LOTOS _

jezyk
formalnych
specytikacji
systemow
informatycznych

P

Zbigniew Huzar

LOTOS
— jezyk formalnych specyfikacji
systemoOw informatycznych

[P

Oficyna Wydawnicza Politechniki Wroclawskiej
Wroclaw 2007

Wvdziat Informatyki i Zarzadzania, Instytut Informatyki Stosowane;j

Recenzenci
Jan Magott
Tomasz Szmuc

Opracowanie redakcyjne i korekta
Alicja Kordas

Projekt oktadki
Zofia i Dariusz Godlewscy

Wszelkie prawa zastrzezone. Opracowanie w catosci ani we fragmentach nie moze by¢
powielane ani rozpowszechniane za pomocg urzadzen elektronicznych, mechanicznych,
kopiujacych, nagrywajacych i innych bez pisemnej zgody posiadacza praw autorskich.

© Copyright by Oficyna Wydawnicza Politechniki Wroctawskiej, Wroctaw 2007

ISBN 978-83-7493-335-3

Oficyna Wydawnicza Politechniki Wroctawskiej
Wybrzeze Wyspianskiego 27, 53-370 Wroctaw
http://www.oficyna.pwr.wroc.pl
oficwyd @pwr.wroc.pl

Drukarnia Oficyny Wydawniczej Politechniki Wroctawskiej. Zam. nr 623/2007

http://www.oficyna.pwr.wroc.pl
mailto:oficwyd@pwr.wroc.pl

Spis tresci

Przedmowa 5
Le WVSEEP ivniecirivnenrsonssoscsansrsnsontarnsasisserssssnsossissasssestsssssssosasssrsssassnsssntssseseassssassann 8
1.1, Wytwarzanie OprogramoOWANIA.ecueueiieiiruereiieieeieseeiesteieeateaesaesais e esienereeneas 8
1.2, SPEEYNKAC] 8 WY TTTATATN s sonsommunssmesmsnmunss vissme s i s s TS e S0 Aot S s 1
1.3 MOl SYStEIMOW:c: crsessasinns 555855055 s¥5n nnnasinossbre smsnmssmmonsa osinmsbines st linsms sms «amsssssmmmsnanes 13
1.4. Specyfikacja funkcjonalna systemow Oprogramowania..........cooceoeeveveneeerieeeieenennnss 16
1.5. Metody formalne w procesie wytwarzania SyStemMOWcoevververineeereerieereennenes 20
1.6. LOTOS w specyfikacji standardéw sieci komputerowychc.coocoooiiiiiiiiinninnn. 21
1 7' ZiaRIES. NONOETATIE vy cumomenunsnvuinssssninms s oo v 7 4578 S SR WO A B A B 23
2. JBEYK CCB covsarvsvvmmsumsonenmmomsusmmsmsmssnssessensass snssnss s s s sss e ssuss o sy s sysss savss s wabns s wes RO ss 45 25
Dl WSTCD! svesnsnsomonsssusmmss sas o cop dos swes b sie oo STV 34 B0 03 TS 440 s RS A AR R R 8 S S e 25
2.2. Skiadnia i nieformalna SEMANEYKa.......cccuiiiiieiieeiiiiireie ettt 28
2.3, Semantyka OPEraCyjNa...couc e iiiiiiiieeii ettt ettt et ettt et seee e ser e nane e e nnnea s 31
2.4. Relacje rOWNOWAZNOSCT cuvvierereeiieriienieetiertienre et e siaeetteeiaeasseesbeeesseestbaesssensseeanseens 38
2.5. Prawa rOWNOSCIOWEc.ooiiiiiiiiiiii ittt ettt eenaneae s 40
2460, TWICTUZENIE O CRSDATISIY sossowsimmwssussoons seommmsewonssss s evseinsssssm s S8 (e ross senasarss s sy 42
285 UWagl KONCOWE, cxusissnvmsnmes sivvessosmvsssssmssivssins sroans £4Wa s o0 £AVR 37595 13,555 S9A8H05104 12008 o 43
3. Rozszerzenia CZasoWe CCSivniinennnenininnneinnsssssssssssssssssssssssssisssssssssssssssns 45
O [L 45
3.2. TCCS — WPrOWAAZEINIEC. ... e 46
3.3. TCCS — definicja formalna......cc.ooieeeeiiiieie et eees 48
3.4. RTCCS — WProWadzZeniec..couiiuiiiiiiiiiiiinieiie ittt et 52
3.5. RTCCS —definicja formalng ... s o msissrssmn sy wasssisissn syosvass 53
3:6: RTCCS — PrayI-tadyr mommmmmmsnms cnmsnmmmis s ey s s s s sy 60
3.7 UWagh KONCOWE ...t 64
4. Abstrakcyjne typy danych w LOTOSie NS T HS SR RS SRS SR 65
4.1. Podstawowe pojecia algebraiCzZnecovieieiiiiiniiiiie e 65
4.2, AlZEDra tEIMOWcuiiiiiiiiiiiii et e s 67
4.3. Algebra ilorazowa termMOWc.coiviiiiiiiiiiii e et 68
4.4. Specyfikacja rownosciowa typdw abstrakcyjnych ..o 70
4.5. Semantyka SpeCYTiKaC]l LYPOW v.urum sumasussusismsssssvmomessssns ssvissrens oo siws sy ssavinnessi svsvmsois sos i 73
4.6. Strukturalizacia, SPECYITIRACT sumersemsevmmumars s o o i S Toasres s F A 75
4.7. Przyklady SPECYTTKACHTooviiiiiiiiiiiiiii e 80
4.8, UWAZT KOTICOWE ...ttt ettt et e et e et e e eennineeennene 84
5. LOTOS — 0pis JeZYKAuiicsssisssisssnassssassssassosssosansssssnssanssssssionssoss i s 86
5.1, AKcje KOMUNIKACYJNE c..eiiiiiiiiiiiiiee et 86
5.2. Procesy 1 wyrazenia behawioralneccooveviiiniiiiiiccce e 89
5.3, SemantyKa OPEIACY N .. ccoiviiiuiiieie ettt sttt st 93
8.4 GUal ANZYCH cosovnsmnseupisssssmsinss v ss s s ma ey 1085 08 ot 38 P A0SO SN s s 97
5.5, Strukturyzacia SPECYETKACTT . cieuinnevnsrssss 6 imse 55 5050 800 58053 0688 550,555 S350 FE8 G RIS EFTRF SR T ESS 102

5.0, UWAZE KOMCOWE ...ttt 107

6. Specyfikacja ustug i protokolow siecioWych.....uiccueeeicvensuinennecnscieininiescsueseesensaenne
6.1. Elementy modelu referencyjnego ISO/OSI........cooviiiiiiiiiiniiieice e
6.2. Reprezentacja modelu referenCyjnegocoovvvverienireienieiieciiieiiere e
6.3. Przyklady SPECYTIKACTTcvvmiiiiieiiiiiiit ettt
B4, UNALE KOTICOWE. . oo s s s i s o i s s

7. Metodyka specyfikowania
7.1. Proces specyfIKOWaNIAc.ooiiiiiiiiiiiiiiie et
7.2, ROWNOWAZNOSE ODSET WACY N uisessivvmmsonessvssssvsessssssss vonsssssiyssssss sosves i svavssnmss sosss sias
7.3. Rownowazno$¢ testowa i implementacyjnacoocveeuiinieiioieoiiie e
7.4, Style SPeCYTTKOWANIA.......viiiiiiiiiie ettt
7.5. Przykladowy problem ...t
7.6. Srodowiska wspomagajace specyfikowanie W LOTOSIEcoovvvvevriiirrniennnns
ol UWagl KONCOWE sunemssssnssmuntumsns srmnnsunss susion 5 se s s s SE7vmaTs o 08 S0 py o s 35800 SHER VRS o985 10

8. Problem blokad w LOTOSie.......cccovuivuiniisnisniicnnsnnsnninicnesenseessessessssesans
8. L. Ukryte DlOKAAY cumsssmsesimonmmnsommms srsssmnsmass s s s oo iasans 1985064655 658 59958 a1 (5850357 55
8.2. Semantyki zmodyfiKOWane ..o
8.3, Wykrywanie bIoKad ..o
B, UWATT KOMEOWE .o wvnssumoss smsassrmsmssanm swsnmmis e s s s o sommsomss s s s o ome

9. Rozszerzenia czasowe LOTOSa
L L e
9.2. Sktadnia i semantyka jezyka TE-B-LOTOSccooiiiiiiiiiiiiccn
9.3. Wybrane wlasnosci jezyka TE-B-LOTOSccccoooiiiiiiiiiie
9.4. Sktadnia i nieformalna semantyka jezyka RT-B-LOTOS ...,
9.5. Semantyka formalna jezyka RT-B-LOTOS ...,
9.6. Wybrane whasnosci jezyka RT-B-LOTOSaccooiiiiiniiiiiiiiiic
9.7 162K RIT-LIOTIOS sisueessissssimsrssmsasimson soay onsiisssemmessas s s sss omas mas oo oo ons sione smsss i
9.8. Przyklad speeyfikacji W RT-LOTOSIE ...ccimemmmmvmumismmommsisssussssosspovsssmossms varsssuseuns
0.9, UWAZE KONCOWE ... v mmonswomseon o esmaimssesninns o 5adediss 56555 085555550 5575 0 ¥ Sn o3 SE 90 R R 15 o o sbnn v 53

10. Rozszerzenia wydajnosciowe LOTOSa S H e SRy S RS SRR st s =
T L, WWSTRID.. . coammmemurnsesrsans semsmmne sss o smes nmsshonis S b3 5P RSE GRS AR A S 8843 - R AE 08 SR M 0
10.2. Sktadnia i nieformalna semantyka jgzyka MB-LOTOS ...
10.3. Semantyka formalna jgzyka MB-LOTOS ...
10.4. Wyprowadzanie fancuchOw Markowa ...
10.5. Silna bisymulacja markOWOWSKacccciviiiiiiiii e
LO6. UWAEE KONCOWE . corrnronrumessesmnsns smsmessoss sosmomssis 50585 55555 55538 SroaR83 434408 58 594 451 453 2340 SABE 18 30

11. Zakonczenie T T D e T T R T T O P T O G
11.1. LOTOS 4 inne techniki FOrmMalngc..ocveiimimemommmsmmmmsmsmmemn v sssiv i
11.2. LOTOS ad UMLeounnsnsnmsssnsmensnsmmsnssmssn smnsn s i5sdes 555555 65555 7asme s 0imaimsssbsins oo dvsans s
11.3. Diagramy stanéw UML a LOTOS ..o
11.4. Perspektywy technik formalnych ...

Dodatek 1

DOAALEK 2...oeeereerrnemsssissssosmsssmisissasisisssssissssasssssissssssessssssniossvsnnsssvassassssasssassnesy

Literatura eereresesnersneenestareesaane

Przedmowa

W monografii przedstawiono jezyk specyfikacji formalnych LOTOS oraz oméwiono
na tym tle czasowe 1 wydajno$ciowe rozszerzenia jgzyka.

Historia powstania jezyka LOTOS sigga konca lat osiemdziesiatych ubiegtego wieku.
W tym okresie, zwlaszcza w ramach ISO, prowadzono intensywne prace nad ar-
chitektura otwartych sieci komputerowych. Giéwnymi elementami opracowanego
modelu referencyjnego ISO/OSI (Open Systems Interconnection) byt hierarchiczny
uktad warstw funkcjonalnych i zwigzane z nimi pojecia ustug i protokotéw
warstwowych. Potrzeba precyzyjnego opisu ustug i protokotéw stata si¢ inspiracja do
opracowania formalnych technik specyfikacji. Pod egidq ISO uruchomiono migdzy-
narodowe projekty, ktérych rezultatem bylo opracowanie trzech jezykéw specyfikacji:
SDL [Belina, Hogrefe 1989], ESTELLE [ISO 9074] oraz LOTOS [ISO 8870].
Przeglad i poréwnanie tych jezykéw zawiera ksigzka [Turner 1993].

Pierwszy z nich — SDL — jest jezykiem pétformalnym, opartym na notacji graficzne;j.
Konstrukcja jezyka bazuje na koncepcji maszyn skonczenie stanowych. Byt on rozwi-
jany od poczatku lat siedemdziesigtych, najpierw przez nieistniejacy juz obecnie
komitet CCITT (International Consultative Committee on Telegraph and Telephony),
a p6zniej przez CCITT we wspdipracy z ISO. Wersja SDL-92 jest przedstawiona
w rekomendacji Z100 [CCITT 1992].

Jezyk ESTELLE jest jezykiem formalnym, stanowiacym — od strony notacyjnej —
pewnego rodzaju rozszerzenie imperatywnych jezykdéw programowania. Modelem, na
ktorym jest oparta konstrukcja jezyka, sa automaty skonczone. ESTELLE jest opisany
migdzy innymi w pracach [Budkowski 1992], [Budkowski, Dembinski 1987, 1989].

LOTOS jest rowniez jezykiem formalnym, abstrahujacym od jezykdéw programowa-
nia, opartym na solidnych, algebraicznych podstawach matematycznych. Na podstawy
te sktadajg si¢ dwa elementy:

e koncepcja algebraicznej specyfikacji abstrakcyjnych typow danych, oparta na
pracach H. Ehriga [Ehrig, Mahr 1985],

e koncepcja specyfikacji behawioralnych (oparta na pracach R. Milner) zawartych
w jezyku CCS [Milner 1980].

Oprécz bezposredniego wykorzystania do specyfikacji standardéw sieciowych, kazdy
z wymienionych jezykéw dat poczatek pracom, ktérych wynikiem byto opracowanie
metodyk postugiwania si¢ nimi przy specyfikacji systeméw rozproszonych, opra-
cowanie narzedzi wspierajacych tworzenie i badanie specyfikacji, a takze narzedzi do
transformacji specyfikacji w implementacj¢ oprogramowania.

Poczatkowo wydawato sig, ze jezyki te beda wykorzystywane nie tylko do specy-
fikacji standardéw sieciowych, ale takze w specyfikacji i projektowaniu dowolnych

6 Przedmowa

systeméw rozproszonych. Tak si¢ jednak nie stato, a gléwnym powodem bylo to, ze
jezyki te, powstajace w koncu lat osiemdziesiatych ubieglego stulecia, opieraty sie na
paradygmacie projektowania strukturalnego i zostaly zdominowane przez jezyki
oparte na wylaniajacym si¢ w tym okresie paradygmacie obiektowym. Wspétczesnie
rola tych jezykow ulegta zmianie, gdyz projektowanie systeméw informatycznych
prowadzi si¢ na podstawie podejScia obiektowego, a najpowszechniej uzywanym
jezykiem do specyfikacji i projektowania jest jezyk UML, utworzony w potowie lat
dziewigcdziesiatych, ktéry ciagle sie rozwija. LOTOS rozwijat si¢ réwnolegle z je-
zykiem UML; na poczatku biezacego dziesig¢ciolecia powstala rozszerzona wersja
jezyka E-LOTOS [ISO/IEC 15437, 2001], istotnie modyfikujaca sposéb reprezentacji
typéw danych, ale — poza zmiang sktadni — pozostawiajaca cz¢$¢ behawioralng jezyka
w zasadzie bez zmian.

Niezaleznie od zastosowan praktycznych jezyk LOTOS dat poczatek wielu pracom
badawczym, do ktérych migdzy innymi nalezy rozwdj algebr procesowych, dajacych
podstawy dla analizy modelowej (model checking), formalnej semantyki aktualnie
rozwijanych jezykéw specyfikacji i projektowania, a takze narzedzi wspomagajacych
ich uzycie [Garavel 1998], [Garavel, Lang, Mateescu 2001].

Wyréznia si¢ dwie wersje jezyka LOTOS: wersja bazowa, ktéra skupia si¢ tylko na
specyfikacji zachowan, abstrahujac od komunikowanych danych, oraz wersj¢ peina,
uwzgledniajaca komunikowane dane, a tym samym obejmujaca definiowanie typow
danych.

Zawartos$¢ ksigzki jest nastepujaca:

W rozdziale 1. przedstawiono tlo dalej prowadzonych rozwazan.

W rozdziatach 2. i 3. zaprezentowano jezyk CCS oraz jego czasowe rozszerzenia. Na
tle rozszerzen czasowych spotykanych w literaturze przedstawiono opracowang przez
autora propozycje czasowego rozszerzenia CCS.

W dwéch kolejnych rozdziatach przedstawiono klasyczng wersje jezyka LOTOS.
W rozdziale 4. oméwiono abstrakcyjne typy danych, a w rozdziale 5. zawarto petna
prezentacje jezyka LOTOS. Przykiady ilustrujace konstrukcje jezyka i ich zasto-
sowanie pochodza z wczesniejszych prac autora.

Zastosowania jezyka zaprezentowano w dwdch kolejnych rozdziatach: w rozdziale 6.
omoéwiono ogblne zasady prezentacji standardéw sieciowych w jezyku LOTOS,
a w rozdziale 7. — metodyke stosowania jezyka. Podobnie jak w poprzednich dwoch
rozdziatach rozwazania sg ilustrowane przyktadami z prac autora.

W rozdziale 8. przeprowadzono krytyczng analize semantyki pewnych konstrukcji
jezyka LOTOS i zaproponowano pewna semantyke alternatywng. Opiera si¢ ona na
wspélnych pracach autora i Ludwika Kuzniarza.

Czasowe i wydajnosciowe rozszerzenia jgzyka LOTOS przedstawiono w kolejnych
dwéch rozdzialach. W rozdziale 9. zaprezentowano dwa rozszerzenia czasowe:

Przedmowa 7

pierwsze jest oparte na pracach, ktére powstawaty w ramach projektéw pod egida
ISO i ktére ostatecznie znalazty swdj wyraz w definicji rozszerzonego jezyka
LOTOS, drugie natomiast jest wynikiem prac autora prowadzonych wspdlnie
z Janem Magottem.

W rozdziale 10. oméwiono rozszerzenie wydajnosciowe jezyka LOTOS, ktérego
podstawa byly prace prowadzone wspdlnie z Janem Magottem.

W ostatni rozdziale 11. krétko oméwiono zwiazki pomigdzy LOTOSem a innymi
technikami formalnymi.

Ksiqzka powstata w znacznym zakresie na podstawie prac indvwidualnych autora oraz
prowadzonych we wspétpracy z kolegami z Politechniki Wroctawskiej. Gtowny udziat
we wspolnych pracach ma profesor Jan Magott z Instytutu Informatyki, Automatyki
[Robotyki, ktoremu sktadam serdeczne podziekowania za lata wspdlpracy. Dziekuje
rowniez za wspolprace i inspiracje drowi Ludwikowi Kuzniarzowi, drowi inz.
Zdzistawowi Sptawskiemu i dr inZ. Bogumile Hnatkowskiej z Instytutu Informatvki
Stosowanej.

Zbigniew Huzar

1. Wstep

1.1. Wytwarzanie oprogramowania

Oprogramowanie (system oprogramowania) jest zwykle fragmentem systemu infor-
matycznego, sktadajacego si¢ z oprogramowania i sprzetu, ktéry dla oprogramowania
stanowi $rodowisko wykonawcze.

Cykl zycia systemu informatycznego jest zestawem czynnosci zwigzanych z jego wytwa-
rzaniem 1 uzytkowaniem — od chwili podjgcia decyzji o jego wytworzeniu, przez kon-
strukcje, wdrozenie, eksploatacje, az do wycofania z uzycia. Cykl zycia oprogramowania
nalezy widzie¢ na tle zycia systemu informatycznego. Poniewaz wytwarzanie oprogra-
mowania jest zwykle znacznie bardziej ztozone niz projektowanie czesci sprzetowej, czg-
sto cykl zycia systemu informatycznego utozsamia si¢ z cyklem zycia oprogramowania.

Do grupy tradycyjnych modeli cyklu zycia oprogramowania mozna zaliczy¢ [Beh-
forooz, Hudson 1996], [Jaszkiewicz 1997], [Gérski 2001}, [Szejko 2002], [Linger,
Lipson, McHugh, Mead, Sledge 2002]: klasyczny model kaskadowy i rézne jego wa-
rianty — model V, model spiralny, model przyrostowo-ewolucyjny. Wsréd wymie-
nionych modeli cyklu zycia oprogramowania szczegdlng rolg odgrywa klasyczny mo-
del kaskadowy, nazywany takze wodospadowym, gdyz znajduje odzwierciedlenie
w réznych metodykach wytwarzania oprogramowania.

Model kaskadowy (rys. 1.1) wyrdznia nastepujace fazy zycia oprogramowania:

¢ analize domenowa albo dziedzinowa, niekiedy tez nazywang analizq biznesowa,
e analiz¢ wymagan,

e projektowanie,

e implementacj¢ albo kodowanie,

e walidacje,

e instalacje,

e konserwacje (utrzymanie),

¢ wycofanie z uzytkowania.

Cztery fazy — analiz¢ wymagan, projektowanie, implementacje i walidacj¢ — wyrdznia
sie jako fazy stanowiace cykl wytwarzania oprogramowania — fragment cyklu zycia
oprogramowania.

Analiza dziedzinowa (domenowa, biznesowa) wiaze si¢ z miejscem — organizacja
lub instytucja, dla ktérej ma powsta¢ system informatyczny. System taki angazuje
ludzi, sprz¢t komputerowy i oprogramowanie, realizujac pewien obieg i przetwa-
rzanie danych. Celem analizy jest ustalenie zasad funkcjonowania danej organiza-
cji, ustalenie tych jej fragmentéw, ktére maja by¢ poddane informatyzacji, a takze
okreslenie ogélnych oczekiwan w stosunku do majacego powstac systemu.

Wstep 9

Analiza wymagan odnosi si¢ do przewidywanego systemu informatycznego. Polega na
rozpoznaniu tych wszystkich aspektéw rzeczywistosci, ktére moga mie¢ wptyw na postac
oczekiwanego systemu lub na sposéb jego budowy, wdrozenia badz funkcjonowania.
Wynikiem analizy jest okreslenie wymagan uzytkownika do systemu informatycznego.

Analiza
biznesowa |
]
]
i Analiza
: wymagan |
1
: A
1
: r-- Projektowanie n
]
']
s B
1
|
E i t--1 Implementacja
! '
' o v
i ; : A
)
: : : t--1 Walidacja
. : . ' w
] ' '
f : : ' A
1 1
: ! E E ' Instalacja
A 1
| N i ! '
' ' i ' '
1 ' ') '
] | 3 !] .
----------------------------- 4 = mimis s mmme i e mmme o KORSEFWAC)A
Rys. 1.1. Model kaskadowy cyklu zycia oprogramowania

Projektowanie polega w pierwszej kolejnosci na okresleniu architektury systemu in-
formatycznego, czyli sktadowych systemu i wzajemnego ich powigzania. Wyr6znia
si¢ sktadowe sprzetowe — wezty (komputery lub urzadzenia wejscia—wyjscia) i sktado-
we informacyjne — komponenty (programy, bazy danych, biblioteki programowe).
Komponenty sa odpowiednio rozmieszczane w weztach. Powiazania migdzy weztami
moga by¢ realizowane przez pojedyncze tacza lub sieci komunikacyjne. Powigzania
pomiedzy komponentami opierajg si¢ na wzajemnym swiadczeniu ustug. W nastgpnej
kolejnosci projektowanie polega na szczegétowej specytikacji poszczegSlnych sktado-
wych architektury. Specyfikacja powinna jednoznacznie okresli¢ rodzaj wymaganego
sprzetu oraz funkcje poszczegélnych komponentéw oprogramowania tak, aby mozna
napisa¢ odpowiedni kod w wybranym jezyku programowania. Faza projektowania
moze by¢ ztozona, dlatego niekt6re metodyki dekomponuja projektowanie na podfazy,
na przyktad metodyka ROPES [Douglass 1999], opisana tez w pracy [Huzar 2001],
wyrdznia projektowanie ogdlne, posrednie i szczegétowe.

10 Rozdziat 1

W ramach implementacji wyréznia si¢ dwa rodzaje czynnosci: kodowanie i testowanie
wstepne. Kodowanie polega na napisaniu tekstu programow odpowiednich kompo-
nentéw w wybranych jezykach programowania, a testowanie wstepne polega na eks-
perymentalnym sprawdzeniu czy system dziata poprawnie. Wyréznia si¢ przy tym
testowanie jednostkowe, polegajace na oddzielnym sprawdzeniu poprawnosci po-
szczegblnych komponentéw programowych, oraz testowanie integracyjne, polegajace
na sprawdzeniu poprawnosci wspétpracy wszystkich komponentéw.

Faza walidacji ma na celu sprawdzenie czy zbudowany system dziata poprawnie
w Srodowisku uzytkownika oraz czy rzeczywiscie spetnia jego oczekiwania. Spraw-
dzenie to polega na wykonaniu testow akceptacyjnych. W testowaniu w poprzedniej
tazie chodzito o stwierdzenie czy system dziata zgodnie ze specyfikacja ustalong pod-
czas projektowania, w obecnej fazie idzie natomiast o stwierdzenie spetnienia oczeki-
wan uzytkownika, ktére — w odréznieniu od specyfikacji projektowych — by¢ moze nie
zostaty catkowicie precyzyjnie ustalone w wymaganiach uzytkownika. Przeprowadza-
ne tu testowanie ma charakter walidacyjny, natomiast testowanie w fazie implementa-
cyjnej ma charakter weryfikacyjny.

Faza instalacji wiaze si¢ z wdrozeniem zrealizowanego i wytestowanego systemu
w srodowisku uzytkownika. Wdrazanie nowego systemu moze polegaé¢ na okresowym
jednoczesnym funkcjonowaniu systemu starego i nowego. Jest to strategia kosztowna, ale
bezpieczna dla funkcjonujacej instytucji. Mozliwe sg oczywiscie inne strategie, lecz z ich
zastosowaniem wigze si¢ potrzeba oszacowania ryzyka niepowodzenia przedsigwzigcia.

Faza konserwacji (utrzymania) jest zwiazana z eksploatacja oprogramowania. Wy-
konywanymi tu czynnosciami sg generacja i instalacja oprogramowania w konkretnym
srodowisku wykonawczym, rekonfiguracja oprogramowania powodowana zmieniaja-
cymi si¢ warunkami eksploatacji, usuwanie zauwazonych btedéw, a takze modytika-
cje oprogramowania na skutek zmieniajacych si¢ wymogdéw uzytkowych. W przypad-
ku istotnych modyfikacji nalezy dokonaé powrotu az do fazy analizy. Wtasnie ten fakt
jest gtéwng wada modelu, gdyz btedy poczynione w etapie analizy wymagan powo-
duja duze straty finansowe.

Fazy te — w zasadzie — wystgpuja po sobie kolejno; wynikowe artefakty — dowolne
informacje w materialnej postaci — danej fazy stanowig podstawe do prac w fazie na-
stepnej. W praktyce czgsto fazy naktadaja si¢ na siebie, a dodatkowo dopuszcza sig
powroty z danej fazy do faz wezesniejszych w celu poprawek, uscislen lub uzupetnien
wczesniej opracowanych artefaktéw (rys. 1.1). Przyczyna powrotu moze by¢ wykrycie
niespéjnoséci, niejednoznacznodci lub braku okreslonosci w artefaktach poprzednich
faz. Powroty do faz wczesniejszych pociagaja za soba dodatkowe koszty, dlatego stale
udoskonala si¢ metody wytwarzania oprogramowania tak, aby redukowa¢ potrzebg
powrotéw do wczesniejszych faz.

Model kaskadowy wprowadza nie tylko pewna kolejnos¢ wykonywania réznych czynno-
$ci, ale takze okresla pewne ramy organizacyjne zwiazane z wyznaczaniem zespotow,

Wstep I

przydzielania im odpowiednich zasobdw 1 rozliczania rezultatéw prac. Model jest pod-
stawa do wyr6znienia réznych kategorii specjalistéw zaangazowanych w budowe i funk-
cjonowanie systemdéw informatycznych, dlatego wyrdznia si¢ na przyktad analitykow.,
projektantéw, programistéw, inspektoréw, administratoréw czy konserwatorow.

1.2. Specyfikacja wymagan

Precyzyjna specyfikacja wymagan jest niezbedna nie tylko do uzyskania systemu
oprogramowania odpowiedniej jakosci, ale takze do efektywnosci catego cyklu wyt-
warzania oprogramowania [Wallace, Recker 2001]. Zwykle wyréznia si¢ specyfikacje
wymagan funkcjonalnych i niefunkcjonalnych, ale spotyka si¢ takze inne podejscia
[Sawyer, Kotonaya 2001]. Mozna wyrézni¢ przynajmniej trzy grupy podejs¢ dotycza-
ce tego, co specyfikacja powinna ujmowaé:

e normy ISO (International Organization for Standardization) serii 9621,

e normy IEC (International Electrotechnical Commission) serii 50-191 i 300, odno-
szace sie do systemOw zwiazanych z bezpieczenstwem,

e inne dotyczace specyficznych systeméw, na przyktad systemow ekspertowych
czy systeméw informacyjnych.

Najszersze jest podejscie odzwierciedlone w serii norm ISO 9621, ktére specytikacje
wymagan rozpatruje w kontekscie jakosci systemu oprogramowania. Wyréznia si¢ tu
szes¢ gtéwnych charakterystyk jakosci, ktére z kolei dzieli si¢ na 21 podcharakte-
rystyk. Gléwnymi charakterystykami i ich wybranymi podcharakterystykami sa:

e funkcjonalnosé, jako podstawowa charakterystyka, obejmuje nastgpujace podcha-
rakterystyki: dostarczenie odpowiednich funkcji (ustug) wraz z zapewnieniem
dostarczania odpowiednio doktadnych wynikéw obliczen, wspétdziatanie z in-
nymi systemami, zabezpieczenie przed nieuprawnionym dostgpem do danych,

e niezawodnos¢, rozumiana jako zdolnos¢ do swiadczenia ustug w okreslonych wa-
runkach na odpowiednim poziomie efektywnosci, obejmuje: dojrzatos¢, odpor-
nos¢ na awarie, zdolno$¢ przywracania ze stanu po awarii,

e uZytkowalnosé, reprezentujac punkt widzenia uzytkownikéw systemu, odnosi si¢
do: tatwosci nauczenia postugiwania si¢ systemem, tatwosci uzytkowania, atrak-
cyjnosci ustug dla uzytkownika,

e ¢fekrywnosé, odnoszac si¢ do zwigzku pomigdzy wydajnoscig systemu a stop-
niem wykorzystywania zasobéw, obejmuje wtasnosci czasowe (szybkos¢ reakc;ji,
przepustowos¢), wykorzystywanie zasobdw systemu,

e konserwowalnos¢, odnoszac si¢ do naktadu pracy potrzebnego do utrzymania
i modyfikacji systemu, obejmuje takie podcharakterystyki, jak: analizowalnos¢,
modyfikowalnos¢, testowalnose,

e przenosnosé, charakteryzujac zdolno$¢ oprogramowania do przenoszenia do in-
nych organizacji czy platform wykonawczych, wskazuje na podcharakterystyki:

12 Rozdziat 1

adaptowalnos$¢, instalowalno$¢, wspotistnienie z innym oprogramowaniem, za-
stepowalnos¢.

Dodatkowo zaklada si¢, ze w ramach kazdej z charakterystyk moga by¢ definiowane
podcharakterystyki okreslajace zgodno$¢ oprogramowania ze specyficznymi standar-
dami lub zaleceniami.

Normy serii ISO 9621 definiujq doktadniej wymienione charakterystyki i podcharak-
terystyki oraz proponuja zestaw metryk, ktérymi mozna si¢ postugiwaé¢ w celu ich
ilosciowej oceny. Specyfikacja systemu (w terminach normy ISO specyfikacja jego
jakosci) jest wyrazona przez zbidér pozadanych warto$ci metryk [Dubielewicz, Hnat-
kowska, Huzar, Tuzinkiewicz 2006].

Normy IEC dotycza systeméw zwiazanych z bezpieczenstwem, ktére czgsto sg syste-
mami czasu rzeczywistego [Douglass 1998, 1999]. Specyfikacja wymagan obejmuje
wymagania funkcjonalne i niefunkcjonalne, ktére z kolei dziela si¢ na dwie kategorie:

e wydajnosciowe,
e wiarygodnosciowe.

Do wymagan wydajnosciowych mozna na przyklad zaliczy¢: przepustowos¢ systemu,
czasy reakcji i czasy obstugi uzytkownikéw. Tego rodzaju wymagania sa oczywiscie
zwiazane z budowg systemOéw czasu rzeczywistego, ale takze z budowa systeméw nie-
czasowych.

Na wymagania wiarygodnosciowe skladajq si¢: dyspozycyjnos$¢, niezawodnos¢, bez-
pieczenstwo (safetv) i ochrona (security).

Dyspozycyjnosé jest miarg gotowosci systemu do uzycia. Przykladami systemow
o ostrych wymogach dyspozycyjnosci sa system sterowania reaktorami w elek-
trowniach jadrowych czy system sterowania migdzynarodowym lub migdzymiasto-
wym ruchem telekomunikacyjnym. Systemy takie powinny pracowac catg dobg bez
przerw, przez wszystkie dni roku.

Niezawodnosé okresla odpowiednio diugie okresy czasu bezawaryjnej pracy. Bezpo-
$rednio pojecia niezawodnosci nie mozna odnosi¢ do oprogramowania, gdyz opro-
gramowanie moze by¢ tylko poprawne albo niepoprawne, ale oprogramowanie,
funkcjonujac w zawodnym $rodowisku wykonawczym, powinno przewidywac awa-
rie srodowiska wykonawczego i reagowaé na ich zaj$cie w taki sposob, aby zacho-
waé poprawnos$¢ wykonywanych funkcji. Przyktadami systemdéw, z ktérymi wiaze
sie taki wymdg, sa systemy sterowania rakietami kosmicznymi.

Wymég bezpieczenstwa wiaze si¢ w pewnym zakresie z wymogiem niezawodnosci.
Oznacza on réwniez odpowiednie reagowanie na awarie, przy czym nie chodzi o awa-
rie srodowiska wykonawczego, ale o awarie w otoczeniu systemu, na ktére system
powinien reagowa¢. W razie zaistnienia takich awarii system powinien podejmowac
dziatania specyficzne, odbiegajace od rutynowych. Przyktadem moze by¢ system ste-

Wstep 13

rowania reaktorem atomowym, ktéry w przypadku stwierdzenia zajscia krytycznych lub
niedopuszczalnych zjawisk w reaktorze powinien rozpoczac¢ procedure awaryjnego
wylaczenia reaktora. Na ogét wymég bezpieczenstwa odnosi si¢ do tych systeméw,
ktérych funkcjonowanie jest zwigzane z bezpieczenstwem ludzi lub $rodowiska.

Ochrona (zabezpieczenie) systeméw wigze si¢ z zapobieganiem nieupowaznionemu
dostgpowi 1 manipulacji na danych pamigtanych w systemie. Systemy bankowe lub
osobowe s3 typowymi przyktadami systeméw, w ktérych zabezpieczenie odgrywa
szczegllng role.

Oprécz wymogdéw wydajnos$ciowych i wiarygodnosciowych moga by¢ formutowane
inne, na przyktad waznym wymogiem, ktéry mozna obecnie spotkac¢, w stosunku do
wielu systemow jest skalowalno$¢. Skalowalnosé oznacza, ze w przypadku rozbudo-
wy system zachowuje poprzednio wymienione wymogi. Skalowalnos¢ moze by¢ pet-
na lub czesciowa, w zaleznosci od tego czy zada si¢ zachowania wszystkich, czy tylko
niektorych wymog6w. Mozna na przyklad zada¢, aby w przypadku zwigkszenia liczby
uzytkownikéw system gwarantowat state czasy obstugi, zachowywat dyspozycyjnosé
oraz niezawodnos¢ itp.

W przypadku systeméw specyficznych istotne moga by¢ inne charakterystyki. Na
przyktad w systemach ekspertowych wazne jest uzyskanie odpowiedzi w ustalonym
limicie czasu, a takze czytelne przedstawienie procesu wnioskowania, w systemach
informacyjnych natomiast wazng cecha jest fatwos$¢ formutowania zapytan i precyzja
udzielanych odpowiedzi.

Wymagania niefunkcjonalne mogg si¢ odnosi¢ nie tylko do jakosci systemu, ale takze
do procesu jego wytwarzania. Wymagania takie mogg si¢ odnosi¢ metodyki projekto-
wania, uzywanych narz¢dzi wspomagajacych, sposobu dokumentowania, gromadzenia
i udostepniania artefaktow itp.

1.3. Modele systemow

Wspdlczesne metody wytwarzania systemdéw oprogramowania opieraja si¢ na para-
dygmacie modelowania obiektowego. Oznacza to, ze cykl wytwarzania oprogramo-
wania jest postrzegany jako proces budowy ciagu modeli.

Model jest pewnym odzwierciedleniem wybranej dziedziny — jest pewng abstrakcjq
modelowanej dziedziny, §wiadomym uproszczeniem modelowanej dziedziny, a upro-
szczenie to zalezy od przyjetego punktu widzenia — od wybranej perspektywy mode-
lowania.

Perspektywa, ktéra jest punktem wyjscia przy tworzeniu modeli, okresla te aspekty
nalezace do modelowanej dziedziny, ktére sg istotne dla danego modelu, i te, ktére
nalezy pomina¢. Perspektywa ustala tez stopienn szczegétowosci przedstawiania wy-
branych aspektow.

14 Rozdziat 1

Od modelu oczekuje sig, ze odzwierciedla dwa rézne aspekty modelowanego systemu:
aspekt statyczny i aspekt dynamiczny. Rozdzielenie obu tych aspektéw mozna trakto-
wac jako zastosowanie zasady abstrakcji. Aspekt statyczny odnosi si¢ do struktury
modelowanego systemu, czyli ukazuje zbidr elementéw sktadowych wraz z wigzacy-
mi je relacjami. Aspekt dynamiczny (behawioralny) odnosi do zachowania systemu,
czyli do obserwowalnych efektéw jego dziatania w czasie.

Jezykiem, ktéry obecnie jest uzywany najpowszechniej do reprezentacji modeli
obiektowych w procesie wytwarzania oprogramowania jest UML (Unified Modeling
Language) [UML 2003]. UML ma wiele zalet, ale ma takze pewne ograniczenia.
Gléwnym jego ograniczeniem jest to, ze w fazie analizy wymagan pozwala
w zasadzie tylko na definiowanie wymagan funkcjonalnych. Dodatkowo jego stabos-
cig jest brak formalnej semantyki. Omawiany w ksiazce jezyk LOTOS nie jest jezy-
kiem obiektowym, chociaz ma wiele cech wspélnych z jezykami obiektowymi [Hnat-
kowska 1998]. W stosunku do jezyka UML jest jezykiem ubozszym, gdyz jest tylko
jezykiem specyfikacji funkcjonalnych, podczas gdy UML jest jezykiem specyfikacji
i projektowania. LOTOS ma natomiast nad jezykiem UML wyrazng przewageg w za-
kresie precyzyjnej i kompletnej specyfikacji zachowan. LOTOS jest ponadto jezykiem
wykonywanym, co pozwala na szybkie prototypowanie, testowanie i analize specyfi-
kowanych zachowan.

Systemy informatyczne sa ogromnie zréznicowane. Istnieje wiele klasyfikacji koncen-
trujacych si¢ na wybranych aspektach ich architektury lub zastosowan. Spotyka si¢ na
przykiad podziaty systeméw na:

® sprze¢towe/programowe,

e jedno-/wieloprocesorowe,

e sekwencyjne/wielowatkowe,

o tradycyjne/czasu rzeczywistego,
e wbudowane/lokalne/rozproszone.

Przedstawiony podziat nie jest jednorodny, ukazuje on raczej bogactwo wewnetrznych
wlasnosci i zastosowan systemow informatycznych.

Ze wzgledu na zakres dalej prowadzonych rozwazan przedstawimy inna, abstrakcyjng
klasyfikacje modeli systeméw z punktu widzenia ich wspétpracy z otoczeniem.
W klasyfikacji tej system jest traktowany jako czarna skrzynka, ktéra komunikuje si¢
z otoczeniem przez wyréznione punkty komunikacji — bramki komunikacyjne. Takie
widzenie skupia si¢ na ustugach systemu, a nie na tym, w jaki sposéb ustugi te s re-
alizowane. Klasyfikacja wyréznia trzy kategorie systeméw [Huzar, Sptawski 1989],
[Schneider 2004]:

e transformacyjne,
¢ interakcyjne,
e reaktywne.

Wistep 15

Dziatanie systeméw transformacyjnych polega na przetworzeniu zadanej warto$ci
wejsciowej 1 wygenerowaniu pewnej wartosci wyjsciowej. Wartosci wejsciowe i wyj-
sciowe sg elementami pewnych wskazanych zbioréw. Wartosci te mogg by¢ warto-
sciami ztozonymi. Nie wnikajac w ich wewnetrzng strukture i przyjmujac, ze X jest
zbiorem wartosci wejsciowych, a Y wyjsciowych, schemat funkcjonowania systeméw
transformacyjnych mozna okresli¢ badz jako funkcjg czgsciowa f: X — Y, badz jako
relacj¢ R < X x Y. Przez funkcje¢ f jest opisywany system deterministyczny, jesli
f(x) =y, to oznacza, ze dla danej wejsciowej wartosci x system generuje vy jako war-
tos¢ wyjsciowa. Czesciowos¢ funkceji oznacza, ze dla wartosci wejsciowej x, dla ktorej
funkcja f jest nieokredlona, system nie konczy dziatania i nie dostarcza tym samym
wyniku koncowego. Przez relacj¢ R jest opisywany system niedeterministyczny, jesli
<x, y> € R, to dla danej wejsciowej wartosci x system moze generowac y jako wartos¢
wyjsciowa. Jesli dla danego x € X nie istnieje y € Y takie, ze <x, y> € R, to oznacza,
ze — podobnie jak w przypadku funkcji — system nie dostarcza wyniku koncowego.

Dziatanie systemow interaktywnych jest bardziej ztozone niz systeméw transformacyj-
nych. System nie wytwarza pojedynczej wartosci, ale wspétdziata ze swoim otocze-
niem. Wspdétdzialanie odbywa si¢ za posrednictwem bramek komunikacyjnych, przez
ktére otoczenie kieruje dane wejsciowe do systemu, a system po ich przetworzeniu ge-
neruje dane wyjsciowe do otoczenia. System przyjmuje dane wejsciowe, a dopiero po
ich przetworzeniu, i ewentualnym wygenerowaniu danych wyjSciowych, jest gotowy
do pobrania kolejnych danych wejsciowych. Istotne we wspdtdziataniu systemu z oto-
czeniem jest to, ze kolejna wymiana danych odbywa si¢ po zakonczeniu przetwarzania
przez system poprzednio wymienionych danych. Dziatanie systemu nie musi si¢ za-
konczy¢ po skonczonej liczbie takich cykli. Przyjmujac, jak w przypadku systeméw
transformacyjnych, ze X jest zbiorem wartosci wejsciowych, a Y wyjsciowych, sche-
mat funkcjonowania determlmstycznych systemow reaktywnych mozna wyrazi¢ przez
funkcje o sygnaturze f: X~ — Y, gdzie X jest zbiorem skonczonych ciaggéw nad X.
System interaktywny przetwarza nie pojedyncze wartosci, ale ciggi wartosci. Chara-
kteryzujaca system funkcja f musi przy tym spetnia¢ warunek domknigtosci prefik-
sowej

jezeli f(xy, ..., X,) = Vi, ..., YV, O1Z f(X1, ..., X,, X,1) jest okreslona,
10 f(X15 vy Xiy Xus1) = Vi os Vs Vel

Dla niedeterministycznych systeméw interaktywnych schemat ich dzialania okresla
sie za pomoca relacji R C X X Y, spelniajacej analogiczny warunek.

Dziatanie systemow reaktywnych jest jeszcze bardziej ztozone niz systeméw inter-
aktywnych. Wynika to z nalozenia na system dodatkowych ograniczen czasowych.
System nie tylko powinien generowaé¢ wartosci wynikowe, ale generowaé je w od-
powiednim czasie, a otoczenie moze kierowaé do systemu kolejne wartosci wejsciowe
w dowolnie okreslonych chwilach, niezaleznie od tego, czy system przetworzyi po-
przednio do niego skierowane wartosci wejsciowe. Wejscia i wyjscia systemu sg okre-

16 Rozdziat |

Slone parami: wartos¢, chwila czasowa. Wprowadzajac zbiér chwil czasowych T, wraz
z relacja porzadku czgsciowego <, oraz oznaczajac, jak poprzednio, X jako zbiér war-
tosci wejsciowych, a Y wyjsciowych, schemat funkcjonowania deterministycznych
systemdéw reaktywnych moze byé wyrazony funkcja o sygnaturze

fi(XxT) = (YXT).

Funkcja moze by¢ okreslona tylko dla ciagéw wejsciowych <x, #,>, ..., <x,, £,> ta-
kich, ze ;< ... <1, Ten sam warunek czasowego uporzadkowania spetniaja réwniez
ciagi wyjsciowe. W taki sposéb okreslona funkcja musi spetnia¢ okreslony wczesniej
warunek domknigtosci prefiksowe;j.

Systemy interaktywne i reaktywne najczgéciej nie produkuja okreslonego wyniku, lecz
reaguja na dane kierowane do nich z otoczenia, w ktérym funkcjonuja (przyktadem
programéw tego typu sa systemy operacyjne, systemy rezerwacji biletow, poczty elek-
troniczne;j itp.).

Gléwnym przedmiotem naszego zainteresowania bgda systemy reaktywne. Wsréd
nich nalezy wyrézni¢ dwie kategorie systemow:

e systemy z silnymi ograniczeniami czasowymi,
e systemy ze stabymi ograniczeniami czasowymi.

Do systemow z silnymi ograniczeniami czasowymi zalicza si¢ te systemy, dla ktérych
musza by¢ zawsze spetnione zadane ograniczenia czasowe. Naruszenie tych ograni-
czen moze powodowac niepozadane, katastrofalne skutki. Przyktadami takich syste-
moéw sa systemy sterowania elektrowniami jadrowymi, systemy awioniki lotniczej,
czy tez ogdlniej — systemy zwiazane z bezpieczenstwem. Brak reakcji lub spdzniona
reakcja na pewne zdarzenia moze powodowa¢ na przyktad awari¢ elektrowni lub nie-
bezpieczenstwo utraty sterownosci samolotu.

Do systeméw ze stabymi ograniczeniami czasowymi zalicza si¢ te systemy, dla Kt6-
rych zadane ograniczenia czasowe powinny by¢ spetnione, ale ktérych naruszenie,
powodujac pewne straty, nie pociaga jednak katastrofalnych skutkéw. Przyktadami
takich systemow sa systemy obstugi bankowej czy rezerwacji biletow. W takich przy-
padkach zada si¢ wprawdzie obstugi uzytkownika w pewnym ograniczonym czasie,
ale przekroczenie takiego ograniczenia, na przyktad czasu reakcji, skutkuje tylko znie-
cierpliwieniem klienta.

1.4. Specyfikacja funkcjonalna systeméw oprogramowania

Specyfikacja funkcjonalna opisuje zewngtrznie dostrzegalne efekty dziatania progra-
mu. Mozliwe sa dwa sposoby rozumienia tych efektéw [Huzar, Sptawski 1989]:
pierwszy zaktada, ze obserwowalne sg zmiany standw systemu, drugi — ze obserwowa-
ne sg interakcje pomiedzy systemem a jego otoczeniem. Obserwacja standw zaktada

Wstep 17

wglad we wnetrze systemu, natomiast obserwacja interakcji jest punktem widzenia
uzytkownika systemu — méwimy w tym przypadku, ze obserwujemy zachowanie sys-
temu. W dalszym ciagu zaktadamy, ze interesuje nas wylacznie punkt widzenia ze-
wnetrznego obserwatora systemu.

Opis zachowania systemu jest konieczng sktadowa specyfikacji systemu. Wymagania
funkcjonalne sa okreslane na dwa powigzane ze sobg sposoby:

Sposéb pierwszy odwotuje si¢ do pojecia ustug systemu. System opisuje si¢ tu przez
okreslenie ustug, jakich system dostarcza, a takze ustug, z jakich ma korzysta¢. Samg
ustuge wyraza si¢ w terminach zachowan — ciagéw komunikatéw wymienianych po-
mig¢dzy ustugobiorca a ustugodawca w celu realizacji zadanej ustugi. Pojecie ustugi
jest wygodne i naturalne przy opisie szerokiej klasy systeméw stuzacych wspoma-
ganiu jednostek administracyjnych czy gospodarczych.

Sposéb drugi odwotuje si¢ bezposrednio do pojgcia zachowan systemu. Jest to spos6b
naturalny przy specyfikacji systeméw sterujacych, na przyktad obiektami technologi-
cznymi. W tym przypadku wskazuje si¢ na zachowania wymagane, a takze mozna
wskazywacé na inne zachowania jako dopuszczalne lub zabronione.

Dla uproszczenia bedziemy dalej prowadzi¢ rozwazania, zaktadajac, ze schemat funk-
cjonowania systemu jest funkcja. Nie ogranicza to ogdlnosci rozwazan w tym sensie,
ze przedstawiane rozwazania bgdzie mozna réwniez zastosowac do systemodw, ktorych
schemat funkcjonowania jest okreslony relacja. Opis systemu oznacza wigc opis funk-
cji wyrazajacej jego schemat funkcjonowania. Podobnie jak w przypadku definio-
wania dowolnych zbioréw, istnieja dwa podejscia definiowania funkcji [Huzar 2002]:

e rekursywne,
e ckstensjonalne.

Podejscie pierwsze — rekursywne (algorytmiczne, wykonywalne) — polega na przedsta-
wieniu sposobu generowania wszystkich wartosci funkcji na podstawie przyjetego
zestawu wartosci dla wybranych argumentdw.

Podejscie drugie — ekstensjonalne (logiczne) — polega na zdefiniowaniu funkcji przez
okreslenie jej wlasnosci.

Za obu podej$ciami kryje si¢ rozmaitos¢ wykorzystywanych jezykéw i metod.

Do pierwszego podejscia naleza metody wykorzystujace pojecia abstrakcyjnych ma-
szyn stanowych (rozszerzen automatéw skonczonych) [Borger, Stirk 2003], [Harel,
Marelly 2003] etykietowanych systemOw przej$¢ oraz algebr procesowych [Baeten,
Middelburg 2002], [Hermanns, Herzog, Katoen, 2002]. Do grupy tej mozna takze
zaliczy¢ sieci Petriego i r6znorodne ich rozszerzenia [Reisig 1988], [Girault 2003],
[Magott 2005].

Do drugiego podejscia naleza metody oparte na logikach klasycznych i modalnych.
Naleza do nich na przyktad logika programéw Hoare’a [Huzar 1989], [Apt, Olderog

18 Rozdziat 1

1991] i rachunek najstabszych warunkéw wstepnych Dijkstry [Dijkstra 1978], majace
zastosowanie do systemOw transakcyjnych. Do systemow interaktywnych i reaktyw-
nych sg stosowane rézne formy logiki temporalnej [Hennessy, Milner 1985], [Manna,
Pnueli 1992], [Clark, Emerson, Sistla 1983], a takze inne, jak na przyktad logika dyna-
miczna [Harel 1979], [Harel, Kozen, Tiuryn 2000] czy pu-rachunek [Schneider 2004].

Oba podejscia sa w pewnym sensie komplementarne i dlatego bardzo czgsto do opisu
systemu stosuje si¢ oba podejscia. Podejscie rekursywne jest wprawdzie bardzo wy-
godne przy przechodzeniu od specyfikacji do implementacji, ale bezposrednio jest
trudne do analizy, w celu sprawdzenia czy ma pewne pozadane wiasnosci. Podejscie
logiczne — odwrotnie — bezposrednio moze wyraza¢ pozadane wtasno$ci, natomiast
bezposrednio jest trudne do przeksztatlcenia w implementacjg¢. Jednoczesny opis wy-
konywalny i logiczny wprowadza redundancjg, co pomaga w uzyskaniu wigkszej wia-
rygodnosci, ale jednoczesnie wymaga stwierdzenia zgodnosci obu opiséw.

Do specyficznych kategorii wiasnosci systeméw, ktére wyraza si¢ w sposob eksten-
sjonalny naleza migdzy innymi wlasnodci:

e bezpieczenstwa,

® zywotnosci,

o trwatosci,

e bezstronnosci (uczciwosci).

Wtasnos¢ bezpieczenstwa jest tutaj rozumiana, inaczej niz poprzednio (p. 1.3), jako nie-
zmiennik wyrazajacy to, ze w dzialaniu systemu nigdyv nie osiqgnie sie niepoZqdanej
svtuacji (nigdy nie zdarzy sie cos ztego). Okreslenie tego, co jest zle, zalezy oczywiscie
od konkretnego systemu, na przyktad ze program nigdy nie zablokuje swego dziatania.

Wtasno$¢ Zywotnosci jest niezmiennikiem wyrazajacym to, ze w dziataniu systemu
zawsze osiggnie si¢ pozadunq sytuacje (zawsze zdarzy sie cos dobrego). Na przyktad
program zakonczy swoje dziatanie lub osiagnie okreslony stan.

Trwatosé odnosi sie do stabilizacji pewnych wtasnosci. Oznacza to, ze pewna wias-
nos¢ bedzie trwale zachodzi¢ od pewnego momentu czasu dziatania systemu. Na
przyktad beda trwale przechowywane raz zarejestrowane dane.

Bezstronnos¢ oznacza, ze pewna whasnosé¢ bedzie w czasie dziatania systemu zacho-
dzi¢ nieskonczenie wiele razy. Wihasno$¢ ta jest wyprowadzona z analizy dziatania
systemow réwnolegtych i wyraza postulat, ze kazdemu z réwnolegtych procesow sys-
tem operacyjny bedzie przydzielat dostgp do procesora.

W dalszym ciggu nie bedziemy si¢ zajmowa¢ wiasno$ciami logicznymi, a bedziemy
sie gtéwnie opiera¢ na algebrach procesowych, w ramach podejscia wykonywalnego,
ktére sie odnoszg do systemoéw interaktywnych i reaktywnych.

Algebry procesowe sg rozwijane od poczatku lat osiemdziesigtych ubiegtego stulecia.
Za pionierskie mozna uzna¢ prace Hoare’a zwiazane z procesami CSP [Hoare 1978,

Wstep 19

1985], Milnera — wprowadzajace rachunek CCS [Milner 1980], [Milner 1989] czy tez
prace [Bergstra, Klop 1985], [Baeten, Bergstra, Smolka 1995] definiujace algebre
ACP. Poczatkowo algebry zwiazane gtéwnie z systemami interaktywnymi zostaty
przeniesione na grunt systeméw reaktywnych. Przyktadem pracy pokazujacej zasto-
sowanie ACP do specyfikacji systeméw czasu rzeczywistego jest [Groote 1990]. Hi-
storig¢ prac nad rozwojem algebr procesowych przedstawia raport [Baeten 2004].

Obecnie mozna wyréznic trzy kategorie algebr procesowych: czasowe, probabilisty-
czne i stochastyczne.

Algebry czasowe powstaty jako uogdlnienie klasycznych algebr procesowych przez
wprowadzenie do algebry pojecia czasu i akcji czasowych. Réznice pomiedzy alge-
brami czasowymi dotycza przyjmowanych modeli czasu (czas ciagty i dyskretny) oraz
interpretacji wykonywania akcji czasowych. Przyktadami sg algebry oparte na wcze-
sniej wymienionych jezykach: ACP [Baeten, Bergstra 1991], CSP [Schneider 1995],
LOTOS [Bolognesi, Lucidi, Trigilla 1995], [Leduc, Leonard 1995]. Powodem rozwo-
Ju algebr czasowych byta potrzeba dostarczenia formalnego jezyka specyfikacji sys-
temow reaktywnych, czyli specyfikacji zachowan i zwigzanych z nim ograniczen cza-
sowych. Algebry czasowe sa wlasciwym narzedziem specyfikacji systeméw czasu
rzeczywistego z silnymi ograniczeniami czasowymi. Przeglad prac dotyczacych algebr
czasowych zawiera publikacja [Nicollin, Sifakis 1992].

Algebry probabilistyczne sa specjalizacja algebr czasowych polegajaca na zastapieniu
niedeterminizmu wystgpowania akcji probabilizmem. Takie podejs$cie umozliwia ba-
danie wydajnosci specyfikowanych systeméw, a zwlaszcza wyliczanie charakterystyk
probabilistycznych [Hermanns, Herzog, Katoen 2002]. Algebry probabilistyczne sg
wlasciwym narzedziem specyfikacji systemOw czasu rzeczywistego ze stabymi ogra-
niczeniami czasowymi. Przyktadami takich algebr sa: dla ACP [Baeten, Bergstra,
Smolka 1995], dla CSP [Hanson, Jonsson 1990] oraz dla LOTOSa [Miguel, Fernan-
dez, Vidaller 1993].

Kolejne uogodlnienie algebr procesowych — algebry stochastyczne — polega na wpro-
wadzeniu akcji o stochastycznej charakterystyce czaséw wykonania. Algebry te stano-
wig wiasciwe narzedzie analizy systeméw kolejkowych. W odréznieniu od innych
mechanizméw, na przyktad stochastycznych sieci Petriego, umozliwiajg one kompo-
zycyjna specyfikacje¢ i generacj¢ tancuchéw Markowa. Przyktadami takich algebr sa:
TIPP [Gotz, Herzog, Rettelbach 1993], PEPA [Hilston 1996], EMPA [Bernardo, Gor-
rieri 1998], a dla LOTOSa [Rico, Bochmann 1991].

Gléwnym obszarem zastosowania algebr czasowych jest specyfikacja systemow czasu
rzeczywistego z silnymi ograniczeniami czasowymi, natomiast algebr probabili-
stycznych i stochastycznych — systemy ze stabymi ograniczeniami czasowymi.

W ostatnim okresie, oprécz rozwijania klasycznych algebr ACP, CCS i CSP, powstata
nowa grupa algebr procesowych, do ktérych nalezg migdzy innymi 7t-rachunek Mil-

20 Rozdziat 1

nera [Milner 1999] oraz rachunek otoczen (ambient calculus) Cardelliego i Gordona
[Cardelli, Gordon 1998].

1.5. Metody formalne w procesie wytwarzania systeméw

Wytwarzanie systemow informatycznych jest zlozonym procesem. Rézne metodyki
definiujg strukture takich proceséw przez okreslenie faz (etapéw), czynnosci i wyni-
kowych artefaktéw. Wspdlczesnie dominujace obiektowe metodyki wytwarzania sys-
teméw oprogramowania opieraja si¢ na paradygmacie modelowania. Oznacza to, ze
proces wytwarzania systemOow oprogramowania jest widziany jako pewien ciag po-
wigzanych ze sobg modeli. Typowe powiazania pomigdzy modelami to relacja uscisle-
nia i realizac;ji.

W réznych miejscach procesu wytwarzania znajduja zastosowanie metody formalne.

Formalno$¢ metody oznacza w pierwszej kolejnosci formalnosé¢ jezyka uzytego do
opisu modeli. Oznacza to, ze jezyk ma $cisle zdefiniowana skiadnig i semantyke, dzig-
ki czemu opis systemu w tym jezyku moze by¢ precyzyjny i jednoznaczny. Jezyk po-
winien mie¢ dostateczna site ekspresji po to, aby dalo si¢ tworzy¢ modele kompletne z
punktu widzenia przyjetej perspektywy. Jednoczesnie powinien by¢ mozliwie abs-
trakcyjny, aby unika¢ wnikania w szczegéty dotyczace implementacji systemu.

Powody stosowania metod formalnych sg przynajmniej dwa: po pierwsze — formaliza-
cja modeli umozliwia precyzyjne formutowanie i badanie ich wlasnosci, oraz po dru-
gie — umozliwia definiowanie transformacji pomi¢dzy modelami. Oznacza to, ze me-
tody formalne w wytwarzaniu oprogramowania stosuje si¢ do:

e pisania specyfikacji formalnych,

e dowodzenia wiasnosci tych specyfikacji,

e wyprowadzania implementacji na podstawie specyfikacji,

o weryfikacji zgodnosci implementacji wzgledem specyfikacji.

Metody formalne maja zalety, ale maja tez wady: w stosunku do jezykéw naturalnych
lub pétformalnych sa mniej ekspresywne i sa sztywne — wymagaja scistego, ograni-
czonego sposobu postugiwania si¢ nimi podczas tworzenia modeli.

Stosowanie metod formalnych jest szczegélnie uzasadnione w przypadku systemow
wspotbieznych, zwiazanych z bezpieczenstwem, a takze w przypadku definiowania
pewnych standardéw. Wtasnie potrzeba $cistego zdefiniowania standardow systemow
otwartych ISO/OSI doprowadzita pod koniec lat osiemdziesiatych ubiegtego wieku do
podjecia prac nad rozwojem formalnych technik specyfikacji ustug i1 protokotéw sieci
komputerowych. Powstaly wéwczas, rozwijane do dzisiaj, techniki formalne FDT
(Formal Description Techniques), do ktérych zalicza si¢ ESTELLE, SDL oraz LO-
TOS [Turner 1993]. Wiasnie LOTOS, ze wzgledu na swoje walory elegancji i Scisto-
$ci podstaw, zostat wybrany jako przedmiot niniejszej monogratii.

Wstep 21

Korzysci, jakie wynikaja z postugiwania si¢ nimi, oprécz precyzji i jednoznacznosci,
to mozliwos¢ badania sensownosci modeli, to znaczy czy istnieje dla nich jakakolwiek
interpretacja (czy model nie jest sprzeczny), czy maja wskazane whasnosci. Dodatkowo
ich stosowanie jest warunkiem koniecznym przy konstrukcji systeméw wspomagaja-
cych wytwarzanie oprogramowania. Ta ostatnia okoliczno$¢ staje si¢ szczegélnie
wazna, gdyz rosnacy stopien zlozonosci wytwarzanych systeméw informatycznych
wymaga coraz bardziej silnego wsparcia przy badaniu i transformacji modeli.

1.6. LOTOS w specyfikacji standardéw sieci komputerowych

LOTOS powstat w ramach prac standaryzacyjnych, prowadzonych przez ISO pod
koniec lat osiemdziesiatych XX wieku, w zakresie sieci komputerowych. Pierwotnym
rezultatem prac ISO w tym okresie bylo opracowanie modelu referencyjnego ISO/OSI
otwartych sieci komputerowych [ISO 7498], z czego wytonit si¢ problem definio-
wania standardéw ustug i protokotéw sieciowych. Dziatajace w ramach podkomitetu
ISO/TC97/SC16, a p6zniej w ramach ISO/TC97/SC21, grupy robocze postawily za
cel opracowanie matematycznych podstaw umozliwiajacych:

e pisanie jasnych, jednoznacznych i zwartych specyfikacji standardéw sieciowych,
o weryfikacje poprawnosci specyfikacji,

e analiz¢ wiasnosci specyfikaciji,

¢ konstruowanie oprogramowania na podstawie specyfikacji,

e badanie zgodnosci implementacji ze specyfikacja.

Rezultatem prowadzonych prac bylo opracowanie jezykéw formalnych ESTELLE
[ISO 9074] i LOTOS [ISO 8870] oraz pétformalnego jezyka SDL [Belina, Hogrefe
1989]. Wyniki prac spetniaja tylko czgsciowo zarysowane wczesniej zamierzenia,
gdyz ograniczaja si¢ do opracowania samych jezykéw specyfikacji, z pominigciem
pozostatych zagadnien. Nalezy jednak podkresli¢, ze byly prowadzone — poza bez-
posrednim nadzorem ISO - inne prace nad zrealizowaniem pozostatych, wymienio-
nych poprzednio, zamierzen. Jezyk LOTOS zostal uznanym miedzynarodowym
standardem.

LOTOS jako narzedzie formalnej specyfikacji spetnia postulaty, ktérych oczekuje si¢
od dowolnego jezyka formalnych specyfikacji. Sama formalno$¢ jezyka oznacza, ze
ma on jednoznacznie zdefiniowana sktadni¢ i semantyke, co pozwala na niesprzeczng
i jednoznaczng specyfikacje danego systemu. Specyfikacja jest tez abstrakcyjna, co
oznacza, ze nie okresla ani nie narzuca szczegétéw implementacji systemu. Waznym
aspektem formalnosci jest réwniez to, ze sama specyfikacja, traktowana jako pewien
abstrakcyjny obiekt, moze by¢ przedmiotem analizy metodami matematycznymi.

Jezyk specyfikacji powinien by¢ dostatecznie ekspresywny, aby w pelni opisywac
odpowiednig klas¢ obiektéow. W przypadku jezyka LOTOS chodzito o mozliwo$¢
opisu ustug i protokotéw w poszczegdlnych warstwach modelu referencyjnego. Oka-

22 Rozdziat |

zalo sie, ze LOTOS, spetniajac te wymogi, moze by¢ narzg¢dziem specyfikacji prak-
tycznie dowolnych systeméw rozproszonych.

Jezyk specyfikacji, ze wzgledu na ztozonos$¢ specyfikowanych systeméw, powinien
dostarcza¢ zestawu mechanizméw strukturalizacji tworzonych opiséw, majacych do-
brze ugruntowane intuicje. Dobrze zestrukturalizowana specyfikacja podnosi czytel-
nosc¢ i utatwia jej pielggnacje.

Jezyk ESTELLE bazuje na imperatywnych koncepcjach spotykanych w tradycyjnych
jezykach programowania (punktem odniesienia byt tu Pascal), jezyk LOTOS wyko-
rzystuje natomiast idee abstrahowania danych i zachowan, zrodzone na przetomie lat
siedemdziesiatych i osiemdziesiatych ubieglego wieku. Sq nimi:

e koncepcja algebraicznej specyfikacji abstrakcyjnych typéw danych,
e koncepcja specyfikacji behawioralnych, tzn. opisu zachowania systeméw poprzez
zbidr ciagéw oddziatywan systemu ze swoim otoczeniem.

Abstrakcyjne typy danych maja w literaturze wspoélczesnej wiele réznych modeli.
Typy danych, ktére adaptowano na potrzeby jezyka LOTOS, pochodzg od jezyka al-
gebraicznych specyfikacji ACT ONE, opracowanego w Uniwersytecie Technicznym
w Berlinie Zachodnim pod kierunkiem H. Ehriga [Ehrig, Mahr 1985].

Opis zachowania systemOow opiera si¢ na koncepcjach zaproponowanych przez
R. Milnera z Uniwersytetu w Edynburgu, zawartych w jezyku CCS [Milner 1980].
System jest traktowany jako pewien obiekt (zestaw réwnolegle dziatajacych proce-
s6w), ktéry poprzez pewne punkty interakcji (bramki, porty) wymienia dane ze swoim
otoczeniem.

Specyfikacja systemu rozproszonego w LOTOSie sktada si¢ z:

e specyfikacji abstrakcyjnych typéw danych (komunikatéw wymienianych po-
miedzy systemem a jego otoczeniem),
e specyfikacji zachowan, czyli specyfikacji behawioralne;j.

Wazna role w rozwijaniu formalnych technik opisu oprogramowania odegrat projekt
SEDOS (Software Environment for the Design of Open Distributed Systems), realizo-
wany pod koniec lat osiemdziesiatych, w ramach europejskiego programu ESPRIT
[van Eijk, Vissers, Diaz 1989]. Prace przyczynity si¢ do ostatecznej standaryzacji
jezyka i weryfikacji jego praktycznej przydatnosci, a ponadto opracowano programo-
we narzedzia stuzace miedzy innymi do edycji i symulacji specyfikacji oraz do wspo-
magania tworzenia implementacji na podstawie specyfikacji.

W jezyku LOTOS przedstawiono petny opis wielu powszechnie stosowanych standar-
déw, na przyklad:

¢ I[EEE Connectionless Interneting Protocol,
¢ ISO Network Service,

Wstep 23

e ISO Transport Protocol,

¢ ISO Transport Service,

¢ ISO Session Protocol,

e ISO Session Service,

e [SO Presentation Protocol,
¢ ISO Transaction Protocol.

Opisano takze niektére proponowane standardy, ktére nie znalazty jednak szerszego
zastosowania: standardy ustug i protokotéw transferu plikéw i zadan.

Pod koniec lat dziewigédziesiatych ubiegltego wieku, na bazie zdobytych doswiad-
czen w stosowaniu jezyka, rozpoczeto prace nad czasowym rozszerzeniem LOTOSa.
Znalazty one wyraz w propozycji standardu [ISO/IEC FDIS 15437, 2001]. Standard
nowego jezyka, nazywanego E-LOTOS, oprécz wprowadzenia czasu, wprowadza
rézne modyfikacje i usprawnienia, wsrod ktérych najistotniejsza jest zmiana specy-
fikacji danych. Przyjeto pragmatyczne podejscie do definiowania typéw danych
uwzgledniajace sposoby definiowania stosowane we wspétczesnych jezykach pro-
gramowania.

1.7. Zakres monografii

W monografii przedstawiono jezyk LOTOS, jego zastosowania, a takze jego rozsze-
rzenia, ktére umozliwiaja wykorzystanie jezyka w procesie specyfikacji i projektowa-
nia systeméw czasu rzeczywistego. Omawiane s3 dwa rodzaje rozszerzen — rozsze-
rzenia czasowe, ktére umozliwiajg specyfikowanie systemOw czasu rzeczywistego
z silnymi ograniczeniami czasowymi, oraz rozszerzenia wydajnosciowe, ktére umozli-
wiaja analize wydajnosciowa systemdéw czasu rzeczywistego ze stabymi ograniczenia-
mi czasowymi.

Zawartos¢ ksiazki jest nast¢pujaca:

Dwa kolejne rozdzialy — 2. oraz 3. — dotycza jezyka CCS oraz jego rozszerzen czaso-
wych. Prezentacja jezyka i jego rozszerzen jest sformalizowana. Opis semantyki jest
oparty na strukturalnym podejsciu operacyjnym.

W rozdziale 4. oméwiono abstrakcyjne typy danych w LOTOSie.

Na informacjach z rozdziatéw 2. i 4. opiera si¢ rozdziat 5., w ktérym opisano jezyk
LOTOS.

W rozdziale 6. oméwiono najwazniejsze zastosowanie jezyka LOTOS jako jezyka
specyfikacji standardéw sieciowych, a w rozdziale 7. — metodyke uzycia jezyka
LOTOS w procesie tworzenia i testowania specyfikacji. Przedstawiono takze krotko
narzg¢dzia programowe wspomagajace wykorzystanie jezyka.

24 Rozdziat 1

W rozdziale 8. skupiono si¢ na pewnej wiasnosci jezyka LOTOS, kt6ra mozna uwaza¢
za niepozadany efekt — tak zwane ukryte blokady — wynikajacy z przyjetego sposobu
komunikacji i synchronizacji. «

W dwdéch nastgpnych rozdziatach oméwiono rozszerzenia jezyka LOTOS: w rozdzia-

le 9. zaprezentowano dwa rozszerzenia czasowe, a w rozdziale 10. — rozszerzenie wy-
dajnosciowe LOTOSa.

W ostatnim rozdziale 11. oméwiono zwiazki LOTOSa z innymi metodami formalny-
mi i pétformalnymi, a zwlaszcza z jezykiem UML.

25

2. Jezyk CCS

2.1. Wstep

W tym rozdziale przedstawiono jezyk CCS (Calculus of Communicating Systems),
ktéry byl podstawa do opracowania jezyka LOTOS. CCS powstat na bazie prac
R. Milnera, inspirowanego wczes$niejszymi pracami prowadzonymi przez Hoare’a nad
jezykiem programowania wspotbieznego CSP (Communicating Sequential Processes)
[Hoare 1978, 1985]. Przeznaczeniem CCS bylo formalne specyfikowanie zachowania
systeméw interaktywnych. W dojrzatej postaci przedstawit go Milner w ksiazce [1980].
Woczedniejsze prace Milnera byly inspiracja zwtaszcza dla jego wspotpracownikéw
z Uniwersytetu w Edynburgu, na przyktad: [Hennessy, Plotkin 1979, 1980], [Plotkin
1981], [Hennessy 1988], [Hennessy, Reagan 1991], byly tez podstawa dalszych prac
Milnera [1989, 1999], jak i prac w innych osrodkach, na przyktad [Parrow 1985].

Systemy interaktywne (zob. rozdz. 1.) sa szeroka kategoria systemdéw informatycz-
nych, stanowiacq uogélnienie klasycznych systeméw transformacyjnych. Dziatanie
systeméw transformacyjnych mozna opisa¢ zaleznoscia funkcyjng lub relacyjna po-
migdzy poczatkowymi i koncowymi stanami systemu. Tymczasem wystgpujg syste-
my, w ktérych nie chodzi o osiagnigcie pewnego stanu koncowego, lecz o to, aby bie-
zace dziatanie systemu, rozumiane jako jego wspoldziatanie ze swoim otoczeniem,
bylo zgodne z okre$lonym wzorcem. Przyktadem takich systeméw sg systemy opera-
cyjne, systemy rezerwacji biletéw, sieci komputerowe itp. W przypadku takich syste-
méw konieczne jest inne podejscie do opisu ich dzialania, nazywane podejsciem be-
hawioralnym.

Podejscie to polega na opisie dziatania systemu przez opis komunikacji, ktéra moze
zachodzi¢ pomigdzy systemem a jego otoczeniem. System jest widziany jako ,,czarna
skrzynka”, ktéra wykonuje w swoim wngtrzu pewne nieobserwowalne czynnosci obli-
czeniowe — akcje wewnetrzne i komunikuje si¢ ze swoim otoczeniem przez obserwo-
walna wymiang danych na swoich bramkach (portach) — wykonywanie akcji komuni-
kacyjnych (rys. 2.1a).

W podejsciu behawioralnym nacisk ktadzie sie na komunikacj¢. Pojedyncza komuni-
kacja jest wynikiem interakcji, czyli realizacji dwdéch synchronizujqcych sie akcji ko-
munikacyjnych — akcji wystania i akcji odbioru danych — na bramce systemu. Jedna
z akcji (akcja wysltania lub odbioru) jest wykonywana przez system, a druga (akcja
odbioru lub wystania) — przez jego otoczenie. Rezultatem interakcji jest wymiana po-
migdzy systemem a jego otoczeniem pewnego zestawu danych.

Interakcja jest czynnoscia elementarng, to znaczy nie moze by¢ przerywalna ani dzie-
lona. Poniewaz nie uwzglednia si¢ przy tym czasu trwania interakcji, zaktada sig, ze
interakcja wykonuje si¢ natychmiastowo.

26 Rozdziat 2

Zbi6r oferowanych
akeji komunikacyjnych

Bramka .)
komunikacyjna Wykoqanle c_lkcgl
komunikacyjnej
ST =~ lub
N wykonanie akcji
\ tke]
System . \ wewngtrzne)
interaktywny Otoczenie 1
systemu]
I
/ : /
N _ v

Nowy zbidr oferowanych
akcji komunikacyjnych

b)

a)

Rys. 2.1. System interaktywny jako ..czarna skrzynka” (a), schemat zmiany stanéw systemu (b)

Dziatanie systemu interaktywnego przebiega zgodnie z nastgpujacym schematem
(rys. 2.1b): W danym momencie czasu system znajduje si¢ w pewnym stanie.
Z punktu widzenia otoczenia systemu stan okresla zbidr oferowanych akcji komuni-
kacyjnych. Jezeli otoczenie skorzysta z pewnej oferowanej akcji komunikacyjne;j,
zostanie zrealizowana odpowiednia interakcja, w wyniku ktérej nastapi przestanie
pewnych danych oraz nastapi zmiana stanu systemu. W nowym stanie system oferu-
je otoczeniu nowy zbidér akcji komunikacyjnych, po czym powtarzaja si¢ opisane
czynnosci. Zmiana stanu moze réwniez nastapi¢ bez interakcji z otoczeniem, na
skutek wykonania przez system akcji wewnetrznej. Dla otoczenia zaj$cie takiej akcji
wewngtrznej moze by¢ zauwazone tylko przez zmian¢ zbioru oferowanych akcji
komunikacyjnych.

System reaktywny moze by¢ tez widziany jako ,,szara skrzynka” (rys. 2.2). Oznacza
to, ze system sktada si¢ z mniejszych ,,czarnych skrzynek”, ktére sa powigzane ze
sobg wewnetrznymi bramkami, przeznaczonymi do komunikacji wewnetrznej. Kon-
cepcja ,szarej skrzynki” pozwala na dekomponowanie ztozonego systemu reakty-
wnego na elementy sktadowe. Elementy sktadowe systemu, podobnie jak caty system,
nazywa Si¢ procesami lub agentami. Sktadowe procesy systemu mozna réwniez
dekomponowaé dalej, przedstawiajac je jako zlozenie innych podproceséw, a tych
z kolei jako dalszych podproceséw itd.

Interakcje pomigdzy systemem a jego otoczeniem badz pomigdzy jego procesami

sktadowymi mozna przedstawia¢ na dwdch poziomach szczegétowosci. Na poziomie
ogdlnym interakcja jest traktowana tylko jako zdarzenie komunikacyvjne zachodzace na

Jezyk CCS 27

danej bramce. Na poziomie szczegétlowym interakcja jest okreslona jako zdarzenie
komunikacyjne, ktéremu towarzyszy wymiana wskazanych danych.

Zewngtrzna
bramka System interaktywny
komunikacyjna

Podsystem
reaktywny

Wewnetrzna
bramka
komunikacyjna

Otoczenie
systemu

Podsystem
reaktywny

Rys. 2.2. System reaktywny jako .szara skrzynka™

Odpowiednio do tych pozioméw szczegétowosci jezyk CCS ma dwie wersje: wersje
bazowgq, ktdra przedstawia interakcje z pomijaniem danych wymienianych, i wersje
petnq, ktora dane te uwzglednia. W dalszym ciagu rozdziatu prezentacje jezyka CCS
ograniczono do wersji bazowej.

Specyfikacja systemu interaktywnego jest dokonywana z punktu widzenia zewnetrz-
nego obserwatora systemu i polega na okresleniu zbioru wszystkich mozliwych ciggéw
interakcji, jakie moga zachodzi¢, w czasie jego zycia, pomigdzy nim a jego otoczeniem.

Specyfikacja jest wyrazana przez tak zwane wyrazenia behawioralne jgzyka CCS.
Stanowig one rekursywne ztozenie akcji komunikacyjnych. Akcje mogg by¢ powia-
zane réznymi operatorami skiadni, a rekursja jest wyrazana przez wywotywanie pro-
ceséw (lub agentow).

Proces reprezentuje system lub jego sktadowa, ktéra przez wtasne bramki moze si¢
komunikowa¢ ze swoim otoczeniem. W danym stanie proces oferuje swemu otoczeniu
pewne akcje komunikacyjne. To, ktéra z tych akcji zostanie wykonana, zalezy od syn-
chronizacji procesu z otoczeniem. Po zsynchronizowaniu si¢ akcji nastepuje ich rea-
lizacja (interakcja), po czym proces przechodzi do kolejnego stanu, w ktérym przed-
stawla swemu otoczeniu nowg oferte akcji komunikacyjnych.

Znaczeniem wyrazen behawioralnych jest zachowanie systemu, okreslone przez zbiér
ciagow interakcji, jakie zachodza pomigdzy systemem a jego otoczeniem. W przypad-
ku nietrywialnych systeméw reaktywnych zbidr takich ciagdéw jest czesto nieskon-
czony, a ciagi moga mie¢ nieskonczong dtugosé.

28 Rozdziat 2

2.2. Skiadnia i nieformalna semantyka

Przedstawiona sktadnia jezyka odbiega w drobnych szczegoétach od oryginatu. Zostato
to podyktowane checig zachowania konwencji stosowanej przez jezyk LOTOS. R6z-
nice te natomiast nie zmieniaja semantyki jezyka.

Wprowadzmy nastgpujace oznaczenia:

Niech G oznacza dowolny, co najwyzej przeliczalny, zbiér — nazywany zbiorem nazw
bramek komunikacyjnych.

Zbior akcji wejsciowych (bez uwzgledniania przesytanych danych) bgdziemy ozna-
czaé przez G?, akcji wyjsciowych przez G! oraz przez A sume wejsciowych i wej-
$ciowych akcji komunikacyjnych, czyli A = G? U G'.

Dodatkowo wprowadzamy akcje 7, ktéra bedziemy nazywac akcja wewngtrzng. Akcja
wewnetrzna reprezentuje pewng czynnos$¢ obliczeniowg lub komunikacyjna, ktéra —
wykonywana wewnatrz systemu — nie jest widoczna dla jego otoczenia.

Zbi6r wszystkich akcji oznaczamy Act = A U { 7}. Zbidr A jest zbiorem akcji, ktérych
zajscie jest obserwowalne przez otoczenie systemu, natomiast 7 jest akcja, ktérej zaj-
Scie jest nieobserwowalne przez otoczenie systemu.

Akcje wej}ciowq na bramce ge G bedziemy oznacza¢ jako g? (g?e G?), akcj¢ wyjscio-
wq na bramce ge G jako g! (g!€ G!); ta sama bramka moze by¢ uzyta do realizacji
akcji wejsciowej lub wyjsciowej. Akcje g? oraz g! nazywa sig¢ akcjami komplemen-
tarnymi.

Jezeli ae A, to jej akcje komplementarng oznacza si¢ &, oczywiscie @ = a. Dla akcji
wewngetrznej 7 =7.

Bramka, na ktdrej jest realizowana akcja ac A, bedzie oznaczana przez gate(). Akcje
komplementarne ¢ oraz & synchronizujg si¢ na tej samej bramce, dlatego gare(q) =
= gate(@). Jezeli S C A, to z definicji gate (S)= Ua&_s_ {gate(@)}.

Przez Proc oznaczymy zbiér nazw proceséw. Kazdy proces ma swojg definicjg,
a zbidr definicji proceséw Def jest okreslony nastepujaco:
D:=uPB|D, uP.B (2.1)

gdzie:
De Def, Pe Proc jest nazwg procesu,
Be Beh jest wyrazeniem behawioralnym, stanowiacym tres¢ procesu.

Zbiér wyrazen behawioralnych Beh, w notacji BNF, jest okreslony nastgpujaco:

B=0|P|BI\S|B|[f]I(Bl)la,B||B| ”B')_IB]‘FB)_ (22)

Jezyk CCS 29

gdzie:

B, By, B,e Beh, Pe Proc, S C A, €A oraz f: G — G jest funkcjq przemianowania
(zmiany nazwy) bramek komunikacyjnych. Kolejno$§¢ wprowadzenia operatoréw
odpowiada malejacej kolejnosci priorytetéw ich uzycia;

0 jest stalg reprezentujaca proces pusty, to znaczy taki, ktéry nie oferuje swemu
otoczeniu zadnych akcji komunikacyjnych.

P jest instancjq procesu. Kazdy proces, oprécz procesu pustego, ma doktadnie
jedna definicj¢ wyrazong w postaci P.B (P jest jego nazwa, a B jest pewnym wy-
razeniem behawioralnym, nazywanym treécia procesu).

Operator u w definicji rekursywnej uP.B wigze wszystkie wolne wystapienia nazwy
procesu P w tresci procesu B. Zachowanie definiowane przez wyrazenie uP.B jest
takie same jak zmodyfikowanego wyrazenia B, w ktorym kazde wystapienie P jest
zastgpowane przez uP.B.

Wolne wystapienia nazw proceséw okresla funkcja pomocnicza FProc : Beh — 2™
ktéra dla danego wyrazenia behawioralnego B wyznacza zbiér welnych nazw proce-
sow. Jest ona zdefiniowana rekursywnie w tabeli 2.1.

Tabela 2.1
B FProc(B)
0 %]
P {P}
UP.B, FProc(B\)\{P)
B\S FProc(B,)
Bi[f] FProc(B))
(B)) FProc(B,)
a; B, FProc(B,)
B, || B, FProc(B,) U FProc(B,)
By + B, FProc(B,) U FProc(B-)

W wyrazeniu B\S, gdzie S C A, \ jest operatorem przestaniania (restrykcji). Operator
ten wyklucza komunikacj¢ wyrazenia behawioralnego B, z jego otoczeniem na bram-
kach gate(S). Inaczej: wyrazenie B\ S nie moze si¢ komunikowa¢ ze swoim otocze-
niem na bramkach gate(S).

B[f] jest wyrazeniem, w ktérym nazwy bramek akcji zostaja przemianowane przez
funkcj¢ f: G — G; dla akcji &, w wyrazeniu B, bramka gate () = g zostaje zastapio-
na bramka f(g). Zaktadamy, ze funkcja f jest bijekcja, to znaczy funkcja wzajemnie
jednoznaczna. W wyrazeniu B[f] symbol [f] jest operatorem przemianowania para-
metryzowanym funkcja f.

30 Rozdziat 2

Nawiasy w wyrazeniu (B,) stuza grupowaniu i strukturalizacji wewngtrznej wyrazen.
Zachowanie wyrazenia (B)) jest doktadnie takie jak wyrazenia B,.

Wyrazenie «; B, jest nazywane wyrazeniem prefiksowania akcja & wyrazenia B, albo
krétko — wyrazeniem prefiksujacym. Symbol ; jest operatorem prefiksowania. Wyra-
zenie «; B, oferuje swemu otoczeniu tylko jedna akcje komunikacyjng «. Jezeli akcja
ta zostanie zaakceptowana przez otoczenie, to po jej wykonaniu kolejne oferty komu-
nikacyjne sg okreslone przez wyrazenie B,.

Wyrazenie ztozenia réwnolegtego B, || Ba, gdzie || jest operatorem ztozenia réwnole-
gtego, zachowuje si¢ tak, jak zachowujg si¢ jednoczesnie wyrazenia B oraz B,, to
znaczy oferuje swemu otoczeniu akcje komunikacyjne oferowane przez wyrazenie B,
oraz przez wyrazenie B,. Oba wyrazenia, poza tym ze oferuja akcje komunikacyjne
swemu otoczeniu, dodatkowo moga si¢ wzajemnie komunikowaé. Komunikacja taka
wymaga synchronizacji dwéch komplementarnych akcji na wspélnej bramce.

Wyrazenie wyboru B, + B,, gdzie + jest operatorem wyboru, zachowuje si¢ jak B, albo
B>. Wybér zachowania zalezy od otoczenia wyrazenia B, + B, ktére wskazuje na B,
albo B,, wybierajac do realizacji albo jedng z akcji oferowanych przez B, albo jedna
z akcji oferowanych przez B-.

Definicja 2.1
Specyfikacja zachowania w jezyku CCS jest zdefiniowana jako para
Spec = < By, Defp> (2.3)
gdzie: Bye Beh jest poczatkowym wyrazeniem behawioralnym, a Defpe Def jest
skonczong listg definicji pewnych proceséw Py, ..., P,.

Definicja procesu o nazwie P; (i = 1, ..., n) ma posta¢ ¢ P;.B;, gdzie wyrazenie be-
hawioralne B, Beh jest trescig procesu. Kazdy proces, ktdrego instancja wystgpuje
w wyrazeniach behawioralnych B,, ..., B, ma swoja definicj¢ w zbiorze Def. In-
stancje proceséw o tej samej nazwie majg jedng wspolng definicje.

Wprowadzamy funkcje pomocnicza FAct : Beh — Act, ktéra dla danego wyrazenia

behawioralnego B wyznacza zbidr akcji obserwowalnych. Funkcja jest zdefiniowana
rekursywnie w tabeli 2.2.

Funkcja umozliwia zdefiniowanie dwdch rodzajéw specyfikacji:
Definicja 2.2
Specyfikacje Spec = < By, Def >, dla ktdérej FAct(B,) = & nazywamy specyfikacja
komunikacyjnie zamknietq, a komunikacyjnie otwartq w przypadku przeciwnym.
System, ktérego specyfikacja jest komunikacyjnie otwarta, jest systemem, ktdrego
funkcjonowanie jest uwarunkowane dziataniem jego otoczenia, dziatanie (obliczenie)
systemu, ktérego specyfikacja jest komunikacyjnie zamknigta, jest natomiast nieza-
lezne od jego otoczenia (system nie komunikuje si¢ ze swoim otoczeniem).

Jezvk CCS 31

Tabela 2.2
B FAct(B)
0 %)
P FAct(B,) gdzie uP.B,
UP.B, FAct(B))
B\S FAct(B)\S"
B\[f1] FAct(B))[f]
(B)) FAct(B,)
a; B, {a} U FAci(B))
B, || B, FAct(B,) U FAct(B,)
B, + B, FAct(B)) U FAcKB,)

* Symbol \ wystepuje w prawej kolumnie w roli
ymbol \ wystepuje w prawej wroli
odejmowania mnogosciowego, w lewej kolumnie
natomiast wystgpuje w roli operatora restrykcji.

Czasem jest dogodne operowanie wyrazeniami behawioralnymi w pewnych posta-
ciach kanonicznych.
Wyrazenie behawioralne B jest w sekwencyjnej postaci normalnej, gdy przyjmuje postac
B= ZE“‘ZMH] B,=B, +...+B, (2.4)
gdzie:
B; to sktadowe sekwencyjne wyrazenia B,
symbol = oznacza réwnowaznos¢ (identycznos¢) tekstowa.

Wyrazenie behawioralne B jest w rownolegtej postaci normalnej, gdy przyjmuje postac

B= ”ie!l,?......n) Bi \S E(BI ”” BH)\S (25)

gdzie B; to sktadowe réwnolegle wyrazenia B.

2.3. Semantyka operacyjna

Semantyka operacyjna specyfikacji Spec = < By, Def > jest definiowana w sposéb stru-
kturalny na podstawie definicji sktadniowych wyrazen behawioralnych. Definicja
opiera si¢ na pojgciu etykietowanego systemu przejs$¢ postaci
TS(Spec) = < Beh, Act, Tr, By> (2.6)

gdzie:

Beh jest zbiorem wyrazen behawioralnych;

Act jest zbiorem akcji;

Tr = ={—%—> C Behx Beh| € Act} jest rodzing relacji przejs¢ pomiedzy wyra-

zeniami behawioralnymi.

32 Rozdziat 2

Przejscie postaci
B,—%-B,

oznacza, Ze proces, ktdrego stan jest reprezentowany wyrazeniem behawioralnym
B, w wyniku realizacji akcji a€ Act, zmienia swdj stan na stan reprezentowany
wyrazeniem B,. Jezeli « jest akcja obserwowalna, to jej wykonanie i stowarzy-
szone z nig dane zostaja wymienione pomi¢dzy systemem a jego otoczeniem, jeze-
li natomiast « jest akcja wewngtrzna, to przejsciu od B, do B, towarzyszy komu-
nikacja wewngtrzna, ktéra nie jest widoczna dla otoczenia procesu;

By jest poczatkowym wyrazeniem behawioralnym.

Rodzina relacji przejs¢ jest definiowana na podstawie rekursji strukturalnej, to znaczy
kazdemu operatorowi wyrazenia behawioralnego odpowiada pewien aksjomat lub
reguta systemu aksjomatycznego.

Aksjomaty majg posta¢ ustalonych przejs¢ (schematéw przejs¢) pomiedzy wyrazenia-
mi behawioralnymi. Przestankami i wnioskami regut sa wybrane przejscia. Dodat-
kowo z regutami wigze si¢ warunek ich stosowania.

Reguty zapisuje si¢ w postaci

B—fB B—"B]

@ war
Bl 5BZ

gdzie:
B/—*— B/ (i = 1, 2) sa przejsciami-przestankami,
B, —%— B, jest przejsciem-konkluzja,
war jest warunkiem stosowania reguly.
Aksjomat jest szczegélng postacig reguty, gdy zbiér przestanek jest pusty, dlatego
aksjomaty zapisuje si¢ w postaci przejscia-konkluzji.
Proces pusty — brak aksjomatéw i regut.

Instancja procesu

a /’
KPB—oF _—
P—2%>B
Rekursja
= uP.B]—<—-B’
BLPi= i a] - (R-rec)
UP.B——B

gdzie [P::= B'] jest pomocniczym operatorem (jednokrotnego) zastapienia teksto-
wego. Notacja postaci B[P::= B'] oznacza modyfikacj¢ wyrazenia B, polegajacq na

Jezvk CCS 33

tekstowym zastapieniu kazdego wolnego wystapienia nazwy procesu P w wyrazeniu B
wyrazeniem B'.

Reguta (R-ins) stwierdza, ze wywotanie (instancja) procesu ma zachowanie takie same
jak jego tres¢. Reguta (R-rec) stwierdza natomiast, ze zachowanie procesu rekursywnego
P jest okreslone przez tres¢ tego procesu, zmodyfikowana w taki sposéb, ze kazde wolne
wystapienie jego nazwy jest zastapione tekstowo przez tres¢ tego samego procesu P.

Restrykcja
B—2>pB
ate(x)¢ S (R-res))
B\S—B\s ° |
a ’
B—_—)B/ ga[g(a)e S (R"'(,’S’_’_)
B\S—L>B'\S

Pierwsza reguta restrykcji (R-res;) dotyczy akcji nienalezacej do zbioru przestania-
nych akcji — wykonanie takiej akcji jest obserwowalne. Druga reguta (R-res,) dotyczy
akcji ze zbioru akcji przestanianych - jej wykonanie jest nieobserwowalne, jest trak-
towane jako wykonanie akcji wewnetrzne;j.

Przemianowanie
B—% 5B . f(g) dlaa=g!
- d = R-r
Bl 1— 5 B[f] gdzie f(@) {f(g)? dlaa=g? (R-ren)

Reguta stwierdza, ze zachowanie wyrazenia behawioralnego B[f] z bramkami prze-
mianowanymi funkcja f jest takie jak zachowanie wyrazenia B zmodyfikowanego
w taki sposob, ze kazda akcja na danej bramce g zostaje zastapiona akcja na bramce

f(g).

Nawiasy
B [2¢ 4
———-—B—, gdzie B= B, + B, (R-p1)
(B)—*—B
B—2% 5P
*B, gdzie B = B||| B, (R-p»)
(B)——(B")

Z uzyciem nawiaséw wiaza si¢ dwie reguty, gdyz ich zastosowanie polega na grupo-
waniu wyrazef wyboru lub wyrazen ztozenia réwnolegtego. W przypadku pierwszym
- reguta (R-p,) — wyrazenie (B, + B,), wykonujac pierwsza akcje, dokonuje wyboru
jednego z wyrazen sktadowych, a zatem przechodzi do wyrazenia, w ktérym nie ma
potrzeby dalszego uzycia nawiaséw, gdyz wystepuje tylko jedno wyrazenie sktadowe.
Wykonanie natomiast dowolnej akcji przez wyrazenie ztozenia réwnolegtego (B, || B»)

34 Rozdzial 2

pozostawia oba wyrazenia sktadowe, ktére dalej powinny by¢ ujgte w nawiasy — regu-
ta (R-p).

Prefiksowanie akcjq
a:B—%5B (A-pre)

Zachowanie wyrazenia prefiksowanego akcja «; B jest opisane aksjomatem, ktdry
stwierdza, ze po wykonaniu akcji prefiksujacej « dalsze zachowanie wyrazenia jest
okreslone przez zachowanie wyrazenia B.

Ztozenie rownolegte

B—=>B
— (R-par))
B/ || B,——B/|| B,
o ’
B, ““;"‘) B, , (R-par»)
B/ || B,——B8,| B;
B—*>B B,—%>B (Repary)

B, | B,—— B[|| B,

Dwie pierwsze reguly (R-par,) i (R-par;) odnosza si¢ do przypadku, gdy jedna ze
sktadowych zlozenia réwnolegtego wykonuje akcje, druga sktadowa natomiast nie
wykonuje zadnej akcji. Oznacza to, ze jesli jest wykonywana akcja komunikacyjna, to
partnerem komunikacji jest otoczenie wyrazenia B, || B,. Wynikiem realizacji takiej
akcji jest modyfikacja sktadowej, ktéra uczestniczy w akcji, i pozostawienie bez zmia-
ny drugiej sktadowej. Reguta (R-par;) dotyczy przypadku, gdy obie skltadowe uczest-
nicza w realizacji pary komplementarnych akcji komunikacyjnych. Wéwczas rezulta-
tem realizacji jest odpowiednia modyfikacja obu sktadowych.

Wvybor
Bl Bl 7 (R-C/‘l])
B, +B,——B,
5, i (R-ch»)

B, + B,—“—>B,

Reguly (R-ch)) i (R-ch,) odzwierciedlaja dwa przypadki odnoszace si¢ do wyboru
jednej akcji, nalezacej albo do By, albo do B,. Wybdr takiej akcji determinuje, ze dal-
sze zachowanie przebiega zgodnie z wyrazeniem, do ktérego nalezy wybrana akcja.
Wybér zalezy catkowicie od otoczenia wyrazenia B, + B,, gdy obie sktadowe oferuja
wytacznie akcje komunikacyjne. Gdy natomiast obie sktadowe oferujg tylko akcje

Jezyk CCS 35

wewngtrzne, na przyklad jak dla wyrazenia 7; B, + 7; B,, wybdr jednej z tych akcji
wewngtrznych jest niedeterministyczny i nie zalezy od otoczenia.

Podane aksjomaty i reguly umozliwiajg zdefiniowanie ciagdéw akcji, ktore generuje
dana specyfikacja Spec.

W celu zdefiniowania tych ciaggdw wprowadzmy oznaczenia:

Z' - zbiér wszystkich ciagéw skoficzonych nad zbiorem Z; ciag pusty bedzie ozna-
czany przez &,
Z” — zbidr wszystkich ciagéw nieskonczonych nad zbiorem Z.

Jezeli s,€ Z" oraz s,€ Z" U Z=, to przez s, s, bedziemy oznaczaé konkatenacje tych
ciagow.

Ciag tranzycji (obliczenie) generowany przez system przej$¢ TS(Spec) ma postac

B,—%—>B —2>B,..—%“ B (2.7a)

n

lub
R (2.7b)

n

gdzie:
By jest poczatkowym wyrazeniem specyfikacji Spec,
B, w przypadku obliczenia skonczonego (2.7a) jest wyrazeniem koncowym, to
znaczy takim, dla ktérego nie istnieja przejscia do innych wyrazen.

Dla dwdch wyrazen behawioralnych B, B'e Beh oraz dla skoficzonego ciagu akcji
s€Act, gdzies = ¢ ... @, zapis
B—s— B’ (2.8)

oznacza, ze wyrazenie behawioralne B’ jest osiagalne z wyrazenia B przez ciag akcji s,
czyli

3B,....B, e B— B, .. .—“=1 5B % 5B (2.9)

n- n-1

Bedziemy mowi¢, ze z wyrazenia B ciag akcji s prowadzi do pewnego wyrazenia
osiagalnego, co zapisuje si¢

B s (2.10)
gdy 3 B'e B—s— B'.

Zbiér {B'| 3 B’ « B—s— B'} jest zbiorem wyrazen behawioralnych osigganych z wy-
razenia B.

Dla se€ Act”™ zbidr wszystkich jego poczatkowych podciggéw oznaczmy przez

pref(s) = {s'€Act | Is"€Act” @ s =s"" 5"} 2.11)

36 Rozdziat 2

Definicja 2.3
Specytikacja Spec = <By, Decl> generuje zbidr ciagéw akcji
Seq(By) = SeqFin(By) W SeqInf(By) (2.12)
gdzie:
SeqFin(By) = {s€Act’ | By—s—>) (2.13)
Seqinf (Bo) = {s€ Act™ | Vs'e pref(s) By—s'—) (2.14)

Zbior ciagéw Seq(B,) moze by¢ uwazany za petna semantyk¢ wyrazenia behawio-
ralnego By, gdyz bierze pod uwage wszystkie ciagi, w ktérych wystepuja zaréwno
akcje obserwowalne, jak i nieobserwowalne. Inny rodzaj semantyki bierze pod uwage
tylko ciagi akcji obserwowalnych. W celu przedstawienia tej semantyki wprowadzimy
dodatkowe pojgcia.

Najpierw wprowadzimy relacje przejs¢ obserwowalnych pomig¢dzy wyrazeniami be-
hawioralnymidlas= ¢ ... g€ A, oznaczang

B=s=>B’ (2.15)

i zdefiniowang nastgpujaco:

B =£=B’ oznacza, ze istnieje, by¢ moze pusty, ciag przejs$¢

B,—— B,——B,...—— B, dla ne Nat (2.16)
gdzie: B= Byoraz B'= B,.
B=a=B’, dla ae A, oznacza, ze istnieja B, oraz B,, takie ze
B=¢=B, A B—a—B> A B=¢=>B' 2.17)

Dalej, dlas= ¢ ... €A

B=s=>B’' (2.18)
oznacza, ze
iB,..B,*B=04,=>B, A.. AB,=0;,=>B' (2.19)
oraz
B=s=> (2.20)
oznacza, ze

3B'eB=s=> B’ (2.21)

Jezyk CCS 37

Niech s€ Act” bedzie postaci s = 7% oot a,tt, gdzie

th=7r..7 dla ke€Nat oraz i=0,1,...,n
—
k; razy

sa podciagami ztozonymi wylacznie z akcji wewngtrznych. Przez s*™ oznaczmy pod-
ciag ciagu s ztozony z akcji obserwowalnych, czyli

by
s = O i O

obs obs

W szczegolnosci ™ = ¢, gdy a#7, oraz @ = £ w przypadku przeciwnym.

Definicja 2.4
Specyfikacja Spec = <By, Decl> generuje zbidr obserwowalnych ciagéw akcji
SeqObs(By) = SeqObsFin(By) U SeqObsInf (By) (2.22)
gdzie:
SeqObsFin(By) = {s€A” | By=s=} (2.23)
SeqObsInf(By) = {s€ Act™ | vs'e pref(s) ® By=s'=>} (2.24)

W dalszej czgsci bedziemy rozpatrywacé wyrazenia dozorowane behawioralne, okre-
$lone przez definicjg 2.5.

Definicja 2.5

Wyrazenie behawioralne B nazywa si¢ wyrazeniem dozorowanym, jesli kazde wy-
stapienie instancji dowolnego procesu, z wyjatkiem procesu pustego, w wyrazeniu
B, jest prefiksowane akcja.

Pojecie wyrazenia dozorowanego eliminuje pewne niewygodne, ,,patologiczne” wy-
razenia, ktérych interpretacja jest co najmniej klopotliwa. Przyktadami takich wyrazen
sg instancje procesow opartych na definicjach:

UP.P
4Q.(a; B+ Q)
uP.Q pQ.P
Czasem réwniez rozwazania ogranicza si¢ do wyrazen zbudowanych regularnie.
Definicja 2.6

Dozorowane wyrazenie behawioralne B nazywa si¢ wyrazeniem regularnie zbudo-
wanym, jesli dla dowolnego procesu P wystepujacego w B o definicji yP.Bp jego
tre$¢ Bp nie zawiera rekursywnego wystapienia operatora ||.

38 Rozdziat 2

Pojecie wyrazenia regularnie zbudowanego eliminuje natomiast sytuacje, gdy kolejne
przejscia od danego wyrazenia prowadza do nieograniczonej rozbudowy wyrazenia.
Rozpatrzmy na przyktad proces

P .(a; P b; 0)

Wywotaniu tego procesu moze towarzyszy¢ ciag tranzycji
(a; P b;0)—— ((a; P[|6: 0) || b; 0) —— (((a; P || 6: 0)]| b; 0)]| b3 0) ——> ...

w ktérym nastgpuje nieograniczone rozwijanie wyrazenia.

2.4. Relacje rownowaznosci

Tekstowe poréwnanie wyrazen behawioralnych nie pozwala bezposrednio na stwierdze-
nie, czy stanowig one rézna reprezentacj¢ takich samych zachowan. Podstawa do stwier-
dzania réwnowaznosci zachowan dwdch wyrazen jest nastepujacy punkt widzenia:

jezeli jedno z wyrazen jest zdolne do wykonania pewnej akcji ¢, a nastgpnie do

wykonywania akcji zgodnie z nowym wyrazeniem B, to drugie — réwnowazne mu

wyrazenie — musi by¢ réwniez zdolne do wykonania tej samej akcji ¢, a nastgpnie

do zachowania si¢ zgodnie z wyrazeniem, ktére jest rownowazne wyrazeniu B.
Tego rodzaju réwnowaznos¢ zachowan jest okreslana mianem réwnowaznosci bisy-
mulacyjnej. Podane dalej definicje uscislajg to pojgcie, a ponadto rozrdzniaja pojecie
silnej i stabej bisymulacji.

Definicja 2.7
Relacje binarna R C Beh® nazywa sig bisymulacjq, jesli dla kazdej pary wyrazen
behawioralnych <B;, B,>€ R i dowolnych akcji ae Act spetnione s nastgpujace
warunki:
a) jezeli B,—2—>B/,to 3B, e B,—*—>B,A<B/,B, >€R

b) jezeli B,—~—B;,to 3B, ¢ B,—“—B/A<B|,B, >€ R
Definicja 2.8

Dwa wyrazenia B, oraz B, sa bisymulacyjnie silnie rbwnowazne, co oznacza si¢
B, ~ B,, gdy istnieje bisymulacja R taka, ze <B,, B.>€R.

Z definicji wynika, ze relacja ~ jest relacjg silnej bisymulacji, gdy
~ =gef U{ R | R jest relacjg bisymulacji} (2.25)

Relacja silnej bisymulacji traktuje akcje komunikacyjne w taki sam sposob jak akcje
wewnetrzne i dlatego w przypadku, gdy akcje wewnetrzne sg obserwowalne, nie za-

Jezyk CCS 39

chodza wiasnosci, ktérych mozna by w tym przypadku oczekiwaé, na przykiad relacja
ta nie zachodzi pomigdzy wyrazeniami ¢; 7; B oraz «; B. Uzasadnia to wprowadzenie
relacji stabej bisymulacji, ktdra jest okreslona nastepujaco:

Definicja 2.9

Relacje binarna S C Beh® nazywa sie stabq bisymulacjq, jesli dla kazdej pary wy-
razef behawioralnych <B,, B,> i dowolnych akcji ce Act s spetnione nastepujace
warunki:

a) jezeli B,—%— B/ to 3B, B, =a""= ByA<B|,B, >€ §

b) jezeli B,—%—B;,to 3B e B, =a”"=> B/A< B|,B; >€ §

Definicja 2.10
Dwa wyrazenia B, oraz B, sa obserwacyjnie réwnowazne, co oznacza si¢ B) = B,
gdy istnieje staba bisymulacja S taka, ze <B,, B.>€ S.

Oznacza to, ze relacja = jest relacjg obserwacyjnej réwnowaznosci, gdy

= =ger U{ R | R jest relacja stabej bisymulacji } (2.26)

Nalezy zauwazy¢, ze réwnowaznos¢ obserwacyjna nie sprowadza si¢ do zwyklego
pomijania akcji wewngtrznych w poréwnywanych wyrazeniach behawioralnych. Na
przyktad dwa wyrazenia «; B oraz 7; «; B sa rownowazne obserwacyjnie, ale dwa
wyrazenia @,; B, + 7; &; B, oraz ; B, + &; B> nie sa rownowazne obserwacyjnie.
Latwo sprawdzié, ze zarbwno bisymulacja, jak i staba bisymulacja sa relacjami réw-
nowaznosci na zbiorze wyrazen behawioralnych, czyli ze sa relacjami zwrotnymi, sy-
metrycznymi i przechodnimi. Dodatkowo relacja silnej bisymulacji jest kongruencja,
relacja obserwacyjnej bisymulacji kongruencja natomiast nie jest.

Relacja kongruencji nad dowolnym zbiorem terméw Term jest zdefiniowana naste-
pujaco:

Definicja 2.11
Niech t{ € Term bedzie podtermem termu /€ Term, co dalej bedziemy zapisywaé
subi(zl', 1), oraz niech 1, bgdzie termem, ktéry powstaje z termu f, przez tekstowe
zastapienie podtermu ¢, termem 15, czyli b =1,[1] =1,].
Relacja rownowaznosci R nad dowolnym zbiorem terméw Term jest kongruencjq,

jezeli z faktu, ze <t,, t;>€R wynika, ze <t,, ,>€R.

Uwaga: Operator zastapienia tekstowego [f,:=2;] nalezy odréznia¢ od poprzednio
wprowadzonego operatora zastgpienia tekstowego [P::=B].

40 Rozdziat 2

Jezeli jako zbidr terméw rozpatrzymy zbidér wyrazen behawioralnych Beh oraz wyra-
zenie behawioralne B, zmodyfikujemy w taki sposéb, ze pewne jego podwyrazenie
B/ zastapimy podwyrazeniem B, to otrzymane w ten sposéb nowe wyrazenie B,
pozostaje w relacji R z wyrazeniem B, jesli tylko podwyrazenia B, oraz B, sa ze
sobg w relacji R.

Definicja 2.12

Dwa wyrazenia behawioralne B, oraz B, sg kongruencyjnie obserwacyjnie réwno-
wazne, co zapisujemy B; =° B,, jesli sg spetnione nastgpujace warunki:

a) B, = B,,

b) dla dowolnego wyrazenia B takiego, ze subt(B,, B), jezeli B, = B,, to

B = B[B, := B;]

Kongruencyjna réwnowazno$¢ obserwacyjna pozwala na stwierdzenie, ze dwa wyra-
zenia behawioralne, kongruencyjnie réwnowazne obserwacyjnie mozna wzajemnie
zastgpowaé w dowolnym wyrazeniu bez obawy zmiany obserwowanego zachowania
catego wyrazenia.

Bezposrednio z definicji relacji wynika, ze
~Eaies (2.27)

2.5. Prawa rownos$ciowe

Jednym ze sposobdéw badania réwnowaznosci wyrazen behawioralnych jest porow-
nanie graféw wyrazen osiagalnych dla tych wyrazen — jest to podejscie algorytmiczne.
Algorytm badania silnej réwnowaznosci bisymulacyjnej jest efektywny obliczeniowo
— ma zlozono$¢ wielomianowa. Podobnie, przy pewnych ograniczeniach (zbiory
Seq(B,) i Seq(B;) odpowiadajace poréwnywanym wyrazeniom muszg by¢ skoficzone),
efektywny jest algorytm badania stabej réwnosci bisymulacyjnej [Milner 1989],
a przeglad wczesniejszych prac na ten temat zawiera migdzy innymi publikacja [Bolo-
gnesi, Smolka 1987].

Inny sposéb badania réwnowaznosci polega na tekstowych przeksztalceniach wyrazen
opartych na regutach réwnosciowych — jest to podejscie algebraiczne [Milner 1989].

System dowodowy sktada si¢ ze zbioru aksjomatéw i regut wnioskowania. Aksjomaty
przyjmuja posta¢ réwnosci
B, =B,

C

gdzie symbol = moze oznacza¢ jedna z réwnowaznosci: ~, =, =.

Zbior regut, ze wzgledu na whasnodci réwnowaznosci, obejmuje reguty zwrotnosci,
symetrii 1 przechodniosci:

41

Jezyk CCS
B, =B,
B, =B,
Bz = Bl

(R-refl)

(R-sym)

(R-trans)

Ponizej przestawiono zbidr aksjomatow dla badania kongruencyjnej réwnowaznosci

obserwacyjnej =,

Aksjomaty dla operatora wyboru:
B, + B, = B, +B,
B+ (By+ By) =" (B + By) + By
B+B=‘B
B+0='B

Aksjomaty dla operatora prefiksowania akcja:
a,t;B="a; B
T;B+B="T1,B

o, (B \+ 7, B) + a; B,=" «; (B, + T; By)

Aksjomaty dla operatora restrykc;ji:
B\S =° B jezeli gate(S) N gate(FAct(B)) = D
B\S\S, = B\(§,U S,)
(By || B)\S =° B)\S|| Bo\S
jezeli gate(S) N gate(FAct(B,)) N gate(FAct(B,)) = &
BLfI\S =B\ f7(S)[f]

Aksjomaty dla operatora przemianowania:
Blid] =" B
BLf1="BIf'] jezeli flyuetracay=1"lsaetFacumy
BIf1lf']1="Blf'°f] gdzie ° jest symbolem zioZzenia funkcji
(B || BLf]=° Bi[f]1|| Ba[f] jezeli funkcja f jest bijekcja

(A\-ch)
(As-ch)
(As-ch)
(As-ch)

(A\-pre)
(As-pre)
(As-pre)

(A-res)
(As-res)

(A;-res)
(Ag-res)

(A)-ren)
(Aq-ren)
(As-ren)

(A-ren)

42 Rozdziat 2

Aksjomaty dla operatora kompozycji réwnolegte;j:

B| ” Bg =* Bg ”B| (Al-par)
B, || (B; || Bs) = (B\]|| B2) || B (Ax-par)
B||0=B (As-par)

Zbioér regut specyficznych dla kongruencyjnej rownowaznosci obserwacyjnej obej-
muje reguty zwiazane z rekursja
UP.B
P="B

(R\-rec)

Reguta R)-rec stwierdza, ze wywolanie (instancja) procesu jest réwnowazna tresci
procesu.

P='B[P:=X] Q='B[Q:=X] gdzie X jest wyrazeniem
P=Q regularnie zbudowanym

(Ry-rec)

Regula (R»-rec) jest szczegdlnym przypadkiem reguty podanej nizej. Reguta ta odnosi
si¢ do zbioru wzajemnie rekursywnie zdefiniowanych proceséw. Wymaga ona wpro-
wadzenia pomocniczych oznaczen. Niech

P= P,..,P,
Q0= 0....0,
X=X,..X,
wowczas
uPBP:=X] uQ.BlQ:=X) gdzie X jest wyrazeniem (Rs-rec)
P=Q regularnie zbudowanym 0

2.6. Twierdzenie o ekspansji

Badanie réwnowaznosci wyrazen behawioralnych czesto prowadzi si¢ po uprzednim
sprowadzeniu ich do postaci normalnych. Przedstawione nizej prawo o ekspansji po-
kazuje, jak mozna wyeliminowa¢ z wyrazenia operatory ztozenia rownolegtego.

Prawo (twierdzenie) o ekspansji dotyczy wyrazen behawioralnych w normalnej posta-
ci réwnolegtej

B= || w2 B \S=(B .|| B)\S

Mozliwe sa dwa rodzaje tranzycji wyrazenia B do wyrazenia nastgpnego.

Jezvk CCS 43

Pierwszy rodzaj polega na tranzycji tylko jednego z wyrazen skladowych. Mozliwe
jest to wéwczas, gdy akcja jest wynikiem komunikacji wyrazenia B na bramce spoza
zbioru §, czyli

S {@ B 111 B 11| B)\S | B,— B A gate(ee S

Drugi rodzaj tranzycji jest wynikiem komunikacji pomigdzy dwoma sktadowymi wy-
razenia B, przez bramke¢ ze zbioru S, czyli jest przejSciem do jednej z sytuacji opisa-
nych wyrazeniem behawioralnym

Z{T;(B, I BN...I| B; ||...Il BO\S | B,—*—= B/ A B, L)B; A< jAgate(a) e S}

Zachodzi zatem twierdzenie:
Twierdzenie 2.1

Jezeli
B=(B/||..| B,))\S

to
B= S{c:(B N BN Bl BO\S| B—“3 B/ A B, —“ B ni< j}
+ S {8 1. I B Il B)\S| B,—*—B] A gare(e)e S}

Znaczenie twierdzenia polega na tym, ze umozliwia ono krokowgq transformacjg¢ wyra-
zenia behawioralnego do postaci, ktéra zawiera tylko operatory prefiksowania akcja
i operatora wyboru. Transformacja taka, oczywiscie, nie dla kazdego wyrazenia kon-
czy si¢ uzyskaniem wyrazenia w tej postaci o skorficzonej dtugosci.

2.7. Uwagi koncowe

W tym rozdziale przedstawiono podstawowe informacje o jezyku CCS. Na bazie CCS
opracowano pewne nowe wersje, miedzy innymi CCS™ oraz SCCS" [Fencott 1996].
Ten ostatni jezyk jest odpowiednikiem jezyka SCCS (Synchronous Calculus of Com-
municating Systems) opracowanego przez Milnera [1983]. Zasadnicza réznica pomig-
dzy jezykami dotyczy sposobu opisu semantyki: semantyka SCCS jest semantyka
przeplotowa, natomiast SCCS " — semantyka w petni réwnolegta.

Wersje te powstaty na gruncie rozwazan na temat sposobu opisu semantyki jezyka. Przed-
stawiona semantyka jezyka CCS jest semantyka przeplotowa. Oznacza to dwie rzeczy:
e tranzycje pomiedzy wyrazeniami nastepujg w wyniku zajscia tylko pojedynczej
interakcji,

44 Rozdziat 2

e interakcje, ktére moga zachodzi¢ rownoczesnie, sa reprezentowane zbiorem cia-
gbéw tranzycji, stanowigcych wszystkie permutacje tych interakcji.

Wykorzystany opis przeplotowej semantyki operacyjnej opiera si¢ na klasycznym juz
obecnie podejsciu strukturalnej rekursji, zaproponowanej w pracach Plotkina [Plotkin,
Hennessy 1979], [Plotkin 1981]. Zaleta semantyki przeplotowej jest prosta formali-
zacja, wada natomiast, Ze moze si¢ wydawac nienaturalna.

Jezyk CCS’ jest pewna modyfikacja CCS, jego semantyka jest semantyka petnej row-
nolegtosci (zruly concurrency semantic). Tranzycje w tej semantyce sa widziane jako
rezultat jednoczesnego zajScia wielu interakcji. Formalnie, jednoczesnie zachodzace
interakcje sa reprezentowane wielozbiorami akcji. Semantyka peinej réwnolegtosci
jest wprawdzie naturalna, ale stwarza ktopoty techniczne przy analizie i dowodzeniu
wilasnosci wyrazen behawioralnych. Zwiazki pomigdzy przeplotowym i nieprzeploto-
wym (réwnolegtym) podejsciem do definiowania semantyki sieci proceséw omawia
na przyktad Dembinski [1997].

Jezyk SCCS” jest synchroniczna wersja jezyka CCS™. Synchroniczna wersja wprowa-
dza niejawnie czas dyskretny. Czas jest podzielony na kolejne przedziaty, w ktdrych
moga zachodzié interakcje. W danym odcinku czasu proces albo wykonuje akcje, albo
bezczynnie czeka na kolejny odcinek czasu. Proces nie moze jednak czekac bezczyn-
nie, jesli nie jest to wyrazone jawnie. Opdznianie oczekiwania na wykonanie akcji
musi by¢é wyrazone jawnie za pomocg dodatkowo wprowadzonej akcji jednostkowego
opéznienia. Rozszerzenie jezyka polega w pierwszej kolejnosci na wprowadzeniu tej
dodatkowej akcji jednostkowego opdznienia, a w nastgpnej — na odpowiedniej defini-
cji semantyki.

Rézne rodzaje relacji réwnowaznosci stuzace do poréwnywania proceséw sa szeroko
omawiane, mi¢dzy innymi w pracach: [Bolognesi, Smolka 1987], [De Nicola, Hen-
nessy 1984]. [Hennessy 1988], [Milner 1989].

Od specyfikacji w jezyku CCS, jak i w innych jezykach algebraicznych, oczekuje si¢
spetnienia pewnych wilasnosci, jak bezpieczefistwa, zywotnosci, bezstronnosci itp.
(zob. rozdz. 1.). Wiasnosci takie wyraza si¢ w jezykach logiki, dla ktérych sa skon-
struowane odpowiednie systemy dowodzenia. W niniejszej monografii zagadnien tych
sie nie porusza. Sa one omawiane migdzy innymi w pracach: [Clarke, Emerson, Sistla
1983], [Hennessy, Reagan 1991], [Manna, Pnueli 1992].

45

3. Rozszerzenia czasowe CCS

3.1. Wstep

Specyfikacja systemdéw czasu rzeczywistego musi dysponowa¢ pojeciem czasu. Czas
do specyfikacji, doktadniej do jezyka specyfikacji, mozna wprowadza¢ w sposéb nie-
jawny lub jawny.

Z niejawnym wprowadzeniem czasu mamy do czynienia w jezykach SCCS i SCCS’,
wspomnianych w zakonczeniu poprzedniego rozdzialu. Wynika to z zalozenia, ze
dziatanie systemu, w tym wykonywanie akcji, odbywa si¢ w kolejnych okresach, wy-
znaczonych podzialem czasu globalnego zegara na kwanty czasu. Przy takim podej-
Sciu modelowany jest wlasciwie nie czas, ale ,,tykanie” globalnego zegara. W okresie
pomiedzy kolejnymi ,,tyknigciami” specyfikacje proceséw muszg jednoznacznie okre-
sla¢, czy proces wykonuje jakies akcje, czy tez czeka do nastgpnego ,,tyknigcia”. Po-
dejscie takie moze by¢ odpowiednie tylko do niektérych systeméw, wydaje si¢ na
przyktad wilasciwe do modelowania synchronicznych uktadéw cytrowych, ktérych
dziatanie, z zatozenia, jest synchronizowane globalnym zegarem. Nie jest natomiast
wystarczajace do specyfikacji systeméw czasu rzeczywistego.

Jawnie mozna wprowadza¢ czas na dwa sposoby:

Pierwszy polega na przypisaniu kazdej akcji pewnego odcinka czasu przeznaczonego
na jej realizacje. Akcje komplementarne maja, oczywiscie, jednakowy czas trwania.
Akcje, ktére w danym momencie sa oferowane, ale nie moga by¢ wykonane, musza
by¢ op6zniane albo do momentu synchronizacji z akcjami komplementarnymi, albo do
momentu wycofania ich oferty. Podej$cie takie ma odzwierciedlenie w wielu jezykach
programowania czasu rzeczywistego.

Drugi sposéb polega na wyrdznieniu dwéch rodzajéw akcji: natychmiastowych
i czasowych. Akcja czasowa wprowadza opdznienie o zadany odcinek czasu. W ten
sposéb staje si¢ mozliwe modelowanie akcji komunikacyjnych, ktérych realizacja
zajmuje pewien odcinek czasu. Mianowicie czasowa akcje komunikacyjna, ktéra
ma trwac¢ pewien odcinek czasu, mozna modelowaé jako sekwencyjne ziozenie
trzech akcji:

¢ akcji natychmiastowej, reprezentujacej poczatek realizacji akcji komunikacyjnej,
e akcji czasowej, reprezentujacej wykonanie akcji komunikacyjnej (wymiang da-
nych pomigdzy komunikujacymi si¢ partnerami),
e akcji natychmiastowej, reprezentujacej zakonczenie akcji komunikacyjne;j.
Akcje op6zniajace mozna interpretowa¢ dwojako. Interpretacja silna oznacza, ze pro-
ces po uptywie opdznienia musi wykona¢ akcje natychmiastows, interpretacja staba
oznacza natomiast, ze moze wykonac taka akcje.

46 Rozdziat 3

Drugi sposéb wprowadzania czasu do jezyka specyfikacji ma dwie zalety. Pierwsza
wigze si¢ z tym, ze takie rozszerzenie nie modyfikuje istotnie znaczenia istniejacych
operatoréw jezyka, a druga wyraza si¢ w tym, ze uzycie czasu w wielu systemach
czasu rzeczywistego wiaze si¢ z oczekiwaniem na pewne akcje.

Z pojeciem czasu wiaze si¢ struktura czasowa — zbidr wartosci chwil czasowych wraz
z pewnym uporzadkowaniem. Strukturq czasowq nazywa si¢ par¢

SC=<T, <> 3.1
gdzie < T jest relacja porzadku, ktéra porzadkuje chwile w sensie chwila wczes-
niejsza—pdzniejsza.

Jezeli < jest relacja porzadku czgsciowego (to znaczy jest zwrotna, antysymetryczna
i przechodnia), to mamy do czynienia ze strukturg czasu rozgatezionego, a jesli jest
relacja porzadku liniowego (to znaczy jest zwrotna, antysymetryczna, przechodnia
i spdjna), to mamy do czynienia ze strukturg czasu liniowego.

Strukturg czasowa nazywa si¢ gestq, gdy
VheToeVheToedneTo (S b h < hAh<h) (3.2)
dyskretng prawostronnie, gdy
VoeToeVHeTo ((t X hAt# hH)=

BreTeo () Al ZBIATLET o (1) X AL LA KBE L)) (3.3)
dyskretnq lewostronnie, gdy

VeTe V[gET'([] X bAL#E L)
(FheTe (g bAKBEL) A —3JneTe B bBABS WA LEL)) 3.4

Przyktadem zbioru, na ktérym mozna zbudowa¢ strukture ciagla, jest zbior liczb wy-
miernych, a dyskretng — zbidr liczb naturalnych. W dalszej cze¢sci rozdziatu zaktada
si¢ dyskretng lewo- i prawostronnie strukture czasu liniowego. Wykorzystuje si¢ ja-
ko zbiory chwil zbiér liczb naturalnych Nat lub zbidr liczb wymiernych Wym z rela-
cja porzadku < w zbiorze liczb naturalnych lub liczb wymiernych, n < m oznacza:
chwila n nie jest pézniejsza od chwili m. Strukturami czasowymi sa zatem <Nat, < >
oraz <Wym, < >. Na strukturach tych sa tez wykonywane operacje dodawania i bra-
nia minimum dwdch chwil czasowych.

3.2. TCCS - wprowadzenie

Jezyk TCCS (Timed CCS) jest czasowym rozszerzeniem CCS, polegajacym na za-
stosowaniu drugiego z oméwionych wyzej sposobéw wprowadzania czasu do jezyka.

Rozszerzenie czasowe CCS 47

Operuje on dwoma rodzajami akcji jezyka CCS, czyli akcjami komunikacyjnymi
1 akcja wewngtrznag, ktore sa realizowane natychmiastowo, oraz dodatkowo wprowa-
dza akcje czasowe, ktérych realizacja wymaga pewnego odcinka czasu. Akcja czaso-
wa wprowadza opdznienie o zadany odcinek czasu.

Czasowa akcje komunikacyjna a w jezyku TCCS, ktéra ma trwac odcinek czasu ¢,
modeluje si¢ jako sekwencyjne ztozenie trzech akcji

aStart ; (t); aEnd
gdzie:
aStart oraz o End sa akcjami natychmiastowymi z jezyka CCS,
(1) jest nowo wprowadzong akcja czasowg (opdzniajaca).

Z wprowadzeniem akcji czasowych — jak wspomniano wczesniej — wiazg si¢ dwie
mozliwe interpretacje dotyczace momentdw wykonywania akcji. Pierwsza interpre-
tacja — silniejsza — oznacza, ze rozpoczgcie akcji czasowej musi nastapi¢ natychmiast
po zakonczeniu poprzedzajacej ja akcji. Druga interpretacja — stabsza — oznacza, ze
rozpoczecie akcji czasowej moze nastapi¢c w dowolnym momencie po zakonczeniu
poprzedzajacej ja akcji. Wyr6znia si¢ wigc dwie wersje jezyka TCCS: silng — sTCCS
(strong TCCS) [Moller, Tofts 1989] i stabg — wTCCS (weak TCCS) [Tofts 1989].

Opisywana tu wersja jezyka TCCS [Fencott 1996] jest wersja posrednia, gdyz
— przyjmujac silng interpretacje opdznien — wprowadza dodatkowe mechanizmy
uelastyczniajace t¢ interpretacje. Potrzeba ich wprowadzenia wynika z faktu, ze
wylaczne stosowanie silnej interpretacji op6znien powoduje znaczne ograniczenie
ekspresji jezyka.
Pierwszy z dwéch wprowadzonych mechanizméw pozwala na okreslenie czy dana
akcja musi by¢ wykonana natychmiast w najwczesniejszym mozliwym momencie, czy
tez moze oczekiwaé na wykonanie dowolnie dtugo. Akcje, ktére moga oczekiwaé na
swojq realizacj¢ dowolnie diugo, wyréznia si¢ sktadniowo przez podkreslenie ich na-
zwy. Nazwy akcji natomiast, ktére muszg by¢ wykonywane w najwczesniejszym moz-
liwym momencie nie sg podkreslane. W sekwencyjnym ztozeniu akcji

a; By
akcja o musi by¢ wykonana natychmiast, akcja f w dowolnym momencie po zakon-
czeniu akcji @, natomiast akcja ynatychmiast po zakonczeniu akcji S.
Drugi mechanizm polega na wprowadzeniu, oprécz operatora + z jezyka CCS, dodat-
kowego rodzaju operatora wyboru reprezentowanego symbolem ++. Potrzeba dodat-
kowego operatora wigze si¢ ze sposobem reagowania na uptyw czasu. Operator + jest
nazywany stabym, a ++ — silnym operatorem wyboru. Réznice w ich interpretacji wy-
jasnia przyktad. Niech bedzie dany proces

UP.((3); a; P+ (5); B, P)

48 Rozdziat 3

Obie czgsci sktadowe wyrazenia wyboru sg prefiksowane akcjami opdznienia (3) oraz
(5). Operator + dopuszcza wybdr obu czgséci sktadowych tego wyrazenia, przy czym
czyni to w sposéb nastepujacy: Jezeli po uptywie opdznienia 3 jednostek czasu od wy-
wolania procesu P nastapi realizacja akcji ¢, to nastgpnie jest powtarzane wykonanie
wywotania P. Jezeli natomiast po uptywie 3 jednostek czasu akcja & nie zostanie wy-
konana, to nastgpuje opdéznienie o dalsze 2 jednostki czasu (do zakonczenia op6znie-
nia wyrazanego akcja czasowa (5)), po czym musi nastapi¢ realizacja akcji £, a po jej
wykonaniu nastgpuje ponowne wywotanie procesu P.

Jezeli operator + zastapimy operatorem ++, to interpretacja procesu
UP.((3); a; P ++(5); B; P)

bedzie catkiem inna. Operator dopuszcza mianowicie wybdr tylko tej czgsci sktadowe;,
ktéra jest opdzniana krécej. W naszym przyktadzie oznacza to, ze moze by¢ wybrana
tylko lewa sktadowa (3); a; P, natomiast prawa sktadowa (5); B; P nigdy nie bedzie wy-
brana. Po uptywie zatem opdznienia 3 jednostek czasu od wywotania procesu P musi
nastapi¢ realizacja akcji ¢, a nastgpnie bgdzie powtarzane wykonanie wywotania P.

3.3. TCCS - definicja formalna

TCCS wprowadza nowga kategori¢ semantyczng — dziedzing czasowg w postaci stru-
ktury relacyjnej
<Time, <, +> (3.9)

gdzie:

Time jest dowolnym zbiorem przeliczalnym, zwykle przyjmuje sig, Ze jest to zbidr

liczb naturalnych,

< jest relacja porzadku liniowego na zbiorze Time,

+ : Time® — Time jest operacja dodawania.

Symbol + jest przecigzony, w zaleznosci od kontekstu wyznaczonego przez jego ar-
gumenty oznacza funkcj¢ dodawania badz operator wyboru wyrazen behawioralnych.

Sktadnia zbioru wyrazen czasowych behawioralnych TBeh jezyka TCCS, w notacji
BNF, jest okreslona nastepujaco:

B:=0|0|P|B\S|B[f]|(B)|@;B|(1);B|a:B|B||B|B+B/B++B (3.6)

gdzie:
Be TBeh, Pe Proc, S C A, f: G — G to funkcja przemianowania bramek akgcji,
te Time jest dtugoscia czasu opdznienia. Kolejno$¢ wprowadzenia operatoréw od-
powiada malejacej kolejnosci ich priorytetéw.

Lista definicji proceséw czasowych TDef jest okreslona tak samo jak dla bezcza-
sowego CCS.

Rozszerzenie czasowe CCS 49

Semantyka operacyjna specyfikacji czasowej TSpec = <B,, Defp>, gdzie: Bye TBeh,
a TDefpe TDef jest lista definicji proceséw czasowych, jest definiowana na podstawie
czasowego etykietowanego systemu przejs¢ postaci
TS(TSpec) = <TBeh, TAct, Time, TTr, By> 3.7

gdzie:

TBeh jest zbiorem czasowych wyrazen behawioralnych,

TAct =Act U {(t) | t € Time} jest zbiorem akcji,

Time jest zbiorem chwil,

TTr = {—*— C TBehxTBeh|a€ Act} u{—— C TBehxTBeh|t € Time} jest ro-
dzing relacji przej$¢ pomigedzy wyrazeniami behawioralnymi‘,
By jest poczatkowym wyrazeniem behawioralnym.
Przejscie postaci (symbol akcji & nad strzatka)
B,—%->B, (3.8)

zwane przejsciem akcyjnym, oznacza — jak w przypadku CCS — ze proces, ktérego stan
jest reprezentowany wyrazeniem behawioralnym B,e TBeh, w wyniku realizacji akcji
o TAct, zmienia si¢ na stan reprezentowany wyrazeniem B,€ TBeh.

Przejscie natomiast postaci (symbol uptywu czasu ¢ pod strzatka)

B,—— B, (3.8)

zwane przejsciem czasowym, oznacza, ze proces, ktérego stan jest reprezentowany
wyrazeniem behawioralnym B,e TBeh, w wyniku uptywu odcinka czasu o diugosci
te Time, zmienia si¢ na stan reprezentowany wyrazeniem B,& TBeh.

Rodzina relacji przejs¢ jest definiowana rekursywnie. Zbior aksjomatéw i regut dla
TCCS jest w zasadzie rozszerzeniem odpowiedniego zbioru dla CCS. Rozszerzenie
jest zwigzane z dotaczeniem przejs$¢ czasowych.

W zbiorze regut dotyczacych przej$¢ akcyjnych rozszerza si¢ reguly dotyczace opera-
tora wyboru. Mianowicie reguty (R-ch) odnosza si¢ teraz do obu operatoréw wyboru +
oraz ++, czyli

dla ope {+, ++} (R-ch)

Wprowadza si¢ tez dodatkowy aksjomat dla akcji, ktérych rozpoczgcie moze by¢ do-
wolnie opézniane

a;B—%>B (A-pre)

Zbiér aksjomatéw i regut dotyczacych przejs¢ czasowych jest dosy¢ ztozony. Bezpo-
srednio wprowadza si¢ nastgpujace aksjomaty i reguly:

50 Rozdziat 3

Opdznianie
0—0 &, B——> o B (A-del)

Prefiksowanie akcjq czasowq

(1), B —3 B (A,-t-pre)

(r+s),B — (s); B (Aa-t-pre)
B——B

1 (R-t-pre)

(t+5);B— B’

Dalszy zestaw regul wymaga uzycia pomocniczych wiasnosci, stwierdzajacych czy
dane czasowe wyrazenie behawioralne moze by¢ op6zniane o zadany odcinek czasu.

Niech prawdziwos$¢ formuty del(B, t), gdzie del jest predykatem, oznacza, ze czasowe
wyrazenie behawioralne B moze by¢ opdzniane o odcinek czasu ¢, czyli ze po uptywie
t jednostek czasu od dowolnie ustalonej chwili wyrazenie B bgdzie oferowa¢ swojemu
otoczeniu ten sam zbidr akcji komunikacyjnych. Predykat del jest zdefiniowany rekur-
sywnie przez nastepujacy zbiér aksjomatéw i regut:

del(0, 1)
del(a; B, t)
del((t); B, s) dlas<t
_EalAg) dlas<t+t
del((1);B,s)

2eiLE, 1) dlai=1,2

del(B, + B, ,1)

del(B,,t) del(B,,t)
del(B, ++ B,, 1)

del(B,.t) del(B,.1)
del(B, || B,.1)

del(B,t)
del(B\S,t)

del(B,1)
del(B[f].1)

del(B,t)

dla uP.B
del(P.t) #

Rozszerzenie czasowe CCS

51

Wybor czasowy

Bl—";—)BI/

, ﬂdel(Bﬂ,t)
B, +B,— B, -

BE ﬁB;

: —del(B, 1)
BI + 32 .ﬁ BZ

B, + B,——B| +B;

B——B B,—B,

B, ++B,—— B/ + B,
Ztozenie réwnolegte czasowe
B,— B/ B, — B;
B\|| B, ——B/|| B;

Restrykcja czasowa
B "—) Bl
B\§—— B'\S

Przemianowanie czasowe
B—-I——) Bl
Bl f1—— B’ f]

Instancja procesu czasowa

B——>B
— 7" dla uP.B

’

P——B

4

B——>B .
———— dla uPB
B——P
Wprowadzmy oznaczenie: niech
B, —uat— B,
gdzie are TAct, oznacza

B,—“>B,, gdy are Act,

oraz
B,—— B,, gdy at¢ Act.

(RI-t-ch)

(R2-t-ch)

(R3-t-ch)

(R3-t-ch)

(R-t-par)

(R-t-res)

(R-t-ren)

(RI-t-ins)

(R2-t-ins)

52 Rozdziat 3

Ciag tranzycji (obliczenie) generowany przez czasowy system przej$é TS(TSpec) ma
postaé

By—at,(— B, —at,— B, ... —at,— B, (3.10a)
lub

B() —at,— B, —at,— Bz R] P B,,——at,,+|—>... (310b)
gdzie:
By jest poczatkowym wyrazeniem specyfikacji TSpec,
B, w przypadku obliczenia skonczonego (a) jest wyrazeniem koncowym, to zna-
czy takim, dla ktérego nie istnieja przejscia do innych wyrazen.

Z zastosowaniem poprzednio wprowadzonych oznaczen okre$la si¢ nastgpujace zbiory
ciagéw:

Definicja 3.1
Specyfikacja czasowa TSpec = <By, TDecl> generuje zbidr ciagdw akcji
TSeq(By) = TSeqFin(By) U TSeqinf(By) (3.11)
gdzie:
TSeqFin(B,) = {st€ (Act U Time) | By—st—} (3.12)

TSeqlnf (By) = {ste (Act L Time)™ | vsr'e pref(st) ® By—st'—} (3.13)

3.4. RTCCS - wprowadzenie

Jezyk RTCCS jest oryginalnym rozszerzeniem czasowym jezyka CCS [Huzar 1996].
Rozszerzenie opiera si¢ na dwéch gtéwnych zatozeniach:

o wszystkie akcje (w tym akcje wewnetrzne) s akcjami czasowymi, ich realizacja
moze wymagaé niepustego okresu czasu,

e zachodzenie akcji obserwowalnych jest wynikiem synchronizacji komunikuja-
cych sig proceséw, co oznacza, Ze rozpoczgcie realizacji pary komplementarnych
akcji czasowych jest wyznaczone momentem ich synchronizacji, a zainicjowana
komunikacja pary proceséw jest nieprzerywalna.

Przyjmuje si¢ model relatywnego, gestego czasu globalnego. Dziedzina czasowa Time
jest reprezentowana przez liczby wymierne.

Przedstawiane tu rozszerzenie ogranicza si¢ do synchronicznej komunikacji dwdch
proceséw. W pracy [Huzar 1996] rozpatruje si¢ model ogdlniejszy, dopuszczajacy
synchroniczng komunikacj¢ wigcej niz dwéch proceséw. Do takiego modelu wspét-
pracy proceséw wrécimy w nastgpnych rozdziatach.

Niech A bedzie zbiorem obserwowalnych akcji komunikacyjnych oraz niech i bgdzie
nieobserwowalng akcja wewnetrzna. Niech Act = A U {i}. Kazdej akcji aeAct

Rozszerzenie czasowe CCS 53

przypisuje si¢ pewien zbidr A(a) dopuszczalnych czaséw wykonywania. Zakiada
sig, ze u€ A(a) jest wartoscig dodatnia. Zatozenie to wyklucza sytuacje, ze w pewnej
chwili, gdy akcje maja zerowy czas wykonywania, moze by¢é wykonywana nieskon-
czona liczba akcji.

Zbiér Del = {A(a) | ac Act}, gdzie A(a) C Time\{0}, nazwiemy zbiorem wfasnosci
dynamicznych akcji.

Zbior zdarzen czasowych jest okreslony jako TimeEv = Time X Act.

Realizacja akcji czasowej a bedzie reprezentowana dwoma zdarzeniami czasowymi:
zdarzenie czasowe reprezentujace poczatek akcji a jest parg <t,, a>, natomiast zdarzenie
reprezentujace zakonczenie akcji — parg <, i>, gdzie #, t,€ Time oraz (t; — t,)e A(a).

W przypadku szczegdlnym realizacjg akcji wewngtrznej i reprezentuja dwa zdarzenia
czasowe: <t,, i> oraz <ty, i>.

Para komunikujacych si¢ akcji wykonuje sie¢ wspélnie przez dowolny odcinek czasu,
dlatego usciSlamy pojecie czasowych akcji komplementarnych. Akcje o, fe Act sq ak-
cjami komplementarnymi, gdy & =, w takim samym znaczeniu jak w jezyku CCS,
to znaczy jedna z nich jest akcja wejsciowa, a druga akcja wyjsciowa na tej samej
bramce, oraz dodatkowo, gdy A(@)NA(f)# D, co oznacza, ze obie akcje dopusz-

czaja ten sam czas realizacji. Nalezy zwréci¢ uwagg, ze czas realizacji komplementar-
nych akcji moze by¢ wyznaczony niejednoznacznie — w takim przypadku mamy do
czynienia z niedeterminizmem wyboru czasu wykonywania.

W dalszej czg¢sci, gdy bedziemy mowié o realizacji komplementarnych akcjach czaso-
wych oraz &, bedziemy zawsze zaktadac¢, ze wspdlny okres ich realizacji ue Time
spetnia warunek ue A(a) N A(@x).

3.5. RTCCS - definicja formalna

Skiadnia

Przez Proc oznaczymy zbidr nazw proceséw.

Zbior wyrazen behawioralnych RTBeh, w notacji BNF, jest okreslony nastgpujaco:
B:=0|P|B\S|B[f]1|(B)|a,B|Su);B|B|U|B|B+B (3.14)

gdzie: Be RTBeh, Pe Proc, S, U C A, ae Act oraz f: G — G jest funkcja przemianowa-

nia bramek akcji. Kolejnos¢ wprowadzenia operatoréw odpowiada malejacej kolej-
nosci ich priorytetéw.

Zbidr list definicji proceséw RTDef jest okres$lony nastepujaco:
RTD ::= uP.B|RTD, uP.B (3.15)

54 Rozdziat 3

Sktadnia wprowadza dwie konstrukcje, ktére sa inne od konstrukcji jezyka CCS. Sa
to: wyrazenie op6znienia o(u); B oraz zmodyfikowana forma ztozenia réwnolegtego
B |U| B. Ich znaczenie jest nastgpujace:

Wyrazenie opézniajqce 6(u); B w danym momencie ¢ nie oferuje swemu otoczeniu
zadnej akcji komunikacyjnej, natomiast po uptywie odcinka czasu dlugosci u oferuje
akcje komunikacyjne reprezentowane przez wyrazenie B.

Wyrazenie ztozenia rownolegtego B, |U| B, gdzie |U| jest operatorem ztozenia réw-
nolegtego parametryzowanego podzbiorem akcji U, zachowuje sig tak, jak zachowu-
ja sie¢ jednoczesnie wyrazenia B, oraz B,. Dodatkowo wyrazenia te moga si¢ wza-
jemnie komunikowaé przez swoje akcje komplementarne tylko na bramkach ze
zbioru gate(U).

Pojecia dozorowanego i regularnie zbudowanego wyrazenia sa rozumiane tak samo
jak dla CCS.

Specyfikacja zachowania w jezyku RTCCS jest zdefiniowana jako para

RTSpec = <By, RTDefp> (3.16)
gdzie:
By RTBeh jest poczatkowym wyrazeniem behawioralnym,
RTDefpe RTDef jest skonczong lista definicji pewnych proceséw czasu rzeczywi-
stego Py, ..., P,.

Definicja procesu o nazwie P; (i = 1, ..., n) ma posta¢ uP;.B;, gdzie wyrazenie beha-
wioralne B.€ RTBeh jest trescig procesu. Kazdy proces, ktérego instancja wystepuje
w wyrazeniach behawioralnych By, ..., B, ma swoja definicj¢ w zbiorze RTDef. Instan-
cje proceséw o tej samej nazwie maja jedna wspdlna definicjg.

Semantyka

Semantyka operacyjna specyfikacji czasu rzeczywistego RTSpec = <By, RTDefp> jest
definiowana na podstawie czasowego etykietowanego systemu przej$¢ postaci

TS(RTSpec) = <Conf, TimeEv, RTTr, Cy> 3.17)
gdzie:

Conf= RTBeh x Time jest zbiorem konfiguracji czasowych; para <B, t>€ Conf re-
prezentuje specyfikowany system, poczynajac od chwili r — wyrazenie behawio-
ralne B okresla zachowanie tego systemu od chwili ,
Act jest zbiorem zdarzen czasowych,
RTTr C Conf x TimeEv x Conf jest relacja przej$cia pomi¢dzy czasowymi wyra-
zeniami behawioralnymi (relacj¢ zmian konfiguracji),
C, jest konfiguracja poczatkowa, czyli para <By, ty> (B jest poczatkowym wyra-
zeniem behawioralnym, f, — chwila poczatkowa).

Rozszerzenie czasowe CCS 55

Tréjka <<By, 1>, <t,, a>, < By, t» >> € RTTr, nazywana przejsciem, bedzie zapisywa-
na w postaci

< B, 1> —2% 5 < B, 1,>
albo, nieco krécej, w postaci

< B),t> 2 5 B,,t,>,

gdzie A€ TimeEv.

Przejscie oznacza, ze system ze swoja konfiguracjg <r,, B>, odnoszacg si¢ do chwili
1), na skutek zajscia zdarzenia czasowego <t,, a>w chwili 1,, gdzie ¢, < 1>, zmienia swa
konfiguracj¢ na <t,, By>.

Relacja przejscia pomigdzy czasowymi wyrazeniami behawioralnymi jest definiowana
rekursywnie przez podany nizej zbiér aksjomatéw i regui. Reguly te sa budowane
wedlug nastepujacych zatozen:

e komunikacja odbywa si¢ doktadnie pomi¢gdzy dwoma procesami,

e synchronizacja pomigdzy komunikujacymi si¢ procesami nastgpuje w najwczes-
niejszym mozliwie momencie (as soon as possible principle),

e dwa zsynchronizowane komunikujace si¢ procesy pozostaja powigzane ze sobg
przez wspdlnie ustalony odcinek czasu.

W konstrukcji regut bgda wykorzystane pewne funkcje pomocnicze zdefiniowane
rekursywnie w tabeli 3.1.

Tabela 3.1
F(B) C(B)
0 @ %
P F(B)dla uP.B C(B)dla uP.B
B\S F(B\S U I(F(B) N S) C(B\S U h(C(B) N S)
Bl f] F(B)L] C(B)| f]
(B) F(B) C(B)
a;, B {a) %)
Sw); B (iy” {i)”
B, |U| B, F(B,) U F(B>) C(BO\U U C(B-\NU U F(B) N F(By) N U
By B F(B) U F(B)) C(B)) U C(By)

" Natychmiastowa akcja wewngtrzna i wynika z przyjetego sposobu reprezentacji realizacji
akcji 0(u) przez zdarzenia czasowe <, i> oraz <1y, i>.

Pierwsza funkcja F: RTBeh — Act stuzy do wyznaczania, dla danego wyrazenia beha-
wioralnego B, zbioru tych akcji, ktére sg oferowane przez wyrazenie do wykonania

56 Rozdziat 3

w pierwszej kolejnosci. To, ktéra sposrdd tych instancji akcji zostanie wybrana do wy-
konania, zalezy od decyzji otoczenia wyrazenia B. Takze czas zainicjowania wybranej
akcji zalezy od otoczenia, przy czym — w razie zbyt dtugiego odraczania inicjacji akcji
— moze wcze$niej nastapi¢ akcja wewnetrzna.

Druga funkcja C: RTBeh — Act wyznacza podzbidr tych akcji, ktére moga by¢ wyko-
nywane jako pierwsze, niezaleznie od gotowosci otoczenia wyrazenia B.

Wystepujaca w tabeli pomocnicza funkcja k jest zdefiniowana nastepujaco:

@ dlaU=92
(i} dlaU=#O

Nalezy zwr6ci¢ uwage na to, ze dowolna akcja ae Act w wyrazeniu behawioralnym B
moze mie¢ wiele wystapien (instancji). Jezeli ae F(B) lub a€ C(B), to moze to ozna-
czaé wiele wystapien tej akcji, ktére spetniaja warunki okreslone przez definicje funk-
cji F oraz C. Na przyktad wyrazenie B postaci

h(U)={

o, f; Pr+ oy, a5 P
ma trzy wystapienia akcji @, z czego dwa wystapienia — pierwsze wystapienia & po
lewej i po prawej stronie wyrazenia B — naleza do zbioru F(B) ={ «}.
Nastepne dwie funkcje, zdefiniowane w tabeli 3.2, sa zwiazane z wyznaczaniem
uptywu czasu.

Tabela 3.2
B Age(B, u) Ev(B)
0 0 oo
a, B o; B o dla e A
6(u"); B 6(u'~u); B gdyu'2u u' gdy u'>0
p Age(B, u)dla uP.B Ev(B) dla uP.B
B\S Age(B, u)\S 0 gdy C(B)NnS # D
Ev(B) gdy C(B)NS =0
Age(B, w)[f]
B[f] Ev(B)
(8) Age(B, u)
Ev(B)
B, |U| B, 0 gdy C(B)NU #
Age(®, U1 AgeB 01 | in (Ev(B,), Ev(B,) gdy C(BYAU =2
B, + B,
Age(B,, u) + Age(B,, u) min(Ev(B,), Ev(B»))

Rozszerzenie czasowe CCS 57

Pierwsza z nich Age : RTBeh x Time — RTBeh okresla transformacj¢ wyrazenia beha-
wioralnego na skutek samego uptywu czasu przy braku zajscia zdarzen czasowych.

Druga funkcja Ev : RTBeh — Time wyznacza dla danego wyrazenia behawioralnego
najwczesniejszy moment czasu wzgledem biezacej chwili, w ktérym moze nastapi¢
zmiana konfiguracji niezalezna od otoczenia wyraZenia. Zmiana ta jest wynikiem zaj-
$cia zdarzenia czasowego niezaleznego od otoczenia wyrazenia.

Majac wyzej zdefiniowane funkcje, mozna zdefiniowac¢ rekursywnie relacj¢ zmian
konfiguracji.

Proces pusty — brak aksjomatéw.
Instancja procesu

<UPB,t>—25<B.f'>

A P (R-ins)
<P,t>—2—<B't>
Rekursja
_— A ’
<B[P:=uP.B],t >——B (R-rec)

<uPB,t>—2 B

gdzie notacja postaci B[P ::= B'] oznacza modyfikacj¢ wyrazenia B, polegajaca na tek-
stowym zastapieniu kazdego wolnego wystapienia nazwy procesu P (zob. tab. 2.1)
w wyrazeniu B wyrazeniem B'.

Restrykcja
Bit>—<L9 soB>
< 7 : - gate(a)g S (R,-res)
<B\S,t>—2 s <B\S,t'>
<Bt>—L2 s
gate(a)e S nae C(B) (Ry-res)

<B\S,t>—<{> s B\S.t>

Przemianowanie

<t'.a> v : ! dlaa=g!
<Bjt>——"5><Bt'> gdzie f(a) = f(8) B 8 (R-ren)
f(g)? dlaa=g?

<Blf]t>—LL@> 5 BIF11 >
Prefiksowanie akcjq

<a:B,t>—"% 5 < S5w);B,Y> dlar<t’ (A\-pre)
Opdoznienie

<t+u,i>

<Ou);B,t>—2Z 5 <Bt+u> (Ay-pre)

58 Rozdziat 3

Ztozenie rownolegte

<t'.a>

<B,t>—Z5<B,I'>
<B, || Byt >—L2 5 < B|[U]| Age(B, .1’ —1),t">

dla ag U At"SEV(B,) (Ry-par)

’
<t,a>

<B,1>—25<Bt'>

<r.a> ; Y dla a¢g U At’<Ev(B)) (Ry-par)
< B, || By,t > ——=—> < Age(B, ,' —1)|[U]| B;,t’ >

<B,t>—"%25<BI'>

<>

<B,,t>— < B t'>

- dla aelU (Rs-par)
< B [[But>—=% 5 CB|[U1| Bt > i

Reguta R;-par odnosi si¢ do synchronizacji akcji czasowych. Wiaze si¢ z nig zalozenie
o komplementarnosci synchronizujacych si¢ akcji czasowych. Synchronizacja nastg-
puje w pierwszym mozliwym momencie. Regula nie okresla natomiast ani sposobu
wyboru wspdlnego czasu realizacji akcji @i &, ani nie okresla jawnie wybranego
czasu. Konsekwencjga wyboru wspélnej wartosci czasu jest nastgpujaca wtasno$¢ wy-
razen B, i B;:
Wiasnosé
Niech 8(u\); B oraz 8(u,); B, beda podwyrazeniami wyrazefn B] oraz Bj, taki-
mi ze:
B, = B/ [a; B :=6(u); B/]
B,= B, [@; B :=0(uz); B;)
woOwczas i) = Us.
Do reguly R;-par mozna dotaczy¢ dowolny mechanizm takiego wyboru — determini-
stycznego lub probabilistycznego.
Wybor

<t’.a> , 4
<But>—CES B> g ops) (R-ch)

<t’.a>

<B +B,t>—25<Bi'>

<t.a> o
8 ok 2<Bpl > 414 ¥ <EWB) (Ry-ch)

<t".a>

<B +Byt>—C 5 <B ' >

Podane aksjomaty i reguty generujg ciagi przejs¢ czasowych, ktére wyznaczajg se-
mantyke specyfikacji.

Rozszerzenie czasowe CCS 59

Ciag tranzycji (obliczenie) generowany przez czasowy system przejs¢ TS(RTSpec) ma
postac

< By, ty> —2U2 5 < B 1> —222 5 < B, 1> .. — W 5 < Bt > (3.18a)
lub
< B, ty> —29 5 < B 1> —29> 5 < B, 1,>..— U2 5 < B 1 >... (3.18b)

gdzie:
H<nh< .. hL<s .
By jest poczatkowym wyrazeniem behawioralnym,
< By, ty> jest konfiguracja poczatkowa specyfikacji RTSpec,
<B,, t,> w przypadku obliczenia skoniczonego (a) jest konfiguracja koncowas, to
znaczy taka, z ktorej nie ma przejscia do innych konfiguracji.

Definicja 3.1.
Specytikacja czasowa RTSpec = <By, RTDecl> generuje zbior ciggdw akcji
RTSeq(By) = RTSeqFin(By) \w RTSeqlnf (By), (3.19)
gdzie:
RTSeqFin(By) = {ce Conf " | <By, ty>—c—} (3.20)

RTSeqlnf (By) = {ce Conf™ | Vc'epref(c) ® <By, tp>—c¢'—) 3.21HP
Zdefiniowana semantyka jest semantyka przeplotowa czasu rzeczywistego. Przeplot
odnosi si¢ do zdarzen wystgpujacych w tej samej chwili.

Bezposrednio z regut definiujacych relacje przejscia wynika, ze kolejne przejscia sg
uporzadkowane czasowo. Na ogét moment przejscia z danej konfiguracji do nastepnej
zalezy od otoczenia wyrazenia. Jezeli specyfikacja jest komunikacyjnie zamknigta, to
zachodzi lemat:

Lemat 3.1

Jezeli specyfikacja reprezentowana wyrazeniem behawioralnym B jest komunika-
cyjnie zamknigta oraz istnieje przejscie
<Bit>—25<B.t>, (3.22)
to czas ¢’ jest wyznaczony jednoznacznie.
Dowdd jest przedstawiony w pracy [Huzar 1996].

Niech Del, oraz Del, beda dwoma zbiorami wtasnosci dynamicznych akeji komuni-
kacyjnych. Bedziemy méwié, ze Del, jest podzbiorem Del,, co oznaczamy Del, C
C Del,, gdy dla kazdego a€ Act zachodzi A\(a) C Ay(a). Zachodzi oczywista wia-
snosé

60 Rozdziat 3

Lemat 3.2

Dla dowolnego wyrazenia behawioralnego B jezeli Del, C Del,, to RTSeq(B) C
C RTSeq(B).

3.6. RTCCS - przyklady
Rozpatrzymy teraz seri¢ prostych przyktadéw ilustrujacych stosowanie regut semanty-
cznych.
Przykiad 1

Niech <uP.a; P, ty> bedzie konfiguracja poczatkowa, mamy wéwczas nastgpujacy

ciag tranzycji czasowych

<UP.a;P,ty>—1C 5 < uP.Su),P,t, > —L"> 5 < yuP.Pt, +u>

po ktérym nastgpuje powtérzenie tego ciagu z przesunigciem czasowym. Oczy-

wiscie 1y < 1) <1, + u oraz ue A(a).
Przyklad 2

Dla konfiguracji poczatkowej

<a; B, + 6(u); Ba, to>
mozliwe sg dwa ciagi tranzycji
<a;B, +8(u), By 1y > —1 5 < 5(u,); By 1, > —E 5 < Bt +uy >

gdzie t) < u, oraz

<tg+u,i>

<a;B,+0u);B,,ty>——"—><B, t,+tu>

Analizowane wyrazenie behawioralne
a; B+ 0(u); B,

ma interesujaca wlasnos¢, reprezentuje ono mianowicie mechanizm przetermino-
wania. Skltadowa &(u); B, wyznacza okres przeterminowania o dtugosci u. Jezeli
w odcinku czasu u od momentu osiggniecia konfiguracji <a; By + d(u); Ba, ty> nie
zostanie zainicjowane wykonanie akcji a, to w chwili #; + u nastapi przejscie do
konfiguracji <Bs, fy+ u>, a tym samym zostanie wykluczona mozliwos¢ wykona-
nia wyrazenia a; B).

Przykiad 3
Rozpatrzymy teraz konfiguracj¢ zawierajaca wyrazenie behawioralne ze zloze-
niem réwnolegtym

<a;B,+8u,);B, |[{a}]|a; B, +b;B,, t, >

Rozszerzenie czasowe CCS 61

Dla pierwszej sktadowej ztozenia réwnoleglego, zgodnie z przyktadem 2., s mo-
zliwe dwa przejscia. Podobnie dwa przejscia sa mozliwe dla drugiej sktadowe;j.
Dla calego natomiast wyrazenia zlozenia réwnolegtego jest mozliwe tylko jedno
przejscie

<a;B, + 6(u,); B, |[{a}1|@; By + b; By, 1y > —22— < 5(u); B, | [{a}]| 5(u); By, 1, >

Wynika to z faktu, ze para akcji a raz a synchronizuje si¢ w chwili #,, podczas gdy
pozostate akcje moga zaj$¢ dopiero pdzniej.

Kolejne przejscia sa postaci:

<8(u); B, |[{a}]]| 6(u); By, 1, > —012y
< B, |[{a}]| 8(u); B, 1, +u > —0relz

< B, |[{a}]1]| Bs,ty +u>

Specyfika tych przejs¢ jest dwukrotne wystapienie akcji wewngtrznej <ty + u, i>,
oddzielnie w kazdej z réwnolegtych skiadowych wyrazenia behawioralnego. Wy-
nika to z przyjetych zasad reprezentacji czasowych akcji komunikacyjnych. Ze
wzgledu na przeplotowy charakter semantyki kolejno$¢ wystapienia tych akcji jest
oczywiscie dowolna.

Przykiad 4

Rozpatrzymy teraz trzy przypadki konfiguracji z wyrazeniem przestaniania. Pier-
wsza konfiguracja ma postaé

<(a; B\|[{a}]| a; B,+ b; By)\{a}, t>
Na podstawie regut dla restrykcji mozemy wyprowadzi¢ dwa przejscia:
<(a;B|[{a}]| a; B, +b; By)\a},t > —L2— < (5(u); B, | [{a}]| S(u); By)\{a}, 1 >
dla ue A(a), oraz
<(a;B,|[{a}]|a;B, +b;B;)\{a},t >—<"’2———><(a;BI [[{a}]| 6(u); By)\{a},t >
dla ue A(b).
Druga konfiguracja ma postaé

<(a; Bi|l{a}]| a; B2+ b; By)\{b}, t>

Rézni sig ona od pierwszej konfiguracji tylko przestaniang akcja. Dla konfiguracji
tej jest mozliwe tylko jedno przejscie

62

Rozdziat 3

<(a:B, |[{a}]| @:B, + b; BO\{b}.t > —<12 5 < (5(u); B, | [{a}]| 5(u): B,)\ (b}t >

Nie jest natomiast mozliwe przejscie zwiazane z wykonaniem akcji b. Przejscie to
nie jest mozliwe, gdyz — zgodnie z przyjeta zasada komunikacji — w jej realizacji
muszg uczestniczy¢ dwaj partnerzy. Proces a; B||[{a}]| a; B2 + b; B; jest gotowy
do wykonania akcji a oraz b, przy czym mozliwo$¢ wykonania akcji a nie zalezy
od otoczenia tego procesu. Proces (a; Bi|[{a}]| a; B, + b; By)\{b} nie moze nato-
miast wykona¢ akcji b, gdyz — z powodu restrykcji — nie ma mozliwosci komuni-
kacji ze swym otoczeniem na bramce b.

Wreszcie trzecia konfiguracja ma posta¢
<(a; B)\{a}, t>

Z poprzedniego wyjasnienia wynika, Zze nie ma dla niej zadnej mozliwosci przej-
$cia do innej konfiguracji, co oznacza, ze konfiguracja wyraza sytuacj¢ blokady
(zakleszczenia).

Przyklad §

Przyktad dotyczy systemu komunikujacych si¢ zdalnie agentéw reprezentowanego
diagramem na rysunku 3.1.

..

System

System_komunikacyjny

3

Wiadomosé,

:

:

i

i

,

: 32
Nadawca 8 Wiadomosé,
i

|

H

i

,

e
B Potwierdzenie

Rys. 3.1. Struktura przyktadowego systemu

Agent Producent wysyta wiadomosci do agenta Konsument za posrednictwem
agenta System komunikacyjny. Po wystaniu wiadomosci Producent oczekuje na
potwierdzenie jej odbioru przez Konsumenta, a po otrzymaniu tego potwierdze-
nia wysyta kolejng wiadomo$¢. System komunikacyjny nie jest jednak nieza-

Rozszerzenie czasowe CCS 63

wodny, gdyz linie komunikacyjne, ktére wchodza w jego sktad, moga przeka-
zywane od nadawcy wiadomosci przesyta¢ do odbiorcy bez znieksztatcen albo
je gubid.

System komunikacyjny sktada si¢ z Nadawcy i Odbiorcy, potaczonych dwiema li-
niami — Wiadomos¢, oraz Wiadomosc, — do przesytania wiadomosci i jedna linig
— Potwierdzenie — do przekazywania potwierdzen.

Wspdlnym modelem kazdej z linii jest proces postaci
Linia =g¢; pLinia.s; (r; Linia + &(u.); Linia)

gdzie u; > O jest stalq charakteryzujaca linig. Konkretne linie sa zdefiniowane na-
stepujaco jako wywotania proceséw Linia:

Potwierdzenie =y Linia
Wiadomosé, =ger Linia[s\/s, ri/r},
Wiadomosc, =g Linia[sy/s, ri/r],

Nadawca odbiera wiadomos$¢ od Producenta i przesyla ja najpierw linia Wiado-
mos¢,, a nastepnie oczekuje na potwierdzenie odbioru wiadomosci przez Odbiorce
na linii Potwierdzenie. Jesli potwierdzenie otrzyma, powtarza dziatanie, pobierajac
od Producenta kolejng wiadomos¢. Jezeli natomiast nie otrzyma potwierdzenia
w okreslonym czasie, to ponownie przesyta t¢ samg wiadomos¢ liniq Wiadomosé,
1 znéw oczekuje na potwierdzenie jej odbioru na linii Potwierdzenie. Jesli potwier-
dzenie takie otrzyma, rozpoczyna ponownie cykl pracy, pobierajac od Producenta
kolejng wiadomos¢, a w przypadku przeciwnym powtarza wielokrotnie wystanie
tej samej wiadomosci linia Wiadomosé,, az do otrzymania potwierdzenia jej od-
bioru linig Potwierdzenie.

Proces Nadawca jest zdefiniowany jako
Nadawca =4; UN.we; s, (r; N+ O(uy); N')
gdzie
N =get UN'".52; (r; N + & (un); N),

Odbiorca oczekuje na wiadomos$¢ z linii Wiadomosé,. Po jej otrzymaniu wysyla
potwierdzenie jej odbioru linig Potwierdzenie, a odebrang wiadomos¢ przekazuje
do Konsumenta. Nastgpnie oczekuje nadejScia wiadomosci na linii Wiadomosé,
lub Wiadomosé,. Otrzymanie wiadomosci na linii Wiadomosé, oznacza, ze Na-
dawca po otrzymaniu potwierdzenia poprzednio wystanej wiadomosci przesyla
kolejna, nowa wiadomos$¢. Otrzymanie natomiast wiadomosci na linii Wiadomosé,
oznacza, ze Nadawca powtarza wysylanie wiadomosci, gdyz nie otrzymatl po-
twierdzenia jej odbioru. W tym przypadku Odbiorca ponownie przesyla potwier-
dzenie odbioru wiadomosci, ale nie przesyla jej juz do Konsumenta.

64 Rozdziat 3

Proces Odbiorca jest zdefiniowany nastgpujaco:

Odbiorca =g fO. ry; s, wy; O’
gdzie
O' =4t HO'.(O + 1y 55 O")

System komunikacyjny jest réwnolegtym ztozeniem proceséw: Nadawca, Odbior-
ca, Wiadomosé¢,, Wiadomosé, 1 Potwierdzenie.

System komunikacyjny =g
(Nadawca
|[{s1, 52, r}]|
(Wiadomosé, |[D]| Wiadomosé, |[D]| Potwierdzenie)

I[{rlv ra, S}]l
Odbiorca)\{r, r, ra, s, 51, $2}.
I wreszcie, caly system jest zdefiniowany jako wyraZzenie behawioralne, stanowia-
ce ztozenie réwnolegle proceséw Producent, Konsument i System komunikacyjny:

System =gt
(Producent |[{we}]| System komunikacyjny |[{wy}]| Konsument)\{we, wy}

3.7. Uwagi koncowe

W tym rozdziale przedstawiono dwa czasowe rozszerzenia jezyka CCS. Pierwsze
z nich — jezyk TCCS - jest rozszerzeniem polegajacym na wprowadzeniu akcji na-
tychmiastowych i opézniajacych, drugie — jezyk RTCCS — na wprowadzeniu wytacz-
nie akcji czasowych wraz z niedeterministycznym mechanizmem wyznaczania czasu
realizacji akcji komplementarnych.

Skupiono si¢ na semantyce jezykéw. Wprowadzenie czasu do jezyka znacznie kompli-
kuje definicje jego semantyki — nie daje si¢ stosowa¢ bez ograniczen semantyki prze-
plotowej. Ztozono$¢ definicji wynika z koniecznos$ci uwzglednienia uptywu czasu
i lokowania w czasie zachodzacych zdarzen.

Ograniczono si¢ do przedstawienia przyktadéw zastosowania tylko jezyka RTCCS, gdyz
przyktady ilustrujace jezyk TCCS, a takze innych, skojarzonych z nim jezykéw, mozna
znalez¢ w literaturze, na przyktad: [Moller, Tofts 1989], [Tofts 1989], [Fencott 1996].

Warto przypomnie¢, ze rownolegle do prac nad jgzykiem CCS i jego czasowymi roz-
szerzeniami, byly prowadzone prace nad czasowymi rozszerzeniami jezyka CSP [Ho-
are 1985], [Roscoe 1998], na przyktad: [Reed, Roscoe 1986], [Wang 1991], [Reed,
Roscoe 1999], oraz dla jezyka ACP [Baeten, Bergstra, Smolka 1995], na przyktfad:
[Groote 1990], [Baeten, Bergstra 1991], [Schneider 2004].

Przyktad czasowego rozszerzenia jezyka CSP, nazywanego RTCSP, wraz z systemem
specyfikowania i dowodzenia poprawnosci, przedstawiono w monografii [Huzar 1989].

65

4. Abstrakcyjne typy danych w LOTOSie

4.1. Podstawowe pojecia algebraiczne

Elementarny typ danych w znaczeniu waskim jest utozsamiany z pewnym zbiorem
wartosci. Elementarny typ danych w znaczeniu szerokim, ktdre jest tu uzywane, jest
zbiorem wartosci wraz ze zbiorem operacji na tych warto$ciach. Matematycznym
modelem elementarnych typéw sa jednorodzajowe algebry abstrakcyjne. Majac do
dyspozycji pewien repertuar typéw elementarnych, mozna tworzyé nowe, ztozone
typy — ich modelem matematycznym sa wielorodzajowe algebry abstrakcyjne.

LOTOS wykorzystuje algebraiczne podejscie do definiowania abstrakcyjnych typéw
danych. Z tego wzgledu ponizej przypomina si¢ podstawowe pojecia algebraiczne.
Przeglad tych pojgc oparto na ksiazce [Ehrig, Mahr 1985]. Informacje z tego zakresu
mozna znalez¢ takze w innych pozycjach, na przyktad [Tiuryn 2003].

Definiowanie algebry abstrakcyjnej rozpoczyna si¢ od opisu jej struktury, wyrazonej
przez sygnaturg.

Sygnaturq algebry nazywa si¢ par¢

Sig =yer <S, OP> ; 4.1)
gdzie:
S jest niepustym zbiorem rodzajéw, czyli identyfikatoréw (nazw) nosnikéw algebry,
OP jest zbiorem deklaracji operacji.

Deklaracja operacji bedzie zapisywana w postaci

op:851 8.8, S 4.2)
gdzie: _
op jest identyfikatorem (nazwa) operacji,
5| 52 ... S, jest lista, ktérej elementy s, 5y, ..., 5,€ S sq identyfikatorami (nazwami)
rodzajéw argumentéw,
s€ S jest identyfikatorem (nazwa) rodzaju wartosci operacji.

Deklaracja operacji o nazwie op wskazuje na nazwy zbioréw jej argumentdéw i nazwe
zbioru jej wartosci. Jezeli op jest operacja zeroargumentowa, czyli stala, to jej dekla-
racja ma postac

op:—s 4.3)

Zaklada si¢, ze kazda deklaracja operacji ma rézna nazwe operacji, dlatego dalej, za-
miast pisac (op : 5y $3 ... s, = $)€ OP, bedzie si¢ pisa¢ krétko ope OP.

Moze by¢ wiele algebr majacych te sama sygnatur¢. Konkretna algebra nad dang syg-
naturg moze by¢ uwazana za interpretacj¢ sygnatury.

66 Rozdziat 4

Algebrq nad sygnatura Sig, krétko Sig-algebrq, nazywa si¢ parg
ALG =y <A, F> (4.4)
gdzie:
A =4r{A, | s€ S} jest rodzing zbioréw zwanych nosnikami lub dziedzinami algebry,
F =4 { fop | ope OP} jest rodzing funkcji zwanych operacjami algebry, przy czym
kazdej deklaracji operacji ope OP
Op: S S1...8,—S 4.5)

odpowiada funkcja
Fop 2 Ay X XB, — A (4.6)

Czasem jest wygodnie wyr6zni¢ stale (operacje zeroargumentowe) od pozostatych
operacji, wowczas algebre zapisuje si¢ w postaci
ALG =def <{A|, o Ak}, {C[, For) C,,,} () {f|, ...,f;,}> (47)
gdzie:
{A}, ..., A}, dla ke Nar\{0}, jest rodzing nosnikéw algebry,
{c1, ..., €}, dla me Nat, jest zbiorem operacji zeroargumentowych,
{f1, ... fu}>, dla ne Na\{0}, jest zbiorem pozostatych operaciji.

Dwie algebry o tej samej sygnaturze Sig nazywa si¢ algebrami podobnymi. Zbior
wszystkich algebr podobnych nazywamy klasa Sig-algebr.

Jezeli rodzina A zawiera tylko jeden nos$nik, to méwimy o algebrze jednorodzajowe;j,
a w przeciwnym razie o algebrze wielorodzajowe;j.

Rodzina podzbioréw {A,’ | s€S} takich, ze Al c A, dla seS, wyznacza podalgebre
ALG’, gdy zbiory te sa zamknigte ze wzgledu na wszystkie operacje algebry ALG.

Jezeli rodziny {A,” | s€ S} oraz {A,' | s€ S} wyznaczaja dwie podalgebry ALG’ oraz ALG'
algebry ALG, to rodzina ich iloczynéw {A," " A,' | s€ S} wyznacza réwniez podalgebre
algebry ALG. Ogdlniej — iloczyn dowolnego zbioru podalgebr danej algebry jest takze
podalgebra tej algebry.

Dla dowolnie przyjetej rodziny zbioréw {A,” | s€ S} istnieje najmniejsza podalgebra za-
wierajaca t¢ rodzing.

Homomorfizmem algebry ALG, = <{A, | s€S}, {f,, | ope OP}> w algebr¢ podobna
ALGp = <{B,|seS}, {g., | ope OP}> nazywamy zbior takich odwzorowan

H =4i{h,: A,> B,|s €5} (4.8)
ze dla kazdego dziatania f, :A X..xA, — A dla ope OP i dowolnych argumentéw
g op i) Sy y g

a€A,....a,€ A, zachodzi
& n

h(f,,(a,...a,))=8,,(h (a),.... h (a,)) 4.9)

Abstrakcyjne typy danvch w LOTOSie 67

Homomorfizm algebr zapisuje si¢ w postaci

H:ALG, > ALGy (4.10)
Algebre ALG nazywa si¢ algebrq wolng w klasie Sig-algebr, jesli istnieje dla niej taka
rodzina zbioréw generatoréw {A,’ | s€ S} o takiej whasnosci, ze kazda rodzina odwzo-
rowanr {f, : A’ — B, | s€S}, gdzie {B, | s€S} jest rodzina no$nikéw dowolnej Sig-
-algebry, daje sig rozszerzy¢ do homomorfizmu {4, : A, — B; | s€S}. Zbiér {A," | s€ S}
nazywa si¢ zbiorem generatoréw wolnych.

4.2. Algebra termow

Z kazda algebra jest zwigzany pewien zbidr napiséw, ktére powstaja ze ztozenia sym-
boli statych, zmiennych i operacji algebry. Zbidr ten nazywa si¢ zbiorem termow i jest
definiowany nastgpujaco:

Niech V| bedzie zbiorem zmiennych rodzaju A, dla s §, co bgdzie zapisywane w po-
staci v: A,.

Dalej, zamiast pisa¢ rodzaj A,, bedzie si¢ pisa¢ krétko rodzaj s.

Zbiorem wszystkich zmiennych jest

v=Jv, 4.11)
s

Dziatania zeroargumentowe, czyli state, takze maja swoj rodzaj. Stata ¢ : — A, jest
rodzaju s, czyli jest elementem zbioru A,dla s€ S.
Zbi6r terméw rodzaju s, dla s€S, dla algebry wielorodzajowej ALG nad zbiorem
zmiennych V, oznaczany Term(V), jest zdefiniowany rekursywnie w sposéb nastepu-
jacy:

e jezelic: — A, to ceTerm(V),

o V,C Termy(V),

e jezeli napisy ¢, ..., I; sa termami rodzajéw s,. ..., s; oraz

frA X XA —A (4.12)
jest dziataniem k-argumentowym, to napis postaci f (¢, ..., £,) jest termem rodzaju s,
czyli f(¢y, ..., t,)€ Term (V).

Zbior wszystkich terméw dla algebry wielorodzajowej ALG nad zbiorem zmiennych
V, oznaczany Term(V), jest okreslony jako mnogosciowa suma

Term(V)= UTerm_ (V) (4.13)

€S

68 Rozdziat 4

Zbiér terméw nad pustym zbiorem zmiennych, czyli Term(J), nazywa si¢ zbiorem
termow statych.

Zauwazmy, ze zbidr terméw jest wyznaczony jednoznacznie przez sama sygnaturg
algebry, algebry podobne maja wigc te same zbiory terméw.

Zbi6r terméw Term(V) nad ustalonym zbiorem zmiennych V, generowany przez alge-
bre¢ ALG = <A, F> o sygnaturze Sig = <S§, OP>, moze by¢ podstawg do utworzenia
nowej algebry wielorodzajowej, zwanej algebrq termoéw, ktéra jest podobna do alge-
bry ALG.

Algebre terméw ‘
ALGT«rm =def <AT¢'mn FTerm> (4 14)
dla algebry ALG definiuje si¢ nastgpujaco:
Aterm = {Term (V) | s€ S} jest rodzing no$nikéw algebry terméw,
From = { f, | op€ OP} jest zbiorem operacji algebry terméw, przy czym operacja
Jop Ma sygnature
Sop :Term (V)X..xTerm (V) — Term (V)

gdy deklaracja operacji ma posta¢: op : s 5> ... 5, = 5, (n 2 0) 1 jest zdefiniowana
nastgpujaco:
jezeli t,€ Termxl_ V), dlaj=1,..,n, to fo,(t, .., t,) =g 0p(ty, ..., 1)
Kazdemu nosnikowi A, i kazdej operacji op w algebrze ALG odpowiadaja nosnik
Term (V) i operacja f,,, w algebrze terméw ALGr,,.

Algebra terméw w klasie Sig-algebr wyrdznia si¢ tym, ze jest algebrg wolna.

4.3. Algebra ilorazowa termow
Termy majg interpretacjg, ktéra — w zaleznosci od wartosciowania zmiennych — przy-
pisuje im warto$¢ odpowiedniego rodzaju.
Wartosciowanie zmiennych jest wyrazane przez funkcje v o sygnaturze
v: VoA (4.15)

Vv =UV-" oraz A =UA\.

€S ses§

gdzie:

przy czym zmiennej v : V, mozna przyporzadkowywac wartosci tylko ze zbioru A,.
Niech WAR, () oznacza warto$¢ termu ¢ przy warto$ciowaniu v. Funkcj¢ WAR,, obli-
czajacq wartosci terméw przy wartosciowaniu v, mozna zdefiniowaé rekursywnie
W spos6b nastepujacy:

Abstrakcyjne typy danych w LOTOSie 69

e jezeli term jest postaci x, gdzie x jest zmienna, czyli xe V, to WAR, (x) = v(x),

e jezeli term jest postaci ¢, gdzie c jest stata, to WAR,(c) = c,

e jezeli term jest postaci f(t, ...,), gdzie f jest k-argumentowym dziataniem,
aty, .., 4 satermami, to WAR,(f(t, ..., 1)) =f(WAR, (1)), ..., WAR,(1)).

Zauwazmy, ze warto$¢ termu statego 7 nie zalezy od warto$ciowania v. Dla termu
statego i dowolnych dwéch wartosciowan v oraz v “ zachodzi zatem

WAR, (1) = WAR, (). (4.16)
Niech WAR(r) oznacza wartos¢ termu stalego z. Na zbiorze terméw statych rodzaju s
definiuje si¢ relacj¢ binarng =,, okreslong nastepujaco:
jezeli t,, ,e Term, (D), to t, =, 1, wtedy i tylko wtedy, gdy WAR(r,) = WAR(1,).

Relacja =, jest oczywiscie relacja réwnowaznosci i wyznacza podziat zbioru terméw
statych rodzaju s na klasy abstrakcji. Do jednej klasy abstrakcji naleza wszystkie termy
tego samego rodzaju, ktore reprezentujg t¢ sama warto$¢. Przez Term (&)/=, bedziemy
oznacza¢ zbidr ilorazowy terméw wyznaczony przez relacj¢ réwnowaznosci =,.

Relacja réwnowaznosci =, ma nastepujacg wlasnosc:

jezeli tvj’t:; sq termami rodzaju s; oraz t, = ti/_, dlaj=1, .., n,
: ! o o

- N fop(t,5 -t) dla ope OP.

Rodzing relacji réwnowaznosci {=, | s€ S} nazywa si¢ kongruencjq. Kongruencja jest
podstawa do zdefiniowania algebry, nazywanej ilorazowq algebrq terméw statych dla
algebry ALGrepm.

Definicja ilorazowej algebry terméw, ALG 7. jest nastgpujaca:

ALG e = gor < Aterms F rorm > (4.17)
gdzie:
Aferm= {Term (D)/=,| s€ S} jest rodzing zbioréw ilorazowych terméw rodzajow
s€eS;
F form= {? | ope OP} jest zbiorem operacji ilorazowej algebry termoéw,

op

przy czym operacja f, ma sygnature

op
fop :Term, (@)1=, x..xTerm, (@)/=, — Term (D)/=, (4.18)
gdy deklaracja operacji ma postac: op : s 8, ... §, — s, i jest zdefiniowana nastepujaco:

jezeli [t;]€ Term, (@)=, , dlaj=1,...n, 0 f(ltr]; s [8]) Zaer Uitrs ooy 1)];

[#;] oznacza klasg abstrakcji w zbiorze ilorazowym Term__/ (D)1 =,,» generowang

przez term Z.

70 Rozdziat 4

Algebra terméw jest homomorficzna wzgledem ilorazowej algebry termow, to znaczy

istnieje homomorfizm H : ALGry— ALGTerm.

4.4. Specyfikacja réwnosciowa typéw abstrakcyjnych

Typy danych w LOTOSie specyfikuje si¢ przez podanie sygnatury algebry oraz wia-
snosci jej operacji. Semantyka takiej specyfikacji jest pewna konkretna algebra — ilo-
razowa algebra terméw generowana przez specyfikacje. W biezacym podrozdziale
przedstawiono nieformalnie sktadni¢ specyfikacji typéw danych, a jej semantyke
- w nastgpnym podrozdziale.

Specyfika definicji typéw w LOTOSie jest réwnosciowe definiowanie wtasnosci ope-
racji. Jest to podejscie algebraiczne, inne od podejscia spotykanego w wigkszosci je-
zykéw specyfikacji, a zwlaszcza programowania polegajacego na definiowaniu opera-
cji jako procedur.
W jezyku LOTOS podstawowa forma specyfikacji typu danych ma nastgpujacg stru-
kturg:
type Nazwa_typu is
sorts Lista_nazw-rodzajow
opns Lista_symboli_operacji (4.19)
eqns Lista_rownosci
endtype
Nazwa_typu jest identyfikatorem. Listy sa ciagami odpowiednich elementéw oddzie-
lonych separatorami.
Lista_nazw-rodzajow jest ciagiem identyfikatoréw rodzajow oddzielanych przecin-
kami, a Lista_symboli_operacji — ciagiem symboli operacji oddzielanych wierszami.
Obie te listy wyznaczaja sygnaturg algebry.
Na przyktad specyfikacja:
type NatLog is
sorts nat, log
opns Z : -> nat
succ :nat->nat
pred :nat->nat
plus : nat, nat -> nat
minus : nat, nat -> nat
p . > log
neg :log -> log
impl :log, log -> log

Abstrakeyjne tvpy danych w LOTOSie 71

r : nat, nat -> log
mr : nat, nat -> log
endtype

okresla sygnaturg¢ algebry dwurodzajowej o nazwie NatlLog, z nosnikami o nazwach
nat i log oraz z operacjami: dwiema zeroargumentowymi o nazwach z i p, trzema jed-
noargumentowymi o nazwach succ, pred i neg oraz pigcioma dwuargumentowymi
o nazwach plus, minus, impl, r i mr.

Sama sygnatura pozwala na wyznaczenie zbioru terméw algebry. Dla typu NatLog,
jesli x, y sa zmiennymi rodzaju nat, to termami rodzaju nat sg na przyktad

succ(x), z, plus(x,y), plus(succ(z), succ(x)).

Dwie pierwsze listy definiuja sygnaturg algebry, trzecia natomiast lista Lista_réwnosci
definiuje wlasnosci wprowadzonych operacji. Wlasnosci te definiuje si¢ rekursywnie
za pomocg zbioru réwnosci. Wyréznia sie¢ dwa rodzaje réwnosci: réwnos¢ zwykla
i warunkowa.

Réwnos¢ zwykia ma postac
L=t (4.20)

gdzie: ¢, t, s3 dowolnymi termami tego samego rodzaju, a symbol = oznacza rownos$¢
semantyczng termow. Jezeli termy sa tego samego rodzaju s, to symbol réwnosci =
oznacza to samo, co poprzednio symbol =;. Réwnos¢ zwykla jest takiego rodzaju jak
jej termy sktadowe.

Réwnos¢ warunkowa ma postaé
ey, ., l,=>e “4.21)

gdzie ey, ..., e,, € sa zwyklymi réwnosciami. R6wno$¢ warunkowa jest takiego samego
rodzaju jak rodzaj réwnosci e.

Przyktadowa Lista_réwnosci, stanowiaca uzupetnienie podanej wyzej sygnatury, ma
postaé

type NatLog is

sorts nat, log

opns z : -> nat
succ : nat->nat

pred : nat->nat
plus :nat, nat -> nat
minus : nat, nat -> nat
p 1> log

neg :log -> log
impl :log,log ->log

72 Rozdziat 4

r : nat, nat -> log
mr : nat, nat -> log
eqns

forall x : nat, y : nat,a : log, b : log

ofsort nat
plus(x, y) = plus(y, x) ;
plus(succ(x), y) = succ(plus(x, y)) ;
pred(z) =z :
pred(succ(x) = x &
minus(x,2) =z ;
minus(x, succ(y)) = pred(minus(x, y))

ofsort log
neg(neg(b)=b ;
impl(p, p) = p :
impl(p, neg(p)) = neg(p) ;
impl(neg(p),a) =p :
r(x,x)=p :
mr(z, x)=p ;
mr(succ(x), succ(y)) = mr(x, y) ;

endtype

Dwie listy réwnosci sa poprzedzone wierszem forall, wprowadzajacym po dwie
zmienne rodzaju nat i log, oraz przedzielone wierszami ofsort, okreslajacymi rodzaje
wystepujacych réwnosci. Ogranicznikiem konca réwnosci jest tu Srednik. W przykta-
dzie wystepuja tylko zwykte réwnosci, nastgpny przyktad specyfikacji wykorzystuje
takze réwnosci warunkowe
type NatX is
sorts nat
opns z:->nat
succ : nat : -> nat
plus : nat nat -> nat

eqns
forall x : nat, y : nat, t : nat
ofsort nat
plus(x, 2) =x :
plus(x, y) = plus(y, x) .
plus(x, y) = t => plus(succ(x), y) = succ() ;
endtype

Roéwnosci definiuja wtasnosci algebry, a doktadniej wlasnosci jej operacji.

Abstrakcyjne typy danych w LOTOSie 73

4.5. Semantyka specyfikacji typow
W abstrakcyjnym ujeciu specyfikacja typu jest widziana jako tréjka

TSpec = 4ot <S, OP, Eq> (4.22)
gdzie: <S, OP> jest sygnatura, a Eq jest zbiorem réwnosci.

Specyfikacja typu okresla zatem sygnature i wlasnosci algebry, ale nie wyznacza jaw-
nie konkretnej algebry. Algebr o danej sygnaturze moze by¢ nieskonczenie wiele,
podobnie nieskonczenie wiele moze by¢ algebr o wskazanych wilasno$ciach. Posrod
wszystkich algebr o danej sygnaturze i danych whasnosciach wskazuje si¢ na szcze-
gblny rodzaj algebr, zwanych algebrami poczqtkowymi. Charakteryzujac je niefor-
malnie, mozna stwierdzi¢, Ze sa to te algebry, ktére majgq wszystkie wskazane witas-
nosci i tylko te wtasnosci, ktére sa wyrazone odpowiednimi réwnoSciami — inaczej: sq
to algebry, ktére nie spetniajg zadnych dodatkowych réwnosci. Dwie rézne algebry
poczatkowe sg izomorficzne. Standardowo sposrdd wszystkich algebr poczatkowych
wybiera si¢ ilorazowq algebre termdw. Algebra ta jest generowana przez specyfikacje
typu danych. Przedstawione nizej rozwazania pokazuja sposob generacji ilorazowej
algebry terméw na podstawie analizy specyfikacji.

Zbidr rownosci Eq, sktadajacych si¢ na specyfikacje typu danych T'Spec, wyznacza sy-
stem dowodowy

DTSp('c =< GrEqTSpcw AXEqTS/u‘u I’U(ECI7S])(’(' > (4‘23)

gdzie: GrEqrs,.. jest pewnym zbiorem réwnosci statych, AxEqrg,.. — zbiorem réwnosci
aksjomatéw, Inf Eqrs,.. — zbiorem regut wnioskowania. Definicje poszczegdlnych ele-
mentdow sg nastepujace:

Niech dane beda termy ¢, i # oraz zmienna x. Notacja ¢,[x ::= t] oznacza modyfikacje
termu ¢, polegajaca na tekstowym zastapieniu kazdego wystapienia zmiennej x w ter-
mie ¢, przez term ¢. Dalej bedziemy rozpatrywac tylko takie termy f, ktore sg termami
statymi, czyli te Termgg,.. (D).

Jezeli ee Eq jest zwykta réwnoscia postaci t, = t, oraz t€ Terimys,.. (&), to réwnos¢
Hix =t =6lx =1 (4.24)
jest instancjq réwnosci e i oznaczamy jg e[x ;1= t].

Jezeli e€ Eq jest warunkowg réwnoscia postaci e, ..., e, => e oraz t€ Terniysy,. (&), to
instancja tej réwnosci jest rownos¢ warunkowa postaci

eflx=t],..,elx=tl=>e[x =1 (4.25)
Jezeli instancja rownosci nie zawiera zmiennych, to nazywamy ja instancjq statq.

GrEqrsy.. jest zbiorem wszystkich statych instancji zwyktych réwnosci wystgpujacych
w specyfikacji TSpec.

74 Rozdziat 4

Jezeli e€ Eq jest zwykla rownoscia, to AxEq(e) oznacza zbidr wszystkich statych in-
stancji rownosci e, jezeli natomiast e€ Eq jest réwnoscia warunkowa, to AxEq(e) jest
zbiorem pustym. Przez ID oznaczmy zbidr wszystkich réwnosci statych postaci r = ¢,
wowczas

AxEqrspe = |JAxEq(e) U ID (4.26)

«cEq

Jezeli ec Eq jest zwykia réwnoscia, to Inf Eq(e) jest zbiorem pustym, jezeli natomiast
ec Eq jest réownoscia warunkowa postaci e, ,...,e, =>e¢, to InfEg(e) oznacza zbior
regul wnioskowania postaci

’

€,....e, 4.27)

’

4

gdzie e, ..., ¢,,¢ s statymi instancjami réwnosci e, ,...,e,,e osiagnigtymi przez pod-
stawienie za zbiér zmiennych V wystepujacych w tych réwnosciach terméw statych
Termysy,,. (D).

Przez Inf oznaczmy zbiér regut wnioskowania postaci

A=l (4.28)
=1
dla wszystkich terméw statych ¢, t
hobh=h 4.29)
L =1
dla wszystkich terméw statych ¢, t,, t3
H=t, .t =t 4.30)

’ ’
op(ty,....t,)=op(t, ..., t,)

dla wszystkich operacji ope OP z n > 0 i dla wszystkich terméw statych 1, ¢, rodzaju
sidlai=1, ..., n, wbwczas
Inf Eqyspec = Ulnqu(e) u Inf (4.31)
ceEq
Dwa termy state f, i t, nazywa si¢ termami kongruentnymi wzgledem specyfikacji

TSpec, co zapisujemy w postaci t; =y, t, wtedy i tylko wtedy, gdy D + #, = 1, czyli
gdy w systemie dowodzenia D istnieje dowdd réwnosci 1, = f».

Relacja kongruencji wyznacza podziat zbioru terméw statych Terniyg,.. (&) na klasy
abstrakcji. Klasa abstrakcji generowana przez term f jest okreslona jako zbior

[=qet {1'] 1" =15pec t} (4.32)

Abstrakcyjne rvpy danych w LOTOSie 75

Zbior klas abstrakcji terméw statych danego rodzaju s, oznaczany Term,(J)/=,, wy-
znacza zbiér wartosci rodzaju i ilorazowe;j algebry terméw

A'Ii\‘pcr' =def <ATSp(‘ta F'I'S/)e('> (433)
zdefiniowanej nastepujaco:

® Arspee = {Term(D) /=, | s€ S} jest rodzing zbioréw ilorazowych terméw rodzajéw

SES,
® Frspee = {fop | OpE OP} jest zbiorem operacji ilorazowej algebry terméw, przy
czym operacja f,, ma sygnature

fop :Term (D)) =, x...xTerm (D) =, —Term (D)/ =, (4.34)

gdy deklaracja operacji ma postac: op : s, 3 ... s, — s 1 jest zdefiniowana nastgpu-
jaco: jezeli [¢;]e Term,)/ = dlaj=1,..,nto

ﬁl[)([t]]$ reey [’H]) =def [Op(tl’ eery tll)]' (435)

4.6. Strukturalizacja specyfikacji

Podstawowg technikg stosowana podczas tworzenia ztozonych specyfikacji typéw
danych jest ich strukturalizacja. Jgzyk LOTOS oferuje dwa zasadnicze mechanizmy
strukturalizacji: rozszerzanie specyfikacji i specyfikacje parametryzowane (gene-
ryczne). Oba mechanizmy begda oméwione nieformalnie na podstawie prostych
przyktadéw.

Rozszerzanie specyfikacji polega na definiowaniu nowego typu danych jako rozsze-
rzenia wczesniej zdefiniowanego typu. Rozpatrzmy przyktad — zatézmy, ze dana jest
specyfikacja typu:

type Boolean is

sorts Bool
opns true, false : -> Bool
not : Bool -> Bool

and, _or_, _xor_, _implies_, _iff : Bool, Bool -> Bool
eqns
forall x, y : Bool
ofsort Bool
not(true) = false ;
not(false) = true :
x and true = x !

x and false = false ;

76 Rozdziat 4

X or true = true :
x xor y = (x and not(y) or (y and not(x)) ;

x implies y = y or not(x) ;
x iff y = (x implies y) and (y implies x)
endtype

Specyfikacja definiuje typ Boolean — jednorodzajowa algebr¢ Boole’a — standardowy
typ logiczny w wigkszosdci jezykéw programowania. Typ ten jest czescig sktadowq
wielu innych typéw, na przykiad liczb naturalnych. Symbole podkreslen po lewej
i prawej stronie operacji dwuargumentowych wskazuja na uzycie notacji wrostkowe;j
(zamiast standardowej przedrostkowej).
Nowy typ NatY mozna zdefiniowa¢, odwotujac si¢ do typu Boolean, w sposéb naste-
pujacy:
type NatY is Boolean
sorts nat
opns z:->nat
succ : nat : -> nat
plus : nat nat -> nat
eq : nat nat -> Bool
gt : nat nat -> Bool
eqns
forall x : nat, y : nat, t : nat
ofsort nat
plus(x,z) =x ;
plus(x, y) = plus(y, x) ;
plus(x, y) =t => plus(succ(x), y) = succ(t) :
ofsort Bool

zeqz=true ;

7 eq succ(x) = false ;

succ(x) eq z = false :

z gt 7 = false

Z gt succ(x) = true ;

succ(x) gt succ(y) =x gty :
endtype

Przedstawiona specyfikacja jest rtéwnowazna nastgpujacej rozwinigtej tekstowo specy-
fikacji:

type NatY is

sorts Bool, nat

Abstrakcyjne typy danych w LOTOSie 77

opns true, false : -> Bool
not : Bool -> Bool
and , or : Bool, Bool -> Bool

Z:->nat

succ : nat : -> nat
plus : nat nat -> nat
eq : nat nat -> Bool
gt : nat nat -> Bool

eqns

forall x, y : Bool, x : nat, y : nat, t : nat

ofsort Bool
not(true) = false ;
not(false) = true ;
x and true = x :
x and false = false ;
X or true = true ;
x or false = x ;

ofsort nat

plus(x, 7) =x :

plus(x, y) = plus(y, x) ;

plus(x, y) = t => plus(succ(x), y) = succ(t) ;

ofsort Bool

zeqz=true :

z eq succ(x) = false ;

succ(x) eq z = false ;

z gtz =false ;

Z gt succ(x) = true :

succ(x) gt succ(y)=xgty ;

endtype

Specyfikacja w formie rozwinigtej, nazywanej tez specyfikacja w formie kanonicznej,
powstaje przez tekstowe polaczenie specyfikacji typu Boolean z nowym tekstem. Ta-
kie polaczenie tekstéw daje jednoznaczny efekt, pod warunkiem unikalnosci nazw
rodzajéw i operacji.
Specyfikacje typéw nazywamy specyfikacjami rozlacznymi, gdy ich sygnatury maja
roztaczne zbiory rodzajéw i operacji.
Gdy specyfikacje nie sg roztaczne, nalezy dokonaé¢ odpowiedniego przemianowania
nazw, do czego stuzy pomocnicza konstrukcja przemianowania:

78 Rozdziat 4

type Stara_nazwa_typu is Nowa_nazwa_typu
sortnames Stara_nazwa_rodzaju for Nowa_nazwa_rodzaju
opnames Stara_nazwa_operacji for Nowa_nazwa_operacji

endtype

Konstrukcja wprowadza nowy typ o nowej nazwie, ktéry od typu starego rézni si¢
tylko nazwami rodzajéw i nazwami operacji.

W przypadku wielu ztozonych typéw okazuje si¢ czgsto, ze ogdlna struktura tworza-
cych je elementéw nie zalezy od elementéw sktadowych. Jest tak na przyktad w przy-
padku tablic, plikéw, stoséw czy kolejek, uzywa si¢ wowczas typodw sparametryzowa-
nych, ich specyfikacja ma postac:
type Nazwa_typu is
formalsorts Lista_nazw_rodzajow
formalopns Lista_symboli_operacji
formaleqns Lista_rownosci
sorts Lista_nazw_rodzajow
opns Lista_symboli_operacji
eqns Lista_rownosci
endtype

Jest to rozszerzona tekstowo forma specyfikacji kanonicznej, wprowadzajaca formalne
parametry, ktérymi moga by¢ rodzaje, operacje i rownosci. Typ sparametryzowany
staje sie typem konkretnym po zastapieniu jego parametréw formalnych parametrami
aktualnymi. Stuzy do tego konstrukcja aktualizacji typu postaci:
type Nazwa-typu is Nazwa-typu-sparametryzowanego
actualizedby Nazwa-typu using
Lista_podstawien_rodzajow
Lista_podstawien_operacji
endtype

gdzie podstawienie_rodzaju ma postac:

sortnames nazwa_rodzaju for nazwa_rodzaju_formalnego

podstawienie_operacji ma postac:

opnames nazwa_operacji for nazwa_operacji_formalnej

Abstrakcevine typy danych w LOTOSie 79

Dobry ilustracja obu tych konstrukeji jest specyfikacja stosu formalnego i jego uaktu-
alnienia. Najpierw specyfikujemy stos jako typ sparametryzowany, niezalezny od typu
elementéw, na ktérych operuje:
type Stos is
formalsorts elem
formalopns ¢0: ->elem

sorts stos
opns
pusty 1 => stos
odczyt : stos -> elem
ze_stosu : Stos -> stos
na_stos : stos elem -> stos
eqns

forall ¢ : elem, s : stos

ofsort elem
odczyt(pusty) = e0 ;
odczyt(na_stos(s, e)) = e ;

ofsort stos
ze_stosu(pusty) = pusty :
ze_stosu(na_stos(s, e)) = s -

endtype

Rodzaj elem oraz stata e0 sa parametrami formalnymi typu Stos, przyporzadkowanie
im konkretnego niesparametryzowanego rodzaju oraz wskazanej wartosci tego rodzaju
pozwala na definicj¢ konkretego typu stosowego. Na przyktad stos liczb naturalnych
uzyskamy, podajgc specyfikacje:
type StosNat is Stos actualizedby NatLog using
sortnames nat for elem
opnnames z for ¢0
endtype

LOTOS definiuje pewien zestaw typow predefiniowanych, zestawionych w biblioteke
typow standardowych. Do specyfikacji tych typéw mozna si¢ odwotywaé przez wska-
zanie nazwy typu, Z zaznaczeniem, ze jest to typ nalezacy do biblioteki typéw standar-
dowych. Odwotanie to ma postaé:

library Nazwa_typu_standardowego
endlib

80 Rozdziat 4

Zbiér specyfikacji niesparametryzowanych typow daje si¢ sprowadzi¢ do postaci ka-
nonicznej. Polega to wykonaniu nastgpujacych krokéw:

o kazda specyfikacje ztozona, to znaczy taka, w ktérej wystgpuja omdéwione kon-
strukcje strukturalne, nalezy przeksztatci¢ do specyfikacji kanonicznej,

e nazwy w zbiorze specyfikacji typéw nalezy przemianowaé¢ w taki sposéb, aby
otrzymac zbidr typéw rozlacznych,

o listy wszystkich rodzajéow oraz listy wszystkich symboli operacji wystgpujacych
w specyfikacjach sktadowych nalezy potaczy¢ we wspélne listy.

Semantyka zbioru specyfikacji typédw jest zdefiniowana jako semantyka jego postaci
kanoniczne;.

Podczas stosowania réwnosciowego definiowania wilasnosci operacji pojawiaja si¢
dwa problemy. Problem pierwszy wiaze si¢ z pytaniem, czy podany zestaw réwnosci
jest kompletny — czy uwzglednia wszystkie potrzebne wiasnosci. Problem drugi wigze
sie z pytaniem, czy podany zestaw wlasnosci jest niesprzeczny, czyli czy operacje
maja niepusta semantyke. Ogolnie sg to problemy nierozstrzygalne, co oznacza, ze nie
istnieja algorytmy do automatycznego badania wtasnosci zupetnosci i niesprzecznosci.

Typy danych w jezykach specyfikacji i programowania s definiowane jeszcze na inne
sposoby. Dominujace podejscie, nazwane tu podejsciem ,,programistycznym”, polega
na zdefiniowaniu pewnej liczby typéw elementarnych, na przykfad typy liczbowe,
napisowe, logiczne. Kazdy typ elementarny ma okreslony zbiér wartosci oraz okre-
$lony zbiér operacji. Typy elementarne mozna sktada¢ ze soba, definiujac w ten spo-
séb typy ztozone, ktére mozna sktada¢ ze soba ponownie, definiujac coraz bardziej
rozbudowane typy. Typowymi sposobami sktadania typow jest tworzenie rekordow
(krotek), ciggéw, zbioréw. Specyfika takiego podejscia jest to, ze zwigzane z nimi
zbiory operacji sa ograniczone w zasadzie tylko do operacji selekcji elementéw skfa-
dowych typéw ztozonych. Operacje, ktére w omawianym podejsciu algebraicznym
stanowig element integralny definiowanych typéw, mozna definiowa¢ poza definicja
typu, na przyktad w postaci definicji procedur.

Nalezy zwréci¢ uwage na jeszcze jedna réznicg pomiedzy podejsciem algebraicznym
a ,,programistycznym”. Operacje w podejsciu algebraicznym musza by¢ funkcjami
catkowicie okreslonymi, podejscie ,,programistyczne” dopuszcza natomiast definio-
wanie operacji, ktére moga by¢ funkcjami okreslonymi czgs$ciowo.

4.7. Przyklady specyfikacji

Przedstawiony dalej zestaw przyktadéw specyfikacji typéw opiera si¢ na typach wy-
branych z biblioteki typéw jezyka LOTOS. Sposréd wybranych typow bibliotecznych,
dwa typy Element oraz BasicNaturalNumber sa nieco zmodyfikowane, w celu dosto-
sowania do potrzeb dalszych rozdziatéw. Przedstawiamy specyfikacj¢ typu reprezen-

Abstrakcyjne typy danych w LOTOSie 81

tujacego zbidr operacji mnogosciowych na zbiorze elementéw dowolnie ustalonego
typu. Typ ten, nazwany Set, jest typem parametryzowanym, a inne przedstawiane tu
typy pelnia role¢ pomocnicza — sa niezbgdne do jego specyfikacji. Typami pomocni-
czymi sg typy: Boolean, Element, NaturalNumber. Pierwszy z tych typéw byt przed-
stawiony w poprzednim podrozdziale.

Typ Element jest typem ztozonym, jest on rozszerzeniem typu Boolean:

type Element is Boolean
formalsorts Elem
formalopns _eqEl_, _neEl_: Elem, Elem -> Bool
formaleqns forall x, y : Elem
ofsort Elem
xeqEly=true=>x=y;
ofsort Bool
x=y=>xeqEly=true ;
x neEl 'y = not(x eqEl y) ;
endtype

Modytfikacja typu Element wzgledem specyfikacji standardowej polega tu na wyko-
rzystaniu typu Boolean zamiast typu parametryzowanego FBool.

Typ Element reprezentuje dowolnie okreslong zbiorowos¢, w ktérej operacje eqEl oraz
neEl majq stuzy¢ stwierdzaniu, czy dwa elementy tej zbiorowosci sa jednakowe czy
rézne. Zbiorowosc te, reprezentowana formalnym rodzajem Elem, i podobnie operacje
formalne egEl, neEl mozna ukonkretni¢. Ukonkretniony typ zachowuje wszystkie
wiasnosci operacji okreslone réwnosciami formalnymi.

Typ NaturalNumber jest rowniez typem ztozonym. Do jego definicji jest wymagany
wczesniej zdefiniowany typ Boolean oraz typ BasicNaturalNumber definiowany ponizej:

type BasicNaturalNumber is

sorts Nat
opns O . -> Nat
Succ, Pred : Nat -> Nat

+,_*_,_**k_ . Nat, Nat -> Nat
eqns forall m, n: Nat
ofsort Nat
Pred(0) =0 ;
Pred(Succ(n)) =n s
m+0 =m .
m + Succ(n) = Succ(m) + n ;

82 Rozdzial 4

m*0=0 ;
m* Succ(ny=m+(m*n) ;
m ** 0 = Succ(0) :

m ** Succ(n) =m* (m **n) ;
endtype

Modyfikacja typu BasicNaturalNumber wzgledem specyfikacji standardowej polega
tu na wprowadzeniu operacji Pred. Operacja ta jest zdefiniowana jako funkcja catko-
wicie okreslona, co wynika — jak wspomniano wczes$niej — z ogélnych wtasnosci de-
finicji operacji poprzez réwnosci. Odbiega to od powszechnie przyjmowanego zna-
czenia tej operacji, ktéra dla argumentu O jest nieokreslona.

Definicja typu NaturalNumber przedstawia si¢ nastepujaco:

type NaturalNumber is BasicNaturalNumber, Boolean
opns _eq , _ne_,_ It , le_, ge , gt :Nat Nat->Bool

eqns forall m, n : Nat
ofsort Bool

0eqO =true ;
0 eq Succ(m) = false :
Succ(m) eq 0 = false 2
Succ(n) eq Succ(m)=neqm ;
m ne n = not(m eq n) :
01t 0 = false ;
0 It Succ(n) = true :
Succ(n) It O = false ;
Succ(m) It Succ(n) =mlitn ;
mle n=(mltn)or(meqn) 3
m ge n = not(m It n) ;

m gt n = not(m le n)
endtype

Majac zdefiniowane typy sktadowe, mozemy przedstawi¢ specyfikacj¢ parametryzo-
wanego typu zbiorowego Set:
type Setis Element, Boolean, BasicNaturalNumber
sorts Set
opns {} . -> Set
Insert, Remove, _IsIin_, _Notin_, _Notln_ . Element, Set -> Set
Union, _Ints_, _Minus_ : Set, Set -> Set

Abstrakeyjne typy danych w LOTOSie

83

eqns

eq, _ne_, _Includes_, _IsSubsetOf_ : Set, Set -> Bool
Card : Set -> Nat
forall x, y : Elem, s, t : Set
ofsort Ser
Insert(x, Insert(x, s) = Insert(x, s) ;
Insert(x, Insert(y, s)) = Insert(v, Insert(x, s)) :

Remove(x, {})={}
xeqy=true =>

Remove(x, Inser(y, s)) = Remove(x, s)) ;
Xney=true =>

Remove(x, Insert(y, s)) = Insert(y, Remove(x, s)) !

{} Unions=s ;
Insert(x, s) Union t = Insert(x, s Union f) :
{}Ints s = {} ;
x Isin t = true =>
Insert(x, s) Ints t = Insert(x, s Ints t) H
x Notln t = true =>
Insert(x, s) Ints t =s Ints ¢ :
sMinus {}=s ;
s Minus Insert(x, t) = Remove(x, s) Minus t ;
ofsort Bool
x Isin { } = false ;
xeqy=>
x Isin Inseri(y, s) = true 3
Xney=>
x IsIn Insert(y, s) = x Isn s s
x Notln s = not(x Isin s) ;
s Includes {} = true ;
s Includes Insert(x, t) = (x IsIn s) and (s Includes 1) ;
s IsSubsetOf t = t Includes s ;
s eq t=(s Includes t) and (t Includes s) :
snet=not(s eqt) :
ofsort Nat
Card({})=0
x Notln s = true =>
Card(Insert(x, s) = Succ(Card(s)) :

endtype

84 Rozdziat 4

Typ parametryczny Set mozna w rézny sposéb ukonkretnia¢. Przyjmujac na przyktad,
ze nosnikiem bedzie zbidr liczb naturalnych, odpowiednia specyfikacja przyjmie po-
stac:

type SetOfNaturalNumbers is Set
actualizedby NaturalNumber using
sortnames
Nat for Elem
opnames
eq for eqEl
ne for neEl
endtype

4.8. Uwagi koncowe

Abstrakcyjne typy danych byly przedmiotem wielu prac i wielu ujeé, na przykfad:
[Burstall, Goguen 1982], [Tatcher, Wagner, Wright 1982]. Oméwione w niniejszym
rozdziale podejscie oparte na ACT ONE wybrano dlatego, ze znalazto odzwierciedle-
nie w jezyku LOTOS.

Warto tez dodacd, ze abstrakcyjne typy danych byly réwniez uwzglednione w poczat-
kowych pracach nad jezykiem specyfikacji SDL: [ITU-T, 1999], [Elllsberg, Hogrete,
Sarma 1997].

Przedstawione podejscie réwnosciowego definiowania abstrakcyjnych typow danych
ma eleganckie matematyczne podstawy, ale ma takze wady. We wczesniejszej czgsci
rozdziatu zwrdcono juz uwage na dwa ograniczenia wewnetrzne:

Pierwsze wiaze si¢ z tym, Ze w obrebie abstrakcyjnego typu danych mozliwa jest defi-
nicja tylko takich operacji, ktore sa funkcjami catkowitymi. Praktycznie bardzo czesto
postugujemy si¢ funkcjami czgsciowo okreslonymi wraz z mechanizmami obstugi
wyjatkow.

Drugie wiaze si¢ z koniecznos$cig sprawdzania niesprzecznosci i kompletnosci (zu-
petnosci) zdefiniowanych typéw. Poniewaz badanie réwnowaznosci terméw dla
dowolnej algebry jest problemem nierozstrzygalnym, nie mozna uzytkownikow
wspomagaé w petlnym zakresie odpowiednimi narzedziami programowymi. Osta-
tecznie zatem obowigzek sprawdzenia niesprzecznosci spoczywa na uzytkowniku
jezyka. Dodatkowo, stosowane w implementacji rézne strategie przeksztatcania
zbioru réwnosci w zbidér regut systemu dowodzenia, a takze stosowania tego syste-
mu moga prowadzi¢ do réznych wynikéw — podczas, gdy jeden system moze dawaé
odpowiedz ,tak” albo ,,nie” na zadane pytanie, inny moze dawa¢ odpowiedz ,,nie
wiem”.

Abstrakeyjne typy danych w LOTOSie 85

Problem zupetnosci jest jeszcze bardziej ztozony, gdyz wymaga dodatkowo okreslenia
,»bazy” odniesienia, czyli tego, wzgledem czego jest badana zupetnosc.

Mozna jeszcze wskazywa¢ na inne wady. Na przyklad strukturalizacja typéw nie za-
pobiega mozliwosci rozproszenia podobnych rodzajéw i operacji w wielu miejscach,
a kazda funkcja definiowana w typie jest widziana jako globalna — nie ma mozliwosci
deklarowania funkcji jako lokalnych, dodanie nowej réwnosci moze istotnie zmienié
semantyke typu.

Zwraca si¢ jeszcze uwage na to, ze — ze wzgledu na zamierzony zakres zastosowania
jezyka LOTOS - intelektualny wysitek potrzebny do zrozumienia podstaw teoretycz-
nych nie pozostaje w proporcji do praktycznych zamierzen, na przyktad do specyfi-
kacji komunikatéw protokotu komunikacyjnego. Dla wielu uzytkownikéw abstrak-
cyjne typy danych pozostaja raczej problemem niz rozwigzaniem.

Wymienione problemy zwigzane z uzyciem réwnosciowej specyfikacji abstrakcyjnych
typéw danych byly jedna z przyczyn rewizji jezyka LOTOS [Garavel, Sighireanu
1996a], [Garavel, Sighireanu 1996b] i opracowania wersji rozszerzonej E-LOTOS
[ISO/IEC FDIS 15437, 2001]. W nowej wersji jezyka zdecydowano si¢ na wpro-
wadzenie mieszanych mechanizméw definiowania typéw danych; sg pozostawione,
nieco zmodyfikowane, mechanizmy abstrakcyjnych typéw danych, wraz z dotaczony-
mi wybranymi mechanizmami specyfikacji typéw danych z funkcjonalnego jezyka
“programowania ML [Milner, Tofte, Harper 1990].

Podobnie postgpiono w rozwoju jezyka SDL — do wczesniej wprowadzonych abstrak-
cyjnych typéw danych dotaczono typy danych spotykane w imperatywnych jezykach
programowania (jezyki C i C++).

Dodatkowo narzedzia programistyczne wspomagajace projektowanie w SDL umozli-
wity stosowanie notacji ASN.1 (Abstract Syntax Notation One). ASN.1 jest jezykiem
formalnym do zapisu sktadni abstrakcyjnej typéw danych oraz do kodowania danych
w postaci ciagéw zero-jedynkowych. Jako standard ISO jest opisany w serii norm
ISO/IEC 8824-3, 4 oraz ISO/IEC 8825-1, 2, a przystepny jego opis zawiera ksigzka
[Kosmulska-Bochenek 2002].

86

5. LOTOS - opis jezyka

S.1. Akcje komunikacyjne

Specyfikacja systemu rozproszonego w LOTOSie jest traktowana jako proces. Proce-
sy sa podstawowa jednostka strukturalizacji specyfikacji. Opisywany system przedsta-
wia si¢ jako hierarchi¢ proceséw, z ktdrych najbardziej zewngtrzny reprezentuje caty
system, a procesy w nim zagniezdzone reprezentuja sktadowe tego systemu. Komuni-
kacja jest niepodzielna czynnoscia, podczas ktérej pomigdzy procesem a jego otocze-
niem nast¢puje przeptyw danych. Realizacja komunikacji wymaga synchronizacji ko-
munikujacych si¢ proceséw.

Proces w LOTOSie, podobnie jak proces w CCS, w danym stanie oferuje swemu oto-
czeniu zbidr ofert komunikacji. Oferta komunikacji ma posta¢ akcji. Realizacj¢ akcji
nazywa si¢ interakcja. Kazdej interakcji towarzyszy synchronizacja oraz wymiana
informacji. Szczegélnym rodzajem jest interakcja, ktérej towarzyszy pusta wymiana
danych, czyli interakcja ograniczajaca si¢ tylko do synchronizacji komunikujacych si¢
partneréw. Takie wilasnie zdarzenia sa dopuszczalne w omawianym tutaj LOTOSie
bazowym - podzbiorze petnego jezyka LOTOS.

Mechanizmy komunikacji w LOTOSie, w poréwnaniu do komunikacji w CCS, sa
znacznie rozbudowane. Wynika to z dwéch powodéw: po pierwsze, oprécz syn-
chronizacji komunikujacych si¢ proceséw, mamy do czynienia z wymiang danych,
a po drugie — oprécz komunikacji bilateralnej dopuszcza si¢ takze komunikacj¢ multi-
lateralng. Z tych powodéw definicja akcji komunikacyjnych jest bardziej ztozona.
Niech, jak poprzednio, G oznacza dowolny, co najwyzej przeliczalny zbiér nazw bra-
mek. Wyréznia si¢ elementarne i strukturalne akcje komunikacyjne.

Akcje elementarne maja postac:
g't oraz g?x:s S.D

gdzie:
g€ G oznacza nazwg bramki,
e jest pewnym wyrazeniem — termem statym (zob. poprzedni rozdziat),
X jest zmienna,
s jest identyfikatorem rodzaju.

Pierwsza z tych akcji, nazywana elementarna akcja wyjscia, polega na wystaniu, przez
proces realizujacy t¢ akcjg, wartosci wyrazenia ¢ przez bramke g, element !r nazy-
wamy wyjsciowym elementem komunikacyjnym. Druga z tych akcji, nazywana ele-
mentarng akcja wejscia, polega na odbiorze, przez proces realizujacy t¢ akcje, pewnej
warto$ci rodzaju ¢ z bramki g i przypisaniu tej wartosci zmiennej x, element ? x : s na-
zywamy wejsciowym elementem komunikacyjnym.

LOTOS - opis jezyka 87

Najprostszy przypadek komunikacji, w ktérej uczestnicza dwa procesy (komunikacja
bilateralna), wymaga, aby jeden z nich byl gotowy do realizacji elementarnej akcji
wejscia, a drugi — elementarnej akcji wyjscia. Akcje te musza byé zgodne, tzn. obie
muszg si¢ odnosi¢ do tej samej bramki, a wyrazenie e w akcji wyj$cia musi by¢ takie-
go samego rodzaju jak zmienna x w akcji wejscia. Realizacj¢ pary zgodnych akcji na-
zywa si¢ interakcja.

W bardziej ogélnym przypadku komunikacja pary proceséw moze polegaé na reali-
zacji innych zestaw6w akcji elementarnych. Mozliwosci te sa zgromadzone w tabe-
li 5.1, w ktérej przedstawiono komunikacje¢ pomigdzy dwoma procesami p oraz q.

Tabela 5.1
Lp. - p?okccejsie p | w pé:ccé:ie 4 Warunek zgodnosci akcji | Wynik realizacji akcji
gt glv:s sort(t) =s y:=11]
2 ghlx:s gt sort(t) = s x =1
3 gl glh [1]=1r]
XI=v, Y=y,
4 g7x:8 g?%y:$: S =5 gdzie v jest dowolng

wartoscia rodzaju s,

Funkcja sort(r) oznacza rodzaj wyrazenia (termu) ¢,

Przypomnijmy, ze — zgodnie z rozwazaniami poprzedniego rozdziatu — wartoscig ter-
mu stalego ¢ jest klasa abstrakcji [¢], okreslona na zbiorze terméw statych rodzaju s.

Oznaczenie x := v jest przypisaniem wartosci v zmiennej x. Uzywanym w LOTOSie
zmiennym mozna przypisywa¢ wartosci tylko jednokrotnie, co znaczy, ze raz przypi-
sanej warto$ci nie mozna juz zmienia¢ — LOTOS jest jezykiem aplikatywnym.

Wspdélnym warunkiem realizacji akcji, niezapisanym w tabeli 5.1, jest — podobnie jak
w przypadku jezyka CCS - synchronizacja obu proceséw p oraz q. Dwa pierwsze
przypadki ujgte w tabeli odpowiadajg oméwionemu wyzej przestaniu wartosci po-
migdzy dwoma procesami. W trzecim przypadku procesy nie przesylaja pomigdzy
sobg zadnych wartosci, a tylko synchronizuja si¢ wzajemnie. Czwarty przypadek ob-
razuje interakcje, ktérej wynikiem jest wygenerowanie, w spos6b niedeterministyczny,
pewnej warto$ci wspdlnie zapamigtanej przez oba procesy.

Bardziej rozbudowang akcja komunikacyjng jest akcja strukturalna. Akcje struktu-
ralne stuza do przekazywania, podczas jednej interakcji, zestawu warto$ci, a nie
tylko pojedynczej wartosci, jak w przypadku akcji elementarnych. Akcja struktu-
ralna ma posta¢

goy ..o dlak=0 (5.2)

88 Rozdziat 5

gdzie ¢; sq wezesniej okreslonymi elementami komunikacyjnymi postaci (5.1), czyli
?X,‘ -8 lub ! t;. (53)
Dwie akcje strukturalne:
g0 0y ... Oraz gﬁl ﬂz ﬂ[5.4)

sq zgodne wtedy i tylko wtedy, gdy & = [oraz dla kazdego i = 1, ..., k akcje elemen-
tarne g ; oraz g [, sa zgodne w sensie tabeli 5.1.

Realizacj¢ pary akcji, czyli interakcj¢, bedziemy oznaczad
8 Vs ooy Vi (5.5)

gdzie v; jest wartoscia przestang lub wygenerowana przez elementy komunikacyjne «;
oraz f;dlai=1,..., k.

Najbardziej ogdlna posta¢ akcji strukturalnej przedstawia si¢ nast¢pujaco:
g0y 0y ... 0% [c] (5.6)

gdzie c¢ jest predykatem — wyrazeniem logicznym, czyli termem rodzaju Bool. Predy-
kat ¢ zaweza dopuszczalne wykonania tej akcji tylko do tych interakc;ji, ktére spetniaja
ten predykat.

Dla akcji g & @ ... @ wyznaczmy zbiér zmiennych V, wystgpujacych w wejsciowych
elementach komunikacyjnych

V= {x,~|a,-E?x,-:s,-,i=l,...,k}. (57)
Niech V= {x,,...,x; }, wowczas interakcja g vy, ..., v, musi spetnia¢ warunek
D+ c[le Nl Xy ::=tjm]=true (5.8)
albo krotko
D+ c[xjI Sl some Xy ::=tjm] (5.9)
gdzie v, =[¢;] dla i =1, .., m. Symbol k-, zgodnie z oznaczeniami rozdziatu 4.,

oznacza istnienie dowodu réwnosci w systemie dowodzenia D, generowanym przez
specyfikacj¢ typow danych.

Dotychczas omawiano komunikacje, w ktérej uczestniczyly tylko dwa procesy.
LOTOS dopuszcza interakcje, w ktérych bierze udziat wigksza liczba proceséw. Zbidr
akcji jest zbiorem akcji zgodnych, jezeli istnieje wspdlna interakcja, ktora jest reali-
zowalna przez kazda z tych akciji.

Oprécz opisanych wyzej akcji komunikacyjnych, podobnie jak w CCS, wyrdznia si¢
w LOTOSie jeszcze akcje wewngtrzne, oznaczane symbolem i. Akcja wewnegtrzna jest
odzwierciedleniem pewnej czynnosci obliczeniowej lub komunikacyjnej, ktdra
- z punktu widzenia zewngtrznego obserwatora procesu — jest catkowicie niewidocz-

LOTOS - opis jezvka 89

na. Akcja zachodzi autonomicznie na skutek decyzji pewnego obiektu wewnetrznego
danego procesu. Dla zewngtrznego obserwatora procesu akcja wewnetrzna jest nieob-
serwowalna, a informacja o zajsciu akcji i méwi tylko o tym, ze we wnetrzu procesu
wykonano pewne obliczenie lub zaszta pewna komunikacja.

5.2. Procesy i wyrazenia behawioralne

Sktadnia LOTOSa jest rozszerzeniem sktadni CCS. Rozszerzenie wynika z:

e uwzglednienia przekazywania danych,
e wprowadzenia dodatkowych operatoréw wyrazen behawioralnych, wynikajacych
migdzy innymi z wprowadzenia komunikacji multilateralnej (oprécz bilateralnej),
¢ rozbudowania deklaracji proceséw i typow.
Szkieletowa postac definicji procesow w postaci kanoniczej przedstawia si¢ nastepu-

jaco:

process nazwa_procesu [lista_bramek_formalnych)
(lista_formalnych_parametrow_wartosciowych) :
funkcjonalnos¢ = (5.10)
wyrazenie_behawioralne
endproc

W przypadku proceséw kanonicznych zaktada si¢, ze nie majg one lokalnych definicji
typdw lub proceséw wewngtrznych, zaktada si¢ natomiast, ze ich wspdlnym kontek-
stem jest kanoniczna specyfikacja typéw danych. Procesy te dysponuja wigc rodzaja-
mi i operacjami nalezacymi do kanonicznej specyfikacji typéw danych.

Definicje typdw oméwilisSmy w rozdziale poprzednim, obecnie oméwimy wyraZenia
behawioralne stanowigce tresci procesdw.

Stowa kluczowe wyrdznia si¢ wyttuszczona czcionka, a symbole pomocnicze — Kur-
sywa.

Poszczegdlne elementy definicji procesdéw maja znaczenie nastgpujace:

Lista_bramek_formalnych, postaci g, ..., g,, dla n > 0, oraz g; # g;, dla i # j, okresla
nazwy formalne bramek, przez ktére proces moze si¢ komunikowaé ze swoim oto-
czeniem. Instancja procesu o zadanej definicji musi nazwy formalne zastgpi¢ nazwami
aktualnymi.

Procesy moga dysponowac¢ zmiennymi lokalnymi, ktérych warto$ciowanie moze by¢
ustalane w momencie tworzenia instancji procesu. Stuzy do tego lista_formalnych_pa-
rametrow_wartosciowych, postaci x; : sy, ..., X, s,, dlan > 0, gdzie x|, ..., x, s3 zmien-
nymi, a sy, ..., §, sg rodzajami tych zmiennych.

90 Rozdziat §

Funkcjonalnos¢ procesu charakteryzuje sposéb konczenia dziatania procesu i przyj-
muje jedna z postaci:

noexit
(5.11)

exit(s;, ..., s,)dlan>0.

Pierwsza posta¢ oznacza, ze proces albo nigdy si¢ nie konczy, albo — konczac si¢ —
staje si¢ procesem nieaktywnym. Druga posta¢ oznacza, ze jesli proces si¢ konczy, to
produkuje zestaw wartosci rodzajéw s, ..., s,, ktére moze przekaza¢ do zainicjowania
innego procesu — jego nast¢pnika.

Pojecie funkcjonalnosci odnosi si¢ takze do wyrazen behawioralnych, dlatego pow-
staje wymog, by funkcjonalnos¢ procesu byta zgodna z funkcjonalnoscia wyrazenia
behawioralnego stanowiacego jego tres¢.

Zbiér wyrazen behawioralnych Beh jest okreslony nast¢pujaco:

B:= stop|
i; B |
ga & ...04 By |
g o & ...qfcl; By |
exit(z), ..., 1) |
B, >> accept x, : sy, ..., X, S,in B, |
B/[1B;]
hideg,, ..., g,in B, |
B, [>B:| (5.12)
B, l[gl’ s ey gn]I BZ |
[c]->B]
letx,=1,...,x,=t,in B |
choice g in (g, ..., g.] B |
choice x [] B, |
par g in [gla sy gn] I[hl, sinay hm]l Bl I
p[gl» £ sy gn](th LERT) tm)l
(By)

Symbole B, B, B; oznaczaja wyrazenia behawioralne, g, h (z ewentualnymi indeksa-
mi) oznaczaja bramki komunikacyjne, x|, ..., x, — zmienne, s, ..., s, — rodzaje oraz
t, ..., Iy~ termy.

W przypadku wyrazenia exit(z;, ..., t,) symbol ¢; (i = 1, ..., n) moze dodatkowo
przyjmowaé posta¢ any s;. Symbol any s; stuzy na oznaczenie dowolnego termu
rodzaju s;.

LOTOS - opis jezyka 91

Zbior wyrazen behawioralnych musi spetnia¢ ograniczenia kontekstowe, wynikajace
z wymagan funkcjonalnych. Po oznaczeniu przez funct(B) funkcjonalnosci wyraze-
nia B ograniczenia te mozna przedstawi¢ tabela 5.2.

Tabela 5.2
B Sfunct(B) Warunek zgodnosci
stop noexit
a; B, funct(B,) a — dowolna akcja
exit(t, ..., t,) exit(s, ..., 8,) sort(t)) = sy, ..., sort(t,) = s,
B, >>accept x, : sy, ..., X, 5,in B, Sfunct(By) Junct(B)) = exit(sy, ..., §,)
B []B- Sfunct(B,) Sfunct(B)) = funct(B-)
hide g, ..., g, in B, Sfunct(B,)
B, [> B, Sfunct(B,) 'funct(Bl) = funct(B,)
B |lgi, ---» g]| B2 Sfunct(B)) SJunct(B,) = funct(B,)
le]->B, funct(B))
letx,=1¢, ..., x,=t,in B, Junct(B,)
choice gin g, ..., g,] B Sfunct(B,)
choice x [] B, Junct(By)
par gin (g, ..., g, |[h, ..., Au| B funct(B))
pley, - 8al(ty ooos t) Sfunct(B,) gdzie B, — tre$¢ procesu p
(B) funct(B,)

Znaczenie poszczeg6lnych konstrukcji wyrazen behawioralnych przedstawiajg sig
nastepujaco:

stop jest procesem elementarnym reprezentujacym proces pusty, to znaczy taki, ktéry
nie oferuje swemu otoczeniu zadnych akcji komunikacyjnych.

Prefiksowanie akcja wewnetrzng i; B oznacza zachowanie, na ktére sktada si¢ wyko-
nanie akcji wewnetrznej, a dalsze zachowanie jest okreslone przez wyrazenie beha-
wioralne B. Podobne znaczenie maja prefiksowanie akcja komunikacyjna bez ogra-
niczenia g @ &% ... &; B i z ograniczeniem g & o ... &%[c]; B, to znaczy po
wykonaniu akcji w wyniku synchronizacji z otoczeniem dalsze zachowanie jest okre- -
slone przez wyrazenie behawioralne B.

Wyrazenie exit(z, ..., £,) jest procesem elementarnym, ktérego jedyna czynnoscia jest
obliczenie wartosci terméw ¢y, ..., ¢, i przekazanie ich do innego procesu, ktéry jest
jego nastepnikiem. Wyrazenie to nalezy odrézni¢ od tekstu exit(sy, ..., s,), ktéry ozna-
cza funkcjonalnos¢.

92 Rozdziat 5

Petne wyjasnienie roli procesu exit(z,, ..., t,) wiaze si¢ z wyrazeniem ztozenia aktywu-
jacego postaci: B) >> accept x| : sy, ..., X, §,in By.

Operator binarny >> oznacza sekwencyjne wykonanie wyrazen najpierw wyrazenia
B, a nastgpnie wyrazenia accept x, : sy, ..., X,: 5, in Ba.

Od wyrazenia B, wymaga sie, aby mialo ono funkcjonalno$¢ exit(s), ..., s,), czyli aby —
konczac sie — produkowato zestaw wartosci vy, ..., v, rodzajéw sy, ..., s,. Oznacza to, ze
wyrazenie B — konczac si¢ — ma wykonaé proces exit(z,, ..., 1,). Proces ten wytworzony
zestaw wartosci przekazuje do wyrazenia accept x; : s, ..., x,: 5, in B, za posrednictwem
specjalnej, lokalnej bramki komunikacyjnej. Bramka ta jest oznaczana jako &. Interakcja
pomiedzy wyrazeniami po lewej i prawej stronie operatora >> ma postac: vy, ..., v,.
Zachowanie reprezentowane przez wyrazenie B; >> accept x| : sy, ..., X, : §, in B, jest
sekwencyjnym ztozeniem zachowan jego wyrazen sktadowych.

Zachowanie reprezentowane przez wyrazenie wyboru B, [] B, jest mnogosciowg sumg
zachowan wyrazen sktadowych. Oznacza to, ze wyrazenie oferuje swemu otoczeniu
akcje obu wyrazen sktadowych, a po wyborze akcji nalezacej do jednego z tych wyrazen,
np. B, dalsze zachowanie przebiega zgodnie z zachowaniem okreslonym przez B,.

Wyrazenie przestaniania hide g,. ..., g, in B, oznacza, ze bramki gy, ..., g, moga by¢
uzyte do komunikacji tylko wewnatrz wyrazenia B. Bramki te nie moga by¢ wykorzy-
stane do komunikacji z otoczeniem tego wyrazenia. Komunikacja na dowolnej z tych
bramek, przez zewngtrznego obserwatora wyrazenia hide g,. ..., g, in B, bedzie trak-
towana jako akcja wewnetrzna.

Zachowanie wyrazenia ztozenia deaktywujacego B, [> B> mozna nieformalnie opisac¢
jako zachowanie dwdch réwnolegtych proceséw reprezentowanych wyrazeniami B,
oraz B,. Proces reprezentowany przez B, wykonuje si¢ az do chwili, gdy rozpocznie
dziatanie proces reprezentowany wyrazeniem B. Jezeli B, zakonczy dziatanie zanim
dziatanie rozpocznie B,, oznacza to zakonczenie dziatania catego wyrazenia B, [> B».
Jezeli natomiast B, rozpocznie dziatanie przed zakonczeniem B,, to nastepuje prze-
rwanie dziatania B, i dalsze zachowanie przebiega zgodnie z B>.

Wyrazenie ztozenia réwnolegtego B, |[gy, ..., gi]| B2 0znacza dwa réwnolegle procesy
reprezentowane wyrazeniami B, oraz B,. Bramki g, ..., g, stuza do synchronizacji
tych proceséw, co oznacza, ze w kazdej komunikacji z udzialem tych bramek musza
jednocze$nie uczestniczy¢ B, oraz B».

Wyrazenie ztozenia réwnoleglego ma dwie szczegélne postaci: B, ||| B, oraz B, || B..
Pierwsza z nich jest réwnowazna wyrazeniu B, |[]| B>, co oznacza, ze zbidr wspél-
nych bramek komunikacyjnych jest pusty, czyli procesy reprezentowane przez B, oraz
B, nie synchronizuja si¢ ze sobg. Druga — jest réwnowazna By |[gy, ..., g.]| B2, gdzie
{g1, ..., g} 0znacza zbidr wszystkich bramek, czyli Ze procesy reprezentowane przez
B, oraz B, muszg si¢ synchronizowac ze sobg podczas kazdej komunikacji.

LOTOS - opis jezyka 93

Wyrazenie dozorowane [c¢] -> B, reprezentuje takie zachowanie jak B), pod warun-
kiem, ze prawdziwy jest predykat c. Jezeli predykat ¢ jest falszywy, znaczeniem cate-
g0 wyrazenia jest proces pusty.

Wyrazenie let x, = 1, ..., x, = t, in B, definiuje lokalne wartosciowania zmiennych
X1, ..., X, Wykorzystywane w wyrazeniu Bj.

Wyrazenie niedeterministycznego wyboru bramki choice g in [gy, ..., g,] B, oznacza
niedeterministyczne zastapienie bramki g jedna z bramek g, ..., g,. Zachowanie wy-

razenia choice g in [g, ..., g.] B jest takie, jak wyrazenia B,, w ktérym bramke g
zastapiono dowolng z bramek gy, ..., g,.

Wyrazenie niedeterministycznego wyboru wartosci choice x: s [] B, oznacza przypi-
sanie zmiennej x niedeterministycznie ustalonej wartosci rodzaju s. Zachowanie repre-
zentowane przez to wyrazenie jest takie, jak zachowanie wyrazenia B, zmodyfikowa-
nego w ten sposdb, ze zmiennej x jest przypisana pewna warto$¢ rodzaju s.

Wyrazenie powielenia bramki par g in (g, ..., g.] [, ..., h,]| Bi oznacza n-krotne
ztozenie réwnolegle powielonego zmodyfikowanego wyrazenia B). Kolejna modyfi-
kacja wyrazenia B, polega na zastapieniu bramki g bramka g, dla i = 1, ..., n, nato-
miast bramki £y, ..., &, sa parametrami ztozenia réwnolegtego.
Wyrazenie plh, , ..., b,)(t, ..., t,) jest instancjg procesu o definicji
process plgi, ..., g (X281, ... X0 8,) exit(s'y, ..., s%) =B
endproc
gdzie:
B jest trescig procesu,
hy, ..., I, jest lista bramek aktualnych,
I1y ..., 4y jest lista terméw rodzajéw sy, ..., Sy
Zachowanie reprezentowane przez to wyrazenie jest takie jak zachowanie wyrazenia
B, zmodyfikowanego w taki sposdb, ze nazwy bramek g, ..., g, zostajq zastapione
nazwami h,, ..., h, a zmiennym x, : |, ..., X, . §,, Z0ostaja przypisane wartosci fy, ..., t,.

5.3. Semantyka operacyjna

Kanoniczna specyfikacja zachowania jest okreslana jako para BSpec = <py, Proc>,
gdzie py jest procesem poczatkowym, a Proc — zbiorem definicji proceséw. Kon-
tekstem specyfikacji zachowan jest specyfikacja typéw TSpec.
Semantyka operacyjna specyfikacji jest definiowana w sposob strukturalny na pod-
stawie definicji sktadniowych wyrazen behawioralnych. Wynikiem definicji seman-
tyki jest etykietowany system przejs$¢ postaci

TS(Spec) = <Beh, Act, Tr, By> (5.13)
gdzie:

Beh jest zbiorem wyrazen behawioralnych,

94 Rozdziat 5

Act = (g v|geG U {8}, ve Termrg,. (D)} L {i} jest zbiorem interakeji,

Tr={ —— | ae Act} jest zbiorem relacji przejsc,
By jest trescia procesu poczatkowego po.

Uwaga: Symbol i oznacza akcj¢ wewngtrzna, natomiast i oznacza zdarzenie realizacji

akcji wewnegtrznej.

Zbiér relacji przej$¢ Tr jest definiowany rekursywnie za pomoca nast¢pujacego ze-

stawu aksjomatéw i regut:
Proces pusty stop — brak aksjomatow.
Prefiksowanie akcjq wewnetrzng B =1i; B,
B— B,
Prefiksowanie akcjq komunikacyjnqg B=g a; o5 ... o4(c]; B,

B—E1t oy, =t X, =, 1B,

jl 9 = jm

wtedy 1 tylko wtedy, gdy:
v, =[1;], gdy «; =!t,oraz ¢; jest termem statym, dlai =1, ..
vi€ Term (D)/ =, ,gdy a; =7x;:5;,dlai=1,....n,

x; jest zmienng taka, ze @; =7x; :s; ,dlai=1,..,n,

J
oraz

D+ c[le = S ::=tjm]

Proces zakonczenia B = exit(ty, ..., t,)
B—2u-=t s gtop

wtedy i tylko wtedy, gdy:
v, =[t,], gdy ¢ jest termem statym, dlai=1, ..., n,
vi€ Term, @)/ = gdy t;=any s,dlai=1, .., n.

Sekwencyjne ztozenie B = B) >> accept x, : sy, ..., X, 5,in B,

B—5,

a ’ . co o1
B—— B, >>accept x, :5,..., x, !5, in B,

Svy...v,) ’
p,—fhedd 5p .
! ! gdzie[t,1=v,,...[t,]1=v,

B——i—->[x|::=tl,. x,:=t,]1B,

e n n

A,

name(a) # 0

(A-pre;,,)

(A ‘premmm)

(A-exit)

(R-accept,)

(R-accepty)

LOTOS - opis jezyka

95

Wybér B= B, [] B>

B8
B——>B,
B,—*—>B,
B—B;

Przestoniecie B = hide g, ..., g, in B,

B— B

. dy name(a)¢ {g,, ..., 8,
B—p gdy 81+ 8u)

E'—,.——B,' gdy name(a)e {g,,.... 8,
B——>B,

ZtoZenie deaktywujqce B = B, [> B,

BB

dy name(a) # &
B—> B,’[> B, L

ovy...v,

B, ——)B,’
B Ovp...v, BI/

« ’
BZ B 2

a ’

B——B,

Ztozenie réwnolegle B = B, |(g\, ..., g)| B>

B ——B/
B——B/|(g,-»8,]| B,

B,—>B,
B—“>B |lg,. &,1| B,

B,——B/

B,——B,

B——B/|[g,..+ 8,]| B,

gdy name(a)€ {g,, ..., 8,.0}

gdy name(a)e {g,, ..., &,,0}

gdy name(a)e {g,, ..., g,,0}

(R-choice))

(R-choice,)

(R-hide,)

(R-hide,)

(R-disy)

(R-dis3)

(R-dis3)

(R-pary)

(R-par)

(R-pars)

96 Rozdziat §

Wyrazenie warunkowe B = [c | -> B,

B —2 B
—'———,' gdy D¢ (R-cond)
B—*— B
Lokalne wartosciowanie zmiennych B=let x,=1t,, ..., x,=t,in B,
[, 5ty s ooy X, 5= t,,]/B1 —* 5B, (R-let)
B—"— B,
Niedeterministyczny wybor bramki B = choice g in [g|, ..., g,] [1 B
=g] ——B/
Bleo=gd—=8 g;o1,..n (R-gate)
B—*—B,
Niedeterministyczny wybdr wartosci B = choice x : s [] B,
=t]B,—>B/
[=ilF, L dlat eTerm (D) (R-val)

B——B/
Powielenie bramki B = par gin [g|, ..., g&] |[h1, -..,]| By

Bl[g L= gl]l[hl’ i hm]l'”l[hl’ b hm]lBl[g = gn]#_)Bl,
B——B,

(R-par-gate)

Instancja procesu B = plg, ..., g.J(t1, ... tw)

(X, =t X, 2=, 1B [h =g, ... h, =g,]— B,

m

B——>B|
(R-inst)
gdzie B, jest trescig procesu o specyfikacji
process p[hy, ..., h,](x : 51, ..., X0 8,) ¢ ... := B, endproc

Podobnie jak w przypadku jezyka CCS, specyfikacja w LOTOSie generuje zbiory cia-
g6w akcji. R6znica w definicji wynika z réznicy definicji specyfikacji, gdyz w przy-
padku CCS specyfikacja jest rozumiana jako para: wyrazenie behawioralne i zbidr de-
finicji proceséw, natomiast w przypadku LOTOSa specyfikacja jest rozumiana jako
para: definicja wyréznionego procesu i zbiér definicji pozostalych proceséw. Ponie-
waz wyrézniony proces poczatkowy w specyfikacji w LOTOSie moze mie¢ rézne
instancje, stad:

Definicja 5.1
Specyfikacja BSpec = <py, Proc>, gdzie p, jest procesem o definicji

process plhy, ..., h,)(xi: Sy, ..., X < Sw) : fun, := B, endproc

LOTOS - opis jezvka 97

generuje rodzing zbioréw ciagdw akcji:
Se(/(p[gl, sevy gll](th ey tm))
= Sequ”(P[gl, L) gn](tlv ey tm)) (% Seql’lf(P[gla sy gn](tlv ceey t”l)) (5 14)

gdzie: gy, ..., g, sa dowolnymi bramkami, a ¢y, ..., f, — dowolnymi termami staty-
mi rodzajoéw sy, ..., Sy

Podobnie definiuje si¢ rodzing zbioréw ciagéw akcji obserwowalnych:

SeqObs(plgi, ..., &1ty ooy l))
= SeqObsFin(plg,, ..., g.J(t1, ..., L))
U SeqObsinf(plgi, ..., gty ..oy tw)) (5.15)

5.4. Graf tranzycji

Grafy sa jedna z czgsto stosowanych form wizualizacji. Stosuje si¢ je takze do wizu-
alizacji obliczen (zachowan) wyrazen behawioralnych.

Graficzng reprezentacja relacji tranzycji dla wyrazen behawioralnych sa grafy tran-
zycji. Graf tranzycji definiujemy jako etykietowany graf skierowany, ktérego wierz-
chotki sa etykietowane wyrazeniami behawioralnymi, a tuki — interakcjami, w taki
sposéb, ze tuk pomigdzy wierzchotkami etykietowanymi wyrazeniami B, oraz B, jest
etykietowany interakcja g v, ... v, taka, ze B,—&1="1— B, Graf tranzycji dla danego
wyrazenia behawioralnego B jest grafem, ktérego jeden z wierzchotkdéw, wyrézniony
jako wierzchotek poczatkowy, jest etykietowany wyrazeniem B, a pozostate wierz-
chotki sa wierzchotkami osiagalnymi z wierzchotka poczatkowego.

Oczywiscie nawet dla prostych wyrazen behawioralnych grafy tranzycji mogg by¢
nieskonczone. llustruje to przyktad przedstawiajacy specyfikacje komérki pamigci,
ktéra moze pamigtac jedng wartos¢ okreslonego rodzaju — dla ustalenia uwagi przyj-
miemy, ze bedzie to rodzaj nat. Na komédrce mozna wykonywaé dwie operacje. Ope-
racja wpisania warto$ci powoduje umieszczenie wskazanej wartosci, co przyczynia si¢
do utraty poprzednio pamig¢tanej wartosci. Operacja odczytu dostarcza wartosci pa-
mi¢tanej w komdrce bez zmiany jej zawartosci:

process Komdrka[we, wy] (z : nat) : noexit :=
we ? x : nat, Komaorkalwe, wy](x)
0 wy ! z; Komdrka[we, wyl(z)
endproc

Powotanie instancji procesu wymaga okreslenia poczatkowej zawartosci komoérki, na
przyktad: Komdrkala, b](0).

98 Rozdziat 5

Graf tranzycji dla wyrazenia Komdrkala. b)(0) jest oczywiscie nieskonczony, przy-
ktadowy jego fragment przedstawiono na rysunku 5.1.

\/5 wy 0

Komdrkala, b)(0)

we | \/_7 wy |
Komdrkala, b)(1)

we 2 \/jwy 2
Komdrkala, b}(2)

RN Rys. 5.1. Przykladowy graf tranzycji

Powodem nieskonczonosci grafu jest nieskonczony zbidr interakcji, a w konsekwencji
nieskoficzono$é¢ wyrazen behawioralnych, w naszym przykladzie, instancji tego same-
go procesu Komdrka, ktére réznia si¢ od siebie tylko wartosciowaniem lokalnych
zmiennych — parametréw formalnych procesu. W celu wyeliminowania tego rodzaju
réznorodnosci wyrazen wprowadzamy pojgcie zredukowanego grafu tranzycji.

Definicja 5.2.
Dwa wyrazenia B, oraz B, sg strukturalnie rownowazne wtedy i tylko wtedy, gdy
[y =% o x, =*IBr =y =%, o,y 5= ¥1Bs

gdzie: {xi, ..., x,} oraz {y,, ..., y.} sa zbiorami zmiennych wystgpujacych w wy-
razeniach B, oraz B,, * jest wybranym symbolem stuzacym do tekstowego zasta-
pienia zmiennych, a = jest relacja réwnowaznosci tekstowej

Relacja réwnowaznosci strukturalnej dla wyrazen jest oczywiscie relacja rownowaz-
nosci.
Wierzchotkami zredukowanego grafu tranzycji sa klasy abstrakcji okreslone przez

relacje strukturalnej rownowaznosci na zbiorze wierzchotkéw grafu tranzycji. Klasg
réwnowaznosci generowang przez wyrazenie B bedziemy oznaczac

(6 =% nn X = *]B

Luki zredukowanego grafu tranzycji sa okreslone nastgpujaco: wszystkie tuki w grafie
tranzycji prowadzace od wierzchotka B, do wierzchotka B,, etykietowane interakcjami

LOTOS - opis jezyka 99

g Vi ... vy, 54 reprezentowane w zredukowanym grafie tranzycji jednym tukiem prowa-
dzacym od wierzchotka reprezentujacego klasg abstracji [x, ::= *, ..., x, ::= *]B, do
wierzchotka reprezentujacego klas¢ abstrakcji [x ::= *, ..., x, ::= *]B,, etykietowanym
schematem interakcji postaci gi..k.

n razy

W przypadku akcji wewnetrznych tuki prowadzace pomigdzy wierzchotkami zredu-
kowanego grafu tranzycji s etykietowane symbolem i.

Wynikiem redukcji grafu tranzycji z rysunku 5.1 jest zredukowany graf tranzycji na
rysunku 5.2a.

we *
Bufl[we, wy]

Komdrkala, b)(*) wy ¥

we *

wy! *; Bufl[we, wy]

wy *

a) b)

Rys. 5.2. Przyktadowe zredukowane grafy tranzycji

Kolejny przyktad przedstawia bufor jednopozycyjny, ktéry rézni si¢ od poprzednio
rozwazanej komorki tym, ze odczyt wprowadzonej wartosci powoduje skasowanie za-
wartosci bufora

process Bufl{we, wy] : noexit :=
we? x : nat; wy! x; Bufl[we, wy]
endproc

Zredukowany graf tranzycji dla instancji procesu Bufl[we, wy] przedstawiono na ry-
sunku 5.2b. Bufora jednopozycyjnego mozna uzy¢ jako elementu sktadowego do bu-
dowy dwupozycyjnego bufora przesuwnego:

process Buf2[we, wy] : noexit :=
hide w in
Bufl[we, w] |[w]| Buf1[w, wy]
where
process Bufl[we, wy] : noexit :=
we? x : Nat; wy! x; Bufi[we, wy]
endproc
endproc

100 Rozdziat 5

Uogdlnieniem jest bufor n-pozycyjny, gdzie n >1, o postaci

process Buf[we, wy](n : Nat) : noexit :=
[n = 1] -> Bufl{we, wy]
[1 hide win [n> 1] -> Bufl[we, w] |[w]| Buf [w, wyl(minus(n, succ(z))
where
process Bufi[we, wy] : noexit :=
we? x : Nat;, wy! x; Bufl[we, wy]

endproc
endproc
v0
we \
vl
"
Vv
v2

v5 *
i
\
v6
we *
Rys. 5.3. Zredukowany graf tranzycji
w dla instancji procesu Buf [we, wy](3)

Zredukowany graf tranzycji dla instancji procesu Buf[we, wy](3) ma postaé pokazang
na rysunku 5.3, gdzie poszczegélnym wierzchotkom odpowiadaja nastepujace wyraze-
nia behawioralne:

LOTOS - opis jezyka 101

v0 : hide w, w'in Bufl[we, w] |[w]| Bufl[w, w'] |[w']| Buf1[w', wy]

vl : hide w, w'in w *; Bufl[we, w] |[w]| Buf1[w, w'] |[w')| Bufl{w', wy]

v2 : hide w, w'in Bufl{we, w] |[w]| w’ *; Bufl[w, w'] |[w']| Bufl[w', wy]

v3 : hide w, w'in w *; BufI[we, w] |[[w]| w' *; Bufl[w, w'] |[w'l| BufI[w', wy]

v4 : hide w, w'in Bufl[we, w] |[w]| Bufl{w, w'l |[w']| wy *; Bufl[w’, wy]

vS : hide w, w'in w *; Bufl[we, w] |[w]| Bufl[w, w'] [[w'l| wy *; BufI[w', wy]
v6 : hide w, w'in Bufl[we, w] |[w]| w' *; Bufl[w, w'] |[wl| wy *; BufI[w', wy]
v7 : hide w, w'in Buﬁ[we, w] |[w]| Bufl[w, w' |[w| Bufl{w’, wy]

Zwro¢my uwage, ze rekursywne zagniezdzenie operatora przestonigcia wymaga prze-
mianowania przestanianych bramek, stad uzycie konstrukc;ji:

hide w, w'in Bufl[we, w] |[w]| Bufl[w, w'] |[w']| Buf1[w', wy]

Kolejny przyklad jest interesujacy z dwéch wzgledéw. Po pierwsze — stos byt zdefi-
niowany w poprzednim rozdziale jako typ danych, natomiast tu jest zdefiniowany jako
proces — jest to ilustracja ogdlniejszego stwierdzenia, ze typ danych moze by¢ mode-
lem dowolnego programu sekwencyjnego. Po drugie — przyktad pokazuje, ze zreduko-
wany graf tranzycji moze by¢ nieskonczony.
process BStos[pusty, szczyt, ze_stosu, na_stos] : noexit :=
(pusty ! true; exit
[1 na_stos ? x : elem;, Stos{pusty, szczyt, ze_stosu, na_stos](x)
) >> BStos[pusty, szczyt, ze_stosu, na_stos]
where
process Stos[pusty, szczyt, ze_stosu, na_stos](x : elem) : exit :=
pusty ! false; Stos[pusty, szczyt, ze_stosu, na_stos}(x)
[l szezyt ! x; Stos(pusty, szczyt, ze_stosu, na_stos)(x)
[1 ze_stosu: exit
(1 na_stos?y:elem;
Stos[pusty, szczyt, ze_stosu, na_stos)(y)
>> Stos[pusty, szczyt, ze_stosu, na_stos)(x)
endproc
endproc

Przyklad stosu reprezentuje sytuacje, kiedy zredukowany graf tranzycji nie jest skon-
czony (rys. 5.4). W celu skrdcenia zapisu wyrazen behawioralnych na rysunku zamiast
petnych nazw proceséw i bramek uzyto tylko ich skrétéw.

102 Rozdziat 5

i
pu .
BS[pu, sz, ze, nal >| exit >> BS[pu, sz, ze, nal

\ na*
ze

Sipu, sz, ze, nal >> BS|[pu, sz, ze, nal

exit >> S[pu, sz, ze, nal >> BS[pu, sz, ze, nal

ze

na

Rys. 5.4. Nieskonczony zredukowany graf tranzycji

Przyczyna nieskonczonosci zredukowanego grafu tranzycji jest rekursja, w ktorej
wystepujg operatory ztozenia réwnoleglego ztozenia aktywujacego lub deaktywuja-
cego.

Wystarczajacymi, ale niekoniecznymi, warunkami skonczonosci sa:

e Jezeli wyrazenie behawioralne B [[...]| B2 jest podwyrazeniem tresci procesu p, to
ani By, ani B, nie zawierajg wywotania procesu p lub wywotan innych procesow,
ktére posrednio lub bezposrednio wywotujg proces p.

¢ Jezeli wyrazenie behawioralne B [> B, lub B, >> B, jest podwyrazeniem tresci
procesu p, to B, nie zawiera wywolania procesu p lub wywotan innych proceséw,
ktére posrednio lub bezposrednio wywoluja proces p.

5.5. Strukturyzacja specyfikacji

Specyfikacja behawioralna jest zbiorem definicji proceséw z wyrdzniona definicjg
procesu poczatkowego. Ztozone specyfikacje behawioralne sg strukturalizowane.
Przyjeta konwencja strukturalizacji jest odzwierciedleniem podejscia zstgpujacego
— od og6tu do szczegétu. Znajduje to odzwierciedlenie w nastgpujacym szkielecie spe-
cyfikacji:

LOTOS - opis jezyka 103

specification nazwa_specyfikacjillista_bramek_formalnych]
(lista_formalnych_parametréw_wartosciowych) :
Sfunkcjonalnosé
definicja_tvpu
definicja_typu
behavior
wyraZenie_behawioralne
where
definicja_procesu
definicja_procesu
endspec

Nazwa wyréznionego procesu poczatkowego jest nazwa_specyfikacji, jego parametra-
mi s lista_bramek_formalnych oraz lista_parametréw_wartosciowych, a jego trescia
jest wyrazenie_behawioralne. Dodatkowo specyfikacj¢, podobnie jak kazdy proces,
charakteryzuje funkcjonalnos¢, okreslajaca sposéb jego konczenia sig.

Definicje typéw danych, opisane w poprzednim rozdziale, sg typami globalnymi spe-
cyfikacji, ktére mogg by¢ wykorzystywane przez procesy sktadowe specyfikacji. Typy
moga by¢ typami standardowymi, pochodzacymi z biblioteki typéw. W przypadku
uzycia typéw standardowych typ,, ..., typ, ich deklaracja ma posta¢:

library typ,, ..., typ, endlib

Po stowie kluczowym where wystepuje lista definicji procesow. Szkieletowa postaé
definicji proces6w przedstawia si¢ nastgpujaco:
process nazwa_procesu [lista_bramek_formalnych]
(lista_formalnych_parametréw_wartosciowych) :
Sfunkcjonalnosé ;=
wyraZenie_behawioralne
where
definicje_lokalne
endproc

Kazdy proces moze mie¢ opcjonalnie wlasne definicje_lokalne, ktore sa definicjami
typow lub proceséw wewngtrznych.

Kazda specyfikacja strukturalna moze zostaé¢ przetransformowana do postaci kano-
nicznej. Proces takiej transformacji, nazywany sptaszczaniem specyfikacji, jest przed-

104 Rozdziat 5

stawiony w [ISO 8807]. Sptaszczanie polega na takiej zamianie nazw bramek i proce-
s6w, aby staty si¢ one unikalne w ramach calej specyfikacji, inaczej: chodzi o przenie-
sienie wszystkich definicji lokalnych na jeden poziom globalny. W podobny sposéb
mozna dokona¢ sptaszczenie typow, to znaczy przeniesienia ich definicji na jeden
globalny poziom. Semantyka dowolnej specyfikacji strukturalnej jest réwnowazna
semantyce jej transformacji do postaci kanoniczne;j.

Przyktad ztozonej specyfikacji opisuje funkcjonowanie automatu sprzedazy biletéw
parkingowych. Scenariusz pracy urzadzenia jest nastgpujacy: Dzialanie automatu skia-
da si¢ z dwdch faz: ptacenia (proces Placenie) i wydania biletu (proces Wydanie).
W pierwszej fazie uzytkownik deklaruje wartos¢ biletu, ktéry chce uzyska¢, wprowa-
dzajac odpowiednig warto$¢ przez bramke kwota (akcja kwota?k : nat). Pomijamy tu
szczeglty wpisywania wprowadzonej warto$ci. Nastgpnie nastepuje ptacenie, ktére
polega na wrzucaniu kolejnych monet, az do momentu, gdy ich warto$¢ osiagnie przy-
najmniej zadeklarowang warto$¢ biletu (akcja moneta?m :nat). Przed osiagnigciem
tego momentu uzytkownik moze si¢ wycofaé¢ z transakcji przez interakcj¢ na bramce
wycofaj (akcja wycofaj, ktérej nie towarzyszy wymiana danych), po czym nastepuje
przejscie do drugiej fazy — do zwrotu wprowadzonej wartosci (akcja reszta'r). Jezeli
uzytkownik nie wycofa si¢ i wplaci petng kwote, takze nastgpuje przejscie do drugie;j
fazy — wydania biletu i ewentualnej reszty.

specification Parkomat[kwota, moneta, wycofaj, reszta, bilet, wytqcz] : noexit
behavior
(Ptacenie [kwota, moneta, wycofaj]
>> Wydanie|bilet, reszta)
>> Parkomat[kwota, moneta, wycofaj, reszta, bilet, wytqcz]
) [> (i; stop [] wytqcz; stop)
where
process Placenie [kwota, moneta, wycofaj] : exit(nat) :=
kwota ? k : nat,;
Pobierz[moneta, wycofajl(k, 0)
where
process Pobierz[moneta, wycofajl(k : nat, s : nat) : exit(nat, nat) :=
([s <k]->moneta ? m :nat, Pobierz[moneta, wycofajl(k, s + m)
[0 [s=k)] > exit(k, 0)
[1 [not(s < k)] -> exit(k, s — k)
[1 wycofaj; exit(0, s)
endproc(*Pobierz*)
endproc(*Placenie*)
process Wydanie[bilet, reszta]: exit :=

LOTOS - opis jezvka 105

let k : nat, s : nat in
[k>0and r>0]->bilet ! k: reszta! r; exit
[11[k >0 and r=0] -> bilet ! k; exit
[1k=0andr>0]->reszta! r; exit
endproc (*Wydanie*)
endspec (*Parkomat*)

Przedstawiony model uwzglednia dodatkowo mozliwos¢ przerwania pracy parkomatu
albo przez wylaczenie — akcja wyfqcz, albo z powodu awarii — akcja wewnetrzna i.

Kolejny przykiad jest specyfikacja systemu sortujacego. Dziatanie tego systemu opie-
ra si¢ na algorytmie sortowania przez wttaczanie. Koncepcja algorytmu jest nastepuja-
ca: Niech

Co=<dj, ..., Ap>

bedzie nieposortowanym ciggiem elementéw — dalej zaktadamy, ze sg to liczby natu-
ralne, reprezentowane typem standardowym NaturalNumber. Ciag ¢, bedziemy prze-
ksztalca¢ kolejno w ciagi ¢, ..., ¢,. Ciag ¢, dla k = 1, ..., n, stanowi posortowany ciag
poczatkowych k elementéw, czyli ay, ..., a;, ciagu cy. Ciag c, bedzie zatem posorto-
wanym ciggiem wszystkich elementéw ciagu c,. Przeksztatcanie ciagéw ¢, ..., ¢, od-
bywa si¢ wedtug nastgpujacych zasad:

L Clag C| =det <A |>.

e Jezeli utworzono ciag c, =L By el 2 gdzie iy, ..., i, jest permutacja 1, ..., k,

ik
to bierze si¢ element a;. z ciagu ¢y i nastepnie, przegladajac ciag ¢, od pozycji
pierwszej do ostatniej, znajduje si¢ w nim taka pozycjg¢ m, ze

i ciag ¢ Wyznacza sig jako

Cort T<Gyseens @ s Gy eens @ >

m-1” m %
System sortujacy opisywany w LOTOSie dziata w taki sposéb, ze przez jedna ze
swych bramek wczytuje si¢ kolejne liczby nieposortowanego ciagu, a nastgpnie —
przez drugg bramke — wyprowadza si¢ ciag posortowany. Parametrem specyfikacji jest
liczba okreslajaca dtugos¢ sortowanego ciagu
specification Sortowanie[we, wyl(n : Nat) : noexit
library Boolean, NaturalNumber endlib
behavior
Wttaczanie[we, wy](n, 0)
where
process Wrtaczanie[we, wy](i : Nat, j : Nat) : noexit :=

106 Rozdziat 5

[Succ(0) It i] -> hide p in
Bufl[we, pl(i, j) |[p]| Wrtaczanie[p, wy)(Pred(i), Succ(j))
[1 [Succ(0) eq i] -> Bufi[we, wyl(i, j)
endproc
where
process BufI[we, wy](i : Nat, j : Nat) : noexit :=
(* Komentarz: instancja procesu odpowiada ustalonej pozycji w sortowanym
ciagu i stuzy do wprowadzenia pierwszego elementu na t¢ pozycj¢. Para-
metr i oznacza numer pozycji liczonej od lewej do prawej strony (rys. 5.5);
parametr j jest dopetnieniem i do liczby n, bedacej dlugoscia sortowanego
ciagu. *)
we ? x:Nat ; Buf2[we, wyl(x, Pred(i), j)
endproc '
where
process Buf2[we, wyl(a : Nat , i : Nat, j : Nat) : noexit :=
(* instancja procesu stuzy do poréwnywania elementu wczytanego od
lewego sasiada — instancji procesu Bufl — z elementem zapamigta-
nym i przestania wigkszego z nich do sasiada po prawej stronie
(rys. 5.5) *)
[0ti] ->we?x:Nat,
([xleal ->wy'a; Buf2[we, wyl(x, Pred(i), j)
[1 [alex]->wylx; Buf2[we, wyl(a, Pred(i). j)
(11 eq O] -> Buf3[we, wyl(a, j)
endproc
where
process Buf3[we, wyl(a : Nat , j : Nat) : noexit :=
(*instancja procesu stuzy do wyprowadzania elementéw posor-
towanego ciggu do sgsiada po prawej stronie (rys. 5.5))
[0l)] ->wy ! a; welx:Nat; Buf3[we, wyl(x, Pred(j))
[1[eq0]->wyla;stop
endproc
endproc
endproc
endproc
endspec

Na rysunku 5.5 przedstawiono strukturg systemu sortujgcego wyrazong przez powia-
zanie instancji proceséw Bufl. Warto zwréci¢ uwage na to, ze w przedstawionej po-
staci system daje mozliwos¢ réwnolegtego wykonywania wielu operacji poréwnuja-
cych — wynika to z réwnoleglego ztozenia instancji proceséw.

LOTOS — opis jezyka 107

1]
1 1
1 1
1 1
!
1 1
,Mi_lg Bllwe, pl] BIp1, p2) BI{p2.p3| | Bllpnowy) A Liowy
= 1
!
t
]

Rys. 5.5. Struktura systemu sortujacego

5.6. Uwagi koncowe

W tym rozdziale przedstawiono, w sposéb tylko czesciowo sformalizowany, opis
sktadni 1 semantyki jezyka LOTOS. Pelny opis zawiera dokument standaryzacyjny
[ISO 8870]. Wczesniejsza jego wersja jest zawarta w opracowaniach: [Brinksma
1988], [Bolognesi, Brinksma 1989]. Doktadny opis projektu, w ramach ktérego pro-
wadzono prace nad LOTOSem, przedstawia ksigzka [van Eijk, Vissers, Diaz 1989].

Przykiady ilustrujace zostaly zaczerpnigte miedzy innymi z prac [Huzar, KuZniarz
1990a, 1990b, 1990c].

Jezyk LOTOS byt punktem odniesienia do definiowania innych jezykdow specyfikacji
formalnych. Przyktadem préby definiowania jezyka ukierunkowanego na specyfikacjg
systeméw rozproszonych zgodnych ze standardami [ISO/IEC 10746-2, 1995], [ISO/IEC
10746-3, 1995] jest rozprawa doktorska [Hnatkowska 1998]. Zdefiniowany j¢zyk
O-LOTOS ma wprawdzie taka samg sit¢ ekspresji jak LOTOS (abstrakcyjna imple-
mentacja jest zdefiniowana jako transformacja jezyka O-LOTOS na jezyk LOTOS),
ale umozliwia zwiekszenie efektywnosci fazy analizy wytwarzania oprogramowania,
a uzyskana specyfikacja moze by¢ wykorzystana podczas projektowania interfejsu
uzytkowego.

LOTOS byt réwniez stosowany do definiowania semantyki innych jezykow. Przykta-
dem jest praca [Hnatkowska, Huzar 2001], przedstawiajaca semantyk¢ diagramdw
standw jezyka UML [UML 1.3, 1999] w postaci wyrazen behawioralnych LOTOSa.

Zastosowaniom LOTOSa towarzyszyt rozwdj metodyk i narzedzi programistycznych.
Gléwnymi europejskimi osrodkami uczestniczacymi w tego rodzaju przedsigwzie-
ciach byty uniwersytety w Madrycie i Liége, a przede wszystkim INRIA Rhone-Alpes
(Institut National de Recherche en Informatique et en Automatique) — instytut, w kté-
rym opracowano najbogatsze Srodowisko (zob. rozdz. 7.) wspomagajace specyfiko-

108 Rozdziat S

wanie i badanie wtasnosci specyfikacji w LOTOSie. Poza Europg osrodkiem zajmuja-
cym si¢ LOTOSem jest uniwersytet w Ottawie. Informacje o réznych osrodkach zwia-
zanych z LOTOSem mozna uzyska¢ migdzy innymi na stronach internetowych:

http://www.inrialpes.fr/vasy/elotos/
http://www-run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos
http://www.cs.stir.ac.uk/~kjt/research/well/

Podobnie jak kazdy jezyk, LOTOS ulegat ewolucji. Gtéwnymi przyczynami ewolucji
byly krytyka stosowanego podejscia do typéw danych (skomentowana w zakonczeniu
poprzedniego rozdziatu) oraz potrzeba specyfikowania ograniczen czasowych. Od
1997 roku prowadzono prace, ktére w 2001 roku zakonczyly si¢ ustanowieniem no-
wego standardu E-LOTOS [ISO/IEC 15437:2001].

http://www.inrialpes.fr/vasy/elotos/
http://www-run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotoshttp://www.cs.stir.ac.uk/%7Ekjt/research/well/

109

6. Specyfikacja ustug i protokotow sieciowych

6.1. Elementy modelu referencyjnego ISO/OSI

Gléwnym obszarem zastosowan jezyka LOTOS, opracowanego w ramach ISO [ISO
8807] jako jedna z formalnych technik opisu standardéw sieciowych, jest specyfikacja
ustug i protokotéw.

Sie¢ komputerowa jest systemem. Powigzania pomigdzy elementami systemu tworza
jego strukturg. Z systemem jest zwiagzany cel funkcjonowania, z tego wzgledu system
jest niepodzielng catoscia. Oznacza to, ze kazdy, dowolnie wyodrebniony podzbiér
elementéw ma wptyw na funkcjonowanie systemu, ale zaden z podzbioréw nie ma
wylacznego wplywu, czyli usunigcie dowolnego elementu nie pozwala pozostaltym
elementom na petna realizacj¢ celu systemu. Elementami sktadowymi ztozonych sys-
temow moga by¢ inne systemy — jego podsystemy.

Struktura sieci komputerowej jest wyznaczona przez zbiér komputeréw potaczonych
ze soba taczami komunikacyjnymi. Sktadowe komputery, ze wzgledu na ich wewng-
trzng ztozonos¢, okresla si¢ réwniez jako systemy — podsystemy sieci komputerowe;j.
Celem funkcjonowania sieci komputerowej jest umozliwienie uzytkownikom dostepu
do ustug informacyjnych i obliczeniowych, oferowanych przez wspétpracujace syste-
my komputerowe.

Mozliwos¢ wilasciwego funkcjonowania sieci komputerowej zapewnia zbidr standar-
déw okreslajacych zasady, ktére powinny by¢ akceptowane przez wszystkie wspétpra-
cujace systemy komputerowe. Podstawowym odniesieniem dla wszystkich tworzo-
nych standardéw jest model referencyjny ISO/OSI (Open Systems Interconnection)
[ISO 7498], nazywany tez modelem architektury otwartych systeméw komputero-
wych. Otwarto$¢ jest tu rozumiana jako gotowos$¢ do wspétpracy systemu kompute-
rowego z kazdym innym systemem, ktéry spetnia okreslone wymagania. Istota mo-
delu referencyjnego ISO/OSI polega na przyjeciu standardowej dekompozycji funkcji
systemOw otwartych. Ponizej oméwiono krétko model ISO/OSI, gdyz przyjete tu
ogodlne zasady sa akceptowane takze przez inne modele [Comer 1997].

Dekompozycja funkcji polega na wprowadzeniu liniowo uporzadkowanego zestawu
warstw funkcjonalnych (ustugowych) systemow otwartych. Model OSI wyréznia siedem
takich warstw, nazywanych — poczynajac od najnizszej do najwyzszej — warstwa: fi-
zyczng, liniowa, sieciowa, transportowa, sesyjna, prezentacyjng i aplikacyjna (rys. 6.1).

Warstwy pozostajg ze soba w relacji ustugodawca—ustugobiorca. Warstwa wyzsza jest
ustugobiorca ustug sgsiadujacej warstwy nizszej — ustugodawczej. Warstwa najnizsza
nie korzysta juz z ustug innej warstwy, a warstwa najwyzsza dostarcza swych ustug
uzytkownikom, ktérzy stanowia element otoczenia systemu.

110 Rozdziat 6

Ustugi i funkcje wykonywane w obrgbie poszczegélnych warstw szczegbtowo zostaty
oméwione miedzy innymi w pracach [Bilski, Dubielewicz 1991, 1993].

Ustugi danej warstwy sa definiowane przez zbidr polecen ustugowych, za pomocg
ktérych warstwa wyzsza komunikuje si¢ z warstwa nizsza. Polecenia sg abstrakcyjne
w tym sensie, ze nie okreslaja one sposobu implementacji, sa tylko specyfikacjami
pewnych funkcjonalnosci (ustug).

Warstwe reprezentuje zbidr stacji partnerskich (peer entities). Stacje te, realizujac
ustugi zadane od warstwy wyzszej, wspétpracuja ze soba poprzez wymiang danych.
Wymiany tej nie dokonujg bezposrednio, lecz za posrednictwem obiektéw partner-
skich w nizszych warstwach (rys. 6.1).

Otwarty Otwarty
system system
komputerowy komputerowy

S| | PR S S —— | IS S——
2-stacja 2-stacja 2-podsystem
e o s s sl e e SN | ST SRV 5
1-stacja 1-stacja I-podsystem

Rys. 6.1. Architektura warstwowa modelu ISO/OSI

Zasady wspétpracy stacji partnerskich okresla si¢ mianem protokotu danej warstwy.
Protok6t mozna uwazac za abstrakcyjng implementacj¢ ustugi danej warstwy.

Specyfikacja ustug i protokotéw sieciowych 111

Zbiér n dolnych warstw, dla n = 1, ..., 7, stanowi n-podsystem sieci komputerowe;.
Stwierdzenie, Ze stacja z warstwy n+1 korzysta z ustug warstwy n, oznacza w istocie,
ze stacja korzysta z ustug n-podsystemu. Realizacja polecenia skierowanego przez sta-
cj¢ z danej warstwy moze pocigga¢ zaangazowanie stacji w warstwach nizszych, za-
réwno po stronie systemu otwartego, z ktérego zostato skierowane polecenie, jak i po
stronie systemu otwartego, z ktérym wspétpracuje dana stacja.

Struktur¢ powigzan pomigdzy stacjami danego systemu otwartego zilustrowano na
rysunku 6.2.

(n+1)-stacja (n+1)-stacja

(n)-stacja (n)-stacja

Rys. 6.2. Powiazania stacji
w sasiednich warstwach @

Punkt dostgpu do ustugi (SAP)

Dany system otwarty moze w danej warstwie mie¢ wiele stacji partnerskich. Nalezace
do jednej warstwy stacje moga wspélpracowaé ze soba. Zasadniczy schemat wsp6t-
pracy polega na tym, Ze stacje ustalajg ze soba polaczenie na pewien okres, w trakcie
ktérego moga wymieniaé pomigdzy soba ustalone dane. W polaczeniu najczesciej
uczestniczg dwaj partnerzy, z ktérych jeden jest inicjatorem, a drugi respondentem
polaczenia, ale mozliwe sg takze potaczenia z udzialem wielu partneréw. Kazde po-
taczenie ma swdj identyfikator. W trakcie trwania potaczenia wyréznia si¢ trzy fazy:
faza nawigzania potaczenia, podczas ktdrej ustala si¢ warunki wspétpracy, faze za-
sadnicza, w ktdrej prowadzi si¢ wymiang danych i fazg¢ roztaczenia, kiedy stacje po-
twierdzajg zakonczenie wspolpracy. Potaczenie jest identyfikowane przez zbiér iden-
tyfikatoréw koncéw potaczen CEP (Connection End Point Identifier). Wspétpraca
stacji moze si¢ tez odbywac¢ bez ustanawiania potaczen i polega na przesytaniu bez
zapowiedzi danych od danej stacji do innej o wskazanym adresie.

Stacje partnerskie danej warstwy nie komunikuja si¢ bezposrednio, lecz za posred-
nictwem stacji warstw nizszych. Stacje sasiadujacych warstw, w tym samym systemie
otwartym, sg ze sobg powiazane za posrednictwem punktéw dostgpu do ustug SAP
(Service Access Point). ldentyfikator danego punktu dostepu do ustug n warstwy na-
zywa si¢ n-adresem. Punkt dostepu jest zwigzany doktadnie z jedng n-stacjg i moze

112 Rozdziat 6

by¢ zwiazany z wieloma (n+1)-stacjami. Oznacza
to, ze pojedynczy punkt dostgpu do ustugi moze
stuzy¢ do jednoczesnego przekazywania wielu
strumieni polecen, a pojedyncza (n)-stacja moze
by¢ zaangazowana w jednoczesne prowadzenie
komunikacji pomiedzy wieloma (n+1)-stacjami,
czyli utrzymywanie (n)-potaczen (zob. rys. 6.3).

(n)-stacja

Rys. 6.3. Konicowe punkty potaczen
] Koricowy punkt potaczenia (CEP) dla (n+1)-stacji w punkcie dostgpu do ustugi

(n+1)-stacja kieruje polecenia zadania do (n)-stacji przez wybrany punkt dostgpu do
ustugi. Polecenia maja nazwe¢ i ewentualne parametry. (n)-stacja przyjmuje polecenia
zadania i, po ich zrealizowaniu, przekazuje poleceniem zwrotnym informacj¢ o wyko-
naniu lub niewykonaniu polecenia zadania.

Opis ustug (n)-warstwy polega wigc — jak okreslono to wyzej — na zestawieniu pole-
cen zadan i polecen zwrotnych, jakie moga by¢ wymieniane pomigdzy (n+1)-stacja
a (n)-stacja, oraz na podaniu dopuszczalnych ciagéw wymiany tych polecen.

Okreslenie protokotu (n)-warstwy — jako abstrakcyjnej implementacji ustug — wy-
maga, w pierwszej kolejnosci, okreslenia swiadczonych ustug, czyli (n)-ustug oraz
wykorzystywanych ustug, czyli (n—-1)-ustug. Nastgpnie wymaga definicji komuni-
katéw protokotowych (PDU — Protocol Data Unit), czyli danych, ktére wymieniaja
pomigdzy sobg stacje (n)-warstwy, oraz regut transformacji tych komunikatéw na
polecenia ustugowe do warstwy nizszej. Wymaga wreszcie okredlenia dopuszczal-
nych ciagéw wymian komunikatéw protokotowych oraz akcji wykonywanych przez
(n)-stacje.

(n+1)-stacje wymieniajg pomigdzy soba komunikaty protokotu (n)-warstwy, dalej
w skrécie oznaczane jako (n+1)-PDU. Komunikaty te sa wymieniane za posrednic-
twem (n)-stacji, do ktérej (n+1)-stacja kieruje polecenia w postaci ustalonej przez
interfejs pomigdzy stacjami. Komunikaty interfejsu — (n)-IDU (Interface Data Unit)
— sktadaja si¢ z czesci sterujacej — (n)-ICI (Interface Control Information) oraz
czgsci ustugowej — (n)-SDU (Service Data Unit), ktdrg jest jednostka protokotowa
(n+1)-PDU (zob. rys. 6.4). Komunikat interfejsu odebrany przez (n)-stacj¢ jest da-
lej przeksztalcany, co polega — w pierwszej kolejnosci — na wyodrebnieniu czgsci
sterujacej 1 serwisowej, a nastepnie na przygotowaniu komunikatu protokotu
(n)-PDU. Komunikat (n)-PDU przenosi, jako swoja czgs¢, komunikat (n+1)-PDU
oraz informacje sterujaca protokotu (n)-warstwy — (n)-PCI (Protocol Control In-
formation).

Specyfikacja ustug i protokotéw sieciowych

113

(n+1)-PDU

|

(n)-ICI

(n)-SDU

(n)-IDU

Rys. 6.4. Odwzorowanie jednostek danych
pomigdzy dwiema sasiednimi warstwami

6.2. Reprezentacja modelu referencyjnego

Specyfikacje ustug i protokotéw sieciowych w LOTOSie maja pewne wspdlne wias-
nosci. W tym podrozdziale przedstawiono nieformalnie tylko uproszczone zasady repre-
zentacji elementéw statycznych i dynamicznych modelu ISO/OSI w jezyku LOTOS.

Granice pomigdzy warstwami modelu OSI s w LOTOSie reprezentowane przez po-
jedyncza bramkeg. Przyjeto nastgpujaca konwencj¢ symboli bramek reprezentujacych

poszczegdlne warstwy:

e warstwa fizyczna —ph
e warstwa liniowa —dl
® warstwa sieciowa -n
e warstwa transportowa -t
e warstwa sesyjna -S
e warstwa prezentacyjna —p
e warstwa aplikacyjna —a

Wszystkie akcje komunikacyjne z udziatem punktu dostepu do ustugi (n)-SAP, o iden-
tyfikatorze adres rodzaju IdentyfikatorSAP, sa odwzorowywane w klase¢ akcji jezyka

LOTOS o postaci:

nladres ...
Iub

n?adr : IdentyfikatorSAP ...

114 Rozdzial 6

Rodzaj Identyfikator powinien by¢ elementem abstrakcyjnego typu danych gwarantu-
jacego co najmniej rozréznialno$¢ adreséw. Na przyktad definicja odpowiedniego
typu moze mie¢ posta¢
type Identifier is Boolean
sorts IdentifierSAP
opns someAddress : -> IdentifierSAP
anotherAddress : IdentifierSAP -> IdentifierSAP
eq, _ne_: IdentifierSAP , IdentifierSAP -> Bool
eqns forall x, y : IdentifierSAP ofsort Bool
xeqy=true;
someAddress eq anotherAddress(x) = false ;
anotherAddress(x) eq someAddress= false ;
anotherAddress(x) eq anotherAddress(y) =xeq y ;
xney=not(xeqy);
endtype
Podana specyfikacja wskazuje tylko istotne wtasnosci, ktére powinien mie¢ typ. Mia-
nowicie operacja zeroargumentowa someAddress wyznacza pewien ustalony iden-
tyfikator, a operacja jednoargumentowa anotherAddress jest generatorem nowych,
unikatowych identyfikatoréw.
Koncowy punkt potaczenia (n)-CEP, o identyfikatorze pofqczenie rodzaju Identyfika-
torCEP, zwiazany z powyzszym punktem dostgpu, a doktadniej wszystkie akcje
z udzialem tego punktu, sg odwzorowywane w klase akcji
nladres'idCEP ...
lub

n?adr : IdentyfikatorSAP?id : IdentyfikatorCEP...

Do rodzaju IdentyfikatorCEP odnosza sig takie same postulaty jak do rodzaju Identyfi-
katorSAP.

Polecenia ustugowe odwzorowuje si¢ w akcje postaci

nladres'idCEP'polec(...)

lub
n?adr : IdentyfikatorSAP?id : ldentyfikatorCEPpolec : ServicePrimitive

gdzie polec(...) jest termem rodzaju ServicePrimitive. Polecenia ustugowe sa rézne dla
stacji roznych warstw. W celu wyjasnienia rozumienia termow reprezentujacych pole-
cenia rozpatrzmy przyktad podzbioru polecen ustugowych, ktdre stuza do nawiagzywa-
nia potaczenia pomigdzy stacjami warstwy sesji. Specyfikacja odpowiedniego typu ma
postac

Specyfikacja ustug i protokotow sieciowych 115

type SessionServiceConnectionPrimitive is
SessionAddress, SessionRegms, SessionData
sorts SSCP
opns SCONreq, SCONind, SCONcnf, SCONrsp :
SAddress, SData, SRegms -> SSCP
SCadr : SSCP -> SAddress
SCdata : SSCP -> SData
SCregms : SSCP -> SRqms
eqns forall adr : SAddress, data : SData, reqm : SRegms
ofsort SAddress
SCadr(SCONreq(adr, data, reqms)) = adr ;
SCadr(SCONind(adr, data, reqms)) = adr ;
SCadr(SCONcnfladr, data, reqms)) = adr ;
SCadr(SCONrsp(adr, data, reqms)) = adr ;
ofsort SData
SCdata(SCONreq(adr, data, reqms)) = data ;
SCdata(SCONind(adr, data, reqms)) = data ;
SCdata(SCONcnfladr, data, reqms)) = data ;
SCdata(SCONrsp(adr, data, reqms)) = data ;
ofsort SReqms
SCreqms(SCONreq(adr, data, reqms)) = reqgms ;
SCreqms(SCONind(adr, data, reqms)) = reqms ;
SCreqgms(SCONcnfladr, data, reqms)) = reqms ;
SCreqms(SCONrsp(adr, data, reqms)) = reqms ;
endtype

Przedstawiony typ abstrakcyjny SessionServiceConnectionPrimitive wraz z pozosta-
tymi typami, ktérych jest rozszerzeniem, pochodza ze standardu ISO dotyczacego
warstwy sesji. Typy SessionAddress, SessionRegms, SessionData, ktére nie sg tu defi-
niowane, stuza do zdefiniowania parametrow polecen ustugowych SCONreq, SCO-
Nind, SCONcnf, SCONrsp. Typy te reprezentuja odpowiednio adresy koncéw ustana-
wianych polaczen sesyjnych, danych wymienianych podczas potaczenia sesyjnego
oraz danych sterujacych do ustanawiania parametréw potaczenia sesyjnego. Wpro-
wadzone operacje stuza tylko do selekcji elementéw polecen ustugowych.

Ustugi (n)-warstwy przedstawia si¢, podajac opis funkcjonowania (n)-stacji. (n)-stacja
— posredniczac pomigdzy (n+1)-warstwg a (n—1)-warstwa — przeksztatca (n)-polecenia
ustugowe na (n—1)-polecenia ustugowe. Specyfikacje zachowania (n)-stacji przedsta-
wia si¢ w LOTOSie jako proces, ktéry powinien spetnia¢ trzy rodzaje ograniczen:

116 Rozdziat 6

e ograniczenie dopuszczalnych sekwencji wymian polecen ustugowych pomigdzy
(n)-stacja a (n+1)-warstwa — G-ograniczenie,
e ograniczenie dopuszczalnych sekwencji wymian polecen ustugowych pomiedzy
(n)-stacja a (n—1)-warstwa— D-ograniczenie,
e ograniczenie dopuszczalnych sekwencji wymian polecen ustugowych pomigdzy
(n+1)-warstwg i (n—1)-warstwa— GD-ograniczenie.
Zaktadajac, ze kazde z wymienionych ograniczen jest reprezentowane odpowiednim
wyrazeniem behawioralnym, strukture calego procesu mozna przedstawi¢ w uprosz-
czonej postaci

process (n)-stacjalg, d]
(GIdSAP : GldentyfikatorSAP, DIASAP : DldentyfikatorSAP)
noexit := :
G-ograniczenia[g)(GIdSAP : GldentyfikatorSAP)
gl
GD-ograniczenialg, d)(GIdSAP : GldentyfikatorSAP,
DIdSAP : DidentyfikatorSAP)
1]
G-ograniczeniald)(DIdSAP : DIdentyfikatorSAP)
endproc

gdzie: g, d sa nazwami bramek, a GldentyfikatorSAP oraz DldentyfikatorSAP sg ro-
dzajami reprezentujacymi zbidr identyfikatoréw punktéw dostgpu do ustugi odpo-
wiednio warstwy n oraz n—1.
W uproszczeniu ustugi (n)-warstwy reprezentuje instancja procesu o podanej wyzej
definicji z dowolnym wyborem parametréw aktualnych. Mozemy ustugi te wyrazié
w postaci definicji nowego procesu
process (n)-ustugi(g] : noexit :=
hide d in
choice GIdSAP : GldentyfikatorSAP]
choice DIdSAP : DIdentyfikatorSAP [] (n)-stacjalg, d)(GIdSAP, DidSAP)
endproc

Uproszczenie przedstawionego schematu stacji wiaze si¢ z pozostaniem d jako bramki
wewnetrznej, podczas gdy w standardowej postaci bramki takiej si¢ nie uzywa. Od-
powiedni przyktad przedstawiono w nastgpnym podrozdziale.

Protokét (n)-warstwy reprezentuje w LOTOSie wyrazenie, ktdre jest ztozeniem réw-
noleglym proceséw reprezentujacych przynajmniej dwie (n)-stacje oraz wyrazenia
reprezentujacego (n—1)-ustugi. Uproszczony schemat takiego wyrazenia ma postaé

Specyfikacja ustug i protokotéw sieciowych

117

process (n)-protokot[g] : noexit :=
hide d in
((n)-stacjalg, d)(GId,SAP, Did\SAP)
(1]
(n)-stacjalg, d|(Gid,SAP, Did,SAP)

)
|(4]]
(n—-1)-ustugild)
endproc

6.3. Przyklady specyfikacji

Podano dwa przykiady, ktére stanowia opis prostych ustug komunikacyjnych, przy
czym pierwszy ma charakter wprowadzajacy, a drugi nawiazuje do istniejacego stan-

dardu opisu ustug warstwy transportowe;j.

Przykiad 1

Opisujemy warstwe $wiadczaca ustugi niezawodnej komunikacji, ktéra opiera si¢ na
ustugach warstwy dostarczajacej zawodnych ustug komunikacyjnych (zob. rys. 6.5).

Uzytkownik-A Uzytkownik-B

WW-stacja-A WW-stacja-B

l Ustugi Zawodnego Transferu |

Rys. 6.5. Architektura systemu transferu

Zaktada sig, ze w danej chwili pomigdzy uzytkownikami moze by¢ prowadzona tylko
jedna komunikacja.

118 Rozdziat 6

Specyfikacja ustug swiadczonych przez warstwe wyzszg WW

Warstwa ma za zadanie przesyfanie komunikatéw, wysylanych pomigdzy dwoma
uzytkownikami, nazywanymi UZytkownik-A oraz UZytkownik-B.
Dostgp do warstwy odbywa si¢ przez przekazywanie polecen ustugowych na bramce
unzt (ustugi niezawodnego transferu). Specyfikacja typu okreslajacego polecenia ustu-
gowe jest nastgpujaca:
type PoleceniaWW is DaneWW, Boolean
sorts PolWW
opns weWW, wyWW . DaneWW -> PolWW
zawartoS¢WW : PolWW -> DaneWW
jestWeWW : PolWW -> Bool
JjestWyWW : PolWW -> Bool
eqns forall dane : DaneWW
ofsort DaneWW
zawartos¢ WW(weWW(dane)) = dane,
zawartosc WW(wyWW(dane)) = dane;
ofsort Bool
JjestWeWW(weWW(daneWW)) = true;
JjestWeWW(wyWW(daneWW)) = false;
jestWyWW(wyWW(daneWW)) = true;
JjestWyWW(we WW(daneWW)) = false;
endtype

gdzie DaneWW jest nazwa rodzaju i niezdefiniowanego tu typu okreslajacego dane
przesytane w warstwie WW.

Operacja weWW stuzy do przekazania danych do przestania, a wyWW — do odebrania
przestanych danych. Operacje jestWeWW oraz jestWyWW stuza do rozpoznawania,
czy dane polecenie ustugowe jest operacja weWW czy wyWW.

Akcje wykonywane na tej bramce moga mie¢ jedna z postaci:
unzt 1idSAP idCEP '\polWW

unzt NidSAP idCEP 7pol : PolWW [jestWeWW]
unzt \idSAP \idCEP 7pol : PolWW [jestWyWW]
gdzie:
IdSAP jest identyfikatorem punktu dostgpu do ustug warstwy WW, rodzaju WWI-

dentSAP,
idCEP jest identyfikatorem potaczenia w warstwie WW, rodzaju WWldentCEP,

Specyfikacja ustug i protokoiéw sieciowych 119

polWW jest poleceniem ustugowym (termem generowanym w ramach typu Polece-
niaWw),

[estWeWW] oraz [jestWyWW] sa opcjonalnymi warunkami ograniczajacymi inter-
akcje zachodzace na bramce uznt.

Swiadczone ustugi mozna wyspecyfikowaé za pomocg procesu

process UstugiNiezawTran[unzt)(idA : WWldentSAP, idB : WWldentSAP,
idAB : WWldentCEP) : noexit :=
unztlidAidABMwe(komWW);
unzt'idBYidABYwy(komWW),
UstugiNiezawTran[unzt](idA, idB, idAB)
endproc

Ustugi warstwy wyzszej polegaja na niezawodnym transferze pomiedzy dwoma jej
uzytkownikami, majacymi dostgp do wskazanych punktéw dostepu do ustugi o iden-
tyfikatorach idA oraz idB, w ramach ustanowionego potaczenia o identyfikatorze
idAB. Pierwszy identyfikator idA wskazuje na uzytkownika, ktéry w transferze petni
rolg¢ nadawcy, a drugi idB wskazuje na odbiorce.

Specyfikacja wykorzystywanych ustug warstwy nizszej WN

Warstwa nizsza dostarcza ustug zawodnego transferu. Tak samo jak poprzednio, wy-
réznia si¢ komunikaty normalne i puste. Przesytanie komunikatéw za pomoca zawod-
nego medium moze gubi¢ normalne komunikaty, ale nie moze ich powiela¢ ani prze-
ktamywac. Przesylanie komunikatéw pustych jest natomiast niezawodne. Warstwa
nizsza WN komunikuje si¢ z warstwa wyzsza WW przez bramke uzz.

Dostep do warstwy odbywa si¢ przez przekazywanie polecen ustugowych na bramce
uzt (ustugi zawodnego transferu). Specyfikacja typu okreslajacego polecenia ustugowe
jest nastgpujaca:
type PoleceniaWN is DaneWN, DaneWW
sorts PolWN
opns pusty:-> DaneWW
poprawny, zgubiony : -> DaneWN
weWN, wyWN : DaneWW -> PolWN
potwierdzenie : DaneWN -> PolWN
zawartos¢WN : PolWN -> DaneWN
eqns forall daneWN : DaneWN, daneWW : DaneWW
ofsort DaneWN
zawartoSEWN(potwierdzenie(daneWN)) = daneWN;,
zawartoS¢WN(potwierdzenie(daneWN)) = daneWN;,

120 Rozdziat 6

ofsort DaneWWw

zawartos¢ WN(weWN(daneWW)) = dane WW;

zawartoSc WN(wyWN(daneWW)) = dane WW,

ofsort Bool

jestWeWN(weWN(daneWW)) = true;

jestWeWN(wyWN(daneWW)) = false;

jestWyWN(wyWN(daneWW)) = true;

jestWyWN(weWN(daneWW)) = false;
endtype

Stata pusty stuzy do modelowania zgubionego komunikatu. State poprawny i zgubiony
sa wartosciami stuzacymi do potwierdzania, czy komunikaty zostaly przestane popraw-
nie, czy tez zostaly zgubione. Operacje weWN i wyWN majq znaczenie takie jak weWW
i wwWW, z tym Ze odnosza si¢ do punktéw dostgpu do ustug do warstwy nizszej. Analo-
giczna uwaga odnosi si¢ do operacji zawartos¢ WN oraz jestWeWN i jestWyWN.

Akcje wykonywane na bramce uzt moga mie¢ posta¢ analogiczng do akcji wykonywa-
nych na bramce unzt.

Ustugi zawodnego transferu mozna wyspecyfikowa¢ za pomoca procesu

process UstugiZawTrans[uzt](idA : WNIdentSAP, idB : WNIdentSAP,
idAB: IdentCEP)
. noexit ;=
uzt lidA 'pot pol :PolWN [jestWeWN(pol)];
(i; uzt lidB 'pot 'wyWN(zawartosé(pol)),
UstugiZawTrans[uzt](idA, idB, idAB)
[11i; uzt'idB'pot'wyWN(pusty),
UstugiZawTrans[uzt)(idA, idB, idAB)
)
[1 uzt lidA 'pot 'weWN(pusty);
uzt idB pot 'wyWN(pusty);
UstugiZawTrans[uzt](idA, idB, idAB)
[1 uzt! 1dB pot ?pol :PolWN [jestWeWN(pol)];
(1i; uzt lidA pot! wyWN(zawartosé(pol));
UstugiZawTrans[uzt](idA, idB, idAB)
[11i; uzt lidA 'pot 'wyWN(pusty);
UstugiZawTrans[uzt](idA, idB, idAB)
)
[1 uzt!idB'pot'weWN(pusty);

Specyfikacja ustug i protokotow sieciowych 121

uztVidA'pot'wyWN(pusty);
UstugiZawTrans[uzt)(idA, idB, idAB)
endproc

Zawodnos¢ transferu jest modelowana za pomoca akcji wewnetrznych i prefiksuja-
cych sktadowe behawioralnego wyrazenia wyboru.

Specyfikacja protokotu

Zadaniem protokotu jest zapewnienie niezawodnej transmisji komunikatu od nadawcy
do odbiorcy.

Zdefiniowanie stacji WW wymaga okreslenia dwdéch proceséw pomocniczych. Okres-
lajg one dwie role, jakie moze petni¢ stacja podczas $wiadczenia ustugi transferu da-
nych — moze to by¢ rola nadawcy albo rola odbiorcy
process Nadajnik[unzt, uztl(idA : WWidentSAP, idB : WWldentSAP,
idAB : WWldentCEP) : noexit :=
unztlidAVidAB?pol . PolWW [jestWwWW];
uzt!idBlidAB'wyWN(zawartos¢ WW(pol)) ;
Porwierdzenie[uzt)(idA, idB, idAB, zawartos¢cWW(pol))
where
process Potwierdzenie[uzt](idA : WWidentSAP, idB : WWidentSAP,
idAB : WWldentCEP, dane : DaneWW) : noexit :=
uzt lidB YidAB pol : PolecenieWN [jestWeWN],
([zawartos¢WN(pol) = zgubiony] ->
uztidBYidABprzyjmij(zawartosé(pol)) ;
Potwierdzenie[uzt](idA, idB, idAB, kom)
[1 [zawartos¢WN(pol) = poprawny] ->
Nadajniklunzt, uzt)(idA, idB, idAB)
)
endproc
endproc

Proces okreslajacy rol¢ odbiorcy ma postac

process Odbiornik[unzt, uzt](idA ~WWldentSAP, idB : WWldentSAP,
idAB : WWldentCEP) : noexit :=
uzt YidA YidAB ?pol . PolWN [jestWyWN];
([not(zawartos¢ WN(pol) = pusty)] ->
unzt YidB YidAB 'wyWW(zawartosé(pol)) ;
unzt 'idA 'idAB ‘wyWNj(poprawny) ;

122 Rozdziat 6

Odbiornik[unzt, uzt](idA, idB, idAB)
(] [zawartos¢ WN(pol) = pusty] ->

unzt!idAidAB'wyslij(zgubiony) ;

Odbiornik{unzt, uztl(idA, idB, idAB)

endproc

Specyfikacje stacji mozna przedstawi¢ jako nast¢pujacy proces
process WWstacjalunzt, uzt](idA : WWldentSAP, idB : WWldentSAP,
idAB : WWldentCEP) : noexit :=
Odbiornik[unzt, uzt)(idA, idB, idAB) [1 Nadajnik{unzt, uzt)(idA, idB, idAB)
where
process Nadajnik[unzt, uzt](...) ...
process Odbiornik[unzt, uzt](...) ...
endproc

Stacja w danej chwili moze tylko wysyla¢ albo odbiera¢ dane.

Specyfikacja protokotu ma postac

process WWprotokot[unztl(idA : WWidentSAP, idB : WWidentSAP,
idAB : WWldentCEP) : noexit :=
hide uzt in
WWstacjalunzt, uztl(idA, idB, idAB)
|(uzt]] UstugiZawodnegoTran[unzt, uzt)(idA, idB, idAB)
where
process WWstacjal[unzt, uzt](...)
process UstugiZawodnegoTranl[unzt, uzt)(...)
endproc

Przykiad 2

W przyktadzie opisano szkielet ustug transportowych. Pokazano strukturg ustug — na-
wigzywanie potaczenia, transfer danych, roztaczenie. Dla uproszczenia opisano tylko
nazwy polecen ustugowych z pominigciem ich parametréw, z wyjatkiem polecen do-
tyczacych nawiazania potaczenia transportowego (TConlnd) oraz transferu danych
(TDatalnd). Typ definiujacy transportowe polecenia ustugowe jest okreslony jako
suma mnogosciowa typéw reprezentujacych rézne kategorie polecen:

type T-polecenie is TConReq, TConlnd, TConResp, TConConf,
TDataReq, TDatalnd, TDisReq, TDisInd

endtype

Specyfikacja ustug i protokotéw sieciowvch 123

Definicji poszczeg6lnych kategorii polecen dalej nie definiujemy, dla czytelnosci za-
klada si¢ natomiast, ze nazwy rodzajéw dla tych typéw sa takie same jak nazwy ty-
pow. Z polecen dowolnych kategorii mozna, oczywiscie, selekcjonowac ich argumen-
ty. W przedstawianych specyfikacjach uzyte operacje selekcji sa oddzielnie komen-
towane.
Nie podaje si¢ tez specyfikacji typéw punktéw dostepu do ustug TPDU, koncowych
punktéw potaczen KPP oraz transportowych jednostek ustugowych TPU.
Pierwszy z przedstawianych opiséw pomija dodatkowo zarzadzanie przesytanymi da-
nymi [Bilski, Dubielewicz 1991, 1993]
specification ProsteUstugiTransportowe(t]

type TPDU is endtype

type KPP s endtype

type TJU is endtype

type T-polecenie is TConReq, TConlnd, TConResp, TConConf,

TDataReq, TDatalnd, TDisReq, TDisInd
endtype
behaviour
T-ustugi(t]
where
process T-ustugi(t] : noexit :=
2pdul : TPDU ?kppl : KKP ? prym : TConReq,
(T-ustugilt]
f
let pdu2 : TPDU = przeznaczeniePDU(prym) in
(* przeznaczeniePDU jest selektorem jednego z parametréw
polecenia ustugowego prym, ktére jest zadaniem nawiazania

potaczenia
*)
(OtwdrzPotqczenieltl(pdul, kpp 1, pdu?)
>> accept kkp2 : KPP in
TransferDwukierunkowy(t)(pdul, kpp1, pdu2, kpp2)
[> ZamknijPotqczenie[tl(pdul, kppl, pdu2, kpp2))
)
where

process OtwdrzPotqczenielt]
(pdul : TPDU, kppl : KPP, pdu2 : TPDU) :
exit(KPP) :=

124 Rozdzial 6

t \pdu2 kpp2 : KPP 'TConInd(pdul) ;
(* jest tu pokazany jawnie parametr pditl polecenia TConlnd *)
(t!pdul kpp2 'TConResp ;
t 'pdul ?kppl 'TConConf
exit(kpp2)
(1t \pdu2 \kpp2 'TDisInd ;
stop
)
endproc
process TransferDwukierunkowy(t]
(pdul : TPDU, kppl : KPP, pdu2 : TPDU) :
exit(KPP) :=
JednokierunkowyTransfer[tl(pdul, kppl, pdu2, kpp2)
i
JednokierunkowyTransfer(t)(pdu2, kpp2, pdul, kppl)
where
process JednokierunkowyTransfer|(t]
(pdul : TPDU, kppl : KPP, pdu2 : TPDU, kpp2 : KPP) :
noexit :=
t \pdul kppl prym : TDataReq ;
JednokierunkowyTransfer(t)(pdul, kppl, pdu2, kpp2)
(1 t pdu2 kpp2 Iprym : TDatalnd ;
JednokierunkowyTransfer(t](pdul, kppl, pdu2, kpp2)
endproc
endproc
process ZamknijPolqczenie(t]
(pdul : TPDU, kppl : KPP, pdu2 : TPDU) :
noexit(KPP) :=
t 'pdul ‘kppl 'TDisReq ;
Zamknij[t)(pdu2, kpp2)
[1 t'pdu2 'kpp2 'TDisReq ;
Zamknij[t)(pdul, kppl)
where
process Zamknij[tl(pdu : TPDU, kpp : KPP) : noexit(KPP) :=
t \pdu 'kpp 'TDisReq ; stop
(] t !pdu tkpp 'TDisInd ; stop
(] t !pdu 'kpp prym : TDataReq ; Zamknij[t)(pdu, kpp)

Specyfikacja ustug i protokotow sieciowych 125

[1 tpdu kpp 2prym : TDatalnd ; Zamknij[t](pdu, kpp)
endproc
endproc
endproc
endspec

Specyfikacja ProsteUstugiTransportowe[t] jest definicja najbardziej zewnegtrznego
procesu. Definicja ta okresla uzywane typy, a zasadniczg jej czgsécig jest definicja pro-
cesu T-ustugi[t]. Ustugi transportowe polegaja na przesylaniu danych przez potaczenie
transportowe, okreslone przez dwa identyfikatory koncowych punktéw potaczenia
przypisanych do, by¢ moze tych samych, punktéw dostgpu do ustug. Realizacja ustug
przebiega w trzech fazach: ustanawiania potaczenia, transferu danych, zwalniania po-
taczenia. W pierwszej fazie obowiazuje zasada potwierdzania realizacji polecen.
Oznacza to, ze polecenie zadania nawigzania potaczenia TConReq, skierowane do
warstwy transportowej przez inicjatora ustanowienia polaczenia, dociera od warstwy
transportowej do adresata w postaci polecenia wskazania TConlnd. Adresat odpowia-
da na tg¢ propozycje poleceniem TConResp, kierowanym do warstwy transportowej,
ktéra przekazuje je do inicjatora w postaci polecenia TConCnf. W fazie nawiazywania
potaczenia, oprocz wskazania adresata, negocjowane s3 parametry transferu danych.
Zaprezentowana wyzej specyfikacja nie przedstawia negocjowanych parametrow.
W pozostatych fazach zadanie przestania danych TDataReq oraz zadanie zwolnienia
potaczenia TDisReq przez jednego z partneréw polaczenia sa przekazywane przez
warstwe transportowa do drugiego partnera, odpowiednio w postaci polecen TDatalnd
oraz TDislnd, ktoérych nie trzeba juz potwierdzac.

Warto zwréci¢ uwage na funkcjonalnosci proceséw reprezentujacych poszczegdlne
fazy transferu. Procesy OtwdrzPotqgczenie oraz ZamknijPolgczenie majg funkcjonal-
nos¢ exit, natomiast proces TransferDwukierunkowy — funkcjonalnos¢ noexit. Bezpo-
$rednio oznacza to, ze proces TransferDwukierunkowy nie konczy si¢, ale nie oznacza
to, ze faza transferu danych ma trwaé nieograniczenie dlugo, gdyz jest ona przerywana
przez proces ZamknijPotqczenie — ztozenie deaktywujace

TransferDwukierunkowy(tl(pdul, kppl, pdu2, kpp2)
[> ZamknijPolqgczenie[t)(pdul, kppl, pdu2, kpp2))

Jak wspomniano, przedstawiona specyfikacja jest uproszczona, nie uwzglednia wszy-
stkich ograniczen nalozonych na ustugi transportowe. Dodatkowe ograniczenia, ktére
nalezy uwzgledni¢, mozna wyrazi¢ przez rozbudowe tej specyfikacji. Ponizej przed-
stawiono przyktad takiej rozbudowy, ktéra wiaze sie¢ z koniecznoscig zapewniania
przesytania danych do odbiorcy w takiej kolejnosci, w jakiej wysyla je nadawca.

Rozbudowa polega na wprowadzeniu procesu, ktéry nadzoruje wprowadzanie 1 wy-
prowadzanie do kolejki przesylanych danych. Podstawowym typem, wykorzystywa-

126 Rozdziat 6

nym przez ten proces, bedzie Kolejka. Generyczny (sparametryzowany) typ kolejkowy
ma nastepujaca definicjg
type Kolejka is Boolean
formalsorts element
sorts kolejka
opns pustaKolejka : -> kolejka
dotqcz : element, kolejka -> kolejka
pierwszy : kolejka -> element
usunPierwszy : kolejka -> kolejka
JjestPusta : kolejka -> Bool
eqns forall x, y : element, q : kolejka
ofsort element
pierwszy(dotqcz(x, pustaKolejka) = x ;
pierwszy(dotqcz(x, dotqcz(y, q)) = pierwszy(dotqcz(y, q)) ;
ofsort kolejka
usunPierwszy(dotqcz(x, pustaKolejka)) = pustaKolejka ;
usunPierwszy(dotacz(x, dotacz(y, q)) =
dotqcz(x, usunPierwszy(dotqacz(yv, q))) ;
ofsort Bool
JjestPusta(pustaKolejka) = true ;
JestPusta(dotqcz(x, q)) = false ;
endtype
Przedstawiony typ wymaga aktualizacji, formalny rodzaj element powinien by¢ zasta-
piony rodzajem reprezentujacym transportowe jednostki ustugowe, co moze miec
postac
type KolejkaTJU is Kolejka
actualizedby 7JU using
sortnames ¢ju for element
endtype
gdzie zju jest nazwa rodzaju wczesniej wprowadzonego, ale niezdefiniowanego typu
TJU.
Nowa wersja specyfikacji rézni si¢ tylko definicja procesu T-ustugi, w ktérym po-
jawia sie nowy proces sktadowy ZarzqdcaKolejki, a pozostate procesy sktadowe po-
zostaja niezmienione

process T-ustugift] : noexit :=
?pdul : TPDU ?ppl : KKP ? prym : TConRegq;

Specyfikacja ustug i protokotéw sieciowych 127

(T-ustugil(r]
f
let pdu2 : TPDU = przeznaczeniePDU(prym) in
(OtworzPotqczenielt)(pdul, kppl, pdu2)
>> accept kkp2 : KPP in
ZarzqdcaKolejki(t)(pdul, kppl, pdu2, kpp2, pustaKolejka)
I
ZarzqdcaKolejki[t)(pdul, kppl, pdu2, kpp2, pustaKolejka)
I
(TransferDwukierunkowy(t}(pdul, kppl, pdu2, kpp2)
[> ZamknijPotqczenie[tl(pdul, kppl, pdu2, kpp2))

)
where
process OtwdirzPolgczenie(t]
(pdul : TPDU, kppl : KPP, pdu2 : TPDU) :
exit(KPP) :=
endproc
process TransferDwukierunkowy(t]
(pdul : TPDU, kppl : KPP, pdu2 : TPDU) :
exit(KPP) .=
endproc
process ZamknijPolqczenielt]
(pdul : TPDU, kppl : KPP, pdu2 : TPDU) :
noexit(KPP) :=
endproc
process ZarzqdcaKolejki[t)(pdul : TPDU, kppl : KPP,
pdu2 : TPDU, pdu2 : TPDU, q : kolejkaTJU) :
noexit :=
t 'pdul 'kppl prym : TDataReq ;
ZarzqdcaKolejki{tW(pdul, kppl, pdu2, kpp2, dotqcz(dane(prym), q))
[1 [not(jestPusta(q)] -> t 'pdu2 'kpp2 ?prym : TDatalnd(pierwszy(q)) ;
(* jest tu jawnie pokazany parametr pierwszy(q) polecenia TDatalnd *)
ZarzqdcaKolejki[tl(pdul, kppl, pdu2, kpp2, usunPierwszy(q))
endproc
endproc

128 Rozdziat 6

Nowe ograniczenie reprezentowane przez proces ZarzqdcaKolejki, doktadniej przez
dwie instancje tego procesu po obu stronach potaczenia, jest skladane réwnolegle
z procesem TransferDwukierunkowy.

6.4. Uwagi koncowe

W tym rozdziale oméwiono zwigzle model referencyjny ISO/OSI i zasady wykorzy-
stania jezyka LOTOS do reprezentacji ustug i protokotéw. Prezentacja ma charakter
nieformalny, odwotujacy si¢ do wprawdzie do prostych przyktadéw, ale dobranych
tak, aby zilustrowa¢ mozliwosci jezyka i przedstawi¢ pewne przyjete konwencje jego
zastosowania. Bardziej szczegélowe oméwienie zasad i konwencji zawiera ksigzka
[van Eijk, Vissers, Diaz 1989]. Przyktady opracowano na podstawie pracy [Huzar
1990].

Specyfikacja standardéw sieciowych, poza normami dotyczacymi modelu ISO/OSI
oraz wybranych standardéw internetowych, na przyktad:

¢ IEEE Connectionless Interneting Protocol,

e ISO Network Service,

¢ ISO Transport Protocol,

¢ ISO Transport Service,

e ISO Session Protocol,

e [SO Session Service,

¢ ISO Presentation Protocol,

¢ ISO Transaction Protocol,

¢ ISO File Transfer Service and Protocol,

¢ ISO Job Transfer and Manipulation Service and Protocol,

byta réwniez przedmiotem wielu innych prac, na przyktad: [van Eijk, Vissers, Diaz
19891, [Schneider 1996], [Comer 1997].

7. Metodyka specyfikowania

7.1. Proces specyfikowania

Systematyczne tworzenie systemu oprogramowania powinno si¢ odbywac¢ zgodnie
z przyjeta metodyka. Wyznacza si¢ wigc pewne etapy, ktére — niezaleznie od kon-
kretnej metodyki — obejmuja specyfikacjg¢, projektowanie i implementacje. Kazdy
z etapéw moze si¢ sktada¢ z wielu krokéw. W dalszym ciagu skupimy si¢ tylko na
etapie specyfikacji w LOTOSie. Etap ten moze si¢ sktada¢ z sekwencji krokow, kto-
rych rezultatem sa kolejne specyfikacje:

Spec,, Specs, ..., Spec,

Pierwsza specyfikacja Spec, powstaje zwykle na podstawie opisu tekstowego w jezyku
naturalnym Iub w jezyku formalnym, a ostatnia Spec, powinna prowadzi¢ przynaj-
mniej do prototypu implementacji.

Pomiedzy specyfikacjami powinny zachodzi¢ odpowiednie relacje. Kolejne specyfi-
kacje sa rozwinigciami lub uszczegétowieniami specyfikacji wczesniejszych. Pomig-
dzy dwiema sasiednimi specyfikacjami Spec,_, i Speci (k = 2, ..., n) mozna wyrézni¢,
jako podstawowe, nastgpujace rodzaje zaleznosci:

e Spec, moze by¢ strukturalnym uscisleniem Spec,_,. Przedstawiony w postaci
,»czarnej skrzynki” opis systemu lub jego fragmentu moze by¢ zastapiony opisem
w postaci ,,szarej” lub ,biatej skrzynki”. Pomigdzy specyfikacjami powinna za-
chodzi¢ relacja rownowaznos$ci obserwowalnej (zob. p. 7.2) lub réwnowaznosci
testowej (zob. p. 7.3).

e Spec, moze by¢ restrukturyzacjq Speci,. Przedstawiony w postaci ,bialej
skrzynki” opis systemu lub jego fragmentu moze by¢ zastapiony opisem w po-
staci innej ,biatej skrzynki”, ktérej wewngtrzna struktura moze lepiej od-
powiada¢ potrzebom projektowym. Réwniez w tym przypadku pomigdzy spe-
cyfikacjami powinna zachodzi¢ relacja réwnowaznosci obserwowalnej lub
testowe;j.

e Spec, moze byc rozszerzeniem Spec;_,. Rozszerzenie jest oczywiste tam, gdzie
proces specyfikowania rozpoczyna si¢ od ustalenia podstawowych zachowan,
a w kolejnych krokach specyfikacje uzupetnia si¢ dodatkowo zidentyfikowanymi
zachowaniami. Jezeli na przykiad specyfikacja Spec,, jest reprezentowana przez
wyrazenie behawioralne B, |, to specyfikacja Spec, moze by¢ reprezentowana
przez wyrazenie B, [] B, gdzie B jest wyrazeniem reprezentujacym dodatkowe
zachowania.

e Spec, moze by¢ redukcjq Spec,_,. Redukcja, chociaz jej stosowanie moze si¢ wy-
dawa¢ niepotrzebnie restryktywne, czg¢sto si¢ przydaje, gdy specyfikacja ma by¢
bezposrednio przetransformowana w implementacj¢ systemu. W takich sytu-

130 Rozdziat 7

acjach redukcja moze stuzy¢ do eliminacji dopuszczalnych wczesniej opcji lub
niedeterminizmu, ktéry dopuszcza specyfikacja. Od implementacji najczgéciej
oczekuje si¢ wlasnosci niedeterminizmu. Specyfikacja Spec,., moze na przyktad
dopuszczaé zachowania reprezentowane wyrazeniem behawioralnym a; B, [] «; Bs,
a specyfikacja Spec, postaci a; B, bedzie wyraza¢ pewna decyzj¢ projektowa
— postgpowania zgodnie z wyrazeniem B,, gdy nastapi realizacja akcji a.

7.2. Réwnowaznos$¢ obserwacyjna

Zdefiniowane w rozdziale 2. relacje réwnowaznosci dla jezyka CCS maja swoje od-
powiedniki w jezyku LOTOS. Pojecia silnej i stabej bisymulacji dla LOTOSa sa defi-
niowane tak samo, jak poprzednio dla CCS (definicje 2.7 i 2.9). Podobnie definiuje si¢
relacje kongruencyjnej réwnowaznosci obserwacyjnej (definicja 2.12).

Przypomnijmy: wyrazenia B, oraz B, sq bisymulacyjnie silnie r6wnowazne, co ozna-
cza si¢ B, ~ B,, gdy istnieje relacja bisymulacji R taka, ze <B,, B,>€ R, oraz sa obser-
wacyjnie réwnowazne, co oznacza si¢ B, = B,, gdy istnieje staba bisymulacja S taka,
7e <B|, B,>€S. '
Kongruencyjna réwnowaznos¢ obserwacyjna B, = B, oznacza, ze te dwa wyrazenia
behawioralne mozna wzajemnie zastgpowaé¢ w dowolnym wyrazeniu (kontekscie) bez
zmiany obserwowanego zachowania catego wyrazenia.

Badanie kongruencyjnej réwnowaznosci obserwacyjnej mozna prowadzi¢ analitycznie
na podstawie odpowiednich praw. Ponizej przestawiono zbidr aksjomatéw do badania
kongruencyjnej réwnowaznosci obserwacyjnej [ISO 8807]:

Prawa dla prefiksowania akcjq
g.7x:s5.[cl;B="g.7y:s...[x:=yllc]; [x :=y]B
g..7x:s...[c]; B=‘choicex:s[]g.'x;B
gt [c]; B="[c]->g!t.. 1t [c]; B

Prawa dla wyboru

B, [1B,= B;[] B
B, [1(B2[] B3) =* (B, [] Bx) [] B3
B[1B=B
B [] stop =° B
[x :=e]B [] choice x : s [] B =" choicex:s[] B
jesli [e]le Term (D) =,
choicex: s[] B="B jesli x nie jest zmienng wolnga w B
choice x : s [] exit(..., x, ...) = exit(..., any, ...)

Metodyka specyfikowania 131

Prawa dla ztozenia réwnolegtego

W zapisie tych praw beda stosowane nastepujace konwencje: symbol | oznacza tu ope-
rator zlozenia réwnoleglego z dowolnym ciagiem bramek synchronizujacych, 1,1, 1]
sa ciggami bramek synchronizujacych, przez set(/) bedzie oznaczany zbidr elementow
listy I, a przez FG(B) — zbiér bramek wolnych wyrazenia behawioralnego B (funkcja
FG nie jest tu definiowana; jej definicja jest oczywista — zob. na przyktad definicje
funkcji FAct w tabeli 2.2 oraz FB w tabeli 3.1).

B, |B. =" B:| B,
B\ | (By| B3) = (B\| B2) | B;
exit(ry, ..., t,) | exit(¢;, ..., £,) =° exit(zy, ..., £,,)

m

gdy n=m, [t;] = [t]] lub ¢/ = any s oraz sort(z;) =sdlai=1,..,n

exit(z, ..., 1,) | exit(z], ..., 7,) = stop w przeciwnym przypadku
exit(...) | stop = stop
B\ |[,]] B2 = B, |[{]1]| B2 jesli I} zawiera te same elementy, co /,
B, |l11| B =€ B, |[L]1] B: jesli ser(1])
= set(l)) N (set(FG(B,)) U set(FG(B>)))
B, |[l]| B, = B, || B; jesli sef(FG(B))) U set(FG(B,)) < ser(l)

B\|[1| B. = Bi||| B

Prawa dla ztozenia aktywujqcego

Symbol >>" oznacza dowolne ztozenie aktywujace, to znaczy przekazujace dowolne
zestawy warto$ci pomigdzy sktadowymi wyrazenia aktywujacego:

stop >>" B =° stop

exit>> B ="i; B

exit(zs), ..., £,) >> accept x;: s, x,: s, in B="1i; [x;:=1,, ..., x, :=1,]B

(B, >> B,) >> B3 =° B, >> (B> >> B-)

B >>" stop =* B ||| stop

Prawa dla ztozenia deaktywujqcego

stop [> B =B

exit(...) [> B ="exit(...)[] B
(B\[>By) [> By =" B, [> (B2 [> B3)
(B\[>By) [1B2=" B, [> B,

B [> stop =° B

132 Rozdziat 7

Prawa dla przestoniecia

hide / in B =* hide /'in B jesli I’ zawiera te same elementy, co /
hide / in B = hide !'in B jesli set(l") = set(l) N FG(B)

hide /in B="B jesli ser(l) N FG(B) = @

hide / in hide /’in B = hide /" in B jesti set(1") = ser(l)user(l’)

hide /in g't, ...!t,; B="i; hide / in B jesli ge ser(l)

hide /in g; B=°‘ g; hide /in B jesli g& set(l)

hide / in B, [] B, = hide / in B, [] hide ! in B,
hide / in B, |[/']| B, =* (hide [in B)) |[/]| (hide [in B,)
jesli set(l) N ser(l') =D
hide [in B, >>" B, =* (hide [in B;) >>" (hide / in B,)
hide [in B, [> B, = (hide [in B,) [> (hide [in B,)
hide / in [c] -> B = [c] -> (hide [in B)

Prawa dla dozorow

[c] >B="B jezeli ¢ = true
[c] -> B =° stop jezeli ¢ = false

Prawo dla instancji procesu

P[l'll, o h,,,](5 f,,) = g [,\'|:: ' I i, — l,,]B[8= ,7[, vy 8= ll,,,]
jeshi
process p[g, .., gul(xi: Si, ..., X2 8,,) : funkcjonalnos¢ :== B endproc

Prawa dla przemianowania bramek

Niech [S] oznacza dowolne przemianowanie bramek postaci [gi::= hy, ..., g.:i= A,
gdzie g; # g;dlai #j (i, j=1, ..., n). Przemianowanie to wyznacza funkcj¢ przemiano-
wania bramek S, okreslona nastgpujaco:

S(g)=h; dlai=1,..,n
Sg)=g dlag#gidlai=1,...n

stop[S] =° stop

exit(...)[S] =° exit(...)

(a; B)[S] = S(a); B[S]

(B, [1 BYIS] =° B\[S] [] BalS]

(B\ |[11] B[S =" Bi[S1][1]| B[S] jesli S jest iniekcjg na FG(B,) U FG(B) U set(l)

Metodyka specyfikowania 133

(B >>" B)[S] =* B[S]>>" B,[S]

(B [> By)[S]=° B\[S] [> Bi[S]
(hide /' in B)[S] =° hide / in B[S] jesli S jest iniekcja na FG(B) U ["'oraz S(I") = [

B[S]="B jesli S jest identycznos$cia na FG(B)
B[S|] =° B[S] jesli Si(g) = Sx(g) dla ge FG(B)
B[S,][S2] =° B[S, ° S5] gdzie o jest symbolem zloZenia funkcji

Prawa dla akcji wewnetrznych
a;i;B="a;B
B(li;B="i;B
a;(Bi[1i; By) [1a; B=" a; (B []i; By)
[x :=£]B [] choice x:s [] i; B =° choice x:s [] i; B jesli [t]e Term ()] =,

7.3. Ré6wnowaznos¢ testowa i implementacyjna

Badanie czy pomigdzy dwiema specyfikacjami zachodzi relacja rownowaznosci ob-
serwacyjnej jest réwnie trudne, jak weryfikacja poprawnosci programéw wzgledem
danych specyfikacji. W przypadku specyfikacji, dla ktérych odpowiadajacy etykieto-
wany system przejs$é jest skonczony, istnieja algorytmy badania spetnialnosci relacji
réwnowaznosci obserwacyjnej, nie ma natomiast takich algorytméw dla dowolnych
etykietowanych systeméw przejs¢. Nawet przy prostych specyfikacjach, z powodu
eksplozji stanéw, algorytmy okazuja si¢ nieefektywne obliczeniowo [Turner 1993].
Z tych powodéw weryfikacje zastepuje si¢ testowaniem. Praktyczne podejscie do ba-
dania réwnowaznosci obserwacyjnej specyfikacjami stosuje pojecie réwnowaznosci
testowe;j.

Relacja réwnowaznosci testowej dwéch specyfikacji oznacza, ze specyfikacji tych nie
mozna rozréznié przez testowanie pewnym zbiorem testow TEST. Dla dwéch zbioréw
testow takich, ze TEST, C TEST,, jesli dwie specyfikacje sa rOwnowazne testowo

wzgledem TEST, to sa rowniez rownowazne testowo wzgledem TEST).

Jesli dwie specyfikacje sa rownowazne obserwacyjnie, to sa takze, oczywiscie, row-
nowazne testowo. Odwrotna implikacja natomiast nie zachodzi. Jezeli zbidr testow
jest dostateczny (odpowiednio duzy), to zachodzenie réwnowaznosci testowej pociaga
zachodzenie réwnowaznosci obserwacyjnej specyfikacji. Problem okreslenia zbioru
testow jest trudny. Podstawowa trudno$¢ wynika z tego, ze dostateczny zbidr testOw
jest czesto nieskonczony albo — w przypadku skonczonosci — zbyt duzy, aby przepro-
wadza¢ petne testowanie. Generowanie odpowiednich testéw jest oddzielnym, trud-
nym problemem [Behforoz, Hudson 1996], [Gérski 1999], [Maciaszek 2004]. Stosuje
si¢ wielorakie techniki automatycznej generacji testow. Dla jezyka LOTOS istniejg

134 Rozdziat 7

srodowiska programistyczne, w pewnym zakresie wspomagajace generacj¢ testow, na
przyktad w srodowisku LOLA [Quemada, Pavén, Fernandez 1989] lub CADP [Ga-
ravel, Lang, Mateescu 2001].

Relacja réwnowaznosci testowej abstrahuje od wewngtrznej struktury specyfikacji,
skupiajac si¢ tylko na komunikacji na zewngtrznych bramkach.

Test dla instancji specyfikacji o funkcjonalnosci noexit postaci

Spec[gla sees gn](tla ceey tm)
mozna okresli¢ jako instancj¢ dowolnego procesu postaci

Test[g, ..., &u Sukces](...)
Uktadem testujqcym specyfikacji Spec nazywamy wyrazenia behawioralne postaci:

Speclgi, ..., ul(t1, ... tw)

|[gls sery gu]I
Test(g,, ..., &, sukces](...)

Uktad testujacy dla specyfikacji o funkcjonalnosci exit jest postaci:

Speclgi, ..., 821, ..., tu) >> sukces; stop

l[gls seey gn]l
Testlg,, ..., gu, sukces](...)

Kazde obliczenie ukfadu testujacego, ktére zakonczy si¢ zajSciem zdarzenia na wy-
r6znionej bramce sukces, oznacza zakonczenie testu z powodzeniem. Jezeli natomiast
obliczenie zakonczy sie, ale na bramce sukces nie zajdzie zdarzenie, oznacza to nie-
powodzenie testu.

Dwie specyfikacje deterministyczne sa rownowazne testowo wzgledem pewnego zbio-
ru testéw (wyrazonego instancjami proceséw), jezeli dla dowolnego procesu testuja-
cego obliczenie uktadu testujacego dla obu specyfikacji konczy si¢ zawsze tym sa-
mym rezultatem (powodzenie albo niepowodzenie).

Dwie specyfikacje niedeterministyczne sa rownowazne testowo wzgledem pewne-
go zbioru testéw, gdy dla dowolnego procesu testujacego istnieje obliczenie kon-
czace sie sukcesem (niepowodzeniem) dla jednej ze specyfikacji, wowczas takze
istnieje obliczenie konczace si¢ sukcesem (niepowodzeniem) dla drugiej specy-
fikacji.

Z podanych okreslen bezposrednio wynika, ze badanie réwnowaznosci testowej spe-
cyfikacji niedeterministycznych jest bardziej ztozone od badania specyfikacji deter-
ministycznych.

Wyrazenia behawioralne LOTOSa moga by¢ przedmiotem badania, ale moga takze
by¢ wykorzystane do definiowania testéw budowanego systemu na podstawie jego

Metodyka specyfikowania 135

tekstowe] specyfikacji. W przypadku takich opiséw czgsto mamy do czynienia
z dwoma rodzajami testow: z testami akceptacyjnymi i testami odrzucajacymi. Testy
akceptacyjne okreSlaja dopuszczalne zachowania systemu podczas wspdtdziatania
z otoczeniem. Testy odrzucajqce okreslaja natomiast zbiory zdarzen, ktérych system
w danym stanie nie powinien akceptowac.

Pojedynczy test akceptacyjny wyznacza pojedynczy ciag zdarzen zdefiniowany jako
proces o strukturze

process TestAkceptujqcylg., ..., g., Sukces] : noexit :=
e ... ; ey ; sukces ; stop
endproc

gdzie ¢;, dla i = 1, ..., m, jest akcja komunikacyjna na jednej z bramek gy, ..., g,.

Pojedynczy test odrzucajacy, stosowany do danego stanu testowanego systemu, jest
zdefiniowany jako proces o strukturze

process TestOdrzucajqcylg,, ..., & Sukces)] : noexit :=
e, ; stop
[] e:;stop
[1 en;stop
[1 i;sukces; stop
endproc

gdzie e¢; maja znaczenie jak poprzednio, ale zajscie ktéregokolwiek z nich oznacza
niepowodzenie testu, gdyz testowany system akceptuje to, czego nie powinien. Dodat-
kowo nalezy przyjaé, ze w tym tescie akcje komunikacyjne majq priorytet wyzszy od
priorytetu akcji wewnetrznej, co oznacza, Ze akcja wewngtrzna jest wykonywana tylko
wtedy, gdy nie mozna wykona¢ zadnej akcji komunikacyjne;j.

Pomigdzy specyfikacja a implementacja systemu powinien zawsze zachodzi¢ odpo-
wiedni zwigzek. W przypadku specyfikacji wyrazonej w LOTOSie zwiazek ten jest
okreslony jako relacja implementacji.

Relacja implementacji jest okre$lana [Brinksma, Scollo 1986], [Turner 1993] jako
potaczenie dwdch relacji: relacji redukcji i rozszerzenia. Potaczenie to nalezy rozu-
mie¢ jako zastosowanie jednej z tych relacji lub ich ztozenie w dowolnej kolejnosci.
Kolejnos¢ sktadania relacji odzwierciedla kolejno$¢ podejmowania decyzji projekto-
wych podczas tworzenia implementacji.

Relacja redukcji oznacza eliminacj¢ ze specyfikacji niedeterminizmu powodowanego
istnieniem akcji wewngtrznych. Polega to na przepisaniu specyfikacji z ustaleniem
opcjonalnych wyboréw.

136 Rozdziat 7

Relacja rozszerzenia oznacza taka rozbudowe specyfikacji, ktéra dopuszcza nowe,
zachowujac wszystkie stare zachowania. Inaczej: dopuszcza dotaczenie do specyfi-
kacji nowych funkcjonalnosci.

Obie relacje sa wyrazane przez odpowiedzi na tzw. testy akceptujaco-odrzuceniowe,
ktére stanowia sekwencyjne potaczenie dwdch poprzednio zdefiniowanych testow:
testow akceptujacych i testdéw odrzuceniowych. Testy te majg sprawdzaé akceptacje
danych sekwencji obserwowalnych zdarzen, a po ich zaj$ciu odrzucanie pewnych
zbioréw zdarzen. Maja one nastgpujaca strukture

process TestAkceptujqcoOdrzuceniowylg,, ..., 8., sukcesAkcept, sukcesOdrz] :
noexit :=
akcept, ; ... ; akcept,, ; sukcesAkcept ;
(odrz, ; stop
[] odrz; ; stop
[] odrz ; stop
[] i;sukcesOdrz ; stop
)

endproc

gdzie: akcept;, dlai =1, ..., m, oraz odrz, dlai =1, ..., k, sg akcjami komunikacyjnymi
na jednej z bramek gy, ..., g

Specyfikacja Spec, jest testowo zgodna ze specyfikacja Spec,, jesli dowolny test ak-
ceptujaco-odrzuceniowy, zbudowany w taki sposéb, ze jego czeS¢ akceptujaca jest
testem dla specyfikacji Spec,, a czg$¢ odrzucajaca jest oparta na dowolnym zbiorze
akcji obu specyfikacji, jest testem akceptujaco-odrzuceniowym dla specyfikacji Spec,
to jest takze testem akceptujaco-odrzuceniowym dla specyfikacji Spec,.

Specyfikacja Spec, jest rozszerzeniem specyfikacji Spec,, jezeli obie specyfikacje sa
testowo zgodne oraz SeqObs(Spec,) < SeqObs(Specs).

Specyfikacja Spec, jest redukcjq specyfikacji Spec), jezeli obie specyfikacje s testowo
zgodne oraz SeqObs(Spec,) C SeqObs(Spec).

Na zakonczenie warto wspomnie¢, ze — oprécz jezyka LOTOS - do definiowania te-
stdw mozna uzywac innych jezykéw. Standardem ISO do specyfikacji testéw dla sys-

teméw komunikacyjnych jest zwtaszcza TTCN (Tree and Tabular Combined Nota-
tion) [ISO/IEC 9646-3, 1998].

7.4. Style specyfikowania

LOTOS jest przeznaczony przede wszystkim do tworzenia specyfikacji zachowan
systeméw. Wyrdznia si¢ dwie kategorie specyfikacji: specyfikacje ekstensjonalne

Metodyka specyfikowania 137

i intensjonalne. Specyfikacje ekstensjonalne sa formutowane w oderwaniu od przy-
sztej implementacji, w tym sensie, Ze specyfikacja nie narzuca ograniczen na strukturg
przysziej implementacji. Struktura specyfikacji intensjonalnej jest natomiast sugestia
postaci przyszlej implementacji. Podany podziat jest nieco umowny, gdyz wszystkie
specyfikacje w LOTOSie, jako wykonywalne, mozna traktowac jako prototyp imple-
mentacji. W ramach kazdej z tych kategorii mozna wyrézni¢ po dwa style specyfiko-
wania — dla specyfikacji ekstensjonalnych:

e monolityczny,

e zorientowany na ograniczenia,

a dla specyfikacji intensjonalnych:
e zorientowany na maszyny stanowe,
e zorientowany na zasoby (inaczej: zorientowany na implementacje).

Styl monolityczny wiaze si¢ z twierdzeniem o ekspansji, z ktorego wynika, ze dowolne
wyrazenie behawioralne, na drodze pojedynczych transformacji, daje si¢ sprowadzi¢
do postaci, ktéra zawiera tylko operatory wyboru i prefiksowania akcja. Twierdzenie
o ekspansji dla jezyka CCS przedstawiono w rozdziale 2. Sila ekspresji jezyka
LOTOS jest taka sama jak jezyka CCS, dlatego twierdzenie o ekspansji odnosi si¢
takze do jezyka LOTOS. Jezeli stosowanie transformacji opisanych twierdzeniem
o ekspansji prowadzi do skonczonej dtugosci wyrazenia behawioralnego, to jest ono
zapisane w stylu monolitycznym. Styl monolityczny dopuszcza tez uzycie operatora
rekursji proceséw do definiowania petli. Na ogét konstruowanie specytikacji wiaze sie
z wyobrazeniem drzewa zachowan budowanego systemu. Mozna uznaé ten styl za
bardziej abstrakcyjny od pozostatych.

W stylu zorientowanym na definiowanie ograniczen specyfikacja jest zlozeniem réw-
nolegtym proceséw, przy czym kazdy proces wyznacza pewien zbidr ograniczen, kt6-
re muszg by¢ tacznie zachowane przez caty system. Oznacza to, ze zachowanie pro-
cesu sktadowego specyfikacji jest ograniczone zachowaniem innych proceséw,
z ktérymi dany proces si¢ synchronizuje. Gdy procesy sktadowe nie synchronizujg si¢
ze sobg, obserwowalne zachowania systemu sg pewnego rodzaju ,,suma” — przeplotem
zachowan proceséw sktadowych, gdy natomiast procesy sktadowe synchronizuja si¢
ze soba, obserwowane zachowanie systemu jest pewnym ,,przekrojem” zachowan
proceséw sktadowych. Podstawowa konstrukcja jest ztozenie réwnolegle proceséw,
czesto uzywane do synchronizacji multilateralnej. Druga konstrukcja jest predykat
ograniczajacy akcje komunikacyjne.

Styl zorientowany na definiowanie ograniczen jest stosowany w przypadku podejscia
zstepujacego do tworzenia specyfikacji, jak na przyktad w definiowaniu standardow
sieci komputerowych (zob. rozdz. 6.).

Styl zorientowany na maszyny stanowe polega na przedstawieniu specyfikacji jako
pewnej sekwencyjnej maszyny stanowej (automatu skonczonego z pamigcia). Przy

138 Rozdziat 7

takim podejsciu wyklucza si¢ uzycie konstrukcji ztozenia réwnoleglego. Mozna wy-
rézni¢ dwie odmiany stylu, rézniace si¢ sposobem identyfikacji stanéw maszyny sta-
nowej. Pierwsza polega na wykorzystaniu zmiennych do identyfikacji stanéw, a druga
— na wykorzystaniu proceséw. Schematycznie pierwsza odmiana prowadzi do specy-
fikacji, ktérych tres¢ przyjmuje schemat
process Spec| ...I(stan : int) : ... :=
[stan = 0] -> a,; Spec|...]J(1)
[1 [stan = 1] -> ay; Spec|...)(2)
[1 [stan = N] -> a,; Spec|...}(N)
endproc
gdzie a;, dla i = 1, ..., N, sa akcjami wykonywanymi w przejsciach pomig¢dzy stanami.
Poszczegdlne stany sa reprezentowane wywotaniami proceséw Spec|...](j) dlaj=0, ..., N.

Schemat specyfikacji w drugiej odmianie ma postac

process Spec| ...]: ... ;=
Stan0]...](...)
where
process Stan0[...] : ... :=
ay; Stanl|...]
[1 az; Stan2|...]

process StanN[...} : ... ;=
by; Stanl|...]
(1 by; Stan2|...]
endproc
endproc

Tak jak w poprzedniej odmianie, a;, @z, ..., by, by, ... sa akcjami wykonywanymi
w przejsciach pomigedzy stanami, poszczegélne stany sg reprezentowane instancjami
proceséw Stanjl...].

Styl zorientowany na definiowanie maszyn stanowych jest podobny do stylu mono-
litycznego w tym, ze wykorzystuje w zasadzie ten sam zestaw operatorow jezyka.
Moze by¢ zalecany wtedy, gdy zalezy nam na bezposredniej transformacji specyfi-
kacji w program.

Metodyka specyfikowania 139

Styl zorientowany na zasoby jest najbardziej intuicyjnym, powigzanym z implementacijg
stylem specyfikowania. W tym podejsciu specyfikowany system jest widziany jako
zbiér komunikujacych sig¢ proceséw. Procesy reprezentujg elementy sktadowe (moduty
albo zasoby) systemu, ktére maja wspdtpracowac ze sobg za posrednictwem wspdlnych
bramek. Synchronizacja proceséw odzwierciedla zachodzaca pomiedzy nimi ko-
munikacje i dlatego mamy do czynienia tylko z synchronizacja par proceséw. Operator
przestonigcia stuzy do przestaniania komunikacji wewngtrznych sktadowych proceséw.
Styl ten jest stosowany w przypadku podejscia wstepujacego do tworzenia specyfikacji.

Czgsto w obrebie jednej specyfikacji mamy do czynienia z kilkoma stylami. Sytuacja
taka wystepuje w dalej przedstawionym przykladzie, w ktorym mozZemy odnalez¢
zastosowanie stylu zorientowanego na definiowanie maszyn stanowych i zorientowa-
nego na zasoby.

7.5. Przyktadowy problem

Rozpatrzmy prosty system przydziatu zwrotnych zasobdw, na ktéry sktadajq si¢: ma-
gazyn zasobOw, magazynier i dyspozytor. Z systemu korzystaja klienci, ktérzy zwra-
cajq si¢ dyspozytora z zapotrzebowaniem na okreslong ilos¢ zasobéw. Dyspozytor, na
podstawie analizy stanu magazynu zasobdw, podejmuje decyzj¢ o ilosci zasobdéw dla
danego zapotrzebowania. W szczegdlnosci, odmawiajac przydziatu, ilos¢ przydzielo-
nych zasobéw okresla jako liczbg¢ zero. Po uzyskaniu decyzji o przydziale, klient
zwraca si¢ do magazyniera po odbiér zasobéw, przedstawiajac mu decyzj¢. Magazy-
nier pobiera z magazynu zasoby i przekazuje je klientowi. Klient po wykorzystaniu
zasobdéw, za posrednictwem magazyniera, zwraca je do magazynu.

Tak bardzo ogdlnie sformutowany system mozna ukonkretniaé, przypisujac specyficz-
ng interpretacja jego elementom. Moze to by¢ na przyktad element systemu banko-
wego, w ktorym magazynem jest skarbiec, magazynierem — kasjer, dyspozytorem —
pracownik banku upowazniony do udzielania pozyczek, a klientami — osoby fizyczne
lub prawne.

Strukture systemu zasobow przedstawiono na rysunku 7.1. Elementy sktadowe komu-
nikuja si¢ ze soba przez bramki, z ktérych wnk, dec, poz, zwr stuza do udostgpniania
ustug systemu, a pozostate sg wewngtrznymi bramkami systemu.

W przypadku wstepujacego tworzenia specyfikacji moze by¢ zastosowany styl zorien-
towany na zasoby. Zat6zmy, ze wcze$niej zostaty utworzone specyfikacje proceséw
modelujacych sktadowe elementu systemu

process Magazyn[stanS, stanN, daj, masz}(n : Nat) : noexit := ... endproc
process Magazynier[pob, zwr, daj, masz] : noexit := ... endproc
process Dyspozytor[zap, dec, stanS, stanN) : noexit := ... endproc

process Klient[zap, dec, pob, zwr] : noexit := ... endproc

140 Rozdziat 7

Klient

Rys. 7.1. Struktura prostego systemu zasobéw

Pomijamy dalej tresci niektérych proceséw, ograniczajac si¢ tylko do przedstawienia
ich sygnatur. Stosujac styl zorientowany na zasoby, definicje te mozna potraktowaé
jako elementy skladowe (zasoby), ktére stuza do utworzenia specyfikacji catego sys-
temu. Specyfikacja taka, zgodna z rysunkiem 7.1, ma posta¢

Klient[zap, dec, pob, zwr]
|lzap, dec, pob, zwr]|
hide stanS, stanN, daj, masz in
(Dyspozytor(zap, dec, stanS, stanN]
0]

Magazynier[pob, zwr, daj, masz]

|[stansS, stanN, daj, masz]|
Magazyn[stanS, stanS, daj, masz]
Specyfikacje proceséw sktadowych mozna uzyskac, stosujac styl zorientowany na de-
finiowanie maszyn stanowych. Rozwazmy na przyklad definicje dwéch proceséw
Magazyn oraz Dyspozytor
process Magazyn|[stanS, stanN, daj, masz](n : int) : noexit :=
stanS 'n; Magazyn(stanS, stanN, daj, masz](n)
[1 stanN ?7m : int, Magazyn[stan, daj, masz)(m)

Metodyka specyfikowania 141

{1 daj ?m : int; Magazyn|stan, daj, masz)(n)
[1 masz ?m : int; Magazyn[stan, daj, masz}(n + m)
endproc
process Dyspozytor[zap, dec, stanS, stanN] : noexit :=
zap d : Identyfikator ?ilos¢ : int;
stanS ?zapas : int,;
([ilos¢ < zapas] ->
(declidlilosé,
stanN (zapas — ilos¢);
Dyspozytor{zap, dec, stanS, stanN]
[1 i; dec'id!0;
Dyspozytor|zap, dec, stanS, stanN]
)
[] [zapas < ilos¢] -> dec'id!0; Dyspozytor{zap, dec, stanS, stanN]
)

endproc

W przedstawionej specyfikacji, dla czytelnosci, wykorzystano typ catkowitoliczbowy
(int) w tradycyjnej programistycznej notacji.

Latwo zauwazyé, ze struktura wyrazenia bedacego trescig procesu Magazyn stanowi
odmiang stylu, polegajaca na wykorzystaniu zmiennych do identyfikacji stanéw ma-
szyny stanowej — wartosciowanie wystgpujacej w tym wyrazeniu zmiennej n reprezen-
tuje stan procesu. Podobne uwagi mozna odnie$¢ do drugiego z procesow.

Przedstawiony przykiad jest ilustracja nie tylko réznych styléw specyfikowania, ale
stuzy réwniez do oméwienia jeszcze innych probleméw.

Problem pierwszy wiaze si¢ z przyjetym interfejsem komunikacyjnym pomigdzy pro-
cesami, a zwlaszcza komunikacji procesu Klient z systemem zasobéw. Przyjegta
w przykladzie koncepcja interfejsu rézni si¢ do koncepcji przedstawionej w rozdziale 6.
Poprzednio komunikacja pomigdzy warstwami sieci komputerowej odbywata si¢ za
posrednictwem jednej bramki, obecnie komunikacja odbywa si¢ za posrednictwem kilku
bramek. Latwo zauwazy¢, ze pomigdzy takimi formami interfejsu daje si¢ ustanowié
wzajemnie jednoznaczny zwiazek. Jezeli mianowicie przyja¢, ze komunikaty wymie-
niane pomigdzy dwoma procesami za posrednictwem jednej bramki majg posta¢
polecenie(argument)

gdzie zbidr réznych polecen jest skonczony, a argumenty maja okreslone typy, to ko-
munikacja moze si¢ odbywac za posrednictwem zbioru bramek, z ktérych kazda odpo-
wiada doktadnie jednemu poleceniu. Wystanie wiec lub odebranie takiego komunikatu
bedzie wyrazone odpowiednio przez akcje komunikacyjne:

polecenie ! argument lub polecenie 7 argument : typ.

142 Rozdziat 7

Drugi problem wynika z niedeterminizmu i nieokreslonosci w specytikacji. W przy-
ktadzie wlasnosci te odnosza si¢ do definicji procesu Dyspozytor.
Z tresci procesu Dyspozytor wynika, ze dyspozytor moze, ale nie musi, przydzieli¢
zasoby w zadanej ilosci tylko wtedy, gdy liczba zasob6w w magazynie jest wigksza od
liczby zadanej. W wyniku realizacji akcji wewnetrznej i dyspozytor odmawia przy-
dzialu zasobu. Pozostawienie niedeterminizmu w tresci procesu przestania sposéb
podejmowania przez dyspozytora odpowiedniej decyzji. Takie uzycie niedeterminizmu
jest typowym sposobem przestaniania proceséw decyzyjnych w procesie tworzenia spe-
cyfikacji. Inny problem jest zwiazany z przypadkiem, gdy zapas = ilos¢. Jest to problem
nieokreslonosci — dla tego przypadku definicja nie okresla zachowania procesu.
Eliminacja obu przypadkéw — niedeterminizmu i nieokreslonosci — moze by¢ podsta-
wa konstrukcji kolejnej specyfikacji. Eliminacja niedeterminizmu prowadzi do nowej
specyfikacji, na przyktad
process Dyspozytorl[zap, dec, stanS, stanN] : noexit :=
zap id : Identyfikator ?ilos¢ : int;
stanS ?zapas : int;
([ilosé¢ < zapas] ->
declidlilos¢,
stanN (zapas — ilos¢);
Dyspozytorl|[zap, dec, stanS, stanN]
[[zapas < ilos¢] -> decid'0; Dyspozytorl|[zap, dec, stanS, stanN]
)

endproc

Eatwo zauwazy¢, ze proces Dyspozytor jest testowo zgodny z procesem Dyspozytorl
oraz SeqObs(Dyspozytorl) C SeqObs(Dyspozytor), proces Dyspozytorl jest zatem
redukcjq procesu Dyspozytor.
Eliminacja nieokreslonosci, ktéra nadal pozostaje w procesie Dyspozytorl, prowadzi
na przyktad do specyfikacji
process Dyspozytor2[zap, dec, stanS, stanN] : noexit :=
zap d : Identyfikator ?ilos¢ : int,
stan§ ?zapas : int;
([lilosé¢ < zapas] ->
declidlilosc¢;
stanN !(zapas - ilos¢);
Dyspozytor2[zap, dec, stanS, stanN]
(] [zapas < ilosé] -> dec!id'0; Dyspozytor2|zap, dec, stanS, stanN]
)

endproc

Metodyka specyfikowania 143

Podobnie jak wczesniej, proces Dyspozytorl jest testowo zgodny z procesem Dyspo-
zytor2 oraz SeqObs(Dyspozytorl) < SeqObs(Dyspozytor2), proces Dyspozytor2 jest
zatem rozszerzeniem procesu Dyspozytorl.

Trzeci problem to rozwinigcie specyfikacji, polegajace na dopuszczeniu jednoczesnej
obstugi wielu klientéw. Jednoczesna obstuga wymaga takiej modyfikacji proceséw
Dyspozytor i Magazyn, aby byly one zdolne do réwnoleglej obstugi klientéw. Ponizej
pokazano tylko modyfikacje ostatniej wersji procesu Dyspozytor2
process Dyspozytor3[zap, dec, stanS, stanN] : noexit :=
choice id : Identyfikator in
zap 'id losé : int;
stanS zapas : int;
([ilosé¢ < zapas] ->
declid\ilosé;
stanN (zapas ~ ilos¢);
Dyspozytor3[zap, dec, stanS, stanN)
[1 [zapas < ilos¢] -> dec!id'0; Dyspozytor3|[zap, dec, stanS, stanN]
)
0]
Dyspozytor3|zap, dec, stanS, stanN]
endproc

Przedstawiona wersja jest bardzo ,rozrzutna”, gdyz wywotanie procesu pocigga za
soba nieograniczong liczbg réwnolegtych, niezaleznych, to znaczy niekomunikujacych
si¢ ze soba, kopii procesu Dyspozytor3. Kazda z kopii bedzie si¢ komunikowac tylko
z jednym procesem Klient o ustalonym identyfikatorze. Proces Dyspozytor3 jest roz-
szerzeniem procesu Dyspozytor2.

7.6. Srodowiska wspomagajace specyfikowanie w LOTOSie

Rozwojowi LOTOSu towarzyszyt rozwéj srodowisk programowych wspomagajacych
uzywanie jezyka do specyfikowania i projektowania systeméw oprogramowania.
Przykiadem jednego z najwczesniejszych jest pakiet LOLA (od LOtos LAboratory),
opracowany na uniwersytecie w Madrycie [Quemada, Pavon, Fernandez 1989}, udo-
stepniany w Internecie w wersji na komputery typu IBM PC.

Obecnie najbardziej rozwinigty jest pakiet CADP — akronim oznaczajacy poczat-
kowo CAESAR/ALDEBARAN Development Package, obecnie stanowiacy rozwinig-
cie od Construction and Analysis of Distributed Processes. Jest on wynikiem prac,
prowadzonych od poczatku lat dziewigédziesiatych ubiegtego wieku, w INRIA
(Institut National de Recherche en Informatique et en Automatique), we wspétpra-

144 Rozdzial 7

cy z innymi osrodkami europejskimi i kanadyjskimi [Garavel, Lang, Mateescu
2001].

Pakiet CADP, umozliwiajac pisanie specyfikacji w LOTOSie, pozwala na analiz¢ wias-
nosci tworzonych specyfikacji oraz na automatyczna generacj¢ i testowanie programow.
Pakiet sktada sie z modutéw dziatajacych w otwartym $rodowisku OPEN/CZESAR. Sro-
dowisko przyjmuje format BCG (Binary Coded Graphs) reprezentacji etykietowanych
systemOw przej$¢ oraz oferuje kolekcje bibliotek i programéw zwiagzanych z tym for-
matem.

Gtéwnymi modutami funkcjonujacymi w srodowisku OPEN/CASAR sa:

e Kompilatory CAESAR i CAESARADT - stuzace do translacji specyfikacji
w LOTOSie w kod w jezyku programowania C. Pierwszy z nich dokonuje trans-
lacji czesci behawioralnej specyfikacji w LOTOSie na kod w jezyku C, a drugi
kompiluje abstrakcyjne typy zdefiniowane w specyfikacji na typy i funkcje je-
zyka C.

e Symulator OCIS — umozliwiajacy wizualizacj¢ i $ledzenie obliczen specyfikacji
napisanych w LOTOSie. Dopuszcza kilka form wizualizacji (m.in. ciagi i drzewa
zdarzen, diagramy sekwencji), rézne sposoby prowadzenia obliczen (m.in. praca
krokowa, wedtug zadanych scenariuszy), modyfikacje¢ i rekompilacjg¢ specyfika-
cji).

e Analizator ALDEBARAN - stuzacy do weryfikacji systeméw komunikacyjnych
reprezentowanych w postaci etykietowanych systeméw przejs¢. Umozliwia on
redukcje etykietowanych systeméw przej$¢ wzgledem wybranych relacji réwno-
waznos$ci (réznych relacji bisymulacji) i stwierdzanie réwnowaznosci zreduko-
wanych etykietowanych systeméw przejs¢, opartych na algorytmach Paige-
Tarjana [Paige, Tarjan 1987] oraz Fernandeza-Mouniera [Fernandez, Mounier
1995].

e EVALUATOR - weryfikator formut temporalnych, ktéry pozwala na sprawdze-
nie, czy specyfikacja w LOTOSie ma wlasnosci dajace si¢ wyrazi¢ w jgzykach
logiki temporalnej, migdzy innymi: HML [Hennessy, Milner 1985], CTL [Clar-
ke, Emerson, Sistla 1983], ACTL [de Nicola, Vaandrager 1990] i LTAC [Queil-
le, Sifakis 1983].

e Generator testow TVG — stuzy do wyprowadzania zestawu testéw ze specyfikacji
formalnej na podstawie celu testu. Cel testu okredla si¢ przez wskazanie stanéw
akceptujacych albo stanéw odrzucajacych.

e Graficzny interfejs EUCALYTUS — umozliwiajacy jednolity dostgp do zintegro-
wanych modutéw.

Pakiet CADP ciagle si¢ rozwija. Sa dwa zasadnicze kierunki rozwoju:

Pierwszy wynika z zamiaru integracji réznych formalnych jezykéw specyfikacji, dla-
tego przyj¢to etykietowane systemy przejs¢ jako jednolita forme abstrakcyjnej repre-

Metodvka specyfikowania 145

zentacji specyfikacji, gdyz mozliwe jest sprowadzenie do niej nie tylko specyfikacji
w LOTOSie, ale takze w innych jezykach formalnych, na przyktad: SDL i UML/RT.

Drugi kierunek wigze si¢ z przystosowaniem narzg¢dzia do potrzeb przemystowych.
Zwraca sie¢ uwage na efektywno$¢ narzedzi tak, aby mogly dokonywac analiz spe-
cyfikacji o odpowiednio duzych rozmiarach, a takze aby uwzglednia¢ te jezyki spe-
cyfikacji, ktére znajduja uznanie i zastosowanie w przemysle, stad migdzy innymi,
wynika uwzglednienie jezykéw SDL i UML/RT.

7.7. Uwagi koncowe

W tym rozdziale dokonano przegladu styléw tworzenia specyfikacji w jezyku LO-
TOS. Poniewaz tworzenie specyfikacji moze by¢ procesem wieloetapowym, zaryso-
wano problemy zwigzane z poréwnywaniem kolejno po sobie nastgpujacych specyfi-
kacji. Zagadnienia te sa dokladniej omawiane w wielu publikacjach, migdzy innymi
w: [Vissers, Scollo, van Sinderen 1988], [Brinksma 1989], [Logrippo, Probert, Ural
1990], [Garavel, Sifakis 1990], [Vissers, Scollo, van Sinderen, Brinksma 1991}, {Le-
duc 1992]. Przegladowym podsumowaniem tych prac jest ksiazka [Turner 1993].

Style specyfikowania zilustrowano oryginalnym, prostym przyktadem, ktéry pokazu-
je, ze w specyfikacji stosunkowo prostego zagadnienia stosuje si¢ pewna mieszaning
styléw elementarnych. Wydaje sig, Ze nie jest to szczegbélna wiasnos¢ jezyka LOTOS,
ale mozna ja odnies¢ réwniez do innych technik, nie tylko formalnych. Brak jedno-
rodnego stylu, albo — ogélniej — uniwersalnej metodyki stosowania jezyka LOTOS nie
tylko w specyfikacji, ale w projektowaniu i implementacji systemdw, jest jedna
z przyczyn krytycznych ocen jezyka wyrazanych przez przedstawicieli przemystu
[Logrippo 2000], [Babich, Deonto 2002].

Badanie réwnowaznosci testowej, oméwione w rozdziale bardzo ogdlnie, bylo przed-
miotem wielu prac, na przyktad: [De Nicola, Hennessy 1984], [Bolognesi, Smolka
1987].

Samo testowanie jest natomiast przedmiotem migdzy innymi norm ISO. W powiaza-
niu z rozwojem formalnych technik specyfikacji opracowano jezyk TTCN (Tree and
Tabular Combined Notation) specytikacji testéw. Norma [ISO/IEC 9646-3, 1998] jest
jedna z wcze$niejszych szeregu norm dotyczacych TTCN-1, standardu, ktéry prakty-
cznie wyszedl z uzycia. Obecnie prace nad rozwojem tej grupy standardéw sg pro-
wadzone pod auspicjami ETSI (European Telecommunications Standards Institute).
Ich wynikiem jest opracowanie grupy standardéw TTCN-3, a takze technik i narzgdzi
testowania — szczegétowe informacje na ten temat mozna znalez¢ migdzy innymi na
stronach internetowych:

http://www .etsi.org
http://www.ttcn-3.0rg

http://www.etsi.org
http://www.ttcn-3.org

146

8. Problem blokad w LOTOSie

8.1. Ukryte blokady

Standardowa semantyka jezyka LOTOS, przedstawiona w rozdziale 6., ma pewien
defekt, ktéry mozna okresli¢ mianem ukrywania blokad [Huzar, Kuzniarz 1993]. Kaz-
da semantyka jest formalng reprezentacja pewnych postulatéw w LOTOSie, podobnie
jak w CCS, dotyczacych sposobu komunikacji proceséw.

Specyfikacja w LOTOSie wyznacza kolekcj¢ proceséw. Dany proces wykonuje akcje
komunikacyjne, synchronizujac si¢ z innymi procesami, ktére stanowig jego otocze-
nie, badZz wykonujac akcje wewnetrzne. Akcje wewnetrzne moga by¢ okreslane jaw-
nie lub mogg by¢ rezultatem przestonigcia komunikacji pomiedzy procesami sktado-
wymi danego procesu. Intencja zwigzana z akcja wewngtrzng, stanowigcq wynik
przestonigcie komunikacji, jest nastgpujaca:

Jjezeli na przestonietej bramce nastgpita komunikacja pomiedzy procesami (co naj-

mniej dwoma!), to akcja taka, 7 punktu widzenia obserwatora niedostrzegajqcego
przestonietej bramki, jest dostrzegana jako akcja wewnetrzna.

Standardowa semantyka tymczasem postulatu tego nie spetnia. Rozpatrzmy wyrazenie
behawioralne postaci

g 0.0 B
gdzie: a; 0% ... & sa elementami komunikacyjnymi zwigzanymi z akcjg na bramce g.
Jedyna mozliwg tranzycja dla tego wyrazenia jest, oczywiscie, tranzycja wynikajgca
z komunikacji na bramce g
Tranzycje te interpretujemy nastepujaco: wyrazenie g & &, ... & ; B w rezultacie wy-
konania akcji komunikacyjnej na bramce g (to znaczy na skutek synchronizacji ze
swoim otoczeniem i wymianie odpowiednich wartosci) bedzie si¢ dalej zachowywac
zgodnie z wyrazeniem B’, ktére jest modyfikacja wyrazenia B, wynikajaca z podsta-
wienia za zmienne wolne wystepujace w akcji g & & ... & komunikowanych wartosci
- aksjomat (A 'prewm/u)-

Rozpatrzmy teraz wyrazenie behawioralne postaci
hideging oy & ... ;B (8.2)
Z aksjomatu (A-pre q,,) oraz reguly (R,-hide) wynika, ze zachodzi tranzycja

hide gin g; & 0 ... &; B —— hide g in B’ (8.3)

Problem blokad w LOTOSie 147

gdzie B' ma by¢ odpowiednia modyfikacja wyrazenia B. Nasuwa si¢ pytanie: jaka to ma
by¢ modyfikacja? Poniewaz nie zachodzi tu komunikacja z innym procesem, wejscio-
wym elementom komunikacyjnym mozna przypisaé¢, w niedeterministyczny sposéb,
dowolne wartosci odpowiadajacych im typéw; semantyka obserwacyjna hide g in g;
o ¢ ... 0; B jest wige rtOwnowazna semantyce obserwacyjnej wyrazenia choice x : s [] B.

Nasuwa si¢ pytanie: jak interpretowac tranzycj¢ (8.3)? Nie mozna jej traktowac tak jak
tranzycji (8.1), gdyz na bramce g nie zachodzi komunikacja z innym procesem, ale
jednoczesnie posta¢ wyrazenia B’ jest taka jak w przypadku poprzednim. Nasuwa si¢
natomiast sugestia, by wyrazenie hide g in g; o @, ... & ; B interpretowaé jako wyra-
zenie z wewngtrzng blokada, czyli takie wyrazenie, ktdre nie oferuje swemu otoczeniu
zadnych komunikacji i jednoczesnie nie moze wykona¢ zadnej akcji wewnetrznej.

Zauwazmy jednocze$nie, ze wyrazenie behawioralne postaci
hide gin g? x: s; B, |[g]| g'; B>
nie stwarza watpliwosci interpretacyjnych. W tranzycji
hide g in g? x : 5; B, |[g]| g't; B, —— hide g in [¢/x]B, |[g]| B:

akcja wewnetrzna wyraza przestonigcie komunikacji pomiedzy wyrazeniami sktado-
wymi ztoZenia réwnoleglego.

Spetnienie postulatu, aby wilasciwie interpretowaé wyrazenie przestonigcia bramki
prowadzi do nowej semantyki jezyka. Semantyka ta jest przedstawiona w nastepnym
podrozdziale.

8.2. Semantyki zmodyfikowane
Przedstawiono dwa rozwigzania problemu w postaci dwéch réwnowaznych semantyk.

Rozwiqzanie 1

Zasadnicza idea, na ktdrej opiera si¢ pierwsza semantyka, jest nastgpujaca: Aksjomat
(A -pri e('umm)

gal az aA;B—g‘IJ_) BI

przedstawia tylko potencjalng tranzycje. Tranzycja ta powinna zajs¢ tylko wtedy, gdy
znajdzie si¢ komunikacyjny partner na bramce g. Dlatego tranzycje postaci

B, —&1=% 5 B, (8.4)
zastapimy tranzycjami postaci

By s B s B (8.5)

148 Rozdziat 8

gdzie n>1 jest dodatkowym parametrem etykiety, oznaczajacym liczbg proceséw uczest-
niczacych w komunikacji na bramce g. Jezeli n = 1, to tranzycja jest tylko potencjalna
— jej zajscie jest uwarunkowane kontekstem, jezeli n > 1, to tranzycja moze zajsc.
Nowy etykietowany system przejs¢ jest postaci
TS[(SPGC) = <Beh, ACtl, Tr,, Bq)> (86)

gdzie:

Beh jest, jak poprzednio, zbiorem wyrazen behawioralnych,

Acty = {<n, g v>|n21, ge G U {J), ve Termrgpe, (D)’} U {<1, i>} jest zbiorem in-

terakcji,

Try={ —— |a€Act,} jest zbiorem relacji przejs¢,

B, jest trescig procesu poczatkowego p.
Zbioér aksjomatéw i regut jest modyfikacja 75,(Spec), ktéra — oprécz wprowadzenia
dodatkowego parametru etykiety tranzycji — zmienia tylko aksjomaty oraz dwie reguty
systemu TS(Spec).
Prefiksowanie akcjq wewnetrzng B=1; B,

<n,i>

B—"" B, (Ar-preiu)

Prefiksowanie akcjq komunikacyjnq B=g oy &, ... a4lc]; B,

<l.gvp..v,>

B————-)[le =1 n=t; 1B, (Al-precomm)

Mo /\jm T Jm

wtedy i tylko wtedy, gdy:
v, =[t,], gdy o, =!t,oraz t; jest termem statym, dlai =1, ..., n,

vi€ Term (D)) =, gdy a; =7x;:5;,dlai=1,...n,

x; jest zmienng taka, ze «; = ?x;ts;.dlai=1,...n,
oraz

D+ C[xjl HEE e, Xy LR tjm]
Proces zakonczenia B = exit(t, ..., 1)

B—=2 5 stop (A, -exil)
Przestoniecie B = hide gy, ..., g, in B,

Bl <n.a> BI/

—— — gdy name(a)¢ {g,, .., 8.} (R\-hide,)
B n.a Bl
B <n.a> B/
4 1 odyname(a)e{g,,.... g,}, n>1 (R\-hide-)

<l.i>

B—L2 5 p

Problem blokad w LOTOSie 149

Istotna jest tu regula (R,-hide,), gdyz wprowadza ograniczenie na mozliwe tranzycje —
wyklucza ona tranzycj¢ dla wyrazenia postaci hide ging o4 & ... 04; B.

Ztozenie réwnolegte B= B, (g, ..., 8.]| B2
Bl <n,a> Bl/

<n.a>

B—"=B/|[g,, - &,]| B,

gdy name(a)e {g,, ..., 8,9} (R\-pary)

< - ~ gdy name(a)¢ {g,. ... 8,6} (Ri-parz)
B-—>)>B| I[g]y'-'vgn]le |

Bl <n,a> B],

<m,a>

B, SUiE 5 Bt

<n+m,a> ’ ’ gdy name(a)e {g 3 ecey g,,,5} (RI-par3)
B__:—_’_)Bll[gl""’gn]lB2 l

Reguta (R,-par;) rézni si¢ od reguty (R-pars) tylko tym, ze wprowadza liczenie pro-
cesOw uczestniczacych w akcji na tej samej bramce.

Semantyki akcyjna i obserwacyjna sa definiowane tak, jak w przypadku semantyki
standardowe;j.

Rozwiqzanie 2

Drugie rozwigzanie zaktada, ze posta¢ tranzycji nie ulega zmianie, lecz wprowadza sig¢
funkcje pomocnicze, ktére stuza do definiowania ograniczen na zachodzenie tranzycji.
Sa to funkcje:

F: Beh— 26

(8.7)
C: Beh — 2°

Ich definicje sg zawarte w tabeli 8.1. W definicji funkcji C wykorzystuje si¢ funkcje
pomocnicza h, okreslong nastgpujaco:

hzZ)= O gdyZ=0 w
i) gdyZ @ (8.8}

Funkcja F(B) dla wyrazenia behawioralnego B wyznacza zbidr tych jego akcji, ktdre
ze wzgledu na sktadni¢ moga by¢ wykonane w pierwszej kolejnosci. To, ktéra z tych
akcji zajdzie jako pierwsza, zalezy od otoczenia danego wyrazenia. Funkcja C(B) wy-
znacza natomiast na podstawie zbioru F(B) podzbidr tych akcji wewngtrznych, ktére
moga by¢ wykonane niezaleznie od otoczenia wyrazenia B.

150 Rozdziat 8
Tabela 8.1
B F(B) C(B)
stop %) %)
i; B, {i} {i}
g oy B, {g} @
exit(t, ..., 1,) {i} {i}
B, >> accept x, : 5y, ...,
X, §,in By F(B) C(8))
B/ []B> F(B,) U F(B,) C(By) v C(B2)

hide L1y eees n in B]

F(Bl)\{ 8l s &n } ()
hEFB)N{ g1, ..., gul)

C(Bl)\{ 8> -+ 8 } (% C(Bl)\
{ glv vees n } UF(Bl)m F(BZ)
m{ 815 --vs gn})

B| [>Bg

F(By) U F(B,)

C(B)) v C(By)

CBIMg1, - ga} U A(C(B))
B s oo &ul| B2 F(B F(B
e gl B2 (B)) L F(B,) P
[c]->B, F(B)) C(B))
letx,:tl,...,x,,=t,,inB| F(B]) C(B])
choice g in [g,, ..., g.] Bi | F(Bilg/g]) v..0 F(B\[g./g]) | C(Bilgi/gD) v ... v C(Bilg./g))
choice x : s [] B, F(B)) C(B))

par g in [glv o0 o gu]
I[h], LR hm”Bl

F(B\[gi/g) v ... 0 F(B\lg./g])

C(B\lg/gh) v ...u C(B)lg./g)

p[gl; [RRT) gn](tla sy tm)

F(Bl[gl/hh seey gn/hu])

C(Bl[gllhlv s 8n /th)

(B1)

F(By)

C(8y)

Etykietowany system przejs¢ jest postaci

TS2(Spec) = <Beh, Act, Tr,, By>

(8.9)

gdzie inaczej, w stosunku do semantyki standardowej, jest zdefiniowana tylko relacja
tranzycji. Jest ona okreslona przez taki sam zbidr aksjomatéw jak semantyka stan-
dardowa i tylko ma inng regul¢ dla przestonigcia.

Przestoniecie B = hide gy, ..., g, in B,

B8
B—“>B]

gdy name(a)é {g,., ..

&}

gdy name(a)e {g,,.... 8,1 N C(B))

(Rz-hidel)

(Rg-/li(l'eg)

Problem blokad w LOTOSie 151

Reguta (R»-hide-), przez wykorzystanie funkcji C, wprowadza ograniczenie na mozli-
we tranzycje.

Semantyki akcyjna i obserwacyjna sa definiowane tak, jak w przypadku semantyki
standardowe;.

Oznaczajac przez Seq,(B) oraz Seq,(B) zmodyfikowane obliczenia, mozna pokaza¢, ze
sg one rownowazne, czyli Seq,(B) = Seq,(B).

Twierdzenie i dowéd réwnowaznosci sa przedstawione w artykule [Huzar, Kuzniarz
1993].

Rozwiazanie drugie jest bardziej eleganckie i blizsze prezentacji standardowej seman-
tyki, dlatego rozwazania dalszej czgsci rozdziatu sg oparte na nim. Zmodyfikowany
zbidr ciggéw akcji generowany przez wyrazenie behawioralnego B bedziemy ozna-
czaé dalej przez Seq,,,(B).

8.3. Wykrywanie blokad

Blokada jest niepozadang wiasno$cig specyfikacji. Z punktu widzenia zewngtrznego
obserwatora zachowania reprezentowanego przez dane wyrazenie behawioralne blo-
kada jest nieodrdznialna od zakonczenia aktywno$ci wyrazenia.

W rozwazaniach prowadzonych w dalszej czgéci rozdziatu ograniczymy si¢ do bazo-
wej wersji jezyka LOTOS, ktéra abstrahuje od wartosci komunikowanych pomiedzy
procesami. Ograniczenie to wynika przede wszystkim stad, ze daje ono mozliwo$¢
jednoznacznego rozstrzygni¢cia o zachodzeniu blokad na podstawie analizy tekstu
specyfikacji. W przypadku natomiast petnej wersji jezyka pojawianie si¢ blokad moze
zaleze¢ od konkretnego obliczenia zwigzanego ze specyfikacja, a przebieg obliczenia
zalezy od komunikowanych wartosci.

Sktadnia uproszczonej wersji jezyka jest nastepujaca:

B ::= stop|i; B, |g; B, |exit|B, >>B,|B;[]B;|hideg,, ..., g, in B, |
By [> B | Bi|lg1 ... &ll B2 [plgy, ..., 8] | (B)
W wersji tej rezygnujemy réwniez z konstrukcji:
choice g in [g|, ..., g.] B
par gin (g, ..., g1 |[A, ...,]| B

(8.10)

gdyz mozna je wyrazi¢ za pomocg konstrukcji pozostatych.
Najpierw rozpatrzmy dwa przyktady, ktére wyjasnia rozumienie behawioralnego wy-
razenia z blokada:

g; stop | [g, A] | h; stop

hide g in g; stop

152 Rozdziat 8

Pierwsze z wyrazen jest wyrazeniem z blokada zaréwno w sensie semantyki standar-
dowej, jak i semantyki zmodyfikowanej, drugie natomiast jest wyrazeniem z blokada
tylko w sensie semantyki zmodyfikowane;.
Mamy réwniez inne wyrazenia, ktére — nie bedac wyrazeniem stop — sa semantycznie
jemu réwnowazne, bedac pewnym zlozeniem proceséw stop, na przyktad:

stop [] stop

stop [> stop

Wprowadzimy rodzing wyrazen STOP, zdefiniowang rekursywnie nastepujaco:

stop := stop | stop [Istop | stop |[S]| stop | hide g in stop |'

stop >> stop | stop [>stop | (stop)

gdzie stop jest metazmienna.
Rodzina STOP wyznacza ten zbidér wyrazen behawioralnych, wewnatrz ktérych nie
ma akcji komunikacyjnych i ktére sg réwnowazne procesowi pustemu. Rodzing te bg-
dziemy odréznia¢ od zbioru wyrazen z blokada, wewnatrz ktérych sa wprawdzie akcje
komunikacyjne, ale nie moga by¢ zrealizowane.

Definicja 8.1

Wyrazenie behawioralne B jest wyraZeniem z blokadq wtedy i tylko wtedy, gdy
spetnia predykat D(B), zdefiniowany nastgpujaco:

D(B) =gt (Seqnoa(B) = D A B¢ STOP) (8.11)
Tabela 8.2
B P(B)
1 2
stop %]
i, B P(B))
g Bi P(8,)
exit %)
B, >> B, P(B)) U P(B,)
B[] B, P(B\) v P(B,)
hide g, ..., g, in B, P(B))
By [> B, P(B,) v P(B,)
B g1, - &l B P(B,) L P(B,)
plgi, -, &t -y) {p}
(B1) P(B))

Rozpatrujac dane wyrazenie, jesteSmy zainteresowani nie tylko tym, czy wyrazenie jest
wyrazeniem z blokada, ale takze tym, czy wyrazenia osiagalne z danego moga by¢ row-

Problem blokad w LOTOSie 153

niez wyrazeniami z blokadami. Rozwazania bgda ograniczone do wyrazen regularnie
zbudowanych. Wyrazenia te zdefiniujemy tu $cisle, wprowadzajac nastgpujace pojecia:

Méwimy, ze proces p wywotuje bezposrednio proces ¢, jezeli wywotanie procesu ¢ jest
zawarte w wyrazeniu B, stanowigcym tre$¢ procesu p. Przez CALL C Proc X Proc,
gdzie Proc jest zbiorem nazw proceséw danej specyfikacji, oznaczmy relacje bezpo-
Sredniego wywotania proceséw

CALL = {<p, > | g€ P(B,)}
gdzie zbiér P(B,) jest zdefiniowany tabelg 8.2.
Niech CALL" bedzie tranzytywnym domknigciem relacji CALL.

Definicja 8.2

Wyrazenie behawioralne B jest regularnie zbudowane, gdy dla kazdego procesu
PE Proc jest spetniony warunek: dla kazdego podwyrazenia wyrazenia B, stano-
wiacego tre$¢ procesu p, postaci

B, op B,, dla ope {|[S]], >>, [>},
jesli ge P(B)) U P(B,), to <q, p>& CALL".

Lemat 8.1
Jezeli wyrazenie B jest regularnie zbudowane, to zbiér wyrazen osiagalnych z B
jest skonczony.

Dowod (szkic)

Szczegétowy dowdd, przeprowadzony metoda indukceji strukturalnej, jest prosty,
ale uciazliwy — przy rozpatrywaniu kolejnych postaci wyrazenia B indukcja prze-
biega wzgledem dtugosci ciagu tranzycji. Gtéwna idea jest natomiast prosta: jezeli
wyrazenie B jest regularnie zbudowane, to rekursywne wywolania proceséw sg
skonczone. Istotnie, liczba wyrazen, do ktérych moze nastapi¢ tranzycja z wyraze-
nia regularnie zbudowanego B, jest skonczona. Dla dowolnego procesu pe Proc
kazde z podwyrazen wyrazenia B, jesli zawiera wywotanie jakiegos procesu, to
— z definicji wyrazenia regularnego — nie prowadzi ani bezposrednio, ani posred-
nio do wywotania procesu p. Zbiér wyrazen osiggalnych z wyrazenia B jest zatem
réwniez skonczony.

Wprowadzamy dwie kategorie wyrazen z blokada: wyrazenia silnie i stabo blokujace.

W celu sprecyzowania tych poje¢ w zbiorze SeqFin(B) wyréznimy zbidr ciqgow ter-
minalnych — podzbidr zbioru ciagéw skonczonych wyznaczanego przez semantyke
akcyjna

SeqTerm(B) =g {s€ SeqFin(B) | —3s'es'# A s " s' €SeqFin(B)} (8.12)

154 Rozdzial 8

Uwaga: Jezeli wyrazenie B jest regularnie zbudowane, nie oznacza to skonczonosci
zbioru ciagéw terminalnych SeqTerm(B).

Wyrazenie behawioralne B jest silnie blokujqce wtedy i tylko wtedy, gdy spetnia pre-
dykat

SD(B) =4t SeqInf (B) = O A Vse SeqTerm(B)e B —— B'A D(B") (8.13)

Oznacza to, ze semantyka wyrazenia nie ma nieskoniczonych ciagéw tranzycji, a kaz-
dy skonczony terminalny ciag tranzycji z wyrazenia B prowadzi do wyrazenia z blo-
kada.
Wyrazenie behawioralne B jest stabo blokujqce wtedy i tylko wtedy, gdy spetnia pre-
dykat

WD(B) =41 3s€ SeqTerm(B) ¢ B —— B’ A D(B") (8.14)

Oznacza to, ze dla wyraZenia istnieje skonczony ciag tranzycji terminalnych, ktory
z wyrazenia B prowadzi do wyrazenia z blokada.

Przyklad 8.1

W celu zilustrowania wyrazen blokujacych rozpatrzmy nastgpujace wyrazenia be-
hawioralne:

B, = a; stop

B, = a; stop |[a, b]| b; stop

B; = hide « in a; stop

By =a; Pla] gdzie process P[a] := a; P end

Bs = a; Pla] [] b; stop

Bs =B, [] B,
B; =B, [> B,
Bs =B, [> a; B,

Semantyka klasyczna oraz zmodyfikowana tych wyrazen przedstawiajq si¢ na-
stepujaco:

Seq(B)) = Seq,.a(B)) = {a}

Seq(B,) = Seq0q(B2) = D

Seq(Bs) = {i} natomiast Seqoa(B3) =D

Seq(By) = Seq0a(Bs) = {a, aa, ...,aa ...a,.} Uiaa..a ..}

Seq(Bs) = Sequmoa(Bs) = {b,a, aa, ...,aa ...a, ..} Ulaa..a ..}

Seq(Bg) = Sequa(Be) = {a, aa, ...,aa ...a, ...} U{aa ...a ...}

Problem blokad w LOTOSie

155

Seq(B7) = Sequoa(B7) = {a, aa, .

. ad ...

a,..}ufaa..a..}

Seq(Bg) = Sequ.a(Bs) = {a, aa,aa ...a, ..} O {aa ...a ..}

Zbiory ciaggéw terminalnych wyznaczonych dla zmodytikowanej semantyKki:

SeqTerm,,..(B,) = {a}
SeqTerni,..(By) = &
SeqTerm,, (Bs;) = D
SeqTerm,,q(Bs) = &
SeqTerm,,,q(Bs) = {b}
SeqTerm,,,.(Bs) = &
SeqTerm,, (B7) =D

SeqTerm,,,q(Bg) = {a, aa, ..., aa ...

Zauwazmy, ze chociaz

Seqmml (B7) = Seqmml (BS))
to

SeqTerm,,, (B7) # SeqTerm,,,.(Bs).

a, ...

}

Na podstawie definicji tatwo obliczy¢ warunki silnego i stabego blokowania (tab. 8.3).

Tabela 8.3
B SD(B) WD(B)
B, fatsz fatsz
B, prawda prawda
B, prawda prawda
B, fatsz fatsz
Bs fatsz fatsz
B fatsz fatsz
B; fatsz fatsz
By Jatsz prawda

Z definicji wynika, Ze badanie czy dane wyrazenie jest silnie lub stabo blokujace wy-
maga zbadania, czy zbiér ciagéw Seqlnf(B) jest niepusty oraz czy zbidr ciggow

SeqTerm(B) prowadzi do wyrazen z blokada.

Teraz przedstawiamy dwa algorytmy zwigzane z tymi dwoma badaniami. W prezen-
tacji algorytméw bedziemy wykorzystywac¢ dla danego wyrazenia behawioralnego B
zbiér wyrazen, ktéry bezposrednio po nim nastgpuje w wyniku wykonania pojedyn-

czej tranzycji

Succ(B) = {B'|3ac Acte B—“ B’}

(8.15)

156 Rozdziat 8

Dla danego wyrazenia B zbior ten mozna wyznaczy¢ si¢ na podstawie zbioru aksjoma-
téw i regul okreslajacych relacjg tranzycji w systemie przejs¢.

Algorytm badania czy zbiér ciagdw Seqinf(B) jest niepusty przedstawimy w postaci
rekursywnego obliczania wartosci funkcji logicznej NotEmptySeqInf (B). Funkcja obli-
cza warto$¢ prawda, gdy zbidr SeqInf(B) jest niepusty, oraz fatsz, w przypadku prze-
ciwnym. Jej definicja wyraza si¢ przez funkcj¢ pomocnicza NESI(B, pred), gdzie pred
jest zmienna pomocnicza, ktdrej wartoSciami s podzbiory wyrazen behawioralnych.
Definicja jest przedstawiona w samowyjasniajacej si¢ konwencji programistycznej

NotEmptySeqInfiB) := NESI(B, &)

gdzie:
NESI(B, pred) :=
begin
if F(B) = @ then return(falsz) endif ; -1
for B'e Succ(B) do
if B'e pred then return(prawda) endif ; -2
endfor ;

pred := pred U {B};
for B'e Succ(B) do
if NESI(B', pred) then return(prawda) endif ; -3
endfor ;
return(fatsz); -4
end ;

Objasnijmy algorytm. Parametr formalny pred reprezentuje zbiér wyrazen behawio-
ralnych, ktére w pewnym obliczeniu, prowadzacym do wyrazenia B, moga wyrazenie
to poprzedzaé. Oznacza to, Ze istnieje obliczenie postaci

B—*—>B,—%*3B,..B,_,—*—>B (8.16)

n-l

gdzie By, Bs, ..., B, _ € pred. Poczatkowg wartos$cia parametru pred jest zbior pusty.

Algorytm, badajac zbidr nastepnikéw Succ(B), koficzy si¢ na mocy lematu, gdyz zbidr
wyrazen osiagalnych z danego wyrazenia B jest skonczony. Zakonczenie algorytmu
nastepuje w czterech przypadkach:

W pierwszym przypadku (linia z etykietg 1) algorytm konczy si¢ obliczeniem war-
tosci fatsz, gdy wyrazenie B spetnia warunek F(B) = &. Oznacza to, oczywiscie, ze
Se(/mu(l(B) = @, WIQC 1 Seqlnf;uml(B) = @

Problem blokad w LOTOSie 157

W drugim przypadku (linia z etykieta 2) algorytm konczy si¢ obliczeniem wartosci
prawda, gdy napotka si¢ wyrazenie B, osiagalne z B, ktére moze prowadzi¢ do pewnego
wyrazenia ze zbioru pred. Oznacza to, Ze istnieje pgtla — obliczenie nieskonczone.

Jesli nie stwierdzi si¢ istnienia petli, przechodzi si¢ do obliczania wartosci funkcji NES/
dla wyrazen ze zbioru Succ(B), w poszerzonym zbiorze poprzednikow pred U {B}. Jesli
B'e Succ(B), oznacza to istnienie obliczenia

B—*>B,—%2 3B .B, ,—% 5B—% B (8.17)

n-1

W tym przypadku (linia z etykieta 3) zakonczenie algorytmu nastgpuje, gdy stwierdzi
sie, ze warto$¢ funkcji NESI dla pewnego wyrazenia B'e Succ(B) jest prawda. Jesli
natomiast dla wszystkich wyrazen ze zbioru Succ(B) warto$¢ funkcji NESI jest fal-
szywa, to oznacza, ze wartos$¢ tej funkcji jest réwniez fatszywa dla wyrazenia B (linia
z etykietq 4).

Drugi algorytm bada, czy wyrazenie jest silnie blokujace. Jest on przedstawiony w po-
staci rekursywnego obliczania wartosci funkcji logicznej StrongDeadock(B). Funkcja
oblicza warto$¢ prawda, gdy zbiér SeqFin(B) jest pusty i kazde wyraZzenie osiagalne
z B, ktére nie ma nast¢pnikdw, nie nalezy do zbioru wyrazen STOP, czyli spetnia pre-
dykat SD. W przypadku przeciwnym funkcja oblicza warto$¢ fatsz. Jej definicja wyra-
za si¢ za pomocg poprzednio zdefiniowanej funkcji NotEmptySeqinf(B) oraz nowej
funkcji SD(B, pred), gdzie pred jest zmienng pomocnicza, ktérej wartosciami sg pod-
zbiory wyrazen behawioralnych.

StrongDeadock(B) :=
begin
if NotEmptySeqinf(B) then return(fatsz); endif ;
SD(B, ©);
end ;
gdzie:
SD(B, pred) =
begin
if Succ(B)\pred=D
then
if Be STOP then return(fatsz) endif
else
for B'e Succ(B) do
if not SD(B’, pred U Succ(B)) then return(fatsz) endif
endfor,
return(prawda);

end ;

158 Rozdziat 8

Obliczenie czy wyrazenie jest stabo blokujace jest przedstawione w postaci rekur-
sywnego obliczania wartosci funkcji logicznej WeakDeadock(B). Funkcja oblicza
wartos¢ prawda, gdy istnieje wyrazenie osiagalne z B, ktére nie ma nast¢pnikow,
nie nalezy do zbioru wyrazen STOP, czyli spetnia predykat SD, a w przypadku
przeciwnym funkcja oblicza warto$¢ fafsz. Jej definicja wyraza si¢ za pomoca
funkcji WD(B, pred), gdzie pred jest zmienng pomocnicza, ktdrej warto$ciami sg
podzbiory wyrazen behawioralnych.

WeakDeadock(B) := WD(B, O&);

gdzie:
WD(B, pred) :=
begin
if Succ(B)\pred=3
then
if Succ(B) = A B¢ STOP then return(prawda) endif
else
for B'e Succ(B) do
if WD(B', pred U Succ(B)) then return(prawda) endif
endfor;
return(fatsz);
end

Przeprowadzona analiza blokad dotyczyta wyrazen behawioralnych bazowej wersji
jezyka LOTOS, abstrahujacej od warto$ci komunikowanych pomigdzy procesami.
Komunikacja wartosci moze by¢ przyczyna nowych sytuacji, w ktérych nastepuja
blokady. Rozpatrzmy przyktad prostego wyrazenia

a ! true; stop |[a]| a ! false; stop

Jest to wyraZenie z silng blokadg, chociaz jego odpowiednik w bazowym LOTOSie
a; stop |[a]| a; stop

jest wyrazeniem wolnym od blokad. Wynika z tego oczywisty wniosek, ze przeprowa-
dzona analiza okresla warunki konieczne, ale niewystarczajace do oceny zachodzenia
blokad w wyrazeniach behawioralnych. Réwnie oczywiste jest to, ze nie jest mozliwa
analiza blokad dla petnego LOTOSa oparta wytacznie na analizie tekstowej, bez ana-
lizy obliczenia wyrazenia.

Warto natomiast zaznaczy¢, ze przedstawione algorytmy wykrywania blokad mozna,
po prostej korekcie, zastosowac do bazowego, oryginalnego LOTOSa. Korekta wyni-
ka z réznicy semantyk, wyrazajacych si¢ funkcja Succ.

Problem blokad w LOTOSie 159

Zwiazki pomigdzy blokadami w obu wersjach jezyka sg oczywiste: jezeli dla wyra-
zenia behawioralnego B w wersji oryginalnej zachodzi SD(B) (albo WD(B)), to takze
zachodzi SD(B) (albo WD(B)) w wersji zmodyfikowanej.

8.4. Uwagi koncowe

W tym rozdziale oméwiono specyficzny problem ukrytych blokad w standardowe;j se-
mantyce jezyka LOTOS, wynikajacy z niekonsekwentnego traktowania komunikacji
miedzy procesami. Skorygowana semantyka, pozbawiona tego defektu, byta przed-
miotem artykutu [Huzar, Kuzniarz 1993]. Raport [Huzar, Kuzniarz, Lach 1997] przed-
stawia implementacj¢ algorytméw wykrywania blokad w zmodyfikowanym jezyku
LOTOS. Implementacje oparto na jezyku programowania ML [Milner, Tofte, Harper
1990].

Warto zaznaczyé, ze w jezyku LOTOS problem blokad wystgpuje niezaleznie od
omawianych tu blokad ukrytych. Na przyktad takim wyrazeniem z blokada jest

hide g, g, in g; B, |[g]| 81; B2

Do wykrywania blokad w standardowym LOTOSie mozna stosowa¢ opisany w po-
przednim rozdziale pakiet CADP [Garavel, Lang, Mateescu 2001].

160

9. Rozszerzenia czasowe LOTOSa

9.1. Wstep

Przedstawiony w poprzednich rozdziatach jezyk LOTOS nie pozwala na specyfikacj¢
systemow czasu rzeczywistego. Czas moze by¢ modelowany tylko jakosciowo za pomo-
cq akcji wewnetrznych. W tym rozdziale zaprezentowano dwa podejscia do czasowego
rozszerzenia jgzyka LOTOS. Podejscia te réznig si¢ sposobem modelowania akcji.

Pierwsze podejscie zaktada, Zze akcje sa natychmiastowe, a ich wlasnosci czasowe
okreslaja przedzialy czasu, w ktérych akcje te moga zachodzié. Doktadniej: z akcja
komunikacyjng wiaze si¢ przedziat czasu, w ktérym ta akcja moze nastapi¢, natomiast
z akcja wewnetrzng jest zwigzany przedzial czasu, w ktérym akcja musi zaj$¢. Podej-
$cie to bylo prezentowane migdzy innymi w artykutach: [Bolognesi, Lucidi 1992],
[Leduc, Leonard 1992], [Quemada, Azcorra, Frutos 1990], znalazto tez odbicie
w nowej wersji jezyka E-LOTOS [ISO/IEC FDIS 15437]. Wspdlnym elementem tych
prac bylo zatozenie, ze wszystkie rodzaje akcji sa akcjami natychmiastowymi.

Dla akcji komunikacyjnej wprowadza si¢ notacje
gltint .. r'} 9.1)

ktdra oznacza, ze akcja moze zaj$¢ w przedziale czasu 7. t*, gdzie 0 <t < 1. Jezeli
akcja na bramce g nie zajdzie w zadanym przedziale czasu, to po jego uptywie juz
zaj$¢ nie moze.
Podobna notacje wprowadza si¢ dla akcji wewnetrznej i akcji exit

i{rint.. 17} exit {rin¢".. "} (9.2)

W odréznieniu od akcji komunikacyjnej, notacja oznacza, ze akcja musi zajs¢ w prze-
dziale czasu .. t*, gdzie 0 <t~ < t*. Jezeli akcja nie zajdzie przed chwila t*, to musi
zaj$¢ w chwili ¢*.

Opis akcji czasowych i komunikacji zachodzacej w czasie rzeczywistym wymaga po-
jecia chwil i przedziatéw czasowych. Chwile czasowe bgda si¢ odnosi¢ do momentow
rozpoczynania i konczenia akcji, przedzialy zas beda sie odnosi¢ do opdznien i czaséw
przeterminowania. Zaktadamy przy tym struktur¢ liniowego i ggstego czasu abso-
lutnego. Dla ukonkretnienia przyjmujemy, ze dziedzing takiej struktury jest zbidr liczb
wymiernych, dalej oznaczany symbolem Time. Struktur¢ taka mozna zdefiniowac jako
typ abstrakcyjny [Huzar, Magott 1997a].

Przedstawione podejscie to ma tg zalete, ze pozwala na zachowanie zgodnosci z LO-
TOSem bezczasowym, jego wada wydaje si¢ brak naturalnosci, co moze powodowa¢
wigksza ztozonos¢ specytikacji.

Rozszerzenie czasowe LOTOSa 161

Drugie podejscie do czasowego rozszerzenia LOTOSa zaklada istnienie akcji czaso-
wych i bylo przedstawiane w pracach: [Huzar 1991], [Huzar, Magott 1995a], [Huzar,
Magott 1995b], [Huzar, Magott 1996], [Huzar, Magott 1997a], [Huzar, Magott
1997b]. Wtasnosci czasowe akcji, podobnie jak w przypadku jezyka RT-CSS (rozdz. 3.),
sq wyrazane przez zbidr dopuszczalnych czaséw wykonywania si¢ akcji.

Dla uproszczenia rozwazania beda odnoszone do takiej samej bazowej wersji jezyka
LOTOS, jaka rozpatrywano w rozdziale 8. (8.5). Czasowe rozszerzenie tej wersji be-
dzie oznaczane dalej jako jezyk RT-B-LOTOS. Rozszerzenie polega na wprowadze-
niu dwéch elementéw:

e zastapieniu akcji (bezczasowych) akcjami czasowymi,
e wprowadzeniu nowego rodzaju akcji, zwanej akcja przeterminowania.

Akcje na bramce g (podobnie akcje wewngtrzne i) beda zastapione akcjami czaso-
wymi g[4] (odpowiednio i[4]), gdzie ACTime oznacza zbiér dopuszczalnych czaséw
wykonania akcji czasowej. Wykonaniu akcji czasowej towarzysza takie dwie chwile
czasowe: rozpoczgcia | oraz zakonczenia t, ze t, — t € A. Dla uproszczenia rozwazan
bedziemy zaklada¢, ze r6znym akcjom czasowym na bramce g bedzie zawsze odpo-
wiada¢ taki sam zbiér 4, réznym czasowym akcjom wewngtrznym moga natomiast
odpowiadac rézne zbiory A4.

Zakiadamy, ze akcje czasowe sg nieprzerywalne: akcja raz rozpoczeta musi byé wy-
konana do konca.

Komunikacja zbioru n akcji czasowych na bramce g przebiega w dwdéch fazach.
W pierwszej fazie akcje oczekujg na synchronizacje. Synchronizacja nastgpuje w naj-
wczesniejszej mozliwe] chwili, zgodnie z zasada ASAP (As Soon As Possible).
W chwili #, nastapienia synchronizacji, co bedzie modelowane zajsciem zdarzenia
czasowego <t, g-beg>, rozpoczyna si¢ faza druga — faza wymiany danych, ktéra trwa
do chwili #, takiej, ze t, — 1€ 4. Zakonczenie tej fazy bedzie modelowane zajsciem
zdarzenia czasowego <t,, g-end>.

Nowa akcja czasowa — akcja przeterminowania — ma postac¢ timeout(d), gdzie o€ Time.
Jest to akcja, ktdrej realizacja rozpoczyna si¢ w momencie jej zaoferowania ¢, i trwa
przez odcinek czasu J. Rola tej akcji polega na sygnalizacji uptywu odcinka czasu dtu-
gosci J, mierzonego od momentu rozpoczecia akcji. Wykonanie akcji przetermino-
wania bedzie modelowane tylko zaj$ciem zdarzenia czasowego <t,, timeout>, okresla-
jacego jej zakonczenie w chwili #, = | + 0, jej rozpoczecie natomiast nie bedzie wy-
rézniane odrgbnym zdarzeniem.

W tym rozdziale przedstawiono oba podejscia do czasowego rozszerzenia LOTOSa, przy
czym — w celu uproszczenia — ograniczono si¢ tylko do wersji bazowej jezyka, do-
datkowo z wyltaczeniem niektdrych konstrukeji, na przyktad choice, let, accept. Podej-
scie pierwsze jest reprezentowane przez TE-B-LOTOS, a drugie przez RT-B-LOTOS.

162 Rozdziat 9

9.2. Skladnia i semantyka jezyka TE-B-LOTOS

Uproszczona, ograniczona do czesci bazowej, bez komunikacji danych, wersja jezyka
TE-B-LOTOS ma nast¢pujaca sktadnie:
Q::= stop|exit{rind"..d*}|g{rind"..d"}; Q|i{rind .. d*}; Q)| wait(d); Q|
0] 0 | 0, |[R]| 0, | hide R in Q| 01 >>0- | o[>0 IP[gl, e Bl | (9.3)
(Q) |Age(d, Q)

Symbole Q, Q,, O, sq metazmiennymi, oznaczajacymi wyrazenia behawioralne; beda
one czgsto uzywane zamiast symboli B, By, ..., w celu bezposredniego odrdznienia
wyrazen j¢zyka TE-B-LOTOS od jgzyka RT-B-LOTOS.

Ostatni element przedstawionej sktadni Age(d, Q) nie nalezy do jgzyka TE-B-LOTOS,
to znaczy konstrukcji tej nie uzywa si¢ podczas tworzenia specyfikacji. Jest on nato-
miast stosowany jako element pomocniczy podczas definiowania semantyki jezyka,
dlatego, $cisle traktujac, skladnia przedstawia rozszerzony jezyk TE-B-LOTOS, na-
zywany dalej TE-B-LOTOS". Zbi6r wyrazen behawioralnych jezyka TE-B-LOTOS*
bedzie oznaczany przez TEBeh®, a zbiér wyrazen jezyka TE-B-LOTOS - przez
TEBeh.

Deklaracje proceséw beda miaty postac

process P[S] : funkcjonalnosé¢ = P endproc

gdzie: Pe Proc, S€ SeqG oraz Pe TEBeh, a funkcjonalnosé przyjmuje jedna z postaci
exit albo noexit. Zbiér deklaracji proceséw bedzie oznaczany przez Decl.

Specyfikacja TESpec w jezyku TE-B-LOTOS jest okreslona tak samo, jak specyfika-
cja w LOTOSie bazowym, to znaczy sktada si¢ z dwéch elementéw:

e czasowego wyrazenia behawioralnego Pe TEBeh,

e zbioru deklaracji proceséw Decl = {D,, ..., D,}. Elementarne procesy stop i exit
nie wymagaja, oczywiscie, deklaracji. Zaktadamy przy tym, ze realizacja procesu
exit jest natychmiastowa, proces stop trwa natomiast nieskonczenie dtugo.

Semantyka jezyka jest wyznaczana przez etykietowany system przejsc¢
TES(RTSpec) = <TEBeh®, TEvent, TETrans, P> (9.4)
gdzie:

TEvent = {g|ge G U {exit}} L {i} U {d | de Time}

TETrans = { —~— C TEBeh* XxTEBeh™ | ee G U {exit} L {i}}

U{—— C TEBeh" XTEBeh" | de Time)

jest zbiorem relacji przejsc.

Rozszerzenie czasowe LOTOSa 163

Wyréznia si¢ dwa rodzaje przejs¢: zdarzeniowe ——> i czasowe —— .

Przejscie zdarzeniowe Q0——(Q’ oznacza, ze wyrazenie Q moze sie zaangazowaé
w wykonanie akcji e, a po jej wykonaniu dalsze zachowanie jest okreslone przez wy-
razenie Q' Przejscie czasowe QT>Q' oznacza, ze wyrazenie Q moze by¢ opo6z-
niane przez odcinek czasu o dtugosci d, a dalsze jego zachowanie jest okreslone przez
wyrazenie Q.
Dalej bedg stosowane oznaczenia:

Q —“— oznacza, Ze istnieje Q' takie, z2 Q——Q’,

Q/—<— oznacza, Ze nie istnieje Q' takie, ze Q——Q’

[t == t']Q oznacza, ze ograniczenia czasowe dotyczace akcji wystgpujacych

w wyrazeniu Q sa zmodyfikowane tekstowo w taki sposob, ze zmienna ¢ jest za-
stepowana tekstowo wyrazeniem ¢'.

Zbiér relacji przej$¢ TETrans jest definiowany rekursywnie za pomocg przedstawio-
nego nizej zestawu aksjomatéw i regut.

Aksjomaty dla prefiksowania akcja komunikacyjna:

g{t in Od+}, Q| —i [t o= O]Ql (TE'pre('umm-l)
gltind™ +d.d*+d}; Q) —— gltrind".d"}; [t =1+ d]Q, (TE-precomm.2)
gltind ..d"}; Q1 ——> stop edyd>d* (TE-precomm.s)

gltind..d* +d}; Q, —— gftin 0.d"}; [t=t+d)Q, gdy d>d~ (TE-pre,um.s)

Aksjomat (TE-pre ,...3) odnosi si¢ do sytuacji, gdy akcja na bramce g nie zostata wy-
konana w przedziale czasu d".. d*. Oznacza to zablokowanie dalszych obliczen catego
wyrazenia prefiksowanego akcja na bramce g.

Aksjomaty dla prefiksowania akcjgq wewngtrzna:
i{rin0..d*); 0, —— [t :=0]Q, (TE-préiu.)
i{tind” +d.d"+d}; Q) —— i{tind .. d"}; [t = 1+ d]Q, (TE-preg,.»)
i{frind"..d* +d); O, — i{tin0.d"}; [t :=t+d)Q, gdyd>d~ (TE-pre;,.)

Aksjomaty dla procesu exit:
exit{sin 0..d*} —=% stop (TE-exit))

exit{rind ™ +d.d*+d}; Q) ——> exit{rind".d"} (TE-exits)

164 Rozdziat 9

exit{rind ..d"}; Q) —— stop gdyd>d"

exit{rin 0.d" + d}; 0, —— exit{tin 0.d"}

Aksjomat i reguty dla prefiksowania opéznieniem:

P—t P’
wait(0);P—— P’

wait(d' + d); P —> wait(d"); P’

P—;I——)P/

wait(d);P——— P’
Reguty dla wyboru B = P[]Q:

P—Et>pP

B—£—>P

Q—-¢

B—£—> P

P—— P 0—>0

d d

B d+d’ P []Q

Reguty dla prefiksowania przesunigcia czasowego:

P——P" P'—tsP
Age(d,P)—— P’

P—— P
d+d

Age(d',P)T>P'

(TE-exity)

(TE-exity)

(TE-wait))
(TE-wait)

(TE-waits)

(TE-choice,)
(TE-choice,)

(TE-choices)

(TE-age))

(TE-age,)

Age(d, P) zachowuje sig tak, jakby zachowywalo si¢ wyrazenie P po uptywie odcinka
czasu d. Jesli P/——, oznacza to, ze Age(d, P) jest procesem nieaktywnym, réwno-

waznym stop.
Reguly dla zlozenia réwnoleglego B=P|[S]|Q:

P—p
B—5P'|[S]]Q

0——0
B—P|[S]| Q'

(TE-par))

(TE-par»)

Rozszerzenie czasowe LOTOSa 165

PP 050

; ; p (TE-par;)
B—t > P'|[S]|Q RS
P \PI ’
< ,Q - ,Q (TE-par,)
B——P |[S1] O
Reguty dla przestonigcia B =hide SinP:
P—E£ P '
; > 8 & set(S) (TE-hide,)
B—:—>hideSinP
P—L£p
. P - g€ sel(S) (TE-hide-)
B——hideSin P
P d P’
Vge set(S)0(P/¢>/\VP’Vd'<,dO(P7>P':> P’ I——) S
: (TE-hides)

BT>hideSin P'

Ostatnia reguta oznacza, ze przesunigcie czasu moze nastapi¢, co najwyzej, do naj-
wczesniejszego wystapienia akcji komunikacyjnej, a akcje na przestonigtych bram-
kach sa wykonywane zgodnie z zasada maksymalnego postepu (as soon as possible).

Reguly dla zlozenia aktywujacego B=P >> Q:

P—£p
- - g.event # exit (TE-accept,)
B——>P'>>Q
P exit Pi
f’ (TE-accept,)
B——P'>>0
P—— P, P/I— VP'Vd' <d e (P—— P’ = P"|—")
- = < (TE-accepts)
B——P>>0Q '

Ostatnia reguta oznacza, ze przesunigcie czasu moze nastapi¢ pod warunkiem, Ze nie
jest realizowana akcja exit; akcja ta jest wykonywana zgodnie z zasada maksymalnego
postepu.

Reguty dla ztozenia deaktywujacego B E'P[> Q:

P—E£p
——————— g.event #exit (TE-dis))
B——> P[>0
g /
0 0 (TE-dis,)

166 Rozdziat 9

exit ’
f—f——})—, (TE-dis-)
B extt P
P > P, Q'
d Q d__ ¢ (TE-dis,)
B—— P 550
Reguty dla wywotania procesu B=p(h,,..., h,]:
Q[gl = hl""’ gu = h"]__&’__)Q' (TE-ill.S'fl)

B0
Q[gl = hl’ A] gu = hII]T)Q,

B d Q’

(TE-inst,)

9.3. Wybrane wiasnosci jezyka TE-B-LOTOS

Wtasnosci jezyka TE-B-LOTOS sa zgodne z whasnosciami jgzyka LOTOS. Naleza do
nich wlasnosci zdefiniowane dla LOTOSa w podrozdziale 7.2.

Zachodzi tez twierdzenie o ekspansji. Wprowadzimy nast¢pujace oznaczenia:

ZH jest skrétem zapisu Rl (1...00 R-" , gdzie iy, ..., i,€1l.

iel

Z{P,- |c}, gdzie ¢ jest wyrazeniem logicznym, wyznacza podzbiér podwyrazen skta-
iel

dowych wyrazenia ZB, ktére spetniajg warunek c.

i€l

Niech beda dane dwa czasowe wyrazenia behawioralne w normalnej sekwencyjnej
postaci normalnej:

P=) altind; .d P (1) i{t;ind;.d}};P, 1nJ=0
iel jed
(9.5)
Q= bt ind; .d; 0, (1) i{t,ind; .d'};0, KNL=Q

ke K leL
Twierdzenie o ekspansji pokazuje, ze rézne ztozenia takich wyrazen daje si¢ réwniez
wyrazi¢ w sekwencyjnej postaci normalnej.
Twierdzenie 9.1

Zachodza nastgpujace réwnowaznosci w sensie relacji silnej bisymulacji:

167

Rozszerzenie czasowe LOTOSa

dla ztozenia réwnoleglego:

P|[S]1|Q ~ Z{ai{t,. ind;.d’};(P|[S]| Age(t;,Q)) | a;.event & set(S) U {exit}}

i€l
0 Z{bk{tk ind; .d; };(Q, |[S1] Age(t,, P)) | b .event set(S) U {exit})}
ke K
0D {cttind; .d; (P |(S[t, :=11Q) e =a; = b A
iel

c;.evente set(S)nke K}
[i,{r,ind;.d;)5 (P |[S]] Age(t;,0))
el

(0D it ind;.d]};(Age(t,, P)|[S11 Q)

leL
dla ztozenia deaktywujacego:
P[>0~ Q
)Z{a {t,ind;.d};(P[> Age(1;,Q)) | a; event & set(S) U {exit}}
]Z{a {t,ind;..d, };P,|a.event = exit}
Zl {t;ind].d] };(P[> Age(;,0))
jel

dla ztozenia aktywujacego:

P>>Q~ Za {t;ind].d]};(P. >> Age(t,,Q))
);1 {t,ind;.d} };(P, >> Age(t,Q))

dla przestonigcia:
hide S in P ~ Z{ai{ti ind;..d]};hide S in P, | a;.event & set(S) U {exit}}
{1 Z{i{ti ind;..d; };hide S in P, | a,.event € set(S) U {exit}}
(1) i,{t;ind; .d;};hide S in P,
dla opéznienia:

wait(d);P ~ Y af{t;ind;.d} }ilt, =1, - d]P,
el

(1) i,{t;ind; .d;} Yt =1, - d1P,
jelt

168 Rozdziat 9

dla przesunigcia czasowego:

Age(d,P)~) aitind; —d.d’ -d}lt, =1, +d]P,
iel
(1) i,{t;ind —d.d} —d};[t, =1, +d]P,

jeJ

9.4. Skladnia i nieformalna semantyka jezyka RT-B-LOTOS

Wprowadzmy oznaczenia:

G — zbidr nazw bramek obserwowalnych,

Proc — zbiér nazw procesow,

Time — dziedzina chwil czasowych,

TBeh — zbiér czasowych wyrazen behawioralnych.

Zbidr wszystkich akcji czasowych jest zdefiniowany jako suma mnogosciowa
Act = {g[A) | g€ G, ACTime} U{i[A4] | ACTime} U {timeout(J) | € Time} (9.6)

Niech SegG oznacza zbidr takich ciagéw nad zbiorem G, w ktérych nie ma powtdrzen
dwéch tych samych nazw bramek, to znaczy

SeqG = {g\, ..., &u | 8€G, gi#g dlai#j,n=0,1,..} 9.7)

Jezeli ReSeqG oraz R= g, ..., g, toset(R)={ g\, ..., g,} oraz len(R)=ndlan = 0.
Deklaracje proceséw begda miaty postac¢
process P[S] : funkcjonalnos¢ := B endproc

gdzie: Pe Proc, Se SeqG oraz Be TBeh, a funkcjonalnos¢é przyjmuje jedng z postaci
exit albo noexit. Zbidr deklaracji proceséw bedzie oznaczany przez Decl.

Instancja procesu bedzie wyrazenie postaci P[R], gdzie Re SeqG oraz len(R) = len(S).
Wyrazenie to jest szczegdlng postacia czasowego wyrazenia behawioralnego. Zbior
wszystkich czasowych wyrazen behawioralnych TBeh, w notacji BNF, jest okreslony
nastgpujaco:

B ::= stop | exit | g[4]; B, | i[4]; B, | timeout(d); B, | B, >> B, | B, [] B; |
hide R in Bl | B; [> 32 I B; |[R]| 32 I P[R] l (B])

(9.8)

gdzie: B, B, B-€ TBeh, Pe Proc, R€ SeqG. Kolejnos¢ wprowadzenia operatoréw odpo-
wiada malejacej kolejnosci ich priorytetow.

Nieformalnie semantyka czasowych wyrazen behawioralnych, oprécz czasowej roz-
ciagtosci akcji, jest podobna do semantyki wyrazen LOTOSa standardowego. Dodat-

g%25e2%2580%259e/g.eG

Rozszerzenie czasowe LOTOSu 169

kowe réznice wynikaja z wprowadzenia akcji przeterminowania. Bezposrednio sama
akcja timeout(d) oznacza op6znienie o odcinek czasu diugosci J. Obecno$¢ natomiast
tej akcji w réznych kontekstach ma wptyw na przebieg obliczen. Rozpatrzmy na przy-
ktad trzy wyrazenia behawioralne, w ktérych moze ona wystapic:

gl4]; B, [] timeout(J); B, 9.9)
B, [> timeout(d); B, (9.10)
B, |[R]] timeout(J); B, 9.11)

Pierwsze wyrazenie (9.9) reprezentuje nastgpujace zachowanie: jezeli w odcinku cza-
su o dlugosci &, mierzonym od momentu jego przygotowania, rozpocznie si¢ reali-
zacja akcji czasowej na bramce g, to dalsze zachowanie — jak przy konstrukcji wyboru
— przebiegnie zgodnie z wyrazeniem B, w przypadku natomiast przeciwnym w mo-
mencie uptywu odcinka czasu drozpocznie sig realizacja wyrazenia B,.

Drugie wyrazenie (9.10) reprezentuje nastgpujace zachowanie: jezeli w odcinku czasu
o dlugosci 6, mierzonym od momentu jego przygotowania, nie nastapi zakonczenie
wyrazenia By, to w momencie uptywu odcinka czasu o nastapi jego przerwanie i roz-
pocznie si¢ realizacja wyrazenia B.

W przypadku natomiast trzeciego wyrazenia (9.11) akcja przeterminowania odgrywa
tylko rolg¢ opéznienia momentu rozpoczgcia wykonania wyrazenia B,.

Dwa pierwsze wyrazenia sa typowymi konstrukcjami, ktére mozna spotka¢ w jezykach
programowania czasu rzeczywistego, na przyktad w jezyku Ada 95 [Huzar i inni 1998].

Definiowany jezyk zawiera te same zrédta niedeterminizmu, co LOTOS standardowy
— dotyczy to konstrukcji wyboru oraz selekcji zestawéw komunikujacych si¢ proce-
séw. W rozwazaniach przyjmujemy niedeterministyczny wybdr czaséw wykonania
akcji czasowej ze zbioru 4, okreslajacego dopuszczalne czasy wykonania. Mozliwe sg
tez inne sposoby, na przyklad wybdr losowy zgodnie z zadanym rozktadem praw-
dopodobienstwa, tak jak to przedstawiono w artykule [Huzar, Magott 1997a].

Specyfikacja RTSpec w jezyku RT-B-LOTOS jest okreslona tak samo jak specyfikacja
w LOTOSie bazowym, to znaczy sktada si¢ z dwdch elementdw:

e czasowego wyrazenia behawioralnego Be TBeh,

e zbioru deklaracji proceséw {D,, ..., D,}, gdzie D€ Decl. Elementarne procesy stop
i exit nie wymagaja oczywiscie deklaracji. Zaktadamy przy tym, ze realizacja pro-
cesu exit jest natychmiastowa, proces stop trwa natomiast nieskonczenie diugo.

9.5. Semantyka formalna jezyka RT-B-LOTOS

Semantyka operacyjna specyfikacji jest definiowana w sposéb strukturalny na pod-
stawie definicji sktadniowych wyrazen behawioralnych.

170 Rozdziat 9

Wprowadzenie czasu powoduje, Zze w wyrazaniu semantyki konieczne staje si¢ rozwa-
zanie przej$ciowych sytuacji, w ktérych oczekuje si¢ jedynie na uptyw czasu. Z tego
wzgledu wprowadza si¢ pomocnicza akcje op6znienia, oznaczang delay(g, J), gdzie
ge G v {i}, ktdrej jedynym znaczeniem jest opéZnianie akcji na bramce g o zadany
odcinek czasu 4.
Wprowadzenie akcji opdzniajacej rozszerza zbior wyrazen behawioralnych. Rozsze-
rzony zbidr czasowych wyrazen behawioralnych, oznaczany XTBeh, w notacji BNF,
jest zdefiniowany nastgpujaco: Niech B jest metazmienna reprezentujaca wyrazenie
behawioralne ze zbioru TBeh, a XB, XB,, XB, sa metazmiennymi reprezentujacymi
zbiér wyrazen XTBeh, wéwczas

XB ::= B | delay(g, 9); B| XB, |[S]| XB, | hide S in XB | XB>>B | XB[>B (9.12)
Rozszerzony zbiér wyrazen behawioralnych stuzy do przedstawiania konfiguracji za-
chodzacych w trakcie obliczen — sa to zaréwno konfiguracje zasadnicze, reprezento-
wane przez wyrazenia behawioralne jezyka RT-B-LOTOS, jak i konfiguracje pomoc-
nicze, reprezentowane przez rozszerzone wyrazenia behawioralne. Sktadnia wyrazen
rozszerzonych jest zdefiniowana tak, aby uwzglednia¢ tylko mozliwe do osiagnigcia
konfiguracje pomocnicze. Nie jest na przyktad mozliwa do osiagnigcia konfiguracja,
ktéra bytaby reprezentowana przez wyrazenie XB, [] XB,, gdyz oznaczataby przejscio-
wa konfiguracje, w ktoérej trwa realizacja wyrazen po obu stronach operatora wyboru.
Jest to oczywiscie niemozliwe, gdyz realizacja wyrazenia behawioralnego z opera-
torem wyboru prowadzi do wyboru tylko jednego wyrazenia sktadowego.

Wprowadzamy zbiér nazw zdarzen czasowych Event, zdefiniowany jako
Event = {g-beg | ge G} U {g-end | ge G} U {i-beg, i-end, exit, timeout} (9.13)
Jezeli Se SeqG, to
Evevi(S) = {g-beg | ge set(S)} U {g-end | g€ set(S)} (9.14)
Zbidr zdarzen czasowych TEvevt jest zdefiniowany jako produkt
TEvevt = Time X Event
Jezeli e = <t, h>e TEvent, to

e.time =t oraz e.event = h.

Dla specyfikacji RTSpec = < {B, {D, ..., D,}> etykietowany system przejS¢ czaso-
wych jest zdefiniowany jako

RTS(RTSpec) = <XBeh, TEvent, RTrans, B> (9.15)
gdzie

RTrans = { ——> C XBehx XBeh | ee TEvent} jest zbiorem relacji przejs¢.

Rozszerzenie czasowe LOTOSa 171

Zbior relacji przejs¢ RTrans jest definiowany rekursywnie za pomoca przedstawio-
nego nizej zestawu aksjomatdw i regut. W regutach wystepuje kilka funkcji pomocni-
czych.

Pierwsza z nich, funkcja o sygnaturze
First : XTBeh — 2°

dla danego rozszerzonego czasowego wyrazZenia behawioralnego B, wyznacza zbiér
bramek, ktére sg przygotowane do komunikacji. Definicj¢ funkcji przedstawiono
w tabeli 9.1.

Tabela 9.1
B First(B)
stop %)
exit 1]
gla]; B, {g}
i[4]; B %)
delay(g, 8): B, (geG U {i}) %)
timeout(9); B, %)
B, (1B, First(B,) U First(B,)

(First(B))\set(S)) U (First(B:)\set(S))

Bilis1| 8. U (First(B,) N First(Bs) N set(S)
hide S in B, First(B))\set(S)
First(B,[S::=R])
PIR] B, jest trescig procesu P
B,>> B, First(B))
B, [> B, First(B,) U First(B»)
(B,) First(B))

Dwie nastgpne funkcji o sygnaturach:
Age : XTBeh x Time — XTBeh
Next : XTBeh — Time..

stuza do modelowaniu uptywu czasu. Pierwsza z nich, Age(B, 0), transformuje rozsze-
rzone czasowe wyrazenie behawioralne w nowe wyrazenie, ktére jest tylko rezultatem
uptywu czasu o odcinek 0.

Druga funkcja, Next(B), dla danego rozszerzonego czasowego wyrazenia behawioral-
nego B, wyznacza, poczynajac od danej chwili, najwczesniejszy moment, w ktérym

172 Rozdziat 9

moze si¢ rozpoczac akcja czasowa, niezaleznie od otoczenia wyrazenia B. Zbior war-
tosci funkcji Time.. = Time U {o}, gdzie element e ma nastgpujace wlasnosci:

VieTime ot <oco At+o0=00

Jezeli najwczesniejszy moment akcji czasowej dla wyrazenia B zalezy wylacznie od
jego otoczenia, to warto$¢ funkcji jest zdefiniowana jako Next(B) = o=. Funkcje sg
zdefiniowane w tabeli 9.2.

Tabela 9.2
B Age(B, d) Next(B)
stop stop oo
exit exit oo
gl4l; By gl4l; B,
i4]; B, i[4]; B, " 0
delay(g, 6,); B,
g€ G Uli) delay(g, 8, - 6); B,? S
timeout(d)); B, timeout(6, - 9); B, > o)
B, []1 B, Age(By, 0) [1 Age(Ba, 9) 3 min(Next(B,), Next(B»))
B, (S]] B> Age(B,, 9) |[S]] Age(Ba,) 2 min(Next(B,), Next(B,))
5 . . . 0 gdy First(B)) N set(S) # &
B
Fighe: et 5y hide § in Age(B:, J) Next(B,) w przypadku przeciwnym
. e 4)
PIR] Agec| 3= K], 6) Next(B\[S ::= R])
B, jest trescig procesu P
B, >> B, Age(B,, 8 >> B, Next(B))
B, [> B, Age(B,, O) [> Age(B2, 6)” min(Next(B,), Next(B-))
(B) Age(By, 6)? Next(B))

i) Zdefiniowane tylko dla §=0.

? Zdefiniowane tylko dla §< §,.

¥ Zdefiniowane tylko dla §< min(Next(B,), Nex(B2)).
4)Zdeﬁniowune tylko dla &< min(Next(B,).

Wreszcie ostatnia funkcja pomocnicza, o sygnaturze
Abort : XTBeh — XTBeh

dokonuje transformacji rozszerzonego czasowego wyrazenia behawioralnego B, ktdra
odzwierciedla konsekwencje zerwania obliczen wyrazenia. Jedynym powodem zerwa-
nia obliczenia jest zastosowanie konstrukcji zloZenia deaktywujacego B, [> B,. Jezeli
wyrazenie B, rozpocznie swg aktywno$¢, to musi nastgpi¢ zakonczenie wyrazenia B).
Poniewaz akcje czasowe sa nieprzerywalne, zakoficzenie wyrazenia B, nie nast¢puje

Rozszerzenie czasowe LOTOSa 173

w momencie rozpocz¢cia wyrazenia B,, lecz dopiero wdéwczas, gdy zakonczg sig
wszystkie aktualnie wykonywane akcje czasowe wyrazenia B,. Taki fagodny model
zrywania obliczenia (soft abortion) wyrazenia behawioralnego wyraza funkcja Abort,
zdefiniowana w tabeli 9.3.

Tabela 9.3
B Abort(B)
stop stop
exit stop
gl4]; B, stop
i(4]; B, stop

delay(g, J); B; ge G U {i}

delay(g, 0); stop

timeout(9); B, stop
B, [] B, Abort(B,) []1 Abort(B-)
i[F]; B: [1i[F:]; B, stop
B, || B, Abort(B)) |[S]| Abort(B)
hide S in B, hide S in Abort(B,)
Abort(B,\[S ::=R})
FLR] B, jest trescig procesu P
B, >> B, Abort(B,)
B, [> B> Abori(B)) |[D]| Abort(B,)
(B) Abort(B,)
Proces pusty stop — brak aksjomatéw.
Proces zakorczenia B = exit
B—"%"" 5 stop (RT-exit)
gdzie t 2 0.

Proces exit wykonuje si¢ natychmiast, jesli tylko w jego otoczeniu istnieja juz przygo-
towane procesy, ktére si¢ z nim synchronizuja. W przypadku przeciwnym proces exit
oczekuje na synchronizacjg.

Prefiksowanie akcjq komunikacyjng B = g[A); B,

<t, g-beg>

B ——————-—)delay(g s 5), Bl (RT'premnnn)

gdziet>0, ded i ged.

Akcja komunikacyjna rozpoczyna si¢ w chwili synchronizacji z otoczeniem, co moze
nastgpi¢ w dowolnym momencie ¢ 2 0, i trwa odcinek czasu o€ 4, uzgodniony przez
komunikujace si¢ procesy.

174 Rozdziat 9

Prefiksowanie akcjq wewnetrzng B = i[A4]; B,
B—="%> , delay(i,0); B, (RT-pre;,)

gdzie o€ A.

Akcja wewngtrzna rozpoczyna si¢ w chwili jej zaoferowania otoczeniu i trwa odcinek
czasu O€ 4, ustalony przez proces zawierajacy akcj¢, bez wptywu otoczenia.

Prefiksowanie akcjq opdzniajqcq B = delay(g, 0); B,

B—<ts> ,p (RT-pre juia)
Rozpoczeta akcja opdzniajaca trwa nieprzerwanie, az do zakonficzenia.
Prefiksowanie akcjq przeterminowania B = timeout(d); B,

B—<tmew> , g (RT-prezimeon)
Rozpoczeta akcja przeterminowania konczy si¢ po uptywie zadanego odcinku czasu J,

ale — w odréznieniu od akcji wewngtrznej — moze by¢ przerwana: wynika to z dalej
przedstawionych regut dotyczacych konstrukcji wyboru i ztozenia deaktywujacego.

WybérB=B,[] B>
B'—,—-—l—;,l— (RT-choice))
B——B,
jesli e.time < Next(B,) oraz
e.event = g-beg, dla ge G U {i} lub e.event = timeout

Bz—Blz (RT-choice,)
B——B,
jesli e.time < Next(B,) oraz
e.event = g-beg, dla ge G U {i} lub e.event = timeout
Reguty opisujace wybdr sprowadzaja si¢ do stwierdzenia, ze wybiera si¢ to wyrazenie
sktadowe, dla ktérego najwczesniej zajdzie zdarzenie czasowe. W przypadku réwno-
czesnego wystapienia zdarzen dla obu wyrazen sktadowych wybdr jest niedetermini-

styczny.
Ztozenie rownolegte B = B, |[S]| B,
B,——B/
B—>B/|[S]| Age(B,,e.time)

(RT-par)

jesli e.eventg Event(S) U {exit} oraz e.time < Next(B,)

Rozszerzenie czasowe LOTOSa 175

B,——B;
" = == - (RT-par-)
B—— Age(B, ,e.time) |[S]| B,
jesli e.eventg Event(S) U {exit} oraz e.time < Next(B,)
B—B,
B, —~—> B,
= = (RT-par»)

B——B/|[S1| B,

jesli e.evente Event(S) U {exit} oraz e.time < min(Next(B,), Next(B-))

Dwie pierwsze reguly opisuja transformacj¢ ztozenia réwnolegtego, gdy nastapi zda-
rzenie czasowe w jednym z wyrazen sktadowych, ktére nie angazuje wspdlnych bra-
mek komunikacyjnych. Najwcze$niejsze zajscie takiego zdarzenia powoduje odpo-
wiednia transformacj¢ sktadowej, w ktérej ono zaszlo; transformacja drugiej
sktadowej polega natomiast tylko na modyfikacji wynikajacej z upltywu czasu.

Trzecia reguta dotyczy sytuacji, gdy zachodzi zdarzenie zwigzane ze wspding bramka
komunikacyjna obu sktadowych wyrazenia.

Przestoniecie B = hide S in B,

<0,g-beg> ’
— T b
B, B,

B <0,i-beg> Bl/ (RT-hlde,)

dla ge set(S)

B] <1.g-end> Bl’

<t.i-end> ’
__.%
B Bl

(RT-hide>)

dla ge ser(S) oraz t =0

L — (RT-hide-)
B——B,

dla e.eventé set(S)

Reguty dotyczace przestonigcia wynikaja z przyjecia semantyki standardowego jezyka
LOTOS, a nie jezyka zmodyfikowanego, przedstawionego w rozdziale 8. Dwie pierw-
sze reguly sa odpowiednikiem pojedynczej reguly (RT-hide,) dla jezyka LOTOS
i wynikaja stad, ze pojedyncza akcja w jezyku LOTOS jest reprezentowana dwoma
zdarzeniami czasowymi w RT-B-LOTOS. Trzecia reguta jest taka sama jak druga
reguta dla jezyka LOTOS.

176 Rozdziat 9

Instancja procesu B = P[S]

B,[R=S]——B|

" ; (RT-inst)
B—— B,

gdzie B, jest trescig procesu P.

Obliczenie instancji procesu przebiega tak jak obliczenie zmodyfikowanego wyra-
zenia B, stanowiacego tre$¢ procesu. Modyfikacja polega na zastapieniu listy bramek
formalnych R lista bramek aktualnych § — oznaczenie B|[R ::= S].

Ztozenie aktywujqce B = B, >> B,

5 i (RT-enabl,)

B——B/>>B,
jesli e.event # exit

<0, exir> ’
B———B, (RT-enabl,)

B <0,exir> 32
Przedstawione reguty, oprécz wprowadzenia zdarzen czasowych, nie réznig si¢ od
regut dla ztozenia aktywujacego dla jezyka LOTOS.
Zlozenie deaktywujqce B =B, [> B,

B,—— B,

3 ’ ‘ (RT-dlS |)
B—— B|[> Age(B, ,etime)
jezeli e.event # exit oraz e.time < Next(B>)

<0, exir> ’
——="" 5B

IZI <0,exit> B,l (RT-dis,)
— b

B,——B,
. = (RT-dis)

B—— Abort(B,)|(D]| B}

Pierwsza reguta dotyczy sytuacji, gdy najwczesniej zachodzacym jest zdarzenie czasowe
w sktadowej B,. Transformacja catego wyrazenia jest w tym przypadku podobna do sy-
tuacji opisanej reguta R-par, dla zlozenia rownoleglego. Druga regula, dotyczaca réwniez
sktadowej B, ale zajscia zdarzenia konczacego t¢ skladowa, jest taka sama jak odpo-
wiednia reguta dla jezyka LOTOS. Trzecia reguta jest specyficzna tym, ze zajscie zda-
rzenia rozpoczynajacego B, uruchamia dziatania zmierzajace do zakonczenia sktadowe;j
B,, doktadniej — do dokoniczenia wszystkich aktualnie trwajacych akcji czasowych.

Rozszerzenie czasowe LOTOSa 177

Nawiasy B =(B))

B e B/
e (RT-brace)
B—— B,

Warto poréwnaé sposéb definiowania jezyka RT-B-LOTOS z definiowaniem jgzyka
TE-B-LOTOS.

Pierwsza réznica odnosi si¢ do tranzycji: w jezyku RT-B-LOTOS mamy do czynie-
nia tylko z jednym rodzajem tranzycji zwigzanych ze zdarzeniami czasowymi,
w TE-B-LOTOS sg natomiast dwa rodzaje: tranzycje czasowe i tranzycje zdarzenio-
we. Druga réznica dotyczy postaci regut: w jezyku TE-B-LOTOS wystepuja reguty
z przestankami negatywnymi (trzecia regula dla przestonigcia i dla ztozenia aktywuja-
cego), ktérych nie ma w RT-B-LOTOSie. Regut z przestankami negatywnymi [Groote
1990] udato si¢ w RT-B-LOTOSie uniknaé, dzigki wprowadzeniu funkcji Next, ktéra
— w razie braku komunikacji z otoczeniem — wyznacza najwczesniejsze zdarzenie
powodujace tranzycje.

Podobienstwem w obu sposobach definiowania jest wprowadzenie jezykéw pomocni-
czych, stanowiacych rozszerzenie TE-B-LOTOSa — chodzi o TE-B-LOTOS", oraz
RT-B-LOTOSa - chodzi o rozszerzony zbiér wyrazen behawioralnych XTBeh. W obu
przypadkach powodem rozszerzen jest opis sytuacji przejsciowych podczas wykony-
wania tranzycji.

9.6. Wybrane wlasnosci jezyka RT-B-LOTOSa

Etykietowany system przej$¢ czasowych RTS(RTSpec) wyznacza zbidr obliczen dla
specyfikacji RTSpec. Obliczenie jest zdefiniowane jako skonczony albo nieskonczony
ciag tranzycji postaci:

B——»B —2—>B,...—*—>B (9.16a)

B—4 >B —% 5B,..—% 3B G . (9.16b)

gdzie: By, ..., B,, ...€XBeh, e\, ..., €,, €,.1, ...€ TEvent.

Semantyke akcyjng i obserwowalng definiuje si¢ podobnie jak we wczesniej rozwaza-
nym przypadku jezyka LOTOS (rozdz. 5.).

Na podstawie definicji relacji tranzycji i definicji zbioru wyrazen XTBeh (9.12) tatwo
sprawdzi¢, ze zachodzi wlasno$¢:

Twierdzenie 9.2

Dla obliczenia skoniczonego postaci (9.16a) B,€ TBeh.

178 Rozdziat 9

Dowod

Wystarczy zauwazy¢, ze dowolne wyrazenie behawioralne Be XTBeh\TBeh za-
wiera przynajmniej jedna akcje opdznienia delay. Z definicji zbioru wyrazen
XTBeh (9.12) 1 funkcji First (tab. 9.1) wynika, ze kazda akcja opdznienia jest ele-
mentem zbioru First(B). Akcja delay prefiksuje pewne podwyrazenie wyrazenia
B. Zachodza tu tylko nastgpujace mozliwosci:

B =delay(g, 9); B,

B = delay(g, 0); B, [1 B;

B = delay(g, 0); B, (S]] B

B = delay(g, 0); B, >> B,

B = delay(g, 0); B, [> B,
W kazdym z tych przypadkow istnieje tranzycja z wyrazenia B do innego wyra-
zenia. Jedli zatem Be XTBeh\TBeh, to B nie moze by¢ wyrazeniem koncowym
skonczonego obliczenia.

Nalezy zwrdci¢ uwagg na to, ze w definiowaniu semantyki zastosowano konwencje
czasu wzglednego. Oznacza to, Zze moment zachodzenia kolejnego zdarzenia czaso-
wego jest odniesiony do chwili osiagnigcia wyrazenia behawioralnego, z ktérego na-
stepuje tranzycja pod wpltywem tego zdarzenia. Jest to konwencja wygodniejsza od
konwencji czasu bezwzglednego, ktéra byta stosowana w definiowaniu semantyki
jezyka RT-CCS (rozdz. 3.). Chwila ¢;, dla i = 1, 2, ..., w ktérej nastapita tranzycja do
wyrazenia B; wynosi

ti=etime+ ... + e;.time

Poréwnujac definicje semantyki LOTOSa bezczasowego i czasowego, tatwo zauwa-
zy¢ podobienstwo reguly tranzycji. Semantyka standardowego jezyka LOTOS jest
semantyka przeplotowa, to znaczy wyznacza ona zbiér obliczen, w ktérych pewne
akcje moga by¢ przestawione w permutacje. Wprowadzenie czasu wyklucza mozli-
wosc¢ takiego podejscia i wymaga semantyki prawdziwie réwnoleglej (trie concurren-
cv semantic). Taka jest wiasnie semantyka jezyka RT-B-LOTOS. Semantyka ta r6zni
sie¢ od semantyki przeplotowej tym, Ze na zbiér obliczen wyznaczonych przez seman-
tyke przeplotowa narzuca pewne ograniczenia na dopuszczalne ciagi akcji (zdarzen
czasowych). Ograniczenia te majg posta¢ warunkéw dopuszczajacych stosowanie
poszczegdlnych regul. W warunkach tych wystepuja, jako zasadnicze, funkcje po-
mocnicze zwigzane z modelowaniem uptywu czasu.

Jezyk RT-B-LOTOS zachowuje czgs$¢ whasnosci jezyka LOTOS (wyrazonych w p. 7.2)
dotyczacych silnej bisymulacji.

Twierdzenie 9.3

Zachodzg nastepujace zwigzki:

Rozszerzenie czasowe LOTOSa

179

Prawa dla wyboru
B, {1 B2~ B:[] B,
B [1(B2[1B3) ~(Bi[1B2) []1 B,

B[]B~B
B[] stop~ B

Prawa dla ztozenia réwnolegtego
B\ (S| B> ~ B |(S1] B,
B, S]] (B2 |[R]| B3) ~ (B:[[S]| B) |[R]| B3
exit |[S]| stop ~ stop

Prawa dla ztozenia aktywujqcego
stop >> B ~ stop
(B >> By) >> B3~ B; >> (B, >> By)
B >> stop ~ B |[D]] stop

Prawa dla ztozenia deaktywujqcego
stop[>B~B
exit [> B ~exit [| B
(Bi[>By) [> B; ~ B [> (B2 [> Bs3)
(Bi[>By)[1B2~ B, [> B,

B [>stop~ B

Prawa dla przestoniecia
hide S in B ~ hide S'in B jesli set(S") = set(S) N FG(B)
hide Sin B ~ B jesli set(S) N FG(B) =

gdzie FG(B) jest zbiorem bramek, ktére wystepujg w wyrazeniu B jako bram-
ki wolne, to znaczy niezwigzane operatorem przestonigcia (formalna definicja

funkcji FG jest tu pominigta).
hide S in hide S’ in B ~ hide §"in B
jesli set(S") = set(S) L ser(S")
hide Sin g[4] ; B ~ i[4] ; hide S in B jesli ge ser(S)
hide S in g[4]; B ~ g[4] ; hide S in B jesli g& set(S)
hide S'in B, [] B, ~ hide S in B, [] hide S in B,

180 Rozdziat 9

hide S in B, |[S']| B> ~ (hide S in B)) |[S']| (hide S in B,)

jesli set(S) N sen(S) =D
hide S in B, >> B, ~ (hide S in B,) >> (hide S in B,)
hide S in B, [> B, ~ (hide S in B,) [> (hide S in B-)

Prawo dla instancji procesu

P[S] ~ B[S/R] jesli process p[R] : funkcjonalnosé := B endproc

Dowéd
Petny dowdd, oparty na indukcji struktura, jest dtugi i ucigzliwy, ze wzgledu na
duza liczbe przypadkéw wymagajacych rozwazenia. Ponizej przedstawiamy tylko
szkic dowodu, przy czym ograniczymy si¢ tutaj tylko do wiasnosci dla ztozenia
réwnoleglego.

Rozpatrzmy réwnos¢ wyrazajaca przemienno$¢ ztozenia réwnoleglego

B, |(S]] B, ~ B, |[S]| B,

Wynika ona z regut tranzycji (RT-par,), (RT-par,) i (RT-par;). Na podstawie tych
regul zawsze jako pierwsze do obliczenia jest wybierane zdarzenie czasowe,
sposréd zdarzen oferowanych przez B, i przez B,, ktére wystepuje najwczesnie;j.
Reguta (RT-par,) dotyczy przypadku, gdy najwczesniej jest oferowane zdarzenie
czasowe przez wyrazenie B, ktére nie angazuje bramki ze zbioru set(S), czyli
zachodzi niezaleznie od wyrazenia B,. Podobnie reguta (RT-par,) dotyczy przy-
padku najwczesniejszego zdarzenia niezaleznego oferowanego przez B,. Regula
(RT-pars) dotyczy natomiast przypadku, gdy najwczesniejsze zdarzenie czasowe
zachodzi z udzialem obu sktadowych, czyli gdy jest zaangazowana bramka ze
zbioru set(S). Gdy najwczesniejsze zdarzenia oferowane przez B, i przez B, lub
jednoczes$nie przez oba te wyrazenia odnoszg si¢ do tej samej chwili, mamy niede-
terminizm, co wyraza si¢ zbiorem obliczen, w ktérych zdarzenia te wystepujq
w przeplocie.

Po wykonaniu tranzycji wynikajacych z uwzglednienia najwczesniejszego zdarze-
nia czasowego e

B,|[S]|B, ——> B(|[S1|B;, oraz B,|[S]|B, ——> B;|[S1|B|

znajdujemy si¢ w sytuacji podobnej do analizowanej, to znaczy kolejne zdarzenie
czasowe, ktére moga wygenerowa¢ wyrazenia B,|[S]|B;oraz B;|[S]|B, sa takie
same, czyli B|[S]|B5~ B;|[S]|B;. Zatem B, |[S]| B, ~ B |[S]| B.
Druga réwno$¢, wyrazajaca faczno$é

By |[S1] (B [[R]| B3) ~ (B:[[S]] B2) [[R]] By

Rozszerzenie czasowe LOTOSa 181

zachodzi, podobnie jak réwnos¢ pierwsza, na mocy tych samych regul tranzycji:
jako pierwsze jest zawsze wybierane zdarzenie czasowe najwczes$niejsze sposrod
zdarzen oferowanych przez sktadowe B, B,, B3, a po jego zajsciu osiagnig¢te nowe
wyrazenia oferuja te same zbiory kolejnych zdarzen czasowych.

Trzecia réwnos$¢
exit |[S]| stop ~ stop

jest oczywista.
Dla jezyka RT-LOTOS nie zachodzg natomiast inne réwnowaznos$ci, na przyktad dla
akcji wewnetrznych, takie jak:

gl4,]:i[4]; B=g[4,]; B

B[]il4].B=i[4];B

gl4,); (B [1i[4] ; B2) [1 8[4,] ; B2 = gl4,] 5 (B, [}i[4] ; B2)
gdzie symbol = oznacza dowolna z relacji ~, =°, =. Podobnie dla akcji exit

exit >>B="i; B

Dla jezyka RT-LOTOS nie zachodzi, niestety, takze twierdzenie o ekspansji, to znaczy
zlozenie wyrazen w sekwencyjnej postaci normalnej nie zawsze daje si¢ sprowadzi¢ do
wyrazenia w sekwencyjnej postaci normalnej. Warto rozpatrzy¢ ilustrujacy to przyktad.

Niech beda dwa wyrazenia behawioralne w normalnej postaci sekwencyjnej:
P=a[A]; P\ []1b[4]); P,
Q=clA]; P3[]1D0[4) ; Py

Dla wyrazenia postaci P |[b]] Q twierdzenie o ekspansji, stanowiace odpowiednik
twierdzenia o ekspansji dla jgzyka LOTOS, miatoby w tym przypadku postac:

P|[b)] Q ~ al4.) ; (Py|[b)] Q) [1 c[A] 5 (P3 |[b] P) [1 b[4,) 5 (P2 |[b]] Pa)
Tymczasem rozpatrzmy przej$cia do nowego wyrazenia; mozliwe sg nastgpujace sytuacje:

1. Jako pierwsze zachodzi zdarzenie czasowe a, ktdre nie jest zwigzane z bramka
synchronizujaca P z Q.

2. Jako pierwsze zachodzi zdarzenie czasowe b na bramce synchronizujacej P z Q.

3. Jako pierwsze zachodzi zdarzenie czasowe c, ktére nie jest zwigzane z bramka
synchronizujaca P z Q.

W przypadku pierwszym, po rozpoczgciu akcji czasowej a[4,], nastgpnymi akcjami sa
nie tylko zakonczenie akcji «, ale takze — jeszcze przed zakonczeniem akcji a — rozpo-
czecie akcji ¢. Przedstawiona postac twierdzenia o ekspansji tej ostatniej mozliwosci
nie przewiduje.

182 Rozdziat 9

9.7. Jezyk RT-LOTOS

Jezyk RT-B-LOTOS zostal wprowadzony przede wszystkim w celu zwartego przed-
stawienia prawdziwie réwnoleglej semantyki, bez uwzglednienia typéw danych, ktére
nie maja zasadniczego wptywu na definicj¢ semantyki. Przyjmujac definicje jezyka
RT-B-LOTOS, mozna tatwo — w oczywisty sposdb — rozszerzy¢ ja po dotaczeniu ty-
péw danych do jezyka. W zastosowaniach praktycznych wymagamy zwykle jezyka
dysponujacego danymi, dlatego na podstawie definicji (9.8) dokonamy oczywistego
rozszerzenia sktadni czasowych wyrazen behawioralnych. Zaktadamy przy tym, ze
definicja i semantyka typéw danych sg zgodne z odpowiednimi definicjami podanymi
w rozdziale 4.

Zbiér wyrazen behawioralnych, oznaczany RT-TBeh, jest zdefiniowany, za pomoca
notacji BNF, w sposéb nastepujacy:
B ::= stop |exit|go...a,[4]; B, | i[4]; B, | timeout(9); B, | B, >> B, |
B\ []1 B, | hide Rin B, | B, [> B, | B, |[R]| B | P[R] | (B)) | [c] -> B,

gdzie: B, B, B, sa metazmiennymi, ¢ ...q, (n = 0) sa elementami komunikacyjnymi
zdefiniowanymi tak jak dla akcji strukturalnych (5.2), ¢ jest predykatem — wyrazeniem
logicznym, czyli termem rodzaju Bool.

(9.17)

Posta¢ specyfikacji w jezyku RT-LOTOS jest zgodna ze sktadnig jezyka LOTOS i nie
wymaga oddzielnej definicji.

Nieprzedstawiang tutaj formalnie semantyke specyfikacji mozna tatwo wyprowa-
dzi¢ na podstawie definicji jezyka LOTOS, przedstawionej w rozdziale 5., i defini-
cji jezyka RT-B-LOTOS, przestawionej w biezacym rozdziale.

W przedstawionych definicjach abstrahujemy od sposobu wyboru czasu wykonania
akcji. W zastosowaniach, jak wspominalismy, przyjmuje si¢ rézne mechanizmy wy-
boru. Ze wzgledu na potrzeby dalej rozwazanego przyktadu specyfikacji zatozymy tu
sposob wynikajacy z podziatu akcji komunikacyjnych na dwie kategorie: akcje czynne
i akcje bierne [Bernardo, Gorrieri 1998]. Akcje czynne to akcje, z ktérymi jest zwig-
zany zbidr dopuszczalnych czaséw wykonania (tak samo jak dotychczas rozwazane
akcje czasowe). Akcje bierne nie maja natomiast okreslonego z géry zbioru dopu-
szczalnych czaséw wykonania. Czas wykonania akcji biernej jest okreslany przez czas
akceji czynnej, z ktdra akcja bierna synchronizuje si¢ podczas komunikacji.

W celu odréznienia akcji czynnych od biernych, akcja bierna bedzie oznaczana
8%...ou[*]

gdzie: * jest dodatkowym wyréznionym symbolem, a akcja czynna jest oznaczana jak
dotychczas
8a... o[4]

Rozszerzenie czasowe LOTOSa 183

Para synchronizujacych si¢ akcji, na przyktad
g 110[{2, 3}] g 7 x:int[*]
bedzie si¢ wykonywac 2 albo 3 jednostki czasu.

Podzial na akcje czynne i bierne ma dobre odniesienie do wielu sytuacji praktycznych,
kiedy komunikacja przebiega pomigdzy dwoma procesami, z ktérych jeden jest ustu-
godawca, a drugi ustugobiorca. Czas komunikacji w takich przypadkach wyznacza
zwykle ustugodawca, a ustugobiorca czas ten akceptuje. W przypadku wielu synchro-
nizujacych si¢ akcji co najwyzej jedna moze by¢ akcja czynna.

9.8. Przyklad specyfikacji w RT-LOTOSie

Rozwazanym problemem jest sporzadzenie specyfikacji systemu czasu rzeczywistego
na podstawie nastgpujacego opisu tekstowego [Heitmeyer, Mandrioli 1996]:

Zadanie polega na wyspecyfikowaniu funkcji systemu komputerowego sterujacego ru-
chem pojazdéw na drodze przez przejazd z n torami kolejowymi (n > 0). Na strzezonym
przejezdzie kolejowym sg rogatki, ktére — opuszczone lub podniesione — pozwalaja na
bezpieczny przejazd. Decyzj¢ o opuszczeniu i podniesieniu bramek ma podejmowaé
system sterujacy przejazdem, na podstawie informacji otrzymywanych z czujnikéw
rozmieszczonych na torach w rejonie skrzyzowania drogi z torami. Zaktada sie, ze
przez dany tor pociagi moga przejezdzaja w jednym kierunku. Przy wjezdzie na tor
(k =1, ..., n), w rejonie skrzyzowania, znajduje si¢ czujnik rejestrujacy wjazd pociagu
(sensor typu Wjazd), a przy wyjezdzie — czujnik rejestrujacy wyjazd (sensor typu Wy-
Jjazd).

Rys. 9.1. Skrzyzowanie drogi z przejazdem kolejowym

184 Rozdziat 9

System sterujacy rozpoczyna pracg, gdy w rejonie skrzyzowania nie ma pociagow.
Nastepnie oczekuje na sygnat o pojawieniu si¢ pociagu. Po otrzymaniu sygnatu z sen-
sora typu Wjazd, na torze k, system wtacza sygnalizacj¢ Swietlno-dzwigkowa oraz
opuszcza bramki. Po odbiorze sygnatu z sensora typu Wjazd, system komputerowy
oczekuje na sygnal z sensora typu Wyjazd, dla tego samego toru k. Jezeli to nastapi,
1 w tym czasie nie pojawi si¢ nowy sygnal wjazdu, to bramka si¢ podnosi i wylacza
sygnalizacj¢ Swietlno-dzwigkowa. W przeciwnym razie, to znaczy gdy przed wyjaz-
dem pociagu na torze k wjedzie inny pociag na inny tor, bramka pozostaje opuszczona
az do momentu, gdy pojawia si¢ sygnaly o wyjezdzie wszystkich pociagéw z rejonu
skrzyzowania.

Niech (wjazd;, wyjazd;) oznacza i-ty przedziat czasu (i = 1, 2, ...), w ktérym przejazd
jest zajety, tzn. wjazd; jest momentem, w ktérym nastapit wjazd pierwszego pociagu
w rejon skrzyzowania, gdy uprzednio byto ono wolne, wyjazd zas jest momentem,
w ktérym ostatni pociag opuscit rejon skrzyzowania, gdy uprzednio bylo ono zajete
(rys. 9.2).

A
: cuom enalzagia Sheinats
TB,,

Podniesiona :%—}E
Potozenie E 5
bramki : '
]]

Opuszczona " " >

wjazd; wjazd; + TB, wyjazd; wyjazd; + TB,

Rys. 9.2. Diagram czasowy wlaczania sygnalizacji i potozenia bramek na przejezdzie

Opuszczanie i podnoszenie rogatek moze nastgpowac z pewnym op6znieniem w sto-
sunku do momentéw, w ktérych odnotowuje si¢ wjazd i wyjazd pociggéw. Niech TB,
oznacza okres, po ktérym powinno nastapi¢ opuszczenie bramek, od momentu zgto-
szenia pierwszego sygnatu z sensora typu Wjazd, w momencie wjazd;, oraz niech TB,
oznacza okres, po ktérym powinno nastapi¢ podniesienie bramek, od momentu zgto-
szenia ostatniego sygnatu z sensora typu Wyjazd, w momencie wyjazd;. Od systemu
sterowania wymaga si¢ wlasnosci bezpieczenstwa i uzytkowalnosci.

Wiasnos¢ bezpieczenstwa oznacza, ze:

o dla kazdej chwili z przedziatu [wjazd; + TB,, wyjazd;] bramki musza by¢ opu-
szczone.

Rozszerzenie czasowe LOTOSa 185

Wtasnos$¢ ugytkowalnosci oznacza, ze:

e dla kazdej chwili spoza przedziatu (wjazd;, wyjazd; + TB,) bramki musza by¢
podniesione.

Ustalmy zatoZenia dotyczace komunikacji specyfikowanego systemu z jego otocze-
niem.

Zapora jest urzadzeniem, do ktérego system sterowania, przez bramki o nazwach
podnies, opusé, bedzie kierowac polecenia opuszczenia i podnoszenia bramki.

Specyfikacja zachowania zapory jest nastgpujaca:
process Zapora [opusc, podnies] : noexit :=
opuSel{ topuszczanic };
podnies[{tpodnos:enie};
Zaporalopusé, podnies]
endproc

Wartosci Zopuszczanie OTAZ Lpodnoszenie MOZa by¢ dowolne pod warunkiem, ze s3 mniejsze od
zadanych wartosci TB, i TB,. Z przedstawionej specyfikacji wynika, ze nie mozna
przerywac operacji podnoszenia lub opuszczania zapory — operacja raz rozpocz¢ta
musi si¢ zakonczy¢.

Sygnalizacja jest urzadzeniem, do ktérego system, przez bramki wiqcz, wytqcz, bedzie
kierowaé polecenia wiaczenia i gaszenia $wiatet sygnalizacyjnych. Jej specyfikacja
jest podobna do specyfikacji zapory i ma postac:
process Sygnalizacja [wtqcz, wytqcz] : noexit :=
Wtq(,Z[{ tu'[q(':nnie }] >
W)’fClCZ[{ ! wylqezanie }] N
Sygnalizacja[wlqcz, wylqcz]
endproc

Wartosci fyezanie OTAZ tyyigezanie S8 OCZYyWiscie mniejsze od czasOw opuszczania i pod-
noszenia zapory, a tym samym od zadanych wartosci 78,1 TB,,.
Facznie, co wynika z dalej przedstawionej postaci specyfikacji, wymaga sig, aby:
! wlqczanie ¥ tupu.\'zr:{mie < TBU (918)
f wylqczanie + tpn(llm.\'zcnie < TBp- (9 19)

Nawet w tym prostym przyktadzie uwidacznia si¢ niejednorodnos¢ stylu specyfiko-
wania. Zapora i sygnalizacja sg zasobami, ktérych obecno$¢ w specyfikacji jest od-
zwierciedleniem stylu specyfikacji ukierunkowanego na zasoby. Struktura natomiast

186 Rozdziat 9

tresci specyfikacji systemu sterowania zapora odzwierciedla styl ukierunkowany na
ograniczenia (rozdz. 7.) i ma posta¢ podana ponizej.
Stanowiace tres¢ specyfikacji wyrazenie behawioralne jest zlozeniem réwnoleglym
czterech proceséw: Bezpieczenstwo, Uzyteczno$é, Sygnalizacja i Zapora:
specification WymaganiaPodstawowe[wjazd, wyjazd] : noexit :=
behaviour
hide wiqcz, wytqcz, opusé, podnies in
Sygnalizacja [wiqcz, wylqcz]
|[wtacz, wytqc?)|
(Bezpieczenstwo [wjazd, wyjazd, opusé, wiqcez](0)
|[wjazd, wyjazd]| '
Uzytecznos¢ [wjazd, wyjazd, podnies, wytqcz](0)
)
[lopusé, podnies]|
Zapora [opus¢, podnies]
where
process Zapora [opus¢, podnies] : noexit :=
endproc
process Sygnalizacja [wiqcz, wytqcz] : noexit :=
endproc
process Bezpieczenstwolwjazd, wyjazd, opusc, wiqcz](n : nat) : noexit :=
endproc
process Uzytecznosé¢[wjazd, wyjazd, podnies, wylqcz)(n : nat) : noexit :=
endproc
endspec

Sktadowe procesy specyfikacji sa zdefiniowane ponize;j.
Proces Bezpieczenstwo zostal zdefiniowany tak, aby odzwierciedla¢ warunek bezpie-
czenstwa:
process Bezpieczenstwolwjazd, wyjazd, opusé, wigcz](n : nat) : noexit :=
[n=0]—>
wjazd[*];
whqcz[*];

Rozszerzenie czasowe LOTOSa 187

opusc(*];
-- Ze wzgledu na semantyke jezyka i zatozenie (9.18), akcja konczy
-- si¢ nie pdzniej niz po uptywie odcinka czasu TB, od chwili
-- zakonczenia pierwszej akcji wjazd[*] w sytuacji, gdy wczesniej
-- przejazd byt pusty.
-- Oznacza to spetnienie wiasnosci bezpieczenstwa.
Bezpieczenstwolwjazd, wyjazd, opusé, wiqcz](n + 1)
[1[n=1]—>
wjazd(*];
Bezpieczenstwolwjazd, wyjazd, opusé, wiqez)(n + 1)
[1nz1]—)
wyjazd[*];
Bezpieczenstwolwjazd, wyjazd, opusé, wiqcz)(n - 1)
endproc

Proces Uzytecznos¢ odzwierciedla warunek uzytkowalnosci:

process Uzytecznosé[wjazd, wyjazd, podnies, wytqcz](n : nat) : noexit :=
wjazd(*];
Uzytecznosé|wjazd, wyjazd, podnies, wytqcz](n + 1)
[1[n>1]—>
wyjazd[*];
Uzytecznosé [wjazd, wyjazd, podnies, wylqczl(n — 1)
[1ln=1]—>
wyjazd[*];
podnies[*];
wytqcez[*];
-- Ze wzgledu na semantyke jezyka i zatozenie (9.19), akcja konczy
-- si¢ nie p6zniej niz po uptywie odcinka czasu 7B, od chwili
-- zakonczenia ostatniej akcji wyjazd[*] w sytuacji, gdy wczesniej
-- przejazd byt zajety.
-- Oznacza to spetnienie wlasnosci uzytkowalnosci.
Uzytecznosé|wjazd, wyjazd, podnies, wytqcz](0)
endproc

Warto zauwazy¢, ze w komunikacji na bramkach wjazd i wyjazd uczestnicza dwa pro-
cesy sktadowe specyfikacji: Bezpieczenstwo i Uzytecznosé oraz otoczenie specyfikacji.
Czas wykonywania akcji z udzialem tych bramek jest okreslony przez otoczenie spe-
cyfikacji. W komunikacji na pozostatych bramkach wewne¢trznych uczestnicza tylko
pary procesow.

188 Rozdziat 9

Rozpatrywany przyklad jest nie tylko ilustracja zastosowania jezyka RT-LOTOS, ale
jest réwniez ciekawy z tego wzgledu, ze dotyczy systeméw zwigzanych z bezpieczen-
stwem. Przedstawiona specyfikacja WymaganiaPodstawowe przedstawia funkcjo-
nowanie systemu po jego uruchomieniu w warunkach normalnych. "

Kazdy system zwykle wymaga operatora, ktéry system uruchamia i zatrzymuje, prze-
prowadza testowanie jego dziatania, wspomaga system w niektérych sytuacjach awa-
ryjnych. Sytuacje awaryjne moga powstac¢ na skutek réznych okolicznosci, gdy zacho-
wanie sie elementéw sktadowych systemu, to jest zapory i sygnalizacji, a takze
zachowanie sie pociagéw przejezdzajacych przez rejon skrzyzowania, moga odbiegac
od zatozonych [Huzar 2001]. Na przyktad akcje opuszczania lub podnoszenia zapory
mogg si¢ nie zakonczy¢ w zalozonym okresie, pociag moze si¢ zatrzymac i cofnac
w rejonie skrzyzowania itp. Rozpatrzenie réznych mozliwych okolicznosci i okre-
slenie odpowiedniego postgpowania wymaga oddzielnej analizy zwiazanej z bezpie-
czenstwem [Magott 2005]. Analiza ma zidentyfikowa¢ potencjalne zagrozenia, a na-
stepnie nalezy ustali¢ sposoby postgpowania zapobiegajace ewentualnym skutkom
zagrozen. Wynikiem jest zwykle znaczna rozbudowa specyfikacji, w ktérej uwzgled-
nia si¢ dodatkowe zachowanie.
Rozwazmy na przyktad tylko jeden przypadek, gdy opuszczanie zapory nie zakonczy
si¢ przed uptywem zadanego odcinka czasu 4., 1 przy zalozeniu, ze $wiatta sygnali-
zacyjne pracuja poprawnie. Aby ostrzec pojazdy na drodze przed potencjalnym nie-
bezpieczenstwem, mozna — zamiast statych $wiatet — wlaczy¢ swiatta pulsujace. Re-
zultatem bedzie rozbudowa specyfikacji, a gtléwnie procesu Bezpieczenstwo. Nowy
proces Bezp ma definicje
process Bezp[wjazd, wyjazd, opusé, wiqcz, wylqcz, koniec)(n : nat) : noexit :=
[n=0] >
wjazd[*];
wiqcz[*];
(opuscl*];
exit
[> timeout(Z,aria);
SwiattaPulsujqce[wlacz, wytqcz, koniec)
)
>> Bezplwjazd, wyjazd, opusé, wiqcz, wytqcz, koniec](n + 1)
[1[nz1]—>
wjazd[*];
Bezpl[wjazd, wyjazd, opusc, wtqcz, wylqcz, koniecl(n + 1)
(1[n21]—>
wyjazd[*];

Rozszerzenie czasowe LOTOSa 189

Bezplwjazd, wyjazd, opusé, wltqcz, wytqcz, koniec](n — 1)

where
process SwiattaPulsujgce[wlqcz, wytacz, koniec) : exit :=
wylqcz[*];
i[{ gt 1 15
-- okres wylaczenia §wiatet
wtacz[*];
il{twtqe} 15
-- okres wiaczenia swiatel
SwiattaPulsujqce[wchz, wylqcz, koniec]
{1 koniec[*]; exit
endproc

Ztozenie deaktywujace
opusé[*]; exit [> timeout(t,,q.i.); SwiatlaPulsujqce[wlqcz, wytqcz, koniec)

spowoduje, ze jesli akcja czasowa opusé nie zakonczy si¢ przed uptywem odcinka
CZasu !q.aria» NAStapi jej przerwanie i zostanie zainicjowany proces postgpowania awa-
ryjnego SwiattaPulsujqce. Jednoczesnie nalezy zauwazyé, ze sama akcja czasowa
opusé, jesli sie juz zaczela, nie zostanie przerwana.

W definicji procesu pojawita si¢ nowa bramka koniec, ktéra ma stuzy¢ zakonczeniu
postepowania awaryjnego. Zaklada si¢ tu, ze komunikacja na tej bramce, po usuni¢ciu
awarii zapory, zachodzi na skutek zewnegtrznej interwencji operatora, ktérego istnienie
jest konieczne, a dotychczas nie bylo uwzgledniane.

9.9. Uwagi koncowe

W tym rozdziale przedstawiono i poréwnano dwa podejscia do czasowego rozszerze-
nia jezyka LOTOS. Oba podejscia sa réwnowazne w sensie ekspresywnosci, réznig si¢
natomiast wilasnosciami.

Podejscie pierwsze, zaktadajace zachowanie akcji natychmiastowych, bylo rozwijane
migdzy innymi w pracach: [Leduc, Leonard 1992], [Quemada, Fernandez 1987],
[Quemada, Azcorra, Frutos 1990], [Quemada, Frutos, Miguel 1993]. Przedstawiany
w tym rozdziale jezyk TE-B-LOTOS stat si¢ podstawa definicji jezyka E-LOTOS
[ISO/IEC FDIS 15437, 2001]. Dwiema zasadniczymi wtasno$ciami jezyka E-LOTOS
sa bowiem rozszerzenie czasowe i nowy sposéb definiowania typéw danych.

Drugie podejscie, oparte na wprowadzeniu akcji czasowych, bylo rozwijane w pra-
cach: [Huzar, Magott 1995a, 1995b], [Huzar, Magott 1996], [Huzar, Magott 1997a,
1997b, 1997¢, 1997d]. Opisywany w biezacym rozdziale jezyk RT-B-LOTOS jest

190 Rozdziat 9

uogdlnieniem tych prac. Polega to na przypisaniu akcji czasowych zbioru dopuszczal-
nych czaséw wykonania i abstrahowaniu mechanizmu uzgadniania czasu trwania
wspdélnie realizowanych akcji.

Wada drugiego z podej$¢, w stosunku do podejscia pierwszego, jest niezachowanie
wszystkich whasnosci jezyka LOTOS. Zaleta natomiast jest to, ze wersja z akcjami
czasowymi — bardziej naturalna — bezposrednio odpowiada mechanizmom komuni-
kacji, jakie spotykamy w jezykach programowania czasu rzeczywistego, na przyktad
w jezyku Ada [Huzar, Fryzlewicz, Dubielewicz, Hnatkowska, Waniczek 1998]. Warto
zauwazy¢, ze modelowanie akcji czasowych jezyka RT-B-LOTOS wymaga uzycia
w jezyku TE-B-LOTOS nie tylko dwéch akcji natychmiastowych, ale takze wyrazenia
powiazania przyczynowo-skutkowego obu tych akcji.

Wydaje si¢ takze, ze podejscie z akcjami czasowymi jest dobrym kandydatem do roz-
szerzenia jezyka do wersji probabilistycznej.

Przedstawiono dwie wersje jezyka opartego na zatozeniu akcji czasowych — wersje
bazowa RT-B-LOTOS i wersj¢ petng RT-LOTOS. W wersji petnej wprowadzono
mechanizm ustalania czasu wspdlnie realizowanych akcji komunikujacych si¢ pro-
ces6w, wykorzystujacy akcje czynne i bierne [D’Argenio, Hermanns, Katoen 1998],
[Bernardo, Gorrieri 1998]. Mozliwosci modelowania jezyka RT-LOTOS pokazano na
przykladzie systemu sterowania przejazdem kolejowym, zaczerpnigtego z [Heitmeyer,
Mandrioli 1996] oraz [Huzar 2001]. Przyktad ten jest dodatkowo ilustracja styléw
specyfikacji oméwionych w rozdziale 7.

191

10. Rozszerzenia wydajnosSciowe LOTOSa

10.1. Wstep

Przedstawione w poprzednim rozdziale czasowe rozszerzenia jezyka LOTOS cha-
rakteryzuje duzy stopief niedeterminizmu. W przypadku jezyka TE-LOTOS odnosi
si¢ to do przedziatu czaséw, w ktérych moze zachodzi¢ akcja, a w przypadku jezyka
RT-LOTOS - do czasu trwania akcji czasowej. W obu jezykach wspdlnym Zrédtem
niedeterminizmu jest otoczenie specyfikowanego systemu, ktére dokonuje wyboru
jednej z oferowanych akcji — jest to niedeterminizm zewngtrzny, oraz niedeterministy-
czny wybdr jednej sposréd oferowanych akcji wewnetrznych — jest to niedeterminizm
wewngtrzny.

Czesto, przed przystapieniem do implementacji na podstawie specyfikacji, specyfika-
cja jest przedmiotem odrgbnych badan. Jednym z rodzajéw takich badan jest badanie
wlasnosci wydajnosciowych. Badania wydajnosciowe sa badaniami ilosciowymi, kt6-
re rzadko mozna przeprowadza¢ na modelach niedeterministycznych, mozna je nato-
miast skutecznie prowadzi¢ na modelach deterministycznych lub probabilistycznych.
W tym rozdziale przedstawiono rozszerzenie jezyka LOTOS, ktére polega na wpro-
wadzeniu probabilistycznej charakterystyki czaséw trwania akcji oraz na eliminacji
z jezyka mechanizmow niedeterministycznych i zastapieniu ich priorytetami i mecha-
nizmami probabilistycznymi. Priorytety maja stuzy¢, w pierwszej kolejnosci, do wy-
znaczania jednej akcji, sposréd akcji, w danym stanie, kandydujacych do wykonania.
Gdy priorytety nie rozstrzygajg o wyborze akcji, wyboru dokonuje si¢ na podstawie
mechanizmu probabilistycznego.

Przyjmuje si¢, ze obowiazuja nastgpujace zasady przydzielania priorytetow: Zaklada-
my, ze mamy dwa rodzaje akcji: akcje czasowe i natychmiastowe. (Podziat taki wyni-
ka z pragmatyki: akcje, ktérych czas trwania jest znikomo krétki wzgledem pozosta-
tych, traktuje si¢ jako natychmiastowe, akcje za$, ktérych czas trwania — w kontekscie
konkretnej sytuacji — jest zauwazalny, traktuje si¢ jako akcje czasowe.) Akcjom natych-
miastowym przypisuje si¢ jako priorytety dodatnie liczby naturalne. Akcjom czaso-
wym przypisuje si¢ natomiast jednakowy, najnizszy priorytet zero. Wynika to z przy-
jecia zasady wyscigéw podczas wykonywania akcji czasowych: najpierw wykonujg
si¢ akcje o najwczesniejszych chwilach rozpoczgcia wykonywania.

Charakterystyki probabilistyczne mozna wprowadza¢ réznie, tu chodzi o taki sposéb,
aby na podstawie specyfikacji w LOTOSie mozna w jednoznaczny sposéb otrzymac
pewien skonczony fancuch Markowa. Lancuchy Markowa sa wygodnym modelem pro-
babilistycznym, dla ktérego sa znane metody obliczania interesujacych charakterystyk
[Czachérski 1999], [Bronsztejn, Siemiendiajew, Musiol, Miihling 2004]. W tym celu
przyjmuje sig, ze czasy wykonywania akcji czasowych charakteryzuje rozklad wyktad-
niczy, a akcje natychmiastowe sa wykonywane w zerowym czasie.

192 Rozdziat 10

Dwoma zrédtami niedeterminizmu sa wybdr i ztozenie réwnolegle wyrazen behawio-
ralnych. Wyrazeniom tym przypisuje si¢ pewne, dalej oméwione, parametry probabi-
listyczne.

Przedstawiane dalej rozszerzenie jgzyka LOTOS jest nazywane MB-LOTOS. Wypty-
wa to z faktu, ze rozszerzenie jest rozszerzeniem markowowskim, a ponadto — podob-
nie jak w poprzednim rozdziale — prezentacja ogranicza si¢ tylko do czgsci bazowe;j,
czyli bez uwzgledniania komunikacji danych. Dodatkowo prezentacja ma charakter
techniczny, co oznacza, ze uzywane dalej oznaczenia akcji sa rozbudowane tak, aby
wygodnie wyraza¢ pewne wlasnosci, co nie jest wymagane w przypadku postugiwania
si¢ jezykiem do specyfikowania systeméw.

10.2. Skiadnia i nieformalna semantyka jezyka MB-LOTOS

Wprowadzmy oznaczenia:

G zbidr nazw bramek obserwowainych,

L=G v {exit) zbiér nazw akcji obserwowalnych rozszerzony o akcj¢ exit,
wykonywana na bramce nieobserwowalnej exit,

A=Lu {i} zbiér nazw wszystkich akcji obserwowalnych i nieobserwo-
walnych,

Nat zbiér liczb naturalnych,

AP = Nat U {e} zbidr priorytetdw; symbol e oznacza najwyzszy priorytet,

PR =10, 1] zbiér prawdopodobienstw,

AR = R\0}uU{eo} zbidr warto$ci parametréw intensywnosci rozktadéw wyktad-
nicznych, gdzie R, jest zbiorem nieujemnych liczb rzeczywi-

stych,
Proc zbidr nazw proceséw,
Time =R, dziedzina chwil czasowych.

Jak wspomniano, akcje bgda przedstawiane w rozszerzonej postaci

@G aidn (10.1)
gdzie:

geA oznacza nazw¢ akcji,

o Nat oznacza indeks jednoznacznie identyfikujacy kazde wystapienie akcji,

A€AR oznacza parametr czasowy akcji; jezeli A # oo, to A oznacza akcj¢ cza-
sowg o rozkladzie wyktadniczym czasu wykonania, w przypadku prze-
ciwnym, gdy A = oo, 0znacza akcje natychmiastowa,

me AP oznacza priorytet akcji; jezeli 7 = 0, oznacza to akcj¢ czasowa, 7> 0
oznacza akcj¢ natychmiastowa.

Indeksy wystapien akcji wprowadza si¢ tylko w celu prezentacji formalnej semantyki.
Ze wzgledu na zastosowanie jezyka sg one zbg¢dne. Szczegétowe powody ich wpro-

Rozszerzenie wydajnosciowe LOTOSa 193

wadzenia sa dwa: Po pierwsze — idzie o jednoznaczne rozréznienie wystapien tej sa-
mej akcji w tym samym stanie. Drugi powdd, ze wzgledéw technicznych, jest nawet
wazniejszy, gdyz idzie o wygodng i jednoznaczng identyfikacja akcji ztozonych, to
jest takich, ktére sa wynikiem synchronizacji wielu akcji na tej samej bramce. Dalej
bedziemy zakltadaé, ze jest stosowany pewien mechanizm jednoznacznego indekso-
wania akcji. Szczegétowo mechanizm taki jest przedstawiony w pracach [Huzar, Ma-
gott 1997b] i [Huzar, Magott 1997d], jest takze uzywany w pracach innych autoréw,
np. [D’Argenio, Hermanns, Katoen 1998].

Wystapienie akcji jest jednoznacznie identyfikowane przez swéj indeks, stad wynikaja
oznaczenia: jezeli akcja ma postaé (g, &, A, 7), to z definicji

name(Q) = g, rate(@) = A, prior(@) =7 (10.2)

Zbiér n akcji sktadowych, synchronizujacych si¢ na bramce ge L, nazwany dalej akcja
zagregowana, bedzie reprezentowany przez ciag ich indekséw, oznaczany przez

D=q, .. q, (10.3)
gdzie a# o dlai £ (i, j = 1, ..., n). Oczywiscie
name(oy) = ... = name(Q,) = g (10.4)
oraz z definicji:
name(®D) = name(x)dlai=1, ..., n (10.5)

Zaktadamy, ze priorytet akcji zagregowanej reprezentowanej przez (10.3) jest réwny
prior(®D) = prior(ay) = ... = prior(&;) (10.6)

co wynika z zatozenia, ze priorytety akcji sktadowych wykonywanych na tych samych
bramkach maja by¢ réwne. Nie oznacza to, ze bramki wyznaczaja priorytety akcji, ale
ze jesli akcje si¢ synchronizujg na danej bramce, to maja takie same priorytety, co nie
wyklucza, ze na danej bramce moga si¢ sychronizowa¢ rézne zbiory akcji o réznych
priorytetach.
Zatozenie dotyczace priorytetéw przyjeto tylko dla uproszczenia rozwazan. Mozliwe
sg oczywiscie rézne sposoby obliczania priorytetu akcji zagregowanej, na przyktad
priorytet akcji zagregowanej mégtby by¢ suma priorytetéw akcji sktadowych.
Sktadnia zbioru wyrazen behawioralnych MBeh jezyka MB-LOTOS przedstawia si¢
nastepujaco:

Q = stop | (g, & A, m); Q| (i, & 4, m); Q| (exit, & o0,) | Q) [p] O |

Q:|[Rll, Q;|hide Rin Q| Qi>> Q| O [> Q2| p[R] [(Q)

Symbole Q, Q,, Q> sa metazmiennymi, oznaczajacymi wyrazenia behawioralne, ge G
jest bramka, Re€ SeqG jest ciagiem niepowtarzajacych si¢ bramek, A€ AR parametrem

(10.7)

194 Rozdziat 10

intensywnosci, 7€ AP priorytetem oraz p, s, r € PR sa prawdopodobienstwami. Kolej-
no$¢ wprowadzenia operatoréw odpowiada malejacej kolejnosci ich priorytetéw.

Dalej, podobnie jak we wczesniejszych rozdziatach, zaktadamy, ze rozwazamy tylko
wyrazenia dozorowane, regularnie zbudowane.

Znaczenia poszczegdlnych wyrazen sg nastgpujace:

Wyrazenia stop oraz (exit, ¢, oo, =) maja takie same znaczenia, jak we wszystkich
poprzednio rozwazanych wersjach jezyka. O akcji exit zaktadamy dodatkowo, Ze jest
akcja natychmiastowa o najwyzszym priorytecie. Podobne, jak poprzednio, znaczenie
maja wyrazenia prefiksowania akcjg obserwowalng (g, @& A, 7); Q oraz wewngtrzng

(i, o, A, m); Q.

Bardziej ztozone jest znaczenie wyrazenia wyboru Q, [p] Q.. Wyrazenie oferuje do
wykonania te akcje, ktére sg przygotowane w wyrazeniach O, oraz Q,. Wybdr jednej
sposréd nich jest dokonywany dwufazowo. W pierwszej fazie jest wyznaczany spo-
$réd tych akeji zbidr akceji o najwyzszym priorytecie, a w drugiej fazie nastgpuje wy-
bér jednej z nich. Jezeli akcjami o najwyzszym priorytecie sa akcje natychmiastowe
i wérdd nich jest co najmniej jedna akcja z wyrazenia Q, oraz co najmniej jedna akcja
z wyrazenia (0, to do wykonania, z prawdopodobienstwem (1 — p), moze by¢ wybrana
doktadnie jedna akcja nalezaca do Q,, albo — z prawdopodobienstwem p — doktadnie
jedna akcja nalezaca do Q». Jezeli akcjami o najwyzszym priorytecie s akcje czaso-
we, to wybér jednej z nich nastgpuje zgodnie z zasadg wyscigéw: wybierana jest ta,
ktéra rozpoczyna si¢ najwczesniej. Po wyborze akcji do wykonania dalsze zachowanie
wyrazenia Q, [p] O, jest takie same jak w poprzednich wersjach jezyka.

Réwnie zlozona jest semantyka wyrazenia ztozenia réwnolegtego Q, [[R]|,. , Q2. Wy-
bér akcji do wykonania takze przebiega dwufazowo: najpierw wyznacza sig¢ zbior
akcji o najwyzszym priorytecie, oferowanych przez wyrazenia Q, oraz (>, a nastgpnie
wybiera sie z nich jedna akcj¢. Wybrana ostatecznie akcja moze by¢ akcja nalezacq
albo do wyrazenia Q,, albo 05, albo tez moze by¢ akcja ztozong z synchronizujacych
sie akcji nalezacych do @ i Q,. Jezeli wérdd akcji o najwyzszym priorytecie sg akcje
nalezace do wyrazenia Q, oraz do wyrazenia Q,, to — z prawdopodobienstwem s — sg
wybierane akcje synchronizujace si¢ na wspélnych bramkach R oraz akcje exit, akcje
natomiast, ktére nie synchronizuja si¢ na bramkach R, inne od exit, s3 wybierane
z prawdopodobienstwem (1 — s). W przypadku wyboru akcji niesynchronizujacych sig
na bramkach R, spo$réd nich — z prawdopodobienstwem r — zostaje wybrana akcja
nalezaca do wyrazenia Q,, a z prawdopodobienstwem (1 — r) — akcja nalezaca do Q,.

Znaczenie pozostatych wyrazen behawioralnych: przestonigcia hide R in Q, ztozenia
aktywujacego Q, >> (s, ztozenia deaktywujacego Q, [> Q, oraz wywotania procesu
plR] sg takie same jak w poprzednio omawianej wersji jezyka. Zaktadamy przy tym,
ze akcje wewnetrzne, bedace wynikiem przestonigcia, majg takie same wiasnosci cza-
sowe jak akcje przestaniane.

Rozszerzenie wydajnosciowe LOTOSa 195

Tak samo jak w poprzednich wersjach sa okreslane deklaracje proceséw, ich funkcjo-
nalnos¢ oraz specyfikacja.

W celu przyblizenia mechanizméw probabilistycznego wyboru akcji rozpatrzymy dwa
przyktady wyboru akcji natychmiastowych.

Przyktad 10.1

Niech dane bgdzie wyrazenie behawioralne Q:

(g1, o, 00,) O)
[P] (g2, O, =, m); Q2 [¢] (83, C&, ==, 713);.03))

W sktad wyrazenia wchodza tylko akcje natychmiastowe. Jezeli ich priorytety 7z,
T, 7 sg rézne, to wartosci prawdopodobienstw p oraz g sa nieistotne, a jako
pierwsza — pod warunkiem, ze otoczenie wyrazenia Q bedzie gotowe — zostanie
wybrana i wykonana akcja o najwyzszym priorytecie. Jezeli priorytety sg rowne,
wybér akeji jest probabilistyczny. Z prawdopodobienstwem p nastgpuje wybor
prawej strony wyrazenia Q

((gZ’ aZa o9 ﬂ;l)’ Q2 [CI] (g.}s a}a 09, ”})7 Q}))a
a z prawdopodobienstwem (1 — p) — wybér lewej strony wyrazenia Q
(gh al» o, 7[])’ QI

Pod warunkiem wyboru prawej strony akcja o indeksie &, bedzie wybrana z praw-
dopodobienstwem (1 - ¢), akcja za$ o indeksie ¢y z prawdopodobienstwem g.
Prawdopodobienstwo zatem wyboru akcji o indeksie &, wynosi p(1 — ¢), a akcji
o indeksie & wynosi pq. Prawdopodobienstwo natomiast wyboru akcji o indeksie
o wynosi (1 - p).

Przyktad 10.2
Niech dane bedzie wyrazenie behawioralne Q postaci:
((gl, ala o, ﬂl); Ql [P] (ng a?_s R, 7‘72), QZ)

“gl}lx.r
((g3, o8, %, m); O3 [q] (g2, A4, ==, 73); Q)

Zatézmy, Ze priorytety wszystkich akcji sa takie same. Akcje natychmiastowe
o indeksach & i ¢4 synchronizuja si¢ na bramce g.. Oznacza to, ze

prior(&y) = prior(oe) = prior(cs) = prior(ay) = prior(Q)

Pod warunkiem, ze otoczenie wyrazenia Q nie stwarza wlasnych ograniczen, mo-
zliwe sa trzy wybory akcji: jednej pary synchronizujacych sig¢ akcji o indeksach o
i ay oraz jednej z dwéch akcji o indeksach ¢; i ¢4, niesynchronizujacych si¢ na
wsp6lnej bramce g».

196

Rozdziat 10

W podwyrazeniu

(g1, a1, 0, m); Qi [P] (82, @, 20, T); On)
akcja o indeksie @ jest wybierana w tym wyrazeniu z prawdopodobienstwem
(1-p), a akcja o indeksie &, z prawdopodobienstwem p.
Podobnie, w podwyrazeniu

((83, 08, =, m); O3 [q] (82, Cu, . 7); Qu)
akcja o indeksie ¢ jest wybierana z prawdopodobienstwem (1-¢), akcja o indek-
sie &, z prawdopodobienstwem g.

Selekcja akcji w réwnoleglym zlozeniu obu podwyrazen odbywa si¢ dwutazowo.
W pierwszej fazie z prawdopodobienstwem s s wybierane akcje @, o4 synchroni-
zujace si¢ na bramce g,, a w drugiej fazie sa wybierane akcje niesynchronizujace
si¢ na tej bramce: akcja & z prawdopodobienstwem (1-s)*(1-r), oraz akcja o
z prawdopodobienstwem (1-s)*r.

Oprécz opisanego mechanizmu probabilistycznego wyboru akcji, drugim elementem
charakteryzujacym jezyk MB-LOTOS jest mechanizm wyznaczania czasu trwania
synchronizujacych si¢ akcji. Pojedyncze akcje czasowe majg wyktadniczy rozkiad
prawdopodobienstwa czasu realizacji. Synchronizujace si¢ akcje maja réwniez rozktad
wykladniczy, ale parametr intensywnosci tego rozktadu jest wyznaczany w specyficz-

ny sposob.
Tabela 10.1
n(ghadg={t BWE=E
§ 0 w przypadku przeciwnym
r Qi [p] 02) = r(Q1) + r(Q2)
1Rl 0 min(r, (Q,),r,(Q,)) gdy g € set(R)
r, o Q)= .
ST () + 1, (03) gdy g € (GU{i})\ser(R)
rg(QI [> QZ) = rg(Ql) + ru(Q'Z)
rd @, >> Qo) = r(Qy)
r, Q) gdy g € G\set(R)
ry (hide Rin Q) =<0 gdy g € set(R)
Z.Q‘(E.\'el(R)rgl(Q)‘f-ri(Q) gdyg =1
ro(Plg1, -oos)) = r(Qlg1::= hy,..y gii= hy]) gdzie Q jest trescia procesu P.

Rozszerzenie wydajnosciowe LOTOSa 197

W przypadku szczegdlnym, gdy rozwazamy dwie synchronizujace si¢ akcje na bramce
g€ G, na przyktad
(8 i, A, m) oraz (g, o, A, 7)

parametrem rozktadu prawdopodobienistwa, charakteryzujacym wspdlny czas ich wy-
konania, bedzie warto$¢ min(A,, A,).

Ogélnie wyznaczanie parametru intensywnosci akcji czasowych w wyrazeniu beha-
wioralnym Q przedstawia si¢ nastgpujaco: Dla akcji o nazwach ge G U {i} w wyraze-
niu Q definiuje si¢ parametr intensywnosci akcji czasowych r,(Q). Definicja parame-
tru jest rekursywna (tab. 10.1).

Przedstawiony mechanizm oparto na pracy [Hilston 1996], w ktérej opisuje si¢ jezyk
PEPA, stanowiacy czasowe uog6lnienie jgzyka CCS. Mechanizm ten umozliwia uzy-
skanie rozwazanych dalej wiasnosci kompozycyjnosci.

10.3. Semantyka formalna jezyka MB-LOTOS

Akcje kandydujgce do wykonania

Semantyka jezyka jest wyrazana — podobnie jak wczesniejsze wersje jezyka — przez
etykietowany system przej$¢. W odréznieniu od jezykdw przedstawianych w poprzed-
nim rozdziale, tu semantyka jest przeplotowa, co jest mozliwe dzigki przyjgciu mar-
kowowskiego modelu czasu wykonywania akcji czasowych. Do zdefiniowania seman-
tyki potrzebne sa funkcje pomocnicze. Pierwsza z nich, funkcja o sygnaturze

F: MBeh — 2N (10.8)

stuzy do wyznaczania zbioru indekséw akcji przygotowanych do wykonania w danej
konfiguracji. Jest ona zdefiniowana rekursywnie w sposéb pokazany w tabeli 10.2.

Druga funkcja pomocnicza, o sygnaturze
M 2N — 2N (10.9)
stuzy do wyznaczania w danym zbiorze indekséw akcji, podzbioru indekséw akcji

0 najwyzszym priorytecie. Jej definicja jest nastgpujaca: niech @ C Nat bedzie zbio-
rem indekséw akcji oraz niech mprior(©) = max{prior(®) | ¥ @}, wéwczas

M(O) = { e O| prior(O) = mprior(6)}. . (10.10)

Jezeli @ = F(Q), to M(F(Q)) C F(Q) jest podzbiorem tych akcji wyrazenia Q przygo-
towanych do wykonania, ktére maja najwyzszy priorytet. Jest to zbidr akcji wyrazenia
Q kandydujacych do wykonania.

Zbior akcji kandydujacych moze zawiera¢ albo tylko akcje natychmiastowe, albo tylko
akcje czasowe, nie moze natomiast zawiera¢ obu rodzajow akcji, gdyz akcje czasowe
maja priorytet zerowy, akcje natychmiastowe zas$ maja priorytet wigkszy od zera. Wyra-

198 Rozdziat 10

zenia behawioralne, dla ktérych zbior M(F(Q)) zawiera tylko indeksy akcji natych-
miastowych, nazywa si¢ wyrazeniem zanikajacym, wyrazenia zas, dla ktérych zbidr
M(F(Q)) zawiera tylko indeksy akcji czasowych, nazywa si¢ wyrazeniem uchwytnym.

Tabela 10.2

F(stop)=J

F(g, o 4, m; Q)= {a}

F(Q\ [p] @2) = F(Q1) L F(Q2)

F(Q, |R|,, @2) = FA(Q\, R) U FA(Q>, R)U FS(Q), 02, R)

gdzie: FA(Q;, R) = { ®e F(Q,) | name(®P)z R L {exit}) (i=12)
FS(Q1, 02, R) = (@Y | e F(Q)) A FEF(Q5) A prior(®D) = prior(¥) A name(P) =
=name(¥)eR U {exit} }

Fhide Rin Q)=FQ [aq::=f,, ..., &, = B,])

gdzie: {a, ..., @} = {a@| name(a)e R},

{B, B} jest zbiorem nowych indekséw innych od indekséw wystepujacych
wQ,a0la =0, ..., & = B,] jest tekstowym zastgpieniem indekséw a, ..., @,
przez indeksy £, ..., 8, w wyrazeniu Q. Nowe indeksy odrézniajg akcje wyko-
nywane na bramkach R wewnatrz wyrazenia hide R in Q od tych, ktére sg wi-
doczne na zewnatrz tego wyrazenia jako jego akcje wewnetrzne. Nowe akcje

o indeksach g (i = 1, ..., n) maja nastepujace whasnosci:
name(f3) = i, rate(f) = rate(&), and prior(f3) = prior (&)
F(Q1>> Q) = F(Q))
F(Q: [> 02) = F(Q)) U F(Q)
F(Plhy, ..., h,])= F(Olg1::=hys ooy @uii=T0))
gdzie Q jest trescig procesu P[gy, ..., gml.

Jezeli zbidr akcji kandydujacych jest jednoelementowy, to wyznacza on jednoznacznie
akcje do wykonania, jezeli natomiast jest wigkszy, to wyb6r akcji jest probabilisty-
czny.

Etykietowany system przejs¢

Semantyke jezyka przedstawiono dwuetapowo. W pierwszym etapie zdefiniowano
ctykietowany system przejsé, ktéry dla danej konfiguracji wyznacza mozliwe przej-
scia do nowej konfiguracji, inaczej: wyznacza zakres niedeterminizmu. W drugim
ctapie okreslono prawdopodobienstwa przejscia do nowych konfiguracji, przy czym

Rozszerzenie wydajnosciowe LOTOSa 199

oddzielnie rozwazano przejscia realizowane w wyniku zaj$cia akcji czasowych oraz
natychmiastowych.

Dla specyfikacji MSpec = <{Q, {D,, ..., D,}> etykietowany system przej$¢ jest zdefi-
niowany jako

MTS(MSpec) = <MBeh, MEvent, MTrans, Q> (10.11)

gdzie:
MEvent = {(g, o, A, m) | g€ A Ace Nat A A€ AR A e AP} jest zbiorem zdarzen,

MTrans = { —— C MBehx MBeh | ec MEvent} jest zbiorem relacji przej$é.

Zbidr relacji przejs¢ jest definiowany rekursywnie w sposdb nastepujacy:
Proces pusty stop — brak aksjomatéw
Proces zakonczenia Q = exit

0 (exita.Am) stop (A-exit)
Prefiksowanie akcjq Q = (g, &, A, 7); Q)

g~) (A-pre)
Wybor probabilistyczny Q = Q, [p] 0>

(8.9.4.7)
Y —

Q (¢. DAY Q"

(R-choice)

gdy de M(F(Q)) dlai=1,2.
Ztozenie réwnolegte Q = Q, |[R]|,., 02

Q (g.9.A,7) Q/
1 1
2 DA,
Q220 OV |[R],, Q,

(R-pary)

;. P4,
Q2 (g.9.4,7) ‘Q;

e 7 (R-par,)

gdy e M (F(Q)) oraz ge set(R) U{exit},

(g.9,4,.7) ’
Ql ——[;)Ql

R 7 (R-par»)
QA2 L, o |[R],, O

gdy @¥ e M(F(Q)) oraz ge set(R) U{exit}

200 Rozdziat 10

gdzie
A A
————=—min(r,(0Q,),r,(Q,))
A =m0y roigp T G (s
Ztozenie deaktywujqgce Q = Q, [> O
Ql (g.9.A.7) :Qll
Q- &24m 0" [>Q,

dla @€ M (F(Q)) oraz g # exit

0, DA
Q2 (g) Q;

Q (g.9.4.1) Q;,g

dla @e M(F(Q))

¢, P.A.7)
0o —'&'——”_')Ql,

Q (g.P.A.m) Ql’

dla @€ M (F(Q)) oraz g = exit

Zlozenie aktywujgce Q = Q, >> O,

(g.@.4,7)
0, ‘#)Qll

(4.0.4.7)
Q—4+=25500>>0,

dla ¢ M (F(Q)) oraz g # exit

(g.0.4.7)
Y e

Q (g A1) Q2
dla &€ M(F(Q)) oraz g = exit

Przestoniecie Q = hide R in Q,

(¢.0.4.7)
O mm—]

Q —&2A1 ,hideR in Q]

dla @€ M (F(Q)) oraz g €set(R)

Q (¢ 0. A7) Ql,

Q %21 hide Rin Q|
dla e M (F(Q)) oraz g € set(R)

gdy =0

gdy 7z >0

(R'dl.Sl)

(R-dis»)

(R-dis3)

(R-accept,)

(R-accept,)

(R-hide))

(R-hide,)

gdzie @' jest nowym indeksem réznym od wszystkich indekséw wystepujacych w Q.

Rozszerzenie wyvdajnosciowe LOTOSa 201

Instantacja procesu Q = p[g, ..., gl

Olh =g, ... h = g"]_—-——)‘g"m"” o

Q (g.9.A.7)) Q’

(R-inst)
dla o€ M(F(Qlh :=g,,..., h,:=g,])), gdzie Q) jest trescig procesu p.

Probabilistyczny wybér akcji do wykonania

W celu przedstawienia probabilistycznego wyboru akcji do wykonania bedziemy sig
postugiwac algebra indekséw akcji. Niech

D= {<®, x>, ..., <D, x,>} (10.12)

gdzie @, oraz @; sa parami roztacznych sekwencji indekséw akcji, oraz x€ R, dla
i =1, ..., n. Liczby x; bedg interpretowane jako prawdopodobienstwa albo jako para-
metry intensywnosci. Interpretowane jako prawdopodobienstwa liczby beda wyzna-
cza¢ do wykonania akcje natychmiastowe, a jako parametry intensywnosci — beda
wyznaczaé akcje czasowe.

JezeliO<x;<1,dlai=1, .., n, oraz jest spetniony warunek
D x=l (10.13)
i=l

to zbi6r postaci (10.12) nazywamy rozktadem prawdopodobienstwa.
Dla zbioréw postaci (10.12) definiujemy nastgpujace operacje:
e Mnozenie przez stalq. Jesli pe PR, to
p*D = g {<Py, p x>, ..., <Dy, P x>} (10.14)
Jezeli D=3, to p*D = 4t D.

e Normalizacja. Jezeli zbiér D nie jest rozktadem prawdopodobienistwa, to moze
by¢ sprowadzony do rozktadu prawdopodobienstwa za pomoca operacji norm(D),
zdefiniowanej nastgpujaco

-1

norm(D) =def~[2xi] *D (10.15)
i=l

® Obcigcie bramkowe. Jezeli F C L, to obcigcie bramkowe jest zdefiniowane jako

D|r =4et {< D, x;> | <D, x;>€ D A name(P)e F} (10.16)

e Suma. Dla zbioréw D;, D, postaci (10.12) ich suma jest okreslona jako suma
mnogosciowa.

202 Rozdziat 10

e Mnozenie. Niech beda dane zbiory D), D,:
D\ ={<®, x>, ..., <D, x,>}
Dy={<¥, yi> ..., < Y >}
Ich iloczynem D, ® D, bgdzie zbidr postaci
D\ ® Dy=4ei {<D,Y¥, x;y; > | <P, x>€D) A< W, y>ED; A
name(®;) = name('F) A prior(D) = prior(¥)} (10.17)
e Agregacja parametréw intensywnosci. Niech beda dane zbiory Dy, D-:
D= {<®, Ap>, ..., <D, A,>}
Dy={<¥, >, ..., <o, th>}

gdzie A, 4 sa parametrami intensywnos$ci. Agregacja parametréw intensywnosci,
oznaczang D, ® D,, bedzie zbidr postaci

D, ® D5 =g¢¢

{<¢.w. A ad min(ar, (D,),ar,(D,))>|

" ar,(D,)ar,(D,) (10.18)

<@, A > DIn<V¥,u; >€ D, nname(®;) =name(¥ ;) = g}

Adla geG.

<P, A>e D]“‘,)

gdzie ar, (D)= Z
e i-przeindeksowanie. Operacja jest okreslona dla zbioru D postaci (10.12), dla kt6-
rego name(®;) #idlai=I, ..., n. Wynikiem jest zbior

reind(D) =gt (<P, 41>, ..., <D, A,>} (10.19)

gdzie @] zastgpuja @; oraz name (P)) = i.

Rozpatrzmy najpierw prawdopodobienstwa wyboru akcji natychmiastowych. Jezeli dla
danego wyrazenia Q zbiér M(F(Q)) zawiera wigcej niz jeden element, to przejscie do no-
wego wyrazenia jest wyznaczone przez pewien rozkiad prawdopodobienstwa okreslony
na zbiorze M(F(Q)). Rozklad ten jest zdefiniowany rekursywnie w sposéb nastgpujacy:

PD(stop) = &

PD((g, &, =, m); Q) = {<¢, 1>}

PD(Q, [p] ©@2) = facty*PD(Q)) U fact,*PD(Q,)

gdzie fact,, fact, € PR sa wspé6tczynnikami, ktérych wartosé zalezy od prawdziwosci
formut

empty; =ser M(F(Q) N M(F(Q, [p] Q) =& dla i=1,2.

203

Rozszerzenie wydajnosciowe LOTOSa

Wspétczynniki te zdefiniowano w tabeli 10.3 (symbole T oraz F oznaczaja odpowied-
nio prawdg i falsz).

Tabela 10.3
empty, empty, fact facts
F F I-p p
F T l 0
T F 0 1
T T 0 0

Latwo sprawdzié, ze dla kazdej wartosci formut empty, oraz empty,, jesli PD(Q,) oraz
PD((,) sa rozktadami prawdopodobienstwa, to rowniez wyrazenie
Jact;*PD(Q,) U fact;* PD(Q»)
jest rozkladem prawdopodobienstwa
PD(Q; IRI\, Q?.) =faCf|*PD] UfaC[|2*PD|2 Ufa(‘lg*PDg

gdzie:

PD, = ’10”"(PD(Q|)lA\w(R'))

PD ;= norm(PD(Q)|senr) ® PD(Q2))|sexr)

PD; = norm(PD(Q2)|avens")

set(R'") = set(R) L {exit}

FA(Q) = {<g, m> | P F(Q) A g = name(D) A = prior(D)}

fact,, facty,, fact, € PR sa natomiast wspéiczynnikami, ktérych wartosci zaleza od
prawdziwosci nastgpujacych formut:

empty; =ger M(F(Q)|averry Y M(F(Q) |R|s, Q) =D dlai=1,2,
empty |, = emptyy; =4t M(F(Q, |R|;, @2))lsenry= D

Wartosci wspéiczynnikéw okreslono w tabeli 10.4.

Tabela 10.4

empty, empty;y | empty, fact, facty> fact,
T F F 0 s l—s
T F T 0 1 0
T T F 0 0 1
T T T 0 0 0
F F F (1=8)*(1-r) s (I=s)*r
F F T I-s s 0
F T F 1-r 0 r
F T T | 0 0

204 Rozdziat 10

PD(hide Rin Q) =PD(Q [, ::=f,, ..., &, ::=F.))

gdzie zbior indekséw { a, ..., &} = { @ | name(a)e set(R)} jest zastapiony przez zbiér
indeksow { B, ..., B,}, réznych od wszystkich indekséw wystepujacych w Q.

PD(Q, >> Q1) = PD(Q))
PD(Q, [> Q2) = PD(Q |@|o, 1 @2) = PD(Q, [d])
PD(Plhy, ..., h,]) = PD(QIg) ::= hy, ..., g ::= hu))

gdzie Q jest trescig procesu plgy, ..., gu), a Qlgi ::= hy, ..., g 1:= h,,] tekstowym zasta-
pieniem bramek g, ..., g przez hy, ..., h,, w wyrazeniu Q.

Rozpatrzmy teraz prawdopodobienstwa wyboru akcji czasowych, gdy dla danego
wyrazenia Q zbiér M(F(Q)) zawiera wigcej niz jeden element. W celu wyznaczenia
rozktadu prawdopodobienistwa okreslonego na zbiorze M(F(Q)) wprowadzimy funk-
cje pomocnicza RATE(Q). Funkcja jest zdefiniowana rekursywnie w sposob naste-

pujacy:
RATE(stop) = &
RATE ((g, &, o, m; Q) = {<a, A>}
RATE (Q, [p] @2) = RATE(Q)) U RATE(Q>)
RATE(Q, |R|,, Q2) = RATE, U RATE |, U RATE,
gdzie:
RATE, = RATE(Q))|averr)
RATE » = RATE(Q))|senry ® RATE(Q2)|senmy
RATE, = RATE(Q>)|avenr)

RATE(hide R in Q) = RATE(Q)|avenr) Y reind(RATE(Q)|,exr)
RATE(Q, >> (0») = RATE(Q))

RATE(Q, [> Q1) = RATE(Q)) U RATE(Q>)

RATE(p[h,, ..., h,]) = RATE(Qlg) = hy, ...y 8 2= hil)

Po zdefiniowaniu funkcji RATE rozktad prawdopodobienstwa akcji czasowej jest
okreslony wyrazeniem

PD(Q) = norm(RATE(Q)) (10.20)
10.4. Wyprowadzanie tancuchéw Markowa
Specyfikacje w jezyku MB-LOTOS mozna przetransformowa¢ w tancuch Markowa

z czasem ciagtym. Jezeli wchodzace w sktad specyfikacji wyrazenia behawioralne
spetniaja warunek regularnosci (rozdz. 2.), to tancuch ma skonczong liczbg standw.

Rozszerzenie wydajnosciowe LOTOSa 205

Skonczony jednorodny tancuch Markowa jest dyskretnym procesem stochastycznym,
okreslonym przez skonczony zbiér stanéw S = {s), ..., s,} oraz prawdopodobienstwa
przejs¢ pomigdzy stanami, ktére nie sg zalezne od czasu. Takiemu tancuchowi odpo-
wiada stala macierz przejs¢

Pn - Pu

P= (10.21)

pnl pnn

gdzie p;; oznacza prawdopodobienstwo przejscia ze stanu s;do stanu s;, dla i, j=1, ..., n.

Zastosowane podejscie do transformacji opiera si¢ na metodzie przedstawionej
w pracy [Ajmone Marsan, Balbo, Conte 1984] dla uogélnionych stochastycznych sieci
Petriego.

Przypomnijmy, ze wyrazenia behawioralne, dla ktérych zbidér akcji o najwyzszym
priorytecie zawiera tylko indeksy akcji natychmiastowych, nazywa si¢ wyrazeniem
zanikajqcvm, wyrazenia zas, dla ktérych ten zbi6r zawiera tylko indeksy akcji czaso-
wych, nazywa si¢ wyrazeniem uchwytnym.

Dalej zaktadamy, Ze reprezentujace specyfikacj¢ wyrazenie Q jest komunikacyjnie
zamkniete (rozdz. 2.). Gdy tak nie jest, to znaczy specyfikacja reprezentuje pewien
system wspélpracujacy z otoczeniem, dla zbudowania tancucha Markowa konieczne
jest przyjecie pewnego modelu tego otoczenia w taki sposéb, aby ztozenie réwnolegle
wyrazen reprezentujacych system i otoczenie stato si¢ zamknigtym wyrazeniem beha-
wioralnym.
Budowany tanicuch Markowa reprezentuje bezposrednio tylko wyrazenia uchwytne.
Wyrazenia zanikajace nie sg bezposrednio reprezentowane, gdyz przejscia natychmia-
stowe pomiedzy wyrazeniami zanikajacymi beda taczone z przej$ciami czasowymi.
Rozwazajac przejScia pomigdzy wyrazeniami uchwytnymi, nalezy rozpatrzy¢ dwa
przypadki:

e bezposrednie, jednokrokowe przejscie z wyrazenia uchwytnego Q do innego wy-

razenia uchwytnego Q,

0—— 0, (10.22)
gdzie rate(e)e R\{0},

e posrednie, wielokrokowe przejscie z wyrazenia uchwytnego Q, poprzez przejscia
posrednie pomiedzy wylacznie wyrazeniami zanikajacymi Qy, ..., Ok, do innego
wyrazenia uchwytnego Q.

Q—4 Q) —4 .. —4 0 —4 5 Oy (10.23)

gdzie rate(e) R\{0} oraz rate(e;)) = oo, dlai=2, ..., k+1.

206 Rozdziat 10

W pierwszym przypadku wyrazenie Q, jest bezposrednim nastgpnikiem wyrazenia Q,
w drugim natomiast — jest nastgpnikiem posrednim.

Dla wyrazen zanikajacych i wyrazen uchwytnych odpowiednie rozktady prawdopodo-
bienstwa PD(Q), okreslone odpowiednio na zbiorach akcji natychmiastowych i czaso-
wych, byly przedstawione w poprzedniej czgsci rozdziatu.
Na tej podstawie przedstawimy najpierw prawdopodobienstwo przejscia z wyrazenia
zanikajacego Q,, bedacego bezposrednim nast¢pnikiem wyrazenia uchwytnego Q, do
wyrazenia uchwytnego Q.. . Wszystkie te przejscia odbywaja si¢ natychmiastowo.
Niech B(Q) oznacza zbiér wszystkich wyrazen behawioralnych osiagalnych z wyra-
zenia Q. Zbidr ten jest skonczony, co wynika z zalozenia o regularno$ci budowy roz-
patrywanych wyrazen. Zbidér B(Q) dzieli si¢ na dwa roztaczne podzbiory, oznaczane
VB(Q) oraz TB(Q,), oznaczajace odpowiednio podzbiér wyrazen zanikajacych i uch-
wytnych osiagalnych z wyrazenia Q, czyli spetniajacych wlasnosci

VB(Q) v TB(Q) = B(Q) oraz VB(Q) N TB(Q) = I (10.24)
W celu okreslenia prawdopodobienstw przej$¢ z wyrazen zanikajacych (bedacych
bezposrednimi nastgpnikami wyrazen uchwytnych) do wyrazen uchwytnych wyko-
rzystamy prawdopodobienstwa przej$¢ z wyrazen zanikajacych do zanikajacych
oraz z wyrazen zanikajacych do uchwytnych. Prawdopodobienstwa takie moz-
na zestawi¢ w dwie macierze: V oraz T o wymiarach n X n oraz n X m, gdzie
n = card(VB(Q)) i m = card(TB(Q)). Elementy v; oraz t; obu macierzy sa zdefi-
niowane nastg¢pujaco:

(10.25)

1P gdy Q,—L—Q;z prawdopodobienstwem p;;,dla Q;,Q; € VB(Q,),
"o gdy nieistnieje przejscie zQ, do Q;

oraz

p; gdy @O —i50 ; z prawdopodobienstwemt P;; »
t; = dla Q, € VB(Q), Q; € TB(Q), (10.26)
0 gdy nieistniejeprzejsciezQ, do Q;

Sposéb obliczania prawdopodobienstw stanowiacych elementy obu macierzy zostat
przedstawiony w poprzedniej czg¢sci rozdziatu.

Niech V**'=V**V,dlak=0,1, ..., gdzie * oznacza symbol mnozenia macierzy, oraz
nich v,-f bedzie elementem macierzy V*. Element v,!} jest prawdopodobienstwem zaj-

$cia sekwencji przejs¢ o dtugosci k, prowadzacych z zanikajacego wyrazenia Q; do
zanikajacego wyrazenia Q;.

Rozszerzenie wydajnosciowe LOTOSa 207

Ze wzgledu na zalozenie, ze rozwazane sg tylko wyrazenia behawioralne regularnie
zbudowane, a wigc takze dozorowane, nie sa mozliwe nieskonczenie dlugie sekwencje
przejs¢ wylacznie pomigdzy wyrazeniami zanikajacymi. Istnieje zatem pewna liczba
ky taka, ze vt jest macierza zerowa dla k > k.

* .
Elementv;; macierzy

v-=ZV‘ (10.27)

wyraza wigc prawdopodobienstwo przejécia z zanikajacego wyrazenia behawioralne-
go O, do zanikajacego wyrazenia Q; przez zajscie wszystkich mozliwych sekwencji
tranzycji, w tym sekwencji pustej, prowadzacych wylacznie poprzez wyrazenia zani-
kajace.

Ostatecznie element v#; macierzy

ko
VT =) VT (10.28)

k=0
wyraza prawdopodobienstwo przejscia z wyrazenia zanikajacego Q; do wyrazenia
uchwytnego Q; przez zajscie wszystkich mozliwych sekwencji przejs¢ wytacznie po-
przez wyrazenia zanikajace.
Dalsze rozwazania sq prowadzone przy zalozeniu, ze analizowane wyrazenie Q jest
wyrazeniem uchwytnym.

Niech A ., gdzie m = card(TB(Q), bedzie macierza intensywnosci przejsé A; dla
bezposredniego przejscia z uchwytnego wyrazenia Q;do uchwytnego wyrazenia Q;.

Niech A,Y,x”, gdzie n = card(VB(Q), begdzie macierza intensywnosci przejs¢ A; dla
bezposredniego przejscia z uchwytnego wyrazenia Q; do zanikajacego wyrazenia Q;.

ktéra bedzie macierza intensywnosci przejscia

Zdefiniujmy teraz macierz 4,,,,
z wyrazenia uchwytnego do uchwytnego poprzez dowolng liczb¢ wyrazen zanikaja-
cych. Macierz ta wyraza si¢ przez

A=A+ A"y *T (10.29)
1 stanowi macierz definiujaca intensywnosci przejs¢ w tancuchu Markowa z czasem
ciaglym, wyprowadzonym z etykietowanego sytemu przejs¢ dla poczatkowego wyra-
zenia Q.
Macierz A jest podstawa do obliczenia macierzy P prawdopodobienstwa przej$é po-
miedzy wyrazeniami uchwytnymi oraz do okreslenia sredniego czasu pozostawania
w danym wyrazeniu uchwytnym.

208 Rozdziat 10

Element p; macierzy P, okreslajacy prawdopodobienstwo przejscia z uchwytnego
wyrazenia Q; do uchwytnego wyrazenia Q;, jest zdefiniowany wzorem

p;=—1— (10.30)

w ktérym A; sa elementami macierzy A"

Sredni natomiast czas 7; pozostawania w wyrazeniu uchwytnym Q; oblicza si¢ z zalez-
nosci

(10.31)

W celu ilustracji przedstawionych wyzej rozwazan rozpatrzmy przyktad prostego sys-
temu obstugi. System sklada si¢ z serwera, reprezentowanego procesem S, oraz dwéch
klientéw, reprezentowanych procesami C, oraz C,. Kazdy z klientéw dziata cy-
klicznie, na przemian wykonujac obliczenia lokalne i obliczenia we wspéipracy z ser-
werem. Definicje proceséw klientéw, dla i = 1, 2, maja postac

process Ci[loc, work, req, serv] : noexit :=
(loc, =, m);
(work, Ayort, 0);
(reg, >, T);
(serv, Ager, 0);
Cilloc, work, req, serv]
endproc
W celu uproszczenia dalszych zapiséw akcje nie beda jawnie indeksowane. Natych-
miastowe akcje loc oraz req rozpoczynaja odpowiednio fazg obliczen lokalnych i obli-
czen wspdlnych, akcje czasowe work oraz serv modeluja zas realizacjg¢ tych faz.
Definicja procesu serwera ma postac
process S[req, serv] : noexit :=
(req, o, T);
(serv, Aen, 0);
S[req, serv]
endproc
Akcja natychmiastowa req rozpoczyna fazg wspélipracy, a akcja czasowa serv modelu-
je okres wspotpracy. Wspdtpraca pomigdzy procesami klientéw a serwerem jest oparta
na nast¢pujacych zasadach:

Rozszerzenie wydajnosciowe LOTOSa 209

1. Dostep klientdw do serwera jest roztaczny, przy czym prawdopodobienstwo do-
stepu obu proceséw do serwera, w przypadku jednoczesnego ubiegania si¢ o taki
dostep, jest jednakowe.

2. Jezeli jeden z proceséw klientéw zamierza rozpocza¢ fazg pracy lokalnej, a dru-
gi — wspOlpracy z serwerem, to prawdopodobiefstwo wyboru wspoétpracy z ser-
werem jest trzykrotnie wigksze od wyboru pracy lokalne;.

Specyfikacja catego systemu spetniajacego podane zasady przyjmuje postac
specification System[]() : noexit :=
behaviour
hide req, serv, loc, work in
(Cilloc, work, req, serv] || o5 Calloc, work, req, serv])
|(req, serv]|o.s.«
Slreq, serv]
endspec

Symbol * w miejscu przeznaczonym na umieszczenie prawdopodobiefistwa oznacza.
ze warto$¢ prawdopodobienstwa, w danym kontekscie, jest nieistotna. Rzeczywiscie,
symbol gwiazdki w ztozeniu réwnolegtym proceséw C, oraz C, wynika z faktu, ze
procesy te nie synchronizuja si¢ ze soba, a zatem nie nastapi sytuacja, w ktérej nalezy
podejmowac decyzj¢ o wyborze akcji synchronizujacych si¢. Druga z gwiazdek wyni-
ka z faktu, ze proces S nie wykonuje akcji niezaleznych od swego otoczenia, a zatem
nigdy nie bgdzie podejmowana decyzja o wyborze tego rodzaju akcji.

Dla wyrazenia behawioralnego, stanowiacego tres¢ specyfikacji, wyznaczymy zbior
wyrazen osiagalnych. W celu skrécenia dalszych zapiséw wyrazenie to i wyrazenia od
niego pochodne bgda zapisywane bez operatora przestonigcia. Dodatkowo przed kaz-
dym wyrazeniem begdzie wstawiona etykieta (liczba naturalna) jednoznacznie je iden-
tyfikujaca. Wyrazenie poczatkowe bedzie mie¢ postaé

1: (C\[loc, work, req, serv]

| D)+ 0.5 Calloc, work, req, serv])

|[reg, servl|oss.« Slreq, serv]

Z wyrazenia o etykiecie 1 sg osiagalne nast¢pujace wyrazenia:
2: ((work, Ayors, 0); (req, o, m); (serv, Ay, 0); Cilloc, work, req, serv]

|B]-. 05 Calloc, work, req, serv])
(req, serv]|oss. = Slreq, serv]

3: (C\lloc, work, req, serv]
|D)- 0.5 (Work, Ao, 0); (req, o, T); (serv, Ay, 0); Calloc, work, req, serv])
lreq, serv]|o7s.+ Slreq, serv]

4: ((work, Mvois 0); (req, o, T); (serv, Ayen, 0); Ci[loc, work, req. serv)

210

Rozdziat 10

'gl*‘ 0.5 (WO"k, }"n'nrk’ 0)9 (reqa = TC); (serv, }\c\'erva 0)~ C2[IOC’ Worka req, SC'I'V])
|[req, serv]|o.s, « Slreq, serv)

5: ((req, o, m); (serv, Ayn, 0); Cilloc, work, req, serv]
D], 0.5 (Work, Mo, 0); (req, oo, 1); (serv, Ay, 0); Calloc, work, req, serv])
[req, servl|oss.+ Slreq, serv]

6: ((Work,)\-wm'k’ 0)7 (req, 9% n)s (Serv’)\-.w'rva O)v CI[IOC, Work’ req, serv]
IQI"’. 0.5 (req, 9 TC), (serv, }\'.\'erm O)v CZ[IOC’ WOI'k, req serv])
[reg, servljoss.« Slreq, serv]

7: ((serv, Ay, 0); C[loc, work, req, serv]
[Ds. 0.5 (WOrk, Mvori» 0); (req, oo, M); (serv, Ao, 0); Colloc, work, req, serv])
[[req, servl|o1s. = (serv, Aen, 0); Sreq, serv]

8: ((work, Ao, 0); (req, oo, T); (serv, Aep, 0); Cilloc, work, req, serv]
| B 0.5 (serv, Aeers 0); Calloc, work, req, serv])
|lreq, serv]|oas.» (serv, Awn, 0); S[req, serv]

9: ((serv, Ayn, 0); Cilloc, work, req, serv]
[+, 05 (req, oo, m); (serv, Ayn, 0); Calloc, work, req, serv])
|[req, serv]|oas.» (serv, A, 0); S[req, serv]

10: ((req, oo, T); (serv, Ay, 0); Ci[loc, work, req, serv)
|B|+ 0.5 (serv, Aen, 0); Calloc, work, req, serv])
[req, servl|oss, « (serv, Ay, 0); Slreq, serv)

11: (C\lloc, work, req, serv]
||+, 05 (req, oo, T); (serv, Aen, 0); Calloc, work, req, serv])
|lreq, serv]|ozs.+ Slreg, serv]

12: ((req, =, m); (serv, Ayn, 0); Cilloc, work, req, serv]
| D]« 0.5 Calloc, work, req, serv])
|[req, serv]|o1s. « S[req, serv]

13: ((work, Ao, 0); (req, oo, T); (serv, Ayen, 0); Cilloc, work, reg, serv)
D+, 0.5 (req, =0, T); (serv, Ay, 0); Calloc, work, req, serv])
[[req, serv]|os.+ Slreq, serv]

14: ((req, oo,); (serv, Ayn, 0); Cilloc, work, req, serv)
|D+, 0.5 (Work, Ao, 0); (req, =, T); (s€rv, Agen, 0); Calloc, work, req, serv])
|req, serv|oss.« Slreq, serv]

15: (C\lloc, work, req, serv]
@)+, 0.5 (serv, A, 0); Colloc, work, req, serv])
|[req, serv]|oss. « (serv, Agn, 0); S[req, serv)

Rozszerzenie wydajnosciowe LOTOSa 211

16: ((serv, Ayen, 0); Cilloc, work, req, serv)
|D)+. 0.5 Calloc, work, req, serv])
|[req, serv]|o7s. « (serv, Agn, 0); Slreq, serv]

17: ((work, Ayort, 0); (req, oo, T); (serv, Ayn, 0); Ci[loc, work, req. serv]
| s, 0.5 (serv, Asen, 0); Calloc, work, req, serv])
|[req, servl|ozs.« (serv, Ay, 0); Slreq, serv]

18: ((serv, Ayn, 0); Cilloc, work, req, serv)
|Dls, 0.5 (Work, Ayom, 0); (req, oo, m); (serv, Ay, 0); Calloc, work, req, serv])
[req, serv]|o.ss, = (serv, s, 0); Slreq, serv]

Zbior wyrazen uchwytnych TB(Q), gdzie Q jest wyrazeniem o etykiecie 1, sklada si¢
z{4,7,8,9,10, 17, 18}, a zbiér wyrazen zanikajacych VB(Q) skiada si¢ z {1, 2, 3, 5,
6, 11, 12, 13, 14, 15, 16}. Na grafie tranzycji na rysunku 10.1 wyrazenia zanikajace sg
przedstawiane w postaci kwadratéw, a uchwytne — w postaci kotek.

loc 1 \l():

2

Rys. 10.1. Graf tranzycji
dla przyktadowego wyrazenia

212 Rozdziat 10

Macierz prawdopodobienistw V)4, jest macierza, ktorej jedynymi niezerowymi ele-
mentami sa:

Vi2 = Vi3 = Vi = Vs = Vigas = Vizge = 05
Dolne indeksy elementéw tej i nastgpnych macierzy sa etykietami wyrazen.
Zauwazmy, ze V ? jest macierza zerowa, dlatego V™ =V.
Podobnie, jedynymi niezerowymi elementami macierzy T x; sa:

Ly=lhy =l =g =tz = sy = heas =haus =1

Macierz V™ *T, wyrazajaca prawdopodobienistwa przejscia z wyrazenia zanikajacego
do wyrazenia uchwytnego, przez zajscie wszystkich mozliwych sekwencji przejs¢
wylacznie poprzez wyrazenia zanikajace, ze wzgledu na prostotg systemu, ma tylko
elementy O oraz 1. Elementami o wartosciach 1 sa:

Vl 4 SVl S VI3 4 SVl 3 S Vg =VE 7 =
Vl3 17 = Vhs g =Vl g = Vg s =Vl g =1

Macierz intensywnosci przejs¢ dla bezposredniego przejscia z wyrazenia uchwytnego
do zanikajacego A7Vx,, ma nastepujace elementy niezerowe:

yerv

V _aV _qV _ v _
4,5_/14.6—/1‘).11_/11().12_/1

vV _ VvV _
7.3_/18.2_2’
work

Macierz A;,, wyraza intensywnosci przejscia z wyrazen uchwytnych do uchwytnych
poprzez dowolna liczbg wyrazen zanikajacych. Niezerowymi jej elementami sa:
=g =Ay =Ko =A = Ais9 = Aonk

Aoir = Ao =ha = /17;,2 = Ao
Niezerowymi elementami macierzy P prawdopodobienistwa przejs¢ pomigdzy wyraze-
niami uchwytnymi sa:

Ps7 = Pag =05

Pi7.10 = Piso = Pour = Proas =1

work

Avort T4,

wor sery

P79 = Pgio =

sery

+A

work sery

Pr4=Pg2 = Fi

Rozszerzenie wydajnosciowe LOTOSa 213

10.5. Silna bisymulacja markowowska

Silna rozszerzona bisymulacja markowowska wyznacza klasy réwnowaznosci na
zbiorze wyrazen behawioralnych, ktére maja te same wlasnosci funkcjonalne i nie-
funkcjonalne — czasowe i probabilistyczne. W celu zdefiniowania tej relacji wprowa-
dzimy pomocnicze oznaczenia i definicje.

Jezeli R jest relacjg réwnowaznosci na zbiorze X, to przez X|g bgdzie oznaczany zbiér
ilorazowy wyznaczany przez R, a przez [x] bedzie oznaczana klasa abstrakcji genero-
wana przez x€ X.

Przez 3 xi, ..y x|t bedziemy oznacza¢ wielozbiér nad zbiorem liczb rzeczywistych.
Wyrazenie 24 xi, ..., x|t bedzie suma wszystkich elementéw tego wielozbioru.

W szczegSlnym przypadku, dla wielozbioru pustego, z definicji 2@ = 0.

Definicja 10.1

Zagregowanym prawdopodobienstwem dla wyrazenia behawioralnego Q wzgleg-
dem zbioru wyrazen C bgdziemy nazywac funkcj¢ czgSciowa AProb o sygnaturze

AProb : BEHx A x AP x 255" 5 PR (10.32)

zdefiniowang przez wyrazenie

AProb(Q, g, 7w, C)
(10.33)
=24l p|<®, p>e PD(Q) A Q —(g,Poo,m)— Q' A QeC b

Zagregowane prawdopodobienstwo jest suma prawdopodobienstw przejscia z wyraze-
nia O do dowolnego wyrazenia ze zbioru C, w wyniku wykonania akcji natych-
miastowych o nazwie ge A i priorytecie 7.

Definicja 10.2
Zagregowang intensywnoscia dla wyrazenia behawioralnego Q wzgledem zbioru
wyrazen C bedziemy nazywaé funkcjg¢ czgsciowa ARate o sygnaturze
ARate : BEH x A x P(BEH) — R, (10.34)
zdefiniowana przez wyrazenie

ARate(Q, g, C)

(10.35)
= X4l 1| <@, A>e RATE(Q) A 0—(g,®,4,0)>0' A leR, A Q'€Cl}

Zagregowana intensywnosc jest sumaryczng intensywnoscig przejscia z wyrazenia Q do
dowolnego wyrazenia ze zbioru C w wyniku wykonania akcji czasowej o nazwie ge A.

214 Rozdziat 10

Definicja 10.3

Relacja rownowaznosci B € BEHXBEH jest silng rozszerzona bisymulacja mar-
kowowska (EMB), wtedy i tylko wtedy, gdy jesli <Q,, Q»>€ B, to dla wszystkich
g€ A, me AP, i dowolnej klasy Ce BEH|p zachodza zwiazki:

AProb(Q,, g, 7, C) = AProb(Q,, g, 7, C), (10.36)

ARate(Q,, g, C) = ARate((, g, C). (10.37)

Fakt, ze wyrazenia Q, oraz Q, sa w relacji EMB bedzie zapisywany w postaci Q) ~ Q-.
Lemat 10.1

Niech ~gu bedzie mnogosciowa sumg wszystkich silnych rozszerzonych bisymu-
lacji markowowskich. Relacja ~gpmp jest najwigksza silng rozszerzong bisymulacja
markowowska (najwigksza EMB).

Dowéd. Analogiczny dowdd jest pokazany w pracy (Bernardo&Gorieri, 1998).

Relacja ~gup jest réwniez kongruencjg. Pokazuje to ponizsze twierdzenie, ktére spro-
wadza si¢ do wykazania, Ze relacja jest zachowywana przez wszystkie operatory jezy-
ka oraz przez instancje procesow.

Twierdzenie 10.2
Niech @, 0. € BEH. Jezeli Q) ~gyp Oa, to:

1. Dla dowolnych ge A, ae N, A€ AR, 7= AP

(g, & A, m; Q1 ~emp (8, 04 A, m); Q> (10.38)
2. Dla dowolnych Qe BEH, pe PR
Qi lp] Q ~ems Q2[p1 Q oraz Q [p] Q\~ems Q [p] 02 (10.39)

3. Dla dowolnych Qe BEH, r, s€¢ PR, I'CG
O1|[R)sr @ ~em Q2|[R]]., Q oraz Q|[R]]., Qi~ems Q [[R]].- Q2 (10.40)

4. Dla dowolnego Qe BEH
0i[p>Q~ems Q2 [p>Q oraz Qlp>Qi~emsQ[p> 0> (10.41)

5. Dla dowolnego Qe BEH
01>> Q0 ~pmpQ2>>Q oraz Q>> Q1~emp Q >> O (10.42)

6. Dla dowolnego R € SeqG
hide R in Q| ~EMB hide R in Q2 (1043)

Dowod - zob. Dodatek 1.

Rozszerzenie wydajnosciowe LOTOSa 215

W celu pokazania, ze relacja ~gyg jest zachowana przez instancje proceséw, wprowa-
dzimy pewne definicje pomocnicze.
Proces niemajacy definicji w danym zbiorze definicji jest okreslany jako wolnv wzgle-
dem tego zbioru.
Wyrazenie Q jest czesciowo dozorowane wzgledem danego zbioru definicji procesow,
jesli dowolna nazwa procesu P, wystepujaca w Q, jest albo wolna wzgledem danego
zbioru definicji, albo proces ten ma definicj¢ postaci P[h, ..., h,] := Q' oraz kazdy
proces o nazwie P', ktéry wyst¢puje w Q', jest dozorowany.
Wprowadzmy pojecie rekursywnego podstawienia wyrazenia Q za wywotanie procesu
pIR] w wyrazeniu Q,. Oznaczenie
O\[<P[R ::=0>]
ma nastepujaca definicjg:
stop[<P[g\,..., g.] ::= Q@ >] = stop
(exit, @, oo, 0)[<P[R] ::= O >] = (exit, @, oo,)
(g & A, m); QVI<PIR] ::= 0> = (g, & A, m); Qi[<P[R] ::= 0 >]
(Q1 [P] Q)I<PIR] ::= 0 >] = Qi[<P[R] ::= O >] [p] Qa[<P[R] ::= Q0 >]
(Q1 [S1ls. @)I<PIR] ::= Q>] = Qi[<P[R] ::= Q>] [[S]|s. Q2[<PIR] ::= 0 >]
(hide R in Q|)[<P[R] ::= O>] =hide R in Q|[<P[R] ::= Qp>]
(@1 >> Q)I<PIR] == 0>] = Q\[<P[R] ::= 0 >] >> Qh[<P[R] ::= 0 >]
(Q1 [> Q2)[<P[R] ::= 0>] = Q)[<P[R] ::= @>] [> Qs[<P[R] ::= 0 >]
(PIR)) [<P[R] = Q>] =
Q gdy p[R’]= P[R]
pIR’] gdy —(p[R'1= P[R]) A p[R] wolny w zbiorze definicji
Q,[<P[R]:=Q>] gdy—(p[R1=PRDAQ, jest trescia p[R’]

(Q)) [<P[R] ::= 0>]= Q\[<P[R] ::= 0>]

Twierdzenie 10.3
Niech Q,, O, € BEH beda czgsciowo dozorowanymi wyrazeniami wzgledem dane-
go zbioru definicji oraz niech P[g,, ..., g,] bedzie jedynym wolnym procesem wy-
stepujacym w Q, oraz Q,. Niech dane beda dwie rekursywne definicje proceséw:
Pilg, ..., gul = Qul<Plg, ..., gu] == Pilgy, .-, 81>]
P’.’[gh ey gn] = Q2[<P[gl! ey gn] u= P'.’[gl: ey gn]>]
Jezeli Q) ~gmp Q2. to Pilgy, ..., 8] ~ems Palg)s -, g4l-
Dowéd — zob. Dodatek 1.

(10.44)

216 Rozdziat 10

10.6. Uwagi koncowe

W biezacym rozdziale przedstawiono wydajnosciowe rozszerzenie jezyka LOTOS,
ktére opiera si¢ przede wszystkim na wczesniejszych pracach: [Huzar, Magott 1996],
[Huzar, Magott 1997b], [Huzar, Magott 2001]. Istotnymi cechami jezyk MB-LOTOS
sa akcje natychmiastowe i czasowe, z wykladniczym rozkltadem prawdopodobienstwa,
oraz probabilistyczne operatory wyboru i ztozenia réwnolegtego. Wybér akcji do wy-
konania nast¢gpuje, w pierwszej kolejnosci, na podstawie priorytetdw, a nastgpnie na
wyborze probabilistycznym. Mechanizmy te, eliminujac niedeterminizm, umozliwiaja
tym samym prowadzenie analizy probabilistycznej specyfikacji wyrazonych w tym
jezyku. Wprowadzone mechanizmy probabilistycznego wyboru akcji sa zalezne od
otoczenia. Jest to rozwinigcie jezyka w stosunku do wczesniejszych prac: [Huzar,
Magott 1999a], [Huzar, Magott 1996], [Huzar, Magott 197a], a takze prac innych au-
tor6w, na przyktad: [Schieferdecker 1995], [Miguel, Fernandez, Vidaller 1993], [Her-
manns, Rettelbach 1996].

Dla przedstawionego rozszerzenia jgzyka zdefiniowano relacje silnej bisymulacji mar-
kowowskiej i pokazano, ze jest kongruencja, co oznacza kompozycyjnos¢ jezyka.
Pokazano tez jak dla specyfikacji wyrazonej w jezyku MB-LOTOS wyprowadza¢
tancuchy Markowa. Opisane wyprowadzanie tancuchéw Markowa byto zastosowane
miedzy innymi w pracach: [Babczynski, Huzar, Magott 1999], [Huzar, Magott 2000],
[Babczynski, Huzar, Magott 2000].

Algebry procesowe, oparte na jezykach CCS, CSP, ACP, LOTOS i innych, byty
przedmiotem wielu prac, na przyktad: [Reed, Roscoe 1986] [Bolognesi, Lucidi 1992],
[Fidge 1992], [Herrmanns, Rettelbach 1994], [Brinksma, Katoen, Latella 1995],
[Schieferdecker 1995], [Rettelbach 1995], [Hermanns, Rettelbach 1996], [Hillston
1996], [Bravetti, Bernardo 2000], [Hermanns, Herzog, Katoen 2002]. Wsrdd nich
warto wyr6znié: [Nicollin, Sifakis 1992], [Bernardo, Gorrieri 1998] i [Hermanns,
Herzog, Katoen 2002], ze wzglgdu na zawarty w nich obszerny przeglad literatury.

Mozna stwierdzié, ze prace nad algebrami procesowymi przerodzity si¢ w oddzielny
nurt poszukiwania modeli formalnych i narzgdzi programowych wspomagajacych ich
stosowanie. Na przyktad dla LOTOSa pierwsze rozszerzenie stochastyczne, oparte na
semitancuchach Markowa przedstawiono w pracy [Rico, von Bochmann 1991] oraz
w pracy [Valderrutten, Hjiej, Benzekri Gazal 1992], pokazujacej wyprowadzanie sys-
teméw kolejkowych na podstawie rozszerzonych specyfikacji. Stochastyczne rozsze-
rzenie LOTOSa z dowolnymi rozktadami, ale ograniczong kompozycyjnoscia, jest
przedstawione w pracy [Ajmone Marsan, Balbo. Conte, Donatelli, Franceschinis
1994)]. Jezyk TIPP [Gotz, Herzog, Rettelbach 1993], poczatkowo pomyslany jako
algebra z dowolnymi rozktadami czaséw wykonywania akcji, skupit si¢ ostatecznie na
rozktadach wyktadniczych, podobnie jak PEPA: [Hilston 1996] i EMPA [Bernardo,
Gorrieri 1998]. Prace [Brinksma E., Katoen J.-P., Latella D., 1995] i [Katoen,

Rozszerzenie wydajnosciowe LOTOSa 217

Brinksma, Latella, Langerak 1996] sa propozycja stosowania semantyki nieprzeplo-
towej, umozliwiajacej rozwazanie bardziej ogélnych rozktadéw prawdopodobienstwa.
Inng propozycja podobnego podejscia jest praca [Priami 1996], dotyczaca stocha-
stycznej wersji rachunku 7, oraz praca [Herzog 1996]. Propozycje niemarkowowskich
modeli zawiera migdzy innymi praca [D’ Argenio, Hermanns, Katoen 1999].

Do budowania modeli wydajnosciowych sigga si¢ takze po inne metody formalne.
Przyktadem sa materialy warsztatdw na temat systeméw czasu rzeczywistego [Gnesi,
Schieferdecker, Rennoch 2000]. Wsréd réznych metod formalnych wazna rol¢ odgry-
waja sieci Petriego. Do przyktadowych prac naleza tu migdzy inymi: [Murphy 1991],
[Juanole, Atamna 1991], [Magott 2005].

Krétkie oméwienie innych metod formalnych przedstawiono w nastgpnym rozdziale.

218

11. Zakonczenie

11.1. LOTOS a inne techniki formalne

Omawiany LOTOS jest jedna z wielu technik formalnych wykorzystywanych w pro-
cesie wytwarzania systemow informatycznych. Ponizej oméwiono krétko inne metody
formalne i1 pétformalne, ktére zastuguja na uwage ze wzgledéw historycznych lub
stopien ich upowszechnienia. Do metod wspdlnie rozwijanych z LOTOSem nalezg,
wspominane wczesniej, standardy SDL [ITU-T 1999] i ESTELLE [ISO 9074].
LOTOS, SDL i ESTELLE byty przeznaczone do definiowania i badania standardéw
dotyczacych sieci komputerowych i sieci telekomunikacyjnych. Oprécz norm ISO
i wielu odrgbnych opiséw, jak np. pozycje [Ellsberg, Hogrefe, Sarma 1997], [Szmuc
1998] dotyczace SDL, czy prace [Budkowski, Dembinski 1987], {Budkowski, Dem-
binski 1989], dotyczace ESTELLE, taczny opis tych trzech technik zawiera ksigzka
[Turner 1993].

Oprdcz nich byly rozwijane inne metody, przeznaczone ogélnie do wspomagania pro-
ceséw specyfikowania i projektowania systeméw rozproszonych [ISO/ODP 10746].
Naleza do nich miedzy innymi metody i zwigzane z nimi narzgdzia programowe, jak
SPIN i UPPAL, rozwijane przede wszystkim w srodowiskach akademickich [Babbich,
Deontio 2002]. Oddzielng grupe stanowig metody wykorzystujace sieci Petriego,
a w ostatnim okresie metodyki oparte na jgzyku UML czy tez modele kolejkowe.

Wspdlng cecha LOTOSa, SDL, ESTELLE, SPIN i UPPAL jesi to, ze stuzg do kon-
struowania specyfikacji wykonywalnych i wspdlnie odwotuja si¢ do pojgcia, rdznie
definiowanej, maszyny stanowej.

SDL [ITU-T 1999] jest w zasadzie jezykiem pétformalnym, przeznaczonym do opisu
systemow reaktywnych i systeméw czasu rzeczywistego. Specyfikacja w SDL przed-
stawia pewna rozszerzong maszyn¢ stanowsq. Struktura specyfikacji jest okreslona
przez zbidr réwnolegtych komunikujacych si¢ proceséw. Komunikacja odbywa si¢
w sposéb asynchroniczny, za posrednictwem komunikacyjnych kanatéw (kolejek
FIFO skonczonej dtugosci). Zachowanie procesow jest okreslane oddzielnymi diagra-
mami aktywnosci, ukazujacymi reakcje proceséw na przychodzace pobudzenia. Poszcze-
g6lne aktywnosci mogg by¢ opisywane w jezyku naturalnym lub w jezyku programowa-
nia. Opis zachowania dopuszcza niedeterminizm. Procesy operuja na wlasnej przestrzeni
danych. Poczatkowo SDL (podobnie jak LOTOS) opierat si¢ wylacznie na abstrakcyj-
nych typach danych, pdézniej dotaczono typy danych z jezyka programowania C.

Dzigki intuicyjnej, graficznej postaci specyfikacji uzyskat duza popularnos¢ zaréwno
w srodowiskach akademickich, jak i przemystowych. (Warto dodaé, ze powszechnie
stosowanej notacji graficznej zawdzigcza swa popularnos¢ takze jezyk UML — de
facto standard w wytwarzaniu systeméw oprogramowania.)

Zakonczenie 219

Gléwnym obszarem zastosowan SDL sa systemy telekomunikacyjne, dlatego wsréd
komercyjnych narzedzi programowych wspomagajacych postugiwanie si¢ tym jezy-
kiem jest Telelogic Tau Suite — produkt firm Swedish Telelogic oraz Object-Geode,
umozliwiajacy generowanie kodu w C i C++, testowanie i wykonywanie aplikacji na
podstawie specyfikacji w SDL. Czgé¢ testujaca narzedzia wykorzystuje jezyk TTCN
— standard ISO detiniowania testéw dla systeméw telekomunikacyjnych.

W ogdlnej ocenie jezyka SDL pozytywnymi cechami sa: modularne podejscie do two-
rzenia specyfikacji, z wyraznym oddzieleniem definiowania struktury od definicji za-
chowan. Jezyk jest zorientowany na szybkie tworzenie aplikacji, stad wynika powia-
zanie z jezykami programowania C oraz C++, a ze wzgledu na obszar zastosowan,
réwniez powiazanie z notacja ASN.1 do zapisu sktadni abstrakcyjnej typéw danych
oraz do kodowania danych transmitowanych w sieciach telekomunikacyjnych. Bada-
nie wlasnosci prototypu wygenerowanego na podstawie specyfikacji w SDL wymaga
petnego testowania. Walidacja samej specyfikacji wymaga natomiast jej transformacji
do innego formalizmu, na przyktad do LOTOSa.

ESTELLE, podobnie jak SDL, bazuje na rozszerzonych maszynach stanowych i ko-
rzysta z notacji jezyka Pascal do operowania na danych. Dzigki temu specyfikacje
w ESTELLE sa podstawg szybkiego generowania wykonywalnego prototypu.
ESTELLE, bardziej niz LOTOS, jest ukierunkowany na implementacje.

Specytikacja skiada si¢ z moduléw, ktére moga si¢ ze sobg komunikowaé asynchroni-
cznie za posrednictwem dwukierunkowych kanatéw komunikacyjnych. Modut dyspo-
nuje wlasnym zbiorem danych, na ktérych mozna wykonywa¢ okreslone operacje.
Moduty mogg by¢ zagniezdzane. ESTELLE ma dobrze okreslone podstawy teorety-
czne i znalazl zastosowanie w licznych projektach; ocenia sie jednak, ze dla zastoso-
wan przemystowych wymagane byloby opracowanie odpowiednio przyjaznych sro-
dowisk wspierajacych [Babbich, Deotio 2002].

SPIN (Simple ProMeLa Interpreter) jest narzedziem przeznaczonym do specyfikacji,
symulacji i walidacji protokotéw komunikacyjnych. SPIN korzysta z notacji ProMeLa
(Process Meta Language), zblizonej do jezyka C, co ulatwia szybkie generowanie
wykonywalnego kodu. SPIN dostarcza ponadto mechanizméw weryfikacji mode-
lowej, m.in. przez badanie inwariantéw i formut logiki temporalnej. Podstawowymi
komponentami specyfikacji sg procesy. Komunikacja pomigdzy procesami odbywa si¢
przez kanaty komunikacyjne — kolejki FIFO o skonczonej dtugosci. Gdy kolejki maja
diugo$¢ zerowa, komunikacja jest synchroniczna — odbywa si¢ w trybie randez vouz,
natomiast w przypadku przeciwnym komunikacja jest asynchroniczna. Zachowanie
procesu jest opisywane przez zbiér mozliwych tranzycji pomiedzy stanami procesu.
Tranzycja moze nastapi¢, gdy jest prawdziwy odpowiedni dozér — wyrazenie logiczne
okreslone na wartosciach zmiennych lokalnych procesu lub zmiennych globalnych,
oraz gdy zajdzie odpowiednia akcja wejscia—wyjscia. Mozliwa jest sytuacja niedeter-
ministyczna, gdy mozliwe sa do wykonania przynajmniej dwie tranzycje.

220 Rozdziat 11

Dzieki otwartemu, bezptatnemu dostgpowi SPIN nalezy do najbardziej popularnych
i najczesciej stosowanych narzedzi do specyfikacji i weryfikacji protokotéw, co wyra-
za si¢ migdzy innymi organizacja cyklu warsztatéw poswigconych rozwojowi i zasto-
sowaniom tego narzedzia. Jednym z interesujacych zastosowan jest wykorzystanie
SPIN do badania wtasnosci specyfikacji zapisanych w SDL. Osiaga si¢ to dzigki pro-
stej transformacji specyfikacji w SDL na specyfikacj¢ w SPIN.

UPPAL (skrét od UPPsala and AALborg — miast, w ktérych mieszcza si¢ wspotpracu-
jace ze sobg uniwersytety) jest narzedziem stuzacym do modelowania, symulacji i we-
ryfikacji automatéw czasowych. Strukture specyfikacji wyznacza zbidr synchronicz-
nie komunikujacych si¢ proceséw. Dopuszcza sig¢, ze komunikacja moze trwac¢ skon-
czony odcinek czasu. Gtéwnym obszarem zastosowania narze¢dzia jest specyfikowanie
i badanie protokotéw komunikacyjnych czasu rzeczywistego.

Petniejsze oméwienie i poréwnanie wymienionych wyzej technik mozna znalez¢é
w pracy [Babich, Deotto 2002]. Oprécz wymienionych, istnieje réwniez wiele innych,
opartych na automatach czasowych i maszynach stanowych, ktére dostarczaja narzg-
dzi do specyfikowania i badania réznych wiasnosci, na przyktad VerICS [Dembinski,
Janowska, Janowski, Penczek, Pétrola, Szreter, Wozna, Zbrzezny 2003].

Sieci Petriego stanowia oddzielna, bardzo szeroka klas¢ technik, z ktérg sa zwiazane
liczne narzedzia wspomagajace. Aktualny przeglad w tym zakresie zawiera ksiazka
[Girault 2003], przyktadéw wykorzystania sieci Petriego dostarczaja prace [Szmuc
1998], [Szmuc, Motet 1998], [Szpyrka 1999], [Magott 2005], ciekawe zwigzki pomig-
dzy sieciami Petriego a rachunkiem CCS analizuje Kulakowski [2004]. Réwnie sze-
roka klaseg, rozwijang od dziesiatkéw lat, stanowia modele kolejkowe, przyktadem ich
zastosowan do systeméw komputerowych jest ksiazka [Czachérski 1999].

Oprécz omawianych, nalezy wspomnie¢ o technikach, ktére wyrosty z jezykéw pro-
gramowania czasu rzeczywistego w srodowiskach przemystowych. Naleza do nich ta-
kie jezyki i zwigzane z nimi srodowiska wspomagajace, jak: Esterel [Esterel Techno-
logies, 2005], Signal [Le Guernic, Gautier, Le Borgne, Le Maire 1991] i Lustre [Halb-
wachs, Caspi, Raymond, Pilaud 1991], stosowane migdzy innymi w europejskim
przemysle lotniczym i awionice. Omoéwienie tych jezykoéw i ich zastosowan zawiera
praca [Benveniste, Caspi, Edwards. Halbwachs, Le Guernic, De Simone 2003]. Do tej
samej grupy technik mozna zaliczy¢ jezyk Ada i zwigzane z nim Srodowiska projek-
towe. Obecnie trwajg prace nad ustanowieniem standardu ISO wersji Ada 2005, sta-
nowigcej rozwinigcie poprzedniej wersji Ada 1995 [Huzar, FryZlewicz, Dubielewicz,
Hnatkowska, Waniczek 1998].

11.2. LOTOS a UML

Wspdiczesne metody wytwarzanie systeméw oprogramowania opierajg si¢ na para-
dygmacie modelowania obiektowego — cykl wytwarzania oprogramowania jest po-

Zakonczenie 221

strzegany jako proces budowy ciagu powiazanych ze soba modeli [Hnatkowska, Hu-
zar, Tuzinkiewicz 2001], a podstawowym jezykiem modelowania jest obecnie UML
[UML 2003}, [Booch, Rumbaugh, Jacobson 1999]. UML jest jezykiem pétformalnym
— sktadnia bezkontekstowa (opis jest wyrazony w podzbiorze j¢zyka UML) i kontek-
stowa (opisana w jezyku OCL — Object Constraint Language) sa opisane formalnie,
semantyka natomiast jest opisana w j¢zyku naturalnym.

LOTOS natomiast nie jest ani jezykiem projektowania obiektowego, ani tez nie moze
by¢ uwazany za jezyk programowania obiektowego. Uzasadnienie tego faktu wynika
Z nastepujacego rozumowania:

Zaktadajac, ze LOTOS jest jezykiem programowania obiektowego, nalezatoby przy-
jaé, ze instancja procesu jest odpowiednikiem obiektu, a definicja procesu jest odpo-
wiednikiem klasy. Podobienstwo polega na tym, ze instancja procesu komunikuje si¢
ze swym otoczeniem przez dobrze okreslony interfejs, chociaz ograniczony tylko do
wskazania bramek, bez jawnego okreslenia typéw komunikowanych danych, i stanowi
hermetyzacje danych, na ktérych proces operuje. Na tym jednak koncza si¢ podobien-
stwa z jezykiem programowania obiektowego, gdyz pomi¢dzy procesami nie ma me-
chanizmu dziedziczenia (dziedziczenie jest ograniczone w LOTOSie tylko do typéw
danych) ani tez mechanizmu polimorfizmu [Gérski 1999].

Zaktadajac zas, ze LOTOS jest jezykiem projektowania obiektowego, nalezaloby
oczekiwaé dodatkowych wtasnosci: po pierwsze — definiowania asocjacji pomigdzy
klasami (definicjami proceséw), wraz z odpowiednimi ograniczeniami liczno$ciowy-
mi, oraz — po drugie — mozliwos$ci tworzenia powigzanych instancji obiektéw (instan-
cji proceséw) spetniajacych te ograniczenia. W jezyku UML wlasnosci te sg wyrazane
przez diagramy klas i diagramy obiektow — instancje diagraméw klas. LOTOS moze
definiowac¢ dowolny zbiér proceséw, ale — poza zagniezdzeniami — nie moze okresla¢
zadnych zwiazkéw pomigdzy ich definicjami, struktura powigzan pomiedzy instan-
cjami procesdw jest natomiast ograniczona tylko do tych mozliwosci, jakie dajg opera-
tory sktadania proceséw — w zasadzie chodzi tylko o operator ztozenia rownoleglego.
Wprawdzie tworzenie réznych struktur powiazan pomigdzy instancjami procesow jest
mozliwe, ale wymaga to oddzielnego postgpowania [Haj-Hussein, Logrippo 1991],
‘prowadzacego do znacznej rozbudowy wyrazen behawioralnych.

Analiza mozliwosci stosowania jezyka LOTOS w kontekscie obiektowego podejscia
do wytwarzania oprogramowania byta rozwazana jeszcze w latach dziewigcdziesia-
tych ubiegtego wieku, na przyktad [Gibson 1993], [Hnatkowska 1996], ale ostatecznie
praktyka przesadzita o dominujacej roli jezyka UML. Nie oznacza to, ze LOTOS stat
sie niepotrzebny, ale Zze moze petni¢ inng rol¢. Ta rolg, w stosunku do jezyka UML,
jest uzycie LOTOSa do definiowania behawioralnego aspektu semantyki UML. Przy-
ktadami takiego zastosowania LOTOSa sa prace: [Clark, Moreira 2000], [Hnatkowska,
Huzar 2000], [Hnatkowska, Huzar 2001], [de Saqui-Sannes, Apvrille, Lohr, Sénac,
Courtiat 2002], [Cichon, Huzar 2005], [Cichon, Huzar 2006] oraz [Walkowiak 2006].

222 Rozdziat 11

11.3. Diagramy stanéw UML a LOTOS

W tym podrozdziale przedstawiono propozycj¢ reprezentacji diagramow stanéw jezy-
ka UML w postaci wyrazen behawioralnych LOTOSa, oparta na pracy [Hnatkowska,
Huzar 2001].

Diagramy stanow w UML sg graficzng reprezentacja maszyn stanowych i opierajg si¢
na koncepcji map stanéw Harela [Harel 1987], ktérych istotnym mechanizmem jest
zagniezdzanie standw. ZagniezdZzanie oznacza, ze we wngtrzu stanu moze by¢ zawarta
inna maszyna stanowa, reprezentowana nowym diagramem stanéw. Zagniezdzanie
stanéw pozwala ogranicza¢ eksplozje standéw, ktéra jest zasadniczym problemem
zwigzanym ze stosowaniem metod operacyjnych.

Stany i tranzycje pomigdzy stanami sa reprezentowane odpowiednio w postaci wierz-
chotkow i tukéw grafu. Wyréznia si¢ dwie podstawowe kategorie standw:

¢ Pseudostany, na ktére sktadajg si¢ stan poczatkowy i koncowy, taczniki histo-
ryczne (ptytki i gteboki), rozgatezienie, rozwidlenie i ztaczenie réwnolegte.

e Stany wtasciwe, krétko stany, wérdd ktérych wyréznia si¢ stany proste i ztozone,
a te ostatnie dzieli si¢ na zlozone sekwencyjnie i réwnolegle. W stanie prostym
nie sg zagniezdzone inne stany. W stanie ztozonym, ,,rodzicielskim”, sa zagniez-
dzone inne stany, stany ,,potomne”, nazywane tez podstanami. Podstan jest bez-
posrednim podstanem danego stanu, jesli nie jest zagniezdzony w innym stanie,
a przeciwnym razie jest podstanem przechodnim tego stanu.

Diagram stanéw mozna przedstawi¢ jako etykietowany graf. Graf diagramu standéw
jest definiowany jako szdstka

S = <BoxN, childB, typeB, defaultB, ArcN, Arc> (11.1)

gdzie:
BoxN jest skoniczonym zbiorem nazw wierzchotkéw, reprezentujacych stany wia-
Sciwe; nazwa wierzchotka jest utozsamiana z nazwa stanu.
childB C BoxN x BoxN jest relacja hierarchii stanéw: <b,, b.>€ childB oznacza, ze
b- jest bezposrednim ,,potomkiem” stanu ,,rodzicielskiego” b;. Zbidr BoxN oraz re-
lacja hierarchii childB definiujg drzewo. Korzen tego drzewa r nie ma ,,rodzicéow”,
a jego liscie nie majg ,,potomkéw”. Zwrotne i przechodnie domknigcie relacji
childB jest oznaczane przez childB'.
typeB : BoxN — {PRIM, XOR, AND, FIN} jest funkcja okre$lajaca typ danego
wierzchotka. Korzen r, z definicji jest typu XOR, liscie sa typu PRIM lub FIN, pozo-
state zas wierzchotki moga by¢ albo typu XOR (sekwencyjnie ztozony podstan), albo
AND (réwnolegle ztozony podstan). Liscie typu FIN reprezentuja stany koncowe.
defaultB : BoxN — 2°*" jest funkcja, ktéra dla danego stanu ztozonego okresla te
jego podstany, ktore sa stanami poczatkowymi. Dla wierzchotka typu XOR jest to

Zakonczenie 223

zawsze zbidr jednoelementowy, dla wierzchotka typu AND jest to zbidr co najmniej
dwuelementowy. Dla wierzchotka typu PRIM zbiér podstanéw poczatkowych jest
pusty. Rozszerzeniem funkcji defaultB jest funkcja DefaultB : BoxN — 2%
okreslona przez nastgpujace wiasnosci: be DefaultB(b) oraz dla wierzchotkéw
b'e BoxN, takich ze <b, b'>€ childB’, wymaga si¢, aby b'e DefaultB(b) wtedy i tyl-
ko wtedy, gdy defaultB(b") < DefaultB(b).

ArcN jest skonczonym zbiorem nazw tukéw: BoxN M ArcN =0.

Arc C BoxN x ArcN x BoxN jest zbiorem tukéw. Luk ae Arc jest tréjka <by, a, b,>
z wierzchotkiem poczatkowym source(Q) = b,, koncowym target() = b, oraz na-
zwa name() = a.

Zaréwno wierzchotki, jak i tuki grafu diagramu stanéw S maja swoje etykiety.

Wierzchotki (stany) sg etykietowane przez pieé elementéw:

e akcje (niepodzielne i nieprzerywalne czynnosci obliczeniowe) wykonywane bez-
posrednio po wejsciu do stanu,

e ciagi akcji (aktywnos$ci) wykonywane podczas przebywania w danym stanie; cia-
gi te moga by¢ przerywane w dowolnej chwili po wykonaniu kazdej z akcji,

e akcje wykonywane bezposrednio przed wychodzeniem ze stanu,

e tranzycje wewngtrzne, okreslone przez dwa elementy: zdarzenia, jakie mogg za-
chodzi¢ podczas przebywania w stanie, i przez akcje, ktére sa wykonywane po
zaj$ciu tych zdarzen,

¢ zdarzenia odroczone — zdarzenia, ktorych zajscie jest tylko rejestrowane i przeka-
zywane do kolejnych stanéw.

Kazdy z wymienionych elementéw jest opcjonalny (moze nie wystgpowac); w dal-
szych rozwazaniach uwzglednimy tylko trzy pierwsze elementy — akcje wejsciowe,
ciagi akcji wewnetrznych i akcje wyjsciowe.

Luki grafu diagramu standw sg etykietowane trzema elementami:

e zdarzeniem wyzwalajacym tranzycj¢ ze stanu, od ktérego tuk wychodzi, do sta-
nu, do ktdrego tuk prowadzi,

e dozorem — wyrazeniem logicznym, okre$lonym przez wartosci atrybutu obiektu
(ogdlniej instancji klasyfikatora), ktérego zachowanie jest opisywane diagramem
stanéw; prawdziwos¢ dozoru w momencie zajscia zdarzenia wyzwalajacego jest
warunkiem koniecznym tranzycji,

e akcja, ktéra jest wykonywana podczas tranzycji ze stanu do stanu (akcja jest wy-
konywana po wykonaniu akcji wyjsciowej w stanie, z ktérego nastgpuje tranzy-
cja, a przed wykonaniem akcji wejsciowej stanu, do ktérego nastepuje tranzycja).

Kazdy z wymienionych elementéw jest opcjonalny, przy czym jawny brak zdarzenia
wyzwalajacego w etykiecie tuku oznacza, ze zakonczenie ciggu akcji wewnetrznych
w danym stanie jest interpretowane jako zdarzenie wyzwalajace trazycje. Wyrdznia

224 Rozdziat 11

si¢ cztery rodzaje zdarzen wyzwalajacych: zdarzenie odbioru sygnalu, wywolania
operacji, zdarzenie czasowe i zdarzenie zmiany wartosci. Sygnaly i wywotania opera-
cji moga przenosi¢ wartosci.

Diagram stanéw jest okreslony jako tréjka

MS =<8, labB, labA> (11.2)
gdzie:
S jest grafem diagramu,
labB oraz labA sa funkcjami etykietujacymi wierzchotki oraz tuki.

Funkcja labB kazdemu wierzchotkowi be BoxN przypisuje piatke

labB(b) = <entry(b), do(b), exit(b), deferrable(b), internal(b)> (11.3)
gdzie:
entry(b), do(b), exit(b) sa ciagami akcji,
deferrable(b) jest ciagiem par: zdarzenie, akcja,
internal(b) jest ciagiem zdarzen.

Zaktadamy, ze dla wierzchotka-korzenia labB(r) jest puste.

Funkcja labA kazdemu tukowi a€ ArcN przypisuje trojke

labA(a) = <trigger(a), effect(a), guard(a)> (11.4)
gdzie:
trigger(a) jest zdarzeniem wyzwalajacym tranzycj¢ po tuku a; gdy element ten
jest pusty — oznacza to, ze tranzycja moze nastapi¢ w wyniku zakonczenia aktyw-
nosci wewnetrzej,
effect(a) jest akcja; gdy element ten jest pusty — oznacza to brak akcji,
guard(a) jest warunkiem logicznym; gdy element ten jest pusty — oznacza to, ze
warunek jest tozsamosciowo prawdziwy.
W dalszych rozwazaniach bedzie wykorzystywana nastgpujaca funkcja pomocnicza

TypeA : ArcN — {EV-LAB, TO-LAB,UN-LAB) (11.5)

ktéra ma odréznia¢ jedna z trzech sytuacji, gdy zdarzenie wyzwalajace tranzycje (a)
jest przestaniem sygnatu lub wywolaniem operacji — EV-LAB, (b) zdarzeniem czaso-
wym — TO-LAB lub (c) zdarzenie nie jest jawnie okreslone — UN-LAB.

Semantyke diagramu stanéw opisuje si¢ w terminach ciagdéw konfiguracji, w ktérych
moze si¢ znajdowac. Standard UML zmiany konfiguracji opisuje w spos6b nieformal-
ny, dalej pokazujemy jak zmiany te mozna wyrazi¢ w sposéb formalny dzigki zasto-
sowaniu LOTOSa.

Konfiguracj¢ diagramu stanéw w danym momencie okresla si¢ przez zbidr stanéw
aktywnych. Konfiguracjg diagramu stanéw S jest podzbidr stanéw B C BoxN, taki ze

Zakonczenie 225

re B oraz dla kazdego wierzchotka be B, jezeli jego typ typeB(b) = AND, to wszystkie
jego potomne wierzchotki naleza do B, a jezeli typeB(b) = XOR, to dokladnie jeden
jego potomek nalezy do B. Hierarchia wierzchotkdéw childB, ograniczona do zbioru B,
stanowi poddrzewo <B, childB N B x B> drzewa <BoxN, childB>. Poczatkowa konfi-
guracja diagramu § jest okreslona jako B,,;, = defaultB(r).

Niech lca(b,, by) oznacza najmniejszy wspOlny poprzednik wierzchotkéw b, oraz b,
w drzewie <BoxN, childB>, to znaczy < Ica(b,, b>) , b>€ childB’ dla i = 1, 2, oraz nie
istnieje inny wierzchotlek b taki, ze <b, b>€ childB” oraz < lca(by, by) , b>€ childB’.

Dwa wierzchotki b, b€ BoxN sa niezalezne w sensie rownoczesnego wykonywania
aktywnosci — krétko: sa niezalezne, jezeli zaden z nich nie jest poprzednikiem drugie-
go i type(lca(by, ba)) = AND. Dwa tuki <by, a, b'\> oraz <b,, a;, b'»> sa niezalezne,
jezeli wierzchotki lca(b,, b')) oraz lca(b,, b’,) sa niezalezne.

Tranzycja T z konfiguracji B do konfiguracji B’ jest okreslona jako najwigkszy zbior
nazw wzajemnie niezaleznych tukéw, ktérych wierzchotki poczatkowe nalezg do
zbioru B.

Zmiana konfiguracji nastgpuje w wyniku zajscia zdarzenia wyzwalajacego. Tranzycja
diagramu stanéw zalezy od konfiguracji i od otoczenia diagramu, ktére jest zrédiem
zdarzen wyzwalajacych. Wyréznia si¢ dwa rodzaje tranzycji: tranzycje niskopozio-
mowe pomigdzy stanami prostymi i tranzycje wysokopoziomowe, zwigzane z prze-
chodzeniem od lub do stanu zlozonego. Tranzycje wysokopoziomowe maja priorytet
nad tranzycjami niskopoziomowymi.

W przedstawianej formalizacji przyjmuje si¢ nastgpujace zatlozenia ograniczajace:

e Rozwazamy wylacznie tak zwane strukturalne diagramy stanéw, to znaczy takie,
ktére nie zawierajg tukéw przecinajacych granice stanéw. Oznacza to, ze jezeli
<b,, a, by>€ Arc, to istnieje taki b'e € BoxN typu XOR, ze <b', b\>, <b’, bx>€ childB
(inaczej: wierzchotki by, b, maja wspdlnego rodzica typu XOR). Ograniczenie to ma
na celu nie tylko uproszczenie rozwazan, ale jest ono takze zaleceniem meto-
dycznym; niestosowanie si¢ do tego zalecenia jest analogonem catkowicie swo-
bodnego wykorzystywania instrukcji skoku bezwzglednego w programowaniu.

e Rozwazamy tylko stany normalne oraz tylko dwa pseudostany: poczatkowy
i koncowy. Ograniczenie to ze wzgledéw praktycznych nie jest istotne, gdyz bar-
dzo rzadko wykorzystuje si¢ inne rodzaje pseudostanéw, a z teoretycznego punk-
tu widzenia sifa ekspresji diagraméw stanéw nie ulega tu ograniczeniu.

e Funkcja etykietujaca wierzchotki labB jest ograniczona tylko do trzech pierw-
szych elementéw, pomijamy tranzycje wewngtrzne i zdarzenia odraczane. Wy-
nika to z checi uproszczenia rozwazan, gdyz uwzglednienie zwlaszcza zdarzen
odraczanych wprowadzitoby istotng rozbudowg przedstawianych transformacji.

¢ Dodatkowo przyjmujemy, ze nazwy wszystkich akcji sa unikatowe, a zbiory
nazw akcji, wierzchotkdw, tukéw i zdarzen sa parami roztaczne.

226 Rozdziat 11

Omawiana transformacja kazdemu diagramowi stanéw przyporzadkowuje wyrazenie
behawioralne. Transformacja polega na przypisaniu wyrazenia behawioralnego kazde-
mu wierzchotkowi (stanowi) diagramu stanéw, a nastgpnie potaczeniu wyrazen skfa-
dowych w jedno wyrazenie koncowe. Struktur¢ wyrazenia koncowego, ztozonego
z trzech komunikujacych si¢ proceséw, pokazano na rysunku 11.1.

State Complete >>
Handler B_Trans
arcN
Synchroniser
S arcN
arcN
Rys. 11.1. Struktura specyfikacji diagramu stanéw

Proces StateHandler obejmuje stany aktywne, odpowiadajace stanom ztozonym sek-
wencyjnie, to jest stanom typu XOR.

Proces Synchronizer, przez bramke syn, blokuje odbidr zdarzen, przez bramkg arcN,
w stanie, do ktérego nastapi tranzycja dopdty, dopdki nie stanie si¢ on stanem sta-
bilnym, to znaczy do chwili zakonczenia wykonywania akcji wejsciowej w tym sta-
nie i we wszystkich jego stanach zagniezdzonych. Blokowanie jest ograniczone do
najmniejszego wspdlnego nastegpnika stanéw, z ktérego i do ktérego nastapita tran-
zycja.
Proces Complete jest odpowiedzialny za wykonanie zagniezdzonych akcji wejscio-
wych i wyjsciowych stanéw ztozonych. Po nadejsciu kolejnego zdarzenia proces wy-
konuje nastgpujace dziatania:

1. Dla danego tuku a, pod warunkiem, ze typeB(source(a)) — XOR, pobiera przez

bramke getS od procesu StateHandler aktywny stan (zbiér nazw stanéw).
2. Wykonuje, by¢ moze zagniezdzone, akcje wyjsciowe stanu, z ktdrego nastepuje

tranzycja.

3. Wykonuje, by¢ moze zagniezdzone, akcje wejsciowe stanu, do ktérego nastgpuje
tranzycja.

4. Ustala nowy stan aktywny i komunikuje go do procesu StateHandler przez
bramke putS.

5. Odblokowuje odbidr zdarzen w najmniejszym wsp6lnym nastepniku stanéw, od
ktérego i do ktérego nastepuje tranzycja.

Zakonczenie 227

Gtéwna czescia transformacji diagramu stanéw jest funkcja B_Trans(b), ktéra wy-
znacza wyrazenia behawioralne dla dowolnego be BoxN. Wyrazenie takie reprezen-
tuje konfiguracje poczatkowa poddiagramu stanéw o korzeniu b. Wierzchotek-ko-
rzen r reprezentuje, oczywiscie, konfiguracj¢ poczatkowa catego diagramu standw.
Funkcja ta wykorzystuje dwie funkcje pomocnicze procD’(b) oraz procD(b), gene-
rujace definicje proceséw, reprezentujacych odpowiednio wierzchotki typu AND
oraz XOR.

W definicji funkcji B_Trans(b) zastosowano nastgpujace oznaczenia pomocnicze:
réwnolegle i alternatywne zlozenia skoriczonego zbioru wyrazen behawioralnych P,

dla ie I, sa oznaczane odpowiednio Il P; oraz ¢, P;, czyli

[1. P=PORD.0OR orazy. — P=PlIAll..IlE (16

Dalej zaktadamy, ze wszystkie tranzycje etykietowane zdarzeniem czasowym sg uni-
kalnie numerowane, oraz ze z danego stanu wychodzi co najwyzej jeden tuk etykieto-
wany zdarzeniem czasowym, czyli card{a€ leaving(b) | typeA(a) = TO-LAB} < 1.

b[ExtArcN] jeslitypeB(b) = PRIM lub typeB(b) = FIN
B _Trans(defaultB(b))[>b{ ExtArcN]
jesli typeB(b) = XOR
oraz dla wszystkich b'e childB(b)jest generowana
B _Trans(b) =< definicja nowego procesu przez funkcj¢ procD(b'")
B _Trans(b'))[> b[ExtArcN]
jeslitypeB(b) = AND

oraz dla wszystkich b'e childB(b) jest generowana

MpechitaBp)

| definicja nowego procesu przez funkcjg procD*(b’)
gdzie:
ExtArcN = list({putS, getS, syn} U ActionNames U ArcN) (11.7)

ActionNames =) yegay (AS_Names(entry(b)) U AS_Names(exit(b))
U AS_Names(do(b)))

(11.8)

EventArcN = {a€ArcN e typeA(a)= EV-LAB} (11.9)

Funkcja list(S) transformuje zbidr S na liste zawierajaca wszystkie elementy ze zbio-
ru S, a funkcja AS_Names(a) dany ciag akcji « transformuje na zbiér nazw akcji nale-
zacych do tego ciagu.

228 Rozdziat 11

Definicja procesu reprezentujacego wierzchotek-korzen r jest niezalezna od diagramu
stanéw i ma postaé

process r{ ExtArcN]: noexit := stop endproc (11.10)
Definicja funkcji procD’, dla danego stanu b, przedstawia si¢ nastepujaco:
procD*(b) = process b[ExtArcN]: noexit := stop endproc (11.11)
Funkcja procD" jest bardziej ztozona, Jej definicja, dla danego stanu b, przedstawia sig¢
nastepujaco:
1. Jezeli typeB(b) = FIN, to
procD(b) = process b[ExtArcN]: noexit := stop endproc k (11.12)
2. Jezeli typeB(b) # FIN, to

ProcD(b) = process b[ExtArcN]: noexit :=
(Do_Trans(b) Time_Out(leaving(b))
Disabling_Part(b) (11.13)
) After_Time_Out(leaving(b))
endproc
Funkcje, ktére wystepuja w definicji funkcji procD, sa okreslone w sposéb nastepu-
jacy:
do(b); gdy do(b) jest niepustg sekwencja akcji
puste w przypadku przeciwnym

(>E

Do _Trans(b) = {
< b,a,b'>c AreUiTi88Er(a):exit)
>> Complete[ExtArcN](a)
>> B _Trans(b'"))

edy istnieje x € leaving (b) taki, ze typeA(x) = EV-LAB
puste w przypadku przeciwnym

Disabling _ Part(b) =

stop gdy dladowolnego a€ AtypeA(a) = EV-LAB
Time _Out(A) =]
trigger(a);exit gdy istnieje a € A taki, ze typeA(a) =TO-LAB

>> Complete[ExtArcN](a)

>> B _Trans(target(a))

Affer Tine _QuilA)= gdy istnieje a € A taki, ze rypeA(a) = TO-LAB

puste w przypadku przeciwnym

Pelna definicja funkcji transformujacej SM_Trans jest dosy¢ ztozona; peina jej postaé
przedstawiono w Dodatku 2.

Zakonczenie 229

Poprawnos¢ zdefiniowanej funkcji zostata zbadana przez testowanie. Najpierw przy-
gotowano zestaw testowych diagraméw standw, ktére recznie, zgodnie ze zdefiniowa-
na funkcja transformacji, przeksztatcono na specyfikacje w LOTOSie. Dla testowych
diagraméw stanéw opracowano tez scenariusze zachowan — ciagi zdarzen. Specyfika-
cje te nastgpnie badano za pomocg pakietu programowego LOLA [Pavon, Larrabeiti,
Rabay 1995]. Badanie polegato na wykonaniu i poréwnaniu scenariuszy zachowan
diagraméw stanéw i ich odpowiednikéw w LOTOSie.

Inny sposéb wyrazania semantyki diagraméw stanéw UML, nieodwotujacy si¢ do je-
zyka LOTOS, przedstawiono w pracy [Huzar, Magott 2000], a wykorzystanie tej se-
mantyki w badaniu wydajnosci systeméw zawarto w pracach: [Babczynski, Huzar,
Magott 2001], [Babczynski, Huzar, Magott 2003].

11.4. Perspektywy technik formalnych

LOTOS jest jedna z technik formalnych wykorzystywana w procesie wytwarzania
oprogramowania. Nasuwa si¢ pytanie: jaka jest obecnie rola technik formalnych
w przemystowym wytwarzaniu oprogramowania? Opinie na ten temat sg zréznicowa-
ne, ale wydaje sig¢, ze dominuje przeswiadczenie, iz stosowanie metod formalnych
znacznie spowalnia proces wytwarzania oprogramowania, nie dajac przy tym istot-
nych korzysci. W stosunku do wszystkich wspétczesnie stosowanych metod formal-
nych wysuwa si¢ nastepujace zastrzezenia [Logrippo 2000]:

e Zadna z metod oddzielnie nie ma zastosowania w pelnym cyklu wytwarzania
oprogramowania.

e Znajomo$¢ metod formalnych wsrdéd analitykéw i projektantOw jest ograniczona,
a w przypadku ich znajomosci nie ma dominujacego standardu.

Mozna postawié tezg, ze jedng z przyczyn wymienionych stabosci jest skoncentro-
wanie uwagi rozwijanych metod formalnych tylko na obliczeniowej i informacyjnej
perspektywie modelowania, czyli skupienie uwagi wylacznie na wymaganiach funk-
cjonalnych, podczas gdy od metod oczekuje si¢ takze mozliwosci modelowania in-
nych perspektyw, w tym inzynierskiej i technologicznej [ISO/IEC 10746-1, 1995].

Nalezy tez doda¢, Zze narzedzia programowe, wspomagajace stosowanie technik for-
malnych, sg ciggle niedojrzate. Na przyktad dla jezyka LOTOS najbardziej zaawanso-
wane $rodowisko CADP [Garavel, Lang, Mateescu 2001] mozna uwazaé za narzedzie
o charakterze pétprzemystowym, a pierwsze narzedzie — pakiet LOLA [Pavon, Larra-
beiti, Rabay 1995] ma charakter akademicki.

Zastrzezenia te nie oznaczaja, ze nie dostrzega si¢ zalet metod formalnych (precyzja,
jednoznaczno$¢, mozliwos¢ wsparcia programowego). Wynikiem krytyki i jednocze-
$nie doceniania metod formalnych jest rozwéj metod posrednich — pétformalnych.
Obecnie UML, jako najbardziej rozpowszechniony jezyk specyfikacji, modelowania

230 Rozdziat 11

i dokumentowania projektéw informatycznych, jest wyrazem takiego posredniego
podejscia.

Nie oznacza to jednak, ze metody formalne nie sg wcale uzywane. Sa one bowiem
stosowane w wytwarzaniu oprogramowania zwiazanego z bezpieczenstwem. Podczas
projektowania tych systeméw jednym z wymagan jest dowiedzenie poprawnosci wy-
tworzonego systemu. Samo testowanie, chociaz niezbedne, nie jest wystarczajace
— wymaga si¢ weryfikacji zbudowanego systemu wzgledem specyfikacji albo zagwa-
rantowania jego poprawno$ci na mocy poprawnosci konstrukcji transformujacych
specyfikacje w implementacje. W tym przypadku koszt i trud projektowania sa re-
kompensowane uzyskaniem wysokiego, chociaz nieabsolutnego, stopnia przekonania
0 poprawnosci i wiarygodnosci zbudowanego systemu.

Dazenie do formalizacji znajduje tez czg$ciowe odzwierciedlenie w obecnych tenden-
cjach rozwoju metod wytwarzania oprogramowania. Wspétczesne podejscie do wy-
twarzania oprogramowania jest co raz czgsciej oparte na MDA (Model Driven Archi-
tecture) [MDA 2003], co oznacza, ze proces wytwarzania wyraza si¢ jako ciag
transformacji modeli. Zdefiniowanie transformacji modeli, podobnie jak i samych
modeli, wymaga postugiwania si¢ metodami formalnymi. Opracowany nowy standard
grupy OMG [MOF QVT 2005] dotyczy wiasnie jezyka definiowania transformacji.

Niezaleznie od stosowania metod p6iformalnych lub formalnych warunkiem koniecz-
nym zastosowania kazdej metody jest wsparcie narzedziowe w postaci komplekso-
wych $rodowisk projektowo-implementacyjnych. Chodzi o narz¢dzia programistycz-
ne, wspierajace uczestnikow procesu wytwarzania przynajmniej od fazy wymagan,
przez fazy analizy i projektowania, az do fazy implementacji, a czgsto réwniez fazy
analizy dziedzinowej. W obrgbie kazdej fazy od narzedzia wspomagajacego oczekuje
sie, opréocz mozliwosci edycji modelu, badania jego spdjnosci wewnetrznej, a w prze-
chodzeniu pomigdzy kolejnymi fazami oczekuje si¢ mechanizméw transformacji ele-
mentéw jednego modelu w kolejny model lub mozliwos$ci sprawdzenia zgodnosci po-
migdzy modelami [Huzar, KuZniarz, Reggio, G., Sourrouille 2005]. Spetnienie
wymienionych oczekiwan jest mozliwe wylacznie za pomoca formalizacji modeli i ich
transformacji.

231

Dodatek 1

Dowaéd twierdzenia 10.2

Dowéd poprowadzono wedtug nastgpujacego schematu: Zaktadajac, ze relacja D jest
silng EMB, taka ze <Q,, 0»>€ D, konstruuje si¢ pewna relacje B — rozszerzenie relacji
D, ktéra jest réwniez silng EMB, taka ze <Q;, Q; >€ B, gdzie wyrazenia Q| oraz Q,
sq w jednej postaci (10.)—(10.) Poniewaz relacja ~gyp jest suma wszystkich relacji beda-
cych silnymi bisymulacjami, dlatego wystarczy pokazaé, ze jesli para <Q;, Q; >€ B, to
réwniez < Q;, Q5 >€ ~gup, dlatego w poszczegblnych wyréznionych przypadkach, wyko-
rzystujac indukcj¢ strukturalna, pokazano, ze jesli Q) ~gmp Q2. to <Q), Q5 >€ B, gdzie B
jestrelacja EMB, a Q] oraz Q, sa w jednej postaci (10.)—(10.).

W celu pokazania, ze <Q), Q; >€ B, nalezy dowies¢, ze:
e jezeli O, Q; sa wyraZeniami behawioralnymi takimi, ze mprior(M (F(Q)))) > 0,
dlai=1,2, czyli z2 M(F(Q))) zawiera tylko akcje natychmiastowe, to

AProb(Q|, g, 7, C) = AProb(Q; , g, 7, C) (D.1)
dla dowolnych ge A, me AP oraz Ce BEH|js,

e jezeli Qf, Q5 sg wyrazeniami behawioralnymi takimi, ze mprior (M (F(Q)))) =0,
dlai=1,2,czyli z2 M(F(Q))) zawiera tylko akcje czasowe, to
ARate(Q) , g, C) = ARate(Q,, g, C) (D.2)
dla dowolnych ge A, 7€ AP oraz Ce BEH|p.

Ponizej podano dowody tylko dla réwnosci dotyczacych zagregowanych prawdopodo-
bienstw. Dowody odpowiednich réwnosci dla zagregowanych intensywnosci sg po-
dobne i dlatego je pominigto.
Dalej rozwazono tylko przypadki, gdy otoczenie wyrazenia Q jest gotowe do uczest-
niczenia w akcjach na bramce g, gdyz w przeciwnym razie z semantyki j¢zyka wyni-
ka, ze AProb(Q, g, 7, C) = 0.

1. Niech D ¢ BEH x BEH bedzie relacja EMB taka, ze <Q,, O,>€ D. Zdefiniujmy
relacje B w sposob nastepujacy:
B=(DuU {<(g, & o, m); Q1. (8, & o, 7); Or>,

4 D.3
<(g, & o, 1); O, (8, 04 0, 7); Q1)) (D:3)

232 Dodatek 1

Relacja B jest tranzytywnym domknigciem sumy relacji rOwnowaznosci, a zatem jest
takze relacja rownowaznosci. Rozpatrzmy dwa przypadki:

Przypadek 1

Jesli
<(8: & =, 7); Q1. (8, & =, 7); O>€D
to
B=D
czyli B jest silng EMB, taka ze
(8, & o2, 7); Q1, (8, & o, 7); O>EB (D.4)

Przypadek 2
Niech <(g, &, , 7); Q1, (8, & o, 7); 0>¢D.
Zachodzi nastgpujacy zwiazek
BEH|z = (BEH|p\ {[(g, & o, 7); Q\lp, (8, & =, 7); Q:2]n})
VI8, & e, m); Qilp U [(8, 0 o, 71): Qalo)

Rozpatrzmy teraz dowolne elementy <P,, Px>€ B, he A, pe PR oraz Ce BEH|s.
Mamy do rozwazenia trzy podprzypadki:

(D.5)

Podprzypadek 1
Jesli <P, P,>€ D oraz Ce BEH|p \ {[(g, & o, 7); Q1lp, [(8, & =, 71); O-]p}), to
AProb(Py, h, p, C) = AProb(P,, h, p, C) (D.6)
Podprzypadek 2
Jedli <Py, Py>€ D oraz C = {[(g, & =, m); Qi]lpV [(g, & ==, 7); O2]p},
to dla ie {1, 2} zachodzi
AProb(P;, h, p, C)
= AProb(P;, h, p, [(8, & =, 71); Q1]p) (D.7)
+AProb(P;, h, p, [(g, & <, m); Qalp)
Poniewaz AProb(P,, h, p, C') = AProb(P,, h, p, C") dla dowolnego C’, zatem
AProb(P, h, p, C) = AProb(P», h, p, C) (D.8)
Podprzypadek 3

Jesli <P\, P;>€ B\D, co oznacza, ze P\€ [(g, &, =, 7); Q)]p oraz P, [(g, &, o, 7); Os]p,
todlaie {1, 2} mamy

Dodatek 1 233

1 gdy C=[Q;
AProb(P, h,p,C) =] 8 € =10 (D.9)
0 w przeciwnym przypadku

Poniewaz [Q,]z= [Q-]s, zatem AProb(P\, h, p, C) = AProb(P,, h, p, C).
2. Niech D ¢ BEH x BEH bedzie silng relacja EMB taka, ze <Q), 0»> € D. Relacja B,

zdefiniowana jako

B=(D v {<Q:[p] 0, 0:[p) 0> <Q:[p] Q. Q1 [P} O>})" (D.10)

jest relacja rownowaznosci. Dalszy dowéd jest podobny jak w punkcie 1. Przeana-
lizujemy tylko przypadek 2., czyli gdy <Q, [p] O, Q: [p] O>¢ D. Zachodzi nastepu- .
jacy zwiazek

BEH|y = (BEH|p\ {[Q: [p] Qlb, [Q2[P] CQlb})

U {[Q:[p] Clov [Q:[p] Qlb}
Rozpatrzmy <P,, P,>€ B, pe PR, he A, pe PR oraz Ce BEH|s C L.

(D.11)

Podprzypadki 1. oraz 2. sa podobne do analogicznych podprzypadk6w w punk-
cie 1. Rozpatrzymy tylko podprzypadek 3., gdy <P, P->€ B\D, co oznacza, ze
Pe[Q [p] Qlp oraz P,e[(Q,[p] Olp, wowczas dla i€ {1, 2} mamy

APrOb(Pia hs ,0’ C) = APrOb(Qi [p] Q’ hv p7 C)
= facty* AProb(Q;, h, p, C) + factx* AProb(Q, h, p, C)
gdzie fact;, oraz fact;, sa zdefiniowane tak, jak w tabeli 10.1 dla wyrazen behawio-

ralnych Q;[p] O.

Zauwazmy, ze fact), = facty, oraz fact|; = facty. Wartosci wspétczynnikéw fact;,
zaleza od wartosci p i od prawdziwosci formut

MF(@) N M(F(Q:i[p1 Q) =D dlai=1,2 (D.13)
Gdyby zachodzito

M(F(Q)) N M(F(Q, [p] 0)) =&

oraz (D.14)
M(F(Q)) N M(F(Q2 [p] Q) =D

przeczyloby to zalozeniu, ze Q| ~gms O>. Istotnie, oznaczaloby to, ze istnieje zbior
indekséw @ taki, ze @ M(F(Q,)) N M(F(Q, [p] Q)) oraz && M(F(Q))) N M(F(Q,
[p] O)), co dla g = name(D) dawatoby nieréwnos¢

AProb(Q, g, p, C) # AProb(Q», g, p, C) (D.15)

Podobnie mozna pokazaé réwnosé wspdtczynnikéw fact,, oraz factr,.

(D.12)

234 Dodatek 1

Rozpatrzmy dwie dalsze mozliwosci ze wzgledu na postac C.
Mozliwosé 1
Niech Ce BEH|p \ {[Q: [p] Q21p, [Q2[p] Oilp}. Poniewaz <Q,, 0»>€ D, zachodzi
AProb(Q,. h. p, C) = AProb(Q, h, p, C) (D.16)
stad
AProb(P\, h, p, C) = AProb(P>, h, p, C) (D.17)
Mozliwosé 2
Jesli C =10, [p] Qlp v [Q:1p] Qlp, to dla i€ {1, 2} zachodzi
AProb(Q;, h, p, C)

= AProb(Qs h, p, [01 [p) Qlp) + AProb(Qs h, p, [Q2[p) Q1) D:1®)
Poniewaz <Q,, 0,>€ D, wigc
AProb(Q,, h, p, C) = AProb(Q,, h, p, C) (D.19)
i ostatecznie
AProb(P,\, h, p, C) = AProb(P>, h, p, C) (D.20)

3. Pokazemy tylko, ze dla dowolnych Qe BEH, Re SeqG, oraz s, re PR zachodza
nastgpujace zwiazki:

Qi [R]lsr Q ~ems Q2 |[R]],. O (D.21)
Dowéd dla Q |[R]|,.. Q1 ~eus Q |[R]],. Q2 jest podobny. Rozpatrzmy relacje
B=1uD (D.22)

gdzie I jest relacja jednostkowg na zbiorze BEH, a
D = {<Q\|[R)}s.r Q. Q2|[R]|s.r Q> | Q1 ~emp 02} (D.23)
Pokazemy, Ze relacja Bjest silng EMB.

Latwo sprawdzié, ze B jest relacja réwnowaznosci. Zauwazmy, ze dla klasy row-
nowaznosci C relacji B, dla danych R, ri s, albo kazdy element klasy C ma opera-
tor ztozenia réwnolegtego |[R]|,. jako najbardziej zewngtrzny operator, albo zaden
element tej klasy operatora tego nie ma.

Rozpatrzmy dowolne <P, P,>€ B, he A, pe AP, Ce BEH|, R€ SeqG oraz r, s€ PR.
Nalezy przeanalizowa¢ dwa przypadki:

Jesli <P, Py>€ I, to oczywiscie AProb(P,, h, p, C) = AProb(P,, h, p, C).

Jezeli natomiast <P;, P,>€ D, to istniejg takie R, R,€ BEH, ze R, ~pup Ro,
P.€[R,|[R]|,. Qlgoraz P»€ [R2|[R]|,.. Q. Rozpatrzmy teraz dwa podprzypadki:

Dodatek 1 235

Podprzypadek 1

Zadne z wyrazen behawioralnych w klasie C nie ma |[R]],, jako najbardziej ze-
wnetrznego operatora. W tej sytuacji

AProb(P\, h, p, C) = AProb(P,, h, p, C) =0 (D.24)

Podprzypadek 2

Wszystkie wyrazenia behawioralne w klasie C maja |[R]],.. jako najbardziej ze-
wnetrzny operator, dlatego istnieja takie wyrazenia behawioralne E oraz F, ze
C={E'|[Rl|,, F| E'~emp F}. W tej sytuacji, dla P; = R; |[R]|,.. Q, gdy i€ {1, 2}

AProb(Py, h, p, C) = AProb(R|[R)|..- O, h, p, C). (D.25)
Jesli he Set(R) U {exit}, to
AProb(P;, h, p, C) = fact; * AProb(R;, h, p, [E"] .
+ facty * AProb(Q, h, p, {F})

EMB)

(D.26)

gdzie fact, oraz fact,; sa zdefiniowane zgodnie z tabelg 2. dla wyrazen behawio-
ralnych R; |[[R]|,., Q.
W sposéb podobny jak w punkcie 2., mozemy pokaza¢, ze fact, = fact, oraz

facty = fact,, .

Poniewaz R, ~gmp R,, dlatego

AProb(Ry, h, p, [E')_,,) = AProb(Ry, h. p, [E'] _,,) (D.27)

oraz

AProb(Py, h, p, C) = AProb(P,, h, p, C) (D.28)

Jesli he Set(R) U {exit}, to rozwazmy tranzycje, dla i€ {1, 2}, postaci
R:|[R]|s. Q —(h, ®¥, =,)= R/|[R]|,. Q' (D.29)
gdzie:

Ri—(h, @,, p)— R'oraz [R/]. =[R;].

EMB

Q _(h" Wy ©9, p)_) Q, oraz Rl, I[R]l\.l Q’E C

EMB

(D.30)

Wystarczy przeanalizowaé przypadek, gdy C = {E' |[R]|,, Q' | E'~ems E}, ponie-
waz w przeciwnym razie, gdy F # Q'

AProb(R; |[R]|s, O, h, p, C) =0 (D.31)

236 Dodatek 1

Niech
MFS(R,, Q,R, h, 0

=4er { FEF(Q) | 3 P F(R)) ® ¥ M(F(R; |[R]],.-Q)) (D.32)
A name(¥) = h A prior(V) = p}

Latwo zauwazy¢, ze MFS(R,, Q, R, h, p) = MFS(R», Q, R, h, p), poniewaz w prze-
ciwnym razie otrzymuje si¢ sprzecznos$¢, z zalozeniem, ze R, ~gyp Ro, stad .

AProb(R; [(R)|., Q. I, p, C)
= facty« > A po-pr| <@¥ po-py>
€ norm(PD(R;, FA(Q))|sexr)y ® PD(Q, FA(R))|senx) (D.33)
AR |[R)].r @Q—(h, ¥, >, p)— R} |[R]]..S A
R |[R)], SeC|
gdzie: set(R') = set(R) U {exit} oraz
PD(Q, FA(R))|sexwy) = PD(Q, FA(R2))|senr») (D.34)
Dalej, niech p,e PD(Q, FA(R)))|ser)), Wowczas
AProb(R; |[R]|,.. Q. h, p, C)

= fact *n*z
Jactyy, *n, weMFS(R,.Q.Ih.p) P¥

¥ 3| po| <D, po>€ PD(R;, FA(Q) erry)

A Ri—(h, @50,)= R A R €[RT sup (D.33)
AR |[R)er Q—(h, @¥, =, P R} |[R]]...S |t
= faCtlzi * Z‘I’EMFS(R,-,Q.F./J./)) Py * ZAP’.Ob(Ri’h’p’[R"D
gdzie n; (i = 1, 2) jest wspéiczynnikiem normalizujacym.
Jak poprzednio mozna pokaza¢, ze fact|, = fact,,,.
Poniewaz
AProb(R, g, p, [R/ 1) = AProb(Ry, g, p, [R}]) (D.36)
oraz
MFS(R\, Q, R, h, p) = MFS(R>, O, R, h, p) (D.37)

stad jednakowe sg wspotczynniki normalizujace n, oraz n,, dlatego

AProb(R,[[R]|., . 8, o, C) = AProb(R |[R]|,, O, 8, p, C) (D.38)

Dodatek 1 237

4. Dow6d mozna sprowadzi¢ do szczegélnego przypadku punktu 3. twierdzenia, po-
niewaz semantyka wyrazenia Q; [p > Q jest réwnowazna semantyce wyrazenia

Qi '[]l() P Q

5. Dowéd prowadzi si¢ w sposéb podobny, jak w punkcie 3.
Najpierw pokazemy, ze dla dowolnego Qe BEH zachodzi nastgpujacy zwiazek

Q1>> Q0 ~emp Q2 >>Q (D.39)
Przeanalizujmy relacj¢
B=IuD (D.40)
gdzie
D={<0,>>0,0,>>0>|0i1~emp 0> } (D.41)

Relacja B - jak tatwo sprawdzi¢ — jest relacja rOwnowaznosci. Jesli <P,, Px>€ D,
to istniejq takie R|, R, € BEH, ze R, ~gyg R>, P1€ [R,>> Qlgoraz Pr€ [R,>> Q.

Rozpatrzmy tylko przypadek, gdy wszystkie wyrazenia w klasie C maja >> jako
najbardziej zewnegtrzny operator. Istniejg zatem takie wyrazenia behawioralne E
oraz F, ze C={E' >> F | E'~gup F}.

Dla P,= O, >> Q, ie {1, 2}, jesli

0i>> Q—(h, @, =, p)— 0/ >>Q dla he A (D.42)
to '

AProb(P;, h, p, C)

= AProb(P;, h, p, [Ri>> Qlg) = AProb(Q, h, p, [Ri] -,,) (D.43)
Poniewaz AProb(Q, h, p, [R)] - mu) = AProb(Q,, h, p, [R,] . wiec
AProb(P\, h, p, C) = AProb(P,, h, p, C) (D.44)

Dowéd, ze Q >> Qi ~ems Q >> Q> dla dowolnego Qe BEH zachodzi w taki sam
sposob, jak dla Q) >> Q ~gups 02 >> Q.
6. Ponownie zdefiniujmy relacj¢ réwnowaznosci

B=1uD (D.45)
gdzie

Di= {<hide Rin Q], hide R in Q2> | Q] ~EMB Q’_)} (D46)

Rozpatrujemy tylko przypadek, gdy <P, P,>€ D, wéwczas istnieja takie wyraze-
nia R,, R, € BEH takie, ze R, ~gyp R. oraz

Py=hide Rin O, P,=hide R in O,

238 Dodatek |

Rozwazmy tylko podprzypadek, gdy wszystkie wyrazenia w klasie C relacji B ma-
ja hide R in jako najbardziej zewnetrzny operator, dlatego istnieje takie wyraze-
nie Q, ze C = {hide Rin Q' | Q'~eup Q}. Dla wyrazen P;, gdzie i€ {1, 2}, zachodzi
AProb(P;, h, p, C) = AProb(Q;, h, p, C) gdy he L\set(R) (D.47)

oraz
AProb(P;, h, p, C)=0 gdy he set(R) (D.48)

Poniewaz Q| ~EMB Qz, WIQC AProb(P,, h, P, C)= APrOb(P'_y, h, P, O

Dowod twierdzenia 10.3

Dowéd polega na pokazaniu, ze dla dowolnej relacji ~gyp (spetniajacej twierdzenie
10.3) mozna skonstruowaé jej rozszerzenie, ktore bedzie spetniac teze twierdzenia.
W tym celu wystarczy pokazaé, ze relacja B'= B U B™', gdzie

B= {<Ql’ Q2> I Ql = Q[<S[gl’ Ut gn] L= Pl[glv rery gn]>]

A Q'.’ = Q[<S[g|’ seey 8::] = PZ[glv eey gn]>] (D49)
A Slg1, ..., gu] jest co najwyzej jedynym wolnym procesem wzgledem
danego zbioru definicji proces6w }

jest silng rozszerzong relacja bisymulacji markowskiej wzgledem ~gyp.

Relacja B' = B U B jest relacja réwnowaznosci. B’ jest symetryczna z definicji i jest
zwrotna, poniewaz jesli Q nie zawiera wolnych zmiennych procesowych lub P, = Ps,
to Q, = O, = Q. Relacja jest rowniez przechodnia, gdyz istnieje co najwyzej jedna
zmienna procesowa wolna w S.

Zauwazmy, Ze ztozZenie ~gyp © B' © ~pyp relacji réwnowaznosci ~gyp oraz relacji réw-
nowaznosci B' jest réwniez relacja réwnowaznosci.

Aby pokaza¢ teze, wystarczy dowiedé, ze B’ jest silng EMB wzgledem relacji ~gp, to
znaczy ze dla danych ge A, 7€ AP oraz C€ BEH|-gmp - 5> -£ms

AProb(Q,, g, 7, C) = AProb(Q», g, 7, C) (D.50)
oraz
ARate(Q,, g, C) = ARate(Qs, g, C) (D.51)

Bedziemy rozpatrywacé klasy réwnowaznosci zbioru ilorazowego BEH|-gys - g o -£ums.

Dla danych ge A, 7€ AP oraz Ce BEH|-gyp - - -ems, pokazemy przez indukcje struktu-
ralng na Q tylko dla (10.37a). Dowéd dla (10.37b) przebiega w podobny sposéb.

Dowdéd pokazemy tylko dla najbardziej reprezentatywnych konstrukcji: prefiksowania
akcja, wyboru i ztozenia réwnolegtego.

Dodatek 1 239

l. DlaQ=(g, &, o, m); Q'oraz i = 1, 2, mamy
Qi = (g, a7 o, ”); Q'[<S[gl, eeny gn] o= Pi[gl, ceey gll]>]

Poniewaz
<Q'[<S[gis --r &u)::= Pilgrs -.r 81>), Q'[<S[g15 .- 8u)::i= Palg)s .. g4]>]€EB (D.52)
wiec
C=[0'[<Slg, ... gl == Pilgy, ..., 8uI>)-emB 8o -£MB
. (D.53)
=[Q'[<S[g1, ---s &ul ::= Palg1s ... u)>)-emB e B> ~EMB
Dla tego przypadku
AProb(Q,, g, m, C) = AProb(Q,, g, 7. C) = 1 (D.54)
2. DlaQ=0Q'[p] Q" orazi=1, 2, mamy
0,=Q'[<Slgi, ..., &) = Pilgy, ..., g1>] [P]
Y (D.55)
Q [S[<g|’ sy gn] o= Pi[gh ceey gn]>]
Hipoteza indukcyjna stanowi, ze
APrOb(Q [<S[glv ey gll] u= Pl[gl, ey gu]>]’ g,ﬂ;a ’ (D56)
= APrOb(Q’[<S[gI! LR gn] n= P2[31~ ceey gu]>], 8, T, C)
oraz
AProb(Q"[<S[g), ..., g = Pilg1, ..., 8)>], & 75, C) D57
=APr0b(Q”[<S[g|i sy gn] ::= Pz[gh STy gn]>]9 g9 ﬂ.’ C) .
Poniewaz

AProb(Q;, g, 7, C)
=(1-p) * AProb(Q'[<Slgi, ..., g == Pilg1, ..., g.0>), &, 7w C) (D.58)
+p * AProb(Q"[<S(g1, ..., &) = Pilg1, ..., &.J>). & 7, ©)
zatem

AProb(Q,, g, @, C) = AProb(Q>, g, 7, C) (D.59)

3. DlaQ=Q'|[R]|,, Q" oraz i = 1, 2, mamy
gi= O'[<Slgi, ..., &) = Pilgy, ..., 8.J>]

(D.60)
I[R]|\I Q"[<S[g|, ey gn] = Pi[gl, ey gn]>]'

240

Dodatek 1

Rozwazmy dwa przypadki dla ge A.

Przypadek 1
Jesli geset(R), to albo Q'[<Slg), ..., g ::= Pilgi, ..., g.)>] przechodzi do S,.',

gdzie

S,-'E C,-'= [Si'l[R]l.\',r Q"[<S[gi, .., gl = Pilgis ..., 8uI>1] -emB o5 -£mB

albo Q"[<S[g\, ..., &) ::= Pilgis ..., g.]>] przechodzi do S, gdzie

(D.61)

SfE Cf= [<Slg1, -.., 8] ::= Q'[Pilgys ..., 84]>] I[R”x.r S,-'] -emepo-emp (D.62)

Dla danego Ce BEH|.gyp - g » -ems Oraz C; (podobnie dla C') albo C;c C, albo

C; N C = J, zatem odpowiednio albo

APrOb(Q,[<S[g|’ eeey gn] o= Pi[glv ceny gll]>]’ 8, T, C)
= AProb(Q'[<S[g1, ..., &) == Pilgy, -, 81>), 8, 7, S7)

albo
AProb(Q'[<S[g, -.-, &) == Pilg1, ., 8)>), 8. 7, C) =0
Z hipotezy indukcyjnej
AProb(Q'[<S[g1, ... 8u) :=Pilg1s -, 81>). 8 7 S)
= AProb(Q'[<S[g\, - 8 1= Palg1s .. 80)>), 8. 75 S)
oraz

AProb(Q"[S[g1, ..., g i=<Pilg1, ..., g41). & 7%)
= AProb(Q"[<P:[g1, ..., 8) / S[g1s --.» 84, & 75, S)
dla dowolnego S€ BEH|-gus - g~ ~emp, oraz z formuty
AProb(Q;, g, 1, S)
=(1-r)*(1 -s)* AProb(Q'[<S[g\, ..., g ::= Pilg1, ..., 8:1>), 8, 7, C)
+r*(1-s5)*AProb(Q"[<S[g\, ..., & = Pilgi1, ... 81>), & 7, C)

wynika, ze AProb(Q,, g, 7, S) = AProb((Q, g, 7, S).

Przypadek 2

Jeshi ge set(R), to Q'[<S[g\, ..., &) ::= P{g1, ..., 8,)>] przechodzi do

S'e C'e BEH| _gup- g~ -ems 2 prawdopodobienstwem

(D.63)

(D.64)

(D.65)

(D.66)

(D.67)

Dodatek 1

241

APrOb(Q'[<S[g|’ seey gn] o= Pi[gl’ reey gll]>]’ 8 T, S,)

(D.68)

oraz Q"[<S[gy, ..., gl = Pi[g1, ..., 8J>] przechodzi do S"e C"e BEH| _gyp - o -£us

z prawdopodobienstwem

AProb(Q"[<Slg, 8] == Pilgi, ..., g.>), & 7 S")

zatem

Q'[<S[8|, L) 8:;] o= Pi[gls) gn]>] |[R]|\I Q"[<S[gl’) gu] o= Pi[glv sy gn]>]

przechodzi do S € BEH| _gyg- g+~ -ems Z prawdopodobienstwem
AProb(Q'[<S[gi, ..., 8] ::= Pilgy, ..., 8J>] |[R]]s., Q"[<S[g1, ---» &1
n= Pilgy, . 8a]>) 8, 7 S)
=5 * AProb(Q'[<S[g\, ..., gu] ::= Pilg), ... 81>, &, 7, S)*

AProb(Q"[<S[gi, .., &) = Pi[g1, ..., g]>). 8. 7, S)

Z hipotezy indukcyjne;j:
AProb(Q'[<Slg1, ..., gu] ::= Pilg1s ... 81>), &, 7, S)

= AProb(Q'[<S[g\, ..., 8] ::= Palgy, ..., gu1>), 8, 75 S)
oraz

AProb(Q"[<S[g\, ..., &) == Pilgi, ..., 8u1>), 8, 7, S)

= AProb(Q"[<Sl[g\, ..., 8] ::i= Palgy, ..., 841>), 8. 71, S)

wynika, ze AProb(Q,, g, 7, S) = AProb(Q», g, 7, S).

(D.69)

(D.70)

D.71)

(D.72)

(D.73)

242

Dodatek 2

Definicja funkcji SM_Trans

W przedstawionej definicji funkcji transformacyjnej SM_Trans przyjmuje si¢, ze na-
zwy funkcji pisane kursywa oznaczaja funkcje transformacyjne, natomiast funkcje
pisane czcionka prosta oznaczaja tekst w jezyku LOTOS.

Gléwna czesé definicji funkcji SM_Trans ma postaé

SM_Trans(ms) =
specification S[list(ActionNames U EventArcN)] : noexit
type ArcNames is
sorts arcN
opns
a; : —> arcN (* dla ¢;€ ArcN takich, ze tvpeA(a;)=EV-LAB *)
trigger(tm;): —> arcN (¥ dla tme ArcN takich, ze typeA(tm;)=TO-LAB*)
default : —> arcN (* wskazuje stan poczatkowy *)
endtype

type BoxNames is
sorts boxN
opns
b; : —> boxN (* dla b€ BoxN *)
endtype

behaviour
hide putS, getS, syn, list({trigger(tm;)}) in
(* dla rmie ArcN takich, ze typeA(tn;)=TO-LAB *)

(
StateHandler[putS, getS]
|[putS, getS)|
(Complete[ExtArcN](default) >>
B_Trans(r) (*r jest nazwa stanu poczatkowego *)
)
|[syn, list(ArcN))|
Synchroniser[syn, list(ArcN)](TrueList)
)
where

(* definicje trzech gtéwnych proceséw sktadowych #)

process Synchroniser[syn, list(ArcN)](BoxList): noexit :=

Dodatek 2 243

LetExpression(r) (*r jest nazwa stanu poczatkowego *)
(Zbe BoxN e typeB(b)=PRIM or 1xpeB(b)=FIN (
syn 1boxN(b); Synchroniser[syn, list(ArcN))(ChangeBoxList(b)))
[] ZaeAr('N ® b=source(a) ([b] -
trigger(a); Synchroniser[syn, list(ArcN)](ChangeBoxList(target(a))))
)

endproc (* Synchroniser *)

process StateHandler[putS, getS] : noexit :=

nbe BoxN e tvpeB(b)=XOR b[PWSa getS](a'efault(b))
where

process b;[putS, getS](s: boxN): noexit :=

(* rodzina proceséw dla b€ BoxN takich, ze typeB(b;)=XOR *)
getS 'b; Is; bputS, getS1(s)
(1 Xeecnitan wiy putS b; \a; blputS, getSl(a)

endproc (* b; *)

endproc (* StateHandler *)

process Complete[ExtArcN](s: arcN): exit :=
([s = default] -
Entry_r{ExtArcN];

SetDefaultBox(r), (*r jest nazwa stanu poczatkowego *)
exit)
[Zeearen (([s=a]—> (* przyjecie zdarzenia *)

(* przejscie do stanu niestabilnego *)
Exit_source(a)[ExtArcN]; (* wykonanie akcji wejsciowej *)
Entry_target(a)[ExtArcN];, (* wykonanie akcji wyjsciowej *)
SetDefaultBox(target(a)); (* wyznaczenie nowego stanu aktywnego *)
SetStableBox(target(a)); (* odblokowanie odbioru zdarzen *)
(* przejscie do stanu stabilnego *)
exit)
endproc (* Complete *)
............... (* definicje proceséw sktadowych sa podane nizej *)
endspec

Definicje proceséw sktadowych wystgpujacych w gtéwnych procesach sktadowych sa
podzielone na kilka grup.

Definicje proceséw wykonujacych akcje wejSciowe w danym stanie b;:

process Entry_b,[ExtArcN]: exit := (* dla b€ BoxN takich, ze typeB(b;))=PRIM *)
entry(b;) exit
(* funkcja entry zwraca ciag akcji separowanych i zakonczonych srednikiem *)
endproc

244 Dodatek 2

process Entry_b,[ExtArcN]: exit : (* dla b BoxN takich, ze typeB(b;)=FIN *)
exit

endproc

(* dla b€ BoxN takich, ze typeB(b;)=XOR *)

process Entry_b{ExtArcN]: exit :
entry(b;) Entry_default(b;)
(* funkcja entry zwraca ciag akcji separowanych i zakonczonych srednikiem *)
endproc

process Entry_b,[ExtArcN]: exit := (* dla b;,e BoxN takich, ze typeB (b;)=AND *)
entry(b;)
(IL.ecnitas) Entry_a[ExtArcN])
(* funkcja entry zwraca ciag akcji separowanych i zakoficzonych $rednikiem *)
endproc

Definicje proceséw wykonujacych akcje wyjsciowe w danym stanie b;.
process Exit_b[ExtArcN]: exit := (* dla bie BoxN takich, ze typeB(b)=PRIM *)
exit(b;) exit

(* funkcja exit zwraca ciag akcji separowanych i zakonczonych Srednikiem *)
endproc

(* dla be BoxN takich, ze rypeB(b)=FIN *)

process Exit_b[ExtArcN]: exit :
exit
endproc

(* dla b€ BoxN takich, ze typeB(b;)=XOR *)
(*orazb #r¥*)

process Exit_b[ExtArcN]: exit :

getS 'b; 7s : boxN;
(2 aecnitaswiy ([s = a] = Exit_a[ExtArcN]), exit(b;) exit
(* funkcja exit zwraca ciag akcji separowanych i zakonczonych Srednikiem *)
endproc

process Exit_b;[ExtArcN]: exit := (* dla b;,e BoxN takich, ze typeB(b;)=AND *)
(Muecnoas iy Exit_alExtArcN]); exit(b;) exit
(* funkcja exit zwraca ciag akcji separowanych i zakonczonych srednikiem *)
endproc '

Do nastepnej grupy nalezy definicja procesu poczatkowego, reprezentujacego stan r,
oraz definicje proceséw generowanych przez funkcje procD oraz procD’, ktére byty
zdefiniowane w rozdziale 11.

Funkcje pomocnicze, ktére wystapity w definicji funkcji transformacji, sg okreslone
nastepujaco:

Dodatek 2 245

rpulS!b’!b; gdy typeB(b) = PRIM lubrypeB(b) = FIN
oraz 3b' € BoxN e b e childB(b') oraz

typeB(b’) = XOR

putS!b'!b; gdy typeB(b) = XOR oraz
SetDefaultBox(default (b)) 3b’' € BoxN e be childB(b')oraz
typeB(b') = XOR

SetDefaultBox(default(b)) gdy typeB(b) = XOR oraz

—3b’ € BoxN e b e childB(b') oraz
SetDefaultBox(b) = <
typeB(b') = XOR

putS!b’!b; gdy typeB(b) = AND oraz bi € childB(b)
.S'etDefaultBo,\'(b1)... oraz3b’' € BoxN e b e childB(b') oraz

SetDefaultBox(bk) typeB(b') = XOR

SetDeffaultBox(bl)... gdy rypeB(b) = AND oraz bi € childB(b)
SetDefaultBox(b k) oraz—3db’'e BoxN e b€ childB(b')oraz

typeB(b') = XOR

syn!b; gdy typeB(b) = PRIM
lub typeB(b) = FIN
SetStableBox(b) = SetStableBox(default(b)) gdy typeB(b) = XOR
SetStableBox(by)... gdy typeB(b) = AND
SetStableBox(b,) oraz b; € childB(b)

(LetExpressi(m(b])...LetExpression(b,)
Letb:bool=(bjand...and b,)in gdy typeB(b) = XOR lub
LetExpression(b) = < typeB(b) = AND oraz

b; € childB(b)
puste w przypadku przeciwnym

246 Dodutek 2

TrueList = ' k = card({be BoxN | typeB(b)=PRIM lub
true',... truet typeB(b)=FIN })

BoxList = b: bool, ..., b;: bool gdzie b,,...,b; = list({ b€ BoxN |
typeB(b)=PRIM lub typeB(b)=FIN })

ChangeBoxList(b)= gdzie b,,...,b; = list({be BoxN |
if-not(b, b)) ,..., if-not(b, by) typeB(b)=PRIM lub typeB(b)=FIN })

b, gdy by # by oraz (b, & childB' (b))
lub (b, € childB(b,) oraz defaultB(b,) # b,))
not(b,) gdy b, =b,

if-not(default(by),b,) gdy typeB(b,) = XOR oraz

if —not(by,by) = *
if —not(by,b,) b, € childB (b))

if-not(b3,b,) gdy typeB(b;) = AND oraz
b3 € ChlldB(bl)

and by € childB (by)

Funkcje SetDefaultBox oraz SetStableBox stuza do generowania tekstéw stanowiacych
fragmenty wyrazen behawioralnych w obrebie definicji procesu Complete.

Pozostate funkcje sa zwigzane z definicja procesu Synchroniser. Ich parametry for-
malne i aktualne sg okreslone odpowiednio przez funkcje BoxList oraz TrueList.
Liczba parametréw formalnych jest taczng liczba stanéw typu PRIM i FIN. Zawarte
w wyrazeniu LetExpression zmienne b, ..., b; rodzaju bool reprezentuja podstany
odpowiednich stanéw. Warto$¢ true zmiennej b; oznacza, ze odpowiedni stan jest
stabilny, a w przypadku przeciwnym, ze jest niestabilny. Stan ziozony jest stabilny
tylko wtedy, gdy stabilne sg wszystkie jego podstany. Wartosci tych zmiennych sg
obliczane na podstawie parametréw aktualnych procesu Synchroniser.

Specyfikacja przykladowego diagramu stanéw

Przedstawiana dalej specyfikacja w LOTOSie jest wynikiem zastosowania funkcji
SM_Trans do diagramu stanéw przedstawionego na rysunku D2.1.

Dodatek 2 247

(bD)
oA b1
tm1 5 bB
. J

Rys. D2.1. Przykiadowy diagram stanéw

Diagram sktada si¢ ze stanéw bA, bB, bC, bD. Stany bA, bB, bC sa stanami prosty-
mi, a stan bD jest ztozony sekwencyjnie. Pomiedzy stanami sa przejscia, z ktérych
jedno, oznaczone tm1, jest przejsciem czasowym.

Zakladamy, ze kazdy stan prosty ma akcje wejsciowe i akcje wyjsciowe — sa one re-
prezentowane przez odpowiednie bramki. Przyjeto konwencje¢: bramka ia odpowiada
akcji wejsciowej do stanu A — pierwsza litera i oznacza wejscie, druga a odnosi si¢ do
stanu A; bramka ea odpowiada akcji wyjsciowej do stanu A — pierwsza litera e ozna-
cza wyjscie, druga — jak poprzednio — odnosi si¢ do stanu.

Specification S[ia,ea,ib,eb,ic,ec,bl,b2,a]: noexit
library Boolean endlib

type ArcNames is
sorts arcN
opns
bl,b2,a :-> arcN
tml :-> arcN
default :-> arcN
endtype

type BoxNames is

sorts DboxN

opns bA, bB, bC, bD:->boxN
endtype

behaviour

hide putS, getS, syn, tml in
(* przejscia czasowe ‘time-out’ sa ukryte *)
(

StateHandler [putS, getS]

248 Dodatek 2

| [puts, gets]]
(
Complete]| putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml] (default) >>
(bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
[> bD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a, tml]
)
)
| (syn,bl,b2,a, tml] |
Synchroniser[syn,bl,b2,a,tml] (true, true, true)
)

where

process Synchroniser([syn,bl,b2,a,tml] (A,B,C: bool):
noexit :=

let bD: bool = (A and B and C) in

(syn !'bA; Synchroniser[syn,bl,b2,a,tml] (not(A),B,C)
(]

syn !bB; Synchroniser(syn,bl,b2,a,tml] (A,not(B),C)
[]

syn !bC; Synchroniser[syn,bl,b2,a,tml] (A,B,not(C))
[]

[A]}->bl; Synchroniser(syn,bl,b2,a,tml] (A, not(B),C)
[]

[A)->tml; Synchroniser(syn,bl,b2,a,tml] (A,B,not(C))
[]

[B]->a; Synchroniser[syn,bl,b2,a,tml] (not(a),B,C)
(]

[C]->b2; Synchroniser([syn,bl,b2,a,tml] (A, not(B),C)

)
endproc (* Synchroniser *)

process StateHandler[putS, getS]: noexit :=
bD([putS, getS] (bA)
where

process bD[putS, getS](s: boxN): noexit:
getS !bD !s; bD[putS, getS](s)
[]
putS !'bD !bA; bD[putS, getS] (ba)
[]
putS !bD !bB; bD[putS, getS] (bB)
(]
putS !'bD !bC; bD[putS, getS] (bC)
endproc (* bD *)
endproc (* StateHandler *)

Dodatek 2 249

process Complete[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml] (s: arcN) : exit :=

([s=default] ->

EntrybD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> putS !bD !'bA; exit

)

(]

([s=bl] ->

ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a, tml]

>> EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
>> putS !'bD !bB; syn !bB; exit

)

[]

([s=b2] ->
ExitbC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> putS !'bD !bB; syn !bB; exit

)

(]

([s=a] ->
ExitbB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> putS !'bD !bA; syn !bA; exit

)

(]

([s=tml] ->

ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> EntrybC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> putS !'bD !bC; syn !bC; exit)

endproc

(* ——————————- akcje wejscia ‘entry’ i wyjscia ‘exit’ ---------

process EntrybA[putS,getS,syn,ia,ea,ib,eb, ic,
ec,bl,b2,a,tml]: exit :=

ia; exit
endproc

process ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ea; exit
endproc

process EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ib; exit
endproc

250 Dodatek 2

process ExitbB[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

eb; exit
endproc

process EntrybC[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ic; exit
endproc

process ExitbC[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ec; exit
endproc

process EntrybD[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

EntrybA[putS, getS,syn, ia,ea,ib,eb,ic,ec,bl,b2,a, tml]
endproc

i¥ ==mconm o= definicje proceséw ------------- *)

process bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]:

((* DoTrans is empty *)
tml; exit (* Time Out *)
[> (* Disabling Part *)
((bl; exit)
>> Complete]| putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml] (bl)
>> DbB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
)
) (* After Time-Out *)
>> Complete]| putS,getS,syn,ia,ea,ib,eb, ic,
ec,bl,b2,a,tml] (tml)
>> bC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a, tml]
endproc

process bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]:

(stop (* przeterminowanie ‘time out’ *)

[> (* czesé deaktywujaca ‘disabling’ *)
((a; exit)
>> Complete]| putS,getS,syn,ia,ea,ib,eb,ic,

ec,bl,b2,a,tml] (a)
>> bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
)
) (* puste po zdarzeniu przeterminowania *)
endproc

noexit

noexit

Dodatek 2 251

process bC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

(stop (* Time Out *)

[> (* cze$¢ deaktywujaca ‘disabling’
((b2; exit) :
>> Complete(putS, getS,syn,ia,ea,ib,eb, ic,

ec,bl,b2,a,tml] (b2)
>> bB[putS,getS,syn,ia,ea,ib, &b, ic,ec,bl,b2,a, tml]

*)

)
) (*puste po zdarzeniu przeterminowania *)

endproc

process bD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

stop (* root *)
endproc
endspec

252

Literatura

Ajmone Marsan M., Balbo G., Conte G., 1984, A class of generalized stochastic Petri nets for
the performance evaluation of multiprocessor systems, ACM Trans. Computer Systems,
Vol. 2, 93-122.

Ajmone Marsan M., Balbo G., Conte G., Donatelli S., Franceschinis G., 1994, A LOTOS exten-
sion for the performance analysis of distributed systems, IEEE/ACM Trans. Networking,
Vol. 2 (2), 151-164.

Apt K., Olderog E.-R., 1991, Verification of Sequential and Concurrent Programs, Springer.

Apvrille L., Courtiat J.-P., Lohr C., de Saqui-Sannes P., 2004, TURTLE: A Real-Time UML
profile supported by a formal validation toolkit, IEEE Transactions on software Engineer-
ing, Vol. 30, No. 7, 473-486.

Babczynski T., Huzar Z., Magott J., 1999, Algebraic semantics for Markovian statecharts, in:
Proc. 15™ Annual UK Performance Engineering Workshop, University of Bristol, July
22-23, 105-120.

Babczynski T., Huzar Z., Magott J., 2000, Derivation of Markov processes form the UML
statecharts, Archiwum Informatyki Teoretycznej i Stosowanej, t. 12, z. 3, 141-171.

Babczynski T., Huzar Z., Magott J., 2001, Performance modelling and evaluation of continu-
ous media transport protocol using statecharts, Archiwum Informatyki Teoretycznej
i Stosowanej, t. 13, z. 4, 329-342.

Babczynski T., Huzar Z., Magott J., 2003, Performance evaluation in analysis of ATM network
signalling, in: Proc. IASTED Int. Conference On Modelling, Identification and Control,
Innsbruck, 341-346.

Babich F., Deonto L., 2002, Formal Methods for Specification and Analysis of Communication
Protocols, IEEE Communications Surveys, The Electronic Magazine of Original Peer-
Reviewed Survey articles, Vol. 3, No. 1. http://www.comsoc.org/pubs/surveys.

Baeten J.C.M., 2004, A brief history of process algebra, Rapport CRS 0402, Vakgroep Infor-
matica, Technische Universitit Eindhoven.

Baeten J.C.M., Bergstra S.A., Smolka S.A., 1995, Axiomatizing probabilistic processes: ACP
with generative probabilities, Information and Computation, 121, 234-255.

Baeten J.C.M., Bergstra S.A., 1991, Real Time Process Algebra, Formal Aspects of Comput-
ing, 3 (2), 183-235.
Baeten J.C.M., Middelburg C.A., 2002, Process Algebra with Timing, Springer.

Behforooz A., Hudson F.J., 1996, Software Engineering Fundamentals, Oxford University
Press.

Berard B. Bidoit M., Finkel A., Laroussinie F., Petit A., Petrucci L., Schnoebelen P., and
Mckenzie P., 2001, Systems and Software Verification: Model-Checking Techniques and
Tools, Springer.

http://www.comsoc.org/pubs/surveys

Literatura 253

Belina F., Hogrefe D., 1989, The CCITT - Specification and Description Language SDL,
Computer Networks and ISDN Systems, Vol. 16, 311-341.

Benveniste A., Caspi P., Edwards S., Halbwachs N., Le Guernic P., De Simone R., 2003, The
synchronous languages 12 years later, Proceedings of the IEEE, Vol. 91, No. 1, 66-83.

Bergstra J.A., Klop J.W., 1985, Algebra for Communicating Processes with Abstraction, Theo-
retical Computer Science, Vol. 37, 77-121.

Bernardo M., Gorrieri R., 1998, A Tutorial on EMPA: A Theory of Concurrent Processes with Non-
determinism, Priorities, Probabilities and Time, Theoretical Computer Science, 201, 1-54.

Bilski E., Dubielewicz 1., 1991, Model odniesienia dla wspétdziatania systemow otwartych,
t. 1, Wydawnictwo Politechniki Wroctawskiej.

Bilski E., Dubielewicz 1., 1993, Model odniesienia dla wspéldziatania systeméw otwartych,
t. 2, Wydawnictwo Politechniki Wroctawskie;j.

Bolognesi T., Smolka S.A., 1987, Fundamental results for the verification of observational
equivalence: a survey, in: Protocol Specification and Verification, VII, Rudin H.,
West C.H. (eds.), Elsevier Science Publishers, IFIP, 165-179.

Bolognesi T., Lucidi F., Trigila S., 1990, From Timed Petri Nets to Timed LOTOS, in: Protocol
Specification, Testing and Verification, X, Logrippo L., Probert R., Ural H. (eds.),
North-Holland, 395-408.

Bolognesi T., Lucidi F., 1992, LOTOS-like process algebra with urgent and timed interactions,
in: Formal Description Techniques, IV, Parker K., Rose G. (eds.), North-Holland, 249-
264.

Bolognesi T., Lucidi F., Trigilla S., 1995, Converging towards timed LOTOS standard, Com-
puter Standards Interfaces, 16, 87-118.

Bolognesi T., Brinksma E., 1989, Introduction to ISO Specification Language LOTOS, in:
Eijk P.H.J. van, Vissers C.A., Diaz M. (eds.), The formal Description Technique LOTOS,
North-Holland, 23-73.

Booch G., Rumbaugh J., Jacobson 1., 1999, The Unified Modelling Language User Guide,
Addison-Wesley.

Bortnik E., Tréka N., Wijs A.J.,, Luttik S.P., van de Mortel-Fronczak J.M., Baeten J.C.M,,
Fokkink W.J., Rooda J.E., 2004, Analyzing a Model of a Turntable System using Spin,
CADP and Uppaal, Technical Report, Department of Software Engineering, GB Amster-
dam.

Borger E., Stirk R., 2003, Abstract State Machines. A Method for High-Level System Design
and Analysis, Springer.

Bravetti M., Bernardo M., 2000, Compositional Asymmetric Cooperations for process algebras
with probabilities, priorities, and time, Electronic Notes for Theoretical Computer Sci-
ence, Vol. 39, No. 3, 34.

Brinksma E., Scollo G., 1986, Formal notions of implementation and conformance in LOTOS,
Technical Report, Computer Science Department, Twente University.

254 Literatura

Brinksma E. (ed.), 1988, Information processing svstems — Open systems interconnection —
LOTOS - A formal description technique based on the temporal ordering of observational
behaviour, International Standard ISO 8807.

Brinksma E., 1989, Constraint-oriented specification in a constructive formal description
technique, in: de Bakker J.W., de Roever W.-P., Rozenberg G. (eds.), Stepwise Refine-
ment of Distributed Systems. Models Formalism, Correctness, LNCS 430, Springer,
130-152.

Brinksma E., Katoen J.-P., Latella D., 1995, A stochastic causalitv-based process algebra, The
Computer Journal, Vol. 38, 552-565.

Bronsztejn LN., Siemiendiajew K.A., Musiol G., Miihlig H., 2004, Nowoczesne kompendium
matematvki, PWN.

Budkowski S., 1992, ESTELLE Development Toolset (EDT), Computer Networks and ISDN
Systems, 23 (5), North-Holland.

Budkowski S., Dembinski P., 1987, An introduction to ESTELLE: a specification language for
distributed systems, Computer Networks and ISDN Systems, 14 (1), North-Holland, 3-23.

Budkowski S., Dembinski P., 1989, The specification language ESTELLE, in: Diaz M. et al.
(eds.), The Formal Description Technique ESTELLE, North-Holland.

Burstall R.M., Goguen J.A., 1982, Algebras, Theories and Freeness: An Introduction for Com-
puter Scientists, Proc. 1981 Marktoberdorf NATO Summer School, Reidel, 329-348.

Cardelli L., Gordon A.D., 1998, Mobile Ambients, in: Nivat M. (ed.), Proceedings of the First
international Conference on Foundations of Software Science and Computation Structure,
Lecture Notes In Computer Science, Vol. 1378, 140-155.

CCITT, 1992, Specification and Description Language, CCITT Z100, International Consulta-
tive Committee on Telegraph and Telephony, Geneva.

Cichon P., Huzar Z., 2005, Wyrazanie???, w: Kwiecien A., Gaj P. (red.), Svstemy informatvcz-
ne z ograniczeniami czasowymi, WKit..

Cichon P., Huzar Z., 2006, Wyrazanie synchronizacji zdarzen w jezvku UML, w: Kwiecien A.,
Gaj P. (red.), Systemy informatyczne z ograniczeniami czasowymi, WKit., 13-22.

Clarke E., Emerson E.A., Sistla A.P., 1983, Automatic verification of finite-state concurrent
systems using temporal logic, in: 10" Annual Symposium on Principles of Programming
Languages, ACM.

Clark R., Moreira A., 2000, Use of E-LOTOS in adding formality to UML. Journal of Universal
Computer Science, Springer Pub. Co., Vol. 6 (11), 1071-1087.

Comer D.E., 1997, Sieci komputerowe TCP/IP. Zasady, protokoly i architektura, WNT,

Czachérski T., 1999, Modele kolejkowe w ocenie efektywnosci sieci i systemow kom-
puterowych, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego.

D’Argenio P.R., Hermanns H., Katoen J.-P., 1999, On generative parallel composition, in:
Proc. On Probabilistic Methods in Verification, ENTCS, Vol. 22, Elsevier.

Literatura 255

Esterel Technologies, 2005, The Esterel v7 Reference Manual. Version v7_30 — initial IEEE
standarization proposal.

Dembinski P., 1997, Semantics of Timed Concurrent Systems, Fundamenta Informaticae, 29,
27-50.

Dembinski P., Janowska A., Janowski P., Penczek W., Pétrola A., Szreter M., Wozna B.,
Zbrzezny A., 2003, A Tool for Verifying Timed Automata and Estelle Specifications, Pro-
ceedings of TACAS’03, 2619, Springer.

Dijkstra E'W., 1978, Umiejetnos¢ programowania, WNT.
Douglass B.P., 1998, Real-Time UML, Addison-Wesley.

Douglass B.P. 1999, Doing Hard Real. Developing Real-Time Systems with UML, Addison-
-Wesley.

Dubielewicz I., Hnatkowska B., Huzar Z., Tuzinkiewicz L., 2006, An Approach to Software
Quality Specification and Evaluation, Sacha K. (ed.), Software engineering Techniques:
Design for Quality, Springer, 155-166.

Ehrig H., Mahr B., 1985, Fundamentals of Algebraic Specifications 1, EATCS Monographs on
Theoretical Computer Science, Vol. 6, Springer.

van Eijk P.H.]., Vissers C.A., Diaz M. (eds.), 1989, The Formal Description Technique
LOTOS, North-Holland.

Elisberg I., Hogrefe D, Sarma A., 1997, SDL Formal Object-Oriented Language for communi-
cation systems, Prentice Hall.

Fencott C., 1996, Formal Methods for Concurrency, International Thomson Computer Press.

Fernadez J.-C., Mounier L., 1995, A Local Checking Algorithm for Boolean Equation Systems.
Rapport SPECTRE 95-07, VERIMAG, Grenoble.

Garavel H., Sifakis J., 1990, Compilation and Verification of LOTOS Specifications, in:
Logrippo L., Probert R.L., Ural H. (eds.), Protocol Specification, Testing, and Verifica-
tion, North-Holland.

Garavel H., Mateescu R., 1996a, French-Romanian proposal for capture of requirements and
expression of properties in E-LOTOS modules, Rapport SPECTRE 96-04, VERIMAG,
Grenoble, May 1996. Input document (KC4) to the ISO/IEC JTC1/SC21/WG7 Meeting
on Enhancements to LOTOS (1.21.20.2.3), Kansas City, Missouri, USA, May 12-21,
1996.

Garavel H., Sighireanu M., 1996b, French-Romanian integrated proposal for the user lan-
guage of E-LOTOS, Rapport SPECTRE 96-05, VERIMAG, Grenoble, May 1996. Input
document (KC3) to the ISO/IEC JTC1/SC21/WG7 Meeting on Enhancements to LOTOS
(1.21.20.2.3), Kansas City, Missouri, USA, May 12-21, 1996.

Garavel H., 1998, OPEN/CAESAR: An Open Software architecture for Verification, Simulation
and Testing, in: Steffen B. (ed.), Proceedings of the First International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, LNCS Vol. 1384,
Springer, 68-84.

256 Literatura

Garavel H., Lang F., Mateescu R., 2001, An overview of CADP 2001, INRIA, Rapport tech-
nique, No. 0254, December.

Garavel H., Hermanns H., 2001, On Combining Functional Verification and Performance
Evaluation using CADP, Rapport de Recherche 4492, INRIA.

Gibson J.P., 1993, Formal Object Oriented Development of Software Systems using LOTOS,
PH. D. Dissertation, Department of Computing Science, University of Stirling.

Girault C., Valk R., 2003, Petri Nets for Systems Engineering: a Guide to Modelling, Verifica-
tion and Applications, Springer.

Gnesi S., Schieferdecker 1., Rennoch A. (eds.), 2000, 5™ International ERCIM Workshop on
Formal Methods for Industrial Critical Systems, Proceedings of FMICS*2000, April 34,
Berlin, Report GDM - Forschungszentrum Informationstechnik.

Gotz N., Herzog U., Rettelbach M., 1993, Multiprocessor and distributed system design: the
integration of functional and performance analysis using stochastic process algebras, in:
Donatiello L., Nelson R. (eds.), Performance Evaluation of Computer and Communica-
tion Systems, LNCS 729, Springer, 121-146.

Goérski 1., 2001, Inzynieria oprogramowania w projekcie informatycznym, Mikom.

Groote J.F., 1990, Specification and Verification of Real Time Systems in ACP, in: Logrippo
L., Probert R., Ural H. (eds.), Protocol Specification, Testing and Verification, X, North-
-Holland, 262-274.

Groote L.F., 1990, Transition system specifications with negative premises, in: Baeten J.C.M.,
Klop J.W. (eds.), CONCUR ’90, LNCS, Vol. 458, Springer, 332-341.

Le Guernic P., Gautier P., Le Borgne M., Le Maire C., 1991, Programming real-time applica-
tions with SIGNAL, Proc. IEEE, Vol. 79, 1321-1336.

Haj-Hussein M., Logrippo L., 1991, Specifving Distributed Algorithms in LOTOS, in: Ko-
morowski W. (ed.), Proceedings of the Conference ‘Computer Networks’, Wydawnictwo
Politechniki Wroctawskiej, 50-62.

Halbwachs N., Caspi P., Raymond P., Pilaud D., 1991, The svnchronous dataflow program-
ming language, Proceedings of the IEEE, Vol. 79 (9), 1305-1320.

Hanson H., Jonsson B., 1990, A calculus for communicating systems with time and probabili-
ties, Proc. 11" IEEE Real-Time Systems Symposium, 278-287.

Harel D., 1979, First Order Dynamic Logic, Springer.

Harel D., 1987, Statecharts: A visual formalism for complex systems, Science of Computer
Programming, Vol. §, No. 3, 231-274.

Harel D., Kozen D., Tiuryn J., 2000, Dynamic Logic, MIT.
Harel D., Marelly R., 2003, Come, Let’s Play, Springer.
Heitmeyer C., Mandrioli D. (eds.), 1996, Formal Methods for Real-Time Computing, Wiley.

Hennessy M.C.B., Plotkin G.D., 1979, Full abstraction for a simple programming language,
LNCS 74, Springer, 108-120.

Literatura 257

Hennessy M.C.B.. Plotkin G.D., 1980, A term model for CCS, LNCS 88, Springer, 261-274.

Hennessy M.C.B, Milner R., 1985, Algebraic laws for nondeterminism and concurrency, Jour-
nal of the ACM, Vol. 32, 137-161.

Hennessy M.C.B, 1988, Algebraic Theory of Processes, The MIT Press.

Hennessy M.C.B., Reagan T., 1991, A temporal process algebra, in: Formal Description Tech-
niques, III, Quemada J., Manas J., Vazquez (eds.), North-Holland, 33-48.

Herrmanns H., Rettelbach M., 1994, Syntax, Semantics, Equivalences for MTIPP, in: Her-
zog U., Rettelbach M. (eds.), Proc. of 2" Workshop on Process Algebras and Performance
Modelling.

Hermanns H., Rettelbach M., Weiss T., 1995, Formal characterisation of immediate actions in
SPA with nondeterministic branching, The Computer Journal, Vol. 38, 530-541.

Hermanns H., Rettelbach M., 1996, A superset of Basic LOTOS for performance prediction, in:
Ribaudo M. (ed.) Proceedings of the 4" Workshop on Process Algebras and Performance
Modelling, CLUT, 77-94.

Hermanns H., Herzog U., Katoen J.-P., 2002, Process Algebra for Performance Evaluation,
Theoretical Computer Science, 274, 43-87.

Herzog U. 1996, A concept for graph-based stochastic process algebras, generally distributed
times, in: Ribaudo M. (ed.) Proceedings of the 4™ Workshop on Process Algebras and Per-
formance Modelling, CLUT, 1-20.

Hillston J., 1996, Compositional Approach to Performance Modelling, Cambridge University
Press.

Hnatkowska B., 1998, Obicktowy jezvk specyfikacji systemow reaktywnyeh — O-LOTOS, roz-
prawa doktorska, Wydzialowy Zaktad Informatyki, Politechnika Wroctawska.

Hnatkowska B., Huzar Z., 2000, Extending the UML with a multicast synchronization, Pro-
ceedings of Workshop on Rigorous Object Oriented Methods, York, UK, January 2000.

Hnatkowska B., Huzar Z., 2001, Transformation of dynamic aspect of UML models into
LOTOS behaviour expressions. Int. J. Appl. Math. Comput. Sci., Vol. 11, No. 2, 537-556.

Hnatkowska B., Huzar Z., Tuzinkiewicz L., 2001, Zwiqzki pomiedzy modelami w metodyce
USDP, 111 krajowa konferencja Inzynierii oprogramowania, Mikom, 103-112.

Hoare C.A.R., 1978, Communicating sequential processes, Communications of ACM, Vol. 21,
666-677.

Hoare C.A.R., 1985, Communicating sequential processes, Prentice Hall International.

Huzar Z., 1989, Programowanie procesow komunikujqcych sie w czasie rzeczywistym, Cen-
trum Obliczeniowe, Monografia 6/1, Wydawnictwo Politechniki Wroctawskiej.

Huzar Z., 1990, Specyfikacja formalna ustug warstwy sesji dla poczty elektronicznej. Raporty
Centrum Obliczeniowego Politechniki Wroctawskiej, Ser. SPR nr 4,

Huzar Z., 1991, An operational approach to semantics of real-time programming language,
Computers and Artificial Intelligence, Vol. 10, 239-254.

258 Literatura

Huzar Z., 1991, Real Time LOTOS, in: Proceedings of the Computer Networks '91 Conference,
Komorowski W. (ed.), 63-77, Computer Centre, Technical University of Wroctaw.

Huzar Z., 1996, Real-Time CCS", Archiwum Informatyki Teoretycznej i Stosowanej, t. 8,
z. 1-2, 147-167.

Huzar Z., 2001, Zastosowanie UML do projektowania systemow czasu rzeczywistego — meto-
dyka ROPES, w: Systemy czasu rzeczywistego. Wyktady zaproszone, Szmuc T. (red.), VII
Konferencja, Krakéw, 25-28 wrzesnia 2000, Katedra Automatyki AGH, 3-60.

Huzar Z., 2002, Elementy logiki dla informatykéw, Oficyna Wydawnicza Politechniki Wroc-
tawskie;j.

Huzar Z., Fryzlewicz Z., Dubielewicz I., Hnatkowska B., Waniczek J., 1998, Ada 95, Helion.
Huzar Z., Kuzniarz L., 1990a, Jezyk LOTOS - specyfikacje typéw danych, Informatyka, r. 25,

nrl, 19-22.

Huzar Z., Kuzniarz L. 1990b, Jezyk LOTOS - specyfikacje proceséw. Informatyka, r. 25, nr 2,
21-24.

Huzar Z., Kuzniarz L. 1990c, Jezyk LOTOS - specyfikacja systeméw. Informatyka, r. 25, nr 3.
26-28.

Huzar Z., Kuzniarz L., 1993, Hiding deadlocks in LOTOS semantics, Archiwum Informatyki
Teoretycznej i Stosowanej, t. 5, z. 3-4, 409-427.

Huzar Z., Kuzniarz L., Lach M., 1997, A software tool for deadlock detection in basic Lotos
expressions, Raporty Wydziatlowego Zaktadu Informatyki Politechniki Wroctawskiej, ser.
SPR nr 16.

Huzar Z.. Kuzniarz L., Reggio G., Sourrouille J.-L., 2005, Consistency Problems in UML-
based Software Development, in: Nunes N.J. et al. (eds.), <<UML>> Satellite Activities,
LNCS 3297, Springer, 1-12.

Huzar Z., Kuzniarz L., Sptawski Z., Magott J., 1995, Specification of synchronization re-
quirements in multimedia systems, in: Proc. 2™ Conference on Real Time Systems,
Szklarska Porgba, 20-23 wrzesnia, Oficyna Wydawnicza Politechniki Wroctawskiej,
122-131.

Huzar Z., Magott J., 1995a, Real-time and performance evaluation extensions of specification
language LOTOS, in: Proc. MASCOTS ’95 — IEEE and ACM International Workshop on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Janu-
ary 18-20, 1995, Durham, USA, 382-386.

Huzar Z., Magott J., 1995b, Timing requirement specification in a real-time LOTOS extension,
in: Proc. Conference on Real-Time Systems, Paris, January 11-13, 5-20.

Huzar Z., Magott J., 1996, Reduction method for transition system of a performance evaluation
extension of LOTOS, in: Ribaudo M. (ed.), Proc. 4t Workshop on Process Algebras and
Performance Modelling, Torino, July 5-7, CLUT, 95-120.

Huzar Z., Magott J., 1997a, Syntax and semantics of a real-time and performance evaluation
extension of LOTOS, Fundamenta Informaticae, Vol. 29, 77-96.

Literatura 259

Huzar Z., Magott J., 1997b, Performance modelling extension of TE-LOTOS, Archiwum Infor-
matyki Teoretycznej i Stosowanej, t. 9, z. 1-4, 3-31.

Huzar Z., Magott J., 1997¢c, Markovian Basic LOTOS with Priorities and Probabilities, in:
Proc. 5" Workshop on Process Algebras and Performance Modelling, Twente, June
26-217.

Huzar Z., Magott J., 1997d, Probabilistic extension of TE-LOTOS, in: Proc. 2nd Workshop on
Applied Formal Methods, Zagreb, 89-99.

Huzar Z., Magott J., 2000, New semantics for Markovian Statecharts, in: Proc. 16" Annual UK
Performance Engineering Workshop, Durham, July, 115-128.

Huzar Z., Magott J., 2001, Markovian Extension of Basic LOTOS with priorities and prob-
abilities, in: Proc. 17" Annual UK Performance Engineering Workshop, Leeds, July,
167-178.

Huzar Z., Sptawski Z., 1989, Tworzenie oprogramowania sieciowego — problemy netodolo-
giczne i teoretyczne, Prace Naukowe Centrum Obliczeniowego Politechniki Wroctawskiej
9/4, Sieci komputerowe — projektowanie, zastosowania, eksploatacja, Wydawnictwo Poli-
techniki Wroctawskiej, 132-148.

ISO 7498, 1984, Information Processing systems — Open Systems Interconnection — Basic
Reference Model.

ISO 8870, 1989, Information Processing systems — Open Systems Interconnection —
LOTOS: A Formal Description Technique based on Temporal Ordering of Observation
Behaviour. !

ISO 9074, 1989, Information Processing systems — Open Systems Interconnection — Estelle:
A Formal Description Technique based on Extended State Transition Model.

ISO/IEC 10746-2, 1995, Open Distributed Processing — Reference Model — Part 2: Founda-
tions.

ISO/IEC 10746-3, 1995, Open Distributed Processing — Reference Model — Part 3: Architec-
ture.

ISO/IEC 15437, 2001, Information Technology — Enhancements to LOTOS (E-LOTOS).

ISO/IEC 9621-1:2000, Software engineering — Product quality — Part 1: Quality model.

ISO/IEC TR 9621-2:2002, Software engineering — Product quality — Part 2: External met-
rics.

ISO/IEC 14598-3:2000, Software engineering — Product evaluation — Part 3: Process for de-
velopers.

ISONEC TR 9621-3:2002, Software engineering — Product quality — Part 4: Internal metrics.

ISO/IEC TR 9621-4:2002, Software engineering — Product quality — Part 4: Quality in use
metrics.

ISO/IEC 10746-1, 1995, Information technology — Open Systems Interconnections — Data
Management and Open Distributed Processing — Overview.

260 Literatura

ISO/IEC 10746-2, 1995, Information technology — Open Systems Interconnections — Data
Muanagement and Open Distributed Processing — Basic reference model of open distrib-
uted processing: Descriptive model.

ISO/IEC 10746-3, 1995, Information technology — Open Systems Interconnections — Data
Management and Open Distributed Processing — Basic reference model of open distrib-
uted processing: Prescriptive model.

ISO/IEC 10746-4, 1995, Information technology — Open Systems Interconnections — Data
Management and Open Distributed Processing — Architectural semantics, specification
techniques and formalisms.

ISO/IEC 9646-3, 1998, Information technology — Open Systems Interconnections — Tree and
Tabular Combined Notation.

ITU-T, 1999, Recommendation Z.100, Specification and Description Language.
Jaszkiewicz A., 1997, Inzynieria oprogramowania, Helion.

Juanole G., Atamna Y., 1991, Dealing with arbitrary time distributions with the Stochastic
Timed Petri Net model — Applications to queuing networks, in: Proc. Workshop Petri Nets
and Performance Models, Melbourne, December 1991, IEEE Computer Society Press,
32-41.

Katoen J.-P., Brinksma E., Latella D., Langerak R., 1996, Stochastic simulation of event struc-
tures, in: Ribaudo M. (ed.), Proc. 4 Workshop on Process Algebra and Performance
Modelling, CLUT Press, 21-40.

Kosmulska-Bochenek E., 2002, Wymiana informacji w heterogenicznych systemach siecio-
wych — jezvk ASN. 1, Oficyna Wydawnicza Politechniki Wroctawskiej.

Koymans R., Shyamasundar R.K., De Roever W.P., Gerth R., Arun-Kumar S., 1985, Composi-
tional semantics for real-time distributed computing, LNCS 193, 167-189, Springer.

Kutakowski K., 2004, Konstrukcja i analiza sterownikéw wspomagana metodami formalnymi,
rozprawa doktorska, Wydzial Elektrotechniki, Automatyki, Informatyki i Elektroniki,
Akademia Gérniczo-Hutnicza.

Leduc G., 1992, A methodology for the design of large LOTOS specifications and its applica-
tion to 1SO 8073, University de Liege, Esprit Project 5341/ Sector OBS. SART 92/19/05.

Leduc G., Leonard L., 1992, A timed LOTOS supporting a dense time domain and including
new timed operators, in: Diaz M., Groz R. (eds.), Formal Description Techniques, Par-
ticipants’ Proceedings, 99-114.

Leduc G., Leonard L., 1995, An introduction to ET-LOTOS for the description of time-sensitive
systems, Computer Networks and ISDN Systems, 29 (3), 271-292.

Linger R.C., Lipson H.F., McHugh J., Mead N.R., Sledge C.A., 2002, Life-Cycle Models for
Survivable Systems, Technical Report, Carnegie Mellon Software Engineering Institute —
2002-TR-026, ESC-TR-2002-026.

Logrippo L., Probert R.L., Ural H. (eds.), 1990, Protocol Specification, Testing, and Verifica-
tion, North-Holland.

Literatura 261

Logrippo L., 2000, Immaturity and potential of formal methods: A personal view, Proceedings
of the 6™ Six International Workshop on Feature Interactions in Telecommunications and
Software Systems, 10S Press, 9-13.

Magott J., 2005, Techniki opisu formalnego systemdw informatveznych czasu rzeczywistego, WKit..
Manna Z., Pnueli A., 1992, A Temporal Logic of Reactive and Concurrent Svstems, Springer.
Maciaszek L.A., 2004, Requirements Analysis and System Design, Pearson, Addison-Wesley.
MDA, 2003, Guide Version 1.0.1, Document OMG: omg/2003-06-01, OMG.

MOF QVT, 2005, Final Adopted Specification, Document OMG: ptc/05-11-01.

Mouhoub M., Sadaoui S., 2005, Parkway W., Improving Lotos Simulation Using Constraint
Propagation, Proceedings of the 17" IEEE International Conference on Tools with Artifi-
cial Intelligence, IEEE.

Miguel C., Fernandez A., Vidaller L., 1993, LOTOS extended with probabilistic behaviour,
Formal Aspects of Computing, Vol. 5, 253-281.

Milner R., 1980, A Calculus of Communicating Systems, Springer.

Milner R., 1983, Calculi for Synchrony and Asynchrony, Theoretical Computer Science, Vol.
25, 267-310.

Milner R., 1989, Communication and Concurrency, Prentice-Hall.

Milner R., 1999, Communicating and Mobile Systems: the m-calculus, Cambridge University
Press.

Milner R., Tofte M., Harper R., 1990, The Definition of Standard ML, MIT Press.

Moller F., Tofts C., 1989, A Temporal Calculus of Communicating Systems, Technical Report
ECS-LFCS-89-104, Laboratory for the Foundations of Computer Science, Edinburgh
University.

De Nicola R., Hennessy M.C.B., 1984, Testing Equivalence for Processes, Theoretical Com-
puter Science, Vol. 34, No. [, 2, 83-133.

De Nicola R., Vaandrager F.W., 1990, Action versus state based logics for transition systems,
LNCS 469, Springer, 407-419.

Nicollin X., Sifakis J., 1992, An Overview and Synthesis on Timed Process Algebras, in:
de Bakker J.W. et al. (eds.), Real-Time: Theory in Practice, LNCS, Vol. 600, Springer,
526-548.

Parrow J.G., 1985, Fairness Properties in Process Algebra, PhD Thesis, DoCS 85/03, Com-
puter Science Department, Uppsala University.

Pavon S., Larrabeiti D., Rabay G., 1995, LOLA - LOTOS Laboratory, User Manual,
Departamento de Ingenieria Telematica, Universidas Politechnica de Madrid,
LOLA/NS/V10.

Paige R., Tarjan R.E., 1987, Three Partition Refinement Algorithm, SIAM Journal of Comput-
ing, Vol. 16 (6), 973-989.

262 Literatura

Pelc L., 2004, Specyfikacja i walidacja protokotow komunikacyjnych czasu rzeczywistego,
rozprawa doktorska, Politechnika Wroctawska.

Priami C., 1996, Stochastic r-calculus with general distributions, in: Ribaudo M. (ed.), Proc.
4™ Workshop on Process Algebra and Performance Modelling, CLUT Press, 41-57.

Plotkin G., 1981, A structural approach to operational semantics, Technical Report DAIMI-FN
19, Department of Computer Science, Aarhus University.

Queille J.-P., Sifakis J., 1983, Fairness and related properties in transition systems — a tempo-
ral logic to deal with fairness, Acta Informatica, Vol. 19, 195-220.

Quemada J., Fernandez A., 1987, Introduction to quantitative relative time into LOTOS, in:
Protocol Specification and Verification, VII, Rudin H., West C.H. (eds.), Elsevier Science
Publishers, IFIP, 105-121.

Quemada J., Pavon S., Fernandez Z., 1989, State exploration by transformation with LOLA,
Workshop on Automatic Verification Methods for Finite State Systems, Grenoble,
June.

Quemada J., Azcorra A., Frutos D., 1990, TIC: A timed calculus for LOTOS, in: Formal De-
scription Techniques, II, Voung S.T. (ed.), North-Holland, 195-209.

Quemada J., Frutos D., Miguel C., 1993, The design of timed systems, in: Proc. 1 AMAST
Workshop on Real-Time Systems, Nov. 3-4, 1993, Iowa City, USA.

Reed G.M., Roscoe A.W., 1986, A rimed model for communicating sequential processes, Pro-
ceedings of ICALP "86, LNCS 226, Springer, 314-324.

Reed G.M., Roscoe A.W., 1999, The timed failure-stability model for CSP, Theoretical Com-
puter Science, 11 (1-2), 85-127.

Reisig W., 1988, Sieci Petriego, WNT.

Rettelbach M., 1995, Probabilistic branching in Markovian process algebras, The Computer
Journal, 38, 590-599.

Rico N., von Bochmann G., 1991, Performance description and analysis for distributed sys-
tems using a variant of LOTOS, in: Jonsson B. et al. (eds.), Protocol Specification, Testing
and Verification IX, North-Holland, 199-213.

Roscoe A.W., 1998, The Theory and Practise of Concurrency, Prentice Hall.

Salaiin G., Serwe W., 2005, Translating Hardware Process Algebras into Standard Proc-
ess Algebras — lllustration with CHP and LOTOS, Rapport de Recherche 5666,
INRIA.

Salwicki A., Miildner T., 1981, On the algorithmic properties of concurrent programs, LNCS
125, Springer, 169-197.

de Saqui-Sannes P., Apvrille L., Lohr C., Sénac P., Courtiat J.-P., 2002, UML and RT-LOTOS
An Integration for Real-Time System Validation, European Journal of Automation (JESA),
Hermeés, Vol. 36, 1029-1042.

Sawyer P., Kotonaya G., 2001, Software Requirements, in: SWEBOK, 2.1-2.26.

Literatura 263

Schieferdecker 1.K., 1995, Performance-oriented specification of communication protocols and
verification of deterministic bounds of QoS characteristics, Ph. D. Dissertation, GMD-
-Bericht Nr. 242, R. Oldenbourg Verlag.

Schneider S., 1995, An operational semantics for timed CCS, Information and Computing, 116,
193-213.

Schneider J.M., 1996, Protocol Engineering. A Rule-Based Approach, Springer.
Schneider K., 2004, Verification of Reactive Systems. Formal Methods and Algorithms, Springer.

Schieferdecker I.K., 1995, Performance-oriented specification of communication protocols and
verification of deterministic bounds of QoS characteristics, PhD Thesis, GMD-Bericht
Nr. 242, R. Oldenbourg Verlag.

Sjodin P., 1991, From LOTOS Specifications to Distribute Implementations, PhD Thesis,
DoCS 91/31, Department of Computer Science, Uppsala University.

Sptawski Z., 1997, Synchronization mechanisms for multimedia streams and their specification
in timed LOTOS, New Frontiers of Information Technology — Proceedings of the 23" Eu-
romicro Conference, IEEE, 456-463.

SWEBOK - Guide to Software Engineering Body of Knowledge, 2001, IEEE Trial Version 1.0,
May.

Szejko S. (red.), 2002, Metody wytwarzania oprogramowania, MIKOM.

Szmuc T., 1998, Zaawansowane metody tworzenia oprogramowania czasu rzeciywistego,
CCATIE 15, Krakowskie Centrum Informatyki Stosowane;j.

Szmuc T., Motet G., 1998, Specyfikacja i projektowanie oprogramowania czasu rzeczywistego,
CCATIE 6, Krakowskie Centrum Informatyki Stosowane;j.

Szpyrka M., 1999, Wspomaganie tworzenia oprogramowania systeméw reaktywnych z zasto-
sowaniem kolorowanych sieci Petriego, rozprawa doktorska, Wydziat Elektrotechniki,
Automatyki, Informatyki i Elektroniki, Akademia Gérniczo-Hutnicza.

Tatcher J., Wagner E., Wright J.B., 1982, Data Type Specification: Parameterization and The
Power of Specification Techniques. Trans. Prog. Lang. and Systems, 4 (4), 711-732.

Tiuryn J., 2003, Wstep do teorii mnogosci i logiki, Uniwersytet Warszawski, Wydzial Matema-
tyki, Informatyki i Mechaniki.

Tofts C., 1989, Timing Concurrent Processes, Technical Report ECS-LFCS-89-103, Labora-
tory for the Foundations of Computer Science, Edinburgh University.

Turner K.J. (ed.), 1993, Using Formal Description Techniques, Wiley.

Turner K.J., 2000, Realising Architectural Feature Descriptions using LOTOS. Parallel Com-
puters, Networks and Distributed Systems (Calculateurs Paralleles, Reseaux et Systemes
Repartis), Hermes.

UML, 1999, Unified Modeling Language, version 1.3, Object Management Group.

UML, 2003, Unified Modeling Language: Superstructure, version 2.0, Final Adopted Specifi-
cation, ptc/03-08-02, Object Management Group.

264 Literatura

Valderrutten A., Hjiej O., Benzekri A., Gazal D., 1992, Deriving queuing netwaorks perform-
ance models from annotated LOTOS specifications, in: Pooley R., Hillston J. (eds.), Com-
puter Performance Evaluation — Modelling Techniques and Tools, Edinburgh University
Press, 167-178.

Vissers C.A., Scollo G., van Sinderen M., 1988, Architecture and specification style in formal
descriptions of distributed systems, in: Aggarwal S., Sabnani (eds.), Protocol Specifica-
tion, Testing and Verification, North-Holland, 189-204.

Vissers C.A., Scollo G., van Sinderen M., Brinksma E., 1991, Specification Styles in Distrib-
uted System Design and Verification, Theoretical Computer Science, 89, 179-206.

Walkowiak A., 2006, Transformacja diagramoéow sekwencji jezyka UML 2.0 w wyrazenia be-
hawioralne jezyka specyfikacji formalnych LOTOS, w: Kwiecien A., Gaj P. (red.), Syste-
my informatyczne z ograniczeniami czasowymi, WKiL, 41-56.

Wallace D., Recker L., 2001, Software Quality, in: SWEBOK, 11.1-11.19.

Wang Y., 1991, CCS + Time = an Interleaving Model for Real Time Systems, in: Albert L.J.,
Mounier B., Artalego M.R. (eds.), Automata, Languages and Programming, LNCS 510,
Springer, 217-228.

W monografii. przedstawiono jezyk LOTOS, jego zastosowania,
a takze jego rozszerzenia, kiére umozliwiajg wykorzystanie jezyka
w procesie specyfikacji i projektowania systemow czasu rzeczywistego.
Oméwiono dwa rodzaje rozszerzen: rozszerzenia czasowe, ktore
pozwalajg na specyfikowanie systeméw czasu rzeczywistego z silnymi
ograniczeniami czasowymi, oraz rozszerzenia wydajnosciowe, ktore
umozliwiajg analize wydajnosciowq systemow czasu rzeczywistego
ze slabymi ograniczeniami czasowymi. Przedstawiono metodyke
stosowania LOTOSaq, a zwlaszcza jego wykorzystanie w specyfikaciji
uslug i protokoléw sieciowych jako glownego zakresu zastosowania
jezyka.

Omowiono réwniez podstawy matematyczne, na ktorych opiera
sic LOTOS - sq nimi: koncepcja algebraicznej specyfikaciji
abstrakcyjnych typéw danych oraz koncepcja algebraicznych
specyfikacji behawioralnych, oparta na rachunku komunikujgcych
si¢ procesow. W monografii poswiecono duzo uwagi definiowaniu
i analizie semantyki jezyka, zwlaszcza w kontekscie jego czasowych
i wydajnosciowych rozszerzen.

P

Wydawnictwa Politechniki Wroclawskiej sq do nabycia w ksiegarni ,TECH’
plac Grunwaldzki 13, 50-377 Wroclaw, budynek D-1 PWr., tel. 071 320 29 35
Prowadzimy sprzedaz wysytkowgq

ISBN 978-83-7493-335-3

Raport dostępności

		Nazwa pliku:

		Huzar_lotos_jezyk_formalnych_specyfikacji.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

