają natomiast określonego z góry zbioru dopu­
szczalnych czasów wykonania. Czas wykonania akcji biernej jest określany przez czas 
akcji czynnej, z którą akcja bierna synchronizuje się podczas komunikacji.

W celu odróżnienia akcji czynnych od biernych, akcja bierna będzie oznaczana

gdzie: * jest dodatkowym wyróżnionym symbolem, a akcja czynna jest oznaczana jak 
dotychczas

gax...ą,[4]
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Para synchronizujących się akcji, na przykład

g!10[{2,3}]

będzie się wykonywać 2 albo 3 jednostki czasu.

Podział na akcje czynne i bierne ma dobre odniesienie do wielu sytuacji praktycznych, 
kiedy komunikacja przebiega pomiędzy dwoma procesami, z których jeden jest usłu­
godawcą, a drugi usługobiorcą. Czas komunikacji w takich przypadkach wyznacza 
zwykle usługodawca, a usługobiorca czas ten akceptuje. W przypadku wielu synchro­
nizujących się akcji co najwyżej jedna może być akcją czynną.

9.8. Przykład specyfikacji w RT-LOTOSie

Rozważanym problemem jest sporządzenie specyfikacji systemu czasu rzeczywistego 
na podstawie następującego opisu tekstowego [Heitmeyer, Mandrioli 1996]:

Zadanie polega na wyspecyfikowaniu funkcji systemu komputerowego sterującego ru­
chem pojazdów na drodze przez przejazd z n torami kolejowymi (n > 0). Na strzeżonym 
przejeździć kolejowym są rogatki, które - opuszczone lub podniesione - pozwalają na 
bezpieczny przejazd. Decyzję o opuszczeniu i podniesieniu bramek ma podejmować 
system sterujący przejazdem, na podstawie informacji otrzymywanych z czujników 
rozmieszczonych na torach w rejonie skrzyżowania drogi z torami. Zakłada się, że 
przez dany tor pociągi mogą przejeżdżają w jednym kierunku. Przy wjeździe na tor k 
{k = 1, ..., n), w rejonie skrzyżowania, znajduje się czujnik rejestrujący wjazd pociągu 
(sensor typu Wjazd), a przy wyjeździe - czujnik rejestrujący wyjazd (sensor typu Wy­
jazd).

Rys. 9.1. Skrzyżowanie drogi z przejazdem kolejowym
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System sterujący rozpoczyna pracę, gdy w rejonie skrzyżowania nie ma pociągów. 
Następnie oczekuje na sygnał o pojawieniu się pociągu. Po otrzymaniu sygnału z sen­
sora typu Wjazd, na torze k, system włącza sygnalizację świetlno-dźwiękową oraz 
opuszcza bramki. Po odbiorze sygnału z sensora typu Wjazd, system komputerowy 
oczekuje na sygnał z sensora typu Wyjazd, dla tego samego toru k. Jeżeli to nastąpi, 
i w tym czasie nie pojawi się nowy sygnał wjazdu, to bramka się podnosi i wyłącza 
sygnalizację świetlno-dźwiękową. W przeciwnym razie, to znaczy gdy przed wyjaz­
dem pociągu na torze k wjedzie inny pociąg na inny tor, bramka pozostaje opuszczona 
aż do momentu, gdy pojawią się sygnały o wyjeździe wszystkich pociągów z rejonu 
skrzyżowania.

Niech (wjazdi, wyjazdy oznacza i-ty przedział czasu (i = 1, 2, ...), w którym przejazd 
jest zajęty, tzn. wjazdi jest momentem, w którym nastąpił wjazd pierwszego pociągu 
w rejon skrzyżowania, gdy uprzednio było ono wolne, wyjazd zaś jest momentem, 
w którym ostatni pociąg opuścił rejon skrzyżowania, gdy uprzednio było ono zajęte 
(rys. 9.2).

Rys. 9.2. Diagram czasowy włączania sygnalizacji i położenia bramek na przejeździe

Opuszczanie i podnoszenie rogatek może następować z pewnym opóźnieniem w sto­
sunku do momentów, w których odnotowuje się wjazd i wyjazd pociągów. Niech TB,, 
oznacza okres, po którym powinno nastąpić opuszczenie bramek, od momentu zgło­
szenia pierwszego sygnału z sensora typu Wjazd, w momencie wjazd,, oraz niech TBP 
oznacza okres, po którym powinno nastąpić podniesienie bramek, od momentu zgło­
szenia ostatniego sygnału z sensora typu Wyjazd, w momencie wyjazd,. Od systemu 
sterowania wymaga się własności bezpieczeństwa i użytkowalności.

Własność bezpieczeństwa oznacza, że:

• dla każdej chwili z przedziału [wjazdi + TB„, wyjazdy bramki muszą być opu­
szczone.
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Własność uiytkowalności oznacza, że:

• dla każdej chwili spoza przedziału (wjazdy wyjazd, + TBp) bramki muszą być 
podniesione.

Ustalmy założenia dotyczące komunikacji specyfikowanego systemu z jego otocze­
niem.

Zapora jest urządzeniem, do którego system sterowania, przez bramki o nazwach 
podnieś, opuść, będzie kierować polecenia opuszczenia i podnoszenia bramki.

Specyfikacja zachowania zapory jest następująca:
process Zapora [opuść, podnieś] : noexit :=

OpUSC[ { [opuszczanie }] i 
podnies[ { [podnoszenie } ] , 

Zapora[opuść, podnieś] 
endproc

Wartości tOpUXZCZailie oraz (podnoszenie mogą być dowolne pod warunkiem, że są mniejsze od 
zadanych wartości TB„ i TBP. Z przedstawionej specyfikacji wynika, że nie można 
przerywać operacji podnoszenia lub opuszczania zapory - operacja raz rozpoczęta 
musi się zakończyć.

Sygnalizacja jest urządzeniem, do którego system, przez bramki włącz, wyłącz, będzie 
kierować polecenia włączenia i gaszenia świateł sygnalizacyjnych. Jej specyfikacja 
jest podobna do specyfikacji zapory i ma postać:

process Sygnalizacja [włącz, wyłącz] : noexit :=
włącz[[t włączanie } ] >

wyłącz[{t wyłączanie }];

Sygnalizacja[włącz, wyłącz]
endproc

Wartości [„^czanie oraz (wyłączanie są oczywiście mniejsze od czasów opuszczania i pod­
noszenia zapory, a tym samym od zadanych wartości TB,, i TBP.

Łącznie, co wynika z dalej przedstawionej postaci specyfikacji, wymaga się, aby:

(włączanie + (opuszczanie — TB„ (9.18)

[wyłączanie + [podnoszenie — TBp. (9.19)

Nawet w tym prostym przykładzie uwidacznia się niejednorodność stylu specyfiko­
wania. Zapora i sygnalizacja są zasobami, których obecność w specyfikacji jest od­
zwierciedleniem stylu specyfikacji ukierunkowanego na zasoby. Struktura natomiast 
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treści specyfikacji systemu sterowania zaporą odzwierciedla styl ukierunkowany na 
ograniczenia (rozdz. 7.) i ma postać podaną poniżej.

Stanowiące treść specyfikacji wyrażenie behawioralne jest złożeniem równoległym 
czterech procesów: Bezpieczeństwo, Użyteczność, Sygnalizacja i Zapora:

specification WymaganiaPodstawowe[wjazd, wyjazd]: noexit :=
behaviour
hide włącz, wyłącz, opuść, podnieś in

Sygnalizacja [włącz, wyłącz]
|[włącz, wyłącz]!

( Bezpieczeństwo [wjazd, wyjazd, opuść, w/ącz](0)
wyjazd]!

Użyteczność [wjazd, wyjazd, podnieś, wyłącz](0)
)
popuść, podnieś]!

Zapora [opuść, podnieś]
where

process Zapora [opuść, podnieś] : noexit :=

endproc
process Sygnalizacja [włącz, wyłącz] : noexit :=

endproc
process Bezpieczeństwo[wjazd, wyjazd, opuść, włącz](n : nat) : noexit :=

endproc
process Użyteczność[wjazd, wyjazd, podnieś, wyłącz](n : nat): noexit :=

endproc
endspec

Składowe procesy specyfikacji są zdefiniowane poniżej.

Proces Bezpieczeństwo został zdefiniowany tak, aby odzwierciedlać warunek bezpie­
czeństwa:

process Bezpieczeństwo[wjazd, wyjazd, opuść, włącz](n : nat) : noexit :=
[n = 0]->

wjazd[*];
włącz[*];
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opuść[*];
— Ze względu na semantykę języka i założenie (9.18), akcja kończy
- się nie później niż po upływie odcinka czasu TB„ od chwili
- zakończenia pierwszej akcji wjazd^] w sytuacji, gdy wcześniej
- - przejazd był pusty.
— Oznacza to spełnienie własności bezpieczeństwa.

Bezpieczeństwo[wjazd, wyjazd, opuść, włącz](n + 1)
[ ] [«> 1] ->

wjazd[*]',
Bezpieczeństwo[wjazd, wyjazd, opuść, włączeń + 1)

[][«>!]->
wyjazd[*];
Bezpieczeństwo[wjazd, wyjazd, opuść, włącz](n- 1)

endproc

Proces Użyteczność odzwierciedla warunek użytkowalności:

process Użyteczność[wjazd, wyjazd, podnieś, wyłączeń : nat) : noexit := 
wjazd[*]-, 
Uźyteczność[wjazd, wyjazd, podnieś, wyłącz](n + 1)

[ ] [n > 1] ->
wyjazd[*];
Użyteczność [wjazd, wyjazd, podnieś, wyłącz](n- 1)

[][«=!]->
wyjazd^]-, 
podnieś[*]\ 
wytącz[*]\

- 7^ względu na semantykę języka i założenie (9.19), akcja kończy
- się nie później niż po upływie odcinka czasu TBP od chwili
— zakończenia ostatniej akcji wyjazd[*] w sytuacji, gdy wcześniej
- przejazd był zajęty.
— Oznacza to spełnienie własności użytkowalności.

Użyteczność[wjazd, wyjazd, podnieś, wyłącz](0)
endproc

Warto zauważyć, że w komunikacji na bramkach wjazd i wyjazd uczestniczą dwa pro­
cesy składowe specyfikacji: Bezpieczeństwo i Użyteczność oraz otoczenie specyfikacji. 
Czas wykonywania akcji z udziałem tych bramek jest określony przez otoczenie spe­
cyfikacji. W komunikacji na pozostałych bramkach wewnętrznych uczestniczą tylko 
pary procesów.
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Rozpatrywany przykład jest nie tylko ilustracją zastosowania języka RT-LOTOS, ale 
jest również ciekawy z tego względu, że dotyczy systemów związanych z bezpieczeń­
stwem. Przedstawiona specyfikacja WymaganiaPodstawowe przedstawia funkcjo­
nowanie systemu po jego uruchomieniu w warunkach normalnych.

Każdy system zwykle wymaga operatora, który system uruchamia i zatrzymuje, prze­
prowadza testowanie jego działania, wspomaga system w niektórych sytuacjach awa­
ryjnych. Sytuacje awaryjne mogą powstać na skutek różnych okoliczności, gdy zacho­
wanie się elementów składowych systemu, to jest zapory i sygnalizacji, a także 
zachowanie się pociągów przejeżdżających przez rejon skrzyżowania, mogą odbiegać 
od założonych [Huzar 2001]. Na przykład akcje opuszczania lub podnoszenia zapory 
mogą się nie zakończyć w założonym okresie, pociąg może się zatrzymać i cofnąć 
w rejonie skrzyżowania itp. Rozpatrzenie różnych możliwych okoliczności i okre­
ślenie odpowiedniego postępowania wymaga oddzielnej analizy związanej z bezpie­
czeństwem [Magott 2005]. Analiza ma zidentyfikować potencjalne zagrożenia, a na­
stępnie należy ustalić sposoby postępowania zapobiegające ewentualnym skutkom 
zagrożeń. Wynikiem jest zwykle znaczna rozbudowa specyfikacji, w której uwzględ­
nia się dodatkowe zachowanie.

Rozważmy na przykład tylko jeden przypadek, gdy opuszczanie zapory nie zakończy 
się przed upływem zadanego odcinka czasu i przy założeniu, że światła sygnali­
zacyjne pracują poprawnie. Aby ostrzec pojazdy na drodze przed potencjalnym nie­
bezpieczeństwem, można - zamiast stałych świateł - włączyć światła pulsujące. Re­
zultatem będzie rozbudowa specyfikacji, a głównie procesu Bezpieczeństwo. Nowy 
proces Bezp ma definicję

process Bezp[wjazd, wyjazd, opuść, włącz, wyłącz, koniec](n : nat) : noexit :=
[n = 0] ->

wjazd[*]', 
w/ącz[*]; 
( opuść[*]', 

exit
[> timeout(r„„.„™);

SwiatłaPulsujące[włącz, wyłącz, koniec] 
)
» Bezp[wjazd, wyjazd, opuść, włącz, wyłącz, konieć](n + 1) 

[][«>!]-> 
wjazd[*];
Bezp[wjazd, wyjazd, opuść, włącz, wyłącz, konie c\(n + 1) 

[][n>l]-> 
wyjazd[*]\
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Bezp [wjazd, wyjazd, opuść, włącz, wyłącz, koniec](n - 1)
where

process SwiatłaPułsujące[włącz, wyłącz, koniec] : exit := 
wyłącz[*];
H {tuylącz U’

— okres wyłączenia świateł 
włączl*];
H { włącz } ] >

- okres włączenia świateł
SwiatłaPulsujące[włącz, wyłącz, koniec]

[] koniec[*]\ exit
endproc

Złożenie deaktywujące

op»5Ć[*]; exit [> timeout(z„TOr,„ ); SwiatłaPułsujące[włącz, wyłącz, koniec]

spowoduje, że jeśli akcja czasowa opuść nie zakończy się przed upływem odcinka 
czasu tam,ria, nastąpi jej przerwanie i zostanie zainicjowany proces postępowania awa­
ryjnego ŚwiatłaPulsujące. Jednocześnie należy zauważyć, że sama akcja czasowa 
opuść, jeśli się już zaczęła, nie zostanie przerwana.

W definicji procesu pojawiła się nowa bramka koniec, która ma służyć zakończeniu 
postępowania awaryjnego. Zakłada się tu, że komunikacja na tej bramce, po usunięciu 
awarii zapory, zachodzi na skutek zewnętrznej interwencji operatora, którego istnienie 
jest konieczne, a dotychczas nie było uwzględniane.

9.9. Uwagi końcowe
W tym rozdziale przedstawiono i porównano dwa podejścia do czasowego rozszerze­
nia języka LOTOS. Oba podejścia są równoważne w sensie ekspresywności, różnią się 
natomiast własnościami.

Podejście pierwsze, zakładające zachowanie akcji natychmiastowych, było rozwijane 
między innymi w pracach: [Leduc, Leonard 1992], [Quemada, Fernandez 1987], 
[Quemada, Azcorra, Frutos 1990], [Quemada, Frutos, Miguel 1993]. Przedstawiany 
w tym rozdziale język TE-B-LOTOS stał się podstawą definicji języka E-LOTOS 
[ISO/IEC FDIS 15437, 2001]. Dwiema zasadniczymi własnościami języka E-LOTOS 
są bowiem rozszerzenie czasowe i nowy sposób definiowania typów danych.

Drugie podejście, oparte na wprowadzeniu akcji czasowych, było rozwijane w pra­
cach: [Huzar, Magott 1995a, 1995b], [Huzar, Magott 1996], [Huzar, Magott 1997a, 
1997b, 1997c, 1997d], Opisywany w bieżącym rozdziale język RT-B-LOTOS jest 
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uogólnieniem tych prac. Polega to na przypisaniu akcji czasowych zbioru dopuszczal­
nych czasów wykonania i abstrahowaniu mechanizmu uzgadniania czasu trwania 
wspólnie realizowanych akcji.

Wadą drugiego z podejść, w stosunku do podejścia pierwszego, jest niezachowanie 
wszystkich własności języka LOTOS. Zaletą natomiast jest to, że wersja z akcjami 
czasowymi - bardziej naturalna - bezpośrednio odpowiada mechanizmom komuni­
kacji, jakie spotykamy w językach programowania czasu rzeczywistego, na przykład 
w języku Ada [Huzar, Fryźlewicz, Dubielewicz, Hnatkowska, Waniczek 1998]. Warto 
zauważyć, że modelowanie akcji czasowych języka RT-B-LOTOS wymaga użycia 
w języku TE-B-LOTOS nie tylko dwóch akcji natychmiastowych, ale także wyrażenia 
powiązania przyczynowo-skutkowego obu tych akcji.

Wydaje się także, że podejście z akcjami czasowymi jest dobrym kandydatem do roz­
szerzenia języka do wersji probabilistycznej.

Przedstawiono dwie wersje języka opartego na założeniu akcji czasowych - wersję 
bazową RT-B-LOTOS i wersję pełną RT-LOTOS. W wersji pełnej wprowadzono 
mechanizm ustalania czasu wspólnie realizowanych akcji komunikujących się pro­
cesów, wykorzystujący akcje czynne i bierne [D’Argenio, Hermanns, Katoen 1998], 
[Bernardo, Gorrieri 1998]. Możliwości modelowania języka RT-LOTOS pokazano na 
przykładzie systemu sterowania przejazdem kolejowym, zaczerpniętego z [Heitmeyer, 
Mandrioli 1996] oraz [Huzar 2001]. Przykład ten jest dodatkowo ilustracją stylów 
specyfikacji omówionych w rozdziale 7.
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10. Rozszerzenia wydajnościowe LOTOSa

10.1. Wstęp
Przedstawione w poprzednim rozdziale czasowe rozszerzenia języka LOTOS cha­
rakteryzuje duży stopień niedeterminizmu. W przypadku języka TE-LOTOS odnosi 
się to do przedziału czasów, w których może zachodzić akcja, a w przypadku języka 
RT-LOTOS - do czasu trwania akcji czasowej. W obu językach wspólnym źródłem 
niedeterminizmu jest otoczenie specyfikowanego systemu, które dokonuje wyboru 
jednej z oferowanych akcji - jest to niedeterminizm zewnętrzny, oraz niedeterministy- 
czny wybór jednej spośród oferowanych akcji wewnętrznych - jest to niedeterminizm 
wewnętrzny.

Często, przed przystąpieniem do implementacji na podstawie specyfikacji, specyfika­
cja jest przedmiotem odrębnych badań. Jednym z rodzajów takich badań jest badanie 
własności wydajnościowych. Badania wydajnościowe są badaniami ilościowymi, któ­
re rzadko można przeprowadzać na modelach niedeterministycznych, można je nato­
miast skutecznie prowadzić na modelach deterministycznych lub probabilistycznych. 
W tym rozdziale przedstawiono rozszerzenie języka LOTOS, które polega na wpro­
wadzeniu probabilistycznej charakterystyki czasów trwania akcji oraz na eliminacji 
z języka mechanizmów niedeterministycznych i zastąpieniu ich priorytetami i mecha­
nizmami probabilistycznymi. Priorytety mają służyć, w pierwszej kolejności, do wy­
znaczania jednej akcji, spośród akcji, w danym stanie, kandydujących do wykonania. 
Gdy priorytety nie rozstrzygają o wyborze akcji, wyboru dokonuje się na podstawie 
mechanizmu probabilistycznego.

Przyjmuje się, że obowiązują następujące zasady przydzielania priorytetów: Zakłada­
my, że mamy dwa rodzaje akcji: akcje czasowe i natychmiastowe. (Podział taki wyni­
ka z pragmatyki: akcje, których czas trwania jest znikomo krótki względem pozosta­
łych, traktuje się jako natychmiastowe, akcje zaś, których czas trwania - w kontekście 
konkretnej sytuacji - jest zauważalny, traktuje się jako akcje czasowe.) Akcjom natych­
miastowym przypisuje się jako priorytety dodatnie liczby naturalne. Akcjom czaso­
wym przypisuje się natomiast jednakowy, najniższy priorytet zero. Wynika to z przy­
jęcia zasady wyścigów podczas wykonywania akcji czasowych: najpierw wykonują 
się akcje o najwcześniejszych chwilach rozpoczęcia wykonywania.

Charakterystyki probabilistyczne można wprowadzać różnie, tu chodzi o taki sposób, 
aby na podstawie specyfikacji w LOTOSie można w jednoznaczny sposób otrzymać 
pewien skończony łańcuch Markowa. Łańcuchy Markowa są wygodnym modelem pro­
babilistycznym, dla którego są znane metody obliczania interesujących charakterystyk 
[Czachórski 1999], [Bronsztejn, Siemiendiajew, Musiol, Miihling 2004]. W tym celu 
przyjmuje się, że czasy wykonywania akcji czasowych charakteryzuje rozkład wykład­
niczy, a akcje natychmiastowe są wykonywane w zerowym czasie.
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Dwoma źródłami niedeterminizmu są wybór i złożenie równoległe wyrażeń behawio­
ralnych. Wyrażeniom tym przypisuje się pewne, dalej omówione, parametry probabi­
listyczne.

Przedstawiane dalej rozszerzenie języka LOTOS jest nazywane MB-LOTOS. Wypły­
wa to z faktu, że rozszerzenie jest rozszerzeniem markowowskim, a ponadto - podob­
nie jak w poprzednim rozdziale - prezentacja ogranicza się tylko do części bazowej, 
czyli bez uwzględniania komunikacji danych. Dodatkowo prezentacja ma charakter 
techniczny, co oznacza, że używane dalej oznaczenia akcji są rozbudowane tak, aby 
wygodnie wyrażać pewne własności, co nie jest wymagane w przypadku posługiwania 
się językiem do specyfikowania systemów.

10.2. Składnia i nieformalna semantyka języka MB-LOTOS

Wprowadźmy oznaczenia:
G zbiór nazw bramek obserwowalnych,
L = Gu {exit} zbiór nazw akcji obserwowalnych rozszerzony 0 akcję exit, 

wykonywaną na bramce nieobserwowalnej exit.
A = L u {i} zbiór nazw wszystkich akcji obserwowalnych i nieobserwo- 

walnych,
Nat zbiór liczb naturalnych,
AP = Nat U {00} zbiór priorytetów; symbol °° oznacza najwyższy priorytet,
PR = [0, 1] zbiór prawdopodobieństw,
AR = MOM") zbiór wartości parametrów intensywności rozkładów wykład- 

nicznych, gdzie R+ jest zbiorem nieujemnych liczb rzeczywi­
stych,

Proc zbiór nazw procesów,
Time = R+ dziedzina chwil czasowych.

Jak wspomniano, akcje będą przedstawiane w rozszerzonej postaci 

(g,a,A,^ (10.1)
gdzie:

geA oznacza nazwę akcji,
che Nat oznacza indeks jednoznacznie identyfikujący każde wystąpienie akcji, 
AeAR oznacza parametr czasowy akcji; jeżeli A * °°, to A oznacza akcję cza­

sową o rozkładzie wykładniczym czasu wykonania, w przypadku prze­
ciwnym, gdy A = oo, oznacza akcję natychmiastową,

tieAP oznacza priorytet akcji; jeżeli n = 0, oznacza to akcję czasową n> 0 
oznacza akcję natychmiastową.

Indeksy wystąpień akcji wprowadza się tylko w celu prezentacji formalnej semantyki. 
Ze względu na zastosowanie języka są one zbędne. Szczegółowe powody ich wpro­
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wadzenia są dwa: Po pierwsze - idzie o jednoznaczne rozróżnienie wystąpień tej sa­
mej akcji w tym samym stanie. Drugi powód, ze względów technicznych, jest nawet 
ważniejszy, gdyż idzie o wygodną i jednoznaczną identyfikacją akcji złożonych, to 
jest takich, które są wynikiem synchronizacji wielu akcji na tej samej bramce. Dalej 
będziemy zakładać, że jest stosowany pewien mechanizm jednoznacznego indekso­
wania akcji. Szczegółowo mechanizm taki jest przedstawiony w pracach [Huzar, Ma­
gott 1997b] i [Huzar, Magott 1997d], jest także używany w pracach innych autorów, 
np. [D’Argenio, Hermanns, Katoen 1998].

Wystąpienie akcji jest jednoznacznie identyfikowane przez swój indeks, stąd wynikają 
oznaczenia: jeżeli akcja ma postać (g, a, A, Ti), to z definicji

name^a) = g, rateja) = A, prior^a) = zr (10.2)

Zbiór n akcji składowych, synchronizujących się na bramce g^L, nazwany dalej akcją 
zagregowaną, będzie reprezentowany przez ciąg ich indeksów, oznaczany przez

<P= a ... ą, (10.3)

gdzie a * aj, dla i j (i,j = 1,..., n). Oczywiście

name^a) = ... = nanie(a„) = g (10.4)

oraz z definicji:

name( <P) = name( dla i = 1, ..., n (10.5)

Zakładamy, że priorytet akcji zagregowanej reprezentowanej przez (10.3) jest równy

priori) = prior(a) - ... = prior^a,) (10.6)

co wynika z założenia, że priorytety akcji składowych wykonywanych na tych samych 
bramkach mają być równe. Nie oznacza to, że bramki wyznaczają priorytety akcji, ale 
że jeśli akcje się synchronizują na danej bramce, to mają takie same priorytety, co nie 
wyklucza, że na danej bramce mogą się sychronizować różne zbiory akcji o różnych 
priorytetach.

Założenie dotyczące priorytetów przyjęto tylko dla uproszczenia rozważań. Możliwe 
są oczywiście różne sposoby obliczania priorytetu akcji zagregowanej, na przykład 
priorytet akcji zagregowanej mógłby być sumą priorytetów akcji składowych.

Składnia zbioru wyrażeń behawioralnych MBeh języka MB-LOTOS przedstawia się 
następująco:

Q ::= stop | (g, a,A,ri);Q\ (i, a, A, Jty, Q | (exit, a, », ~) | Q} [p] q2 |

Q\ IM,- Qi | hide R in Q | Q{ » Q21 Q{ [> Q21 p[/?] | (0
Symbole Q, Qi, Q2 są metazmiennymi, oznaczającymi wyrażenia behawioralne, geG 
jest bramką, ReSegG jest ciągiem niepowtarzających się bramek, AeAR parametrem 
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intensywności, theAP priorytetem oraz p, s, r G PR są prawdopodobieństwami. Kolej­
ność wprowadzenia operatorów odpowiada malejącej kolejności ich priorytetów.

Dalej, podobnie jak we wcześniejszych rozdziałach, zakładamy, że rozważamy tylko 
wyrażenia dozorowane, regularnie zbudowane.

Znaczenia poszczególnych wyrażeń są następujące:

Wyrażenia stop oraz (exit, a, <») mają takie same znaczenia, jak we wszystkich 
poprzednio rozważanych wersjach języka. O akcji exit zakładamy dodatkowo, że jest 
akcją natychmiastową o najwyższym priorytecie. Podobne, jak poprzednio, znaczenie 
mają wyrażenia prefiksowania akcją obserwowalną (g, a, A, rip, Q oraz wewnętrzną 
(i, a, zł, #); Q.

Bardziej złożone jest znaczenie wyrażenia wyboru Q\ [/?] 02- Wyrażenie oferuje do 
wykonania te akcje, które są przygotowane w wyrażeniach Q\ oraz Q2. Wybór jednej 
spośród nich jest dokonywany dwufazowo. W pierwszej fazie jest wyznaczany spo­
śród tych akcji zbiór akcji o najwyższym priorytecie, a w drugiej fazie następuje wy­
bór jednej z nich. Jeżeli akcjami o najwyższym priorytecie są akcje natychmiastowe 
i wśród nich jest co najmniej jedna akcja z wyrażenia oraz co najmniej jedna akcja 
z wyrażenia Q2, to do wykonania, z prawdopodobieństwem (1 -p), może być wybrana 
dokładnie jedna akcja należąca do <2i, albo - z prawdopodobieństwem p - dokładnie 
jedna akcja należąca do Q2. Jeżeli akcjami o najwyższym priorytecie są akcje czaso­
we, to wybór jednej z nich następuje zgodnie z zasadą wyścigów: wybierana jest ta, 
która rozpoczyna się najwcześniej. Po wyborze akcji do wykonania dalsze zachowanie 
wyrażenia [pj Q2 jest takie same jak w poprzednich wersjach języka.

Równie złożona jest semantyka wyrażenia złożenia równoległego <2i |[R]k r Q> Wy­
bór akcji do wykonania także przebiega dwufazowo: najpierw wyznacza się zbiór 
akcji o najwyższym priorytecie, oferowanych przez wyrażenia Q\ oraz Q2, a następnie 
wybiera się z nich jedną akcję. Wybrana ostatecznie akcja może być akcją należącą 
albo do wyrażenia Q{, albo Q2, albo też może być akcją złożoną z synchronizujących 
się akcji należących do Q\ i Q2. Jeżeli wśród akcji o najwyższym priorytecie są akcje 
należące do wyrażenia (2i oraz do wyrażenia Q2, to - z prawdopodobieństwem 5 - są 
wybierane akcje synchronizujące się na wspólnych bramkach R oraz akcje exit, akcje 
natomiast, które nie synchronizują się na bramkach R, inne od exit, są wybierane 
z prawdopodobieństwem (1 - 5). W przypadku wyboru akcji niesynchronizujących się 
na bramkach R, spośród nich - z prawdopodobieństwem r - zostaje wybrana akcja 
należąca do wyrażenia Q2, a z prawdopodobieństwem (1 — r) — akcja należąca do Q2.

Znaczenie pozostałych wyrażeń behawioralnych: przesłonięcia hide R in Q, złożenia 
aktywującego Q\ » Q2, złożenia deaktywującego Q\ [> Q2 oraz wywołania procesu 
/?[/?] są takie same jak w poprzednio omawianej wersji języka. Zakładamy przy tym, 
że akcje wewnętrzne, będące wynikiem przesłonięcia, mają takie same własności cza­
sowe jak akcje przesłaniane.
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Tak samo jak w poprzednich wersjach są określane deklaracje procesów, ich funkcjo­
nalność oraz specyfikacja.

W celu przybliżenia mechanizmów probabilistycznego wyboru akcji rozpatrzymy dwa 
przykłady wyboru akcji natychmiastowych.

Przykład 10.1
Niech dane będzie wyrażenie behawioralne Q.

(gi, «i, #i); 2i
W ((g2, a-i, ; Qz [<7] (g3, ^3); 23))

W skład wyrażenia wchodzą tylko akcje natychmiastowe. Jeżeli ich priorytety #1, 
^2, ^3 są różne, to wartości prawdopodobieństw p oraz q są nieistotne, a jako 
pierwsza - pod warunkiem, że otoczenie wyrażenia Q będzie gotowe - zostanie 
wybrana i wykonana akcja o najwyższym priorytecie. Jeżeli priorytety są równe, 
wybór akcji jest probabilistyczny. Z prawdopodobieństwem p następuje wybór 
prawej strony wyrażenia Q

((g2, «2, ^2); & [?] (g3. 03, °°, ^3); 2.3)),
a z prawdopodobieństwem (1 -p) - wybór lewej strony wyrażenia Q

(gi, ah «>, ^i); 2i
Pod warunkiem wyboru prawej strony akcja o indeksie będzie wybrana z praw­
dopodobieństwem (1 - q), akcja zaś o indeksie ćz3 z prawdopodobieństwem q. 
Prawdopodobieństwo zatem wyboru akcji o indeksie a2 wynosi p(l - q), a akcji 
o indeksie wynosi pq. Prawdopodobieństwo natomiast wyboru akcji o indeksie 
cq wynosi (1 -p).

Przykład 10.2
Niech dane będzie wyrażenie behawioralne Q postaci:

((gi, «i, °°, ^1); Qi [p] (g2, «2, °°, ^2); 02)
|{g2}|.v

((g3, «3, ^3); 2.3 [<?] (g2, O|, «, ^ł); 24)

Załóżmy, że priorytety wszystkich akcji są takie same. Akcje natychmiastowe 
o indeksach Oh i tłą synchronizują się na bramce g2. Oznacza to, że

prior(a}) = prior(a^ = priori) = priori) = priori oą)

Pod warunkiem, że otoczenie wyrażenia Q nie stwarza własnych ograniczeń, mo­
żliwe są trzy wybory akcji: jednej pary synchronizujących się akcji o indeksach a, 
i cq oraz jednej z dwóch akcji o indeksach a\ i niesynchronizujących się na 
wspólnej bramce g2.



196 Rozdział 10

W podwyrażeniu

((gi, ah ^); Ci [p] (g2, ^2); 0?)

akcja o indeksie a\ jest wybierana w tym wyrażeniu z prawdopodobieństwem 
a akcja o indeksie a2 z prawdopodobieństwem/?.

Podobnie, w podwyrażeniu

((g3, a3,«, Q3 [<7] (g2, Ot, o®, 274); 04)

akcja o indeksie 6$ jest wybierana z prawdopodobieństwem (1-q), akcja o indek­
sie a2 z prawdopodobieństwem q.

Selekcja akcji w równoległym złożeniu obu podwyrażeń odbywa się dwufazowo. 
W pierwszej fazie z prawdopodobieństwem s są wybierane akcje a2, synchroni­
zujące się na bramce g2, a w drugiej fazie są wybierane akcje niesynchronizujące 
się na tej bramce: akcja z prawdopodobieństwem (l-s)*(I-r), oraz akcja a3 
z prawdopodobieństwem (l-s)*r.

Oprócz opisanego mechanizmu probabilistycznego wyboru akcji, drugim elementem 
charakteryzującym język MB-LOTOS jest mechanizm wyznaczania czasu trwania 
synchronizujących się akcji. Pojedyncze akcje czasowe mają wykładniczy rozkład 
prawdopodobieństwa czasu realizacji. Synchronizujące się akcje mają również rozkład 
wykładniczy, ale parametr intensywności tego rozkładu jest wyznaczany w specyficz­
ny sposób.

Tabela 10.1

9 m p gdy g = g 
r ((g ,a,A,0y,Q) = < 

[0 w przypadku przeciwnym

gdy g e set(R)

gdy ge (G u {i}) \ set(R)

Ol Qi) = Wi) + rAQ^)

'x(2iin.,-22) = <
^(2|) + rg(22)

l> 2?) = rg(2i) + rK(Q2) 

» 22) = rs(2i)

rg (hide R in Q) = ■
rg(2)

■ 0

V , /ff/s-(2) + ri(2) 
igeseHR) k

,] ) = r.,(2[g|::= hh..„ g,h,„Y)

gdy g 6 G\set(R')

gdy g e set(R) 

gdy g = i

gdzie Q jest treścią procesu P.
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W przypadku szczególnym, gdy rozważamy dwie synchronizujące się akcje na bramce 
ge G, na przykład

(g, ci\, Ai, rt) oraz (g, a2, A2, rt}

parametrem rozkładu prawdopodobieństwa, charakteryzującym wspólny czas ich wy­
konania, będzie wartość mm{A\, A2).

Ogólnie wyznaczanie parametru intensywności akcji czasowych w wyrażeniu beha­
wioralnym Q przedstawia się następująco: Dla akcji o nazwach geG u {i} w wyraże­
niu Q definiuje się parametr intensywności akcji czasowych r/g). Definicja parame­
tru jest rekursywna (tab. 10.1).

Przedstawiony mechanizm oparto na pracy [Hilston 1996], w której opisuje się język 
PEPA, stanowiący czasowe uogólnienie języka CCS. Mechanizm ten umożliwia uzy­
skanie rozważanych dalej własności kompozycyjności.

10.3. Semantyka formalna języka MB-LOTOS

Akcje kandydujące do wykonania
Semantyka języka jest wyrażana - podobnie jak wcześniejsze wersje języka - przez 
etykietowany system przejść. W odróżnieniu od języków przedstawianych w poprzed­
nim rozdziale, tu semantyka jest przeplotowa, co jest możliwe dzięki przyjęciu mar- 
kowowskiego modelu czasu wykonywania akcji czasowych. Do zdefiniowania seman­
tyki potrzebne są funkcje pomocnicze. Pierwsza z nich, funkcja o sygnaturze

F: MBeh -> 2"'"* (10.8)

służy do wyznaczania zbioru indeksów akcji przygotowanych do wykonania w danej 
konfiguracji. Jest ona zdefiniowana rekursywnie w sposób pokazany w tabeli 10.2.

Druga funkcja pomocnicza, o sygnaturze
w • 2^'-> 2W"' (10.9)

służy do wyznaczania w danym zbiorze indeksów akcji, podzbioru indeksów akcji 
o najwyższym priorytecie. Jej definicja jest następująca: niech 0ę Nat będzie zbio­
rem indeksów akcji oraz niech mprior(0) = max{prior(<P) | 0], wówczas

M(0) = { 01 prior(0) = mprior(0)}. (10.10)

Jeżeli 0= F(Q), to ę F(Q) jest podzbiorem tych akcji wyrażenia Q przygo­
towanych do wykonania, które mają najwyższy priorytet. Jest to zbiór akcji wyrażenia 
Q kandydujących do wykonania.

Zbiór akcji kandydujących może zawierać albo tylko akcje natychmiastowe, albo tylko 
akcje czasowe, nie może natomiast zawierać obu rodzajów akcji, gdyż akcje czasowe 
mają priorytet zerowy, akcje natychmiastowe zaś mają priorytet większy od zera. Wyra- 
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żenią behawioralne, dla których zbiór M(F(QY) zawiera tylko indeksy akcji natych­
miastowych, nazywa się wyrażeniem zanikającym, wyrażenia zaś, dla których zbiór 
M(F(Q)) zawiera tylko indeksy akcji czasowych, nazywa się wyrażeniem uchwytnym.

Tabela 10.2

F(stop) = 0

F((g, a, A, 2) = {a}

F^ [p] Qi)^F(Qi)uF(Q2)

F^ |7?k, 02) - FA(Qh R) u FA(Q2, R)u FS(Qh Q2, R)

gdzie: FA(Q„ R)= {0E F{Q^ | name(<P)£ R u {exit}} (z = 1, 2)

FS(Qi, Q2, R)= { (PF | 0eF(2i) a Fe F(Q2) a prior(<P) = prior( F) a name(<P) = 
= name( F)eR u (exit) }

F(hide R in Q) = F(Q [a, ::= ..., a,, ::= A])

gdzie: {ah ..., o;,} = {a| name(a)eR},

{^i, ..., /3n} jest zbiorem nowych indeksów innych od indeksów występujących 
w 2, a 2f«i ::=^i, •••, tż, "= Al jest tekstowym zastąpieniem indeksów tzh ..., a,, 
przez indeksy /?b .... /?„ w wyrażeniu Q. Nowe indeksy odróżniają akcje wyko­
nywane na bramkach R wewnątrz wyrażenia hide R in Q od tych, które są wi­
doczne na zewnątrz tego wyrażenia jako jego akcje wewnętrzne. Nowe akcje 
o indeksach $ (z = 1, ..., zz) mają następujące własności:

name(J3j) = i, rate(J$) = ratę (a,), and prior{P^ = priortOj)

F(Qt » Qi) = F(2.)

F^ [>22) = F(2i)uF(22)
F(P[h..... . h,„]) = F(Q[gt::=hh ..., gm;-.= h,„])

gdzie 2 jest treścią procesu F[g..... . g,„].

Jeżeli zbiór akcji kandydujących jest jednoelementowy, to wyznacza on jednoznacznie 
akcję do wykonania, jeżeli natomiast jest większy, to wybór akcji jest probabilisty­
czny.

Etykietowany system przejść
Semantykę języka przedstawiono dwuetapowo. W pierwszym etapie zdefiniowano 
etykietowany system przejść, który dla danej konfiguracji wyznacza możliwe przej­
ścia do nowej konfiguracji, inaczej: wyznacza zakres niedeterminizmu. W drugim 
etapie określono prawdopodobieństwa przejścia do nowych konfiguracji, przy czym 
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oddzielnie rozważano przejścia realizowane w wyniku zajścia akcji czasowych oraz 
natychmiastowych.

Dla specyfikacji MSpec = <{Q, {Di, Dn}> etykietowany system przejść jest zdefi­
niowany jako

MTS(MSpec) = <MBeh, MEvent, MTrans, Q> (10.11)

gdzie:
MEvent = {(g, a, A, Ti) | geA \azNat /\ A.&AR a tu^AP} jest zbiorem zdarzeń,

MTrans = { e > c MBeh^MBeh | eeMEvent} jest zbiorem relacji przejść.

Zbiór relacji przejść jest definiowany rekursywnie w sposób następujący:

Proces pusty stop - brak aksjomatów

Proces zakończenia Q = exit
Q-- (exit.a,A.n) >

Prefiksowanie akcją Q = (g, a, A, rt); Qt

(A_pre)

Wybór probabilistyczny Q = Qi [p] Q2

gdy (PeM(F{Q)) dlaż = 1,2.

Qi... (R-choice)

gdy oraz giset^R) u{exit},

Złożenie równoległe Q = Q\ |[/?]|A,r Q2

Q\....
Q >Q;i[R]\s,r Q2

(R-part)

Q'2 lR-par2)

g, >Q{

q2^^- >q2
(R-par[2)

gdy (PY t M(F(Q)) oraz geset(R) u{exit}
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gdzie

gdy Tl - 0

gdy 7t > 0

Złożenie deaktywujące Q = Q\ [> <2a

q [>q2
dla 0e A/(F(<2)) oraz g * exit

&

(R-dist)

(R-disj)

dla 06 A/(F(0)

Q, >Q{
Q .

dla 06 M(F(0) orazg = exit

Złożenie aktywujące Q = Q\» Qi

q, >q;
Q >Q,»Q2

dla 06 M(F(Q)) orazg*exit

Q, 
q^M^Q2

dla 06 M(F(Q)) oraz g - exit

Przesłonięcie Q = hide R in <2i

^LZ==Ż2L
Q (g.^) )hide R

dla 06 M(F(Q)) oraz g £set(R)

Q _S^^Q{

Q >hideFin 

dla 06 M(F(Q)) orazg eset(R)

(R-dis2)

(R-accepti)

(R-accept,)

(R-hide ।)

(R-hidej)

gdzie 0'jest nowym indeksem różnym od wszystkich indeksów występujących w Q.
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Instantacja procesu Q = p[gi......

W-g.....hn^gn]..... (-^) >Q' (R-inst)

dla M{F{Q{hx ::=gp..., hn ::= g„])), gdzie <2i jest treścią procesu p.

Probabilistyczny wybór akcji do wykonania
W celu przedstawienia probabilistycznego wyboru akcji do wykonania będziemy się 
posługiwać algebrą indeksów akcji. Niech

D = {<0,, X|>, <0,„ x„>} (10.12)

gdzie 0, oraz są parami rozłącznych sekwencji indeksów akcji, oraz x,€R+ dla 
i = 1, ..., n. Liczby x, będą interpretowane jako prawdopodobieństwa albo jako para­
metry intensywności. Interpretowane jako prawdopodobieństwa liczby będą wyzna­
czać do wykonania akcje natychmiastowe, a jako parametry intensywności - będą 
wyznaczać akcje czasowe.

Jeżeli 0 <x, < 1, dla ż = 1,..., n, oraz jest spełniony warunek

£x.=l (10.13)
;=i

to zbiór postaci (10.12) nazywamy rozkładem prawdopodobieństwa.

Dla zbiorów postaci (10.12) definiujemy następujące operacje:

• Mnożenie przez stałą. Jeśli pe PR, to

P*D = def {<&\,p xi>, ..., <<Pn,p *„>} (10.14)

Jeżeli D = 0, to p*D = det 0.

• Normalizacja. Jeżeli zbiór D nie jest rozkładem prawdopodobieństwa, to może 
być sprowadzony do rozkładu prawdopodobieństwa za pomocą operacji normjD), 
zdefiniowanej następująco

norm(D} =def D (10.15)

• Obcięcie bramkowe. Jeżeli Fę L, to obcięcie bramkowe jest zdefiniowane jako 

D|p=def {<^i, Xj> | <0„ x,>eD a name(,^& F} (10.16)

• Suma. Dla zbiorów D{, Di postaci (10.12) ich suma jest określona jako suma 
mnogościowa.
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• Mnożenie. Niech będą dane zbiory Di, Dy.

D\ = {<^\,xx>,<0,„x„>}
D2={<^i,yl>,...,<^„y„,>}

Ich iloczynem D} ® D2 będzie zbiór postaci

Di® D2 =def Xj• yj> | <0, xi>eDi a < 0, yj>eD2 a
(10.17) 

name( = name( a prior( = priori }

• Agregacja parametrów intensywności. Niech będą dane zbiory Dh D2:

Di= {«Pi,Ai>,..., <0„A„>}

D2= A„>}

gdzie ą są parametrami intensywności. Agregacją parametrów intensywności,
oznaczaną Di ® D2, będzie zbiór postaci

Di® D2 =def

' < ’ —77;------- min(ar (D^),ar (D^)>
1 ar^Di) ar^D.) A A ' (10.18)

< 0, A, >e Di a < j,]u j >G £>2 a name^j) = nameWj) = g •

gdzie ar (D) = / A dla ge G.

• i-przeindeksowanie. Operacja jest określona dla zbioru D postaci (10.12), dla któ­
rego namei^d # i dla i = 1, .... n. Wynikiem jest zbiór

reind(D) =det {<0, /li>, ..., <<P'n, An>} (10.19)

gdzie 0/ zastępują Ą oraz name = i.
Rozpatrzmy najpierw prawdopodobieństwa wyboru akcji natychmiastowych. Jeżeli dla 
danego wyrażenia Q zbiór M(F(Q)) zawiera więcej niż jeden element, to przejście do no­
wego wyrażenia jest wyznaczone przez pewien rozkład prawdopodobieństwa określony 
na zbiorze M(F(Q)Y Rozkład ten jest zdefiniowany rekursywnie w sposób następujący:

PjD(stop) = 0
PDUg, a, oo, rty, Q) = {<ct, !>}
PD(Qi [p] Q2) =facti*PD(Qi) fact^PD^

gdzie facti, fact2 &PR są współczynnikami, których wartość zależy od prawdziwości 
formuł

empty, =def M(F(Q^ n M(F(Qi [p] g2)) = 0 dla i = 1,2.
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Współczynniki te zdefiniowano w tabeli 10.3 (symbole T oraz F oznaczają odpowied­
nio prawdę i fałsz).

Tabela 10.3

emptyi empty2 facti faCt2
F F {-p P
F T 1 0
T F 0 1
T T 0 0

Łatwo sprawdzić, że dla każdej wartości formuł empty\ oraz empty2, jeśli PD(Qi) oraz 
PD(QT) są rozkładami prawdopodobieństwa, to również wyrażenie

u fact2* PD(Q2)

jest rozkładem prawdopodobieństwa

PD(Qt |/?|.vQ2) =fact\*PD\ fact\2*PD\2<Jfact2*PD2
gdzie:

PD, = norm(PD(Qi)\A\.v,nR))
PDn= norm(PD(QM[xew ® PD(Q2))\xet(ia)
PD2 = Horm(PD(22)|A\v«(R'))
set(R') = set(R) u {exit}
FA(Q) = {<g, tt> | (P^F^O) /\ g = name(<P) a n= prior(cP)}

fact\, fact\2, fact2 ePR są natomiast współczynnikami, których wartości zależą od 
prawdziwości następujących formuł:

emptyi =def n M(F(Qi |/?|v.r Q2)) = 0 dla i = 1, 2,

empty i2 = empty2} =mM(F(Q\ Q2))\xel(R') = 0

Wartości współczynników określono w tabeli 10.4.

Tabela 10.4

emptyi empty i2 empty2 fact} fact \2 fact2
T F F 0 s l-.r
T F T 0 1 0
T T F 0 0 1
T T T 0 0 0
F F F s (l-.v)*r
F F T 1-j s 0
F T F 1-r 0 r
F T T 1 0 0
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PD(hide R in Q) = PD(Q [ą :.=0t,a,, ::= 0,,])

gdzie zbiór indeksów {ah a,,} = {a\ name{a)eseRR)] jest zastąpiony przez zbiór 
indeksów {^, 0„\, różnych od wszystkich indeksów występujących w Q.

» Qi) = PD{Q^

PD(Ql [> &) = ^(G, |0|o, i &) = PD^ M 02)

PD(P[h\,hm]) = PD(Q[g] ::= hh gm ::= h„,])

gdzie Sjest treścią procesu p[gb g,„], a Q[g} ::= hh gm ::= hm] tekstowym zastą­
pieniem bramek gb gm przez h\,.... hm w wyrażeniu Q.

Rozpatrzmy teraz prawdopodobieństwa wyboru akcji czasowych, gdy dla danego 
wyrażenia Q zbiór M{F{Q)) zawiera więcej niż jeden element. W celu wyznaczenia 
rozkładu prawdopodobieństwa określonego na zbiorze M(F(Q)) wprowadzimy funk­
cję pomocniczą RATE(Q). Funkcja jest zdefiniowana rekursywnie w sposób nastę­
pujący:

RATE(stop) = 0
RATĘ ({g, a, rty, Q) = {<a, A>}
RATĘ (Qt [p] 02) = RATE(Q\) o RATE(Q2)

RATE(Qi 02) = RATEi u RATĘi2 u RATE2

gdzie:
RATEt = RATE(Q^\„}
RATEn= RATE(Q,)\xel(K} ® RATE(Q2)\„,W
RATE2= RATE(Q2)\^elW

RATE(hide R in Q) = RATE(Q)\AXvim u reind(RATE(Q)\sel(R)
RATE(Q} » Q2) = RATE(Qd
RATE{Q} [> Q2) = RATE(Qi) RATE^
RATE(p[h\, h,„]) = RATE(Q[gi g„, ::= ń,,,])

Po zdefiniowaniu funkcji RATĘ rozkład prawdopodobieństwa akcji czasowej jest 
określony wyrażeniem

PD(Q) = norm(RATE(Q)) (10.20)

10.4. Wyprowadzanie łańcuchów Markowa

Specyfikację w języku MB-LOTOS można przetransformować w łańcuch Markowa 
z czasem ciągłym. Jeżeli wchodzące w skład specyfikacji wyrażenia behawioralne 
spełniają warunek regularności (rozdz. 2.), to łańcuch ma skończoną liczbę stanów.
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Skończony jednorodny łańcuch Markowa jest dyskretnym procesem stochastycznym, 
określonym przez skończony zbiór stanów S = {si, sn} oraz prawdopodobieństwa 
przejść pomiędzy stanami, które nie są zależne od czasu. Takiemu łańcuchowi odpo­
wiada stała macierz przejść 

Pu

P n\

P\n

Pnn

(10.21)

gdzie pjj oznacza prawdopodobieństwo przejścia ze stanu s,do stanu Sj, dla i, j = 1,..., n.

Zastosowane podejście do transformacji opiera się na metodzie przedstawionej 
w pracy [Ajmone Marsan, Balbo, Conte 1984] dla uogólnionych stochastycznych sieci 
Petriego.

Przypomnijmy, że wyrażenia behawioralne, dla których zbiór akcji o najwyższym 
priorytecie zawiera tylko indeksy akcji natychmiastowych, nazywa się wyrażeniem 
zanikającym, wyrażenia zaś, dla których ten zbiór zawiera tylko indeksy akcji czaso­
wych, nazywa się wyrażeniem uchwytnym.

Dalej zakładamy, że reprezentujące specyfikację wyrażenie Q jest komunikacyjnie 
zamknięte (rozdz. 2.). Gdy tak nie jest, to znaczy specyfikacja reprezentuje pewien 
system współpracujący z otoczeniem, dla zbudowania łańcucha Markowa konieczne 
jest przyjęcie pewnego modelu tego otoczenia w taki sposób, aby złożenie równoległe 
wyrażeń reprezentujących system i otoczenie stało się zamkniętym wyrażeniem beha­
wioralnym.

Budowany łańcuch Markowa reprezentuje bezpośrednio tylko wyrażenia uchwytne. 
Wyrażenia zanikające nie są bezpośrednio reprezentowane, gdyż przejścia natychmia­
stowe pomiędzy wyrażeniami zanikającymi będą łączone z przejściami czasowymi.

Rozważając przejścia pomiędzy wyrażeniami uchwytnymi, należy rozpatrzyć dwa 
przypadki:

• bezpośrednie, jednokrokowe przejście z wyrażenia uchwytnego Q do innego wy­
rażenia uchwytnego Q\

Q—^Qt (10.22)

gdzie rate(e)G R+\{ 0},

• pośrednie, wielokrokowe przejście z wyrażenia uchwytnego Q, poprzez przejścia 
pośrednie pomiędzy wyłącznie wyrażeniami zanikającymi Qiy ..., Qk, do innego 
wyrażenia uchwytnego Qk+1

Q-^Qx^^.:-^Qk >Qm (10.23)

gdzie rare^ijeR+MO} oraz rateiej = dla i = 2, ..., Z:+l. 
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W pierwszym przypadku wyrażenie Q\ jest bezpośrednim następnikiem wyrażenia Q, 
w drugim natomiast - jest następnikiem pośrednim.

Dla wyrażeń zanikających i wyrażeń uchwytnych odpowiednie rozkłady prawdopodo­
bieństwa PD(Q\ określone odpowiednio na zbiorach akcji natychmiastowych i czaso­
wych, były przedstawione w poprzedniej części rozdziału.

Na tej podstawie przedstawimy najpierw prawdopodobieństwo przejścia z wyrażenia 
zanikającego Q\, będącego bezpośrednim następnikiem wyrażenia uchwytnego Q, do 
wyrażenia uchwytnego Qk+\- Wszystkie te przejścia odbywają się natychmiastowo.

Niech B(Q) oznacza zbiór wszystkich wyrażeń behawioralnych osiągalnych z wyra­
żenia Q. Zbiór ten jest skończony, co wynika z założenia o regularności budowy roz­
patrywanych wyrażeń. Zbiór B(Q) dzieli się na dwa rozłączne podzbiory, oznaczane 
VB(Q) oraz TB(Qa), oznaczające odpowiednio podzbiór wyrażeń zanikających i uch­
wytnych osiągalnych z wyrażenia Q, czyli spełniających własności

VB(Q) u TB(Q) = B(Q) oraz VB{Q) nTB(Q) = 0 (10.24)

W celu określenia prawdopodobieństw przejść z wyrażeń zanikających (będących 
bezpośrednimi następnikami wyrażeń uchwytnych) do wyrażeń uchwytnych wyko­
rzystamy prawdopodobieństwa przejść z wyrażeń zanikających do zanikających 
oraz z wyrażeń zanikających do uchwytnych. Prawdopodobieństwa takie moż­
na zestawić w dwie macierze: V oraz T o wymiarach n x n oraz n x m, gdzie 
n = card(VB(Q)) i m = card{TB{Q)Y Elementy Vy oraz tg obu macierzy są zdefi­
niowane następująco:

Pa gdy Qi —Qj z prawdopodobieństwem p0, dla Qi, Qj 6 VB(Qa), 

0 gdy nie istnieje przejście z 2, do 27

oraz

Pij gdy Q,——>Qj z prawdopodobieństwem .

dla 2, e VB(Q), Qj e TB(QY (10.26) 

0 gdy nie istnieje przejście z 2, do 2y

Sposób obliczania prawdopodobieństw stanowiących elementy obu macierzy został 
przedstawiony w poprzedniej części rozdziału.

Niech 0+l = Vk * V, dla k = 0,1,..., gdzie * oznacza symbol mnożenia macierzy, oraz 
nich vkj będzie elementem macierzy Vk. Element vkj jest prawdopodobieństwem zaj­

ścia sekwencji przejść o długości k, prowadzących z zanikającego wyrażenia 2/ do 
zanikającego wyrażenia Qj.
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Ze względu na założenie, że rozważane są tylko wyrażenia behawioralne regularnie 
zbudowane, a więc także dozorowane, nie są możliwe nieskończenie długie sekwencje 
przejść wyłącznie pomiędzy wyrażeniami zanikającymi. Istnieje zatem pewna liczba 
k^ taka, że Vk jest macierzą zerową dla k > k^.

Element v*- macierzy

k0

y- = ^yk (10.27)
*=0

wyraża więc prawdopodobieństwo przejścia z zanikającego wyrażenia behawioralne­
go Qi do zanikającego wyrażenia Qj przez zajście wszystkich możliwych sekwencji 
tranzycji, w tym sekwencji pustej, prowadzących wyłącznie poprzez wyrażenia zani­
kające.

Ostatecznie element vtjj macierzy

*0
v~*T = ^Vk*T (10.28)

t=o

wyraża prawdopodobieństwo przejścia z wyrażenia zanikającego Q, do wyrażenia 
uchwytnego Qj przez zajście wszystkich możliwych sekwencji przejść wyłącznie po­
przez wyrażenia zanikające.

Dalsze rozważania są prowadzone przy założeniu, że analizowane wyrażenie Q jest 
wyrażeniem uchwytnym.

Niech A^, gdzie m = card(TB(Q), będzie macierzą intensywności przejść Aj dla 
bezpośredniego przejścia z uchwytnego wyrażenia Q, do uchwytnego wyrażenia Qj.

Niech A^, gdzie n = card(VB(Qj, będzie macierzą intensywności przejść A^ dla 
bezpośredniego przejścia z uchwytnego wyrażenia Qi do zanikającego wyrażenia Qj. 
Zdefiniujmy teraz macierz A~xm, która będzie macierzą intensywności przejścia 
z wyrażenia uchwytnego do uchwytnego poprzez dowolną liczbę wyrażeń zanikają­
cych. Macierz ta wyraża się przez

A' = /l7' + /l'* V' * T (10.29)

i stanowi macierz definiującą intensywności przejść w łańcuchu Markowa z czasem 
ciągłym, wyprowadzonym z etykietowanego sytemu przejść dla początkowego wyra­
żenia Q.

Macierz A' jest podstawą do obliczenia macierzy P prawdopodobieństwa przejść po­
między wyrażeniami uchwytnymi oraz do określenia średniego czasu pozostawania 
w danym wyrażeniu uchwytnym.
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Element macierzy P, określający prawdopodobieństwo przejścia z uchwytnego 
wyrażenia Q, do uchwytnego wyrażenia Qj, jest zdefiniowany wzorem

(10-30)

4=1

w którym Ąy są elementami macierzy A".

Średni natomiast czas t, pozostawania w wyrażeniu uchwytnym Q, oblicza się z zależ­
ności

r,=^- (10.3D
Ż4
4=1

W celu ilustracji przedstawionych wyżej rozważań rozpatrzmy przykład prostego sys­
temu obsługi. System składa się z serwera, reprezentowanego procesem S, oraz dwóch 
klientów, reprezentowanych procesami Cj oraz C2. Każdy z klientów działa cy­
klicznie, na przemian wykonując obliczenia lokalne i obliczenia we współpracy z ser­
werem. Definicje procesów klientów, dla i = 1, 2, mają postać

process C,[loc, work, req, serv] : noexit :=
(loc, °°, 7t);
(work, Kork, 0);
(req, °°, n);
(serv, Awn., 0);
Ci[loc, work, req, serv]

endproc
W celu uproszczenia dalszych zapisów akcje nie będą jawnie indeksowane. Natych­
miastowe akcje loc oraz req rozpoczynają odpowiednio fazę obliczeń lokalnych i obli­
czeń wspólnych, akcje czasowe work oraz serv modelują zaś realizację tych faz.

Definicja procesu serwera ma postać
process S[req, serv] : noexit :=

(req, o°, 7t);
(serv, 0);
S[req, serv]

endproc
Akcja natychmiastowa req rozpoczyna fazę współpracy, a akcja czasowa serv modelu­
je okres współpracy. Współpraca pomiędzy procesami klientów a serwerem jest oparta 
na następujących zasadach:
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1. Dostęp klientów do serwera jest rozłączny, przy czym prawdopodobieństwo do­
stępu obu procesów do serwera, w przypadku jednoczesnego ubiegania się o taki 
dostęp, jest jednakowe.

2. Jeżeli jeden z procesów klientów zamierza rozpocząć fazę pracy lokalnej, a dru­
gi - współpracy z serwerem, to prawdopodobieństwo wyboru współpracy z ser­
werem jest trzykrotnie większe od wyboru pracy lokalnej.

Specyfikacja całego systemu spełniającego podane zasady przyjmuje postać
specification System[ ](): noexit := 
behaviour

hide req, serv, loc, work in
( Cj[/oc, work, req, órrv] |0|*. 0.5 C2U0C, work, req, )

\[req, jmdlojs.*
S[req, jen']

endspec
Symbol * w miejscu przeznaczonym na umieszczenie prawdopodobieństwa oznacza, 
że wartość prawdopodobieństwa, w danym kontekście, jest nieistotna. Rzeczywiście, 
symbol gwiazdki w złożeniu równoległym procesów Cj oraz C? wynika z faktu, że 
procesy te nie synchronizują się ze sobą, a zatem nie nastąpi sytuacja, w której należy 
podejmować decyzję o wyborze akcji synchronizujących się. Druga z gwiazdek wyni­
ka z faktu, ze proces S nie wykonuje akcji niezależnych od swego otoczenia, a zatem 
nigdy nie będzie podejmowana decyzja o wyborze tego rodzaju akcji.

Dla wyrażenia behawioralnego, stanowiącego treść specyfikacji, wyznaczymy zbiór 
wyrażeń osiągalnych. W celu skrócenia dalszych zapisów wyrażenie to i wyrażenia od 
niego pochodne będą zapisywane bez operatora przesłonięcia. Dodatkowo przed każ­
dym wyrażeniem będzie wstawiona etykieta (liczba naturalna) jednoznacznie je iden­
tyfikująca. Wyrażenie początkowe będzie mieć postać

1: (CJ/oc, work, req, serv]
|0|» o.5 C2U0C, work, req, .serv] )
|[re<7, jerv]| 0 75. * S[req, jen1]

Z wyrażenia o etykiecie 1 są osiągalne następujące wyrażenia:

2: ({work, Kmrk, 0); (req, °°, Tl); (serv, X,w., 0); C\[loc, work, req, jerv] 
|0|*.o.5 C2U0C, work, req, jerv] )
|[re<7, ^rv]|o.75. * S[req, jen']

3: ( C\[loc, work, req, jen']
|0|*. 0.5 (work, Xmirk, 0); (req, °°, 7t); (serv, Xwn., 0); C2U0C, work, req, jerv] ) 
)[req, jen^lojs.» S[req, jen1]

4: ((work, 0); (req, n); (serv, X,m., 0); C\[loc, work, req, .sen-’]
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|0|*.o.5(M/or^, km,rk, 0); (req, n); (serv, kxem 0); C2U0C, work, req, serv]) 
l(req, serv]|o,75, * S[req, serv]

5: ((req, °°, 7t); (serv, kxen., 0); Ct[loc, work, req, serv]
|0|*. 0.5 (work, kwark, 0); (req, <», 7t); (serv, kxem 0); C2[loc, work, req, sery]) 
l[req, serv]|o.75. * S[req, sery]

6: ((work, kwark, 0); (req, °°, n); (serv, kxerv, 0); C^loc, work, req, sery] 
|0|*.o.5(^<?, °°, Tl); (serv, kxen„ 0); C?[loc, work, req, serv] )
|[ray, serv]|() 75 * S[req, sery]

7: ((sery, kxem 0); C^loc, work, req, serv]
|0|*. 0.5 (work, kwark, 0); (req, °°, n); (sery, kxerv, 0); C2{loc, work, req, sery] ) 
l(req, serv]10.75. * (serv, kserv, 0); S[req, sery]

8: ((work, kwark, 0); (req, °°, (sery, kxm, 0); C\[loc, work, req, sery] 
|0|*.o.5 (serv, kxerv, 0); C2U0C, work, req, sery] )
l[req, rerv]|0.75. * (serv, kxem 0); S[req, serv]

9: ((serv, kserv, 0); C^/oc, work, req, sery]
|0|*,o.5(^, 00,7t); (sery, kxcm 0); C2[/oc, work, req, serv] )
\[req, 5erv]|0 75. * (serv, kxerv, 0); S[req, serv]

10: ((req, n); (serv, kxem 0); C\[loc, work, req, serv] 
|0|*.o.5 (serv, kxm, 0); Czlloc, work, req, serv])
l[req, jerv]| ().75, * (serv, kxm, 0); S[req, serv]

11: ( C\[loc, work, req, sery]
|0|», 0.5 (req, 7t); (sery, kxem 0); C2(loc, work, req, sery] )
l[req, serv]|0.75. * S[req, sery]

12: ((req, n); (serv, kxem 0); Ci[loc, work, req, serv] 
|0|*. 0.5 C2U0C, work, req, serv] )
l[req, serv]10.75. * S[req, serv]

13: ((work, kwark, 0); (f^q, °°, ^)- (serv, kxen„ 0); CMoc, work, req, 
|0|*,o.i(req, °°, 7t); (serv, kxem 0); C2U0C, work, req, sery] )
|[re<7, ^rv]|o,75. * S[req, sery]

14: ((req, n); (serv, kxerv, 0); C\[loc, work, req, sery]
|0|«, 0.5 (work, kwark, 0); (req, °°, 7t); (serv, kxen., 0); Czlloc, work, req, sery] ) 
l[req, serv]| 075. * S[req, sery]

15: ( Ci[loc, work, req, serv]
|01*. 0.5 (serv, kxerv, 0); C2[loc, work, req, serv])
j[req, sery]10.75. * (sery, kxem 0); S[req, sery]
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16: ((serv, Xsen., 0); Ci[loc, work, req, serv] 
|0|*. o.5 C2U0C, work, req, serv])
\[req, serv]| 0.75, * (serv, 0); S[req, serv]

17: ((work, Kmrh, 0); (req, <», Tl); (serv, 0); C][loc, work, req. sen'] 
|0|*.o.5(^^, Kseń, 0); Cz[loc, work, req, sen'])
l[req, serv]|o.75,» (sen', Kxem 0); S[req, sen,]

18: ((serv, Kseń, 0); Cilloc, work, req, sen']
|0|* o.5 (work, Kw<>rk, 0); (req, °°, 7t); (serv, \sem 0); C2U0C, work, req, serv] ) 
l(req, serv]|0.75, * (serv, Kxerv, 0); S[req, serv]

Zbiór wyrażeń uchwytnych TB(Q), gdzie Q jest wyrażeniem o etykiecie 1, składa się 
z {4, 7, 8, 9, 10, 17, 18], a zbiór wyrażeń zanikających VB(Q) składa się z {1,2, 3, 5, 
6, 11, 12, 13, 14, 15, 16}. Na grafie tranzycji na rysunku 10.1 wyrażenia zanikające są 
przedstawiane w postaci kwadratów, a uchwytne - w postaci kółek.

Rys. 10.1. Graf tranzycji 
dla przykładowego wyrażenia
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Macierz prawdopodobieństw Vnxn jest macierzą, której jedynymi niezerowymi ele­
mentami są:

Vl.2 ~ Vl.3 = Vl 1.13 = Vl 1,15 = VI2.I4 = VI2.I6 =

Dolne indeksy elementów tej i następnych macierzy są etykietami wyrażeń.

Zauważmy, że V2 jest macierzą zerową, dlatego V~ = V.

Podobnie, jedynymi niezerowymi elementami macierzy Tltxl są:

^2.4 = ^3.4 = ^5.7 = ^6,8 = ^13.17 = ^15.17 = ^16.18 ~ ^14,18 —

Macierz V~*T, wyrażająca prawdopodobieństwa przejścia z wyrażenia zanikającego 
do wyrażenia uchwytnego, przez zajście wszystkich możliwych sekwencji przejść 
wyłącznie poprzez wyrażenia zanikające, ze względu na prostotę systemu, ma tylko 
elementy 0 oraz 1. Elementami o wartościach 1 są:

V/| 4 = V/2,4 = V/3.4 = V,5.7 = V?6,8 = 1.17 =

V^13.17 =V^15,17 = ^12,18 =V^16.18 = V,14,18 =

Macierz intensywności przejść dla bezpośredniego przejścia z wyrażenia uchwytnego 
do zanikającego A^xi] ma następujące elementy niezerowe:

J V _ 7 V _ i 
/l7.3— ^S.2- Aym,

_ ]v — lv — 2
4,5“ 4,6” 9.11“ 10.12- ^work

Macierz A^ wyraża intensywności przejścia z wyrażeń uchwytnych do uchwytnych 
poprzez dowolną liczbę wyrażeń zanikających. Niezerowymi jej elementami są:

A.7 — A.8 = A.9 — Aj.|0 “ A7.IO = A 8.9 “ ^work

A.17 = Ao.18 “ A.4 = A,2 =Aerv

Niezerowymi elementami macierzy P prawdopodobieństwa przejść pomiędzy wyraże­
niami uchwytnymi są:

P4.7 = P4.8 “

P17.10 ~ PI8.9 = P9.I7 ~ Pl0.18 = 1 

n - n =—______P7.9 H8.I0 , •,
Awork + Asen- 

A.

Pi A = ^8.2 --------
\vork
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10.5. Silna bisymulacja markowowska

Silna rozszerzona bisymulacja markowowska wyznacza klasy równoważności na 
zbiorze wyrażeń behawioralnych, które mają te same własności funkcjonalne i nie­
funkcjonalne - czasowe i probabilistyczne. W celu zdefiniowania tej relacji wprowa­
dzimy pomocnicze oznaczenia i definicje.

Jeżeli R jest relacją równoważności na zbiorze X, to przez AjR będzie oznaczany zbiór 
ilorazowy wyznaczany przez R, a przez [%] będzie oznaczana klasa abstrakcji genero­
wana przez ag X.

Przez ..., x„ będziemy oznaczać wielozbiór nad zbiorem liczb rzeczywistych. 
Wyrażenie S"{| Aj, ..., x„ Ir- będzie sumą wszystkich elementów tego wielozbioru. 

W szczególnym przypadku, dla wielozbioru pustego, z definicji Z0 = 0.

Definicja 10.1
Zagregowanym prawdopodobieństwem dla wyrażenia behawioralnego Q wzglę­
dem zbioru wyrażeń C będziemy nazywać funkcję częściową A Prób o sygnaturze

AProb : BEH xAxAPx 2BEH -> PR (10.32)

zdefiniowaną przez wyrażenie

AProb(Q, g, n, C)
(10.33) 

= Z I p | «Z>, p>G PD(Q) a Q —(g,0,°o,^)^ Q' a Q'e CI (■

Zagregowane prawdopodobieństwo jest sumą prawdopodobieństw przejścia z wyraże­
nia Q do dowolnego wyrażenia ze zbioru C, w wyniku wykonania akcji natych­
miastowych o nazwie geA i priorytecie n.

Definicja 10.2
Zagregowaną intensywnością dla wyrażenia behawioralnego Q względem zbioru 
wyrażeń C będziemy nazywać funkcję częściową ARate o sygnaturze

ARate : BEH xAx P(BEH) R+ (10.34)

zdefiniowaną przez wyrażenie

ARate(Q, g, C) 
. (10.35)

= Z’! 1A1 <0 A>e RATE(Q) x Q—(g,0/l,O)->0' a Ae a Q'e CI }•

Zagregowana intensywność jest sumaryczną intensywnością przejścia z wyrażenia Q do 
dowolnego wyrażenia ze zbioru C w wyniku wykonania akcji czasowej o nazwie geA.
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Definicja 10.3

Relacja równoważności B ę BEHkBEH jest silną rozszerzoną bisymulacją mar- 
kowowską (EMB), wtedy i tylko wtedy, gdy jeśli <Qt, Q2>eB, to dla wszystkich 
gtA, n^AP, i dowolnej klasy CeBEH\b zachodzą związki:

AProb(Q], g, n, C) = AProb(Q2, g, n, C), (10.36)

ARate(Q\, g, C) = ARate{Q2, g, C). (10.37)

Fakt, że wyrażenia Q\ oraz Q2 są w relacji EMB będzie zapisywany w postaci 0i ~ Q2-

Lemat 10.1

Niech ~EMB będzie mnogościową sumą wszystkich silnych rozszerzonych bisymu- 
lacji markowowskich. Relacja ~EMB jest największą silną rozszerzoną bisymulacją 
markowowską (największą EMB).

Dowód. Analogiczny dowód jest pokazany w pracy (Bernardo&Gorieri, 1998).

Relacja ~EmB jest również kongruencją. Pokazuje to poniższe twierdzenie, które spro­
wadza się do wykazania, że relacja jest zachowywana przez wszystkie operatory języ­
ka oraz przez instancje procesów.

Twierdzenie 10.2

Niech Q\, Q2eBEH. Jeżeli 0| ~EMBQ2AO'

1. Dla dowolnych gEA, oje N, AeAR, theAP
(g, a, A, rtp, Q\ ~EmB (g, a, A, xt)-, Q2 (10.38)

2. Dla dowolnych Qe BEH, pE PR

Q\ [p] Q ~emb [p] Q oraz Q [p] Q\~EMbQ [p] 02 (10.39)

3. Dla dowolnych QeBEH, r, se PR, FqG

0i |[/?lk Q ~EMB Qz |[7?]|v.r Q oraz Q |[R]|,f Q}~EMBQ |[R]|.,., Q2 (10.40)

4. Dla dowolnego Qe BEH

Q\[p>Q ~emb Q2\p>Q oraz Q [p > Q\~EMB Q[p > Q2 (10.41)

5. Dla dowolnego QeBEH

Q\» Q~embQ2» Q oraz Q » Q\~EMB Q » 02 (10.42)

6. Dla dowolnego R ESeqG
hide R in Q{ ~EMB hide R in 02 (10.43)

Dowód - zob. Dodatek 1.
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W celu pokazania, że relacja ~emb jest zachowana przez instancje procesów, wprowa­
dzimy pewne definicje pomocnicze.

Proces niemający definicji w danym zbiorze definicji jest określany jako wolny wzglę­
dem tego zbioru.

Wyrażenie Q jest częściowo dozorowane względem danego zbioru definicji procesów, 
jeśli dowolna nazwa procesu P, występująca w Q, jest albo wolna względem danego 
zbioru definicji, albo proces ten ma definicję postaci P[h\, ..., h,„] := Q' oraz każdy 
proces o nazwie P', który występuje w Q', jest dozorowany.

Wprowadźmy pojęcie rekursywnego podstawienia wyrażenia Q za wywołanie procesu 
p[7?] w wyrażeniu Qt. Oznaczenie

Q^[<P[R-.:=Q>]
ma następującą definicję:

stop[<P[g ।,..., g„]: := Q >] s stop
(exit, a, o®, «>)[</>[/?] z=Q>] = (exit, a, °°,
((g, a, A, zip, 0,)[<P[/?J ::= Q>] = (g, a, A, zfi QA<P[R] ”= 0>]
(0i [p] Q2)[<P[R] "= Q>] = 0i[<P[*] "= Q>] [p] 02[<W "= Q>1
(0i |[5]k 02)[</’[/?] "= Q>] = 0i[<W ::= 0>] |[U,- 02[<P[/?] ::= 0>]
(hide R in 01 )[<P[/?] ::= 0>] = hide R in 0,[<P[/?] ::= QP>]
(0! » 02)[<P[/?1 "= 0>] = 0I[<P[/?] ::= Q>] » 02[<P[/?] ::= Q>]
(0i [> 02)[<P[/?] "= 0>] = 0.[<™ ::= 0>] [> 02[<P[/?] ::= 0>]
(p[/?'D [<P[/?] ::= 0>] =

0 gdyp[Z?'] = P[P]
■ p[Pz] gdy = P[/?]) a p[/?'] wolny w zbiorze definicji 

Qp[<PlR] -'=Q>] gdy-i(p[/?']sP[/?])A0/, jest treścią p[Z?']

(0i) [<W 0>1 0i[<W ::= 0>]

Twierdzenie 10.3
Niech 0i, Q2&BEH będą częściowo dozorowanymi wyrażeniami względem dane­
go zbioru definicji oraz niech P[gi, ..., g„] będzie jedynym wolnym procesem wy­
stępującym w 0| oraz 01. Niech dane będą dwie rekursy wne definicje procesów:

^ifel............gJ -=QA<P[§1, ■■;gn] '^PAgi, •••,gJ>]
........ g„] := 02[<P[gi, •••, g„] "= ^[gi, g„]>] (10 44)

Jeżeli 0| ~embQz, to Pi[gi, ..., g„] ~EMBPz[g\, •••, g„L

Dowód - zob. Dodatek 1.
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10.6. Uwagi końcowe

W bieżącym rozdziale przedstawiono wydajnościowe rozszerzenie języka LOTOS, 
które opiera się przede wszystkim na wcześniejszych pracach: [Huzar, Magott 1996], 
[Huzar, Magott 1997b], [Huzar, Magott 2001], Istotnymi cechami język MB-LOTOS 
są akcje natychmiastowe i czasowe, z wykładniczym rozkładem prawdopodobieństwa, 
oraz probabilistyczne operatory wyboru i złożenia równoległego. Wybór akcji do wy­
konania następuje, w pierwszej kolejności, na podstawie priorytetów, a następnie na 
wyborze probabilistycznym. Mechanizmy te, eliminując niedeterminizm, umożliwiają 
tym samym prowadzenie analizy probabilistycznej specyfikacji wyrażonych w tym 
języku. Wprowadzone mechanizmy probabilistycznego wyboru akcji są zależne od 
otoczenia. Jest to rozwinięcie języka w stosunku do wcześniejszych prac: [Huzar, 
Magott 1999a], [Huzar, Magott 1996], [Huzar, Magott 197a], a także prac innych au­
torów, na przykład: [Schieferdecker 1995], [Miguel, Fernandez, Vidaller 1993], [Her- 
manns, Rettelbach 1996].

Dla przedstawionego rozszerzenia języka zdefiniowano relację silnej bisymulacji mar- 
kowowskiej i pokazano, że jest kongruencją, co oznacza kompozycyjność języka. 
Pokazano też jak dla specyfikacji wyrażonej w języku MB-LOTOS wyprowadzać 
łańcuchy Markowa. Opisane wyprowadzanie łańcuchów Markowa było zastosowane 
między innymi w pracach: [Babczyński, Huzar, Magott 1999], [Huzar, Magott 2000], 
[Babczyński, Huzar, Magott 2000],

Algebry procesowe, oparte na językach CCS, CSP, ACP, LOTOS i innych, były 
przedmiotem wielu prac, na przykład: [Reed, Roscoe 1986] [Bolognesi, Lucidi 1992], 
[Fidge 1992], [Herrmanns, Rettelbach 1994], [Brinksma, Katoen, Latella 1995], 
[Schieferdecker 1995], [Rettelbach 1995], [Hermanns, Rettelbach 1996], [Hillston 
1996], [Bravetti, Bernardo 2000], [Hermanns, Herzog, Katoen 2002]. Wśród nich 
warto wyróżnić: [Nicollin, Sifakis 1992], [Bernardo, Gorrieri 1998] i [Hermanns, 
Herzog, Katoen 2002], ze względu na zawarty w nich obszerny przegląd literatury.

Można stwierdzić, że prace nad algebrami procesowymi przerodziły się w oddzielny 
nurt poszukiwania modeli formalnych i narzędzi programowych wspomagających ich 
stosowanie. Na przykład dla LOTOSa pierwsze rozszerzenie stochastyczne, oparte na 
semiłańcuchach Markowa przedstawiono w pracy [Rico, von Bochmann 1991] oraz 
w pracy [Valderrutten, Hjiej, Benzekri Gazal 1992], pokazującej wyprowadzanie sys­
temów kolejkowych na podstawie rozszerzonych specyfikacji. Stochastyczne rozsze­
rzenie LOTOSa z dowolnymi rozkładami, ale ograniczoną kompozycyjnością, jest 
przedstawione w pracy [Ajmone Marsan, Balbo, Conte, Donatelli, Franceschinis 
1994], Język TIPP [Gótz, Herzog, Rettelbach 1993], początkowo pomyślany jako 
algebra z dowolnymi rozkładami czasów wykonywania akcji, skupił się ostatecznie na 
rozkładach wykładniczych, podobnie jak PEPA: [Hilston 1996] i EMPA [Bernardo, 
Gorrieri 1998]. Prace [Brinksma E., Katoen J.-P., Latella D., 1995] i [Katoen, 
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Brinksma, Latella, Langerak 1996] są propozycją stosowania semantyki nieprzeplo- 
towej, umożliwiającej rozważanie bardziej ogólnych rozkładów prawdopodobieństwa. 
Inną propozycją podobnego podejścia jest praca [Priami 1996], dotycząca stocha­
stycznej wersji rachunku n, oraz praca [Herzog 1996]. Propozycje niemarkowowskich 
modeli zawiera między innymi praca [D’Argenio, Hermanns, Katoen 1999].

Do budowania modeli wydajnościowych sięga się także po inne metody formalne. 
Przykładem są materiały warsztatów na temat systemów czasu rzeczywistego [Gnesi, 
Schieferdecker, Rennoch 2000]. Wśród różnych metod formalnych ważną rolę odgry­
wają sieci Petriego. Do przykładowych prac należą tu między inymi: [Murphy 1991], 
[Juanole, Atamna 1991], [Magott 2005],

Krótkie omówienie innych metod formalnych przedstawiono w następnym rozdziale.
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11. Zakończenie

11.1. LOTOS a inne techniki formalne

Omawiany LOTOS jest jedną z wielu technik formalnych wykorzystywanych w pro­
cesie wytwarzania systemów informatycznych. Poniżej omówiono krótko inne metody 
formalne i półformalne, które zasługują na uwagę ze względów historycznych lub 
stopień ich upowszechnienia. Do metod wspólnie rozwijanych z LOTOSem należą, 
wspominane wcześniej, standardy SDL [ITU-T 1999] i ESTELLE [ISO 9074], 
LOTOS, SDL i ESTELLE były przeznaczone do definiowania i badania standardów 
dotyczących sieci komputerowych i sieci telekomunikacyjnych. Oprócz norm ISO 
i wielu odrębnych opisów, jak np. pozycje [Ellsberg, Hogrefe, Sarma 1997], [Szmuc 
1998] dotyczące SDL, czy prace [Budkowski, Dembiński 1987], [Budkowski, Dem­
biński 1989], dotyczące ESTELLE, łączny opis tych trzech technik zawiera książka 
[Turner 1993],

Oprócz nich były rozwijane inne metody, przeznaczone ogólnie do wspomagania pro­
cesów specyfikowania i projektowania systemów rozproszonych [ISO/ODP 10746]. 
Należą do nich między innymi metody i związane z nimi narzędzia programowe, jak 
SPIN i UPPAL, rozwijane przede wszystkim w środowiskach akademickich [Babbich, 
Deontio 2002]. Oddzielną grupę stanowią metody wykorzystujące sieci Petriego, 
a w ostatnim okresie metodyki oparte na języku UML czy też modele kolejkowe.

Wspólną cechą LOTOSa, SDL, ESTELLE, SPIN i UPPAL jest to, że służą do kon­
struowania specyfikacji wykonywalnych i wspólnie odwołują się do pojęcia, różnie 
definiowanej, maszyny stanowej.

SDL [ITU-T 1999] jest w zasadzie językiem półformalnym, przeznaczonym do opisu 
systemów reaktywnych i systemów czasu rzeczywistego. Specyfikacja w SDL przed­
stawia pewną rozszerzoną maszynę stanową. Struktura specyfikacji jest określona 
przez zbiór równoległych komunikujących się procesów. Komunikacja odbywa się 
w sposób asynchroniczny, za pośrednictwem komunikacyjnych kanałów (kolejek 
FIFO skończonej długości). Zachowanie procesów jest określane oddzielnymi diagra­
mami aktywności, ukazującymi reakcje procesów na przychodzące pobudzenia. Poszcze­
gólne aktywności mogą być opisywane w języku naturalnym lub w języku programowa­
nia. Opis zachowania dopuszcza niedeterminizm. Procesy operują na własnej przestrzeni 
danych. Początkowo SDL (podobnie jak LOTOS) opierał się wyłącznie na abstrakcyj­
nych typach danych, później dołączono typy danych z języka programowania C.

Dzięki intuicyjnej, graficznej postaci specyfikacji uzyskał dużą popularność zarówno 
w środowiskach akademickich, jak i przemysłowych. (Warto dodać, że powszechnie 
stosowanej notacji graficznej zawdzięcza swą popularność także język UML - de 
facto standard w wytwarzaniu systemów oprogramowania.)
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Głównym obszarem zastosowań SDL są systemy telekomunikacyjne, dlatego wśród 
komercyjnych narzędzi programowych wspomagających posługiwanie się tym języ­
kiem jest Telelogic Tau Suitę - produkt firm Swedish Telelogic oraz Object-Geode, 
umożliwiający generowanie kodu w C i C++, testowanie i wykonywanie aplikacji na 
podstawie specyfikacji w SDL. Część testująca narzędzia wykorzystuje język TTCN 
- standard ISO definiowania testów dla systemów telekomunikacyjnych.

W ogólnej ocenie języka SDL pozytywnymi cechami są: modularne podejście do two­
rzenia specyfikacji, z wyraźnym oddzieleniem definiowania struktury od definicji za­
chowań. Język jest zorientowany na szybkie tworzenie aplikacji, stąd wynika powią­
zanie z językami programowania C oraz C++, a ze względu na obszar zastosowań, 
również powiązanie z notacją ASN.l do zapisu składni abstrakcyjnej typów danych 
oraz do kodowania danych transmitowanych w sieciach telekomunikacyjnych. Bada­
nie własności prototypu wygenerowanego na podstawie specyfikacji w SDL wymaga 
pełnego testowania. Walidacja samej specyfikacji wymaga natomiast jej transformacji 
do innego formalizmu, na przykład do LOTOSa.

ESTELLE, podobnie jak SDL, bazuje na rozszerzonych maszynach stanowych i ko­
rzysta z notacji języka Pascal do operowania na danych. Dzięki temu specyfikacje 
w ESTELLE są podstawą szybkiego generowania wykonywalnego prototypu. 
ESTELLE, bardziej niż LOTOS, jest ukierunkowany na implementację.

Specyfikacja składa się z modułów, które mogą się ze sobą komunikować asynchroni­
cznie za pośrednictwem dwukierunkowych kanałów komunikacyjnych. Moduł dyspo­
nuje własnym zbiorem danych, na których można wykonywać określone operacje. 
Moduły mogą być zagnieżdżane. ESTELLE ma dobrze określone podstawy teorety­
czne i znalazł zastosowanie w licznych projektach; ocenia się jednak, że dla zastoso­
wań przemysłowych wymagane byłoby opracowanie odpowiednio przyjaznych śro­
dowisk wspierających [Babbich, Deotio 2002].

SPIN (Simple ProMeLa Interpreter) jest narzędziem przeznaczonym do specyfikacji, 
symulacji i walidacji protokołów komunikacyjnych. SPIN korzysta z notacji ProMeLa 
{Process Meta Language), zbliżonej do języka C, co ułatwia szybkie generowanie 
wykonywalnego kodu. SPIN dostarcza ponadto mechanizmów weryfikacji mode­
lowej, m.in. przez badanie inwariantów i formuł logiki temporalnej. Podstawowymi 
komponentami specyfikacji są procesy. Komunikacja pomiędzy procesami odbywa się 
przez kanały komunikacyjne - kolejki FIFO o skończonej długości. Gdy kolejki mają 
długość zerową, komunikacja jest synchroniczna - odbywa się w trybie randez vouz, 
natomiast w przypadku przeciwnym komunikacja jest asynchroniczna. Zachowanie 
procesu jest opisywane przez zbiór możliwych tranzycji pomiędzy stanami procesu. 
Tranzycja może nastąpić, gdy jest prawdziwy odpowiedni dozór - wyrażenie logiczne 
określone na wartościach zmiennych lokalnych procesu lub zmiennych globalnych, 
oraz gdy zajdzie odpowiednia akcja wejścia-wyjścia. Możliwa jest sytuacja niedeter- 
ministyczna, gdy możliwe są do wykonania przynajmniej dwie tranzycje.
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Dzięki otwartemu, bezpłatnemu dostępowi SPIN należy do najbardziej popularnych 
i najczęściej stosowanych narzędzi do specyfikacji i weryfikacji protokołów, co wyra­
ża się między innymi organizacją cyklu warsztatów poświęconych rozwojowi i zasto­
sowaniom tego narzędzia. Jednym z interesujących zastosowań jest wykorzystanie 
SPIN do badania własności specyfikacji zapisanych w SDL. Osiąga się to dzięki pro­
stej transformacji specyfikacji w SDL na specyfikację w SPIN.

UPPAL (skrót od UPPsala and AALborg - miast, w których mieszczą się współpracu­
jące ze sobą uniwersytety) jest narzędziem służącym do modelowania, symulacji i we­
ryfikacji automatów czasowych. Strukturę specyfikacji wyznacza zbiór synchronicz­
nie komunikujących się procesów. Dopuszcza się, że komunikacja może trwać skoń­
czony odcinek czasu. Głównym obszarem zastosowania narzędzia jest specyfikowanie 
i badanie protokołów komunikacyjnych czasu rzeczywistego.

Pełniejsze omówienie i porównanie wymienionych wyżej technik można znaleźć 
w pracy [Babich, Deotto 2002]. Oprócz wymienionych, istnieje również wiele innych, 
opartych na automatach czasowych i maszynach stanowych, które dostarczają narzę­
dzi do specyfikowania i badania różnych własności, na przykład VerICS [Dembiński, 
Janowska, Janowski, Penczek, Półrola, Szreter, Woźna, Zbrzezny 2003],

Sieci Petriego stanowią oddzielną, bardzo szeroką klasę technik, z którą są związane 
liczne narzędzia wspomagające. Aktualny przegląd w tym zakresie zawiera książka 
[Girault 2003], przykładów wykorzystania sieci Petriego dostarczają prace [Szmuc 
1998], [Szmuc, Motet 1998], [Szpyrka 1999], [Magott 2005], ciekawe związki pomię­
dzy sieciami Petriego a rachunkiem CCS analizuje Kułakowski [2004]. Równie sze­
roką klasę, rozwijaną od dziesiątków lat, stanowią modele kolejkowe, przykładem ich 
zastosowań do systemów komputerowych jest książka [Czachórski 1999].

Oprócz omawianych, należy wspomnieć o technikach, które wyrosły z języków pro­
gramowania czasu rzeczywistego w środowiskach przemysłowych. Należą do nich ta­
kie języki i związane z nimi środowiska wspomagające, jak: Esterel [Esterel Techno­
logies, 2005], Signal [Le Guernic, Gautier, Le Borgne, Le Maire 1991] i Lustre [Halb- 
wachs, Caspi, Raymond, Pilaud 1991], stosowane między innymi w europejskim 
przemyśle lotniczym i awionice. Omówienie tych języków i ich zastosowań zawiera 
praca [Benveniste, Caspi, Edwards. Halbwachs, Le Guernic, De Simone 2003]. Do tej 
samej grupy technik można zaliczyć język Ada i związane z nim środowiska projek­
towe. Obecnie trwają prace nad ustanowieniem standardu ISO wersji Ada 2005, sta­
nowiącej rozwinięcie poprzedniej wersji Ada 1995 [Huzar, Fryźlewicz, Dubielewicz, 
Hnatkowska, Waniczek 1998],

11.2. LOTOS a UML
Współczesne metody wytwarzanie systemów oprogramowania opierają się na para­
dygmacie modelowania obiektowego - cykl wytwarzania oprogramowania jest po­
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strzegany jako proces budowy ciągu powiązanych ze sobą modeli [Hnatkowska, Hu­
zar, Tuzinkiewicz 2001], a podstawowym językiem modelowania jest obecnie UML 
[UML 2003], [Booch, Rumbaugh, Jacobson 1999]. UML jest językiem półformalnym 
- składnia bezkontekstowa (opis jest wyrażony w podzbiorze języka UML) i kontek­
stowa (opisana w języku OCL - Object Constraint Language) są opisane formalnie, 
semantyka natomiast jest opisana w języku naturalnym.

LOTOS natomiast nie jest ani językiem projektowania obiektowego, ani też nie może 
być uważany za język programowania obiektowego. Uzasadnienie tego faktu wynika 
z następującego rozumowania:

Zakładając, że LOTOS jest językiem programowania obiektowego, należałoby przy­
jąć, że instancja procesu jest odpowiednikiem obiektu, a definicja procesu jest odpo­
wiednikiem klasy. Podobieństwo polega na tym, że instancja procesu komunikuje się 
ze swym otoczeniem przez dobrze określony interfejs, chociaż ograniczony tylko do 
wskazania bramek, bez jawnego określenia typów komunikowanych danych, i stanowi 
hermetyzację danych, na których proces operuje. Na tym jednak kończą się podobień­
stwa z językiem programowania obiektowego, gdyż pomiędzy procesami nie ma me­
chanizmu dziedziczenia (dziedziczenie jest ograniczone w LOTOSie tylko do typów 
danych) ani też mechanizmu polimorfizmu [Górski 1999].

Zakładając zaś, że LOTOS jest językiem projektowania obiektowego, należałoby 
oczekiwać dodatkowych własności: po pierwsze - definiowania asocjacji pomiędzy 
klasami (definicjami procesów), wraz z odpowiednimi ograniczeniami licznościowy- 
mi, oraz - po drugie - możliwości tworzenia powiązanych instancji obiektów (instan­
cji procesów) spełniających te ograniczenia. W języku UML własności te są wyrażane 
przez diagramy klas i diagramy obiektów - instancje diagramów klas. LOTOS może 
definiować dowolny zbiór procesów, ale - poza zagnieżdżeniami - nie może określać 
żadnych związków pomiędzy ich definicjami, struktura powiązań pomiędzy instan­
cjami procesów jest natomiast ograniczona tylko do tych możliwości, jakie dają opera­
tory składania procesów - w zasadzie chodzi tylko o operator złożenia równoległego. 
Wprawdzie tworzenie różnych struktur powiązań pomiędzy instancjami procesów jest 
możliwe, ale wymaga to oddzielnego postępowania [Haj-Hussein, Logrippo 1991], 
prowadzącego do znacznej rozbudowy wyrażeń behawioralnych.

Analiza możliwości stosowania języka LOTOS w kontekście obiektowego podejścia 
do wytwarzania oprogramowania była rozważana jeszcze w latach dziewięćdziesią­
tych ubiegłego wieku, na przykład [Gibson 1993], [Hnatkowska 1996], ale ostatecznie 
praktyka przesądziła o dominującej roli języka UML. Nie oznacza to, że LOTOS stał 
się niepotrzebny, ale że może pełnić inną rolę. Tą rolą w stosunku do języka UML, 
jest użycie LOTOSa do definiowania behawioralnego aspektu semantyki UML. Przy­
kładami takiego zastosowania LOTOSa są prace: [Clark, Moreira 2000], [Hnatkowska, 
Huzar 2000], [Hnatkowska, Huzar 2001], [de Saqui-Sannes, Apvrille, Lohr, Senac, 
Courtiat 2002], [Cichoń, Huzar 2005], [Cichoń, Huzar 2006] oraz [Walkowiak 2006].
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11.3. Diagramy stanów UML a LOTOS

W tym podrozdziale przedstawiono propozycję reprezentacji diagramów stanów języ­
ka UML w postaci wyrażeń behawioralnych LOTOSa, opartą na pracy [Hnatkowska, 
Huzar 2001].

Diagramy stanów w UML są graficzną reprezentacją maszyn stanowych i opierają się 
na koncepcji map stanów Harela [Harel 1987], których istotnym mechanizmem jest 
zagnieżdżanie stanów. Zagnieżdżanie oznacza, że we wnętrzu stanu może być zawarta 
inna maszyna stanowa, reprezentowana nowym diagramem stanów. Zagnieżdżanie 
stanów pozwala ograniczać eksplozję stanów, która jest zasadniczym problemem 
związanym ze stosowaniem metod operacyjnych.

Stany i tranzycje pomiędzy stanami są reprezentowane odpowiednio w postaci wierz­
chołków i łuków grafu. Wyróżnia się dwie podstawowe kategorie stanów:

• Pseudostany, na które składają się stan początkowy i końcowy, łączniki histo­
ryczne (płytki i głęboki), rozgałęzienie, rozwidlenie i złączenie równoległe.

• Stany właściwe, krótko stany, wśród których wyróżnia się stany proste i złożone, 
a te ostatnie dzieli się na złożone sekwencyjnie i równolegle. W stanie prostym 
nie są zagnieżdżone inne stany. W stanie złożonym, „rodzicielskim”, są zagnież­
dżone inne stany, stany „potomne”, nazywane też podstanami. Podstan jest bez­
pośrednim podstanem danego stanu, jeśli nie jest zagnieżdżony w innym stanie, 
a przeciwnym razie jest podstanem przechodnim tego stanu.

Diagram stanów można przedstawić jako etykietowany graf. Graf diagramu stanów 
jest definiowany jako szóstka

S = <BoxN, childB, typeB, defaultB, ArcN, Arc> (11.1)

gdzie:
BoxN jest skończonym zbiorem nazw wierzchołków, reprezentujących stany wła­
ściwe; nazwa wierzchołka jest utożsamiana z nazwą stanu.
childB ę BoxN x BoxN jest relacją hierarchii stanów: <bh b2>£ childB oznacza, że 
b2 jest bezpośrednim „potomkiem” stanu „rodzicielskiego” b\. Zbiór BoxN oraz re­
lacja hierarchii childB definiują drzewo. Korzeń tego drzewa r nie ma „rodziców”, 
a jego liście nie mają „potomków”. Zwrotne i przechodnie domknięcie relacji 
childB jest oznaczane przez childB .
typeB : BoxN —> {PRIM, XOR, AND, FIN} jest funkcją określającą typ danego 
wierzchołka. Korzeń r, z definicji jest typu XOR, liście są typu PRIM lub FIN, pozo­
stałe zaś wierzchołki mogą być albo typu XOR (sekwencyjnie złożony podstan), albo 
AND (równolegle złożony podstan). Liście typu FIN reprezentują stany końcowe.
defaultB : BoxN —» 2*"'* jest funkcją, która dla danego stanu złożonego określa te 
jego podstany, które są stanami początkowymi. Dla wierzchołka typu XOR jest to 
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zawsze zbiór jednoelementowy, dla wierzchołka typu AND jest to zbiór co najmniej 
dwuelementowy. Dla wierzchołka typu PRIM zbiór podstanów początkowych jest 
pusty. Rozszerzeniem funkcji defaultB jest funkcja DefaultB : BoxN —> 2BaM, 
określona przez następujące własności: b^DefaultBfb') oraz dla wierzchołków 
b'EBoxN, takich że <b, b'>^childB\ wymaga się, aby b'& DefaultB{b) wtedy i tyl­
ko wtedy, gdy defaultBfb') Q DefaultB(b~).
ArcN jest skończonym zbiorem nazw łuków: BoxN n ArcN =0.
Arc c BoxNx ArcN x Bo^jest zbiorem łuków. Łuk azArc jest trójką <b\, a, b2> 
z wierzchołkiem początkowym source^a) = blt końcowym target(a) = b2 oraz na­
zwą name(a) - a.

Zarówno wierzchołki, jak i łuki grafu diagramu stanów S mają swoje etykiety.

Wierzchołki (stany) są etykietowane przez pięć elementów:

• akcje (niepodzielne i nieprzerywalne czynności obliczeniowe) wykonywane bez­
pośrednio po wejściu do stanu,

• ciągi akcji (aktywności) wykonywane podczas przebywania w danym stanie; cią­
gi te mogą być przerywane w dowolnej chwili po wykonaniu każdej z akcji,

• akcje wykonywane bezpośrednio przed wychodzeniem ze stanu,
• tranzycje wewnętrzne, określone przez dwa elementy: zdarzenia, jakie mogą za­

chodzić podczas przebywania w stanie, i przez akcje, które są wykonywane po 
zajściu tych zdarzeń,

• zdarzenia odroczone - zdarzenia, których zajście jest tylko rejestrowane i przeka­
zywane do kolejnych stanów.

Każdy z wymienionych elementów jest opcjonalny (może nie występować); w dal­
szych rozważaniach uwzględnimy tylko trzy pierwsze elementy - akcje wejściowe, 
ciągi akcji wewnętrznych i akcje wyjściowe.

Łuki grafu diagramu stanów są etykietowane trzema elementami:

• zdarzeniem wyzwalającym tranzycję ze stanu, od którego łuk wychodzi, do sta­
nu, do którego łuk prowadzi,

• dozorem - wyrażeniem logicznym, określonym przez wartości atrybutu obiektu 
(ogólniej instancji klasyfikatora), którego zachowanie jest opisywane diagramem 
stanów; prawdziwość dozoru w momencie zajścia zdarzenia wyzwalającego jest 
warunkiem koniecznym tranzycji,

• akcją, która jest wykonywana podczas tranzycji ze stanu do stanu (akcja jest wy­
konywana po wykonaniu akcji wyjściowej w stanie, z którego następuje tranzy- 
cja, a przed wykonaniem akcji wejściowej stanu, do którego następuje tranzycja).

Każdy z wymienionych elementów jest opcjonalny, przy czym jawny brak zdarzenia 
wyzwalającego w etykiecie łuku oznacza, że zakończenie ciągu akcji wewnętrznych 
w danym stanie jest interpretowane jako zdarzenie wyzwalające trazycję. Wyróżnia
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się cztery rodzaje zdarzeń wyzwalających: zdarzenie odbioru sygnału, wywołania 
operacji, zdarzenie czasowe i zdarzenie zmiany wartości. Sygnały i wywołania opera­
cji mogą przenosić wartości.

Diagram stanów jest określony jako trójka

MS - <S, labB, labA> (11.2)
gdzie:
S jest grafem diagramu, 
labB oraz labA są funkcjami etykietującymi wierzchołki oraz łuki.

Funkcja labB każdemu wierzchołkowi b&BoxN przypisuje piątkę

labB(b) = <entry(b), dolb), exit(b), deferrablelb), internal(b)> (11.3) 
gdzie:

entry(b), do(b), exit(b) są ciągami akcji,
deferrable(b) jest ciągiem par: zdarzenie, akcja, 
internal(b) jest ciągiem zdarzeń.

Zakładamy, że dla wierzchołka-korzenia labB(r) jest puste.

Funkcja labA każdemu łukowi a^ArcN przypisuje trójkę

labA(a) = <trigger(a), effect^a), guard(a)> (11 -4)
gdzie:

trigger(a) jest zdarzeniem wyzwalającym tranzycję po łuku a; gdy element ten 
jest pusty - oznacza to, że tranzycja może nastąpić w wyniku zakończenia aktyw­
ności wewnętrzej,
effect{a) jest akcją; gdy element ten jest pusty - oznacza to brak akcji, 
guard^a) jest warunkiem logicznym; gdy element ten jest pusty - oznacza to, że 
warunek jest tożsamościowe prawdziwy.

W dalszych rozważaniach będzie wykorzystywana następującą funkcja pomocnicza

TypeA : ArcN{EV-LAB, TO-LAB,UN-LAB} (11.5)

która ma odróżniać jedną z trzech sytuacji, gdy zdarzenie wyzwalające tranzycję (a) 
jest przesłaniem sygnału lub wywołaniem operacji - EV-LAB, (b) zdarzeniem czaso­
wym - TO-LAB lub (c) zdarzenie nie jest jawnie określone - UN-LAB.

Semantykę diagramu stanów opisuje się w terminach ciągów konfiguracji, w których 
może się znajdować. Standard UML zmiany konfiguracji opisuje w sposób nieformal­
ny, dalej pokazujemy jak zmiany te można wyrazić w sposób formalny dzięki zasto­
sowaniu LOTOSa.

Konfigurację diagramu stanów w danym momencie określa się przez zbiór stanów 
aktywnych. Konfiguracją diagramu stanów S jest podzbiór stanów B Q BoxN, taki że 
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re B oraz dla każdego wierzchołka be B, jeżeli jego typ typeB(b) = AND, to wszystkie 
jego potomne wierzchołki należą do B, a jeżeli typeB(b) = XOR, to dokładnie jeden 
jego potomek należy do B. Hierarchia wierzchołków childB, ograniczona do zbioru B, 
stanowi poddrzewo <B, childB n B x B> drzewa <BoxN, childB>. Początkowa konfi­
guracja diagramu S jest określona jako Binil = defaultB(r).

Niech lca(b\, b^ oznacza najmniejszy wspólny poprzednik wierzchołków b} oraz b2 
w drzewie <BoxN, childB>, to znaczy < lca(bh b2) , bp&childB dla i = 1, 2, oraz nie 
istnieje inny wierzchołek b taki, że <b, b,>e childB oraz < lca(bi, b2), b>echildB .

Dwa wierzchołki b\, b2EBoxN są niezależne w sensie równoczesnego wykonywania 
aktywności - krótko: są niezależne, jeżeli żaden z nich nie jest poprzednikiem drugie­
go i type(lca(b\, b^)) = AND. Dwa łuki <b\, ah b\> oraz <b2, a2, b'2> są niezależne, 
jeżeli wierzchołki lca(bi, b'\) oraz lca(b2, b'^) są niezależne.

Tranzycja T z konfiguracji B do konfiguracji B' jest określona jako największy zbiór 
nazw wzajemnie niezależnych łuków, których wierzchołki początkowe należą do 
zbioru B.

Zmiana konfiguracji następuje w wyniku zajścia zdarzenia wyzwalającego. Tranzycja 
diagramu stanów zależy od konfiguracji i od otoczenia diagramu, które jest źródłem 
zdarzeń wyzwalających. Wyróżnia się dwa rodzaje tranzycji: tranzycje niskopozio- 
mowe pomiędzy stanami prostymi i tranzycje wysokopoziomowe, związane z prze­
chodzeniem od lub do stanu złożonego. Tranzycje wysokopoziomowe mają priorytet 
nad tranzycjami niskopoziomowymi.

W przedstawianej formalizacji przyjmuje się następujące założenia ograniczające:
• Rozważamy wyłącznie tak zwane strukturalne diagramy stanów, to znaczy takie, 

które nie zawierają łuków przecinających granice stanów. Oznacza to, że jeżeli 
<bh a, b2>eArc, to istnieje taki b'&&BoxN typu XOR, że <b', b\>, <b', b2>&childB 
(inaczej: wierzchołki b}, b2 mają wspólnego rodzica typu XOR). Ograniczenie to ma 
na celu nie tylko uproszczenie rozważań, ale jest ono także zaleceniem meto­
dycznym; niestosowanie się do tego zalecenia jest analogonem całkowicie swo­
bodnego wykorzystywania instrukcji skoku bezwzględnego w programowaniu.

• Rozważamy tylko stany normalne oraz tylko dwa pseudostany: początkowy 
i końcowy. Ograniczenie to ze względów praktycznych nie jest istotne, gdyż bar­
dzo rzadko wykorzystuje się inne rodzaje pseudostanów, a z teoretycznego punk­
tu widzenia siła ekspresji diagramów stanów nie ulega tu ograniczeniu.

• Funkcja etykietująca wierzchołki labB jest ograniczona tylko do trzech pierw­
szych elementów, pomijamy tranzycje wewnętrzne i zdarzenia odraczane. Wy­
nika to z chęci uproszczenia rozważań, gdyż uwzględnienie zwłaszcza zdarzeń 
odraczanych wprowadziłoby istotną rozbudowę przedstawianych transformacji.

• Dodatkowo przyjmujemy, że nazwy wszystkich akcji są unikatowe, a zbiory 
nazw akcji, wierzchołków, łuków i zdarzeń są parami rozłączne.
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Omawiana transformacja każdemu diagramowi stanów przyporządkowuje wyrażenie 
behawioralne. Transformacja polega na przypisaniu wyrażenia behawioralnego każde­
mu wierzchołkowi (stanowi) diagramu stanów, a następnie połączeniu wyrażeń skła­
dowych w jedno wyrażenie końcowe. Strukturę wyrażenia końcowego, złożonego 
z trzech komunikujących się procesów, pokazano na rysunku 11.1.

Rys. 11.1. Struktura specyfikacji diagramu stanów

Proces StateHandler obejmuje stany aktywne, odpowiadające stanom złożonym sek­
wencyjnie, to jest stanom typu XOR.

Proces Synchronizer, przez bramkę syn, blokuje odbiór zdarzeń, przez bramkę arcN, 
w stanie, do którego nastąpi tranzycja dopóty, dopóki nie stanie się on stanem sta­
bilnym, to znaczy do chwili zakończenia wykonywania akcji wejściowej w tym sta­
nie i we wszystkich jego stanach zagnieżdżonych. Blokowanie jest ograniczone do 
najmniejszego wspólnego następnika stanów, z którego i do którego nastąpiła tran­
zycja.

Proces Complete jest odpowiedzialny za wykonanie zagnieżdżonych akcji wejścio­
wych i wyjściowych stanów złożonych. Po nadejściu kolejnego zdarzenia proces wy­
konuje następujące działania:

1. Dla danego łuku a, pod warunkiem, że typeB(source(a)) - XOR, pobiera przez 
bramkę getS od procesu StateHandler aktywny stan (zbiór nazw stanów).

2. Wykonuje, być może zagnieżdżone, akcje wyjściowe stanu, z którego następuje 
tranzycja.

3. Wykonuje, być może zagnieżdżone, akcje wejściowe stanu, do którego następuje 
tranzycja.

4. Ustala nowy stan aktywny i komunikuje go do procesu StateHandler przez 
bramkę putS.

5. Odblokowuje odbiór zdarzeń w najmniejszym wspólnym następniku stanów, od 
którego i do którego następuje tranzycja.
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Główną częścią transformacji diagramu stanów jest funkcja B_Trans(b), która wy­
znacza wyrażenia behawioralne dla dowolnego beBoxN. Wyrażenie takie reprezen­
tuje konfigurację początkową poddiagramu stanów o korzeniu b. Wierzchołek-ko- 
rzeń r reprezentuje, oczywiście, konfigurację początkową całego diagramu stanów. 
Funkcja ta wykorzystuje dwie funkcje pomocnicze procD‘(b) oraz procD(b), gene­
rujące definicje procesów, reprezentujących odpowiednio wierzchołki typu AND 
oraz XOR.

W definicji funkcji B_Trans(b) zastosowano następujące oznaczenia pomocnicze: 
równoległe i alternatywne złożenia skończonego zbioru wyrażeń behawioralnych F„ 
dla ze/, są oznaczane odpowiednio n,e/ą oraz czyli

fi, , oraz£/=i / IIIĄ |||...|||^ (H.6)

Dalej zakładamy, że wszystkie tranzycje etykietowane zdarzeniem czasowym są uni­
kalnie numerowane, oraz że z danego stanu wychodzi co najwyżej jeden łuk etykieto­
wany zdarzeniem czasowym, czyli card{aEleaving(b) | typeA^a) = TO-LAB} < 1.

B _Trans(b) = •

b[ExtArcN] jeślitypeB(b) = PR1M lubtypeB(b) = FIN

B _ Trans(defaultB(b)) [> b [ ExtArcN]

jeśli typeB(b) = XOR

oraz dla wszystkich b'e cluldB(b)jest generowana

definicja nowego procesu przez funkcję procD(b')

^btchildBib)B -Trans(b'»l> b 1 ExtArcN]

jeśli typeB(b) = AND

oraz dla wszystkich b'E cbildB(b) jest generowana 

definicja nowego procesu przez funkcję procD (b')

gdzie:

ExtArcN = Ust({putS, getS, syn} u ActionNames u ArcN)

ActionNames = U heBmN (AS_Names(entry(b)) u AS_Names{exit{b))

U AS_Names(do(b)y)

EventArcN = {aeArcN • typeA(a)= EV-LAB}

(11.7)

(H.8)

(H.9)

Funkcja list(S) transformuje zbiór S na listę zawierającą wszystkie elementy ze zbio­
ru S, a funkcja AS_Names(a) dany ciąg akcji a transformuje na zbiór nazw akcji nale­
żących do tego ciągu.
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Definicja procesu reprezentującego wierzchołek-korzeń r jest niezależna od diagramu 
stanów i ma postać

process r[ExtA rcN]: noexit: = stop endproc (11.10)

Definicja funkcji procD, dla danego stanu b, przedstawia się następująco:
procD*(b) = process b[£A7ArcAG: noexit := stop endproc (H.ll) 

Funkcja procD*jest bardziej złożona, jej definicja, dla danego stanu b, przedstawia się 
następująco:

1. Jeżeli typeB(b) = FIN, to

procD(b) = process b[ExtArcN]: noexit := stop endproc (11.12)

2. Jeżeli typeB(b) A FIN, to

ProcD(b) = process b[ExtArcNY noexit :=
( Do_Trans{b) Time_Out(leaving(,b))

Disabling_Part(b) (11.13)
) After_Time_Out(leaving(b))

endproc
Funkcje, które występują w definicji funkcji procD, są określone w sposób następu­
jący:

do^bf, 
Do _Trans(b) = j

I puste

gdy do(b) jest niepustą sekwencją akcji 

w przypadku przeciwnym

Disabling _ Part(b) = <

[> (S , ,, A (trigger(a);exit)<b,a,b >E Arc 66 ' ’

» Complete[ExtArdV](o)

» B_Trans(b'y)

gdy istnieje ag leaving(b) taki, żetypeA(x) = EY-LAB 
puste w przypadku przeciwnym

stop
Time _Out(A) = j

[trigger(a);exit

gdy dla dowolnego ae A typeA(a) = EV-LAB 

gdy istnieje «g A taki, że typeA(a) = TO-LAB

Aft er _ Time _ Out (A) = ■

» CompIetelEwArćWfa)
» B _Trans(target{a))

gdy istnieje a G A taki, ie.typeA(a) = TO-LAB 
puste w przypadku przeciwnym

Pełna definicja funkcji transformującej SM_Trans jest dosyć złożona; pełną jej postać 
przedstawiono w Dodatku 2.
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Poprawność zdefiniowanej funkcji została zbadana przez testowanie. Najpierw przy­
gotowano zestaw testowych diagramów stanów, które ręcznie, zgodnie ze zdefiniowa­
ną funkcją transformacji, przekształcono na specyfikacje w LOTOSie. Dla testowych 
diagramów stanów opracowano też scenariusze zachowań - ciągi zdarzeń. Specyfika­
cje te następnie badano za pomocą pakietu programowego LOLA [Pavon, Larrabeiti, 
Rabay 1995], Badanie polegało na wykonaniu i porównaniu scenariuszy zachowań 
diagramów stanów i ich odpowiedników w LOTOSie.

Inny sposób wyrażania semantyki diagramów stanów UML, nieodwołujący się do ję­
zyka LOTOS, przedstawiono w pracy [Huzar, Magott 2000], a wykorzystanie tej se­
mantyki w badaniu wydajności systemów zawarto w pracach: [Babczyński, Huzar, 
Magott 2001], [Babczyński, Huzar, Magott 2003],

11.4. Perspektywy technik formalnych

LOTOS jest jedną z technik formalnych wykorzystywaną w procesie wytwarzania 
oprogramowania. Nasuwa się pytanie: jaka jest obecnie rola technik formalnych 
w przemysłowym wytwarzaniu oprogramowania? Opinie na ten temat są zróżnicowa­
ne, ale wydaje się, że dominuje przeświadczenie, iż stosowanie metod formalnych 
znacznie spowalnia proces wytwarzania oprogramowania, nie dając przy tym istot­
nych korzyści. W stosunku do wszystkich współcześnie stosowanych metod formal­
nych wysuwa się następujące zastrzeżenia [Logrippo 2000]:

• Żadna z metod oddzielnie nie ma zastosowania w pełnym cyklu wytwarzania 
oprogramowania.

• Znajomość metod formalnych wśród analityków i projektantów jest ograniczona, 
a w przypadku ich znajomości nie ma dominującego standardu.

Można postawić tezę, że jedną z przyczyn wymienionych słabości jest skoncentro­
wanie uwagi rozwijanych metod formalnych tylko na obliczeniowej i informacyjnej 
perspektywie modelowania, czyli skupienie uwagi wyłącznie na wymaganiach funk­
cjonalnych, podczas gdy od metod oczekuje się także możliwości modelowania in­
nych perspektyw, w tym inżynierskiej i technologicznej [ISO/IEC 10746-1, 1995],

Należy też dodać, że narzędzia programowe, wspomagające stosowanie technik for­
malnych, są ciągle niedojrzałe. Na przykład dla języka LOTOS najbardziej zaawanso­
wane środowisko CADP [Garavel, Lang, Mateescu 2001] można uważać za narzędzie 
o charakterze półprzemysłowym, a pierwsze narzędzie - pakiet LOLA [Pavon, Larra­
beiti, Rabay 1995] ma charakter akademicki.

Zastrzeżenia te nie oznaczają, że nie dostrzega się zalet metod formalnych (precyzja, 
jednoznaczność, możliwość wsparcia programowego). Wynikiem krytyki i jednocze­
śnie doceniania metod formalnych jest rozwój metod pośrednich - półformalnych. 
Obecnie UML, jako najbardziej rozpowszechniony język specyfikacji, modelowania 
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i dokumentowania projektów informatycznych, jest wyrazem takiego pośredniego 
podejścia.

Nie oznacza to jednak, że metody formalne nie są wcale używane. Są one bowiem 
stosowane w wytwarzaniu oprogramowania związanego z bezpieczeństwem. Podczas 
projektowania tych systemów jednym z wymagań jest dowiedzenie poprawności wy­
tworzonego systemu. Samo testowanie, chociaż niezbędne, nie jest wystarczające 
- wymaga się weryfikacji zbudowanego systemu względem specyfikacji albo zagwa­
rantowania jego poprawności na mocy poprawności konstrukcji transformujących 
specyfikację w implementację. W tym przypadku koszt i trud projektowania są re­
kompensowane uzyskaniem wysokiego, chociaż nieabsolutnego, stopnia przekonania 
o poprawności i wiarygodności zbudowanego systemu.

Dążenie do formalizacji znajduje też częściowe odzwierciedlenie w obecnych tenden­
cjach rozwoju metod wytwarzania oprogramowania. Współczesne podejście do wy­
twarzania oprogramowania jest co raz częściej oparte na MDA {Model Driven Archi- 
tecture) [MDA 2003], co oznacza, że proces wytwarzania wyraża się jako ciąg 
transformacji modeli. Zdefiniowanie transformacji modeli, podobnie jak i samych 
modeli, wymaga posługiwania się metodami formalnymi. Opracowany nowy standard 
grupy OMG [MOF QVT 2005] dotyczy właśnie języka definiowania transformacji.

Niezależnie od stosowania metod półformalnych lub formalnych warunkiem koniecz­
nym zastosowania każdej metody jest wsparcie narzędziowe w postaci komplekso­
wych środowisk projektowo-implementacyjnych. Chodzi o narzędzia programistycz­
ne, wspierające uczestników procesu wytwarzania przynajmniej od fazy wymagań, 
przez fazy analizy i projektowania, aż do fazy implementacji, a często również fazy 
analizy dziedzinowej. W obrębie każdej fazy od narzędzia wspomagającego oczekuje 
się, oprócz możliwości edycji modelu, badania jego spójności wewnętrznej, a w prze­
chodzeniu pomiędzy kolejnymi fazami oczekuje się mechanizmów transformacji ele­
mentów jednego modelu w kolejny model lub możliwości sprawdzenia zgodności po­
między modelami [Huzar, Kuźniarz, Reggio, G., Sourrouille 2005], Spełnienie 
wymienionych oczekiwań jest możliwe wyłącznie za pomocą formalizacji modeli i ich 
transformacji.
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Dodatek 1

Dowód twierdzenia 10.2

Dowód poprowadzono według następującego schematu: Zakładając, że relacja D jest 
silną EMB, taką że <Qh Q2>eD, konstruuje się pewną relację B - rozszerzenie relacji 
D, która jest również silną EMB, taką że < Q{, Q2 >eB, gdzie wyrażenia Q\ oraz Q2 
są w jednej postaci (10.)—(10.) Ponieważ relacja ~aw?jest sumą wszystkich relacji będą­
cych silnymi bisymulacjami, dlatego wystarczy pokazać, że jeśli para < Q{, Q2 >g B, to 
również < Q{, Q2 >e ~emb, dlatego w poszczególnych wyróżnionych przypadkach, wyko­
rzystując indukcję strukturalną, pokazano, że jeśli ~EMB Q2, to <Q[, Q2 >eB, gdzie B 
jest relacją EMB, a waz Q2 są w jednej postaci (10.)—(10.).

W celu pokazania, że <0p Q2 >eB, należy dowieść, że:

• jeżeli <2p02 są wyrażeniami behawioralnymi takimi, że inprior (M (F> 0, 
dla i = 1,2, czyli że M^F^)) zawiera tylko akcje natychmiastowe, to

AProb( Q{, g, n, C) = AProb( Q2, g, n, C) (D. 1)

dla dowolnych g&A, neAP oraz Ce BEH\b,

• jeżeli Q{, Q2 są wyrażeniami behawioralnymi takimi, że mprior(M(F(Q'y)) = 0, 
dla i= 1,2, czyli że M(F(Q')) zawiera tylko akcje czasowe, to

ARate{ Q{, g, C) = ARate( Q2, g, O (D.2)

dla dowolnych geA, neAP oraz Ce BEH\b.

Poniżej podano dowody tylko dla równości dotyczących zagregowanych prawdopodo­
bieństw. Dowody odpowiednich równości dla zagregowanych intensywności są po­
dobne i dlatego je pominięto.

Dalej rozważono tylko przypadki, gdy otoczenie wyrażenia Q jest gotowe do uczest­
niczenia w akcjach na bramce g, gdyż w przeciwnym razie z semantyki języka wyni­
ka, że AProb(Q, g, n,C)- 0.

1. Niech D c BEH x BEH będzie relacją EMB taką, że <Gi, Qz>^D. Zdefiniujmy 
relację B w sposób następujący:

B = (D u {<(g, a, oo, ^); ^1, (g, a, «>, ^); Q2>,

<g, a, n); Q2, (g, a, ^); Q\>}?
(D.3)
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Relacja B jest tranzytywnym domknięciem sumy relacji równoważności, a zatem jest 
także relacją równoważności. Rozpatrzmy dwa przypadki:

Przypadek 1

Jeśli
<(g, a, °°, zry Q{, (g, a, oo, ny Q2>eD 

to
B = D

czyli B jest silną EMB, taką że

<g, a, oo, zry Q\, (g, a, oo, zry Q2>e b (D.4)

Przypadek 2

Niech <{g, a, oo, zry Q\, (g, a, °o, zry Q2>^D.

Zachodzi następujący związek

BEH\b = (BEH\d\ {[(g, a, oo, zry GJo, [(g, a, oo, „y 02b})
(D.5)

u {[(g, a, °o, zry Q{]d<j [(g, a, °°, zry Q2]D}

Rozpatrzmy teraz dowolne elementy <Ph P2>eB, h^A, pEPR oraz CeBEH\b. 
Mamy do rozważenia trzy podprzypadki:

Podprzypadek 1

Jeśli <P\, P2>eDoraz CeBEH\d\ {[(g, a, zry Q\\D, [(g, a, °o, zry Q2]D}), to

AProb{P\, h, p, C) = AProb(P2, h, p, C) (D.6)

Podprzypadek 2

Jeśli <P|, P2>eD oraz C = {[(g, a, °°, ny Qi]o^ [(g, °°, ^);

to dla ze {1, 2} zachodzi

AProb(P„ h, p, C)

= AProb(Ph h, p, [(g, a, zr); Qt]D) (D.7)

+ AProb^Pj, h, p, [(g, a, °o, Q2]D)

Ponieważ AProb(P{, h, p, C) = AProb(P2, h, p, C) dla dowolnego C, zatem

AProb(Pi, h, p,Q= AProb(P2, h, p, C) (D.8)

Podprzypadek 3

Jeśli <P{, P2>eB\D, co oznacza, że P^e [(g, a, °°, zry Qi]D oraz P2e [(g, a, °o, ny Q2]o, 
to dla ze {1,2} mamy
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1 gdyC = [0LAProb(Pi,h,p,C) = \n 8 (D.9)
[O w przeciwnym przypadku

Ponieważ [0]B = [0]b, zatem AProb(P\, h, p, 0 = AProb(P2, h, p, C).

2. Niech D ę BEH x BEH będzie silną relacją EMB taką, że <Qt, Q2>&D. Relacja B, 
zdefiniowana jako

B = (D u {«2( {pj Q, Q2 [p] Q>, <Q2 [p]Q,Q, [pl Q>})+ (D. 10)

jest relacją równoważności. Dalszy dowód jest podobny jak w punkcie 1. Przeana­
lizujemy tylko przypadek 2., czyli gdy <Qi [p] Q, Q2 [p] Q>^ D. Zachodzi następu­
jący związek

BEH\b = (BEH\d\ {[0 [p] Q]d, [Q2 [p] 0D})

ua^ipiebotaipieb}

Rozpatrzmy <P\, P2>eB, pePR, he A, pe PR oraz Ce BEH\b ę L.

Podprzypadki 1. oraz 2. są podobne do analogicznych podprzypadków w punk­
cie 1. Rozpatrzymy tylko podprzypadek 3., gdy <P|, P2>eB\D, co oznacza, że 
P{e I2i [p] Q\d oraz P2e [Q2 [p] Q]D, wówczas dla ze {1,2} mamy

AProb(Ph h,p,Q = AProb(Q, [p] Q, h, p, C) «D
= factt\* AProb(Qh h, p, C) +facti2* AProb(Q, h, p, 0

gdzie fact^ oraz facti2 są zdefiniowane tak, jak w tabeli 10.1 dla wyrażeń behawio­
ralnych Qi [p] Q.

Zauważmy, że fact u =fact2\ oraz factl2 =fact22. Wartości współczynników/acz,i 
zależą od wartości p i od prawdziwości formuł

MCF^) n [p] 6)) = 0 dla ż = 1, 2 (D. 13)

Gdyby zachodziło

M(F(Q^ n [p] 0) = 0
oraz (D-14)

M(F(0))nM(F(0[p] 0)^0

przeczyłoby to założeniu, że Q\ ~EMB Q2. Istotnie, oznaczałoby to, że istnieje zbiór 
indeksów taki, że ^M(F{Q2)) n M(F(Q2 [p] 0) oraz ^M(F(Q])) n M(F(Q{ 
[p] 0), co dla g = name((P) dawałoby nierówność

AProb(Q}, g, p, C) * AProb{Q2, g, p, 0 (D. 15)

Podobnie można pokazać równość współczynników fact\2 oraz fact22.
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(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

Rozpatrzmy dwie dalsze możliwości ze względu na postać C.

Możliwość 1

Niech CeBEH\D\ {[Q, [p] Q2]o, [Q2 [p] 0iJd}- Ponieważ <0i, Q2>&D, zachodzi

AProb(Q], h, p, 0 = AProb(Q2, h, p, C) 
stąd

AProb(Ph h, p, C) = AProb(P2, h, p, 0

Możliwość 2
Jeśli C = [0, [p] Q\d u [Q2 [p] Q1d, to dla ze {1,2} zachodzi

AProb(Qi, h, p, 0
= AProb^, h, p, [ Qt [p] Q]D) + AProb(Q„ h, p, [Q2 [p] Q1d)

Ponieważ <Q\, Q2>eD, więc

AProb(Qh h, p, C) = AProb(Q2, h, p, 0 
i ostatecznie

AProb(P\, h, p, C) = AProb(P2, h, p, 0

3. Pokażemy tylko, że dla dowolnych QeBEH, RzSeqG, oraz s,rePR zachodzą 
następujące związki:

Q\ |[^]|x,r Q ~EMBaitRiL-e (D.2i)

Dowód dla Q |[R]|.ę., Q\ ~emb Q |[R]|v.r 02 jest podobny. Rozpatrzmy relację

B = luD (D.22)

gdzie 7 jest relacjąjednostkową na zbiorze BEH, a

D = {<0, |[/?]|A,r Q, Q2 |[R]|A.r Q> | 0, ~EMB 02} (D.23)

Pokażemy, że relacja Bjest silną EMB.

Łatwo sprawdzić, że B jest relacją równoważności. Zauważmy, że dla klasy rów­
noważności C relacji B, dla danych R, r i s, albo każdy element klasy C ma opera­
tor złożenia równoległego |[R]|.s r jako najbardziej zewnętrzny operator, albo żaden 
element tej klasy operatora tego nie ma.

Rozpatrzmy dowolne <Ph P2>&B, heA, p&AP, C&BEH\b, ReSeqG oraz r, sePR. 
Należy przeanalizować dwa przypadki:

Jeśli <P}, P2>e l, to oczywiście AProb(P\, h, p, 0 = AProb(P2, h, p, 0.

Jeżeli natomiast <P\, P2>& D, to istnieją takie R\, R2eBEH, że R\ ~Emb R2, 
PiE [R| |[R]|.,,, 0]BorazP2e [R2 |[R]|.v.r Q1b- Rozpatrzmy teraz dwa podprzypadki:
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Podprzypadek 1

Żadne z wyrażeń behawioralnych w klasie C nie ma |[/?]|.v.r jako najbardziej ze­
wnętrznego operatora. W tej sytuacji

AProb(Ph h, p, C) = AProb(P2, h, p,C) = 0 (D.24)

Podprzypadek 2

Wszystkie wyrażenia behawioralne w klasie C mają |[/?]|,.r jako najbardziej ze­
wnętrzny operator, dlatego istnieją takie wyrażenia behawioralne E oraz F, że
C = {E' |[/?]|A,f F | E'~emb F}. W tej sytuacji, dla P, = R, |[/?]|v_, Q, gdy ie {1, 2}

AProb(Ph h, p, C) = AProb^R, |[/?]| ,,r g, h, p. C). (D.25)

Jeśli h£Set(R) o {exit}, to

AProb(Ph h, p, C) = facty * AProb(Rj, h, p, [£"] _ )
(D.26)

+ fact2 * AProb{Q, h, p, {E})

gdzie fact{ oraz fact2i są zdefiniowane zgodnie z tabelą 2. dla wyrażeń behawio­

ralnych Ri |[Z?]|.v,r Q-

W sposób podobny jak w punkcie 2., możemy pokazać, że fact^ = fact^ oraz 

/acr2| = fact22.

Ponieważ Ry ~EMB R2, dlatego

AProb^Ry, h, p, [E'] ) = AProb{R2, h, p, [E'] )

oraz

AProb^Py, h, p, O = AProb(P2, h, p, C)

Jeśli he. Set(R) u {exit}, to rozważmy tranzycje, dla ie {1, 2}, postaci

Rt |U?]U Q ~(h, oo, R' |[/?]|vr Q'

gdzie:
Ri —(h, oo, p)-^ R- oraz [ R', ]_ = [ R^ ]_

Q —{h, 'P, oo, p)^ Q' oraz R' |[E]|.V,,. Q'eC

Wystarczy przeanalizować przypadek, gdy C = {E' |[E]|vr Q' | E'~emb E}, ponie­
waż w przeciwnym razie, gdy F *Q'

AProb^Ri |[/?]|.,,r Q, h, p,Q = 0 (D.31)

(D.27)

(D.28)

(D.29)

(D.30)
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Niech

MFS(Rh Q, R, h, p)

=def { F(Q) | 3 0E F^) • M(F(R, |[/?]|.v, Q)) (D.32)
a name( 'P) = h /\ prior( *F) = p\

Łatwo zauważyć, że MFS(R\, Q, R, h, p) = MFS(R^ Q, R, h, p), ponieważ w prze­
ciwnym razie otrzymuje się sprzeczność, z założeniem, że R\ ~EMB R2, stąd

AProb(Ri |[/?]| v Q, h, p, O

= /a<?t|2*^ “ii

e norm(PD{Rh FA(Q))\xel{R^ ® PD(Q, FA(R^\xe.^) (D.33)

a/?,|[/?]Lc-</j, r' w„sa

% |[/?]|4.,.sec|^

gdzie: set(Rr) = set(R) u {exit} oraz

PD{Q, FA^.^ = PD(Q, FA{R2y)\seW}) (D.34)

Dalej, niech p^e PD{Q, FA(Rf))\xel(R)), wówczas

AProb(Ri |[7?]| A.r Q, h, p, C)

= faCt[2i*np*^MES{^^^

*2 P<P>ePD(Rh FA(Q))\xeRR^
a R, —(h, oo, p)-> R' A R' e [/?0 ~EMB (D'35)

A/?, |[*JLrC—R- |[/?]|.v-5 1^

= /^12| ^VeMFS^r^ ^AProb^Fp^R'])

gdzie iij (i = 1, 2) jest współczynnikiem normalizującym.

Jak poprzednio można pokazać, że factn^ = fact^.

Ponieważ
AProb(Rh g, p, [ R\ ]) = AProb(R2, g, p, [ R[ ]) (D.36)

oraz
MFS(Ri, Q, R, h, p) = MFS(R2, Q, R, h, p) (D.37)

stąd jednakowe są współczynniki normalizujące n} oraz n2, dlatego

AProb{R{ |[/?]|.s.r 2, g, p, O = AProb(R21[/?]|g, g, p, C) (D.38)
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4. Dowód można sprowadzić do szczególnego przypadku punktu 3. twierdzenia, po­
nieważ semantyka wyrażenia Q,[p > Q jest równoważna semantyce wyrażenia 
&|[]|o.p0.

5. Dowód prowadzi się w sposób podobny, jak w punkcie 3.

Najpierw pokażemy, że dla dowolnego Qe BEH zachodzi następujący związek

Q\ » Q ~embQ2 » Q (D.39)

Przeanalizujmy relację
B = Z u D (D.40)

gdzie
O = {< Qi » Q, Q2» Q > | Qi ~embQ2 } (D.41)

Relacja B - jak łatwo sprawdzić - jest relacją równoważności. Jeśli <Pt, P2>eD, 
to istnieją takie R\, R2 e BEH, że R\ ~EMB R2, Pi&[R\» Q\B oraz P2e [R2» Q1b-

Rozpatrzmy tylko przypadek, gdy wszystkie wyrażenia w klasie C mają »jako 
najbardziej zewnętrzny operator. Istnieją zatem takie wyrażenia behawioralne E 
oraz F, że C = {E'» F | E'~emb F}.

Dla Pj = Qj» Q, ie {1, 2), jeśli

Qi» Q~(h, a, Q- » Q dla heA (D.42)
to

AProb(Pi, h, p, C)
= AProb(P„ h, p, [R,» Q]B) = AProb(Qi, h, p, [R,] .J (D 43)

Ponieważ AProb(Qi, h, p, [R,]. emb ) = AProb{Q2, h, p, [R2] ~m), więc

AProb(P\, h, p,C) = AProb(P2, h, p, C) (D.44)

Dowód, że Q » Qi ~EMB Q » 02 dla dowolnego Qg BEH zachodzi w taki sam 
sposób, jak dla » Q ~EMB Q2» Q.

6. Ponownie zdefiniujmy relację równoważności

B = /UD (D.45)
gdzie

D = {<hide R in Qh hide R in Q2> | Q\ ~EMB Q2] (D.46)

Rozpatrujemy tylko przypadek, gdy <Pt, P2>eD, wówczas istnieją takie wyraże­
nia Rh R2eBEH takie, że Ri ~EMBR2oraz

Pi = hide R in <2, P2 s hide R in Q2
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Rozważmy tylko podprzypadek, gdy wszystkie wyrażenia w klasie C relacji B ma­
ją hide R in jako najbardziej zewnętrzny operator, dlatego istnieje takie wyraże­
nie (2, że C = {hide R in Q' | Q'~emb Q} • Dla wyrażeń P,, gdzie /G {1, 2}, zachodzi

AProb(P„ h, p, C) = AProb(Q„ h, p, C) gdy heL\set(R) (D.47)

oraz
AProb(Ph h, p,Q = 0 gdy he set(R) (D.48)

Ponieważ <2i ~embQi, więc AProb(P\, h, p,C) = AProb(J\ h, p, C).

Dowód twierdzenia 10.3
Dowód polega na pokazaniu, że dla dowolnej relacji ~emb (spełniającej twierdzenie 
10.3) można skonstruować jej rozszerzenie, które będzie spełniać tezę twierdzenia. 
W tym celu wystarczy pokazać, że relacja B' = B<j B~\ gdzie

B={<Q\, 02 > | 0i = 0[<S[gh • ••.g»] "=Pi[gi, • ••,gJ>]

A02 = 0[<S[gi, ...,g„] ::= /^[gi, ■ ••,g„]>] (D49)

a 5[gi, ..., gn] jest co najwyżej jedynym wolnym procesem względem 
danego zbioru definicji procesów}

jest silną rozszerzoną relacją bisymulacji markowskiej względem ~emb-

Relacja B' = B u B~l jest relacją równoważności. B' jest symetryczna z definicji i jest 
zwrotna, ponieważ jeśli 0 nie zawiera wolnych zmiennych procesowych lub Pt s P2, 
to 0i = 02 = 0- Relacja jest również przechodnia, gdyż istnieje co najwyżej jedna 
zmienna procesowa wolna w S.

Zauważmy, że złożenie ~Emb 0 B' 0 ~emb relacji równoważności ~Emb oraz relacji rów­
noważności B'jest również relacją równoważności.

Aby pokazać tezę, wystarczy dowieść, że B' jest silną EMB względem relacji ~emb, to 
znaczy że dla danych geA, t^AP oraz Ce BEH\~Emb ° b ° -emb

AProb(Q\, g, n,C) = AProb(Q2, g, n, C) (D.50)
oraz

ARate{Q\, g,C) = ARate(Q2, g, C) (D.51)

Będziemy rozpatrywać klasy równoważności zbioru ilorazowego BEH\~Emb° b'°-emb-

Dla danych geA, neAP oraz CeBEH\~Emb ° b'° -emb, pokażemy przez indukcję struktu­
ralną na 0 tylko dla (10.37a). Dowód dla (10.37b) przebiega w podobny sposób.

Dowód pokażemy tylko dla najbardziej reprezentatywnych konstrukcji: prefiksowania 
akcją, wyboru i złożenia równoległego.
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1. Dla Q = (g, a, <», #); £2'oraz i= 1,2, mamy

Qi = (g, a, °o, rt); <2'[<5[gi, g„] ::= P,[gi,.... g„]>]

Ponieważ

<2'[<5[gi,§„]::= PiL?i,^»]>], <2'[<S[g,, .... §„]::= P2[gi, #J>]g B 

więc

C = [<2'[<S[gl, g„] "= P |[g|, gn\>]-EMB° B'° -EMB

= [0'[<5[gi, ..., g„] ::= P2[g|, ..., g^>]-EMB° B'° -EMB

Dla tego przypadku

AProb(Qi, g, n, O = AProb(Q2, g,n,C)=\

2. Dla Q = Q' [p] Q" oraz i = 1,2, mamy

Q^Q't<S[gi, ...,g„] ::=Pt[gi,[p] 

<2"[5[<gi, ...,g„] ::=P,[gi,...,<?„]>]

Hipoteza indukcyjna stanowi, że

AProb(Q'[<S[gh ...,g„] ::=Pi[gi, ...,g„]>],g, n, C)

= AProb(Q'[<S[gt, ...,g„] ::=P2[gi, ...,g„]>],g, n, C) 
oraz

AProb(2"[<S[gi, ..., g„] ::= PJgi, ..., #„]>], g, n, C)

=APro/>(0"[<S[gi, ..., g„] ::= P2[g........g, O

Ponieważ

AProb(Qi, g, n, C)

= (1 -p) * AProb(Q'[<S[gi, ...,g„] ::=F,[gi, ..., g„]>], g, C)

+ p * AProb(Q"[<S[gh ...,g„] ::=Pi[gi, ...,g„]>],g, K O 

zatem

AProb(Q\, g, n, C) = AProb(Q2, g, ^r, C)

3. Dla Q = Q' Q" oraz i = 1,2, mamy

Q,= Q'[<S[gi,...,g„]::=Pilgi,...,g„]>l

m.,Q"[<S[gi,...,g,.]-:=Pi[g......

(D.52)

(D.53)

(D.54)

(D.55)

(D.56)

(D.57)

(D.58)

(D.59)

(D.60)
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Rozważmy dwa przypadki dla gGA.

Przypadek 1

Jeśli giset^R), to albo (2'[<S[gi, g„] ::= P,[gi, g„]>] przechodzi do S',
gdzie

S'g C'<S'|[Z?]|v,r<2"[<S[g...... ,g„] ::=Pi[gi....... g„]>]] -EMB°B-~ems (D.61)

albo C"[<S[gb ...,g„] ::=Pi[gt, g„]>] przechodzi do S', gdzie

S"e C*= [<S[gbgn] ::= (/[P/tgu.... g/<]>] |[R]|.v St ] ~emB°B’°~emB (D.62) 

Dla danego Cg BEH\^emb »B<« -EMB oraz C' (podobnie dla C*) albo C' ę C, albo 
C' n C = 0, zatem odpowiednio albo

AProb(Q'[<S[g\,g„] ::= P/[g।,g„]>], g, C)
, (D.63)

= AProb(Q'[<S[gh g„] ::= P,[gi,g„]>], g, S,) 

albo

AProb(Q'[<S[g\,.... g„] ::= P,[gh g„]>], g, n, O = 0 (D.64)

Z hipotezy indukcyjnej

AProb(Q'[<S[gi,g„] ::= P\[gb g„]>], g, n, S)
(D.65)

= AProb(Q'[<S[gh g„] ::= P2[gi, £„]>]. g, 5) 

oraz

AProb(Q"[S[g....... g„] ::= <Pt[gi,g,,]], g, n, S)
= AProb(Q'\<P^ .... g„] /5[gb .... g„], g, 5) (D‘66)

dla dowolnego Se BEH\-EMB o b. = „EMB, oraz z formuły

AProb(Qi, g, n, S)

= (1 - r) * (1 - i) * AProb(Q'[<S[gi,g„] ::= P,[gi,.... g„]>], g, C) (D.67) 

+ r*(l -.s) * AProft((2"[<S[gi,g„] ::= P,[gi,.... g„]>], g, C)

wynika, że AProb{Q\, g, n, S) = AProb(Q2, g, n, S).

Przypadek 2

Jeśli gGset(R), to (McSfgb g„] ::= P,[gi,g„]>] przechodzi do

S'e C'g BEH\ -EMB« B'°~EmB z prawdopodobieństwem
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4Profe(0'[<5[gi......g„] ::= P,[gb ..., g, S') (D.68)

oraz C"[<S[gb gj ::= ^[gi, g„]>] przechodzi do S"eC"e BEH\ -EMB ° B' ° -EMB

z prawdopodobieństwem

AProb(Q"[<S[g{,g„] ::= P,[gb g„]>], g, n, S") (D.69)

zatem

<2'[<5[gb g„] ::= P,[g.......g„]>] |[P]|.V Q"[<S[g.......  g„] ::= P,[gb .... g„]>] (D.70)

przechodzi do S e BEH\~emb°b^-emb z prawdopodobieństwem

AProb(Q'[<S[g{......g„] ::= P^,g„]>] |[P]|iZ C"[<5[gb .... g„]

"= Pi[g....... gn]>L g, ^5)
= 5 * AProb(Q'[<S[gl......gj ::= P,[g........ £„]>], g, (D 71)

AProb^^Slgt...... #„] ::= P,{g,...... g„]>], g, S)

Z hipotezy indukcyjnej:

AProb{Q'[<S[gx,g„] ::= P,[gb g„]>], g, n, S)
= AProb(Q'[<S[gi......g„] ::= P2[gb g„]>], g, S) (D 72)

oraz

AProb(Q"[<S[gl,g„] ::= P,[gb .... g„]>], g, S)
= AProb(Q"[<S[g....... g„] ::= P2[gb g„]>], g, 5) (D 73)

wynika, że AProb(Qi, g, 71, S) = AProb{Q2, g, 7t, S).



242

Dodatek 2

Definicja funkcji SM_Trans

W przedstawionej definicji funkcji transformacyjnej SM_Trans przyjmuje się, że na­
zwy funkcji pisane kursywą oznaczają funkcje transformacyjne, natomiast funkcje 
pisane czcionką prostą oznaczają tekst w języku LOTOS.

Główna część definicji funkcji SM_Trans ma postać

SM_Trans{ms) =
specification S[list(ActionNames u EventArcN)] : noexit

type ArcNames is
sorts arcN
opns

a,: -> arcN (* dla a^ArcN takich, że typeA(di)=EV-LAB *)
triggerfjm,): -> arcN (* dla tm^ArcN takich, że typeA(tmi)=TO-LAB*) 

default: -> arcN (* wskazuje stan początkowy *)
endtype

type BoxNames is
sorts boxN
opns

bi: -> boxN
endtype

(* dla b^ BoxN *)

behaviour
hideputS, getS, syn, list({trigger(tmi)}) in

(* dla tmiEArcN takich, że typeA(t>nj)=TO-LAB *)

StateHandler[pwrS, getS]
|[p«z5, getS] |

(Ćomplete[ExMraV](default)»
B_Trans(r) (*r jest nazwą stanu początkowego *)

|[syn, Hst(ArcN)]\
Synchronisert^yn, list(ArcN)](TrueLisf)

where
(* definicje trzech głównych procesów składowych *)

process Synchroniser[5yn, list(ArcW](BoxList): noexit :=
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LetExpression(r) (*r jest nazwą stanu początkowego *)
( ^beBoxN • typeB(by=PRlM or iypeB(b)=F/N (

syn !boxN(b); Synchroniser[^n, list(ArcN)}{CliangeBoxList(b)) )
[] ^aeArrN • b=source(a) ([6] ->

trigger(ay, Synchroniser[sy/i, Ust(ArcN)](ChangeBoxList(target(a)y) )
)
endproc (* Synchroniser *)

process StateHandler[pHZS, getS] : noexit :=
BmA • lypeB{h)=XOR b[putS, getS](default(b))

where
process bi[putS, getS](s: boxN): noexit :=

(* rodzina procesów dla b^BoxN takich, że typeB(bl)=XOR *) 
getS \bi !s; b[putS, getS](s)

[] ILaeduhiBwPutS \b, \a\ b:\putS, getS]{a)
endproc (* b, *)

endproc (* StateHandler *)

process Complete[£xM/cA^](5: arcN): exit :=
([s = default] -> 

Entry_r[£xMrcAQ; 
SetDefaultBox( r);
exit)

[] ^aeArcN ( ( [s — ri] —>

(*r jest nazwą stanu początkowego *)

Exit_source(a)[ExtArcN]; 
Entry_target(a) [ExtA rcN]; 
SetDefaultBox(target{a)y, 
SetStableBox(target(a))\

exit )
endproc (* Complete *)

(* przyjęcie zdarzenia *)
(* przejście do stanu niestabilnego *)
(* wykonanie akcji wejściowej *)
(* wykonanie akcji wyjściowej *)
(* wyznaczenie nowego stanu aktywnego *)
(* odblokowanie odbioru zdarzeń *)
(* przejście do stanu stabilnego *)

endspec
(* definicje procesów składowych są podane niżej *)

Definicje procesów składowych występujących w głównych procesach składowych są 
podzielone na kilka grup.

Definicje procesów wykonujących akcje wejściowe w danym stanie b,:

process Entry_6,[£xrArcA^: exit := (* dla b/E. BoxN takich, że typeB{b^-PRlM *)
entty{b^) exit

(* funkcja entry zwraca ciąg akcji separowanych i zakończonych średnikiem *) 
endproc
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process Entry_bi[ExtArcN]: exit := (* dla b^.BoxN takich, że typeB(bj)=FIN *)
exit

endproc

process Entry _/?,[ErMrcWj: exit := (* dla b^ BoxN takich, że typeB(bj)=XOR *)
entry(bi) Entry_default(bi')

(* funkcja entry zwraca ciąg akcji separowanych i zakończonych średnikiem *) 
endproc

process Entry_bi[ExtArcN]: exit := (* dla b/E BoxN takich, że typeB (b^=AND *)
entry{b^
m<,ed>udB(b} Entry_a[£.xzArcW])

(* funkcja entry zwraca ciąg akcji separowanych i zakończonych średnikiem *) 
endproc
Definicje procesów wykonujących akcje wyjściowe w danym stanie b,.

process Exit_bj[ExtArcN]: exit := (* dla b,E BoxN takich, że typeB^b^PRlM *)
exit(bi) exit

(* funkcja exit zwraca ciąg akcji separowanych i zakończonych średnikiem *) 
endproc

process Exit_bi[ExtArcN]: exit := (* dla b,E BoxN takich, że typeB(b^=FlN *)
exit

endproc

process Exit_/j,[EttArcA^: exit := (* dla btE BoxN takich, że typeB(b^=XOR *)
(* oraz b r *)

getS \bj ?s : boxN;
('Z.aeehiidBw ([s = a] -> Exit_a[£xMrcAQ ); exit(bi) exit

(* funkcja exit zwraca ciąg akcji separowanych i zakończonych średnikiem *) 
endproc

process Exit_bi[ExtArcN]: exit := (* dla bjE BoxN takich, że typeB(b,)=AND *)
( Exit_a[ExtArcN] ); exit(bi) exit

(* funkcja exit zwraca ciąg akcji separowanych i zakończonych średnikiem *) 
endproc

Do następnej grupy należy definicja procesu początkowego, reprezentującego stan r, 
oraz definicje procesów generowanych przez funkcje procD oraz procD \ które były 
zdefiniowane w rozdziale 11.

Funkcje pomocnicze, które wystąpiły w definicji funkcji transformacji, są określone 
następująco:
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putS !*'!/»;

putS Ib'Ib;

SetDefaultBox(default(b))

SetDefaultBox(default(b))

SetDefaultBox(b) = <

putS Ib'Ib;

SetDefaultBox(by)...

SetDefaultBox(b^)

SetDefaultBox(b\)...

SetDefaultBox(b^)

syn \b ;

SetStableBox(b) = SetStableBox(default(by) 
SetStableBox(bl)...

SetStableBox(bk)

gdy typeB(b) = PRIM lub typeB(b) = FIN 

oraz Bb' e BoxN •be childB(b') oraz 

typeBfb') = XOR

gdy typeB(b) = XOR oraz

Bb' 6 BoxN »be childB(b')oraz

typeB(b') = XOR

gdy typeB(b) = XOR oraz

Sb' e BoxN • be childB(b') oraz 

typeB(b') = XOR

gdy typeB(b) = AND oraz b- e childB(b)

oraz 3h' e BoxN • be childB(b') oraz

typeB(b’) = XOR

gdytypeB(b) = AND oraz b- e childB(b) 

orazSb'e BoxN »be childB(b')oraz

typeB(b") = XOR

gdy typeB(b) = PRIM 

hib typeB(b) = FIN 
gdy typeB(b) = XOR 
gdy typeB(b) = AND 

oraz bj e childBIb)

LetExpression(b\)...LetExpression(bk)

Let b: bool = (^and... and bk) in gdy typeB(b) = XOR lub
LetExpression{b) = • typeB(b) = AND oraz 

bj e chiIdB(b)
puste w przypadku przeciwnym
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TrueList = 
true',..., true*

k = cardę {be BoxN | typeBęb)=PRIM lub 
typeBęb)=FIN })

BoxList = b\. bool, bk. bool gdzie b ।,... ,bk = listę {be BoxN | 
typeB(b)=PRIM lub typeB{b)-FIN })

ChangeBoxList(b)= 
if-notęb, b\)if-notęb, bk)

gdzieb!,...,bk = listę{beBoxN | 
typeBęb)=PRIM lub typeBęb)=FlN })

b2

if -notębl,b2) = -

noięb2)
if-notędefaultę^ ),b2)

if-notęb3,b2~)

*
gdy b^ * b2 oraz ęb2 £ childB ęb\)

lubęb2 e childBębl)orazdefaultBębl)^b2))
gdy^ =b2
gdy typeBę^) = XOR oraz

b2 e childB ęb{)
gdy typeBębt) = AND oraz

by e childBę^)

and b-, 6 childB (b3)

Funkcje SetDefaultBox oraz SetStableBox służą do generowania tekstów stanowiących 
fragmenty wyrażeń behawioralnych w obrębie definicji procesu Complete.

Pozostałe funkcje są związane z definicją procesu Synchroniser. Ich parametry for­
malne i aktualne są określone odpowiednio przez funkcje BoxList oraz TrueList. 
Liczba parametrów formalnych jest łączną liczbą stanów typu PRIM i FIN. Zawarte 
w wyrażeniu LetExpression zmienne b\, ..., bk rodzaju bool reprezentują podstany 
odpowiednich stanów. Wartość true zmiennej b, oznacza, że odpowiedni stan jest 
stabilny, a w przypadku przeciwnym, że jest niestabilny. Stan złożony jest stabilny 
tylko wtedy, gdy stabilne są wszystkie jego podstany. Wartości tych zmiennych są 
obliczane na podstawie parametrów aktualnych procesu Synchroniser.

Specyfikacja przykładowego diagramu stanów

Przedstawiana dalej specyfikacja w LOTOSie jest wynikiem zastosowania funkcji 
SM_Trans do diagramu stanów przedstawionego na rysunku D2.1.
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Rys. D2.1. Przykładowy diagram stanów

Diagram składa się ze stanów bA, bB, bC, bD. Stany bA, bB, bC są stanami prosty­
mi, a stan bD jest złożony sekwencyjnie. Pomiędzy stanami są przejścia, z których 
jedno, oznaczone tm1, jest przejściem czasowym.

Zakładamy, że każdy stan prosty ma akcje wejściowe i akcje wyjściowe - są one re­
prezentowane przez odpowiednie bramki. Przyjęto konwencję: bramka ia odpowiada 
akcji wejściowej do stanu A - pierwsza litera i oznacza wejście, druga a odnosi się do 
stanu A; bramka ea odpowiada akcji wyjściowej do stanu A - pierwsza litera e ozna­
cza wyjście, druga - jak poprzednio - odnosi się do stanu.

Specification S[ia,ea,ib,eb,ic,ec,bl,b2,a]: noexit 
library Boolean endlib 

type ArcNames is 
sorts arcN
opns

bl,b2,a :-> arcN
tml :-> arcN 
default :-> arcN

endtype

type BoxNames is
sorts boxN
opns bA, bB, bC, bD:->boxN
endtype

behaviour 

hide putS, getS, syn, tml in
(* przejścia czasowe 'time-out' są ukryte *) 
(

StateHandler[putS, getS]
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|[putS, getS]|
(

Complete[ putS,getS,syn,ia,ea,ib,eb,ic, 
ec,bl,b2,a,tml](default) >>

( bA[putS,getS,syn,ia, ea, ib,eb,ic,ec,bl,b2,a,tml] 
[> bD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 

) 
)
|[syn,bl,b2,a,tml]|

Synchroniser[syn,bl,b2,a,tml](true, true, true)

where

process Synchroniser[syn,bl,b2,a,tml](A,B,C: bool): 
noexit := 
let bD: bool = (A and B and C) in
( syn !bA; Synchroniser[syn,bl,b2,a,tml](not(A),B,C) 
[]
syn !bB; Synchroniser[syn,bl,b2,a,tml](A,not(B),C) 
[]
syn !bC; Synchroniser[syn,bl,b2,a,tml](A,B,not(C)) 
[]
[A]->bl; Synchroniser[syn,bl,b2,a,tml](A,not(B),C) 
[]
[A]->tml; Synchroniser[syn,bl,b2,a,tml](A,B,not(C)) 
[]
[B]— >a; Synchroniser[syn,bl,b2,a,tml](not(A),B,C) 
[]
[C]->b2; Synchroniser[syn,bl,b2,a,tml](A,not(B),C) 
)
endproc (* Synchroniser *)

process StateHandler[putS, getS]: noexit := 
bD[putS, getS](bA)

where

process bD[putS, getS](s: boxN): noexit:= 
getS !bD !s; bD[putS, getS](s) 
[]

putS !bD !bA; bD[putS, getS](bA)
[]

putS !bD ibB; bD[putS, getS](bB)
[]

putS !bD !bC; bD[putS, getS](bC)
endproc (* bD *)
endproc (* StateHandler *)
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process Complete[putS,getS,syn,ia,ea,ib,eb,ic, 
ec,bl,b2,a,tml](s: arcN) : exit :=

( [s=default] ->
EntrybD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
» putS !bD !bA; exit 
) 
[] 
( [s=bl] ->
ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec, bl,b2,a,tml]
>> putS !bD !bB; syn !bB; exit 

) 
[J 
( [s=b2] ->

ExitbC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
>> EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
>> putS !bD !bB; syn !bB; exit 
) 
[] 
( [s=a] ->

ExitbB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
>> EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
>> putS !bD !bA; syn !bA; exit 
) 
[] 
( [s=tml] -> 
ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
>> EntrybC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
>> putS !bD !bC; syn !bC; exit ) 
endproc 

(* ------------------- akcje wejścia 'entry' i wyjścia 'exit' -----
--*)

process EntrybA[ putS,getS,syn,ia,ea,ib,eb,ic, 
ec,bl,b2,a,tml]: exit :=

ia; exit 
endproc

process ExitbA[putS,getS,syn,ia,ea,ib,eb,ic, 
ec,bl,b2,a,tml]: exit := 

ea; exit
endproc

process EntrybB[ putS,getS,syn,ia,ea,ib,eb,ic, 
ec,bl,b2,a,tml]: exit :=

ib; exlt 
endproc
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process ExitbB[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

eb; exit
endproc

process EntrybC[ putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ic; exit
endproc

process ExitbC[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ec; exit
endproc

process EntrybD[ putS,getS,syn,ia,ea,ib,eb,ic, 
ec,bl,b2,a,tml]: exit :=

EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
endproc

(* ----------------------- definicje procesów-------------------------- *)
process bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit 

( (* DoTrans is empty *)
tml; exit (* Time Out *)

[> (* Disabling Part *)
( (bl; exit)

> > Complete[ putS,getS,syn,ia,ea,ib,eb,ic, 
ec,bl,b2,a,tml](bl)

» bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml ] 
)

) (* After Time-Out *)
> > Complete[ putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml](tml)
> > bC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
endproc 

process bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

( stop (* przeterminowanie 'time out' *)
[> (* część deaktywująca 'disabling' *)
( (a; exit)
> > Complete[ putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml](a)

>> bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
)
) (* puste po zdarzeniu przeterminowania *)
endproc
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process bC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

( stop (* Time Out *)
[> (* cześć deaktywująca 'disabling' *)

( (b2; exit)
» Complete[ putS,getS,syn,ia,ea,ib,eb,ic, 
ec, bl,b2,a,tml] (b2)

>> bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml] 
) 
) (‘puste po zdarzeniu przeterminowania *) 
endproc

process bD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

stop (* root *)
endproc
endspec
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monografii przedstawiono język LOTOS, jego zastosowania, 

a także jego rozszerzenia, które umożliwiają wykorzystanie języka 
w procesie specyfikacji i projektowania systemów czasu rzeczywistego. 
Omówiono dwa rodzaje rozszerzeń: rozszerzenia czasowe, które 

pozwalają na specyfikowanie systemów czasu rzeczywistego z silnymi 
ograniczeniami czasowymi, oraz rozszerzenia wydajnościowe, które 
umożliwiają analizę wydajnościową systemów czasu rzeczywistego 
ze słabymi ograniczeniami czasowymi. Przedstawiono metodykę 
stosowania LOTOSa, a zwłaszcza jego wykorzystanie w specyfikacji 
usług i protokołów sieciowych jako głównego zakresu zastosowania 
języka.

Omówiono również podstawy matematyczne, na których opiera 
się LOTOS - są nimi: koncepcja algebraicznej specyfikacji 

abstrakcyjnych typów danych oraz koncepcja algebraicznych 
specyfikacji behawioralnych, oparta na rachunku komunikujących 

się procesów. W monografii poświęcono dużo uwagi definiowaniu 
i analizie semantyki języka, zwłaszcza w kontekście jego czasowych 
i wydajnościowych rozszerzeń.
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