
?£ LOTOS
język
formalnych
specyfikacji
systemów
informatycznych

Zbigniew Huzar

LOTOS
-język formalnych specyfikacji

systemów informatycznych

Oficyna Wydawnicza Politechniki Wrocławskiej
Wrocław 2007

Wvdział Informatyki i Zarządzania, Instytut Informatyki Stosowanej

Recenzenci
Jan Magott

Tomasz Szmuc

Opracowanie redakcyjne i korekta
Alicja Kordas

Projekt okładki
Zofia i Dariusz Godlewscy

Wszelkie prawa zastrzeżone. Opracowanie w całości ani we fragmentach nie może być
powielane ani rozpowszechniane za pomocą urządzeń elektronicznych, mechanicznych,
kopiujących, nagrywających i innych bez pisemnej zgody posiadacza praw autorskich.

© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2007

ISBN 978-83-7493-335-3

Oficyna Wydawnicza Politechniki Wrocławskiej
Wybrzeże Wyspiańskiego 27, 53-370 Wrocław

http://www.oficyna.pwr.wroc.pl
oficwyd@pwr.wroc.pl

Drukarnia Oficyny Wydawniczej Politechniki Wrocławskiej. Zam. nr 623/2007

http://www.oficyna.pwr.wroc.pl
mailto:oficwyd@pwr.wroc.pl

3

Spis treści

Przedmowa.. 5
1. Wstęp... 8

1.1. Wytwarzanie oprogramowania.. 8
1.2. Specyfikacja wymagań... 11
1.3. Modele systemów.. 13
1.4. Specyfikacja funkcjonalna systemów oprogramowania.. 16
1.5. Metody formalne w procesie wytwarzania systemów... 20
1.6. LOTOS w specyfikacji standardów sieci komputerowych... 21
1.7. Zakres monografii... 23

2. Język CCS.. 25
2.1. Wstęp... 25
2.2. Składnia i nieformalna semantyka... 28
2.3. Semantyka operacyjna.. 31
2.4. Relacje równoważności.. 38
2.5. Prawa równościowe... 40
2.6. Twierdzenie o ekspansji... 42
2.7. Uwagi końcowe... 43

3. Rozszerzenia czasowe CCS... 45
3.1. Wstęp... 45
3.2. TCCS - wprowadzenie... 46
3.3. TCCS - definicja formalna... 48
3.4. RTCCS - wprowadzenie.. 52
3.5. RTCCS - definicja formalna.. 53
3.6. RTCCS - przykłady.. 60
3.7. Uwagi końcowe... 64

4. Abstrakcyjne typy danych w LOTOSie.. 65
4.1. Podstawowe pojęcia algebraiczne... 65
4.2. Algebra termów... 67
4.3. Algebra ilorazowa termów... 68
4.4. Specyfikacja równościowa typów abstrakcyjnych... 70
4.5. Semantyka specyfikacji typów... 73
4.6. Strukturalizacja specyfikacji.. 75
4.7. Przykłady specyfikacji... 80
4.8. Uwagi końcowe... 84

5. LOTOS - opis języka.. 86
5.1. Akcje komunikacyjne.. 86
5.2. Procesy i wyrażenia behawioralne.. 89
5.3. Semantyka operacyjna... 93
5.4. Graf tranzycji.. 97
5.5. Strukturyzacja specyfikacji.. 102
5.6. Uwagi końcowe... 107

4

6. Specyfikacja usług i protokołów sieciowych... 109
6.1. Elementy modelu referencyjnego ISO/OSI.. 109
6.2. Reprezentacja modelu referencyjnego.. 113
6.3. Przykłady specyfikacji... 117
6.4. Uwagi końcowe... 128

7. Metodyka specyfikowania... 129
7.1. Proces specyfikowania... 129
7.2. Równoważność obserwacyjna.. 130
7.3. Równoważność testowa i implementacyjna... 133
7.4. Style specyfikowania.. 136
7.5. Przykładowy problem.. 139
7.6. Środowiska wspomagające specyfikowanie w LOTOSie... 143
7.7. Uwagi końcowe... 145

8. Problem blokad w LOTOSie... 146
8.1. Ukryte blokady.. 146
8.2. Semantyki zmodyfikowane.. 147
8.3. Wykrywanie blokad.. 151
8.4. Uwagi końcowe... 159

9. Rozszerzenia czasowe LOTOSa.. 160
9.1. Wstęp... 160
9.2. Składnia i semantyka języka TE-B-LOTOS.. 162
9.3. Wybrane własności języka TE-B-LOTOS... 166
9.4. Składnia i nieformalna semantyka języka RT-B-LOTOS... 168
9.5. Semantyka formalna języka RT-B-LOTOS... 169
9.6. Wybrane własności języka RT-B-LOTOSa... 177
9.7. Język RT-LOTOS... 182
9.8. Przykład specyfikacji w RT-LOTOSie... 183
9.9. Uwagi końcowe... 189

10. Rozszerzenia wydajnościowe LOTOSa... 191
10.1. Wstęp.. 191
10.2. Składnia i nieformalna semantyka języka MB-LOTOS.. 192
10.3. Semantyka formalna języka MB-LOTOS.. 197
10.4. Wyprowadzanie łańcuchów Markowa.. 204
10.5. Silna bisymulacja markowowska.. 213
10.6. Uwagi końcowe... 216

11. Zakończenie.. 218
11.1. LOTOS a inne techniki formalne.. 218
11.2. LOTOS a UML... 220
11.3. Diagramy stanów UML a LOTOS.. 222
11.4. Perspektywy technik formalnych.. 229

Dodatek 1... 231
Dodatek 2... 242
Literatura.. 252

5

Przedmowa

W monografii przedstawiono język specyfikacji formalnych LOTOS oraz omówiono
na tym tle czasowe i wydajnościowe rozszerzenia języka.

Historia powstania języka LOTOS sięga końca lat osiemdziesiątych ubiegłego wieku.
W tym okresie, zwłaszcza w ramach ISO, prowadzono intensywne prace nad ar­
chitekturą otwartych sieci komputerowych. Głównymi elementami opracowanego
modelu referencyjnego ISO/OSI (Open Systems Interconnectiori) był hierarchiczny
układ warstw funkcjonalnych i związane z nimi pojęcia usług i protokołów
warstwowych. Potrzeba precyzyjnego opisu usług i protokołów stała się inspiracją do
opracowania formalnych technik specyfikacji. Pod egidą ISO uruchomiono między­
narodowe projekty, których rezultatem było opracowanie trzech języków specyfikacji:
SDL [Belina, Hogrefe 1989], ESTELLE [ISO 9074] oraz LOTOS [ISO 8870],
Przegląd i porównanie tych języków zawiera książka [Turner 1993].

Pierwszy z nich - SDL - jest językiem półformalnym, opartym na notacji graficznej.
Konstrukcja języka bazuje na koncepcji maszyn skończenie stanowych. Był on rozwi­
jany od początku lat siedemdziesiątych, najpierw przez nieistniejący już obecnie
komitet CCITT {International Consultative Committee on Telegraph and Telephony),
a później przez CCITT we współpracy z ISO. Wersja SDL-92 jest przedstawiona
w rekomendacji Z100 [CCITT 1992],

Język ESTELLE jest językiem formalnym, stanowiącym - od strony notacyjnej -
pewnego rodzaju rozszerzenie imperatywnych języków programowania. Modelem, na
którym jest oparta konstrukcja języka, są automaty skończone. ESTELLE jest opisany
między innymi w pracach [Budkowski 1992], [Budkowski, Dembiński 1987, 1989].

LOTOS jest również językiem formalnym, abstrahującym od języków programowa­
nia, opartym na solidnych, algebraicznych podstawach matematycznych. Na podstawy
te składają się dwa elementy:

• koncepcja algebraicznej specyfikacji abstrakcyjnych typów danych, oparta na
pracach H. Ehriga [Ehrig, Mahr 1985],

• koncepcja specyfikacji behawioralnych (oparta na pracach R. Mil ner) zawartych
w języku CCS [Milner 1980],

Oprócz bezpośredniego wykorzystania do specyfikacji standardów sieciowych, każdy
z wymienionych języków dał początek pracom, których wynikiem było opracowanie
metodyk posługiwania się nimi przy specyfikacji systemów rozproszonych, opra­
cowanie narzędzi wspierających tworzenie i badanie specyfikacji, a także narzędzi do
transformacji specyfikacji w implementację oprogramowania.

Początkowo wydawało się, że języki te będą wykorzystywane nie tylko do specy­
fikacji standardów sieciowych, ale także w specyfikacji i projektowaniu dowolnych

6 Przedmowa

systemów rozproszonych. Tak się jednak nie stało, a głównym powodem było to, że
języki te, powstające w końcu lat osiemdziesiątych ubiegłego stulecia, opierały się na
paradygmacie projektowania strukturalnego i zostały zdominowane przez języki
oparte na wyłaniającym się w tym okresie paradygmacie obiektowym. Współcześnie
rola tych języków uległa zmianie, gdyż projektowanie systemów informatycznych
prowadzi się na podstawie podejścia obiektowego, a najpowszechniej używanym
językiem do specyfikacji i projektowania jest język UML, utworzony w połowie lat
dziewięćdziesiątych, który ciągle się rozwija. LOTOS rozwijał się równolegle z ję­
zykiem UML; na początku bieżącego dziesięciolecia powstała rozszerzona wersja
języka E-LOTOS [ISO/IEC 15437, 2001], istotnie modyfikująca sposób reprezentacji
typów danych, ale - poza zmianą składni - pozostawiająca część behawioralną języka
w zasadzie bez zmian.

Niezależnie od zastosowań praktycznych język LOTOS dał początek wielu pracom
badawczym, do których między innymi należy rozwój algebr procesowych, dających
podstawy dla analizy modelowej (model checking), formalnej semantyki aktualnie
rozwijanych języków specyfikacji i projektowania, a także narzędzi wspomagających
ich użycie [Garavel 1998], [Garavel, Lang, Mateescu 2001],

Wyróżnia się dwie wersje języka LOTOS: wersją bazową, która skupia się tylko na
specyfikacji zachowań, abstrahując od komunikowanych danych, oraz wersję pełną,
uwzględniającą komunikowane dane, a tym samym obejmującą definiowanie typów
danych.
Zawartość książki jest następująca:

W rozdziale 1. przedstawiono tło dalej prowadzonych rozważań.

W rozdziałach 2. i 3. zaprezentowano język CCS oraz jego czasowe rozszerzenia. Na
tle rozszerzeń czasowych spotykanych w literaturze przedstawiono opracowaną przez
autora propozycję czasowego rozszerzenia CCS.

W dwóch kolejnych rozdziałach przedstawiono klasyczną wersję języka LOTOS.
W rozdziale 4. omówiono abstrakcyjne typy danych, a w rozdziale 5. zawarto pełną
prezentację języka LOTOS. Przykłady ilustrujące konstrukcje języka i ich zasto­
sowanie pochodzą z wcześniejszych prac autora.
Zastosowania języka zaprezentowano w dwóch kolejnych rozdziałach: w rozdziale 6.
omówiono ogólne zasady prezentacji standardów sieciowych w języku LOTOS,
a w rozdziale 7. - metodykę stosowania języka. Podobnie jak w poprzednich dwóch
rozdziałach rozważania są ilustrowane przykładami z prac autora.
W rozdziale 8. przeprowadzono krytyczną analizę semantyki pewnych konstrukcji
języka LOTOS i zaproponowano pewną semantykę alternatywną. Opiera się ona na
wspólnych pracach autora i Ludwika Kuźniarza.
Czasowe i wydajnościowe rozszerzenia języka LOTOS przedstawiono w kolejnych
dwóch rozdziałach. W rozdziale 9. zaprezentowano dwa rozszerzenia czasowe:

Przedmowa 7

pierwsze jest oparte na pracach, które powstawały w ramach projektów pod egidą
ISO i które ostatecznie znalazły swój wyraz w definicji rozszerzonego języka
LOTOS, drugie natomiast jest wynikiem prac autora prowadzonych wspólnie
z Janem Magottem.

W rozdziale 10. omówiono rozszerzenie wydajnościowe języka LOTOS, którego
podstawą były prace prowadzone wspólnie z Janem Magottem.

W ostatni rozdziale 11. krótko omówiono związki pomiędzy LOTOSem a innymi
technikami formalnymi.

Książka powstała w znacznym zakresie na podstawie prac indywidualnych autora oraz
prowadzonych we współpracy z kolegami z Politechniki Wrocławskiej. Główny udział
we wspólnych pracach ma profesor Jan Magott z Instytutu Informatyki, Automatyki
i Robotyki, któremu składam serdeczne podziękowania za lata współpracy. Dziękuję
również za współpracę i inspirację drowi Ludwikowi Kużniarzowi, drowi inż.
Zdzisławowi Spławskiemu i dr inż. Bogumile Hnatkowskiej z Instytutu Informatyki
Stosowanej.

Zbigniew Huzar

8

1. Wstęp

1.1. Wytwarzanie oprogramowania

Oprogramowanie (system oprogramowania) jest zwykle fragmentem systemu infor­
matycznego, składającego się z oprogramowania i sprzętu, który dla oprogramowania
stanowi środowisko wykonawcze.

Cykl życia systemu informatycznego jest zestawem czynności związanych z jego wytwa­
rzaniem i użytkowaniem - od chwili podjęcia decyzji o jego wytworzeniu, przez kon­
strukcję, wdrożenie, eksploatację, aż do wycofania z użycia. Cykl życia oprogramowania
należy widzieć na tle życia systemu informatycznego. Ponieważ wytwarzanie oprogra­
mowania jest zwykle znacznie bardziej złożone niż projektowanie części sprzętowej, czę­
sto cykl życia systemu informatycznego utożsamia się z cyklem życia oprogramowania.

Do grupy tradycyjnych modeli cyklu życia oprogramowania można zaliczyć [Beh-
forooz, Hudson 1996], [Jaszkiewicz 1997], [Górski 2001], [Szejko 2002], [Linger,
Lipson, McHugh, Mead, Sledge 2002]: klasyczny model kaskadowy i różne jego wa­
rianty - model V, model spiralny, model przyrostowo-ewolucyjny. Wśród wymie­
nionych modeli cyklu życia oprogramowania szczególną rolę odgrywa klasyczny mo­
del kaskadowy, nazywany także wodospadowym, gdyż znajduje odzwierciedlenie
w różnych metodykach wytwarzania oprogramowania.

Model kaskadowy (rys. 1.1) wyróżnia następujące fazy życia oprogramowania:

• analizę domenową albo dziedzinową, niekiedy też nazywaną analizą biznesową,
• analizę wymagań,
• projektowanie,
• implementację albo kodowanie,
• walidację,
• instalację,
• konserwację (utrzymanie),
• wycofanie z użytkowania.

Cztery fazy - analizę wymagań, projektowanie, implementację i walidację - wyróżnia
się jako fazy stanowiące cykl wytwarzania oprogramowania - fragment cyklu życia
oprogramowania.

Analiza dziedzinowa (domenowa, biznesowa) wiąże się z miejscem - organizacją
lub instytucją, dla której ma powstać system informatyczny. System taki angażuje
ludzi, sprzęt komputerowy i oprogramowanie, realizując pewien obieg i przetwa­
rzanie danych. Celem analizy jest ustalenie zasad funkcjonowania danej organiza­
cji, ustalenie tych jej fragmentów, które mają być poddane informatyzacji, a także
określenie ogólnych oczekiwań w stosunku do mającego powstać systemu.

Wstęp 9

Analiza wymagań odnosi się do przewidywanego systemu informatycznego. Polega na
rozpoznaniu tych wszystkich aspektów rzeczywistości, które mogą mieć wpływ na postać
oczekiwanego systemu lub na sposób jego budowy, wdrożenia bądź funkcjonowania.
Wynikiem analizy jest określenie wymagań użytkownika do systemu informatycznego.

Rys. 1.1. Model kaskadowy cyklu życia oprogramowania

Projektowanie polega w pierwszej kolejności na określeniu architektury systemu in­
formatycznego, czyli składowych systemu i wzajemnego ich powiązania. Wyróżnia
się składowe sprzętowe - węzły (komputery lub urządzenia wejścia-wyjścia) i składo­
we informacyjne - komponenty (programy, bazy danych, biblioteki programowe).
Komponenty są odpowiednio rozmieszczane w węzłach. Powiązania między węzłami
mogą być realizowane przez pojedyncze łącza lub sieci komunikacyjne. Powiązania
pomiędzy komponentami opierają się na wzajemnym świadczeniu usług. W następnej
kolejności projektowanie polega na szczegółowej specyfikacji poszczególnych składo­
wych architektury. Specyfikacja powinna jednoznacznie określić rodzaj wymaganego
sprzętu oraz funkcje poszczególnych komponentów oprogramowania tak, aby można
napisać odpowiedni kod w wybranym języku programowania. Faza projektowania
może być złożona, dlatego niektóre metodyki dekomponują projektowanie na podfazy,
na przykład metodyka ROPES [Douglass 1999], opisana też w pracy [Huzar 2001],
wyróżnia projektowanie ogólne, pośrednie i szczegółowe.

10 Rozdział 1

W ramach implementacji wyróżnia się dwa rodzaje czynności: kodowanie i testowanie
wstępne. Kodowanie polega na napisaniu tekstu programów odpowiednich kompo­
nentów w wybranych językach programowania, a testowanie wstępne polega na eks­
perymentalnym sprawdzeniu czy system działa poprawnie. Wyróżnia się przy tym
testowanie jednostkowe, polegające na oddzielnym sprawdzeniu poprawności po­
szczególnych komponentów programowych, oraz testowanie integracyjne, polegające
na sprawdzeniu poprawności współpracy wszystkich komponentów.

Faza walidacji ma na celu sprawdzenie czy zbudowany system działa poprawnie
w środowisku użytkownika oraz czy rzeczywiście spełnia jego oczekiwania. Spraw­
dzenie to polega na wykonaniu testów akceptacyjnych. W testowaniu w poprzedniej
fazie chodziło o stwierdzenie czy system działa zgodnie ze specyfikacją ustaloną pod­
czas projektowania, w obecnej fazie idzie natomiast o stwierdzenie spełnienia oczeki­
wań użytkownika, które - w odróżnieniu od specyfikacji projektowych - być może nie
zostały całkowicie precyzyjnie ustalone w wymaganiach użytkownika. Przeprowadza­
ne tu testowanie ma charakter walidacyjny, natomiast testowanie w fazie implementa­
cyjnej ma charakter weryfikacyjny.

Faza instalacji wiąże się z wdrożeniem zrealizowanego i wytestowanego systemu
w środowisku użytkownika. Wdrażanie nowego systemu może polegać na okresowym
jednoczesnym funkcjonowaniu systemu starego i nowego. Jest to strategia kosztowna, ale
bezpieczna dla funkcjonującej instytucji. Możliwe są oczywiście inne strategie, lecz z ich
zastosowaniem wiąże się potrzeba oszacowania ryzyka niepowodzenia przedsięwzięcia.

Faza konserwacji (utrzymania') jest związana z eksploatacją oprogramowania. Wy­
konywanymi tu czynnościami są generacja i instalacja oprogramowania w konkretnym
środowisku wykonawczym, rekonfiguracja oprogramowania powodowana zmieniają­
cymi się warunkami eksploatacji, usuwanie zauważonych błędów, a także modyfika­
cje oprogramowania na skutek zmieniających się wymogów użytkowych. W przypad­
ku istotnych modyfikacji należy dokonać powrotu aż do fazy analizy. Właśnie ten fakt
jest główną wadą modelu, gdyż błędy poczynione w etapie analizy wymagań powo­
dują duże straty finansowe.

Fazy te - w zasadzie - występują po sobie kolejno; wynikowe artefakty - dowolne
informacje w materialnej postaci - danej fazy stanowią podstawę do prac w fazie na­
stępnej. W praktyce często fazy nakładają się na siebie, a dodatkowo dopuszcza się
powroty z danej fazy do faz wcześniejszych w celu poprawek, uściśleń lub uzupełnień
wcześniej opracowanych artefaktów (rys. 1.1). Przyczyną powrotu może być wykrycie
niespójności, niejednoznaczności lub braku określoności w artefaktach poprzednich
faz. Powroty do faz wcześniejszych pociągają za sobą dodatkowe koszty, dlatego stale
udoskonala się metody wytwarzania oprogramowania tak, aby redukować potrzebę
powrotów do wcześniejszych faz.

Model kaskadowy wprowadza nie tylko pewną kolejność wykonywania różnych czynno­
ści, ale także określa pewne ramy organizacyjne związane z wyznaczaniem zespołów,

Wstęp 11

przydzielania im odpowiednich zasobów i rozliczania rezultatów prac. Model jest pod­
stawą do wyróżnienia różnych kategorii specjalistów zaangażowanych w budowę i funk­
cjonowanie systemów informatycznych, dlatego wyróżnia się na przykład analityków,
projektantów, programistów, inspektorów, administratorów czy konserwatorów.

1.2. Specyfikacja wymagań

Precyzyjna specyfikacja wymagań jest niezbędna nie tylko do uzyskania systemu
oprogramowania odpowiedniej jakości, ale także do efektywności całego cyklu wyt­
warzania oprogramowania [Wallace, Recker 2001], Zwykle wyróżnia się specyfikację
wymagań funkcjonalnych i niefunkcjonalnych, ale spotyka się także inne podejścia
[Sawyer, Kotonaya 2001]. Można wyróżnić przynajmniej trzy grupy podejść dotyczą­
ce tego, co specyfikacja powinna ujmować:

• normy ISO (International Organization for Standardization) serii 9621,
• normy IEC (International Electrotechnical Commission) serii 50-191 i 300, odno­

szące się do systemów związanych z bezpieczeństwem,
• inne dotyczące specyficznych systemów, na przykład systemów ekspertowych

czy systemów informacyjnych.

Najszersze jest podejście odzwierciedlone w serii norm ISO 9621, które specyfikację
wymagań rozpatruje w kontekście jakości systemu oprogramowania. Wyróżnia się tu
sześć głównych charakterystyk jakości, które z kolei dzieli się na 21 podcharakte-
rystyk. Głównymi charakterystykami i ich wybranymi podcharakterystykami są:

• funkcjonalność, jako podstawowa charakterystyka, obejmuje następujące podcha­
rakterystyki: dostarczenie odpowiednich funkcji (usług) wraz z zapewnieniem
dostarczania odpowiednio dokładnych wyników obliczeń, współdziałanie z in­
nymi systemami, zabezpieczenie przed nieuprawnionym dostępem do danych.

• niezawodność, rozumiana jako zdolność do świadczenia usług w określonych wa­
runkach na odpowiednim poziomie efektywności, obejmuje: dojrzałość, odpor­
ność na awarie, zdolność przywracania ze stanu po awarii,

• użytkowalność, reprezentując punkt widzenia użytkowników systemu, odnosi się
do: łatwości nauczenia posługiwania się systemem, łatwości użytkowania, atrak­
cyjności usług dla użytkownika,

• efektywność, odnosząc się do związku pomiędzy wydajnością systemu a stop­
niem wykorzystywania zasobów, obejmuje własności czasowe (szybkość reakcji,
przepustowość), wykorzystywanie zasobów systemu,

• konserwowalność, odnosząc się do nakładu pracy potrzebnego do utrzymania
i modyfikacji systemu, obejmuje takie podcharakterystyki, jak: analizowalność,
modyfikowalność, testowalność,

• przenośność, charakteryzując zdolność oprogramowania do przenoszenia do in­
nych organizacji czy platform wykonawczych, wskazuje na podcharakterystyki:

12 Rozdział 1

adaptowalność, instalowalność, współistnienie z innym oprogramowaniem, za­
stępowalność.

Dodatkowo zakłada się, że w ramach każdej z charakterystyk mogą być definiowane
podcharakterystyki określające zgodność oprogramowania ze specyficznymi standar­
dami lub zaleceniami.

Normy serii ISO 9621 definiują dokładniej wymienione charakterystyki i podcharak­
terystyki oraz proponują zestaw metryk, którymi można się posługiwać w celu ich
ilościowej oceny. Specyfikacja systemu (w terminach normy ISO specyfikacja jego
jakości) jest wyrażona przez zbiór pożądanych wartości metryk [Dubielewicz, Hnat-
kowska, Huzar, Tuzinkiewicz 2006].

Normy IEC dotyczą systemów związanych z bezpieczeństwem, które często są syste­
mami czasu rzeczywistego [Douglass 1998, 1999]. Specyfikacja wymagań obejmuje
wymagania funkcjonalne i niefunkcjonalne, które z kolei dzielą się na dwie kategorie:

• wydajnościowe,
• wiarygodnościowe.

Do wymagań wydajnościowych można na przykład zaliczyć: przepustowość systemu,
czasy reakcji i czasy obsługi użytkowników. Tego rodzaju wymagania są oczywiście
związane z budową systemów czasu rzeczywistego, ale także z budową systemów nie-
czasowych.

Na wymagania wiarygodnościowe składają się: dyspozycyjność, niezawodność, bez­
pieczeństwo (safety) i ochrona (security).

Dyspozycyjność jest miarą gotowości systemu do użycia. Przykładami systemów
o ostrych wymogach dyspozycyjności są system sterowania reaktorami w elek­
trowniach jądrowych czy system sterowania międzynarodowym lub międzymiasto­
wym ruchem telekomunikacyjnym. Systemy takie powinny pracować całą dobę bez
przerw, przez wszystkie dni roku.

Niezawodność określa odpowiednio długie okresy czasu bezawaryjnej pracy. Bezpo­
średnio pojęcia niezawodności nie można odnosić do oprogramowania, gdyż opro­
gramowanie może być tylko poprawne albo niepoprawne, ale oprogramowanie,
funkcjonując w zawodnym środowisku wykonawczym, powinno przewidywać awa­
rie środowiska wykonawczego i reagować na ich zajście w taki sposób, aby zacho­
wać poprawność wykonywanych funkcji. Przykładami systemów, z którymi wiąże
się taki wymóg, są systemy sterowania rakietami kosmicznymi.

Wymóg bezpieczeństwa wiąże się w pewnym zakresie z wymogiem niezawodności.
Oznacza on również odpowiednie reagowanie na awarie, przy czym nie chodzi o awa­
rie środowiska wykonawczego, ale o awarie w otoczeniu systemu, na które system
powinien reagować. W razie zaistnienia takich awarii system powinien podejmować
działania specyficzne, odbiegające od rutynowych. Przykładem może być system ste­

Wstęp 13

rowania reaktorem atomowym, który w przypadku stwierdzenia zajścia krytycznych lub
niedopuszczalnych zjawisk w reaktorze powinien rozpocząć procedurę awaryjnego
wyłączenia reaktora. Na ogół wymóg bezpieczeństwa odnosi się do tych systemów,
których funkcjonowanie jest związane z bezpieczeństwem ludzi lub środowiska.

Ochrona (zabezpieczenie) systemów wiąże się z zapobieganiem nieupoważnionemu
dostępowi i manipulacji na danych pamiętanych w systemie. Systemy bankowe lub
osobowe są typowymi przykładami systemów, w których zabezpieczenie odgrywa
szczególną rolę.

Oprócz wymogów wydajnościowych i wiarygodnościowych mogą być formułowane
inne, na przykład ważnym wymogiem, który można obecnie spotkać, w stosunku do
wielu systemów jest skalowalność. Skalowalność oznacza, że w przypadku rozbudo­
wy system zachowuje poprzednio wymienione wymogi. Skalowalność może być peł­
na lub częściowa, w zależności od tego czy żąda się zachowania wszystkich, czy tylko
niektórych wymogów. Można na przykład żądać, aby w przypadku zwiększenia liczby
użytkowników system gwarantował stałe czasy obsługi, zachowywał dyspozycyjność
oraz niezawodność itp.

W przypadku systemów specyficznych istotne mogą być inne charakterystyki. Na
przykład w systemach ekspertowych ważne jest uzyskanie odpowiedzi w ustalonym
limicie czasu, a także czytelne przedstawienie procesu wnioskowania, w systemach
informacyjnych natomiast ważną cechą jest łatwość formułowania zapytań i precyzja
udzielanych odpowiedzi.

Wymagania niefunkcjonalne mogą się odnosić nie tylko do jakości systemu, ale także
do procesu jego wytwarzania. Wymagania takie mogą się odnosić metodyki projekto­
wania, używanych narzędzi wspomagających, sposobu dokumentowania, gromadzenia
i udostępniania artefaktów itp.

1.3. Modele systemów

Współczesne metody wytwarzania systemów oprogramowania opierają się na para­
dygmacie modelowania obiektowego. Oznacza to, że cykl wytwarzania oprogramo­
wania jest postrzegany jako proces budowy ciągu modeli.

Model jest pewnym odzwierciedleniem wybranej dziedziny - jest pewną abstrakcją
modelowanej dziedziny, świadomym uproszczeniem modelowanej dziedziny, a upro­
szczenie to zależy od przyjętego punktu widzenia - od wybranej perspektywy mode­
lowania.

Perspektywa, która jest punktem wyjścia przy tworzeniu modeli, określa te aspekty
należące do modelowanej dziedziny, które są istotne dla danego modelu, i te, które
należy pominąć. Perspektywa ustala też stopień szczegółowości przedstawiania wy­
branych aspektów.

14 Rozdział 1

Od modelu oczekuje się, że odzwierciedla dwa różne aspekty modelowanego systemu:
aspekt statyczny i aspekt dynamiczny. Rozdzielenie obu tych aspektów można trakto­
wać jako zastosowanie zasady abstrakcji. Aspekt statyczny odnosi się do struktury
modelowanego systemu, czyli ukazuje zbiór elementów składowych wraz z wiążący-
mi je relacjami. Aspekt dynamiczny (behawioralny) odnosi do zachowania systemu,
czyli do obserwowalnych efektów jego działania w czasie.

Językiem, który obecnie jest używany najpowszechniej do reprezentacji modeli
obiektowych w procesie wytwarzania oprogramowania jest UML (Unified Modeling
Language) [UML 2003], UML ma wiele zalet, ale ma także pewne ograniczenia.
Głównym jego ograniczeniem jest to, że w fazie analizy wymagań pozwala
w zasadzie tylko na definiowanie wymagań funkcjonalnych. Dodatkowo jego słaboś­
cią jest brak formalnej semantyki. Omawiany w książce język LOTOS nie jest języ­
kiem obiektowym, chociaż ma wiele cech wspólnych z językami obiektowymi [Hnat-
kowska 1998]. W stosunku do języka UML jest językiem uboższym, gdyż jest tylko
językiem specyfikacji funkcjonalnych, podczas gdy UML jest językiem specyfikacji
i projektowania. LOTOS ma natomiast nad językiem UML wyraźną przewagę w za­
kresie precyzyjnej i kompletnej specyfikacji zachowań. LOTOS jest ponadto językiem
wykonywanym, co pozwala na szybkie prototypowanie, testowanie i analizę specyfi­
ko wanych zachowań.

Systemy informatyczne są ogromnie zróżnicowane. Istnieje wiele klasyfikacji koncen­
trujących się na wybranych aspektach ich architektury lub zastosowań. Spotyka się na
przykład podziały systemów na:

• sprzętowe/programowe,
• jedno-Zwieloprocesorowe,
• sekwencyjne/wielowątkowe,
• tradycyjne/czasu rzeczywistego,
• wbudowane/lokalne/rozproszone.

Przedstawiony podział nie jest jednorodny, ukazuje on raczej bogactwo wewnętrznych
własności i zastosowań systemów informatycznych.

Ze względu na zakres dalej prowadzonych rozważań przedstawimy inną, abstrakcyjną
klasyfikację modeli systemów z punktu widzenia ich współpracy z otoczeniem.
W klasyfikacji tej system jest traktowany jako czarna skrzynka, która komunikuje się
z otoczeniem przez wyróżnione punkty komunikacji - bramki komunikacyjne. Takie
widzenie skupia się na usługach systemu, a nie na tym, w jaki sposób usługi te są re­
alizowane. Klasyfikacja wyróżnia trzy kategorie systemów [Huzar, Spławski 1989],
[Schneider 2004]:

• transformacyjne,
• interakcyjne,
• reaktywne.

Wstęp 15

Działanie systemów transformacyjnych polega na przetworzeniu zadanej wartości
wejściowej i wygenerowaniu pewnej wartości wyjściowej. Wartości wejściowe i wyj­
ściowe są elementami pewnych wskazanych zbiorów. Wartości te mogą być warto­
ściami złożonymi. Nie wnikając w ich wewnętrzną strukturę i przyjmując, że X jest
zbiorem wartości wejściowych, a Y wyjściowych, schemat funkcjonowania systemów
transformacyjnych można określić bądź jako funkcję częściową f: X —> Y, bądź jako
relację R ę X x Y. Przez funkcję f jest opisywany system deterministyczny, jeśli
j\x) - y, to oznacza, że dla danej wejściowej wartości x system generuje y jako war­
tość wyjściową. Częściowość funkcji oznacza, że dla wartości wejściowej x, dla której
funkcja /'jest nieokreślona, system nie kończy działania i nie dostarcza tym samym
wyniku końcowego. Przez relację R jest opisywany system niedeterministyczny, jeśli
<x, y> e R, to dla danej wejściowej wartości x system może generować y jako wartość
wyjściową. Jeśli dla danego x e X nie istnieje y & Y takie, że <x, y> & R, to oznacza,
że - podobnie jak w przypadku funkcji - system nie dostarcza wyniku końcowego.

Działanie systemów interaktywnych jest bardziej złożone niż systemów transformacyj­
nych. System nie wytwarza pojedynczej wartości, ale współdziała ze swoim otocze­
niem. Współdziałanie odbywa się za pośrednictwem bramek komunikacyjnych, przez
które otoczenie kieruje dane wejściowe do systemu, a system po ich przetworzeniu ge­
neruje dane wyjściowe do otoczenia. System przyjmuje dane wejściowe, a dopiero po
ich przetworzeniu, i ewentualnym wygenerowaniu danych wyjściowych, jest gotowy
do pobrania kolejnych danych wejściowych. Istotne we współdziałaniu systemu z oto­
czeniem jest to, że kolejna wymiana danych odbywa się po zakończeniu przetwarzania
przez system poprzednio wymienionych danych. Działanie systemu nie musi się za­
kończyć po skończonej liczbie takich cykli. Przyjmując, jak w przypadku systemów
transformacyjnych, że X jest zbiorem wartości wejściowych, a Y wyjściowych, sche­
mat funkcjonowania deterministycznych systemów reaktywnych można wyrazić przez
funkcję o sygnaturze f: X Y , gdzie X jest zbiorem skończonych ciągów nad X.
System interaktywny przetwarza nie pojedyncze wartości, ale ciągi wartości. Chara­
kteryzująca system funkcja f musi przy tym spełniać warunek domkniętości prefik­
sowej

jeżeli /Ui, ..., x„) = V], ..., y,„ oraz f(xh ..., x,„ x„+l) jest określona,
to /Ul, ..., x,„ x„+1) = Yi, ..., y,„ y„+h

Dla niedeterministycznych systemów interaktywnych schemat ich działania określa
się za pomocą relacji R c X x Y , spełniającej analogiczny warunek.

Działanie systemów reaktywnych jest jeszcze bardziej złożone niż systemów inter­
aktywnych. Wynika to z nałożenia na system dodatkowych ograniczeń czasowych.
System nie tylko powinien generować wartości wynikowe, ale generować je w od­
powiednim czasie, a otoczenie może kierować do systemu kolejne wartości wejściowe
w dowolnie określonych chwilach, niezależnie od tego, czy system przetworzył po­
przednio do niego skierowane wartości wejściowe. Wejścia i wyjścia systemu sąokre-

16 Rozdział 1

ślone parami: wartość, chwila czasowa. Wprowadzając zbiór chwil czasowych T, wraz
z relacją porządku częściowego <, oraz oznaczając, jak poprzednio, X jako zbiór war­
tości wejściowych, a Y wyjściowych, schemat funkcjonowania deterministycznych
systemów reaktywnych może być wyrażony funkcją o sygnaturze

f:(XxT)*^(YxT)\

Funkcja może być określona tylko dla ciągów wejściowych <xh 6>, ..., <x„, t„> ta­
kich, że z, < ... < t„. Ten sam warunek czasowego uporządkowania spełniają również
ciągi wyjściowe. W taki sposób określona funkcja musi spełniać określony wcześniej
warunek domkniętości prefiksowej.

Systemy interaktywne i reaktywne najczęściej nie produkują określonego wyniku, lecz
reagują na dane kierowane do nich z otoczenia, w którym funkcjonują (przykładem
programów tego typu są systemy operacyjne, systemy rezerwacji biletów, poczty elek­
tronicznej itp.).

Głównym przedmiotem naszego zainteresowania będą systemy reaktywne. Wśród
nich należy wyróżnić dwie kategorie systemów:

• systemy z silnymi ograniczeniami czasowymi,
• systemy ze słabymi ograniczeniami czasowymi.

Do systemów z silnymi ograniczeniami czasowymi zalicza się te systemy, dla których
muszą być zawsze spełnione zadane ograniczenia czasowe. Naruszenie tych ograni­
czeń może powodować niepożądane, katastrofalne skutki. Przykładami takich syste­
mów są systemy sterowania elektrowniami jądrowymi, systemy awioniki lotniczej,
czy też ogólniej - systemy związane z bezpieczeństwem. Brak reakcji lub spóźniona
reakcja na pewne zdarzenia może powodować na przykład awarię elektrowni lub nie­
bezpieczeństwo utraty sterowności samolotu.

Do systemów ze słabymi ograniczeniami czasowymi zalicza się te systemy, dla któ­
rych zadane ograniczenia czasowe powinny być spełnione, ale których naruszenie,
powodując pewne straty, nie pociąga jednak katastrofalnych skutków. Przykładami
takich systemów są systemy obsługi bankowej czy rezerwacji biletów. W takich przy­
padkach żąda się wprawdzie obsługi użytkownika w pewnym ograniczonym czasie,
ale przekroczenie takiego ograniczenia, na przykład czasu reakcji, skutkuje tylko znie­
cierpliwieniem klienta.

1.4. Specyfikacja funkcjonalna systemów oprogramowania

Specyfikacja funkcjonalna opisuje zewnętrznie dostrzegalne efekty działania progra­
mu. Możliwe są dwa sposoby rozumienia tych efektów [Huzar, Spławski 1989]:
pierwszy zakłada, że obserwowalne są zmiany stanów systemu, drugi - że obserwowa­
ne są interakcje pomiędzy systemem a jego otoczeniem. Obserwacja stanów zakłada

17Wstęp

wgląd we wnętrze systemu, natomiast obserwacja interakcji jest punktem widzenia
użytkownika systemu - mówimy w tym przypadku, że obserwujemy zachowanie sys­
temu. W dalszym ciągu zakładamy, że interesuje nas wyłącznie punkt widzenia ze­
wnętrznego obserwatora systemu.

Opis zachowania systemu jest konieczną składową specyfikacji systemu. Wymagania
funkcjonalne są określane na dwa powiązane ze sobą sposoby:

Sposób pierwszy odwołuje się do pojęcia usług systemu. System opisuje się tu przez
określenie usług, jakich system dostarcza, a także usług, z jakich ma korzystać. Samą
usługę wyraża się w terminach zachowań - ciągów komunikatów wymienianych po­
między usługobiorcą a usługodawcą w celu realizacji żądanej usługi. Pojęcie usługi
jest wygodne i naturalne przy opisie szerokiej klasy systemów służących wspoma­
ganiu jednostek administracyjnych czy gospodarczych.

Sposób drugi odwołuje się bezpośrednio do pojęcia zachowań systemu. Jest to sposób
naturalny przy specyfikacji systemów sterujących, na przykład obiektami technologi­
cznymi. W tym przypadku wskazuje się na zachowania wymagane, a także można
wskazywać na inne zachowania jako dopuszczalne lub zabronione.

Dla uproszczenia będziemy dalej prowadzić rozważania, zakładając, że schemat funk­
cjonowania systemu jest funkcją. Nie ogranicza to ogólności rozważań w tym sensie,
że przedstawiane rozważania będzie można również zastosować do systemów, których
schemat funkcjonowania jest określony relacją. Opis systemu oznacza więc opis funk­
cji wyrażającej jego schemat funkcjonowania. Podobnie jak w przypadku definio­
wania dowolnych zbiorów, istnieją dwa podejścia definiowania funkcji [Huzar 2002]:

• rekursywne,
• ekstensjonalne.

Podejście pierwsze - rekursywne {algorytmiczne, wykonywalne) - polega na przedsta­
wieniu sposobu generowania wszystkich wartości funkcji na podstawie przyjętego
zestawu wartości dla wybranych argumentów.

Podejście drugie - ekstensjonalne (logiczne) - polega na zdefiniowaniu funkcji przez
określenie jej własności.

Za obu podejściami kryje się rozmaitość wykorzystywanych języków i metod.

Do pierwszego podejścia należą metody wykorzystujące pojęcia abstrakcyjnych ma­
szyn stanowych (rozszerzeń automatów skończonych) [Bórger, Stark 2003], [Harel,
Marelly 2003] etykietowanych systemów przejść oraz algebr procesowych [Baeten,
Middelburg 2002], [Hermanns, Herzog, Katoen, 2002], Do grupy tej można także
zaliczyć sieci Petriego i różnorodne ich rozszerzenia [Reisig 1988], [Girault 2003],
[Magott 2005],

Do drugiego podejścia należą metody oparte na logikach klasycznych i modalnych.
Należą do nich na przykład logika programów Hoare’a [Huzar 1989], [Apt, Olderog

18 Rozdział 1

1991] i rachunek najsłabszych warunków wstępnych Dijkstry [Dijkstra 1978], mające
zastosowanie do systemów transakcyjnych. Do systemów interaktywnych i reaktyw­
nych są stosowane różne formy logiki temporalnej [Hennessy, Milner 1985], [Manna,
Pnueli 1992], [Clark, Emerson, Sistla 1983], a także inne, jak na przykład logika dyna­
miczna [Harel 1979], [Harel, Kozen, Tiuryn 2000] czy p.-rachunek [Schneider 2004],

Oba podejścia są w pewnym sensie komplementarne i dlatego bardzo często do opisu
systemu stosuje się oba podejścia. Podejście rekursywne jest wprawdzie bardzo wy­
godne przy przechodzeniu od specyfikacji do implementacji, ale bezpośrednio jest
trudne do analizy, w celu sprawdzenia czy ma pewne pożądane własności. Podejście
logiczne - odwrotnie - bezpośrednio może wyrażać pożądane własności, natomiast
bezpośrednio jest trudne do przekształcenia w implementację. Jednoczesny opis wy­
konywalny i logiczny wprowadza redundancję, co pomaga w uzyskaniu większej wia­
rygodności, ale jednocześnie wymaga stwierdzenia zgodności obu opisów.

Do specyficznych kategorii własności systemów, które wyraża się w sposób eksten-
sjonalny należą między innymi własności:

• bezpieczeństwa,
• żywotności,
• trwałości,
• bezstronności (uczciwości).

Własność bezpieczeństwa jest tutaj rozumiana, inaczej niż poprzednio (p. 1.3), jako nie­
zmiennik wyrażający to, że w działaniu systemu nigdy nie osiągnie się niepożądanej
sytuacji (nigdy nie zdarzy się coś złego). Określenie tego, co jest złe, zależy oczywiście
od konkretnego systemu, na przykład że program nigdy nie zablokuje swego działania.

Własność żywotności jest niezmiennikiem wyrażającym to, że w działaniu systemu
zawsze osiągnie się pożądaną sytuację (zawsze zdarzy się coś dobrego). Na przykład
program zakończy swoje działanie lub osiągnie określony stan.

Trwałość odnosi się do stabilizacji pewnych własności. Oznacza to, że pewna włas­
ność będzie trwale zachodzić od pewnego momentu czasu działania systemu. Na
przykład będą trwale przechowywane raz zarejestrowane dane.

Bezstronność oznacza, że pewna własność będzie w czasie działania systemu zacho­
dzić nieskończenie wiele razy. Własność ta jest wyprowadzona z analizy działania
systemów równoległych i wyraża postulat, że każdemu z równoległych procesów sys­
tem operacyjny będzie przydzielał dostęp do procesora.

W dalszym ciągu nie będziemy się zajmować własnościami logicznymi, a będziemy
się głównie opierać na algebrach procesowych, w ramach podejścia wykonywalnego,
które się odnoszą do systemów interaktywnych i reaktywnych.

Algebry procesowe są rozwijane od początku lat osiemdziesiątych ubiegłego stulecia.
Za pionierskie można uznać prace Hoare’a związane z procesami CSP [Hoare 1978,

Wstęp 19

1985], Milnera - wprowadzające rachunek CCS [Milner 1980], [Milner 1989] czy też
prace [Bergstra, Klop 1985], [Baeten, Bergstra, Smolka 1995] definiujące algebrę
ACP. Początkowo algebry związane głównie z systemami interaktywnymi zostały
przeniesione na grunt systemów reaktywnych. Przykładem pracy pokazującej zasto­
sowanie ACP do specyfikacji systemów czasu rzeczywistego jest [Groote 1990]. Hi­
storię prac nad rozwojem algebr procesowych przedstawia raport [Baeten 2004].

Obecnie można wyróżnić trzy kategorie algebr procesowych: czasowe, probabilisty­
czne i stochastyczne.

Algebry czasowe powstały jako uogólnienie klasycznych algebr procesowych przez
wprowadzenie do algebry pojęcia czasu i akcji czasowych. Różnice pomiędzy alge­
brami czasowymi dotyczą przyjmowanych modeli czasu (czas ciągły i dyskretny) oraz
interpretacji wykonywania akcji czasowych. Przykładami są algebry oparte na wcze­
śniej wymienionych językach: ACP [Baeten, Bergstra 1991], CSP [Schneider 1995],
LOTOS [Bolognesi, Lucidi, Trigilla 1995], [Leduc, Leonard 1995], Powodem rozwo­
ju algebr czasowych była potrzeba dostarczenia formalnego języka specyfikacji sys­
temów reaktywnych, czyli specyfikacji zachowań i związanych z nim ograniczeń cza­
sowych. Algebry czasowe są właściwym narzędziem specyfikacji systemów czasu
rzeczywistego z silnymi ograniczeniami czasowymi. Przegląd prac dotyczących algebr
czasowych zawiera publikacja [Nicollin, Sifakis 1992].

Algebry probabilistyczne są specjalizacją algebr czasowych polegającą na zastąpieniu
niedeterminizmu występowania akcji probabilizmem. Takie podejście umożliwia ba­
danie wydajności specyfikowanych systemów, a zwłaszcza wyliczanie charakterystyk
probabilistycznych [Hermanns, Herzog, Katoen 2002], Algebry probabilistyczne są
właściwym narzędziem specyfikacji systemów czasu rzeczywistego ze słabymi ogra­
niczeniami czasowymi. Przykładami takich algebr są: dla ACP [Baeten, Bergstra,
Smolka 1995], dla CSP [Hanson, Jonsson 1990] oraz dla LOTOSa [Miguel, Fernan-
dez, Vidaller 1993],

Kolejne uogólnienie algebr procesowych - algebry stochastyczne - polega na wpro­
wadzeniu akcji o stochastycznej charakterystyce czasów wykonania. Algebry te stano­
wią właściwe narzędzie analizy systemów kolejkowych. W odróżnieniu od innych
mechanizmów, na przykład stochastycznych sieci Petriego, umożliwiają one kompo­
zycyjną specyfikację i generację łańcuchów Markowa. Przykładami takich algebr są:
TIPP [Gótz, Herzog, Rettelbach 1993], PEPA [Hilston 1996], EMPA [Bernardo, Gor-
rieri 1998], a dla LOTOSa [Rico, Bochmann 1991],

Głównym obszarem zastosowania algebr czasowych jest specyfikacja systemów czasu
rzeczywistego z silnymi ograniczeniami czasowymi, natomiast algebr probabili­
stycznych i stochastycznych - systemy ze słabymi ograniczeniami czasowymi.

W ostatnim okresie, oprócz rozwijania klasycznych algebr ACP, CCS i CSP, powstała
nowa grupa algebr procesowych, do których należą między innymi n-rachunek Mil-

20 Rozdział 1

nera [Milner 1999] oraz rachunek otoczeń (ambient calculus) Cardelliego i Gordona
[Cardelli, Gordon 1998].

1.5. Metody formalne w procesie wytwarzania systemów
Wytwarzanie systemów informatycznych jest złożonym procesem. Różne metodyki
definiują strukturę takich procesów przez określenie faz (etapów), czynności i wyni­
kowych artefaktów. Współcześnie dominujące obiektowe metodyki wytwarzania sys­
temów oprogramowania opierają się na paradygmacie modelowania. Oznacza to, że
proces wytwarzania systemów oprogramowania jest widziany jako pewien ciąg po­
wiązanych ze sobą modeli. Typowe powiązania pomiędzy modelami to relacja uściśle­
nia i realizacji.

W różnych miejscach procesu wytwarzania znajdują zastosowanie metody formalne.

Formalność metody oznacza w pierwszej kolejności formalność języka użytego do
opisu modeli. Oznacza to, że język ma ściśle zdefiniowaną składnię i semantykę, dzię­
ki czemu opis systemu w tym języku może być precyzyjny i jednoznaczny. Język po­
winien mieć dostateczną siłę ekspresji po to, aby dało się tworzyć modele kompletne z
punktu widzenia przyjętej perspektywy. Jednocześnie powinien być możliwie abs­
trakcyjny, aby unikać wnikania w szczegóły dotyczące implementacji systemu.

Powody stosowania metod formalnych są przynajmniej dwa: po pierwsze - formaliza­
cja modeli umożliwia precyzyjne formułowanie i badanie ich własności, oraz po dru­
gie - umożliwia definiowanie transformacji pomiędzy modelami. Oznacza to, że me­
tody formalne w wytwarzaniu oprogramowania stosuje się do:

• pisania specyfikacji formalnych,
• dowodzenia własności tych specyfikacji,
• wyprowadzania implementacji na podstawie specyfikacji,
• weryfikacji zgodności implementacji względem specyfikacji.

Metody formalne mają zalety, ale mają też wady: w stosunku do języków naturalnych
lub półformalnych są mniej ekspresywne i są sztywne - wymagają ścisłego, ograni­
czonego sposobu posługiwania się nimi podczas tworzenia modeli.

Stosowanie metod formalnych jest szczególnie uzasadnione w przypadku systemów
współbieżnych, związanych z bezpieczeństwem, a także w przypadku definiowania
pewnych standardów. Właśnie potrzeba ścisłego zdefiniowania standardów systemów
otwartych ISO/OSI doprowadziła pod koniec lat osiemdziesiątych ubiegłego wieku do
podjęcia prac nad rozwojem formalnych technik specyfikacji usług i protokołów sieci
komputerowych. Powstały wówczas, rozwijane do dzisiaj, techniki formalne FDT
(Formal Description Teclmigues), do których zalicza się ESTELLE, SDL oraz LO­
TOS [Turner 1993], Właśnie LOTOS, ze względu na swoje walory elegancji i ścisło­
ści podstaw, został wybrany jako przedmiot niniejszej monografii.

Wstęp 21

Korzyści, jakie wynikają z posługiwania się nimi, oprócz precyzji i jednoznaczności,
to możliwość badania sensowności modeli, to znaczy czy istnieje dla nich jakakolwiek
interpretacja (czy model nie jest sprzeczny), czy mają wskazane własności. Dodatkowo
ich stosowanie jest warunkiem koniecznym przy konstrukcji systemów wspomagają­
cych wytwarzanie oprogramowania. Ta ostatnia okoliczność staje się szczególnie
ważna, gdyż rosnący stopień złożoności wytwarzanych systemów informatycznych
wymaga coraz bardziej silnego wsparcia przy badaniu i transformacji modeli.

1.6. LOTOS w specyfikacji standardów sieci komputerowych
LOTOS powstał w ramach prac standaryzacyjnych, prowadzonych przez ISO pod
koniec lat osiemdziesiątych XX wieku, w zakresie sieci komputerowych. Pierwotnym
rezultatem prac ISO w tym okresie było opracowanie modelu referencyjnego ISO/OSI
otwartych sieci komputerowych [ISO 7498], z czego wyłonił się problem definio­
wania standardów usług i protokołów sieciowych. Działające w ramach podkomitetu
ISO/TC97/SC16, a później w ramach ISO/TC97/SC21, grupy robocze postawiły za
cel opracowanie matematycznych podstaw umożliwiających:

• pisanie jasnych, jednoznacznych i zwartych specyfikacji standardów sieciowych,
• weryfikację poprawności specyfikacji,
• analizę własności specyfikacji,
• konstruowanie oprogramowania na podstawie specyfikacji,
• badanie zgodności implementacji ze specyfikacją.

Rezultatem prowadzonych prac było opracowanie języków formalnych ESTELLE
[ISO 9074] i LOTOS [ISO 8870] oraz półformalnego języka SDL [Belina, Hogrefe
1989]. Wyniki prac spełniają tylko częściowo zarysowane wcześniej zamierzenia,
gdyż ograniczają się do opracowania samych języków specyfikacji, z pominięciem
pozostałych zagadnień. Należy jednak podkreślić, że były prowadzone - poza bez­
pośrednim nadzorem ISO - inne prace nad zrealizowaniem pozostałych, wymienio­
nych poprzednio, zamierzeń. Język LOTOS został uznanym międzynarodowym
standardem.

LOTOS jako narzędzie formalnej specyfikacji spełnia postulaty, których oczekuje się
od dowolnego języka formalnych specyfikacji. Sama formalność języka oznacza, że
ma on jednoznacznie zdefiniowaną składnię i semantykę, co pozwala na niesprzeczną
i jednoznaczną specyfikację danego systemu. Specyfikacja jest też abstrakcyjna, co
oznacza, że nie określa ani nie narzuca szczegółów implementacji systemu. Ważnym
aspektem formalności jest również to, że sama specyfikacja, traktowana jako pewien
abstrakcyjny obiekt, może być przedmiotem analizy metodami matematycznymi.

Język specyfikacji powinien być dostatecznie ekspresywny, aby w pełni opisywać
odpowiednią klasę obiektów. W przypadku języka LOTOS chodziło o możliwość
opisu usług i protokołów w poszczególnych warstwach modelu referencyjnego. Oka­

Tl Rozdział 1

zało się, że LOTOS, spełniając te wymogi, może być narzędziem specyfikacji prak­
tycznie dowolnych systemów rozproszonych.

Język specyfikacji, ze względu na złożoność specyfikowanych systemów, powinien
dostarczać zestawu mechanizmów strukturalizacji tworzonych opisów, mających do­
brze ugruntowane intuicje. Dobrze zestrukturalizowana specyfikacja podnosi czytel­
ność i ułatwia jej pielęgnację.

Język ESTELLE bazuje na imperatywnych koncepcjach spotykanych w tradycyjnych
językach programowania (punktem odniesienia był tu Pascal), język LOTOS wyko­
rzystuje natomiast idee abstrahowania danych i zachowań, zrodzone na przełomie lat
siedemdziesiątych i osiemdziesiątych ubiegłego wieku. Są nimi:

• koncepcja algebraicznej specyfikacji abstrakcyjnych typów danych,
• koncepcja specyfikacji behawioralnych, tzn. opisu zachowania systemów poprzez

zbiór ciągów oddziaływań systemu ze swoim otoczeniem.

Abstrakcyjne typy danych mają w literaturze współczesnej wiele różnych modeli.
Typy danych, które adaptowano na potrzeby języka LOTOS, pochodzą od języka al­
gebraicznych specyfikacji ACT ONE, opracowanego w Uniwersytecie Technicznym
w Berlinie Zachodnim pod kierunkiem H. Ehriga [Ehrig, Mahr 1985].

Opis zachowania systemów opiera się na koncepcjach zaproponowanych przez
R. Milnera z Uniwersytetu w Edynburgu, zawartych w języku CCS [Milner 1980],
System jest traktowany jako pewien obiekt (zestaw równolegle działających proce­
sów), który poprzez pewne punkty interakcji (bramki, porty) wymienia dane ze swoim
otoczeniem.

Specyfikacja systemu rozproszonego w LOTOSie składa się z:

• specyfikacji abstrakcyjnych typów danych (komunikatów wymienianych po­
między systemem a jego otoczeniem),

• specyfikacji zachowań, czyli specyfikacji behawioralnej.

Ważną rolę w rozwijaniu formalnych technik opisu oprogramowania odegrał projekt
SEDOS (Software Environment for the Design of Open Distributed Systems), realizo­
wany pod koniec lat osiemdziesiątych, w ramach europejskiego programu ESPRIT
[van Eijk, Vissers, Diaz 1989]. Prace przyczyniły się do ostatecznej standaryzacji
języka i weryfikacji jego praktycznej przydatności, a ponadto opracowano programo­
we narzędzia służące między innymi do edycji i symulacji specyfikacji oraz do wspo­
magania tworzenia implementacji na podstawie specyfikacji.

W języku LOTOS przedstawiono pełny opis wielu powszechnie stosowanych standar­
dów, na przykład:

• IEEE Connectionless Interneting Protocol,
• ISO Network Service,

Wstęp 23

• ISO Transport Protocol,
• ISO Transport Service,
• ISO Session Protocol,
• ISO Session Service,
• ISO Presentation Protocol,
• ISO Transaction Protocol.

Opisano także niektóre proponowane standardy, które nie znalazły jednak szerszego
zastosowania: standardy usług i protokołów transferu plików i zadań.

Pod koniec lat dziewięćdziesiątych ubiegłego wieku, na bazie zdobytych doświad­
czeń w stosowaniu języka, rozpoczęto prace nad czasowym rozszerzeniem LOTOSa.
Znalazły one wyraz w propozycji standardu [ISO/IEC FDIS 15437, 2001]. Standard
nowego języka, nazywanego E-LOTOS, oprócz wprowadzenia czasu, wprowadza
różne modyfikacje i usprawnienia, wśród których najistotniejsza jest zmiana specy­
fikacji danych. Przyjęto pragmatyczne podejście do definiowania typów danych
uwzględniające sposoby definiowania stosowane we współczesnych językach pro­
gramowania.

1.7. Zakres monografii

W monografii przedstawiono język LOTOS, jego zastosowania, a także jego rozsze­
rzenia, które umożliwiają wykorzystanie języka w procesie specyfikacji i projektowa­
nia systemów czasu rzeczywistego. Omawiane są dwa rodzaje rozszerzeń - rozsze­
rzenia czasowe, które umożliwiają specyfikowanie systemów czasu rzeczywistego
z silnymi ograniczeniami czasowymi, oraz rozszerzenia wydajnościowe, które umożli­
wiają analizę wydajnościową systemów czasu rzeczywistego ze słabymi ograniczenia­
mi czasowymi.

Zawartość książki jest następująca:

Dwa kolejne rozdziały - 2. oraz 3. - dotyczą języka CCS oraz jego rozszerzeń czaso­
wych. Prezentacja języka i jego rozszerzeń jest sformalizowana. Opis semantyki jest
oparty na strukturalnym podejściu operacyjnym.

W rozdziale 4. omówiono abstrakcyjne typy danych w LOTOSie.

Na informacjach z rozdziałów 2. i 4. opiera się rozdział 5., w którym opisano język
LOTOS.

W rozdziale 6. omówiono najważniejsze zastosowanie języka LOTOS jako języka
specyfikacji standardów sieciowych, a w rozdziale 7. - metodykę użycia języka
LOTOS w procesie tworzenia i testowania specyfikacji. Przedstawiono także krótko
narzędzia programowe wspomagające wykorzystanie języka.

24 Rozdział 1

W rozdziale 8. skupiono się na pewnej własności języka LOTOS, którą można uważać
za niepożądany efekt - tak zwane ukryte blokady - wynikający z przyjętego sposobu
komunikacji i synchronizacji.

W dwóch następnych rozdziałach omówiono rozszerzenia języka LOTOS: w rozdzia­
le 9. zaprezentowano dwa rozszerzenia czasowe, a w rozdziale 10. - rozszerzenie wy­
dajnościowe LOTOSa.

W ostatnim rozdziale 11. omówiono związki LOTOSa z innymi metodami formalny­
mi i półformalnymi, a zwłaszcza z językiem UML.

25

2. Język CCS

2.1. Wstęp

W tym rozdziale przedstawiono język CCS (Calculus of Communicating Systems),
który był podstawą do opracowania języka LOTOS. CCS powstał na bazie prac
R. Milnera, inspirowanego wcześniejszymi pracami prowadzonymi przez Hoare’a nad
językiem programowania współbieżnego CSP (Communicating Sequential Processes)
[Hoare 1978, 1985]. Przeznaczeniem CCS było formalne specyfikowanie zachowania
systemów interaktywnych. W dojrzałej postaci przedstawił go Milner w książce [1980],
Wcześniejsze prace Milnera były inspiracją zwłaszcza dla jego współpracowników
z Uniwersytetu w Edynburgu, na przykład: [Hennessy, Plotkin 1979, 1980], [Plotkin
1981], [Hennessy 1988], [Hennessy, Reagan 1991], były też podstawą dalszych prac
Milnera [1989, 1999], jak i prac w innych ośrodkach, na przykład [Parrow 1985],

Systemy interaktywne (zob. rozdz. 1.) są szeroką kategorią systemów informatycz­
nych, stanowiącą uogólnienie klasycznych systemów transformacyjnych. Działanie
systemów transformacyjnych można opisać zależnością funkcyjną lub relacyjną po­
między początkowymi i końcowymi stanami systemu. Tymczasem występują syste­
my, w których nie chodzi o osiągnięcie pewnego stanu końcowego, lecz o to, aby bie­
żące działanie systemu, rozumiane jako jego współdziałanie ze swoim otoczeniem,
było zgodne z określonym wzorcem. Przykładem takich systemów są systemy opera­
cyjne, systemy rezerwacji biletów, sieci komputerowe itp. W przypadku takich syste­
mów konieczne jest inne podejście do opisu ich działania, nazywane podejściem be­
hawioralnym.

Podejście to polega na opisie działania systemu przez opis komunikacji, która może
zachodzić pomiędzy systemem a jego otoczeniem. System jest widziany jako „czarna
skrzynka”, która wykonuje w swoim wnętrzu pewne nieobserwowalne czynności obli­
czeniowe - akcje wewnętrzne i komunikuje się ze swoim otoczeniem przez obserwo-
walną wymianę danych na swoich bramkach (portach) - wykonywanie akcji komuni­
kacyjnych (rys. 2.la).

W podejściu behawioralnym nacisk kładzie się na komunikację. Pojedyncza komuni­
kacja jest wynikiem interakcji, czyli realizacji dwóch synchronizujących się akcji ko­
munikacyjnych - akcji wysłania i akcji odbioru danych - na bramce systemu. Jedna
z akcji (akcja wysłania lub odbioru) jest wykonywana przez system, a druga (akcja
odbioru lub wysłania) - przez jego otoczenie. Rezultatem interakcji jest wymiana po­
między systemem a jego otoczeniem pewnego zestawu danych.

Interakcja jest czynnością elementarną, to znaczy nie może być przerywalna ani dzie­
lona. Ponieważ nie uwzględnia się przy tym czasu trwania interakcji, zakłada się, że
interakcja wykonuje się natychmiastowo.

26 Rozdział 2

a)
b)

Zbiór oferowanych
akcji komunikacyjnych

Wykonanie akcji
komunikacyjnej
lub
wykonanie akcji
wewnętrznej

Nowy zbiór oferowanych
akcji komunikacyjnych

Rys. 2.1. System interaktywny jako „czarna skrzynka” (a), schemat zmiany stanów systemu (b)

Działanie systemu interaktywnego przebiega zgodnie z następującym schematem
(rys. 2.Ib): W danym momencie czasu system znajduje się w pewnym stanie.
Z punktu widzenia otoczenia systemu stan określa zbiór oferowanych akcji komuni­
kacyjnych. Jeżeli otoczenie skorzysta z pewnej oferowanej akcji komunikacyjnej,
zostanie zrealizowana odpowiednia interakcja, w wyniku której nastąpi przesłanie
pewnych danych oraz nastąpi zmiana stanu systemu. W nowym stanie system oferu­
je otoczeniu nowy zbiór akcji komunikacyjnych, po czym powtarzają się opisane
czynności. Zmiana stanu może również nastąpić bez interakcji z otoczeniem, na
skutek wykonania przez system akcji wewnętrznej. Dla otoczenia zajście takiej akcji
wewnętrznej może być zauważone tylko przez zmianę zbioru oferowanych akcji
komunikacyjnych.

System reaktywny może być też widziany jako „szara skrzynka” (rys. 2.2). Oznacza
to, że system składa się z mniejszych „czarnych skrzynek”, które są powiązane ze
sobą wewnętrznymi bramkami, przeznaczonymi do komunikacji wewnętrznej. Kon­
cepcja „szarej skrzynki” pozwala na dekomponowanie złożonego systemu reakty­
wnego na elementy składowe. Elementy składowe systemu, podobnie jak cały system,
nazywa się procesami lub agentami. Składowe procesy systemu można również
dekomponować dalej, przedstawiając je jako złożenie innych podprocesów, a tych
z kolei jako dalszych podprocesów itd.

Interakcje pomiędzy systemem a jego otoczeniem bądź pomiędzy jego procesami
składowymi można przedstawiać na dwóch poziomach szczegółowości. Na poziomie
ogólnym interakcja jest traktowana tylko jako zdarzenie komunikacyjne zachodzące na

Język CCS 27

danej bramce. Na poziomie szczegółowym interakcja jest określona jako zdarzenie
komunikacyjne, któremu towarzyszy wymiana wskazanych danych.

Rys. 2.2. System reaktywny jako ..szara skrzynka"

Odpowiednio do tych poziomów szczegółowości język CCS ma dwie wersje: wersję
bazową, która przedstawia interakcje z pomijaniem danych wymienianych, i wersję
pełną, która dane te uwzględnia. W dalszym ciągu rozdziału prezentację języka CCS
ograniczono do wersji bazowej.

Specyfikacja systemu interaktywnego jest dokonywana z punktu widzenia zewnętrz­
nego obserwatora systemu i polega na określeniu zbioru wszystkich możliwych ciągów
interakcji, jakie mogą zachodzić, w czasie jego życia, pomiędzy nim a jego otoczeniem.

Specyfikacja jest wyrażana przez tak zwane wyrażenia behawioralne języka CCS.
Stanowią one rekursywne złożenie akcji komunikacyjnych. Akcje mogą być powią­
zane różnymi operatorami składni, a rekursja jest wyrażana przez wywoływanie pro­
cesów (lub agentów).

Proces reprezentuje system lub jego składową, która przez własne bramki może się
komunikować ze swoim otoczeniem. W danym stanie proces oferuje swemu otoczeniu
pewne akcje komunikacyjne. To, która z tych akcji zostanie wykonana, zależy od syn­
chronizacji procesu z otoczeniem. Po zsynchronizowaniu się akcji następuje ich rea­
lizacja (interakcja), po czym proces przechodzi do kolejnego stanu, w którym przed­
stawia swemu otoczeniu nową ofertę akcji komunikacyjnych.

Znaczeniem wyrażeń behawioralnych jest zachowanie systemu, określone przez zbiór
ciągów interakcji, jakie zachodzą pomiędzy systemem a jego otoczeniem. W przypad­
ku nietrywialnych systemów reaktywnych zbiór takich ciągów jest często nieskoń­
czony, a ciągi mogą mieć nieskończoną długość.

28 Rozdział 2

2.2. Składnia i nieformalna semantyka

Przedstawiona składnia języka odbiega w drobnych szczegółach od oryginału. Zostało
to podyktowane chęcią zachowania konwencji stosowanej przez język LOTOS. Róż­
nice te natomiast nie zmieniają semantyki języka.

Wprowadźmy następujące oznaczenia:

Niech G oznacza dowolny, co najwyżej przeliczalny, zbiór - nazywany zbiorem nazw
bramek komunikacyjnych.

Zbiór akcji wejściowych (bez uwzględniania przesyłanych danych) będziemy ozna­
czać przez G?, akcji wyjściowych przez G\ oraz przez A sumę wejściowych i wej­
ściowych akcji komunikacyjnych, czyli A = G? u G!.

Dodatkowo wprowadzamy akcję r, którą będziemy nazywać akcją wewnętrzną. Akcja
wewnętrzna reprezentuje pewną czynność obliczeniową lub komunikacyjną, która -
wykonywana wewnątrz systemu - nie jest widoczna dla jego otoczenia.

Zbiór wszystkich akcji oznaczamy Act = A u {r}. Zbiór A jest zbiorem akcji, których
zajście jest obserwowalne przez otoczenie systemu, natomiast rjest akcją, której zaj­
ście jest nieobserwowalne przez otoczenie systemu.

Akcję wejściową na bramce ge G będziemy oznaczać jako gl (g?e GT), akcję wyjścio­
wą na bramce geG jako g! (g!eG!); ta sama bramka może być użyta do realizacji
akcji wejściowej lub wyjściowej. Akcje g‘l oraz g! nazywa się akcjami komplemen­
tarnymi.

Jeżeli aeA, to jej akcję komplementarną oznacza się a, oczywiście a -a. Dla akcji
wewnętrznej f = T.

Bramka, na której jest realizowana akcja oeA, będzie oznaczana przez gate(a). Akcje
komplementarne a oraz Ct synchronizują się na tej samej bramce, dlatego gate(a) =
= gate(a). Jeżeli SęA.toz definicji gate (S) = ^J^Jg6zre(a)}.

Przez Proc oznaczymy zbiór nazw procesów. Każdy proces ma swoją definicję,
a zbiór definicji procesów Def jest określony następująco:

D •. = piP.B\D,/U.P.B (2.1)

gdzie:
De Def, PeProc jest nazwą procesu,
Be Beh jest wyrażeniem behawioralnym, stanowiącym treść procesu.

Zbiór wyrażeń behawioralnych Beh, w notacji BNF, jest określony następująco:

B ::= 0 | P | BAS | BfJ] | (BO | a; B. | B, || B, \B}+B, (2.2)

Język CCS 29

gdzie:
B, Bi, B2e Beh, Pe Proc, S ęzA, aeA oraz f: G —> G jest funkcją przemianowania
(zmiany nazwy) bramek komunikacyjnych. Kolejność wprowadzenia operatorów
odpowiada malejącej kolejności priorytetów ich użycia;
0 jest stałą reprezentującą proces pusty, to znaczy taki, który nie oferuje swemu
otoczeniu żadnych akcji komunikacyjnych.
P jest instancją procesu. Każdy proces, oprócz procesu pustego, ma dokładnie
jedną definicję wyrażoną w postaci pP.B (P jest jego nazwą, a B jest pewnym wy­
rażeniem behawioralnym, nazywanym treścią procesu).

Operator p w definicji rekursywnej pP.B wiąże wszystkie wolne wystąpienia nazwy
procesu P w treści procesu B. Zachowanie definiowane przez wyrażenie pP.B jest
takie same jak zmodyfikowanego wyrażenia B, w którym każde wystąpienie P jest
zastępowane przez pP.B.

Wolne wystąpienia nazw procesów określa funkcja pomocnicza FProc : Beh —> 2/>™,
która dla danego wyrażenia behawioralnego B wyznacza zbiór wolnych nazw proce­
sów. Jest ona zdefiniowana rekursywnie w tabeli 2.1.

Tabela 2.1

B FProc(B)

0
P

0
{PJ

pP-B,
BAS
^[/l
(Si)
a; B\
B, || B2
B । + Bi

FProc(BA\{P}
FProc(B})
FProclBA
FProcjBj
FProclBA
FProc(Bj) U FProc(B2)
FProc(Bj u FProc(B2)

W wyrażeniu BAS, gdzie SczA, \ jest operatorem przesłaniania (restrykcji). Operator
ten wyklucza komunikację wyrażenia behawioralnego B{ z jego otoczeniem na bram­
kach gate(S~). Inaczej: wyrażenie BAS nie może się komunikować ze swoim otocze­
niem na bramkach gate(S).

B|[/] jest wyrażeniem, w którym nazwy bramek akcji zostają przemianowane przez
funkcję /: G —> G; dla akcji a, w wyrażeniu B\, bramka gate(a) = g zostaje zastąpio­
na bramką f(g). Zakładamy, że funkcja f jest bijekcją, to znaczy funkcją wzajemnie
jednoznaczną. W wyrażeniu B|[/] symbol [/] jest operatorem przemianowania para-
metryzowanym funkcją f.

30 Rozdział 2

Nawiasy w wyrażeniu (SJ służą grupowaniu i strukturalizacji wewnętrznej wyrażeń.
Zachowanie wyrażenia (B,) jest dokładnie takie jak wyrażenia Bh

Wyrażenie a; B^ jest nazywane wyrażeniem prefiksowania akcją a wyrażenia B\ albo
krótko - wyrażeniem prefiksującym. Symbol ; jest operatorem prefiksowania. Wyra­
żenie a\ B} oferuje swemu otoczeniu tylko jedną akcję komunikacyjną a. Jeżeli akcja
ta zostanie zaakceptowana przez otoczenie, to po jej wykonaniu kolejne oferty komu­
nikacyjne są określone przez wyrażenie Bh

Wyrażenie złożenia równoległego B\ || B2, gdzie || jest operatorem złożenia równole­
głego, zachowuje się tak, jak zachowują się jednocześnie wyrażenia B\ oraz B^ to
znaczy oferuje swemu otoczeniu akcje komunikacyjne oferowane przez wyrażenie B\
oraz przez wyrażenie B2. Oba wyrażenia, poza tym że oferują akcje komunikacyjne
swemu otoczeniu, dodatkowo mogą się wzajemnie komunikować. Komunikacja taka
wymaga synchronizacji dwóch komplementarnych akcji na wspólnej bramce.

Wyrażenie wyboru B\ + B2, gdzie + jest operatorem wyboru, zachowuje się jak B} albo
B2. Wybór zachowania zależy od otoczenia wyrażenia B} + B2, które wskazuje na Bt
albo B2, wybierając do realizacji albo jedną z akcji oferowanych przez Bh albo jedną
z akcji oferowanych przez B2.

Definicja 2.1
Specyfikacja zachowania w języku CCS jest zdefiniowana jako para

Spec = < Bo, Defp > (2.3)

gdzie: B{}eBeh jest początkowym wyrażeniem behawioralnym, a DefPE Def jest
skończoną listą definicji pewnych procesów Pt, ..., P„.
Definicja procesu o nazwie P, (i - 1, ..., n) ma postać pP,.B,, gdzie wyrażenie be­
hawioralne B^Beh jest treścią procesu. Każdy proces, którego instancja występuje
w wyrażeniach behawioralnych Ba, ..., B„ ma swoją definicję w zbiorze Def. In­
stancje procesów o tej samej nazwie mają jedną wspólną definicję.

Wprowadzamy funkcję pomocniczą FAct : Beh —> Act, która dla danego wyrażenia
behawioralnego B wyznacza zbiór akcji obserwowalnych. Funkcja jest zdefiniowana
rekursywnie w tabeli 2.2.

Funkcja umożliwia zdefiniowanie dwóch rodzajów specyfikacji:

Definicja 2.2
Specyfikację Spec = <B^, Def>, dla której FAct(Bf) = 0 nazywamy specyfikacją
komunikacyjnie zamkniętą, a komunikacyjnie otwartą w przypadku przeciwnym.

System, którego specyfikacja jest komunikacyjnie otwarta, jest systemem, którego
funkcjonowanie jest uwarunkowane działaniem jego otoczenia, działanie (obliczenie)
systemu, którego specyfikacja jest komunikacyjnie zamknięta, jest natomiast nieza­
leżne od jego otoczenia (system nie komunikuje się ze swoim otoczeniem).

Język CCS 31

Tabela 2.2

B FAct(B)
0 0
P FAct(Bi) gdzie pP.Bi
BP-Bi FAct(Bi)
Bt\S FAct(Bi)\S,)
Bdf] FAct(Bi)[f}
(B,) FAct(Bi)
a-, B\ {«} u FAct(Bó
Bi || FAct(Bi) u FAct(B2)
51 4- ^2 FAct(Bi) u FAct(B2)

*’ Symbol \ występuje w prawej kolumnie w roli
odejmowania mnogościowego, w lewej kolumnie
natomiast występuje w roli operatora restrykcji.

Czasem jest dogodne operowanie wyrażeniami behawioralnymi w pewnych posta­
ciach kanonicznych.

Wyrażenie behawioralne B jest w sekwencyjnej postaci normalnej, gdy przyjmuje postać
B=Y B,=B,+... + B„ (2.4)....n) > । « v '

gdzie:
Bi to składowe sekwencyjne wyrażenia B,
symbol = oznacza równoważność (identyczność) tekstową.

Wyrażenie behawioralne Sjest w równoległej postaci normalnej, gdy przyjmuje postać

SH.en.o... „1S,\SS(B1||...||B„)\S (2.5)

gdzie B, to składowe równoległe wyrażenia B.

2.3. Semantyka operacyjna

Semantyka operacyjna specyfikacji Spec = < Bo, Def > jest definiowana w sposób stru­
kturalny na podstawie definicji składniowych wyrażeń behawioralnych. Definicja
opiera się na pojęciu etykietowanego systemu przejść postaci

TS(Spec) = < Beh, Act, Tr, Ba>
gdzie:

Beh jest zbiorem wyrażeń behawioralnych;
Act jest zbiorem akcji;

(2.6)

Tr = ={——» c Beh^Beh | ae Act} jest rodziną relacji przejść pomiędzy wyra­
żeniami behawioralnymi.

32 Rozdział 2

Przejście postaci
B{—^B2

oznacza, że proces, którego stan jest reprezentowany wyrażeniem behawioralnym
B\, w wyniku realizacji akcji aeAct, zmienia swój stan na stan reprezentowany
wyrażeniem B2. Jeżeli a jest akcją obserwowalną, to jej wykonanie i stowarzy­
szone z nią dane zostają wymienione pomiędzy systemem a jego otoczeniem, jeże­
li natomiast ćzjest akcją wewnętrzną, to przejściu od Bt do B2 towarzyszy komu­
nikacja wewnętrzna, która nie jest widoczna dla otoczenia procesu;
Bo jest początkowym wyrażeniem behawioralnym.

Rodzina relacji przejść jest definiowana na podstawie rekursji strukturalnej, to znaczy
każdemu operatorowi wyrażenia behawioralnego odpowiada pewien aksjomat lub
reguła systemu aksjomatycznego.

Aksjomaty mają postać ustalonych przejść (schematów przejść) pomiędzy wyrażenia­
mi behawioralnymi. Przesłankami i wnioskami reguł są wybrane przejścia. Dodat­
kowo z regułami wiąże się warunek ich stosowania.

Reguły zapisuje się w postaci

gdzie:
B'——>B" (z = 1, 2) sąprzejściami-przesłankami,

B, —^—sB2 jest przejściem-konkluzją,
wrzr jest warunkiem stosowania reguły.

Aksjomat jest szczególną postacią reguły, gdy zbiór przesłanek jest pusty, dlatego
aksjomaty zapisuje się w postaci przejścia-konkluzji.

Proces pusty - brak aksjomatów i reguł.

Instancja procesu

^P.B-^B' .
—------ -------— (R-ins)

P—^B

Rekursja

B[P-^P.B]-^B' .
---------- -— -----;------ (R-rec)

jtlP.B—^B

gdzie [P::- B’] jest pomocniczym operatorem (jednokrotnego) zastąpienia teksto­
wego. Notacja postaci B[P::~ B'] oznacza modyfikację wyrażenia B, polegającą na

Język CCS 33

tekstowym zastąpieniu każdego wolnego wystąpienia nazwy procesu P w wyrażeniu B
wyrażeniem B'.

Reguła (R-ins) stwierdza, że wywołanie (instancja) procesu ma zachowanie takie same
jak jego treść. Reguła (R-rec) stwierdza natomiast, że zachowanie procesu rekursywnego
P jest określone przez treść tego procesu, zmodyfikowaną w taki sposób, że każde wolne
wystąpienie jego nazwy jest zastąpione tekstowo przez treść tego samego procesu P.

Restrykcja

B—^B'
B\S—^B'\S

gate(a)£ S (R-resj

B—^B'
B\S—^B'\S

gate(a)e S (R-res^

Pierwsza reguła restrykcji (R-res\) dotyczy akcji nienależącej do zbioru przesłania­
nych akcji - wykonanie takiej akcji jest obserwowalne. Druga reguła (R-res2) dotyczy
akcji ze zbioru akcji przesłanianych - jej wykonanie jest nieobserwowalne, jest trak­
towane jako wykonanie akcji wewnętrznej.

Przemianowanie

B a >B' f(gY dlaa = g\

f(gY d\aa = gl
(R-ren)

Reguła stwierdza, że zachowanie wyrażenia behawioralnego B[f] z bramkami prze­
mianowanymi funkcją f jest takie jak zachowanie wyrażenia B zmodyfikowanego
w taki sposób, że każda akcja na danej bramce g zostaje zastąpiona akcją na bramce
f(g).

Nawiasy

B—^B'
(B)—^B'

gdzie B = B\+B2 (R-P^

B—^B'
(B)^^(B')

gdzie B = B\ ||B2 (R-pY

Z użyciem nawiasów wiążą się dwie reguły, gdyż ich zastosowanie polega na grupo­
waniu wyrażeń wyboru lub wyrażeń złożenia równoległego. W przypadku pierwszym
- reguła (R-p\) - wyrażenie (B\ + B2), wykonując pierwszą akcję, dokonuje wyboru
jednego z wyrażeń składowych, a zatem przechodzi do wyrażenia, w którym nie ma
potrzeby dalszego użycia nawiasów, gdyż występuje tylko jedno wyrażenie składowe.
Wykonanie natomiast dowolnej akcji przez wyrażenie złożenia równoległego (Bt || B2)

34 Rozdział 2

(R-pari)

(R-parj)

pozostawia oba wyrażenia składowe, które dalej powinny być ujęte w nawiasy - regu­
ła (R-p2).

Prefiksowanie akcją

a\B—^B (A-pre)

Zachowanie wyrażenia prefiksowanego akcją a\ B jest opisane aksjomatem, który
stwierdza, że po wykonaniu akcji preftksującej a dalsze zachowanie wyrażenia jest
określone przez zachowanie wyrażenia B.

Złożenie równoległe

Bi \\b2-^b;\\b2

b2—^b2
Bt \\B2^^Bt || B2

B}—^B' B2—^B2
Bi ||b2^^||£

Dwie pierwsze reguły (R-paró) i (R-par2) odnoszą się do przypadku, gdy jedna ze
składowych złożenia równoległego wykonuje akcję, druga składowa natomiast nie
wykonuje żadnej akcji. Oznacza to, że jeśli jest wykonywana akcja komunikacyjna, to
partnerem komunikacji jest otoczenie wyrażenia B\ || B2. Wynikiem realizacji takiej
akcji jest modyfikacja składowej, która uczestniczy w akcji, i pozostawienie bez zmia­
ny drugiej składowej. Reguła (R-par$ dotyczy przypadku, gdy obie składowe uczest­
niczą w realizacji pary komplementarnych akcji komunikacyjnych. Wówczas rezulta­
tem realizacji jest odpowiednia modyfikacja obu składowych.

Wybór

(R-pary)

B2—^B2
b}+b2—^b'2

(R-ch^

Reguły (R-ch\) i (R-ch2) odzwierciedlają dwa przypadki odnoszące się do wyboru
jednej akcji, należącej albo do Bh albo do B2. Wybór takiej akcji determinuje, że dal­
sze zachowanie przebiega zgodnie z wyrażeniem, do którego należy wybrana akcja.
Wybór zależy całkowicie od otoczenia wyrażenia Bt + B2, gdy obie składowe oferują
wyłącznie akcje komunikacyjne. Gdy natomiast obie składowe oferują tylko akcje

Język CCS 35

wewnętrzne, na przykład jak dla wyrażenia r; B\ + r; B2, wybór jednej z tych akcji
wewnętrznych jest niedeterministyczny i nie zależy od otoczenia.

Podane aksjomaty i reguły umożliwiają zdefiniowanie ciągów akcji, które generuje
dana specyfikacja Spec.

W celu zdefiniowania tych ciągów wprowadźmy oznaczenia:

Z - zbiór wszystkich ciągów skończonych nad zbiorem Z; ciąg pusty będzie ozna­
czany przez E,

Z™ - zbiór wszystkich ciągów nieskończonych nad zbiorem Z.

Jeżeli s}eZ' oraz s2eZ* u Z°°, to przez SiaS2 będziemy oznaczać konkatenację tych
ciągów.

Ciąg tranzycji (obliczenie) generowany przez system przejść TS(Spec) ma postać

^B2...-^Bn (2.7a)
lub

Bo —^Bt —^B2...—(2.7b)

gdzie:
Bojest początkowym wyrażeniem specyfikacji Spec,
Bn w przypadku obliczenia skończonego (2.7a) jest wyrażeniem końcowym, to
znaczy takim, dla którego nie istnieją przejścia do innych wyrażeń.

Dla dwóch wyrażeń behawioralnych B, B’&Beh oraz dla skończonego ciągu akcji
seAct , gdzie 5 = ćZ| ... a,,, zapis

B-s-^B' (2.8)

oznacza, że wyrażenie behawioralne B'jest osiągalne z wyrażenia B przez ciąg akcji 5,
czyli

BB,,...^,,., »B—^B,...—^^B,,_,—^->B' (2.9)

Będziemy mówić, że z wyrażenia B ciąg akcji 5 prowadzi do pewnego wyrażenia
osiągalnego, co zapisuje się

B-s-^ (2.10)

gdy 3 B' • B—■$—> B'.

Zbiór {B'| 3 B' • B—5—> B'} jest zbiorem wyrażeń behawioralnych osiąganych z wy­
rażenia B.

Dla 56 Act°° zbiór wszystkich jego początkowych podciągów oznaczmy przez

pref^s) = {s'c.Act | Bs"eAcf° • 5 = 5'A s" } (2.11)

36 Rozdział 2

Definicja 2.3
Specyfikacja Spec - <B0, Decl> generuje zbiór ciągów akcji

Seq(Bo) = SeqFin(B0) o SeqInf(B0) (2.12)

gdzie:

SeqFin(B0) = {seAcf | Bo—s—>} (2.13)

Seqlnf(B0) = {se AcF I Vs'epref (s) • Bo —s'—>} (2.14)

Zbiór ciągów Seq(B0) może być uważany za pełną semantykę wyrażenia behawio­
ralnego Bo, gdyż bierze pod uwagę wszystkie ciągi, w których występują zarówno
akcje obserwowalne, jak i nieobserwowalne. Inny rodzaj semantyki bierze pod uwagę
tylko ciągi akcji obserwowalnych. W celu przedstawienia tej semantyki wprowadzimy
dodatkowe pojęcia.

Najpierw wprowadzimy relację przejść obserwowalnych pomiędzy wyrażeniami be­
hawioralnymi dla s = a\ ... A", oznaczaną

B=s^B' (2.15)

i zdefiniowaną następująco:

B =£=*B'oznacza, że istnieje, być może pusty, ciąg przejść

Bn——>B}——>B2...——)Bn dla n^Nat (2.16)

gdzie: B = Bo oraz B'= B„.

B -a=>B', dla o^A, oznacza, że istnieją B| oraz B2, takie że

B —E^B[a B,—(X—^B2 a B2 =£^B' (2.17)

Dalej, dla s=a{ ... c^eA*

B=s^B' (2.18)

oznacza, że

3 B| ... B„ • B -a^B} a ... a B„ =a,,^B' (2.19)

oraz

B =$=> (2.20)

oznacza, że

BB'»B=s^ B' (2.21)

Język CCS 31

Niech seAct* będzie postaci 5 = Tk° a^' a2Tk2... anrk", gdzie

Tk‘ =tt...t dla k^Nat oraz i = 0, 1,n
kj razy

są podciągami złożonymi wyłącznie z akcji wewnętrznych. Przez s"bx oznaczmy pod­
ciąg ciągu 5 złożony z akcji obserwowalnych, czyli

s“bx = ai ... a„.

W szczególności anbx = a, gdy a^r, oraz auhx = e w przypadku przeciwnym.

Definicja 2.4
Specyfikacja Spec = <B0, Decl> generuje zbiór obserwowalnych ciągów akcji

SeqObs{B^ = SeqObsFin(B0) u SeqObslnf (Bo) (2.22)
gdzie:

SeqObsFin(B0) = {seA* | B0=s^} (2.23)

SeqObsInf (B^) = {seAcr“ I Vs'Epref(s) • Bq=s'^> } (2.24)

W dalszej części będziemy rozpatrywać wyrażenia dozorowane behawioralne, okre­
ślone przez definicję 2.5.

Definicja 2.5
Wyrażenie behawioralne B nazywa się wyrażeniem dozorowanym, jeśli każde wy­
stąpienie instancji dowolnego procesu, z wyjątkiem procesu pustego, w wyrażeniu
B, jest prefiksowane akcją.

Pojęcie wyrażenia dozorowanego eliminuje pewne niewygodne, „patologiczne” wy­
rażenia, których interpretacja jest co najmniej kłopotliwa. Przykładami takich wyrażeń
są instancje procesów opartych na definicjach:

JlP.P

pQ.(a - B + Q)

HP.Q pQP

Czasem również rozważania ogranicza się do wyrażeń zbudowanych regularnie.

Definicja 2.6
Dozorowane wyrażenie behawioralne B nazywa się wyrażeniem regularnie zbudo­
wanym, jeśli dla dowolnego procesu P występującego w B o definicji pP.BP jego
treść Bp nie zawiera rekursywnego wystąpienia operatora ||.

38 Rozdział 2

Pojęcie wyrażenia regularnie zbudowanego eliminuje natomiast sytuacje, gdy kolejne
przejścia od danego wyrażenia prowadzą do nieograniczonej rozbudowy wyrażenia.
Rozpatrzmy na przykład proces

^P.(a-P\\ b; 0)
Wywołaniu tego procesu może towarzyszyć ciąg tranzycji

(a: P || b\ 0)—((a; P || b; 0) || b; 0) (((a; P || b; 0)|| b; 0)|| b; 0) -^...

w którym następuje nieograniczone rozwijanie wyrażenia.

2.4. Relacje równoważności

Tekstowe porównanie wyrażeń behawioralnych nie pozwala bezpośrednio na stwierdze­
nie, czy stanowią one różną reprezentację takich samych zachowań. Podstawą do stwier­
dzania równoważności zachowań dwóch wyrażeń jest następujący punkt widzenia:

jeżeli jedno z wyrażeń jest zdolne do wykonania pewnej akcji a, a następnie do
wykonywania akcji zgodnie z nowym wyrażeniem B, to drugie - równoważne mu
wyrażenie - musi być również zdolne do wykonania tej samej akcji a, a następnie
do zachowania się zgodnie z wyrażeniem, które jest równoważne wyrażeniu B.

Tego rodzaju równoważność zachowań jest określana mianem równoważności bisy-
mulacyjnej. Podane dalej definicje uściślają to pojęcie, a ponadto rozróżniają pojęcie
silnej i słabej bisymulacji.

Definicja 2.7
Relację binarną R ę Beh1 nazywa się bisymulacją, jeśli dla każdej pary wyrażeń
behawioralnych <Bh Bi>eR i dowolnych akcji aeAct spełnione są następujące
warunki:

a) jeżeli Bt —-—> B{, to 3B(• B2 ——> B2a< B{, B'-, >e R

b) jeżeli B7 ——>B2. to SB," • B, ——>B\/\ < B\,B'Z >e R

Definicja 2.8
Dwa wyrażenia B| oraz Bz są bisymulacyjnie silnie równoważne, co oznacza się
B, ~ B7, gdy istnieje bisymulacja R taka, że <B|, By>eR.

Z definicji wynika, że relacja - jest relacją silnej bisymulacji, gdy

~ “def jest relacją bisymulacji} (2.25)

Relacja silnej bisymulacji traktuje akcje komunikacyjne w taki sam sposób jak akcje
wewnętrzne i dlatego w przypadku, gdy akcje wewnętrzne są obserwowalne, nie za­

Język CCS 39

chodzą własności, których można by w tym przypadku oczekiwać, na przykład relacja
ta nie zachodzi pomiędzy wyrażeniami a, r, B oraz ar, B. Uzasadnia to wprowadzenie
relacji słabej bisymulacji, która jest określona następująco:

Definicja 2.9
Relację binarną S ę Beh2 nazywa się słabą bisymulacją, jeśli dla każdej pary wy­
rażeń behawioralnych <B|, B2> i dowolnych akcji a&Act są spełnione następujące
warunki:

a) jeżeli Bt ——^B,, to BB2 • B2 =a"hx=> B2/\< B{,B2 >e S
b) jeżeli B2 ——»B2, to • Bt =a"b^ B'^ < B{, B2 >e S

Definicja 2.10
Dwa wyrażenia B} oraz B2 są obserwacyjnie równoważne, co oznacza się Bt = B2,
gdy istnieje słaba bisymulacja S taka, że <Bt, B2>e S.

Oznacza to, że relacja = jest relacją obserwacyjnej równoważności, gdy

~ =def jest relacją słabej bisymulacji} (2.26)

Należy zauważyć, że równoważność obserwacyjna nie sprowadza się do zwykłego
pomijania akcji wewnętrznych w porównywanych wyrażeniach behawioralnych. Na
przykład dwa wyrażenia cz; B oraz t; a; B są równoważne obserwacyjnie, ale dwa
wyrażenia cą; B{ + r; a2, B2 oraz ar, B\ + a2, B2 nie są równoważne obserwacyjnie.

Łatwo sprawdzić, że zarówno bisymulacja, jak i słaba bisymulacja są relacjami rów­
noważności na zbiorze wyrażeń behawioralnych, czyli że są relacjami zwrotnymi, sy­
metrycznymi i przechodnimi. Dodatkowo relacja silnej bisymulacji jest kongruencją,
relacja obserwacyjnej bisymulacji kongruencją natomiast nie jest.

Relacja kongruencji nad dowolnym zbiorem termów Term jest zdefiniowana nastę­
pująco:

Definicja 2.11
Niech t^cTerm będzie podtermem termu t\E.Term, co dalej będziemy zapisywać
subt{t\, t\), oraz niech ^będzie termem, który powstaje z termu f| przez tekstowe
zastąpienie podtermu termem t'-,, czyli t2 = z,[rf]•
Relacja równoważności R nad dowolnym zbiorem termów Term jest kongruencją,
jeżeli z faktu, że <t\, t2 >eR wynika, że <t\, t2>eR.

Uwaga: Operator zastąpienia tekstowego [6:=^] należy odróżniać od poprzednio
wprowadzonego operatora zastąpienia tekstowego [P::=P].

40 Rozdział 2

Jeżeli jako zbiór termów rozpatrzymy zbiór wyrażeń behawioralnych Beli oraz wyra­
żenie behawioralne Bt zmodyfikujemy w taki sposób, że pewne jego podwyrażenie
B{zastąpimy podwyrażeniem B2, to otrzymane w ten sposób nowe wyrażenie B2
pozostaje w relacji R z wyrażeniem B\, jeśli tylko podwyrażenia B\ oraz B2 są ze
sobą w relacji R.

Definicja 2.12
Dwa wyrażenia behawioralne B{ oraz B2 s^kongruencyjnie obserwacyjnie równo­
ważne, co zapisujemy B} =c B2 Jeśli są spełnione następujące warunki:
a) B\ — B2,
b) dla dowolnego wyrażenia B takiego, że subt(B\, B), jeżeli Bt ~ B2, to

B = B[Bi := B2]

Kongruencyjna równoważność obserwacyjna pozwala na stwierdzenie, że dwa wyra­
żenia behawioralne, kongruencyjnie równoważne obserwacyjnie można wzajemnie
zastępować w dowolnym wyrażeniu bez obawy zmiany obserwowanego zachowania
całego wyrażenia.

Bezpośrednio z definicji relacji wynika, że

~q=cq = (2.27)

2.5. Prawa równościowe

Jednym ze sposobów badania równoważności wyrażeń behawioralnych jest porów­
nanie grafów wyrażeń osiągalnych dla tych wyrażeń - jest to podejście algorytmiczne.
Algorytm badania silnej równoważności bisymulacyjnej jest efektywny obliczeniowo
- ma złożoność wielomianową. Podobnie, przy pewnych ograniczeniach (zbiory
Seq(B\) i Seq(B\) odpowiadające porównywanym wyrażeniom muszą być skończone),
efektywny jest algorytm badania słabej równości bisymulacyjnej [Milner 1989],
a przegląd wcześniejszych prac na ten temat zawiera między innymi publikacja [Bolo-
gnesi, Smolka 1987],

Inny sposób badania równoważności polega na tekstowych przekształceniach wyrażeń
opartych na regułach równościowych - jest to podejście algebraiczne [Milner 1989].

System dowodowy składa się ze zbioru aksjomatów i reguł wnioskowania. Aksjomaty
przyjmują postać równości

B\ = B2,

gdzie symbol = może oznaczać jedną z równoważności: ~, =c, =.

Zbiór reguł, ze względu na własności równoważności, obejmuje reguły zwrotności,
symetrii i przechodniości:

Język CCS 41

Bi=Bt

B\ = B2
Bz = B}

= B^ B2 ~ By
Bi = B3

Poniżej przestawiono zbiór aksjomatów dla badania kongruencyjnej
obserwacyjnej =c.

Aksjomaty dla operatora wyboru:

B । + B2 ~ B2 +B ।

Bi + (Bz + B^) (Bi + B2) + B2

B + B^ B

B + 0~B

Aksjomaty dla operatora prefiksowania akcją:

et; t; B~c a; B

t;B + B~c t; B

a; (Bi + t; B2) + et; B2 ~c a; (Bi + t; B2)

Aksjomaty dla operatora restrykcji:

B\S =c B jeżeli gate(S) n gate(FAct(B)) = 0

B\Si\S2^ B\(S!US2)

(Bi || B2)\S ~c Bi\S\\ B2\S

jeżeli gate(S) n gate(FAct(Bi)) o gate(FAct(B2)) = 0

B[f]\S^B\r'(S)[f]

Aksjomaty dla operatora przemianowania:

B[id] B

B[f] =c B[/'] jeżeli f\sale(Facl(B)) =f IgflMFnczfB))

#[/][f] ~c B[f °f] gdzie 0 jest symbolem złożenia funkcji

(Bi || B2)[f] B|[/] || Bz[f] jeżeli funkcja f jest bijekcją

(R-refl)

(R-sym)

(R-trans)

równoważności

(Ai-ch)

(A2-ch)

(Ay-ch)

(Aą-c/i)

(Ai-pre)

(A2-pre)

(Arpre)

(Ai-res)

(A2-res)

(Ay-reś)

(A^-res)

(Ai-ren)

(Az-ren)

(Ayren)

(A-ren)

42 Rozdział 2

Aksjomaty dla operatora kompozycji równoległej:

B. || B, B21| 5,

Bi || (M B3)-c(Bi||B2)|| B,

B || 0 = B

(Arpar)

(A?-par)

(Arpar)

Zbiór reguł specyficznych dla kongruencyjnej równoważności obserwacyjnej obej­
muje reguły związane z rekursją

pP.B
P B

(Ri-rec)

Reguła R\-rec stwierdza, że wywołanie (instancja) procesu jest równoważna treści
procesu.

B[P:-X\ Q~CB[Q: = X\

P~ Q

gdzie X jest wyrażeniem
regularnie zbudowanym

(R2-rec)

Reguła (R2-rec) jest szczególnym przypadkiem reguły podanej niżej. Reguła ta odnosi
się do zbioru wzajemnie rekursywnie zdefiniowanych procesów. Wymaga ona wpro­
wadzenia pomocniczych oznaczeń. Niech

P^ P„

Q=Q^Q„

x^ XI,...,X„
wówczas

pP.B[P::=X] pQ.B[Q::=X]

P- Q
gdzie X jest wyrażeniem
regularnie zbudowanym

(R^-rec)

2.6. Twierdzenie o ekspansji

Badanie równoważności wyrażeń behawioralnych często prowadzi się po uprzednim
sprowadzeniu ich do postaci normalnych. Przedstawione niżej prawo o ekspansji po­
kazuje, jak można wyeliminować z wyrażenia operatory złożenia równoległego.

Prawo (twierdzenie) o ekspansji dotyczy wyrażeń behawioralnych w normalnej posta­
ci równoległej

M6|1.2... „}Bi\S^(B} ||...||B„)\S

Możliwe są dwa rodzaje tranzycji wyrażenia B do wyrażenia następnego.

Język CCS 43

Pierwszy rodzaj polega na tranzycji tylko jednego z wyrażeń składowych. Możliwe
jest to wówczas, gdy akcja jest wynikiem komunikacji wyrażenia B na bramce spoza
zbioru S, czyli

|| -. || B' ||... || B„) \ 51 B, B' a gate(a)i s}

Drugi rodzaj tranzycji jest wynikiem komunikacji pomiędzy dwoma składowymi wy­
rażenia B, przez bramkę ze zbioru S, czyli jest przejściem do jednej z sytuacji opisa­
nych wyrażeniem behawioralnym

||... || B' ||... || B' ||... || B„) \ S | B, B' a Bj B' a i < j a gateW e 5}

Zachodzi zatem twierdzenie:

Twierdzenie 2.1
Jeżeli

B=(B, ||...||B„)\S

to
B ^^(B, ||... || B' ||... || B' ||... || B„) \ 5 | B, -^B' a Bj B' a i < ./}

+ II - II B' II - II I B> B'* 5}
Znaczenie twierdzenia polega na tym, że umożliwia ono krokową transformację wyra­
żenia behawioralnego do postaci, która zawiera tylko operatory prefiksowania akcją
i operatora wyboru. Transformacja taka, oczywiście, nie dla każdego wyrażenia koń­
czy się uzyskaniem wyrażenia w tej postaci o skończonej długości.

2.7. Uwagi końcowe

W tym rozdziale przedstawiono podstawowe informacje o języku CCS. Na bazie CCS
opracowano pewne nowe wersje, między innymi CCS oraz SCCS [Fencott 1996],
Ten ostatni język jest odpowiednikiem języka SCCS (Synchronous Calculus of Com-
municating Systems) opracowanego przez Milnera [1983]. Zasadnicza różnica pomię­
dzy językami dotyczy sposobu opisu semantyki: semantyka SCCS jest semantyką
przeplotową, natomiast SCCS* - semantyką w pełni równoległą.

Wersje te powstały na gruncie rozważań na temat sposobu opisu semantyki języka. Przed­
stawiona semantyka języka CCS jest semantyką przeplotową. Oznacza to dwie rzeczy:

• tranzycje pomiędzy wyrażeniami następują w wyniku zajścia tylko pojedynczej
interakcji,

44 Rozdział 2

• interakcje, które mogą zachodzić równocześnie, są reprezentowane zbiorem cią­
gów tranzycji, stanowiących wszystkie permutacje tych interakcji.

Wykorzystany opis przeplotowej semantyki operacyjnej opiera się na klasycznym już
obecnie podejściu strukturalnej rekursji, zaproponowanej w pracach Plotkina [Plotkin,
Hennessy 1979], [Plotkin 1981]. Zaletą semantyki przeplotowej jest prosta formali­
zacja, wadą natomiast, że może się wydawać nienaturalna.

Język CCS " jest pewną modyfikacją CCS, jego semantyka jest semantyką pełnej rów­
noległości (truły concurrency semantic). Tranzycje w tej semantyce są widziane jako
rezultat jednoczesnego zajścia wielu interakcji. Formalnie, jednocześnie zachodzące
interakcje są reprezentowane wielozbiorami akcji. Semantyka pełnej równoległości
jest wprawdzie naturalna, ale stwarza kłopoty techniczne przy analizie i dowodzeniu
własności wyrażeń behawioralnych. Związki pomiędzy przeplotowym i nieprzeploto-
wym (równoległym) podejściem do definiowania semantyki sieci procesów omawia
na przykład Dembiński [1997].

Język SCCSjest synchroniczną wersją języka CCS . Synchroniczna wersja wprowa­
dza niejawnie czas dyskretny. Czas jest podzielony na kolejne przedziały, w których
mogą zachodzić interakcje. W danym odcinku czasu proces albo wykonuje akcje, albo
bezczynnie czeka na kolejny odcinek czasu. Proces nie może jednak czekać bezczyn­
nie, jeśli nie jest to wyrażone jawnie. Opóźnianie oczekiwania na wykonanie akcji
musi być wyrażone jawnie za pomocą dodatkowo wprowadzonej akcji jednostkowego
opóźnienia. Rozszerzenie języka polega w pierwszej kolejności na wprowadzeniu tej
dodatkowej akcji jednostkowego opóźnienia, a w następnej - na odpowiedniej defini­
cji semantyki.

Różne rodzaje relacji równoważności służące do porównywania procesów są szeroko
omawiane, między innymi w pracach: [Bolognesi, Smolka 1987], [De Nicola, Hen­
nessy 1984], [Hennessy 1988], [Milner 1989],

Od specyfikacji w języku CCS, jak i w innych językach algebraicznych, oczekuje się
spełnienia pewnych własności, jak bezpieczeństwa, żywotności, bezstronności itp.
(zob. rozdz. 1.). Własności takie wyraża się w językach logiki, dla których są skon­
struowane odpowiednie systemy dowodzenia. W niniejszej monografii zagadnień tych
się nie porusza. Są one omawiane między innymi w pracach: [Ciarkę, Emerson, Sistla
1983], [Hennessy, Reagan 1991], [Manna, Pnueli 1992],

45

3. Rozszerzenia czasowe CCS

3.1. Wstęp

Specyfikacja systemów czasu rzeczywistego musi dysponować pojęciem czasu. Czas
do specyfikacji, dokładniej do języka specyfikacji, można wprowadzać w sposób nie­
jawny lub jawny.

Z niejawnym wprowadzeniem czasu mamy do czynienia w językach SCCS i SCCS ”,
wspomnianych w zakończeniu poprzedniego rozdziału. Wynika to z założenia, że
działanie systemu, w tym wykonywanie akcji, odbywa się w kolejnych okresach, wy­
znaczonych podziałem czasu globalnego zegara na kwanty czasu. Przy takim podej­
ściu modelowany jest właściwie nie czas, ale „tykanie” globalnego zegara. W okresie
pomiędzy kolejnymi „tyknięciami” specyfikacje procesów muszą jednoznacznie okre­
ślać, czy proces wykonuje jakieś akcje, czy też czeka do następnego „tyknięcia”. Po­
dejście takie może być odpowiednie tylko do niektórych systemów, wydaje się na
przykład właściwe do modelowania synchronicznych układów cyfrowych, których
działanie, z założenia, jest synchronizowane globalnym zegarem. Nie jest natomiast
wystarczające do specyfikacji systemów czasu rzeczywistego.

Jawnie można wprowadzać czas na dwa sposoby:

Pierwszy polega na przypisaniu każdej akcji pewnego odcinka czasu przeznaczonego
na jej realizację. Akcje komplementarne mają, oczywiście, jednakowy czas trwania.
Akcje, które w danym momencie są oferowane, ale nie mogą być wykonane, muszą
być opóźniane albo do momentu synchronizacji z akcjami komplementarnymi, albo do
momentu wycofania ich oferty. Podejście takie ma odzwierciedlenie w wielu językach
programowania czasu rzeczywistego.

Drugi sposób polega na wyróżnieniu dwóch rodzajów akcji: natychmiastowych
i czasowych. Akcja czasowa wprowadza opóźnienie o zadany odcinek czasu. W ten
sposób staje się możliwe modelowanie akcji komunikacyjnych, których realizacja
zajmuje pewien odcinek czasu. Mianowicie czasową akcję komunikacyjną, która
ma trwać pewien odcinek czasu, można modelować jako sekwencyjne złożenie
trzech akcji:

• akcji natychmiastowej, reprezentującej początek realizacji akcji komunikacyjnej,
• akcji czasowej, reprezentującej wykonanie akcji komunikacyjnej (wymianę da­

nych pomiędzy komunikującymi się partnerami),
• akcji natychmiastowej, reprezentującej zakończenie akcji komunikacyjnej.

Akcje opóźniające można interpretować dwojako. Interpretacja silna oznacza, że pro­
ces po upływie opóźnienia musi wykonać akcję natychmiastową, interpretacja słaba
oznacza natomiast, że może wykonać taką akcję.

46 Rozdział 3

Drugi sposób wprowadzania czasu do języka specyfikacji ma dwie zalety. Pierwsza
wiąże się z tym, że takie rozszerzenie nie modyfikuje istotnie znaczenia istniejących
operatorów języka, a druga wyraża się w tym, że użycie czasu w wielu systemach
czasu rzeczywistego wiąże się z oczekiwaniem na pewne akcje.

Z pojęciem czasu wiąże się struktura czasowa - zbiór wartości chwil czasowych wraz
z pewnym uporządkowaniem. Strukturą czasową nazywa się parę

SC-<T, <> (3.1)

gdzie <Q T~ jest relacją porządku, która porządkuje chwile w sensie chwila wcześ­
niej sza-później sza.

Jeżeli < jest relacją porządku częściowego (to znaczy jest zwrotna, antysymetryczna
i przechodnia), to mamy do czynienia ze strukturą czasu rozgałęzionego, a jeśli jest
relacją porządku liniowego (to znaczy jest zwrotna, antysymetryczna, przechodnia
i spójna), to mamy do czynienia ze strukturą czasu liniowego.

Strukturę czasową nazywa się gęstą, gdy

\/t\^T • ^ty^T • T • (6 ty —t\ < ty /\ ty < ty) (3.2)

dyskretną prawostronnie, gdy

Vt^T • Vty£ T • ((t| ty /\ ty)^>

(3ty& T • (t| ł^A /| / Zj)a—>3^46 T* (tj^ Z4 A ty ty A ty £4)) (3.3)

dyskretną lewostronnie, gdy

Vt^T • Vty^ T • (Z । ty A 11 ty)^>

(3^6 T • {ty ty ty ty) —i3Z4^ T • (Z4 Z2 A ty Z4 A ty^ ty)) (3.4)

Przykładem zbioru, na którym można zbudować strukturę ciągłą, jest zbiór liczb wy­
miernych, a dyskretną - zbiór liczb naturalnych. W dalszej części rozdziału zakłada
się dyskretną lewo- i prawostronnie strukturę czasu liniowego. Wykorzystuje się ja­
ko zbiory chwil zbiór liczb naturalnych Nat lub zbiór liczb wymiernych Wym z rela­
cją porządku < w zbiorze liczb naturalnych lub liczb wymiernych, n < in oznacza:
chwila n nie jest późniejsza od chwili m. Strukturami czasowymi są zatem <Nat, < >
oraz <Wym, < >. Na strukturach tych są też wykonywane operacje dodawania i bra­
nia minimum dwóch chwil czasowych.

3.2. TCCS - wprowadzenie

Język TCCS {Tinied CCS) jest czasowym rozszerzeniem CCS, polegającym na za­
stosowaniu drugiego z omówionych wyżej sposobów wprowadzania czasu do języka.

Rozszerzenie czasowe CCS 47

Operuje on dwoma rodzajami akcji języka CCS, czyli akcjami komunikacyjnymi
i akcją wewnętrzną, które są realizowane natychmiastowo, oraz dodatkowo wprowa­
dza akcje czasowe, których realizacja wymaga pewnego odcinka czasu. Akcja czaso­
wa wprowadza opóźnienie o zadany odcinek czasu.

Czasową akcję komunikacyjną a w języku TCCS, która ma trwać odcinek czasu t.
modeluje się jako sekwencyjne złożenie trzech akcji

aStart; (r); aEnd
gdzie:

aStart oraz aEnd są akcjami natychmiastowymi z języka CCS,
(/) jest nowo wprowadzoną akcją czasową (opóźniającą).

Z wprowadzeniem akcji czasowych - jak wspomniano wcześniej - wiążą się dwie
możliwe interpretacje dotyczące momentów wykonywania akcji. Pierwsza interpre­
tacja - silniejsza - oznacza, że rozpoczęcie akcji czasowej musi nastąpić natychmiast
po zakończeniu poprzedzającej ją akcji. Druga interpretacja - słabsza - oznacza, że
rozpoczęcie akcji czasowej może nastąpić w dowolnym momencie po zakończeniu
poprzedzającej ją akcji. Wyróżnia się więc dwie wersje języka TCCS: silną - sTCCS
(strong TCCS) [Molier, Tofts 1989] i słabą - wTCCS (weak TCCS) [Tofts 1989].

Opisywana tu wersja języka TCCS [Fencott 1996] jest wersją pośrednią, gdyż
- przyjmując silną interpretację opóźnień - wprowadza dodatkowe mechanizmy
uelastyczniające tę interpretację. Potrzeba ich wprowadzenia wynika z faktu, że
wyłączne stosowanie silnej interpretacji opóźnień powoduje znaczne ograniczenie
ekspresji języka.

Pierwszy z dwóch wprowadzonych mechanizmów pozwala na określenie czy dana
akcja musi być wykonana natychmiast w najwcześniejszym możliwym momencie, czy
też może oczekiwać na wykonanie dowolnie długo. Akcje, które mogą oczekiwać na
swoją realizację dowolnie długo, wyróżnia się składniowo przez podkreślenie ich na­
zwy. Nazwy akcji natomiast, które muszą być wykonywane w najwcześniejszym moż­
liwym momencie nie są podkreślane. W sekwencyjnym złożeniu akcji

a; Y

akcja a musi być wykonana natychmiast, akcja 2? w dowolnym momencie po zakoń­
czeniu akcji a, natomiast akcja /natychmiast po zakończeniu akcji

Drugi mechanizm polega na wprowadzeniu, oprócz operatora + z języka CCS, dodat­
kowego rodzaju operatora wyboru reprezentowanego symbolem ++. Potrzeba dodat­
kowego operatora wiąże się ze sposobem reagowania na upływ czasu. Operator + jest
nazywany słabym, a ++ - silnym operatorem wyboru. Różnice w ich interpretacji wy­
jaśnia przykład. Niech będzie dany proces

Z/P.((3); a-P + {5)-/3- P)

48 Rozdział 3

Obie części składowe wyrażenia wyboru są prefiksowane akcjami opóźnienia (3) oraz
(5). Operator + dopuszcza wybór obu części składowych tego wyrażenia, przy czym
czyni to w sposób następujący: Jeżeli po upływie opóźnienia 3 jednostek czasu od wy­
wołania procesu P nastąpi realizacja akcji a, to następnie jest powtarzane wykonanie
wywołania P. Jeżeli natomiast po upływie 3 jednostek czasu akcja rznie zostanie wy­
konana, to następuje opóźnienie o dalsze 2 jednostki czasu (do zakończenia opóźnie­
nia wyrażanego akcją czasową (5)), po czym musi nastąpić realizacja akcji fi, a po jej
wykonaniu następuje ponowne wywołanie procesu P.

Jeżeli operator + zastąpimy operatorem ++, to interpretacja procesu

/zP.((3); «; p ++ (5); fi-, P)

będzie całkiem inna. Operator dopuszcza mianowicie wybór tylko tej części składowej,
która jest opóźniana krócej. W naszym przykładzie oznacza to, że może być wybrana
tylko lewa składowa (3); a\ P, natomiast prawa składowa (5); fi', P nigdy nie będzie wy­
brana. Po upływie zatem opóźnienia 3 jednostek czasu od wywołania procesu P musi
nastąpić realizacja akcji a, a następnie będzie powtarzane wykonanie wywołania P.

3.3. TCCS - definicja formalna

TCCS wprowadza nową kategorię semantyczną - dziedzinę czasową w postaci stru­
ktury relacyjnej

<Time, <, +> (3.5)
gdzie:

Time jest dowolnym zbiorem przeliczalnym, zwykle przyjmuje się, że jest to zbiór
liczb naturalnych,
< jest relacją porządku liniowego na zbiorze Time,
+ : Time2 —> Time jest operacją dodawania.

Symbol + jest przeciążony, w zależności od kontekstu wyznaczonego przez jego ar­
gumenty oznacza funkcję dodawania bądź operator wyboru wyrażeń behawioralnych.

Składnia zbioru wyrażeń czasowych behawioralnych TBeh języka TCCS, w notacji
BNF, jest określona następująco:

B ::= 0 | 0 | P | B\S | B[/] | (B) | a; B | (t); B | a~, B | B || B | B + B| B ++ B (3.6)

gdzie:
Be TBeh, Pe Proc, S ę A,f: G —> G to funkcja przemianowania bramek akcji,
te Time jest długością czasu opóźnienia. Kolejność wprowadzenia operatorów od­
powiada malejącej kolejności ich priorytetów.

Lista definicji procesów czasowych TDef jest określona tak samo jak dla bezcza-
sowego CCS.

Rozszerzenie czasowe CCS 49

Semantyka operacyjna specyfikacji czasowej TSpec = <Ba, DefP>, gdzie: BQeTBeh,
a TDefPe TDef jest listą definicji procesów czasowych, jest definiowana na podstawie
czasowego etykietowanego systemu przejść postaci

TS{TSpec} = <TBeh, TAct, Time, TTr, Bo> (3.7)
gdzie:

TBeh jest zbiorem czasowych wyrażeń behawioralnych,
TAct = Act u {(0 11 e Time} jest zbiorem akcji,
Tńnejest zbiorem chwil,
TTr = {——>QTBehxTBeh\ae Act}u{—QTBehxTBeh\te Time}jest ro­

dziną relacji przejść pomiędzy wyrażeniami behawioralnymi,
Bq jest początkowym wyrażeniem behawioralnym.

Przejście postaci (symbol akcji a nad strzałką)

Bl—^B2 (3.8)

zwane przejściem akcyjnym, oznacza - jak w przypadku CCS - że proces, którego stan
jest reprezentowany wyrażeniem behawioralnym B^eTBeh, w wyniku realizacji akcji
ae TAct, zmienia się na stan reprezentowany wyrażeniem B2e TBeh.

Przejście natomiast postaci (symbol upływu czasu t pod strzałką)

(3.9)

zwane przejściem czasowym, oznacza, że proces, którego stan jest reprezentowany
wyrażeniem behawioralnym B^eTBeh, w wyniku upływu odcinka czasu o długości
te Time, zmienia się na stan reprezentowany wyrażeniem B2e TBeh.

Rodzina relacji przejść jest definiowana rekursywnie. Zbiór aksjomatów i reguł dla
TCCS jest w zasadzie rozszerzeniem odpowiedniego zbioru dla CCS. Rozszerzenie
jest związane z dołączeniem przejść czasowych.

W zbiorze reguł dotyczących przejść akcyjnych rozszerza się reguły dotyczące opera­
tora wyboru. Mianowicie reguły (R-ch) odnoszą się teraz do obu operatorów wyboru +
oraz ++, czyli

dla ope {+,++} (R-ch)

Wprowadza się też dodatkowy aksjomat dla akcji, których rozpoczęcie może być do­
wolnie opóźniane

a\B—(A-pre)

Zbiór aksjomatów i reguł dotyczących przejść czasowych jest dosyć złożony. Bezpo­
średnio wprowadza się następujące aksjomaty i reguły:

50 Rozdział 3

Opóźnianie

0-—>0 a, B------>a;B
— / — — t —

Prefiksowanie akcją czasową

(t + 5); B——>(5); B

B- ----------- /------------
(t + s),B_____ > B '________ t+s

(A-del)

(Art-pre)

{Az-t-pre)

(R-t-pre)

Dalszy zestaw reguł wymaga użycia pomocniczych własności, stwierdzających czy
dane czasowe wyrażenie behawioralne może być opóźniane o zadany odcinek czasu.

Niech prawdziwość formuły del(B, t), gdzie del jest predykatem, oznacza, że czasowe
wyrażenie behawioralne B może być opóźniane o odcinek czasu t, czyli że po upływie
t jednostek czasu od dowolnie ustalonej chwili wyrażenie B będzie oferować swojemu
otoczeniu ten sam zbiór akcji komunikacyjnych. Predykat del jest zdefiniowany rekur-
sywnie przez następujący zbiór aksjomatów i reguł:

del(Q, t)

del(a\ B, t)

del((t); B, s)

del(B,tQ)
delfty, B.s)

deRB^t)
del(B} + B2,t)

dla s<t

dla s<R+ t

dla z = 1,2

deRB^t) del(B2,t)
deRBt++B2,t)

deRB^t) deRB^t)
deRB, || B2ą)

deRB,t)
deRB\S,t)

del(B,t)
delWYt)

del(B,0 „ n D—^-2 dla uP.B
del(P.t)

Rozszerzenie czasowe CCS 51

Wybór czasowy

B}—^B{
-^del(B2,f)

By+ B2 z ^B{

B^------~ 1 —del(By,t)
^+B2 —

Bt t > B\

^B2

B,------

+ B~) , >B\ 1 B1

By , > Bj Bn ——)Bn*■ t “
B^ Ił Br) , > Bj + Z?2

Złożenie równoległe czasowe

B} B{ B2 B2

By || B2-r^BfilB'

Restrykcja czasowa

B_>B' _______ l_-----------
B\S____>B'\S

/

Przemianowanie czasowe

B------ >B'
/

(Rl-t-ch)

(R2-t-ch)

(R3-t-ch)

(R3-t-ch)

(R-t-par)

(R-cres)

(R-t-ren)

Instancja procesu czasowa

B----- >B'
------— dla uP.B
P----- >BI

B----- >B'
------ '■- dla u P.B
B----->Pt

(Rl-t-ins)

(R2-t-ins)

Wprowadźmy oznaczenie: niech
By —at—Bo,

gdzie ate TAct, oznacza

oraz
B, —‘3—^ B2, gdy ateAct,

By ——> B2, gdy at£ Act.

52 Rozdział 3

Ciąg tranzycji (obliczenie) generowany przez czasowy system przejść TS(TSpec) ma
postać

Bq Clt \—} B\ B2 ••• Fn (3.10a)
lub

B^—at।—B\ —rzC—^2 ••• ~—atu—Fn—(3.I0b)
gdzie:

Bojest początkowym wyrażeniem specyfikacji TSpec,
B„ w przypadku obliczenia skończonego (a) jest wyrażeniem końcowym, to zna­
czy takim, dla którego nie istnieją przejścia do innych wyrażeń.

Z zastosowaniem poprzednio wprowadzonych oznaczeń określa się następujące zbiory
ciągów:

Definicja 3.1
Specyfikacja czasowa TSpec = <Bn, TDecl> generuje zbiór ciągów akcji

TSeq(B^ = TSeqFin(B0) u TSeqlnf(B^ (3.11)

gdzie:
TSeqFin(B^ = {st&(Ad u Time) | Bo—st—>} (3.12)

TSeqInf(B^ = {ste (Ad u Time)°° I pref(st) • Bo —Jt'—>} (3.13)

3.4. RTCCS - wprowadzenie

Język RTCCS jest oryginalnym rozszerzeniem czasowym języka CCS [Huzar 1996].
Rozszerzenie opiera się na dwóch głównych założeniach:

• wszystkie akcje (w tym akcje wewnętrzne) są akcjami czasowymi, ich realizacja
może wymagać niepustego okresu czasu,

• zachodzenie akcji obserwowalnych jest wynikiem synchronizacji komunikują­
cych się procesów, co oznacza, że rozpoczęcie realizacji pary komplementarnych
akcji czasowych jest wyznaczone momentem ich synchronizacji, a zainicjowana
komunikacja pary procesów jest nieprzerywalna.

Przyjmuje się model relatywnego, gęstego czasu globalnego. Dziedzina czasowa Time
jest reprezentowana przez liczby wymierne.

Przedstawiane tu rozszerzenie ogranicza się do synchronicznej komunikacji dwóch
procesów. W pracy [Huzar 1996] rozpatruje się model ogólniejszy, dopuszczający
synchroniczną komunikację więcej niż dwóch procesów. Do takiego modelu współ­
pracy procesów wrócimy w następnych rozdziałach.

Niech A będzie zbiorem obserwowalnych akcji komunikacyjnych oraz niech i będzie
nieobserwowalną akcją wewnętrzną. Niech Ad - A u {i}. Każdej akcji aeAd

Rozszerzenie czasowe CCS 53

przypisuje się pewien zbiór zl(a) dopuszczalnych czasów wykonywania. Zakłada
się, że ueA(a) jest wartością dodatnią. Założenie to wyklucza sytuacje, że w pewnej
chwili, gdy akcje mają zerowy czas wykonywania, może być wykonywana nieskoń­
czona liczba akcji.

Zbiór Del = {A(a) | aeAct}, gdzie Ala) ę Time\{0}, nazwiemy zbiorem własności
dynamicznych akcji.

Zbiór zdarzeń czasowych jest określony jako TimeEv = Time X Act.

Realizacja akcji czasowej a będzie reprezentowana dwoma zdarzeniami czasowymi:
zdarzenie czasowe reprezentujące początek akcji a jest parą<z;„ a>, natomiast zdarzenie
reprezentujące zakończenie akcji - parą<tA., i>, gdzie tk, tpe Time oraz (tk - tp)e A(a).

W przypadku szczególnym realizację akcji wewnętrznej i reprezentują dwa zdarzenia
czasowe: <tp, i> oraz <tk, i>.

Para komunikujących się akcji wykonuje się wspólnie przez dowolny odcinek czasu,
dlatego uściślamy pojęcie czasowych akcji komplementarnych. Akcje a, PeAct są ak­
cjami komplementarnymi, gdy a = P, w takim samym znaczeniu jak w języku CCS,
to znaczy jedna z nich jest akcją wejściową, a druga akcją wyjściową na tej samej
bramce, oraz dodatkowo, gdy A(a)rsA(P) * 0, co oznacza, że obie akcje dopusz­
czają ten sam czas realizacji. Należy zwrócić uwagę, że czas realizacji komplementar­
nych akcji może być wyznaczony niejednoznacznie - w takim przypadku mamy do
czynienia z niedeterminizmem wyboru czasu wykonywania.

W dalszej części, gdy będziemy mówić o realizacji komplementarnych akcjach czaso­
wych a oraz a , będziemy zawsze zakładać, że wspólny okres ich realizacji mg Time
spełnia warunek mg 4(a) n zl(«).

3.5. RTCCS - definicja formalna

Składnia
Przez Proc oznaczymy zbiór nazw procesów.

Zbiór wyrażeń behawioralnych RTBeh, w notacji BNF, jest określony następująco:

B;:=0\P\B\S\B[f] \ (B) \ oc, B \ S(u) , B \ B \U\ B \ B + B (3.14)

gdzie: Be RTBeh, Pe Proc, S, U Q A, aeAct oraz f-.G-^r G jest funkcją przemianowa­
nia bramek akcji. Kolejność wprowadzenia operatorów odpowiada malejącej kolej­
ności ich priorytetów.

Zbiór list definicji procesów RTDef jest określony następująco:

RTD ■. = iuP.B\RTD, juP.B (3.15)

54 Rozdział 3

Składnia wprowadza dwie konstrukcje, które są inne od konstrukcji języka CCS. Są
to: wyrażenie opóźnienia J(u); B oraz zmodyfikowana forma złożenia równoległego
B |(7| B. Ich znaczenie jest następujące:

Wyrażenie opóźniające ó(u\, B w danym momencie t nie oferuje swemu otoczeniu
żadnej akcji komunikacyjnej, natomiast po upływie odcinka czasu długości u oferuje
akcje komunikacyjne reprezentowane przez wyrażenie B.

Wyrażenie złożenia równoległego Bt |(/| B2, gdzie |I/| jest operatorem złożenia rów­
noległego parametryzowanego podzbiorem akcji U, zachowuje się tak, jak zachowu­
ją się jednocześnie wyrażenia Bt oraz B2. Dodatkowo wyrażenia te mogą się wza­
jemnie komunikować przez swoje akcje komplementarne tylko na bramkach ze
zbioru gate(Uj.

Pojęcia dozorowanego i regularnie zbudowanego wyrażenia są rozumiane tak samo
jak dla CCS.

Specyfikacja zachowania w języku RTCCS jest zdefiniowana jako para

RTSpec = <B0, RTDefP> (3.16)
gdzie:

B^RTBeh jest początkowym wyrażeniem behawioralnym,
RTDef^RTDef jest skończoną listą definicji pewnych procesów czasu rzeczywi­
stego Ph ..., P„.

Definicja procesu o nazwie Pi (i = 1, ..., n) ma postać /uP,.B„ gdzie wyrażenie beha­
wioralne B^RTBeh jest treścią procesu. Każdy proces, którego instancja występuje
w wyrażeniach behawioralnych Bo, B„ ma swoją definicję w zbiorze RTDef. Instan­
cje procesów o tej samej nazwie mająjedną wspólną definicję.

Semantyka
Semantyka operacyjna specyfikacji czasu rzeczywistego RTSpec = <B(}, RTDefP> jest
definiowana na podstawie czasowego etykietowanego systemu przejść postaci

TS(RTSpec) = <Conf, TimeEv, RTTr, Co> (3.17)
gdzie:

Conf= RTBeh x Time jest zbiorem konfiguracji czasowych; para <B, t>e Conf re­
prezentuje specyfikowany system, poczynając od chwili t - wyrażenie behawio­
ralne B określa zachowanie tego systemu od chwili t,
Act jest zbiorem zdarzeń czasowych,
RTTr ę Con/*. TimeEv X Conf jest relacją przejścia pomiędzy czasowymi wyra­
żeniami behawioralnymi (relację zmian konfiguracji),
Co jest konfiguracją początkową, czyli parą<B0. to> (Po jest początkowym wyra­
żeniem behawioralnym, t0 - chwilą początkową).

Rozszerzenie czasowe CCS 55

Trójka «Bt, t\>, <t2, a>, < B2, t2 » 6 RTTr, nazywana przejściem, będzie zapisywa­
na w postaci

><B2,t2>

albo, nieco krócej, w postaci

< Bf.t^ ——> < B2,t2>,

gdzie Ag TimeEv.

Przejście oznacza, że system ze swoją konfiguracją <rh B\>, odnoszącą się do chwili
ti, na skutek zajścia zdarzenia czasowego <t2, a>w chwili t2, gdzie r, < t2. zmienia swą
konfigurację na <t2, B2>.

Relacja przejścia pomiędzy czasowymi wyrażeniami behawioralnymi jest definiowana
rekursywnie przez podany niżej zbiór aksjomatów i reguł. Reguły te są budowane
według następujących założeń:

• komunikacja odbywa się dokładnie pomiędzy dwoma procesami,
• synchronizacja pomiędzy komunikującymi się procesami następuje w najwcześ­

niejszym możliwie momencie (as soon as possible principle),
• dwa zsynchronizowane komunikujące się procesy pozostają powiązane ze sobą

przez wspólnie ustalony odcinek czasu.

W konstrukcji reguł będą wykorzystane pewne funkcje pomocnicze zdefiniowane
rekursywnie w tabeli 3.1.
Tabela 3.1

B F(B) C(B)
0 0 0
P F(B) dla pP.B C(B) dla pP.B

B\S F(B)\S u h(F(B) n 5) C(B)\S a h(C(B) n S)
B\f] F(B)[f] C(W]
(B) F(B) C(B)

a-, B {a) 0
3(u)\B {i}*’ {i}*’
B, |[/| B2 F(Bl)uF(B2) C(B^\U o C(B2)\U ci F(Bi) o F(B2) n U
b} + b2 F(Bi) a F(B2) C(B}) u C(B2)

1 Natychmiastowa akcja wewnętrzną i wynika z przyjętego sposobu reprezentacji realizacji
akcji 8(u) przez zdarzenia czasowe <tp, i> oraz <tk, i>.

Pierwsza funkcja F: RTBeh —> Act służy do wyznaczania, dla danego wyrażenia beha­
wioralnego B, zbioru tych akcji, które są oferowane przez wyrażenie do wykonania

56 Rozdział 3

h(U) =

w pierwszej kolejności. To, która spośród tych instancji akcji zostanie wybrana do wy­
konania, zależy od decyzji otoczenia wyrażenia B. Także czas zainicjowania wybranej
akcji zależy od otoczenia, przy czym - w razie zbyt długiego odraczania inicjacji akcji
- może wcześniej nastąpić akcja wewnętrzna.

Druga funkcja C: RTBeh —> Act wyznacza podzbiór tych akcji, które mogą być wyko­
nywane jako pierwsze, niezależnie od gotowości otoczenia wyrażenia B.

Występująca w tabeli pomocnicza funkcja h jest zdefiniowana następująco:

0 dla U = 0
{i} dlat/^0

Należy zwrócić uwagę na to, że dowolna akcja a^Act w wyrażeniu behawioralnym B
może mieć wiele wystąpień (instancji). Jeżeli oe F(B) lub ctE C(B), to może to ozna­
czać wiele wystąpień tej akcji, które spełniają warunki określone przez definicje funk­
cji Foraz C. Na przykład wyrażenie B postaci

a; P; Pi + a; a; P2

ma trzy wystąpienia akcji a, z czego dwa wystąpienia - pierwsze wystąpienia a po
lewej i po prawej stronie wyrażenia B - należą do zbioru F(B) ={ a}.

Następne dwie funkcje, zdefiniowane w tabeli 3.2, są związane z wyznaczaniem
upływu czasu.

Tabela 3.2

B Age^B, u) Ev(B)

0 0 oo

a; B a; B °° dla ctEA

3(u'};B 3(u' -u); B gdy u"> u u' gdy u'> 0

P Age(B, u) dla ^P.B Ev(B) dla juP.B

B\S Age(B, u)\S J 0 gdy C(B)riS *0
|£v(B) gdy C(B)nS = 0

Age(B, w)[/]
Ev(B)

W
Age(B, u)

Ev{B)

Bi |Ć7| B2 J 0 gdy C(B)nt//0
Age(Bt, u) [Ó7| Age(B2, u) [min (Ev(Bl), Ev(B2)) gdy C^B) n U = 0

B । + Bi
Age(Bi, u) + Age(B2, u) min(Ev(Bt), Ev(B2\)

Rozszerzenie czasowe CCS 57

Pierwsza z nich Age : RTBeh X Time —> RTBeh określa transformację wyrażenia beha­
wioralnego na skutek samego upływu czasu przy braku zajścia zdarzeń czasowych.

Druga funkcja Ev : RTBeh —> Time wyznacza dla danego wyrażenia behawioralnego
najwcześniejszy moment czasu względem bieżącej chwili, w którym może nastąpić
zmiana konfiguracji niezależna od otoczenia wyrażenia. Zmiana ta jest wynikiem zaj­
ścia zdarzenia czasowego niezależnego od otoczenia wyrażenia.

Mając wyżej zdefiniowane funkcje, można zdefiniować rekursywnie relację zmian
konfiguracji.

Proces pusty - brak aksjomatów.

Instancja procesu

< /uP.B,t>—^<B',t'>
<P,t>—^<B',t’>

(R-ins)

Rekursja

< B[P juP.B],t >B'
<juP.B,t>-^B'

(R-rec)

gdzie notacja postaci B[P ::= B'] oznacza modyfikację wyrażenia B, polegającą na tek­
stowym zastąpieniu każdego wolnego wystąpienia nazwy procesu P (zob. tab. 2.1)
w wyrażeniu B wyrażeniem B'.

Restrykcja

<B,t> ><B,t'> f x _
------------------------------------ ------ gate(a) £ S
<B\S,t> .. ><B'\S,t'>

(Rt-res)

<B,t> ><B',t'> t x
--------------------- -------------------- gate(a)eSaseCIB)
<B\S,t> ><B'\S,t>

(Ri-res)

Przemianowanie

<B,t> <,a^<Bjt'> A - [fW dlaa^g!
-------------------- r-—--------------------- gdzie
<B[f],t> ><B'[f],t'> [/(g^ dlaa^g?

(R-ren)

Prefiksowanie akcją

<a;B,t> ><8{uy,B,t'> dlar<f (A\-pre)

Opóźnienie

<8{u),B,t> > < B,t + u > (Ai-pre)

58 Rozdział 3

Złożenie równoległe

<Bl\\B2,t> > < B{ | [U] | Age(B2,t'-t),t' >
dla a i U ^t' < Ev(B-,) (Rrpar)

__________ <B2,t>~--—><B2,t'>__________
< B} \\ B2,t> > <Age{B[,t'-t)\[U]\B2,t'>

dla ał U a t' < Ev(Bx) (R2-par)

<B[,t>-^^<B',t'>

<B2,t> ><B2,t'>

< B} || B2,t> > < X I [^] I >
dla ae U (Rypar)

Reguła Rypar odnosi się do synchronizacji akcji czasowych. Wiąże się z nią założenie
o komplementarności synchronizujących się akcji czasowych. Synchronizacja nastę­
puje w pierwszym możliwym momencie. Reguła nie określa natomiast ani sposobu
wyboru wspólnego czasu realizacji akcji a i a, ani nie określa jawnie wybranego
czasu. Konsekwencją wyboru wspólnej wartości czasu jest następująca własność wy­
rażeń B\ i B2 :

Własność
Niech 8(ii\); B" oraz B” będąpodwyrażeniami wyrażeń B{ oraz B2, taki­
mi że:

B\ = B' [a; B" := Bf]

B2 = B2 [a- B2 := 8(u2Y B2]

wówczas H| = u2.

Do reguły Rypar można dołączyć dowolny mechanizm takiego wyboru - determini­
stycznego lub probabilistycznego.

Wybór

------- dla ?'<£V(5J (.RyCli)
<B{+B2,t> <,a> ><B[,t'>

n <t‘.q> n’
2’------------7---------22-------- dla t'<Ev(BA {R2-ch)

<B. + B2,t>-^L^<B'2,t'>

Podane aksjomaty i reguły generują ciągi przejść czasowych, które wyznaczają se­
mantykę specyfikacji.

Rozszerzenie czasowe CCS 59

Ciąg tranzycji (obliczenie) generowany przez czasowy system przejść TS(RTSpec) ma
postać

< Btt,ta> < B^> > < B^t,> - > < B„,tn> (3.18a)
lub

<B0,t„> ——< B^t,> ...^^^ < B^t,^... (3.18b)

gdzie:
t\<h< ... t„< ...

Bojest początkowym wyrażeniem behawioralnym,
<B(}, Zo> jest konfiguracją początkową specyfikacji RTSpec,
< B,„ t„> w przypadku obliczenia skończonego (a) jest konfiguracją końcową to
znaczy taką z której nie ma przejścia do innych konfiguracji.

Definicja 3.1.
Specyfikacja czasowa RTSpec - <B0, RTDecl> generuje zbiór ciągów akcji

RTSeq(B{}) = RTSeqFin(B0) u RTSeqInf(Bn), (3.19)
gdzie:

RTSeqFin(B0) = {cG Conf | <B0, tQ>—c^} (3.20)

RTSeqlnf(Ba) = {cg Conf°° I Vc'Gpref(c) • <B0, r0> —c '->} (3.21)P

Zdefiniowana semantyka jest semantyką przeplotową czasu rzeczywistego. Przeplot
odnosi się do zdarzeń występujących w tej samej chwili.

Bezpośrednio z reguł definiujących relację przejścia wynika, że kolejne przejścia są
uporządkowane czasowo. Na ogół moment przejścia z danej konfiguracji do następnej
zależy od otoczenia wyrażenia. Jeżeli specyfikacja jest komunikacyjnie zamknięta, to
zachodzi lemat:

Lemat 3.1
Jeżeli specyfikacja reprezentowana wyrażeniem behawioralnym B jest komunika­
cyjnie zamknięta oraz istnieje przejście

<B,t>—^<B',t'>, (3.22)

to czas t’ jest wyznaczony jednoznacznie.

Dowód jest przedstawiony w pracy [Huzar 1996].

Niech Del\ oraz DeF będą dwoma zbiorami własności dynamicznych akcji komuni­
kacyjnych. Będziemy mówić, że Del\ jest podzbiorem DeF, co oznaczamy Del\ ę
^DeF, gdy dla każdego aeAct zachodzi żl|(o) ę Zachodzi oczywista wła­
sność

60 Rozdział 3

Lemat 3.2
Dla dowolnego wyrażenia behawioralnego B jeżeli Del\ ę Del^ to RTSeq(B) ę
ę RTSeq(B).

3.6. RTCCS - przykłady
Rozpatrzymy teraz serię prostych przykładów ilustrujących stosowanie reguł semanty­
cznych.

Przykład 1
Niech \ P, t0> będzie konfiguracją początkową, mamy wówczas następujący
ciąg tranzycji czasowych

<^P.a,P,t0 > ></jP.6(uYP,tl > ><^P.P,ti + u>

po którym następuje powtórzenie tego ciągu z przesunięciem czasowym. Oczy­
wiście to < t\ < t| + u oraz «6Zl(a).

Przykład 2
Dla konfiguracji początkowej

<a; B\ + S(u); B?, r0>

możliwe są dwa ciągi tranzycji

<a;B{ + 3(u),B2,tQ > —> < J(w,)',Bi,t] > ——> < B},y +u} >

gdzie /| < u, oraz

<a,Bx + 3(u);B2,t() >—B2,t{) + u>

Analizowane wyrażenie behawioralne

a; Bt + 3(u); Bi

ma interesującą własność, reprezentuje ono mianowicie mechanizm przetermino­
wania. Składowa 3(u\, B2 wyznacza okres przeterminowania o długości u. Jeżeli
w odcinku czasu u od momentu osiągnięcia konfiguracji <a \ B{ + 3(u); B2, t0> nie
zostanie zainicjowane wykonanie akcji a, to w chwili r0 + u nastąpi przejście do
konfiguracji <B2, tQ + u>, a tym samym zostanie wykluczona możliwość wykona­
nia wyrażenia a, Bt.

Przykład 3
Rozpatrzymy teraz konfigurację zawierającą wyrażenie behawioralne ze złoże­
niem równoległym

<a,Bx + 3(u2);B2 |[{a}]|rz;B3 +b,B4, t0 >

Rozszerzenie czasowe CCS 61

Dla pierwszej składowej złożenia równoległego, zgodnie z przykładem 2., są mo­
żliwe dwa przejścia. Podobnie dwa przejścia są możliwe dla drugiej składowej.
Dla całego natomiast wyrażenia złożenia równoległego jest możliwe tylko jedno
przejście

<a;B} + 3(u2y,B21 [{a}] | a;B3 +b',B4,t0 > —><<?(«);B1|[{a}]| 8(u);B3,t0 >

Wynika to z faktu, że para akcji a raz a synchronizuje się w chwili r(), podczas gdy
pozostałe akcje mogą zajść dopiero później.

Kolejne przejścia są postaci:

<8(u);Bl\[{a}]\8(uy,B3,tn> >

<B} |[{a}]|5(M);ą,t0+M>

< B} |[{a}]|B3,t0 + w>

Specyfiką tych przejść jest dwukrotne wystąpienie akcji wewnętrznej <t0 + u, i>,
oddzielnie w każdej z równoległych składowych wyrażenia behawioralnego. Wy­
nika to z przyjętych zasad reprezentacji czasowych akcji komunikacyjnych. Ze
względu na przeplotowy charakter semantyki kolejność wystąpienia tych akcji jest
oczywiście dowolna.

Przykład 4
Rozpatrzymy teraz trzy przypadki konfiguracji z wyrażeniem przesłaniania. Pier­
wsza konfiguracja ma postać

<(g; B1|[{g}]| a; B2 + b', By>\{a}, t>

Na podstawie reguł dla restrykcji możemy wyprowadzić dwa przejścia:

<(a\B{\[{a}]\a-B2+b\B3)\{a}j^ | [{a}] 18(uy,B2)\{a],t >

dla u& A(ay oraz

< (a\Bx | [{a}] | a\B2 + b;B3)\ {«),? > —-’h> > < (a;Bi | [{«}] |8(uy,B3)\ {a},t >

dla we A{b).

Druga konfiguracja ma postać

<(a\ Bjf{zz}]| g; B2+ b; B8\{b], t>

Różni się ona od pierwszej konfiguracji tylko przesłanianą akcją. Dla konfiguracji
tej jest możliwe tylko jedno przejście

62 Rozdział 3

Nie jest natomiast możliwe przejście związane z wykonaniem akcji b. Przejście to
nie jest możliwe, gdyż - zgodnie z przyjętą zasadą komunikacji - w jej realizacji
muszą uczestniczyć dwaj partnerzy. Proces a\ B||[{a}]| a; B^ + b\ B^ jest gotowy
do wykonania akcji a oraz b, przy czym możliwość wykonania akcji a nie zależy
od otoczenia tego procesu. Proces (tz; Bi|[{ćz}]| a\ B^ + b\ B3)\[b] nie może nato­
miast wykonać akcji b, gdyż - z powodu restrykcji - nie ma możliwości komuni­
kacji ze swym otoczeniem na bramce b.

Wreszcie trzecia konfiguracja ma postać

<(rz; B)\{a}, t>

Z poprzedniego wyjaśnienia wynika, że nie ma dla niej żadnej możliwości przej­
ścia do innej konfiguracji, co oznacza, że konfiguracja wyraża sytuację blokady
(zakleszczenia).

Przykład 5
Przykład dotyczy systemu komunikujących się zdalnie agentów reprezentowanego
diagramem na rysunku 3.1.

Rys. 3.1. Struktura przykładowego systemu

Agent Producent wysyła wiadomości do agenta Konsument za pośrednictwem
agenta System komunikacyjny. Po wysłaniu wiadomości Producent oczekuje na
potwierdzenie jej odbioru przez Konsumenta, a po otrzymaniu tego potwierdze­
nia wysyła kolejną wiadomość. System komunikacyjny nie jest jednak nieza­

Rozszerzenie czasowe CCS 63

wodny, gdyż linie komunikacyjne, które wchodzą w jego skład, mogą przeka­
zywane od nadawcy wiadomości przesyłać do odbiorcy bez zniekształceń albo
je gubić.

System komunikacyjny składa się z Nadawcy i Odbiorcy, połączonych dwiema li­
niami - Wiadomość' oraz Wiadomości - do przesyłania wiadomości i jedną linią
- Potwierdzenie - do przekazywania potwierdzeń.

Wspólnym modelem każdej z linii jest proces postaci

Linia f.iLinia.s\ (r; Linia + Linia)

gdzie uL > 0 jest stałą charakteryzującą linię. Konkretne linie są zdefiniowane na­
stępująco jako wywołania procesów Linia'.

Potwierdzenie =del Linia

Wiadomość' =M Linia[S'/s, r^r],

Wiadomości Linia[s2/s, r2/r],

Nadawca odbiera wiadomość od Producenta i przesyła ją najpierw linią Wiado­
mość', a następnie oczekuje na potwierdzenie odbioru wiadomości przez Odbiorcę
na linii Potwierdzenie. Jeśli potwierdzenie otrzyma, powtarza działanie, pobierając
od Producenta kolejną wiadomość. Jeżeli natomiast nie otrzyma potwierdzenia
w określonym czasie, to ponownie przesyła tę samą wiadomość linią Wiadomości
i znów oczekuje na potwierdzenie jej odbioru na linii Potwierdzenie. Jeśli potwier­
dzenie takie otrzyma, rozpoczyna ponownie cykl pracy, pobierając od Producenta
kolejną wiadomość, a w przypadku przeciwnym powtarza wielokrotnie wysłanie
tej samej wiadomości linią Wiadomości, aż do otrzymania potwierdzenia jej od­
bioru linią Potwierdzenie.

Proces Nadawca jest zdefiniowany jako

Nadawca /jN.we; ó'i; (r; N + ó(uN)', N')

gdzie

A" =m jUN'.si, (r;N + S(uN); N'),

Odbiorca oczekuje na wiadomość z linii Wiadomość'. Po jej otrzymaniu wysyła
potwierdzenie jej odbioru linią Potwierdzenie, a odebraną wiadomość przekazuje
do Konsumenta. Następnie oczekuje nadejścia wiadomości na linii Wiadomość'
lub Wiadomości. Otrzymanie wiadomości na linii Wiadomość' oznacza, że Na­
dawca po otrzymaniu potwierdzenia poprzednio wysłanej wiadomości przesyła
kolejną, nową wiadomość. Otrzymanie natomiast wiadomości na linii Wiadomości
oznacza, że Nadawca powtarza wysyłanie wiadomości, gdyż nie otrzymał po­
twierdzenia jej odbioru. W tym przypadku Odbiorca ponownie przesyła potwier­
dzenie odbioru wiadomości, ale nie przesyła jej już do Konsumenta.

64 Rozdział 3

Proces Odbiorca jest zdefiniowany następująco:

Odbiorca p.0. r], s\ wy, O'
gdzie

O' =det ptO' .(O + r2, s', O')

System komunikacyjny jest równoległym złożeniem procesów: Nadawca, Odbior­
ca, Wiadomość], Wiadomość^ i Potwierdzenie.

System komunikacyjny =def
(Nadawca

|[{*i, s2, r}]|
(Wiadomość] |[0]| Wiadomość] |[0]| Potwierdzenie)

|[{n, r2, s}]|
Odbiorca)\{r, r}, r2, s, sb ą}-

I wreszcie, cały system jest zdefiniowany jako wyrażenie behawioralne, stanowią­
ce złożenie równoległe procesów Producent, Konsument i System komunikacyjny.

System =def
(Producent |[{we}]| System komunikacyjny |[{ wy}]| Konsument)\{we, wy}

3.7. Uwagi końcowe
W tym rozdziale przedstawiono dwa czasowe rozszerzenia języka CCS. Pierwsze
z nich - język TCCS - jest rozszerzeniem polegającym na wprowadzeniu akcji na­
tychmiastowych i opóźniających, drugie - język RTCCS - na wprowadzeniu wyłącz­
nie akcji czasowych wraz z niedeterministycznym mechanizmem wyznaczania czasu
realizacji akcji komplementarnych.

Skupiono się na semantyce języków. Wprowadzenie czasu do języka znacznie kompli­
kuje definicję jego semantyki - nie daje się stosować bez ograniczeń semantyki prze­
plotowej. Złożoność definicji wynika z konieczności uwzględnienia upływu czasu
i lokowania w czasie zachodzących zdarzeń.

Ograniczono się do przedstawienia przykładów zastosowania tylko języka RTCCS, gdyż
przykłady ilustrujące język TCCS, a także innych, skojarzonych z nim języków, można
znaleźć w literaturze, na przykład: [Molier, Tofts 1989], [Tofts 1989], [Fencott 1996],

Warto przypomnieć, że równolegle do prac nad językiem CCS i jego czasowymi roz­
szerzeniami, były prowadzone prace nad czasowymi rozszerzeniami języka CSP [Ho-
are 1985], [Roscoe 1998], na przykład: [Reed, Roscoe 1986], [Wang 1991], [Reed,
Roscoe 1999], oraz dla języka ACP [Baeten, Bergstra, Smolka 1995], na przykład:
[Groote 1990], [Baeten, Bergstra 1991], [Schneider 2004],

Przykład czasowego rozszerzenia języka CSP, nazywanego RTCSP, wraz z systemem
specyfikowania i dowodzenia poprawności, przedstawiono w monografii [Huzar 1989].

65

4. Abstrakcyjne typy danych w LOTOSie

4.1. Podstawowe pojęcia algebraiczne

Elementarny typ danych w znaczeniu wąskim jest utożsamiany z pewnym zbiorem
wartości. Elementarny typ danych w znaczeniu szerokim, które jest tu używane, jest
zbiorem wartości wraz ze zbiorem operacji na tych wartościach. Matematycznym
modelem elementarnych typów są jednorodzajowe algebry abstrakcyjne. Mając do
dyspozycji pewien repertuar typów elementarnych, można tworzyć nowe, złożone
typy - ich modelem matematycznym są wielorodzajowe algebry abstrakcyjne.

LOTOS wykorzystuje algebraiczne podejście do definiowania abstrakcyjnych typów
danych. Z tego względu poniżej przypomina się podstawowe pojęcia algebraiczne.
Przegląd tych pojęć oparto na książce [Ehrig, Mahr 1985], Informacje z tego zakresu
można znaleźć także w innych pozycjach, na przykład [Tiuryn 2003].

Definiowanie algebry abstrakcyjnej rozpoczyna się od opisu jej struktury, wyrażonej
przez sygnaturę.

Sygnaturą algebry nazywa się parę

Sig =def <S, OP> (4.1)
gdzie:

Sjest niepustym zbiorem rodzajów, czyli identyfikatorów (nazw) nośników algebry,
OP jest zbiorem deklaracji operacji.

Deklaracja operacji będzie zapisywana w postaci

op : s1 s2 ... s„ —> s (4.2)
gdzie:

op jest identyfikatorem (nazwą) operacji,
5i s2 ... sn jest listą, której elementy s2, ..., s„eS są identyfikatorami (nazwami)
rodzajów argumentów,
se Sjest identyfikatorem (nazwą) rodzaju wartości operacji.

Deklaracja operacji o nazwie op wskazuje na nazwy zbiorów jej argumentów i nazwę
zbioru jej wartości. Jeżeli op jest operacją zeroargumentową, czyli stałą, to jej dekla­
racja ma postać

op . s (4.3)

Zakłada się, że każda deklaracja operacji ma różną nazwę operacji, dlatego dalej, za­
miast pisać (op : S| s2... s„ —> s)e OP, będzie się pisać krótko ope OP.

Może być wiele algebr mających tę samą sygnaturę. Konkretna algebra nad daną syg­
naturą może być uważana za interpretację sygnatury.

66 Rozdział 4

Algebrą nad sygnaturą Sig, krótko Sig-algebrą, nazywa się parę

ALG =def<A, F> (4.4)
gdzie:

A =dei {A, | 56 5} jest rodziną zbiorów zwanych nośnikami lub dziedzinami algebry,
F =dcf {f«p | opeOP} jest rodziną funkcji zwanych operacjami algebry, przy czym
każdej deklaracji operacji opeOP

op : 5| s?... s„ —> 5 (4.5)
odpowiada funkcja

f^-.A^.^A^^A, (4.6)

Czasem jest wygodnie wyróżnić stałe (operacje zeroargumentowe) od pozostałych
operacji, wówczas algebrę zapisuje się w postaci

ALG=def <{A..... ,Ak}, {cb ..., c„,} u {/h ...,/,}> (4.7)
gdzie:

{Ab..., A*}, dla keNat\{0}, jest rodziną nośników algebry,
{cb ..., c,„}, dla meNat, jest zbiorem operacji zeroargumentowych,
{/u • ••,/>}>, dla «6Ato\{0}, jest zbiorem pozostałych operacji.

Dwie algebry o tej samej sygnaturze Sig nazywa się algebrami podobnymi. Zbiór
wszystkich algebr podobnych nazywamy klasą Szg-algebr.

Jeżeli rodzina A zawiera tylko jeden nośnik, to mówimy o algebrze jednorodzajowej,
a w przeciwnym razie o algebrze wielorodzajowej.

Rodzina podzbiorów {Av° | 565} takich, że A,0 ę A, dla seS, wyznacza podalgebrę
ALCf, gdy zbiory te są zamknięte ze względu na wszystkie operacje algebry ALG.

Jeżeli rodziny {A,() | 56 5} oraz {A,1 | 56 0} wyznaczają dwie podalgebry ALG? oraz ALG'
algebry ALG, to rodzina ich iloczynów {A/n A,1 | 56 5} wyznacza również podalgebrę
algebry ALG. Ogólniej - iloczyn dowolnego zbioru podalgebr danej algebry jest także
podalgebrątej algebry.

Dla dowolnie przyjętej rodziny zbiorów {A,° | 56 5} istnieje najmniejsza podalgebra za­
wierająca tę rodzinę.

Homomorfizmeni algebry ALGa = <{A, | 56 5}, {f„p | opeOP}> w algebrę podobną
ALGb = <{B, 156 5}, {grv | ope OP}> nazywamy zbiór takich odwzorowań

H = det{h,:A^B, 15 65} (4.8)

że dla każdego działania fup -.A x...xAs -» Avdla op&OP i dowolnych argumentów

a. 6 A, ,..., a„ 6 A, zachodzi i 5| ' n \n

hAf„p fal — an)) = S„P fal)« -. hs„ (an)) (4.9)

Abstrakcyjne typy danych w LOTOSie 67

Homomorfizm algebr zapisuje się w postaci

H : ALGa -> ALG u (4.10)

Algebrę ALG nazywa się algebrą wolną w klasie Szg-algebr, jeśli istnieje dla niej taka
rodzina zbiorów generatorów {A,° | seS} o takiej własności, że każda rodzina odwzo­
rowań {/ : A° —> Bs | sgS}, gdzie {Bs | seS} jest rodziną nośników dowolnej Sig-
-algebry, daje się rozszerzyć do homomorfizmu {hx : Ax —> Bx | seS}. Zbiór {A.t° | seS}
nazywa się zbiorem generatorów wolnych.

4.2. Algebra termów

Z każdą algebrą jest związany pewien zbiór napisów, które powstająze złożenia sym­
boli stałych, zmiennych i operacji algebry. Zbiór ten nazywa się zbiorem termów i jest
definiowany następująco:

Niech V, będzie zbiorem zmiennych rodzaju A, dla seS, co będzie zapisywane w po­
staci v: Av.

Dalej, zamiast pisać rodzaj A„ będzie się pisać krótko rodzaj.?.

Zbiorem wszystkich zmiennych jest
V=UK (4-11)

Działania zeroargumentowe, czyli stałe, także mają swój rodzaj. Stała c : —> A., jest
rodzaju s, czyli jest elementem zbioru A, dla se S.

Zbiór termów rodzaju s, dla seS, dla algebry wielorodzajowej ALG nad zbiorem
zmiennych V, oznaczany Termx(V), jest zdefiniowany rekursywnie w sposób następu­
jący:

• jeżeli c: —>A„ to c e Termx(V),
• V, Q Termx(V),
• jeżeli napisy ..., tk są termami rodzajów ..., sk oraz

/:AV| x...xA,. Av (4.12)

jest działaniem ^-argumentowym, to napis postaci/(Z|,..., t„) jest termem rodzaju s,
czyli f(th ..., tn)eTemix(V).

Zbiór wszystkich termów dla algebry wielorodzajowej ALG nad zbiorem zmiennych
V, oznaczany Term(V\ jest określony jako mnogościowa suma

Tenn(V) = |J Term v (V) (4.13)
vg5

68 Rozdział 4

Zbiór termów nad pustym zbiorem zmiennych, czyli Term(0), nazywa się zbiorem
termo w stałych.

Zauważmy, że zbiór termów jest wyznaczony jednoznacznie przez samą sygnaturę
algebry, algebry podobne mają więc te same zbiory termów.

Zbiór termów Term(V) nad ustalonym zbiorem zmiennych V, generowany przez alge­
brę ALG = <A, F> o sygnaturze Sig = <S, OP>, może być podstawą do utworzenia
nowej algebry wielorodzajowej, zwanej algebrą termów, która jest podobna do alge­
bry ALG.

Algebrę termów
ALGrerm =def < ATer mi ^Tenn^ (4.14)

dla algebry ALG definiuje się następująco:
ATerm = {Term,(V) | sgS} jest rodziną nośników algebry termów,
FTen„ = {| ope OP} jest zbiorem operacji algebry termów, przy czym operacja
f,P ma sygnaturę

f)p : Term^ (V)x...xTerm, (V) —> Term,(V)

gdy deklaracja operacji ma postać: op : s, ... s„ —> s, (n > 0) i jest zdefiniowana
następująco:

jeżeli tj e Term,. (V), dla j = 1, ..., n, to ..., t„) =der op(ti, ..., t„).

Każdemu nośnikowi Ą, i każdej operacji op w algebrze ALG odpowiadają nośnik
TermV) i operacja f,p w algebrze termów ALGrem-

Algebra termów w klasie S;g-algebr wyróżnia się tym, że jest algebrą wolną.

4.3. Algebra ilorazowa termów
Termy mają interpretację, która - w zależności od wartościowania zmiennych - przy­
pisuje im wartość odpowiedniego rodzaju.

Wartościowanie zmiennych jest wyrażane przez funkcję v o sygnaturze

v:V^A (4.15)
gdzie:

V = V, oraz A = A s

przy czym zmiennej v : K można przyporządkowywać wartości tylko ze zbioru A,.

Niech WARv(f) oznacza wartość termu t przy wartościowaniu v. Funkcję WAR,., obli­
czającą wartości termów przy wartościowaniu v, można zdefiniować rekursywnie
w sposób następujący:

Abstrakcyjne typy danych w LOTOSie 69

• jeżeli term jest postaci x, gdzie x jest zmienną, czyli V, to WARv(x) = v(x),
• jeżeli term jest postaci c, gdzie c jest stałą, to WARv(c) = c,
• jeżeli term jest postaci f(t\, ..., tk), gdzie/jest ^-argumentowym działaniem,

a ti,..., tk są termami, to WARv(J(ti.. tk)) =f(WARv(ti), ..., WAR„(tk)).

Zauważmy, że wartość termu stałego t nie zależy od wartościowania v. Dla termu
stałego i dowolnych dwóch wartościowań v oraz v ' zachodzi zatem

WARr(t) = WAR^t). (4.16)

Niech WAR(t) oznacza wartość termu stałego t. Na zbiorze termów stałych rodzaju s
definiuje się relację binarną =„ określoną następująco:

jeżeli 6, Tennx(0), to t\ =x t2 wtedy i tylko wtedy, gdy WAR(tj) = WAR(t2).

Relacja =, jest oczywiście relacją równoważności i wyznacza podział zbioru termów
stałych rodzaju .s na klasy abstrakcji. Do jednej klasy abstrakcji należą wszystkie termy
tego samego rodzaju, które reprezentują tę samą wartość. Przez Termx(0)l=x będziemy
oznaczać zbiór ilorazowy termów wyznaczony przez relację równoważności =v.

Relacja równoważności =v ma następującą własność:

jeżeli tx., t'. są termami rodzaju Sj oraz /. =v. dla j - 1, ..., n,

to f„p (tX[..... tx„) =. f„p (t'X]...... t'Sn) dla ope OP.

Rodzinę relacji równoważności {=, | seS} nazywa się kongruencją. Kongruencja jest
podstawą do zdefiniowania algebry, nazywanej ilorazową algebrą termów stałych dla
algebry ALGTe„n.

Definicja ilorazowej algebry termów, ALGrem jest następująca:

ALG Term Arenn yFTerm > (4.17)
gdzie:

ATerm= {Termv(0)/= v| seS} jest rodziną zbiorów ilorazowych termów rodzajów

Frerm= { f „p | opeOP} jest zbiorem operacji ilorazowej algebry termów,

przy czym operacja f ma sygnaturę

f op :TermXi(0')/=X[x...xTermSi(0')/=x^Term^0)/= ̂ (4.18)

gdy deklaracja operacji ma postać: op : s2... s„ —> 5, i jest zdefiniowana następująco:

jeżeli [tje Term,. (0)/ =x., dlaj = 1, ..., n, to f„p([?,], ..., [?„]) =def 1/^(6, ..., Ą,)];

[{,] oznacza klasę abstrakcji w zbiorze ilorazowym Terms (0)/ =s.., generowaną

przez term tj.

70 Rozdział 4

Algebra fermów jest homomorficzna względem ilorazowej algebry termów, to znaczy
istnieje homomorfizm H : ALGTem —* ALGrerm.

4.4. Specyfikacja równościowa typów abstrakcyjnych

Typy danych w LOTOSie specyfikuje się przez podanie sygnatury algebry oraz wła­
sności jej operacji. Semantyką takiej specyfikacji jest pewna konkretna algebra - ilo­
razowa algebra termów generowana przez specyfikację. W bieżącym podrozdziale
przedstawiono nieformalnie składnię specyfikacji typów danych, a jej semantykę
- w następnym podrozdziale.

Specyfiką definicji typów w LOTOSie jest równościowe definiowanie własności ope­
racji. Jest to podejście algebraiczne, inne od podejścia spotykanego w większości ję­
zyków specyfikacji, a zwłaszcza programowania polegającego na definiowaniu opera­
cji jako procedur.

W języku LOTOS podstawowa forma specyfikacji typu danych ma następującą stru­
kturę:

type Nazwa_typu is
sorts Lista_nazw-rodzajów
opns Lista_symboli_operacji
eqns Lista_równości

endtype

(4.19)

Nazwajtypu jest identyfikatorem. Listy są ciągami odpowiednich elementów oddzie­
lonych separatorami.

Listajtazw-rodzajów jest ciągiem identyfikatorów rodzajów oddzielanych przecin­
kami, a Lista_symboli_operacji - ciągiem symboli operacji oddzielanych wierszami.
Obie te listy wyznaczają sygnaturę algebry.

Na przykład specyfikacja:

type NatLog is
sorts nat, log
opns z : : -> nat

suce :: nat -> nat
pred : nat -> nat
plus : nat, nat -> nat
minus : nat, nat -> nat

P ' -> log
neg : log -> log
impl log, log -> log

Abstrakcyjne typy danych w LOTOSie 71

r : nat, nat -> log
mr : nat, nat -> log

endtype
określa sygnaturę algebry dwurodzajowej o nazwie NatLog, z nośnikami o nazwach
nat i log oraz z operacjami: dwiema zeroargumentowymi o nazwach z i p, trzema jed-
noargumentowymi o nazwach suce, pred i neg oraz pięcioma dwuargumentowymi
o nazwach plus, minus, itnpl, r i mr.

Sama sygnatura pozwala na wyznaczenie zbioru termów algebry. Dla typu NatLog,
jeśli x, y są zmiennymi rodzaju nat, to termami rodzaju nat są na przykład

succ(x), z, plus(x,y), plus(succ(zj, succ(x)).

Dwie pierwsze listy definiują sygnaturę algebry, trzecia natomiast lista Lista_równości
definiuje własności wprowadzonych operacji. Własności te definiuje się rekursywnie
za pomocą zbioru równości. Wyróżnia się dwa rodzaje równości: równość zwykłą
i warunkową.

Równość zwykła ma postać
t\ = h (4.20)

gdzie: r,, r2 są dowolnymi termami tego samego rodzaju, a symbol = oznacza równość
semantyczną termów. Jeżeli termy są tego samego rodzaju s, to symbol równości =
oznacza to samo, co poprzednio symbol =,. Równość zwykła jest takiego rodzaju jak
jej termy składowe.

Równość warunkowa ma postać
ei,..„ e„=>e (4.21)

gdzie ..., e„, e są zwykłymi równościami. Równość warunkowa jest takiego samego
rodzaju jak rodzaj równości e.

Przykładowa Lista_równości, stanowiąca uzupełnienie podanej wyżej sygnatury, ma
postać

type NatLog is
sorts nat, log
opns z : -> nat

suce : nat -> nat
pred : nat -> nat
plus : nat, nat -> nat
minus : nat, nat -> nat
P : > log
neg : log -> log
impl : log, log -> log

72 Rozdział 4

r : nat, nat -> log
mr : nat, nat -> log

eqns
forall x : nat, y : nat, a : log, b : log
ofsort nat

plus(x, y) = plusly, x) ;
plus(succ(x), y) = succ(plus(x, y)) ;
pred^z) = z ;
pred(succ(x) = x ;
minus(x, z) = z ;
niinus(x, succ(y)) = pred(minus(x, y))

ofsort log
neg(neg(b) = b ;
impl(p, p)=p ;
impllp, neglp)) = neg(p) ;
impl(neg(p), a) = p ;
r(x, x) = p ;
mr(z, x)=p ;
mr(succ(x), succ(y)) = ntr(x, y) ;

endtype
Dwie listy równości są poprzedzone wierszem forall, wprowadzającym po dwie
zmienne rodzaju nat i log, oraz przedzielone wierszami ofsort, określającymi rodzaje
występujących równości. Ogranicznikiem końca równości jest tu średnik. W przykła­
dzie występują tylko zwykłe równości, następny przykład specyfikacji wykorzystuje
także równości warunkowe

type NatX is
sorts nat
opns z : -> nat

suce : nat: -> nat
plus : nat nat -> nat

eqns
forall x : nat, y : nat, t: nat
ofsort nat

plus(x, z) = x ;
plus(x, y) = plusly, x) ;
plus(x, y) = t => plus(succ(x), y) = succ(f) ;

endtype
Równości definiują własności algebry, a dokładniej własności jej operacji.

Abstrakcyjne typy danych w LOTOSie 73

4.5. Semantyka specyfikacji typów
W abstrakcyjnym ujęciu specyfikacja typu jest widziana jako trójka

TSpec = der <S, OP, Eq> (4.22)

gdzie: <S, OP> jest sygnaturą, a Eq jest zbiorem równości.

Specyfikacja typu określa zatem sygnaturę i własności algebry, ale nie wyznacza jaw­
nie konkretnej algebry. Algebr o danej sygnaturze może być nieskończenie wiele,
podobnie nieskończenie wiele może być algebr o wskazanych własnościach. Pośród
wszystkich algebr o danej sygnaturze i danych własnościach wskazuje się na szcze­
gólny rodzaj algebr, zwanych algebrami początkowymi. Charakteryzując je niefor­
malnie, można stwierdzić, że są to te algebry, które mają wszystkie wskazane włas­
ności i tylko te własności, które są wyrażone odpowiednimi równościami - inaczej: są
to algebry, które nie spełniają żadnych dodatkowych równości. Dwie różne algebry
początkowe są izomorficzne. Standardowo spośród wszystkich algebr początkowych
wybiera się ilorazową algebrę termów. Algebra ta jest generowana przez specyfikację
typu danych. Przedstawione niżej rozważania pokazują sposób generacji ilorazowej
algebry termów na podstawie analizy specyfikacji.

Zbiór równości Eq, składających się na specyfikację typu danych TSpec, wyznacza sy­
stem dowodowy

D-rspec = < GrEqTSpec, AxEqTs/m; InfEqrSim > (4.23)

gdzie: GrEqTSim: jest pewnym zbiorem równości stałych, AxEqTSpcc - zbiorem równości
aksjomatów, lnfEqTSpec - zbiorem reguł wnioskowania. Definicje poszczególnych ele­
mentów są następujące:

Niech dane będą termy tt i t oraz zmienna x. Notacja ::= r] oznacza modyfikację
termu rb polegającą na tekstowym zastąpieniu każdego wystąpienia zmiennej x w ter­
mie h przez term t. Dalej będziemy rozpatrywać tylko takie termy t, które są termami
stałymi, czyli teTermTSpec (0).

Jeżeli ee Eq jest zwykłą równością postaci t\ = T oraz te TermrSim (0), to równość

= r2[x::=f] (4.24)

jest instancją równości e i oznaczamy ją e[x ::= t].

Jeżeli eeEq jest warunkową równością postaci eb ..., e„ => e oraz teTermrSpei. (0), to
instancją tej równości jest równość warunkowa postaci

Ci[x ::= t], ..., e„[x ::= t] => e[x ::= z] (4.25)

Jeżeli instancja równości nie zawiera zmiennych, to nazywamy ją instancją stalą.

GrEqTSpec jest zbiorem wszystkich stałych instancji zwykłych równości występujących
w specyfikacji TSpec.

74 Rozdział 4

Jeżeli e^Eq jest zwykłą równością, to AxEq(ej oznacza zbiór wszystkich stałych in­
stancji równości e, jeżeli natomiast eeEq jest równością warunkową, to AxEq(e) jest
zbiorem pustym. Przez ID oznaczmy zbiór wszystkich równości stałych postaci t = t,
wówczas

AxEqrSim = [jAxEq(e)uID (4.26)
eeEq

Jeżeli eeEq jest zwykłą równością, to InfEq(ej jest zbiorem pustym, jeżeli natomiast
eeEq jest równością warunkową postaci et ,...,en =>e, to lnfEq(e) oznacza zbiór
reguł wnioskowania postaci

/ e

(4.28)

(4.29)

(4.30)

gdzie są stałymi instancjami równości e...... ,e„,e osiągniętymi przez pod­
stawienie za zbiór zmiennych V występujących w tych równościach termów stałych
Ternirspe, (0).

Przez Inf oznaczmy zbiór reguł wnioskowania postaci

?l = l2
t2 = 6

dla wszystkich termów stałych th t2

= t2,t2 = t2
= t2

dla wszystkich termów stałych t\, t2, h

6 =t'„
opf[,...,t„) = opf{,...,t'nj

dla wszystkich operacji opeOP zn>Qi dla wszystkich termów stałych r„ t' rodzaju
.y, dla i = 1,..., n, wówczas

InfEqTSim = \JlnfEq(e)u Inf (4.31)
eEEq

Dwa termy stałe t, i t2 nazywa się termami kongruentnymi względem specyfikacji
TSpec, co zapisujemy w postaci t\ =Tspec t2, wtedy i tylko wtedy, gdy D I- = t2, czyli
gdy w systemie dowodzenia D istnieje dowód równości tt = t2.

Relacja kongruencji wyznacza podział zbioru termów stałych TernirSpi.c (0) na klasy
abstrakcji. Klasa abstrakcji generowana przez term t jest określona jako zbiór

M-del {f| f=7W t} (4.32)

Abstrakcyjne typy (lanych iv LOTOSie 75

Zbiór klas abstrakcji termów stałych danego rodzaju 5, oznaczany Termf0)l=„ wy­
znacza zbiór wartości rodzaju i ilorazowej algebry termów

Arspec “def <AtSpw FfSpec> (4.33)

zdefiniowanej następująco:

• ArsPec = {Termf0) /=s | seS} jest rodziną zbiorów ilorazowych termów rodzajów
5G S,

• Frspec = {f„p | opeOP} jest zbiorem operacji ilorazowej algebry termów, przy
czym operacja f„p ma sygnaturę

f„p :Termx(0)/ =X} x...xTermx (0)/ =s —>Termx(0)/ =x (4.34)

gdy deklaracja operacji ma postać: op : s2 ... s„ —> 5 i jest zdefiniowana następu­
jąco: jeżeli [r;]e Temx (0)/ =A. dlaj = 1,..., n, to

Z7,([n], [ą,]) =dcf [op(ti,..., /„)]. (4.35)

4.6. Strukturalizacja specyfikacji

Podstawową techniką stosowaną podczas tworzenia złożonych specyfikacji typów
danych jest ich strukturalizacja. Język LOTOS oferuje dwa zasadnicze mechanizmy
struktura!izacji: rozszerzanie specyfikacji i specyfikacje parametryzowane (gene-
ryczne). Oba mechanizmy będą omówione nieformalnie na podstawie prostych
przykładów.

Rozszerzanie specyfikacji polega na definiowaniu nowego typu danych jako rozsze­
rzenia wcześniej zdefiniowanego typu. Rozpatrzmy przykład - załóżmy, że dana jest
specyfikacja typu:

type Boolean is
sorts Bool
opns true, false : -> Bool

not : Bool -> Bool
and , _or_, _xor_, _implies_, _ijf_ : Bool, Bool -> Bool

eqns
forall x, y : Bool
ofsort Bool

not(true) = false ;
notlfalse) - true ;
x and true = x ;
x and false = false ;

76 Rozdział 4

x or true = true ;
x xor y = {x and not(y) or (y and not(x)) ;
x implies y = y or not(x) ;
x iffy = U implies y) and (v implies x) ;

endtype
Specyfikacja definiuje typ Boolean - jednorodzajową algebrę Boole’a - standardowy
typ logiczny w większości języków programowania. Typ ten jest częścią składową
wielu innych typów, na przykład liczb naturalnych. Symbole podkreśleń po lewej
i prawej stronie operacji dwuargumentowych wskazują na użycie notacji wrostkowej
(zamiast standardowej przedrostkowej).

Nowy typ NatY można zdefiniować, odwołując się do typu Boolean, w sposób nastę­
pujący:

type NatY is Boolean
sorts nat
opns z : -> nat

suce : nat: -> nat
plus : nat nat -> nat
eq : nat nat -> Bool
gt: nat nat -> Bool

eqns
forall x : nat, y : nat, t: nat
ofsort nat

plus(x, z) = x ;
plus(x, y) = plus(y, x) ;
plus(x, y) = t => plus(succ(x), y) = succ(f) ;

ofsort Bool
zeq z = true ;
z eq succ(x) -false ;
succ{x) eq z = false ;
z gt z = false ;
z gt succ(x) = true ;
succ(x) gt succ(y) = x gty ;

endtype
Przedstawiona specyfikacja jest równoważna następującej rozwiniętej tekstowo specy­
fikacji:

type NatY is
sorts Bool, nat

Abstrakcyjne typy danych iv LOTOSie 77

opns true, false
not
and, or_
z : -> nat

-> Bool
Bool -> Bool
Bool, Bool -> Bool

suce : nat: -> nat
plus : nat nat -> nat
eq : nat nat -> Bool
gt: nat nat -> Bool

eqns
forall x, y : Bool, x : nat, y : nat, t: nat
ofsort Bool

not(true) =false
notffalse) = true
x and true = x
x and false = false
x or true = true
x or false = x

ofsort nat
plus(x, ź) =x
plus(x, y) = plus(y, x)
plus(x, y) = t => plus(succ(x), y) = succ(f)

ofsort Bool
zeq z = true
z eq succ(x) = false
succ(x) eq z =false
zgtz=false
z gt succ(x) - true
succ(x) gt succ(y) - x gt y

endtype
Specyfikacja w formie rozwiniętej, nazywanej też specyfikacją w formie kanonicznej,
powstaje przez tekstowe połączenie specyfikacji typu Boolean z nowym tekstem. Ta­
kie połączenie tekstów daje jednoznaczny efekt, pod warunkiem unikalności nazw
rodzajów i operacji.

Specyfikacje typów nazywamy specyfikacjami rozłącznymi, gdy ich sygnatury mają
rozłączne zbiory rodzajów i operacji.

Gdy specyfikacje nie są rozłączne, należy dokonać odpowiedniego przemianowania
nazw, do czego służy pomocnicza konstrukcja przemianowania:

78 Rozdział 4

type Stara_nazwa_typu is Nowa_nazwa_typu
sortnames Stara_nazwa_rodzaju for Nowa_nazwa_rodzaju

opnames Stara_nazwa_operacji for Nowa_nazwa_operacji

endtype

Konstrukcja wprowadza nowy typ o nowej nazwie, który od typu starego różni się
tylko nazwami rodzajów i nazwami operacji.

W przypadku wielu złożonych typów okazuje się często, że ogólna struktura tworzą­
cych je elementów nie zależy od elementów składowych. Jest tak na przykład w przy­
padku tablic, plików, stosów czy kolejek, używa się wówczas typów sparametryzowa-
nych, ich specyfikacja ma postać:

type Nazwajtypu is
formalsorts Lista_nazw_rodzajów
formalopns Lista_symboli_operacji
formaleąns Lista_równości
sorts Lista_nazw_rodzajów
opns Lista_symboli_operacji
eqns Lista_równości

endtype

Jest to rozszerzona tekstowo forma specyfikacji kanonicznej, wprowadzająca formalne
parametry, którymi mogą być rodzaje, operacje i równości. Typ sparametryzowany
staje się typem konkretnym po zastąpieniu jego parametrów formalnych parametrami
aktualnymi. Służy do tego konstrukcja aktualizacji typu postaci:

type Nazwa-typu is Nazwa-typu-sparametryzowanego
actualizedby Nazwa-typu using

Lista _podstawień_rodzajów
Lista _podstawień_operacji

endtype

gdzie podstawienie_rodzaju ma postać:

sortnames nazwa_rodzaju for nazwa_rodzajuformalnego

podstawienie_operacji ma postać:

opnames nazwa_operacji for nazwa_operacjiformalnej

Abstrakcyjne typy danych w LOTOSie 79

Dobrą ilustracją obu tych konstrukcji jest specyfikacja stosu formalnego i jego uaktu­
alnienia. Najpierw specyfikujemy stos jako typ sparametryzowany, niezależny od typu
elementów, na których operuje:

type Stos is
formalsorts
formalopns
sorts
opns

pusty
odczyt
ze_stosu
na_stos

elem
eO : -> elem
stos

: -> stos
: stos -> elem
: stos -> stos
: stos elem -> stos

eqns
forall e : elem, s : stos

ofsort elem
odczytlpusty) - eO
odczyt(na_stos(s, e)) = e

ofsort stos
ze_stosu(pusty) = pusty
ze_stosu(na_stos(s, e)) = s

endtype

Rodzaj elem oraz stała eO są parametrami formalnymi typu Stos, przyporządkowanie
im konkretnego niesparametryzowanego rodzaju oraz wskazanej wartości tego rodzaju
pozwala na definicję konkretego typu stosowego. Na przykład stos liczb naturalnych
uzyskamy, podając specyfikację:

type StosNat is Stos actualizedby NatLog using
sortnames nat for elem
opnnames z for eO

endtype

LOTOS definiuje pewien zestaw typów predefiniowanych, zestawionych w bibliotekę
typów standardowych. Do specyfikacji tych typów można się odwoływać przez wska­
zanie nazwy typu, z zaznaczeniem, że jest to typ należący do biblioteki typów standar­
dowych. Odwołanie to ma postać:

library Nazwa jypu_standardowego
endlib

80 Rozdział 4

Zbiór specyfikacji niesparametryzowanych typów daje się sprowadzić do postaci ka­
nonicznej. Polega to wykonaniu następujących kroków:

• każdą specyfikację złożoną, to znaczy taką, w której występują omówione kon­
strukcje strukturalne, należy przekształcić do specyfikacji kanonicznej,

• nazwy w zbiorze specyfikacji typów należy przemianować w taki sposób, aby
otrzymać zbiór typów rozłącznych,

• listy wszystkich rodzajów oraz listy wszystkich symboli operacji występujących
w specyfikacjach składowych należy połączyć we wspólne listy.

Semantyka zbioru specyfikacji typów jest zdefiniowana jako semantyka jego postaci
kanonicznej.

Podczas stosowania równościowego definiowania własności operacji pojawiają się
dwa problemy. Problem pierwszy wiąże się z pytaniem, czy podany zestaw równości
jest kompletny - czy uwzględnia wszystkie potrzebne własności. Problem drugi wiąże
się z pytaniem, czy podany zestaw własności jest niesprzeczny, czyli czy operacje
mają niepustą semantykę. Ogólnie są to problemy nierozstrzygalne, co oznacza, że nie
istnieją algorytmy do automatycznego badania własności zupełności i niesprzeczności.

Typy danych w językach specyfikacji i programowania są definiowane jeszcze na inne
sposoby. Dominujące podejście, nazwane tu podejściem „programistycznym”, polega
na zdefiniowaniu pewnej liczby typów elementarnych, na przykład typy liczbowe,
napisowe, logiczne. Każdy typ elementarny ma określony zbiór wartości oraz okre­
ślony zbiór operacji. Typy elementarne można składać ze sobą, definiując w ten spo­
sób typy złożone, które można składać ze sobą ponownie, definiując coraz bardziej
rozbudowane typy. Typowymi sposobami składania typów jest tworzenie rekordów
(krotek), ciągów, zbiorów. Specyfiką takiego podejścia jest to, że związane z nimi
zbiory operacji są ograniczone w zasadzie tylko do operacji selekcji elementów skła­
dowych typów złożonych. Operacje, które w omawianym podejściu algebraicznym
stanowią element integralny definiowanych typów, można definiować poza definicją
typu, na przykład w postaci definicji procedur.

Należy zwrócić uwagę na jeszcze jedną różnicę pomiędzy podejściem algebraicznym
a „programistycznym”. Operacje w podejściu algebraicznym muszą być funkcjami
całkowicie określonymi, podejście „programistyczne” dopuszcza natomiast definio­
wanie operacji, które mogą być funkcjami określonymi częściowo.

4.7. Przykłady specyfikacji

Przedstawiony dalej zestaw przykładów specyfikacji typów opiera się na typach wy­
branych z biblioteki typów języka LOTOS. Spośród wybranych typów bibliotecznych,
dwa typy Element oraz BasicNaturalNumber są nieco zmodyfikowane, w celu dosto­
sowania do potrzeb dalszych rozdziałów. Przedstawiamy specyfikację typu reprezen­

Abstrakcyjne typy danych w LOTOSie 81

tującego zbiór operacji mnogościowych na zbiorze elementów dowolnie ustalonego
typu. Typ ten, nazwany Set, jest typem parametryzowanym, a inne przedstawiane tu
typy pełnią rolę pomocniczą - są niezbędne do jego specyfikacji. Typami pomocni­
czymi są typy: Boolean, Element, NaturalNumber. Pierwszy z tych typów był przed­
stawiony w poprzednim podrozdziale.

Typ Element jest typem złożonym, jest on rozszerzeniem typu Boolean-.

type Element is Boolean
formalsorts Elem
formalopns _eqEl_, _neEl_ : Elem, Elem -> Bool
formaleqns forall x, y : Elem

ofsort Elem
x eqEl y = true => x = y ;

ofsort Bool
x = y => x eqEl y = true ;
x neEl y = not(x eqEl y) ;

endtype

Modyfikacja typu Element względem specyfikacji standardowej polega tu na wyko­
rzystaniu typu Boolean zamiast typu parametryzowanego FBool.

Typ Element reprezentuje dowolnie określoną zbiorowość, w której operacje eqEl oraz
neEl mają służyć stwierdzaniu, czy dwa elementy tej zbiorowości są jednakowe czy
różne. Zbiorowość tę, reprezentowaną formalnym rodzajem Elem, i podobnie operacje
formalne eqEl, neEl można ukonkretnić. Ukonkretniony typ zachowuje wszystkie
własności operacji określone równościami formalnymi.

Typ NaturalNumber jest również typem złożonym. Do jego definicji jest wymagany
wcześniej zdefiniowany typ Boolean oraz typ BasicNaturalNumber definiowany poniżej:

type BasicNaturalNumber is
sorts Nat
opns 0 : -> Nat

Suce, Pred : Nat -> Nat
+, , _**_ : Nat, Nat -> Nat

eqns forall m, n : Nat
ofsort Nat

Pred(Q) = 0 ;
Pred(Succ(n.y) = n ;
m + 0 = ni ;
m + Succ(n) = Succ(m) + n ;

82 Rozdział 4

m * 0 = 0 ;
m * Succ(n) = m + (m * n) ;
m ** 0 = Succ(0) ;
m ** Succ(n) = m * (m ** n) ;

endtype

Modyfikacja typu BasicNaturalNumber względem specyfikacji standardowej polega
tu na wprowadzeniu operacji Pred. Operacja ta jest zdefiniowana jako funkcja całko­
wicie określona, co wynika - jak wspomniano wcześniej - z ogólnych własności de­
finicji operacji poprzez równości. Odbiega to od powszechnie przyjmowanego zna­
czenia tej operacji, która dla argumentu 0 jest nieokreślona.

Definicja typu NaturalNumber przedstawia się następująco:

type NaturalNumber is BasicNaturalNumber, Boolean
opns _eq_, _ne_ , _lt_, _le_, _ge_, _gt_ : Nat, Nat -> Bool
eqns forall m, n : Nat

ofsort Bool
0 eq 0 = true ;
0 eq Succ(m) = false ;
Succ(m) eq 0 = false ;
Succ(n) eq Succ(m) = n eq m ;
m ne n = not(m eq n) ;
0 It 0 = false ;
0 It Succ(n) = true ;
Succ(n) It 0 = false ;
Succ(m) It Succ(n) = m It n ;
m le n = (m It n) or (m eq ii) ;
m ge n = not(m It n) ;
m gt n = not(m le n) ;

endtype

Mając zdefiniowane typy składowe, możemy przedstawić specyfikację parametryzo-
wanego typu zbiorowego Set:

type Set is Element, Boolean, BasicNaturalNumber
sorts Set
opns {} : -> Set

Insert, Reniove, _lsln_, _NotIn_, _NotIn_ : Element, Set -> Set
Union, _Ints_, _Minus_ : Set, Set -> Set

Abstrakcyjne typy danych w LOTOSie 83

eq, _ne_, _lncludes_, _JsSubsetOf_ : Set, Set -> Bool
Card : Set -> Nat

eqns forall x, y : Eleni, s, t: Set
ofsort Set

Insert{x, Insert(x, s) = Insert(x, s) ;
lnsert(x, Insert(y, s)) = Insertiy, Insert(x, s)) ;
Remove(x, {})={} ;

x eq y = true =>
Remove(x, Insert{y, s)) = Remove(x, s)) ;

x ne y = true =>
Remove(x, Insertfy, s)) = Insert(y, Remove(x, s)) ;
{} Union s-s ;
Insert{x, s) Union t = lnsert(x, s Union t) ;
{} Ints s = {}

x Isln t = true =>
lnsert(x, s) Ints t = Inserty, s Ints t) ;

x Notln t = true =>
Insert(x, s) Ints t = s Ints t ;
s Minus {} = 5 ;
i- Minus lnsert(x, t) = Remove(x, 5) Minus t ;

ofsort Bool
x Isln {} =false ;

xeqy =>
x Isln Insertiy, s) = true ;

x ne y =>
x Isln Insert(y, s)=x Isln s ;
x Notln s = not(x Isln s) ;
s Includes {} = true ;
s Includes Insert(x, t) = (x Isln s) and (s Includes t) ;
s IsSubsetOf t = t Includes s ;
5 eq t = (s Includes t) and (t Includes s) ;
s ne t = not(s eq t) ;

ofsort Nat
Card{ {}) = 0 ;

x Notln s = true =>
CardUnsert(x, s) = Succ(Card(s)) ;

endtype

84 Rozdział 4

Typ parametryczny Set można w różny sposób ukonkretniać. Przyjmując na przykład,
że nośnikiem będzie zbiór liczb naturalnych, odpowiednia specyfikacja przyjmie po­
stać:

type SetOfNaturalNumbers is Set
actualizedby NaturalNumber using

sortnames
Nat for Elem

opnames
eq for eqEl
ne for neEl

endtype

4.8. Uwagi końcowe

Abstrakcyjne typy danych były przedmiotem wielu prac i wielu ujęć, na przykład:
[Burstall, Goguen 1982], [Tatcher, Wagner, Wright 1982], Omówione w niniejszym
rozdziale podejście oparte na ACT ONE wybrano dlatego, że znalazło odzwierciedle­
nie w języku LOTOS.

Warto też dodać, że abstrakcyjne typy danych były również uwzględnione w począt­
kowych pracach nad językiem specyfikacji SDL: [ITU-T, 1999], [Elllsberg, Hogrefe,
Sarma 1997],

Przedstawione podejście równościowego definiowania abstrakcyjnych typów danych
ma eleganckie matematyczne podstawy, ale ma także wady. We wcześniejszej części
rozdziału zwrócono już uwagę na dwa ograniczenia wewnętrzne:

Pierwsze wiąże się z tym, że w obrębie abstrakcyjnego typu danych możliwa jest defi­
nicja tylko takich operacji, które są funkcjami całkowitymi. Praktycznie bardzo często
posługujemy się funkcjami częściowo określonymi wraz z mechanizmami obsługi
wyjątków.

Drugie wiąże się z koniecznością sprawdzania niesprzeczności i kompletności (zu­
pełności) zdefiniowanych typów. Ponieważ badanie równoważności termów dla
dowolnej algebry jest problemem nierozstrzygalnym, nie można użytkowników
wspomagać w pełnym zakresie odpowiednimi narzędziami programowymi. Osta­
tecznie zatem obowiązek sprawdzenia niesprzeczności spoczywa na użytkowniku
języka. Dodatkowo, stosowane w implementacji różne strategie przekształcania
zbioru równości w zbiór reguł systemu dowodzenia, a także stosowania tego syste­
mu mogą prowadzić do różnych wyników - podczas, gdy jeden system może dawać
odpowiedź „tak” albo „nie” na zadane pytanie, inny może dawać odpowiedź „nie
wiem”.

Abstrakcyjne typy danych w LOTOSie 85

Problem zupełności jest jeszcze bardziej złożony, gdyż wymaga dodatkowo określenia
„bazy” odniesienia, czyli tego, względem czego jest badana zupełność.

Można jeszcze wskazywać na inne wady. Na przykład strukturalizacja typów nie za­
pobiega możliwości rozproszenia podobnych rodzajów i operacji w wielu miejscach,
a każda funkcja definiowana w typie jest widziana jako globalna - nie ma możliwości
deklarowania funkcji jako lokalnych, dodanie nowej równości może istotnie zmienić
semantykę typu.

Zwraca się jeszcze uwagę na to, że - ze względu na zamierzony zakres zastosowania
języka LOTOS - intelektualny wysiłek potrzebny do zrozumienia podstaw teoretycz­
nych nie pozostaje w proporcji do praktycznych zamierzeń, na przykład do specyfi­
kacji komunikatów protokołu komunikacyjnego. Dla wielu użytkowników abstrak­
cyjne typy danych pozostają raczej problemem niż rozwiązaniem.

Wymienione problemy związane z użyciem równościowej specyfikacji abstrakcyjnych
typów danych były jedną z przyczyn rewizji języka LOTOS [Garavel, Sighireanu
1996a], [Garavel, Sighireanu 1996b] i opracowania wersji rozszerzonej E-LOTOS
[ISO/IEC FDIS 15437, 2001], W nowej wersji języka zdecydowano się na wpro­
wadzenie mieszanych mechanizmów definiowania typów danych; są pozostawione,
nieco zmodyfikowane, mechanizmy abstrakcyjnych typów danych, wraz z dołączony­
mi wybranymi mechanizmami specyfikacji typów danych z funkcjonalnego języka
programowania ML [Milner, Tofte, Harper 1990],

Podobnie postąpiono w rozwoju języka SDL - do wcześniej wprowadzonych abstrak­
cyjnych typów danych dołączono typy danych spotykane w imperatywnych językach
programowania (języki C i C++).

Dodatkowo narzędzia programistyczne wspomagające projektowanie w SDL umożli­
wiły stosowanie notacji ASN.l (Abstract Syntax Notation One). ASN.l jest językiem
formalnym do zapisu składni abstrakcyjnej typów danych oraz do kodowania danych
w postaci ciągów zero-jedynkowych. Jako standard ISO jest opisany w serii norm
ISO/IEC 8824-3, 4 oraz ISO/IEC 8825-1, 2, a przystępny jego opis zawiera książka
[Kosmulska-Bochenek 2002].

86

5. LOTOS - opis języka

5.1. Akcje komunikacyjne

Specyfikacja systemu rozproszonego w LOTOSie jest traktowana jako proces. Proce­
sy są podstawową jednostką strukturalizacji specyfikacji. Opisywany system przedsta­
wia się jako hierarchię procesów, z których najbardziej zewnętrzny reprezentuje cały
system, a procesy w nim zagnieżdżone reprezentują składowe tego systemu. Komuni­
kacja jest niepodzielną czynnością, podczas której pomiędzy procesem a jego otocze­
niem następuje przepływ danych. Realizacja komunikacji wymaga synchronizacji ko­
munikujących się procesów.

Proces w LOTOSie, podobnie jak proces w CCS, w danym stanie oferuje swemu oto­
czeniu zbiór ofert komunikacji. Oferta komunikacji ma postać akcji. Realizację akcji
nazywa się interakcją. Każdej interakcji towarzyszy synchronizacja oraz wymiana
informacji. Szczególnym rodzajem jest interakcja, której towarzyszy pusta wymiana
danych, czyli interakcja ograniczająca się tylko do synchronizacji komunikujących się
partnerów. Takie właśnie zdarzenia są dopuszczalne w omawianym tutaj LOTOSie
bazowym - podzbiorze pełnego języka LOTOS.

Mechanizmy komunikacji w LOTOSie, w porównaniu do komunikacji w CCS, są
znacznie rozbudowane. Wynika to z dwóch powodów: po pierwsze, oprócz syn­
chronizacji komunikujących się procesów, mamy do czynienia z wymianą danych,
a po drugie - oprócz komunikacji bilateralnej dopuszcza się także komunikację multi-
lateralną. Z tych powodów definicja akcji komunikacyjnych jest bardziej złożona.
Niech, jak poprzednio, G oznacza dowolny, co najwyżej przeliczalny zbiór nazw bra­
mek. Wyróżnia się elementarne i strukturalne akcje komunikacyjne.

Akcje elementarne mają postać:

g ! t oraz g? x: s (5.1)

gdzie:
ge G oznacza nazwę bramki,
e jest pewnym wyrażeniem - termem stałym (zob. poprzedni rozdział),
x jest zmienną,
j> jest identyfikatorem rodzaju.

Pierwsza z tych akcji, nazywana elementarną akcją wyjścia, polega na wysłaniu, przez
proces realizujący tę akcję, wartości wyrażenia t przez bramkę g, element It nazy­
wamy wyjściowym elementem komunikacyjnym. Druga z tych akcji, nazywana ele­
mentarną akcją wejścia, polega na odbiorze, przez proces realizujący tę akcję, pewnej
wartości rodzaju t z bramki g i przypisaniu tej wartości zmiennej x, element ? x : 5 na­
zywamy wejściowym elementem komunikacyjnym.

LOTOS - opis języka 87

Najprostszy przypadek komunikacji, w której uczestniczą dwa procesy (komunikacja
bilateralna), wymaga, aby jeden z nich był gotowy do realizacji elementarnej akcji
wejścia, a drugi - elementarnej akcji wyjścia. Akcje te muszą być zgodne, tzn. obie
muszą się odnosić do tej samej bramki, a wyrażenie e w akcji wyjścia musi być takie­
go samego rodzaju jak zmienna x w akcji wejścia. Realizację pary zgodnych akcji na­
zywa się interakcją.

W bardziej ogólnym przypadku komunikacja pary procesów może polegać na reali­
zacji innych zestawów akcji elementarnych. Możliwości te są zgromadzone w tabe­
li 5.1, w której przedstawiono komunikację pomiędzy dwoma procesami p oraz q.

Tabela 5.1

Lp. Akcja
w procesie p

Akcja
w procesie q Warunek zgodności akcji Wynik realizacji akcji

1 g 11 glys sort(t) = .v y := Id
2 g^.s g't sortuj = .v x := Id
3 g I h g ! t2 IM = [dl

4 g^x:st g?y. '2 ,V| = s.
x := v, y := v,

gdzie v jest dowolną
wartością rodzaju s.

Funkcja sort(0 oznacza rodzaj wyrażenia (termu) t.

Przypomnijmy, że - zgodnie z rozważaniami poprzedniego rozdziału - wartością ter­
mu stałego t jest klasa abstrakcji [r], określona na zbiorze termów stałych rodzaju 5.

Oznaczenie x := v jest przypisaniem wartości v zmiennej x. Używanym w LOTOSie
zmiennym można przypisywać wartości tylko jednokrotnie, co znaczy, że raz przypi­
sanej wartości nie można już zmieniać - LOTOS jest językiem aplikatywnym.

Wspólnym warunkiem realizacji akcji, niezapisanym w tabeli 5.1, jest - podobnie jak
w przypadku języka CCS - synchronizacja obu procesów p oraz q. Dwa pierwsze
przypadki ujęte w tabeli odpowiadają omówionemu wyżej przesłaniu wartości po­
między dwoma procesami. W trzecim przypadku procesy nie przesyłają pomiędzy
sobą żadnych wartości, a tylko synchronizują się wzajemnie. Czwarty przypadek ob­
razuje interakcję, której wynikiem jest wygenerowanie, w sposób niedeterministyczny,
pewnej wartości wspólnie zapamiętanej przez oba procesy.

Bardziej rozbudowaną akcją komunikacyjną jest akcja strukturalna. Akcje struktu­
ralne służą do przekazywania, podczas jednej interakcji, zestawu wartości, a nie
tylko pojedynczej wartości, jak w przypadku akcji elementarnych. Akcja struktu­
ralna ma postać

g ot\ a,... ak dla k > 0 (5.2)

88 Rozdział 5

gdzie 0Ci są wcześniej określonymi elementami komunikacyjnymi postaci (5.1), czyli

?x,:s, lub ! Ą. (5.3)
Dwie akcje strukturalne:

gai a2... ak oraz (5.4)

są zgodne wtedy i tylko wtedy, gdy k = l oraz dla każdego i = 1, ..., k akcje elemen­
tarne g Oi oraz g /3j są zgodne w sensie tabeli 5.1.

Realizację pary akcji, czyli interakcję, będziemy oznaczać

g vh..., vk (5.5)

gdzie v, jest wartością przesłaną lub wygenerowaną przez elementy komunikacyjne a,
oraz Pi dla i = 1,..., k.

Najbardziej ogólna postać akcji strukturalnej przedstawia się następująco:

g ax a2... ak [c] (5.6)

gdzie c jest predykatem - wyrażeniem logicznym, czyli termem rodzaju Bool. Predy­
kat c zawęża dopuszczalne wykonania tej akcji tylko do tych interakcji, które spełniają
ten predykat.

Dla akcji g ax a2... ak wyznaczmy zbiór zmiennych V, występujących w wejściowych
elementach komunikacyjnych

V = {x, | = ? x,: sh i = 1,..., k}. (5.7)

Niech V = {x7| ,...,Xj }, wówczas interakcjag vh ..., vk musi spełniać warunek

albo krótko

D t- c[x, ::= r, ,..., x, '.'.-t,]-true

D I- c[x, ::=t: ,...,X: : = t,]L Jl Jl Jm Jm 1

(5.8)

(5.9)

gdzie Vj =[/7] dla i = 1, ..., m. Symbol H, zgodnie z oznaczeniami rozdziału 4.,

oznacza istnienie dowodu równości w systemie dowodzenia D, generowanym przez
specyfikację typów danych.

Dotychczas omawiano komunikację, w której uczestniczyły tylko dwa procesy.
LOTOS dopuszcza interakcje, w których bierze udział większa liczba procesów. Zbiór
akcji jest zbiorem akcji zgodnych, jeżeli istnieje wspólna interakcja, która jest reali­
zowalna przez każdą z tych akcji.

Oprócz opisanych wyżej akcji komunikacyjnych, podobnie jak w CCS, wyróżnia się
w LOTOSie jeszcze akcje wewnętrzne, oznaczane symbolem i. Akcja wewnętrzna jest
odzwierciedleniem pewnej czynności obliczeniowej lub komunikacyjnej, która
- z punktu widzenia zewnętrznego obserwatora procesu - jest całkowicie niewidocz­

LOTOS - opis języka 89

na. Akcja zachodzi autonomicznie na skutek decyzji pewnego obiektu wewnętrznego
danego procesu. Dla zewnętrznego obserwatora procesu akcja wewnętrzna jest nieob-
serwowalna, a informacja o zajściu akcji i mówi tylko o tym, że we wnętrzu procesu
wykonano pewne obliczenie lub zaszła pewna komunikacja.

5.2. Procesy i wyrażenia behawioralne

Składnia LOTOSa jest rozszerzeniem składni CCS. Rozszerzenie wynika z:

• uwzględnienia przekazywania danych,
• wprowadzenia dodatkowych operatorów wyrażeń behawioralnych, wynikających

między innymi z wprowadzenia komunikacji multilateralnej (oprócz bilateralnej),
• rozbudowania deklaracji procesów i typów.

Szkieletowa postać definicji procesów w postaci kanoniczej przedstawia się następu­
jąco:

process nazwa„procesu \lista_bramek„formalnych]
(lista_formalnych„parametrów„wartościowych) :

funkcjonalność := (5.10)
wy rażenie „behawioralne

endproc

W przypadku procesów kanonicznych zakłada się, że nie mają one lokalnych definicji
typów lub procesów wewnętrznych, zakłada się natomiast, że ich wspólnym kontek­
stem jest kanoniczna specyfikacja typów danych. Procesy te dysponują więc rodzaja­
mi i operacjami należącymi do kanonicznej specyfikacji typów danych.

Definicje typów omówiliśmy w rozdziale poprzednim, obecnie omówimy wyrażenia
behawioralne stanowiące treści procesów.

Słowa kluczowe wyróżnia się wytłuszczoną czcionką, a symbole pomocnicze - kur­
sywą.

Poszczególne elementy definicji procesów mają znaczenie następujące:

Listajbramek„formalnych, postaci ..., g,„ dla n > 0, oraz g, gj, dla i T j, określa
nazwy formalne bramek, przez które proces może się komunikować ze swoim oto­
czeniem. Instancja procesu o zadanej definicji musi nazwy formalne zastąpić nazwami
aktualnymi.

Procesy mogą dysponować zmiennymi lokalnymi, których wartościowanie może być
ustalane w momencie tworzenia instancji procesu. Służy do tego lista„formalnych„pa­
rametrów „wartościowych, postaci ją : sb ...,x„: s„, dla n > 0, gdzie xb ..., są zmien­
nymi, a 5b ..., s„ są rodzajami tych zmiennych.

90 Rozdział 5

Funkcjonalność procesu charakteryzuje sposób kończenia działania procesu i przyj­
muje jedną z postaci:

noexit
(5.11)

exit(sb s„) dla n > 0.

Pierwsza postać oznacza, że proces albo nigdy się nie kończy, albo - kończąc się -
staje się procesem nieaktywnym. Druga postać oznacza, że jeśli proces się kończy, to
produkuje zestaw wartości rodzajów ..., s„, które może przekazać do zainicjowania
innego procesu - jego następnika.

Pojęcie funkcjonalności odnosi się także do wyrażeń behawioralnych, dlatego pow-
staje wymóg, by funkcjonalność procesu była zgodna z funkcjonalnością wyrażenia
behawioralnego stanowiącego jego treść.

Zbiór wyrażeń behawioralnych Beh jest określony następująco:

B ::= stop |
i;5i |
g ai a2... ą; B} |
g at a2... O4[c]; Bi |
exit(zh ..., t„) |
Bi » accept %i : x„. s„ in B21
Bt [] B21
hidegi, ...,g„ inBi |

<512)
Bi |[g1;...,g,.]|S2|
[c] -> Bi |
letxi = ?i, ...,x„=r„inB| |
choiceg in [gt.......g„] Bi |
choice i [] Bi |
par g in [g,, ...,g„] |[h,, ...,/i,„]|B, |

...gnM......... ^)|
(Bi)

Symbole B, Bi, B2 oznaczają wyrażenia behawioralne, g, h (z ewentualnymi indeksa­
mi) oznaczają bramki komunikacyjne, ..., x„- zmienne, ..., s„ - rodzaje oraz
fi, ..., t„,~ termy.

W przypadku wyrażenia exit(/i, ..., t„) symbol r, (i = 1, ..., n) może dodatkowo
przyjmować postać any s,. Symbol any s, służy na oznaczenie dowolnego termu
rodzaju s,.

LOTOS - opis języka 91

Zbiór wyrażeń behawioralnych musi spełniać ograniczenia kontekstowe, wynikające
z wymagań funkcjonalnych. Po oznaczeniu przez funct(B) funkcjonalności wyraże­
nia B ograniczenia te można przedstawić tabelą 5.2.

Tabela 5.2

B funct(B) Warunek zgodności

stop noexit
a; Bt funct^Bt) a - dowolna akcja

exit(/b ..., t„) exit(,V|.......s„) sort(t}) = sh ..., sort(t„) = s„

Bt » accept X| : .s,, ..., x„: s„in B2 funct(B2) funct(B\) - exit(.r,,..., ,s„)

BA]B2 funct^B^ /wnc7(B|) =funct(B2)

hideg,, ...,g„ in B, funct^B^

Bt [> B2 funct(B\) funct(B\) =funct(B2)

Bi |[gi, ■■■, g„]| B2 funct(Bt) funct(B\) =funct(B2)

[c] -> B, f'unct(B\)

letX| = /b ..., x„- /„in B| funct(B\)

choicegin [g,, ...,g„] B, funct(B\)

choice x [] B| funct(Bi)

par gin [g,, ..., g„] |[/i,, ..., A„,]| B, funct(Bi)

p[g...... , funct(B\) gdzie B| - treść procesu p

(Bt) funct(B\)

Znaczenie poszczególnych konstrukcji wyrażeń behawioralnych przedstawiają się
następująco:

stop jest procesem elementarnym reprezentującym proces pusty, to znaczy taki, który
nie oferuje swemu otoczeniu żadnych akcji komunikacyjnych.

Prefiksowanie akcją wewnętrzną i; B oznacza zachowanie, na które składa się wyko­
nanie akcji wewnętrznej, a dalsze zachowanie jest określone przez wyrażenie beha­
wioralne B. Podobne znaczenie mają prefiksowanie akcją komunikacyjną bez ogra­
niczenia g CC] a2 ... ap B i z ograniczeniem g a2 ... «*[c]; B, to znaczy po
wykonaniu akcji w wyniku synchronizacji z otoczeniem dalsze zachowanie jest okre­
ślone przez wyrażenie behawioralne B.

Wyrażenie exit(/|, ..., /„) jest procesem elementarnym, którego jedyną czynnościąjest
obliczenie wartości termów th ..., t„ i przekazanie ich do innego procesu, który jest
jego następnikiem. Wyrażenie to należy odróżnić od tekstu exit(ób ..., s„), który ozna­
cza funkcjonalność.

92 Rozdział 5

Pełne wyjaśnienie roli procesu exit(rb t„) wiąże się z wyrażeniem złożenia aktywu­
jącego postaci: Si » accept X| : x„: s„in B2.

Operator binarny » oznacza sekwencyjne wykonanie wyrażeń najpierw wyrażenia
Bh a następnie wyrażenia accept X| : ...,x„: s„in B2.

Od wyrażenia B\ wymaga się, aby miało ono funkcjonalność exit(S|, s„), czyli aby -
kończąc się - produkowało zestaw wartości vh v„ rodzajów $|, s„. Oznacza to, że
wyrażenie B] - kończąc się - ma wykonać proces exit(tb ..., t„). Proces ten wytworzony
zestaw wartości przekazuje do wyrażenia accept Aj : $], ...,x„: s„ in B2 za pośrednictwem
specjalnej, lokalnej bramki komunikacyjnej. Bramka ta jest oznaczana jako S. Interakcja
pomiędzy wyrażeniami po lewej i prawej stronie operatora » ma postać: Sv}, v„.
Zachowanie reprezentowane przez wyrażenie B] » accept Aj : .sj, ..., x„: 5,, in B2 jest
sekwencyjnym złożeniem zachowań jego wyrażeń składowych.

Zachowanie reprezentowane przez wyrażenie wyboru B\ [] B2 jest mnogościową sumą
zachowań wyrażeń składowych. Oznacza to, że wyrażenie oferuje swemu otoczeniu
akcje obu wyrażeń składowych, a po wyborze akcji należącej do jednego z tych wyrażeń,
np. B], dalsze zachowanie przebiega zgodnie z zachowaniem określonym przez Bt.

Wyrażenie przesłaniania hide gi.......g„ in B{ oznacza, że bramki gb ..., g„ mogą być
użyte do komunikacji tylko wewnątrz wyrażenia B. Bramki te nie mogą być wykorzy­
stane do komunikacji z otoczeniem tego wyrażenia. Komunikacja na dowolnej z tych
bramek, przez zewnętrznego obserwatora wyrażenia hide gb ..., g„ in Bt, będzie trak­
towana jako akcja wewnętrzna.

Zachowanie wyrażenia złożenia deaktywującego Bt [> B2 można nieformalnie opisać
jako zachowanie dwóch równoległych procesów reprezentowanych wyrażeniami B\
oraz B2. Proces reprezentowany przez B\ wykonuje się aż do chwili, gdy rozpocznie
działanie proces reprezentowany wyrażeniem B2. Jeżeli B} zakończy działanie zanim
działanie rozpocznie B2, oznacza to zakończenie działania całego wyrażenia B} [> B2.
Jeżeli natomiast B2 rozpocznie działanie przed zakończeniem B\, to następuje prze­
rwanie działania B} i dalsze zachowanie przebiega zgodnie z B2.

Wyrażenie złożenia równoległego B\ |[gb ..., g„]| B2 oznacza dwa równoległe procesy
reprezentowane wyrażeniami B\ oraz B2. Bramki g,, ..., g„ służą do synchronizacji
tych procesów, co oznacza, że w każdej komunikacji z udziałem tych bramek muszą
jednocześnie uczestniczyć B\ oraz B2.

Wyrażenie złożenia równoległego ma dwie szczególne postaci: B} ||| B2 oraz B, || B2.
Pierwsza z nich jest równoważna wyrażeniu B\ |[]| B2, co oznacza, że zbiór wspól­
nych bramek komunikacyjnych jest pusty, czyli procesy reprezentowane przez B\ oraz
B2 nie synchronizują się ze sobą. Druga - jest równoważna B, |[gh ..., g„]| B2, gdzie
{gi, g,,} oznacza zbiór wszystkich bramek, czyli że procesy reprezentowane przez
B| oraz B2 muszą się synchronizować ze sobą podczas każdej komunikacji.

LOTOS - opis języka 93

Wyrażenie dozorowane [c] -> B} reprezentuje takie zachowanie jak B}, pod warun­
kiem, że prawdziwy jest predykat c. Jeżeli predykat c jest fałszywy, znaczeniem całe­
go wyrażenia jest proces pusty.

Wyrażenie let X, = Z|, ..., x„ = t„ in B\ definiuje lokalne wartościowania zmiennych
wykorzystywane w wyrażeniu Bp

Wyrażenie niedeterministycznego wyboru bramki choice g in [gb ..., g„] Bt oznacza
niedeterministyczne zastąpienie bramki g jedną z bramek gi, g„. Zachowanie wy­
rażenia choice g in [gb ..., g„] Bi jest takie, jak wyrażenia Bp w którym bramkę g
zastąpiono dowolną z bramek g,, g„.

Wyrażenie niedeterministycznego wyboru wartości choice x: s [] Bt oznacza przypi­
sanie zmiennej x niedeterministycznie ustalonej wartości rodzaju 5. Zachowanie repre­
zentowane przez to wyrażenie jest takie, jak zachowanie wyrażenia Bp zmodyfikowa­
nego w ten sposób, że zmiennej x jest przypisana pewna wartość rodzaju 5.
Wyrażenie powielenia bramki par g in [gb g„] |[//b ..., h„,]\ Bi oznacza //-krotne
złożenie równoległe powielonego zmodyfikowanego wyrażenia Bp Kolejna modyfi­
kacja wyrażenia Bi polega na zastąpieniu bramki g bramką g„ dla i = 1, n, nato­
miast bramki hp ..., h,„ są parametrami złożenia równoległego.

Wyrażenie p[h{ , ..., hn](tp ..., ?„,) jest instancją procesu o definicji

process p[gb ..., g„] (x,: s,.......x„,:s,„) : exit(sj, ..., s*) := B
endproc

gdzie:
B jest treścią procesu,
hp ..., //„jest listą bramek aktualnych,
tp jest listątermów rodzajów sb ..., s,„.

Zachowanie reprezentowane przez to wyrażenie jest takie jak zachowanie wyrażenia
B, zmodyfikowanego w taki sposób, że nazwy bramek gb ..., g„ zostają zastąpione
nazwami hp ..., h„ a zmiennym X|: sb x,„: s,„ zostająprzypisane wartości tp ..., tm.

5.3. Semantyka operacyjna
Kanoniczna specyfikacja zachowania jest określana jako para BSpec = <po, Proc>,
gdzie p^ jest procesem początkowym, a Proc - zbiorem definicji procesów. Kon­
tekstem specyfikacji zachowań jest specyfikacja typów TSpec.

Semantyka operacyjna specyfikacji jest definiowana w sposób strukturalny na pod­
stawie definicji składniowych wyrażeń behawioralnych. Wynikiem definicji seman­
tyki jest etykietowany system przejść postaci

TS^Spec) = <Beh, Act, Tr, Bn>
gdzie:

Beh jest zbiorem wyrażeń behawioralnych,

(5.13)

94 Rozdział 5

Act = {g v|geGu {J}, yeTerm-rspec (0)} u {z} jest zbiorem interakcji,
Tr = { —2—> | aeAct] jest zbiorem relacji przejść,
Bo jest treścią procesu początkowego p0.

Uwaga: Symbol i oznacza akcję wewnętrzną, natomiast i oznacza zdarzenie realizacji
akcji wewnętrznej.

Zbiór relacji przejść Tr jest definiowany rekursywnie za pomocą następującego ze­
stawu aksjomatów i reguł:

Proces pusty stop - brak aksjomatów.

Prefiksowanie akcją wewnętrzną B = i; Bi

B—'-^B} (A-prehfi

Prefiksowanie akcją komunikacyjną B s g a2 ... Q^[c]; Bi

B—^44—>[% ■-1 x]B (A-prec„mfi
*■ J\ Jm Jm *

wtedy i tylko wtedy, gdy:
v- = [r.], gdy a, sJr.oraz Ą jest termem stałym, dla i = 1,..., n,

v,€ Terms (0)/ =v. , gdy s ?%. ; 5., dla z = 1, ..., n,

Xj jest zmienną taką, że = 1xJ : s^, dla i = 1,..., n,

oraz

D I- c[X: ::-t: ,..., x< ::-t,] L 71 71 ’ 7m 7„, J

Proces zakończenia B = exit(r,, ..., Z„)
B —> stop (A-exit)

wtedy i tylko wtedy, gdy:

v. = [/.], gdy tj jest termem stałym, dla i = 1, ..., n,

v,e Term (0)/ =x., gdy t, = any sh dla i = 1,..., n.

Sekwencyjne złożenie B = B\ » acceptAj : ..., x„: s„ in B2

B a > B'
------------------------------------ !---------------------- name(a) # 5 (R-accept\)
B—‘-^B^» accept : ^,..., : s„ in B2

B__ yB'
------ 7---- 1------------------- 1--------- gdzie] = v,,..., [Z„] = v„ (R-acceptT)
B------ >[%! ..,x„ ■■.= t„]B2

LOTOS - opis języka 95

Wybór B = Bi [] Bz

B—^B'
(R-choicei)

B2—^B2
b—^b2 (R-choicez)

Przesłonięcie B = hide gi, g„in B\

Bi~^B'i J z A ,
' « J gdyname(a)g{g1,...,g„)

B—^By
(R-hidei)

Bi~^B{ , . . .
' i J gdyname(a)e{gi,...,g„}

B——^Bi
(R-hidez)

Złożenie deaktywujące B = B\ [> B2

D « . D/r. D gdyname(a)^5
D z £>2

(R-disi)

B,—^^—>5)'
(R-dis2)B Sv'-Vu >B{

B2—^B2
b-^b2

(R-dis2)

Złożenie równoległe B = B\ |[gh ..., g„]| B2

Bi—^B'. u z x r
(R-pari)...... s.ii^ ^^«.)cls„.

(R-par2)
«^|[S...... S.1IĄ

Bi^^B{

B, B^
(R-par3)

b^b;Hs.....sJ|b;

96 Rozdział 5

Wyrażenie warunkowe B = [c] -> B\

—!—------ y- gdy D I- c (R-cond)
B------ > B}

Lokalne wartościowanie zmiennych B = let X\ = ...,x„ = t„ in Bi

[Xi:-ti,...,xn::^tn]Bi 2BL (Rdet)
B—^B{

Niedeterministyczny wybór bramki B = choice g in [gh ..g„] [] B\

dla i = 1, n (R-gate)
B—^B'

Niedeterministyczny wybór wartości B = choice x : s [] B\

JA db t Term ^ ęR-val)
B—^B{

Powielenie bramki B = par g in [g ।, ..g„] |[/zi, ..h,„]| Bi

lRmae}
B—^Bf

Instancja procesu B = p[gi, ..gn](ti, ..., t,„)

[x, -=tl,...,xlll::=t,l,]Bl[hi ::= g^,..,^ ::= gBf
B—^B{

(R-inst)
gdzie B| jest treścią procesu o specyfikacji

processp[hi, ..., h„](xi : sh x„: sd: ... := B(endproc
Podobnie jak w przypadku języka CCS, specyfikacja w LOTOSie generuje zbiory cią­
gów akcji. Różnica w definicji wynika z różnicy definicji specyfikacji, gdyż w przy­
padku CCS specyfikacja jest rozumiana jako para: wyrażenie behawioralne i zbiór de­
finicji procesów, natomiast w przypadku LOTOSa specyfikacja jest rozumiana jako
para: definicja wyróżnionego procesu i zbiór definicji pozostałych procesów. Ponie­
waż wyróżniony proces początkowy w specyfikacji w LOTOSie może mieć różne
instancje, stąd:

Definicja 5.1
Specyfikacja BSpec = <p0, Proc>, gdzie p0 jest procesem o definicji

processp[hi, ..., hn](xi: s{, xm : 5,,,)) : funp := Bp endproc

LOTOS - opis języka 97

generuje rodzinę zbiorów ciągów akcji:

Seq(p[g}, ...,g„](Zi,

= SeqFin(p[g{, ..., £„1(0, t„,)) U Seqlnf(p[gh ...,g„](t....... , t,„)) (5.14)

gdzie: g\, gn są dowolnymi bramkami, a rb t,„- dowolnymi termami stały­
mi rodzajów s,„.

Podobnie definiuje się rodzinę zbiorów ciągów akcji obserwowalnych:

SeqObs(p[gt, ...,g„](th ...,1,,,))

= SeqObsFin(p[gh g„](th ..., t„,))

U SeqObsInf(p[g\, ...,g„](r,, (5.15)

5.4. Graf tranzycji

Grafy są jedną z często stosowanych form wizualizacji. Stosuje się je także do wizu­
alizacji obliczeń (zachowań) wyrażeń behawioralnych.

Graficzną reprezentacją relacji tranzycji dla wyrażeń behawioralnych są grafy tran­
zycji. Graf tranzycji definiujemy jako etykietowany graf skierowany, którego wierz­
chołki są etykietowane wyrażeniami behawioralnymi, a łuki - interakcjami, w taki
sposób, że łuk pomiędzy wierzchołkami etykietowanymi wyrażeniami B, oraz Bi jest
etykietowany interakcją g ... v„ taką, że B^ —Graf tranzycji dla danego
wyrażenia behawioralnego B jest grafem, którego jeden z wierzchołków, wyróżniony
jako wierzchołek początkowy, jest etykietowany wyrażeniem B, a pozostałe wierz­
chołki są wierzchołkami osiągalnymi z wierzchołka początkowego.

Oczywiście nawet dla prostych wyrażeń behawioralnych grafy tranzycji mogą być
nieskończone. Ilustruje to przykład przedstawiający specyfikację komórki pamięci,
która może pamiętać jedną wartość określonego rodzaju - dla ustalenia uwagi przyj-
miemy, że będzie to rodzaj nat. Na komórce można wykonywać dwie operacje. Ope­
racja wpisania wartości powoduje umieszczenie wskazanej wartości, co przyczynia się
do utraty poprzednio pamiętanej wartości. Operacja odczytu dostarcza wartości pa­
miętanej w komórce bez zmiany jej zawartości:

process Komórka[we, wy] (z : nat): noexit :=
we ? x : nar, Komórka[we, wy](x)

[] wy ! z; Komórka[we, wy] (z)
endproc

Powołanie instancji procesu wymaga określenia początkowej zawartości komórki, na
przykład: Komórka[a, ł>](0).

98 Rozdział 5

Graf tranzycji dla wyrażenia Komórka[a, Z>](0) jest oczywiście nieskończony, przy­
kładowy jego fragment przedstawiono na rysunku 5.1.

Rys. 5.1. Przykładowy graf tranzycji

Powodem nieskończoności grafu jest nieskończony zbiór interakcji, a w konsekwencji
nieskończoność wyrażeń behawioralnych, w naszym przykładzie, instancji tego same­
go procesu Komórka, które różnią się od siebie tylko wartościowaniem lokalnych
zmiennych - parametrów formalnych procesu. W celu wyeliminowania tego rodzaju
różnorodności wyrażeń wprowadzamy pojęcie zredukowanego grafu tranzycji.

Definicja 5.2.
Dwa wyrażenia 5, oraz B2 są strukturalnie równoważne wtedy i tylko wtedy, gdy

[x, ::= *,..., x„ ::= *]£, s [y, ;:= *,.... y,„ ::= *]B2

gdzie: {x(, ..., x„} oraz {yb ..., y,„} są zbiorami zmiennych występujących w wy­
rażeniach Bi oraz B2, * jest wybranym symbolem służącym do tekstowego zastą­
pienia zmiennych, a = jest relacją równoważności tekstowej

Relacja równoważności strukturalnej dla wyrażeń jest oczywiście relacją równoważ­
ności.

Wierzchołkami zredukowanego grafu tranzycji są klasy abstrakcji określone przez
relację strukturalnej równoważności na zbiorze wierzchołków grafu tranzycji. Klasę
równoważności generowaną przez wyrażenie B będziemy oznaczać

Ui ::= *, ...,x„ ::= *]B

Łuki zredukowanego grafu tranzycji są określone następująco: wszystkie łuki w grafie
tranzycji prowadzące od wierzchołka B} do wierzchołka B2, etykietowane interakcjami

LOTOS - opis języka 99

g V| ... v„, są reprezentowane w zredukowanym grafie tranzycji jednym łukiem prowa­
dzącym od wierzchołka reprezentującego klasę abstracji [xi ::= *, ..., x„ ::= *]B, do
wierzchołka reprezentującego klasę abstrakcji [x, ::= *, ..., x„ ::= *]B2, etykietowanym
schematem interakcji postaci g .

ii razy

W przypadku akcji wewnętrznych łuki prowadzące pomiędzy wierzchołkami zredu­
kowanego grafu tranzycji są etykietowane symbolem i.
Wynikiem redukcji grafu tranzycji z rysunku 5.1 jest zredukowany graf tranzycji na
rysunku 5.2a.

Rys. 5.2. Przykładowe zredukowane grafy tranzycji

b)

Kolejny przykład przedstawia bufor jednopozycyjny, który różni się od poprzednio
rozważanej komórki tym, że odczyt wprowadzonej wartości powoduje skasowanie za­
wartości bufora

process Bufl[we, wy] : noexit :=
we? x : naf, wy! x; Buf 1 [we, wy]

endproc

Zredukowany graf tranzycji dla instancji procesu Buf 1 [we, wy] przedstawiono na ry­
sunku 5.2b. Bufora jednopozycyjnego można użyć jako elementu składowego do bu­
dowy dwupozycyjnego bufora przesuwnego:

process Buf2[we, wy] : noexit :=
hide w in

Bufl[we, w] |[w]| Bufl[w, wy]
where

process Bufl[we, wy] : noexit :=
we? x : Naf, wy! x; BufI[we, wy]

endproc
endproc

100 Rozdział 5

Uogólnieniem jest bufor n-pozycyjny, gdzie n >1, o postaci

process Buf [we, wy](n: Nat): noexit :=
[n = 1] -> Buf][we, wy]

[] hide w in [n > 1] -> Bufl[we, w] |[w]| Buf [w, wy](minus(n, succ{z))
where

process Buf] [we, wy] : noexit :=
wel x : Naf, wy! x; Bufl[we, wy]

endproc
endproc

Rys. 5.3. Zredukowany graf tranzycji
dla instancji procesu Buf [we. wyj(3)

Zredukowany graf tranzycji dla instancji procesu Buf [we, wy](3) ma postać pokazaną
na rysunku 5.3, gdzie poszczególnym wierzchołkom odpowiadają następujące wyraże­
nia behawioralne:

LOTOS - opis języka 101

v0 : hide w, w'in Bufl[we, w] |[w]| Bufl[w, w3 |[w3| Bufl[w\ wy]
vl : hide w, w'in w *; Bufl[we, w] |[w]| Bufl[w, w^ |[w3| Bufl[w', wy]
v2 : hide w, w'in Bufl[we, w] |[w]| w' *; Bufl[w, w^ |[w3| Bufl[w', wy]
v3 : hide w, w' in w *; Bufl[we, w] |[w]| w' *; Bufl[w, w3 |[wj| Bufl[w', wy]
v4 : hide w, w'in Bufl[we, w] |[w]| Bufl[w, w3 |[w3| wy *; Bufl[w', wy]
v5 : hide w, w'in w *; Bufl[we, w] |[w]| Bufl[w, w3 |[w3| wy *; Bufl[w', wy]
v6 : hide w, w'in Bufl[we, w] |[w]| w' *; Bufl[w, w3 |[w3| wy *; Bufl[w', wy]
v7 : hide w, w'in Bufl[we, w] |[w]| Bufl[w, wj |[w3| Bufl[w', wy]

Zwróćmy uwagę, że rekursywne zagnieżdżenie operatora przesłonięcia wymaga prze­
mianowania przesłanianych bramek, stąd użycie konstrukcji:

hide w, w'in Bufl[we, w] |[w]| Bufl[w, wj |[w3| Bufl[w', wy]

Kolejny przykład jest interesujący z dwóch względów. Po pierwsze - stos był zdefi­
niowany w poprzednim rozdziale jako typ danych, natomiast tu jest zdefiniowany jako
proces - jest to ilustracja ogólniejszego stwierdzenia, że typ danych może być mode­
lem dowolnego programu sekwencyjnego. Po drugie - przykład pokazuje, że zreduko­
wany graf tranzycji może być nieskończony.

process BStos[pusty, szczyt, ze_stosu, na_stos] : noexit :=
(pusty ! true', exit
[] na_stos 1 x : elem; Stos[pusty, szczyt, ze_stosu, na_stos](x)

) » BStos[pusty, szczyt, ze_stosu, na_stos]
where

process Stos\pusty, szczyt, ze_stosu, na_stos](x : elem) : exit :=
pusty \falsc, Stos[pusty, szczyt, ze_stosu, na_stos](x)

[] szczyt ! x\ Stos[pusty, szczyt, ze_stosu, na_stos](x)
[] ze_stosu: exit
[] na_stos 2 y : elem',

Stos[pusty, szczyt, ze_stosu, na_stos](y)
» Stos[pusty, szczyt, ze_stosu, na_stos](x)

endproc
endproc

Przykład stosu reprezentuje sytuację, kiedy zredukowany graf tranzycji nie jest skoń­
czony (rys. 5.4). W celu skrócenia zapisu wyrażeń behawioralnych na rysunku zamiast
pełnych nazw procesów i bramek użyto tylko ich skrótów.

102 Rozdział 5

Rys. 5.4. Nieskończony zredukowany graf tranzycji

Przyczyną nieskończoności zredukowanego grafu tranzycji jest rekursja, w której
występują operatory złożenia równoległego złożenia aktywującego lub deaktywują-
cego.

Wystarczającymi, ale niekoniecznymi, warunkami skończoności są:

• Jeżeli wyrażenie behawioralne Bt |[...]|B2 jest podwyrażeniem treści procesu p, to
ani B|, ani B2 nie zawierają wywołania procesu p lub wywołań innych procesów,
które pośrednio lub bezpośrednio wywołują proces p.

• Jeżeli wyrażenie behawioralne B, [> B2 lub » B2 jest podwyrażeniem treści
procesu p, to B, nie zawiera wywołania procesu p lub wywołań innych procesów,
które pośrednio lub bezpośrednio wywołują proces p.

5.5. Strukturyzacja specyfikacji

Specyfikacja behawioralna jest zbiorem definicji procesów z wyróżnioną definicją
procesu początkowego. Złożone specyfikacje behawioralne są strukturalizowane.
Przyjęta konwencja strukturalizacji jest odzwierciedleniem podejścia zstępującego
- od ogółu do szczegółu. Znajduje to odzwierciedlenie w następującym szkielecie spe­
cyfikacji:

LOTOS - opis języka 103

specification nazwa_specyfikacji[lista_braniek_formalnych\
(lista-formalnych „parametrów-wartościowych):
funkcjonalność

definicjajtypu

definicja_typu
behavior

wyrażenie-behawioralne
where

definicja_procesu

definicja _procesu
endspec

Nazwą wyróżnionego procesu początkowego jest nazwa_specyfikacji, jego parametra­
mi są lista_bramek_formalnych oraz lista_parametrów_wartościowych, a jego treścią
jest wyrażenie-behawioralne. Dodatkowo specyfikację, podobnie jak każdy proces,
charakteryzuje funkcjonalność, określająca sposób jego kończenia się.

Definicje typów danych, opisane w poprzednim rozdziale, są typami globalnymi spe­
cyfikacji, które mogą być wykorzystywane przez procesy składowe specyfikacji. Typy
mogą być typami standardowymi, pochodzącymi z biblioteki typów. W przypadku
użycia typów standardowych typt,..., typ,, ich deklaracja ma postać:

library typ},..., typ,, endlib

Po słowie kluczowym where występuje lista definicji procesów. Szkieletowa postać
definicji procesów przedstawia się następująco:

process nazwa„procesu \lista_bramek-formalnych]
(lista-formalnych-parametrów-Wartościowych) :

funkcjonalność :=
wyrażenie-behawioralne

where
definicje-lokalne

endproc

Każdy proces może mieć opcjonalnie własne definicje-lokalne, które są definicjami
typów lub procesów wewnętrznych.

Każda specyfikacja strukturalna może zostać przetransformowana do postaci kano­
nicznej. Proces takiej transformacji, nazywany spłaszczaniem specyfikacji, jest przed­

104 Rozdział 5

stawiony w [ISO 8807], Spłaszczanie polega na takiej zamianie nazw bramek i proce­
sów, aby stały się one unikalne w ramach całej specyfikacji, inaczej: chodzi o przenie­
sienie wszystkich definicji lokalnych na jeden poziom globalny. W podobny sposób
można dokonać spłaszczenie typów, to znaczy przeniesienia ich definicji na jeden
globalny poziom. Semantyka dowolnej specyfikacji strukturalnej jest równoważna
semantyce jej transformacji do postaci kanonicznej.

Przykład złożonej specyfikacji opisuje funkcjonowanie automatu sprzedaży biletów
parkingowych. Scenariusz pracy urządzenia jest następujący: Działanie automatu skła­
da się z dwóch faz: płacenia (proces Płacenie) i wydania biletu (proces Wydanie).
W pierwszej fazie użytkownik deklaruje wartość biletu, który chce uzyskać, wprowa­
dzając odpowiednią wartość przez bramkę kwota (akcja kwotalk : nat). Pomijamy tu
szczegóły wpisywania wprowadzonej wartości. Następnie następuje płacenie, które
polega na wrzucaniu kolejnych monet, aż do momentu, gdy ich wartość osiągnie przy­
najmniej zadeklarowaną wartość biletu (akcja monetalm -.nat). Przed osiągnięciem
tego momentu użytkownik może się wycofać z transakcji przez interakcję na bramce
wycofaj (akcja wycofaj, której nie towarzyszy wymiana danych), po czym następuje
przejście do drugiej fazy - do zwrotu wprowadzonej wartości (akcja reszta\r). Jeżeli
użytkownik nie wycofa się i wpłaci pełną kwotę, także następuje przejście do drugiej
fazy - wydania biletu i ewentualnej reszty.

specification Parkomat[kwota, moneta, wycofaj, reszta, bilet, wyłącz] : noexit

Płacenie [kwota, moneta, wycofaj]
Wydanie[bilet, reszta]
Parkomat[kwota, moneta, wycofaj, reszta, bilet, wyłącz]

) [> (i; stop [] wyłącz', stop)
where

process Płacenie [kwota, moneta, wycofaj] : exit(nat) :=
kwota 1 k : nat\
Pobierz[nioneta, wycofaj](k, 0)

where
process Pobierz[moneta, wycofaj](k : nat, s : nat) : exit(nat, nat) :=

([5 < k] -> moneta ? ni :naf, Pobierz[moneta, wycofaj](k, s + m)
[] [s = k)] -> exit(^, 0)
[] [nor(s < k)] -> exit(&, s-k)
[] wycofaj', exit(0, 5)

endproc(*Pobierz*)
endproc(* Płacenie*)
process Wydanie[bilet, reszta]: exit :=

behavior

LOTOS - opis języka 105

let k : nat, s : nat in
[k > O and r > 0] -> bilet! k: reszta ! r; exit

[] [£ > O and r = 0] -> bilet ! k; exit
[] [k = O and r > 0] -> reszta! r, exit

endproc (*Wydanie*)
endspec (*Parkomat*)

Przedstawiony model uwzględnia dodatkowo możliwość przerwania pracy parkomatu
albo przez wyłączenie - akcja wyłącz, albo z powodu awarii - akcja wewnętrzna i.
Kolejny przykład jest specyfikacją systemu sortującego. Działanie tego systemu opie­
ra się na algorytmie sortowania przez wtłaczanie. Koncepcja algorytmu jest następują­
ca: Niech

c» = <a\, ..., a„>

będzie nieposortowanym ciągiem elementów - dalej zakładamy, że są to liczby natu­
ralne, reprezentowane typem standardowym NaturalNumber. Ciąg c() będziemy prze­
kształcać kolejno w ciągi cą, ..., c„. Ciąg ck, dla k = 1, ..., n, stanowi posortowany ciąg
początkowych k elementów, czyli at...... ak, ciągu c(). Ciąg c„ będzie zatem posorto­
wanym ciągiem wszystkich elementów ciągu c0. Przekształcanie ciągów cą, ..., c„ od­
bywa się według następujących zasad:

• Ciąg ci =def<ai>.
• Jeżeli utworzono ciąg ck = <a ,...,a- >, gdzie zj, ..., zj jest permutacją 1, k,

to bierze się element ak+i z ciągu c0 i następnie, przeglądając ciąg ck od pozycji
pierwszej do ostatniej, znajduje się w nim taką pozycję m, że

Gm -I A + l 'm
i ciąg q+i wyznacza się jako

c,. = <a,■ ,..., a, ,a,..,a, ,...,a, > A + l '| 'm-l ’ *+!’ lk

System sortujący opisywany w LOTOSie działa w taki sposób, że przez jedną ze
swych bramek wczytuje się kolejne liczby nieposortowanego ciągu, a następnie -
przez drugą bramkę - wyprowadza się ciąg posortowany. Parametrem specyfikacji jest
liczba określająca długość sortowanego ciągu

specification Sortowanie[we, wy] (z?: Nat) : noexit
library Boolean, NaturalNumber endlib

behavior
Wtłaczanie[we, wv](zz, 0)

where
process Wtłaczani e[we, wy](z : Nat,j : Nat) : noexit:=

106 Rozdział 5

[Shcc(O) It z] -> hide p in
Bufl[we, p](i,j) |[p]| Wtłaczame[p, wy](Pred(i), Succ(j))

[] [Swcc(0) eq z] -> Bufl[we, wy](i,j)
endproc
where

process Bufl [we, wy] (z: Nat,j : Nat): noexit :=
(* Komentarz: instancja procesu odpowiada ustalonej pozycji w sortowanym

ciągu i służy do wprowadzenia pierwszego elementu na tę pozycję. Para­
metr i oznacza numer pozycji liczonej od lewej do prawej strony (rys. 5.5);
parametr j jest dopełnieniem i do liczby n, będącej długością sortowanego
ciągu. *)

we ? x:Nat; Buf2[we, wy](x, Pred(i),j)
endproc
where

process Buf2[we, wy](a: Nat, i: Nat, j : Nat) : noexit :=
(* instancja procesu służy do porównywania elementu wczytanego od

lewego sąsiada - instancji procesu Bufl - z elementem zapamięta­
nym i przesłania większego z nich do sąsiada po prawej stronie
(rys. 5.5) *)

[0 It z] -> we ? x : Nat;
([x le a] -> wy\a ; Buf2[we, wy](x, Pred(i),j)
[] [a le x] -> wy!x ; Buf2[we, wy](a, Prędki), j)

[] [z eq 0] -> Buf3[we, wy](a,j)
endproc
where

process Buf3[we, wy] (a: Nat ,j : Nat): noexit :=
(* instancja procesu służy do wyprowadzania elementów posor­

towanego ciągu do sąsiada po prawej stronie (rys. 5.5) *)
[0 It j] -> wy ! a ; we!x:Nat; Buf3[we, wy](x, Pred(j))

[] [j eq 0] -> wy\a ; stop
endproc

endproc
endproc

endproc
endspec

Na rysunku 5.5 przedstawiono strukturę systemu sortującego wyrażoną przez powią­
zanie instancji procesów Bufl. Warto zwrócić uwagę na to, że w przedstawionej po­
staci system daje możliwość równoległego wykonywania wielu operacji porównują­
cych - wynika to z równoległego złożenia instancji procesów.

LOTOS - opis języka 107

Rys. 5.5. Struktura systemu sortującego

5.6. Uwagi końcowe

W tym rozdziale przedstawiono, w sposób tylko częściowo sformalizowany, opis
składni i semantyki języka LOTOS. Pełny opis zawiera dokument standaryzacyjny
[ISO 8870]. Wcześniejsza jego wersja jest zawarta w opracowaniach: [Brinksma
1988], [Bolognesi, Brinksma 1989]. Dokładny opis projektu, w ramach którego pro­
wadzono prace nad LOTOSem, przedstawia książka [van Eijk, Vissers, Diaz 1989].

Przykłady ilustrujące zostały zaczerpnięte między innymi z prac [Huzar, Kuźniarz
1990a, 1990b, 1990c],

Język LOTOS był punktem odniesienia do definiowania innych języków specyfikacji
formalnych. Przykładem próby definiowania języka ukierunkowanego na specyfikację
systemów rozproszonych zgodnych ze standardami [ISO/IEC 10746-2, 1995], [1SO/IEC
10746-3, 1995] jest rozprawa doktorska [Hnatkowska 1998]. Zdefiniowany język
O-LOTOS ma wprawdzie taką samą siłę ekspresji jak LOTOS (abstrakcyjna imple­
mentacja jest zdefiniowana jako transformacja języka O-LOTOS na język LOTOS),
ale umożliwia zwiększenie efektywności fazy analizy wytwarzania oprogramowania,
a uzyskana specyfikacja może być wykorzystana podczas projektowania interfejsu
użytkowego.

LOTOS był również stosowany do definiowania semantyki innych języków. Przykła­
dem jest praca [Hnatkowska, Huzar 2001], przedstawiająca semantykę diagramów
stanów języka UML [UML 1.3, 1999] w postaci wyrażeń behawioralnych LOTOSa.

Zastosowaniom LOTOSa towarzyszył rozwój metodyk i narzędzi programistycznych.
Głównymi europejskimi ośrodkami uczestniczącymi w tego rodzaju przedsięwzię­
ciach były uniwersytety w Madrycie i Liege, a przede wszystkim INRIA Rhóne-Alpes
(Institut National de Recherche en Informatiąue et en Automatięue) - instytut, w któ­
rym opracowano najbogatsze środowisko (zob. rozdz. 7.) wspomagające specyfiko-

108 Rozdział 5

wanie i badanie własności specyfikacji w LOTOSie. Poza Europą ośrodkiem zajmują­
cym się LOTOSem jest uniwersytet w Ottawie. Informacje o różnych ośrodkach zwią­
zanych z LOTOSem można uzyskać między innymi na stronach internetowych:

http://www.inrialpes.fr/vasy/elotos/
http://www-run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotos
http://www.cs.stir.ac.uk/~kjt/research/well/

Podobnie jak każdy język, LOTOS ulegał ewolucji. Głównymi przyczynami ewolucji
były krytyka stosowanego podejścia do typów danych (skomentowana w zakończeniu
poprzedniego rozdziału) oraz potrzeba specyfikowania ograniczeń czasowych. Od
1997 roku prowadzono prace, które w 2001 roku zakończyły się ustanowieniem no­
wego standardu E-LOTOS [ISO/IEC 15437:2001],

http://www.inrialpes.fr/vasy/elotos/
http://www-run.montefiore.ulg.ac.be/Research/Topics/index.php?topic=Lotoshttp://www.cs.stir.ac.uk/%7Ekjt/research/well/

109

6. Specyfikacja usług i protokołów sieciowych

6.1. Elementy modelu referencyjnego ISO/OSI

Głównym obszarem zastosowań języka LOTOS, opracowanego w ramach ISO [ISO
8807] jako jedna z formalnych technik opisu standardów sieciowych, jest specyfikacja
usług i protokołów.

Sieć komputerowa jest systemem. Powiązania pomiędzy elementami systemu tworzą
jego strukturę. Z systemem jest związany cel funkcjonowania, z tego względu system
jest niepodzielną całością. Oznacza to, że każdy, dowolnie wyodrębniony podzbiór
elementów ma wpływ na funkcjonowanie systemu, ale żaden z podzbiorów nie ma
wyłącznego wpływu, czyli usunięcie dowolnego elementu nie pozwala pozostałym
elementom na pełną realizację celu systemu. Elementami składowymi złożonych sys­
temów mogą być inne systemy - jego podsystemy.

Struktura sieci komputerowej jest wyznaczona przez zbiór komputerów połączonych
ze sobą łączami komunikacyjnymi. Składowe komputery, ze względu na ich wewnę­
trzną złożoność, określa się również jako systemy - podsystemy sieci komputerowej.
Celem funkcjonowania sieci komputerowej jest umożliwienie użytkownikom dostępu
do usług informacyjnych i obliczeniowych, oferowanych przez współpracujące syste­
my komputerowe.

Możliwość właściwego funkcjonowania sieci komputerowej zapewnia zbiór standar­
dów określających zasady, które powinny być akceptowane przez wszystkie współpra­
cujące systemy komputerowe. Podstawowym odniesieniem dla wszystkich tworzo­
nych standardów jest model referencyjny ISO/OSI (Open Systems Interconnection)
[ISO 7498], nazywany też modelem architektury otwartych systemów komputero­
wych. Otwartość jest tu rozumiana jako gotowość do współpracy systemu kompute­
rowego z każdym innym systemem, który spełnia określone wymagania. Istota mo­
delu referencyjnego ISO/OSI polega na przyjęciu standardowej dekompozycji funkcji
systemów otwartych. Poniżej omówiono krótko model ISO/OSI, gdyż przyjęte tu
ogólne zasady są akceptowane także przez inne modele [Comer 1997].

Dekompozycja funkcji polega na wprowadzeniu liniowo uporządkowanego zestawu
warstw funkcjonalnych (usługowych) systemów otwartych. Model OSI wyróżnia siedem
takich warstw, nazywanych - poczynając od najniższej do najwyższej - warstwą: fi­
zyczną, liniową, sieciową, transportową, sesyjną prezentacyjną! aplikacyjną (rys. 6.1).

Warstwy pozostająze sobą w relacji usługodawca-usługobiorca. Warstwa wyższa jest
usługobiorcą usług sąsiadującej warstwy niższej - usługodawczej. Warstwa najniższa
nie korzysta już z usług innej warstwy, a warstwa najwyższa dostarcza swych usług
użytkownikom, którzy stanowią element otoczenia systemu.

110 Rozdział 6

Usługi i funkcje wykonywane w obrębie poszczególnych warstw szczegółowo zostały
omówione między innymi w pracach [Bilski, Dubielewicz 1991, 1993].

Usługi danej warstwy są definiowane przez zbiór poleceń usługowych, za pomocą
których warstwa wyższa komunikuje się z warstwą niższą. Polecenia są abstrakcyjne
w tym sensie, że nie określają one sposobu implementacji, są tylko specyfikacjami
pewnych funkcjonalności (usług).

Warstwę reprezentuje zbiór stacji partnerskich (peer entities). Stacje te, realizując
usługi żądane od warstwy wyższej, współpracują ze sobą poprzez wymianą danych.
Wymiany tej nie dokonują bezpośrednio, lecz za pośrednictwem obiektów partner­
skich w niższych warstwach (rys. 6.1).

Otwarty
system

komputerowy

7-podsystem7-stacja 7-stacja

Otwarty
system

komputerowy

5-stacja5-stacja

-

4-stacja .

3-stacja

4-stacja

3-stacja

4-warstwa

2-stacja

ZEZ
1-stacja

2-stacja

1-stacja

2-podsystem

1-podsystem I

W

Medium transmisyjne

Rys. 6.1. Architektura warstwowa modelu ISO/OSI

Zasady współpracy stacji partnerskich określa się mianem protokołu danej warstwy.
Protokół można uważać za abstrakcyjną implementację usługi danej warstwy.

Specyfikacja usług i protokołów sieciowych 111

Zbiór n dolnych warstw, dla n = 1, 7, stanowi n-podsystem sieci komputerowej.
Stwierdzenie, że stacja z warstwy n+1 korzysta z usług warstwy n, oznacza w istocie,
że stacja korzysta z usług n-podsystemu. Realizacja polecenia skierowanego przez sta­
cję z danej warstwy może pociągać zaangażowanie stacji w warstwach niższych, za­
równo po stronie systemu otwartego, z którego zostało skierowane polecenie, jak i po
stronie systemu otwartego, z którym współpracuje dana stacja.

Strukturę powiązań pomiędzy stacjami danego systemu otwartego zilustrowano na
rysunku 6.2.

Rys. 6.2. Powiązania stacji
w sąsiednich warstwach

Dany system otwarty może w danej warstwie mieć wiele stacji partnerskich. Należące
do jednej warstwy stacje mogą współpracować ze sobą. Zasadniczy schemat współ­
pracy polega na tym, że stacje ustalają ze sobą połączenie na pewien okres, w trakcie
którego mogą wymieniać pomiędzy sobą ustalone dane. W połączeniu najczęściej
uczestniczą dwaj partnerzy, z których jeden jest inicjatorem, a drugi respondentem
połączenia, ale możliwe są także połączenia z udziałem wielu partnerów. Każde po­
łączenie ma swój identyfikator. W trakcie trwania połączenia wyróżnia się trzy fazy:
faza nawiązania połączenia, podczas której ustala się warunki współpracy, fazę za­
sadniczą, w której prowadzi się wymianę danych i fazę rozłączenia, kiedy stacje po­
twierdzają zakończenie współpracy. Połączenie jest identyfikowane przez zbiór iden­
tyfikatorów końców połączeń CEP (Connection End Point Identifier). Współpraca
stacji może się też odbywać bez ustanawiania połączeń i polega na przesyłaniu bez
zapowiedzi danych od danej stacji do innej o wskazanym adresie.

Stacje partnerskie danej warstwy nie komunikują się bezpośrednio, lecz za pośred­
nictwem stacji warstw niższych. Stacje sąsiadujących warstw, w tym samym systemie
otwartym, są ze sobą powiązane za pośrednictwem punktów dostępu do usług SAP
(Service Access Point). Identyfikator danego punktu dostępu do usług n warstwy na­
zywa się n-adresem. Punkt dostępu jest związany dokładnie z jedną n-stacją i może

112 Rozdział 6

□ Końcowy punkt połączenia (CEP)

być związany z wieloma (n+l)-stacjami. Oznacza
to, że pojedynczy punkt dostępu do usługi może
służyć do jednoczesnego przekazywania wielu
strumieni poleceń, a pojedyncza (zz)-stacja może
być zaangażowana w jednoczesne prowadzenie
komunikacji pomiędzy wieloma (/z+l)-stacjami,
czyli utrzymywanie (n)-połączeń (zob. rys. 6.3).

Rys. 6.3. Końcowe punkty połączeń
dla (n+l)-stacji w punkcie dostępu do usługi

(/i+l)-stacja kieruje polecenia żądania do (zz)-stacji przez wybrany punkt dostępu do
usługi. Polecenia mają nazwę i ewentualne parametry, (n)-stacja przyjmuje polecenia
żądania i, po ich zrealizowaniu, przekazuje poleceniem zwrotnym informację o wyko­
naniu lub niewykonaniu polecenia żądania.

Opis usług (n)-warstwy polega więc - jak określono to wyżej - na zestawieniu pole­
ceń żądań i poleceń zwrotnych, jakie mogą być wymieniane pomiędzy (/t+l)-stacją
a (n)-stacją, oraz na podaniu dopuszczalnych ciągów wymiany tych poleceń.

Określenie protokołu (n)-warstwy - jako abstrakcyjnej implementacji usług - wy­
maga, w pierwszej kolejności, określenia świadczonych usług, czyli (n)-usług oraz
wykorzystywanych usług, czyli (n-l)-usług. Następnie wymaga definicji komuni­
katów protokołowych (PDU - Protocol Data Unit), czyli danych, które wymieniają
pomiędzy sobą stacje (zz)-warstwy, oraz reguł transformacji tych komunikatów na
polecenia usługowe do warstwy niższej. Wymaga wreszcie określenia dopuszczal­
nych ciągów wymian komunikatów protokołowych oraz akcji wykonywanych przez
(n)-stacje.

(n+1)-stacje wymieniają pomiędzy sobą komunikaty protokołu (n)-warstwy, dalej
w skrócie oznaczane jako (n+l)-PDU. Komunikaty te są wymieniane za pośrednic­
twem (zz)-stacji, do której (n+l)-stacja kieruje polecenia w postaci ustalonej przez
interfejs pomiędzy stacjami. Komunikaty interfejsu - (zz)-IDU {Interface Data Unit)
- składają się z części sterującej - (/z)-ICI (Interface Control Information) oraz
części usługowej - (n)-SDU (Service Data Unit), którą jest jednostka protokołowa
(/z+l)-PDU (zob. rys. 6.4). Komunikat interfejsu odebrany przez (zz)-stację jest da­
lej przekształcany, co polega - w pierwszej kolejności - na wyodrębnieniu części
sterującej i serwisowej, a następnie na przygotowaniu komunikatu protokołu
(n)-PDU. Komunikat (zz)-PDU przenosi, jako swoją część, komunikat (>/+l)-PDU
oraz informację sterującą protokołu (n)-warstwy - (zz)-PCI {Protocol Control In­
formation).

Specyfikacja usług i protokołów sieciowych 113

Rys. 6.4. Odwzorowanie jednostek danych
pomiędzy dwiema sąsiednimi warstwami

6.2. Reprezentacja modelu referencyjnego

Specyfikacje usług i protokołów sieciowych w LOTOSie mają pewne wspólne włas­
ności. W tym podrozdziale przedstawiono nieformalnie tylko uproszczone zasady repre­
zentacji elementów statycznych i dynamicznych modelu ISO/OSI w języku LOTOS.

Granice pomiędzy warstwami modelu OSI są w LOTOSie reprezentowane przez po­
jedynczą bramkę. Przyjęto następującą konwencję symboli bramek reprezentujących
poszczególne warstwy:

• warstwa fizyczna - ph
• warstwa liniowa - dl
• warstwa sieciowa - n
• warstwa transportowa -1
• warstwa sesyjna - s
• warstwa prezentacyjna - p
• warstwa aplikacyjna - a

Wszystkie akcje komunikacyjne z udziałem punktu dostępu do usługi (/i)-SAP, o iden­
tyfikatorze adres rodzaju IdentyfikatorSAP, są odwzorowywane w klasę akcji języka
LOTOS o postaci:

n\adres ...
lub

nladr: IdentyfikatorSAP...

114 Rozdział 6

Rodzaj Identyfikator powinien być elementem abstrakcyjnego typu danych gwarantu­
jącego co najmniej rozróżnialność adresów. Na przykład definicja odpowiedniego
typu może mieć postać

type Identifier is Boolean
sorts IdentifierSAP
opns someAddress : -> IdentifierSAP

anotherAddress : IdentifierSAP -> IdentifierSAP
eq, _ne_ : IdentifierSAP , IdentifierSAP -> Bool

eqns forall x, y : IdentifierSAP ofsort Bool
x eqy = true ;
someAddress eq anotherAddress(x) =false ;
anotherAddress(x) eq someAddress- false ;
anotherAddress(x) eq anotherAddress(y) = x eq y ;
x ne y = not(x eq y) ;

endtype
Podana specyfikacja wskazuje tylko istotne własności, które powinien mieć typ. Mia­
nowicie operacja zeroargumentowa someAddress wyznacza pewien ustalony iden­
tyfikator, a operacja jednoargumentowa anotherAddress jest generatorem nowych,
unikatowych identyfikatorów.

Końcowy punkt połączenia (n)-CEP, o identyfikatorze połączenie rodzaju Identyfika-
torCEP, związany z powyższym punktem dostępu, a dokładniej wszystkie akcje
z udziałem tego punktu, są odwzorowywane w klasę akcji

n\adres\idCEP...
lub

nladr: IdentyfikatorSAPlid : IdentyfikatorCEP...

Do rodzaju IdentyfikatorCEP odnoszą się takie same postulaty jak do rodzaju Identyfi-
katorSAP.

Polecenia usługowe odwzorowuje się w akcje postaci

n! adres! idCEP lpolec(...)
lub

nladr : IdentyfikatorSAPlid : IdentyfikatorCEPlpolec : ServicePrimitive

gdzie poleci...) jest termem rodzaju ServicePriniitive. Polecenia usługowe są różne dla
stacji różnych warstw. W celu wyjaśnienia rozumienia termów reprezentujących pole­
cenia rozpatrzmy przykład podzbioru poleceń usługowych, które służą do nawiązywa­
nia połączenia pomiędzy stacjami warstwy sesji. Specyfikacja odpowiedniego typu ma
postać

Specyfikacja usluy i protokołów sieciowych 115

type SessionServiceConnectionPrimitive is
SessionAddress, SessionReqms, SessionData

sorts SSCP
opns SCONreą, SCONind, SCONcnf, SCONrsp :

SAddress, SData, SReqms -> SSCP
SCadr : SSCP -> SAddress
SCdata : SSCP -> SData
SCreqms : SSCP -> SRqms

eqns forall adr : SAddress, data : SData, reqni: SReqms
ofsort SAddress
SCadr(SCONreq{adr, data, reqms}) = adr ;
SCadr(SCONind(adr, data, reqms)) = adr ;
SCadrjSCONcufiadr, data, reqms)) = adr ;
SCadr(SCONrsp(adr, data, reqms)) = adr ;
ofsort SData
SCdata(SCONreq(adr, data, reqms)) = data ;
SCdatajSCONindjadr, data, reqms)) = data ;
SCdatajSCONcnfiadr, data, reqms)) = data ;
SCdata(SCONrsp(adr, data, reqms)) = data ;
ofsort SReqms
SCreqtns(SCONreq(adr, data, reqms)) = reqms ;
SCreqtnsjSCONind(adr, data, reqms)) = reqms ;
SCreqms(SCONcnf(adr, data, reqms)j = reqms ;
SCreqms{SCONrsp(adr, data, reqms)) = reqms ;

endtype

Przedstawiony typ abstrakcyjny SessionServiceConnectionPrimitive wraz z pozosta­
łymi typami, których jest rozszerzeniem, pochodzą ze standardu ISO dotyczącego
warstwy sesji. Typy SessionAddress, SessionReqms, SessionData, które nie są tu defi­
niowane, służą do zdefiniowania parametrów poleceń usługowych SCONreq, SCO-
Nind, SCONcnf, SCONrsp. Typy te reprezentują odpowiednio adresy końców ustana­
wianych połączeń sesyjnych, danych wymienianych podczas połączenia sesyjnego
oraz danych sterujących do ustanawiania parametrów połączenia sesyjnego. Wpro­
wadzone operacje służą tylko do selekcji elementów poleceń usługowych.

Usługi (n)-warstwy przedstawia się, podając opis funkcjonowania (n)-stacji. (/j)-stacja
- pośrednicząc pomiędzy (n+1)-warstwą a (n-l)-warstwą- przekształca (n)-polecenia
usługowe na (n-l)-polecenia usługowe. Specyfikację zachowania (n)-stacji przedsta­
wia się w LOTOSie jako proces, który powinien spełniać trzy rodzaje ograniczeń:

116 Rozdział 6

• ograniczenie dopuszczalnych sekwencji wymian poleceń usługowych pomiędzy
(n)-stacjąa (n+l)-warstwą- G-ograniczenie,

• ograniczenie dopuszczalnych sekwencji wymian poleceń usługowych pomiędzy
(n)-stacją a (n-1)-warstwą- D-ograniczenie,

• ograniczenie dopuszczalnych sekwencji wymian poleceń usługowych pomiędzy
(/?+l)-warstwą i (n-1)-warstwą- GD-ograniczenie.

Zakładając, że każde z wymienionych ograniczeń jest reprezentowane odpowiednim
wyrażeniem behawioralnym, strukturę całego procesu można przedstawić w uprosz­
czonej postaci

process (n)-stacja[g, d\
(GldSAP : GIdentyfikatorSAP, DldSAP : DldentyfikatorSAP):
noexit :=

G-ograniczenia[g](GIdSAP : GIdentyfikatorSAP)

IWI
GD-ograniczenia[g, d](GIdSAP : GIdentyfikatorSAP,

DldSAP : DldentyfikatorSAP)

G-ograniczenia[d\(DIdSAP: DldentyfikatorSAP)
endproc

gdzie: g, d są nazwami bramek, a GIdentyfikatorSAP oraz DldentyfikatorSAP są ro­
dzajami reprezentującymi zbiór identyfikatorów punktów dostępu do usługi odpo­
wiednio warstwy n oraz n-1.

W uproszczeniu usługi (n)-warstwy reprezentuje instancja procesu o podanej wyżej
definicji z dowolnym wyborem parametrów aktualnych. Możemy usługi te wyrazić
w postaci definicji nowego procesu

process (n)-usługi[g\ : noexit :=
hide d in
choice GldSAP : GIdentyfikatorSAP []

choice DldSAP : DldentyfikatorSAP [] (n)-stacja[g, d](GIdSAP, DidSAP)
endproc

Uproszczenie przedstawionego schematu stacji wiąże się z pozostaniem <7 jako bramki
wewnętrznej, podczas gdy w standardowej postaci bramki takiej się nie używa. Od­
powiedni przykład przedstawiono w następnym podrozdziale.

Protokół (n)-warstwy reprezentuje w LOTOSie wyrażenie, które jest złożeniem rów­
noległym procesów reprezentujących przynajmniej dwie (n)-stacje oraz wyrażenia
reprezentującego (n-l)-usługi. Uproszczony schemat takiego wyrażenia ma postać

Specyfikacja usług i protokołów sieciowych 117

process (n)-protokół[g] : noexit :=
hide d in

((n)-stacja[g, d](GId\SAP, Did^SAP}

101
(n)-stacja[g, d](GidzSAP, Did^SAP)

)
|M|

(n-l)-usługi[d]
endproc

6.3. Przykłady specyfikacji

Podano dwa przykłady, które stanowią opis prostych usług komunikacyjnych, przy
czym pierwszy ma charakter wprowadzający, a drugi nawiązuje do istniejącego stan­
dardu opisu usług warstwy transportowej.

Przykład 1

Opisujemy warstwę świadczącą usługi niezawodnej komunikacji, która opiera się na
usługach warstwy dostarczającej zawodnych usług komunikacyjnych (zob. rys. 6.5).

Rys. 6.5. Architektura systemu transferu

Zakłada się, że w danej chwili pomiędzy użytkownikami może być prowadzona tylko
jedna komunikacja.

118 Rozdział 6

Specyfikacja usług świadczonych przez warstwę wyższą WW

Warstwa ma za zadanie przesyłanie komunikatów, wysyłanych pomiędzy dwoma
użytkownikami, nazywanymi Użytkownik-A oraz Użytkownik-B.

Dostęp do warstwy odbywa się przez przekazywanie poleceń usługowych na bramce
unzt (usługi niezawodnego transferu). Specyfikacja typu określającego polecenia usłu­
gowe jest następująca:

type PoleceniaWW is DaneWW, Boolean
sorts PolWW
opns weWW, wyWW : DaneWW -> PolWW

zawartośćWW: PolWW -> DaneWW
jestWeWW: PolWW -> Bool
jestWyWW: PolWW -> Bool

eqns forall dane : DaneWW
ofsort DaneWW
zawartośćWW(weWW(dane)) = dane',
zawartośćWW(wyWW(dane)) = dane',
ofsort Bool
jestWeWW(weWW[daneWW)) = truć,
jestWeWW(wyWW(daneWW)) =false;
jestWy WW(wy WW(daneWW)) = truć,
jestWy WW(weWW(daneWW)) =false\

endtype

gdzie DaneWW jest nazwą rodzaju i niezdefiniowanego tu typu określającego dane
przesyłane w warstwie WW.

Operacja weWW służy do przekazania danych do przesłania, a wyWW - do odebrania
przesłanych danych. Operacje jestWeWW oraz jestWyWW służą do rozpoznawania,
czy dane polecenie usługowe jest operacją weWW czy wyWW.

Akcje wykonywane na tej bramce mogą mieć jedną z postaci:

unzt UdSAP \idCEP \polWW
unzt \idSAP \idCEP Ipol: PolWW [jestWeWW]
unzt \idSAP \idCEP Ipol: PolWW [jestWyWW]

gdzie:

idSAP jest identyfikatorem punktu dostępu do usług warstwy WW, rodzaju WWI-
dentSAP,

idCEP jest identyfikatorem połączenia w warstwie WW, rodzaju WWIdentCEP,

Specyfikacja usług i protokołów sieciowych 119

polWW jest poleceniem usługowym (termem generowanym w ramach typu Polece-
niaWW),

[jestWeWW] oraz [/esrWyWW] są opcjonalnymi warunkami ograniczającymi inter­
akcje zachodzące na bramce uznt.

Świadczone usługi można wyspecyfikować za pomocą procesu

process UslugiNiezawTran[unzt]{idA : WWIdentSAP, idB : WWIdentSAP,
idAB : WWIdentCEP) : noexit :=

unzt! idA! idABlwefkom WW);
unzt! idB! idABlwyfkom WWj;
UsługiNiezawTran[unzt](idA, idB, idAB)

endproc

Usługi warstwy wyższej polegają na niezawodnym transferze pomiędzy dwoma jej
użytkownikami, mającymi dostęp do wskazanych punktów dostępu do usługi o iden­
tyfikatorach idA oraz idB, w ramach ustanowionego połączenia o identyfikatorze
idAB. Pierwszy identyfikator idA wskazuje na użytkownika, który w transferze pełni
rolę nadawcy, a drugi idB wskazuje na odbiorcę.

Specyfikacja wykorzystywanych usług warstwy niższej WN

Warstwa niższa dostarcza usług zawodnego transferu. Tak samo jak poprzednio, wy­
różnia się komunikaty normalne i puste. Przesyłanie komunikatów za pomocą zawod­
nego medium może gubić normalne komunikaty, ale nie może ich powielać ani prze­
kłamywać. Przesyłanie komunikatów pustych jest natomiast niezawodne. Warstwa
niższa WN komunikuje się z warstwą wyższą WW przez bramkę uzt.

Dostęp do warstwy odbywa się przez przekazywanie poleceń usługowych na bramce
uzt (usługi zawodnego transferu). Specyfikacja typu określającego polecenia usługowe
jest następująca:

type PoleceniaWN is DaneWN, DaneWW
sorts PolWN
opns pusty : -> DaneWW

poprawny, zgubiony : -> DaneWN
weWN, wyWN : DaneWW -> PolWN
potwierdzenie : DaneWN -> PolWN
zawartośćWN : PolWN -> DaneWN

eqns forall daneWN : DaneWN, daneWW : DaneWW
ofsort DaneWN
zawartośćWN(potwierdzeniefdaneWN)) = daneWN;
zawartośćWNlpotwierdzeniefdaneWN)) = daneWN;

120 Rozdział 6

ofsort jDaneWW
zawartośćWN(weWN{daneWW)) = daneWW',
zawartośćWN(wyWN(daneWW)) - daneWW',
ofsort Bool
jestWeWN(weWN(daneWW)) = true\
jestWeWN(wyWN(daneWW)) -false;
jestWyWN(wyWNidaneWW)) - true',
JestWyWN(weWN(daneWW)) =false',

endtype

Stała pusty służy do modelowania zgubionego komunikatu. Stałe poprawny i zgubiony
są wartościami służącymi do potwierdzania, czy komunikaty zostały przesłane popraw­
nie, czy też zostały zgubione. Operacje weWN i wyWN mają znaczenie takie jak weWW
i wyWW, z tym że odnoszą się do punktów dostępu do usług do warstwy niższej. Analo­
giczna uwaga odnosi się do operacji zawartośćWN oraz jestWeWN i jestWyWN.

Akcje wykonywane na bramce uzt mogą mieć postać analogiczną do akcji wykonywa­
nych na bramce unzt.

Usługi zawodnego transferu można wyspecyfikować za pomocą procesu

process UslugiZawTrans[uzt](idA : WNIdentSAP, idB : WNIdentSAP,
idAB'. IdentCEP)

: noexit :=
uzt '.idA '.poi 7pol ;PolWN [jestWeWN(pol)]',

(i; uzt 'idB \poł \wyWN(zawartość(pol))',
UsługiZawTrans[uzt](idA, idB, idAB)

[] i; uzt'.idB'.pol'.wyWN(pusty)',
UsługiZawTrans[uzt](idA, idB, idAB)

)
[] uzt '.idA '.pot '.weWN(pusty)',

uzt '.idB '.poi '.wyWN(pusty)-,
UsługiZawTrans[uzt](idA, idB, idAB)

[] uzt'. IdB '.pot 7poi .PolWN \jestWeWN(pol)]\
(i; uzt '.idA '.pot'. wyWN(zawartość(pol))\

UsługiZawTrans[uzt](idA, idB, idAB)
[] i; uzt '.idA '.pot \wyWN(pusty)',

UsługiZawTrans[uzt](idA, idB, idAB)
)

[] uzt'.idB'.poł\weWN(pusty)\

Specyfikacja usług i protokołów sieciowych 121

uzt! id A '.poi'. wy WN(pusty);
UsługiZawTrans[uzt](idA, idB, idAB)

endproc

Zawodność transferu jest modelowana za pomocą akcji wewnętrznych i prefiksują-
cych składowe behawioralnego wyrażenia wyboru.

Specyfikacja protokołu

Zadaniem protokołu jest zapewnienie niezawodnej transmisji komunikatu od nadawcy
do odbiorcy.

Zdefiniowanie stacji WW wymaga określenia dwóch procesów pomocniczych. Okreś­
lają one dwie role, jakie może pełnić stacja podczas świadczenia usługi transferu da­
nych - może to być rola nadawcy albo rola odbiorcy

process Nadajnik[unzt, uzt](idA : WWIdentSAP, idB : WWIdentSAP,
idAB : WWIdentCEP) : noexit :=

unztMdAMdABlpol: PolWW [jestWwWW]',
uzt'.idB'.idAB'.wyWN(zawartośćWW(pol)) ;
Potwierdzenie[uzt](idA, idB, idAB, zawartośćWW(pol))

where
process Potwierdzenie[uzt](idA : WWIdentSAP, idB : WWIdentSAP,

idAB : WWIdentCEP, dane : DaneWW) : noexit :=
uzt '.idB '.idAB I poi: PolecenieWN [jestWeWN]’,
([zawartośćWN(pol) = zgubiony] ->

uzt!idB!idAB'.przyjmij(z.awartość(pol)) ;
Potwierdzenie[uzt](idA, idB, idAB, koni)

[] [zawartośćWN(pol) = poprawny] ->
Nadajnik[unzt, uzt](idA, idB, idAB)

)
endproc

endproc

Proces określający rolę odbiorcy ma postać

process Odbiornik[unzt, uzt](idA .'WWIdentSAP, idB : WWIdentSAP,
idAB : WWIdentCEP) : noexit :=

uzt '.idA '.idAB Ipol: PolWN [jestWyWN]-,
([not(z.awartośćWN(pol) = pusty)] ->

unzt '.idB '.idAB \wyWW(zawartość(pol)) ;
unzt '.idA '.idAB \wyWNj(poprawny) ;

122 Rozdział 6

Odbiornik[unz.t, uzt](idA, idB, idAB)
[] [zawartośćWN(pol) = pusty] ->

unzt! idA! idAB! wyślij(zgubiony);
Odbiornik[unzt, uzt](idA, idB, idAB)

endproc

Specyfikację stacji można przedstawić jako następujący proces

process WWstacja[unzt, uzt]{idA : WWIdentSAP, idB : WWIdentSAP,
idAB : WWIdentCEP): noexit :=

Odbiornik[unzt, uzt](idA, idB, idAB) [] Nadajnik[unzt, uzt\(idA, idB, idAB)
where

process Nadajnik[unzt, wzt](...)...
process Odbiomik[unzt, uzt](...)...

endproc

Stacja w danej chwili może tylko wysyłać albo odbierać dane.

Specyfikacja protokołu ma postać

process WWprotokół[unzt](idA : WWIdentSAP, idB : WWIdentSAP,
idAB : WWIdentCEP) : noexit :=

hide uzt in
WWstacja[unzt, uzt](idA, idB, idAB)

|[«zz]| UsługiZawodnegoTran[unzt, uzt](idA, idB, idAB)
where

process WWstacja[unzt, uzt](...).....
process UsługiZawodnegoTran[unzt, »zt](...)....

endproc

Przykład 2
W przykładzie opisano szkielet usług transportowych. Pokazano strukturę usług - na­
wiązywanie połączenia, transfer danych, rozłączenie. Dla uproszczenia opisano tylko
nazwy poleceń usługowych z pominięciem ich parametrów, z wyjątkiem poleceń do­
tyczących nawiązania połączenia transportowego (TConlnd) oraz transferu danych
(TDatalnd). Typ definiujący transportowe polecenia usługowe jest określony jako
suma mnogościowa typów reprezentujących różne kategorie poleceń:

type T-polecenie is TConReq, TConlnd, TConResp, TConConf,
TDataReq, TDatalnd, TDisReq, TDisInd

endtype

Specyfikacja usług i protokołów sieciowych 123

Definicji poszczególnych kategorii poleceń dalej nie definiujemy, dla czytelności za­
kłada się natomiast, że nazwy rodzajów dla tych typów są takie same jak nazwy ty­
pów. Z poleceń dowolnych kategorii można, oczywiście, selekcjonować ich argumen­
ty. W przedstawianych specyfikacjach użyte operacje selekcji są oddzielnie komen­
towane.

Nie podaje się też specyfikacji typów punktów dostępu do usług TPDU, końcowych
punktów połączeń KPP oraz transportowych jednostek usługowych TPU.

Pierwszy z przedstawianych opisów pomija dodatkowo zarządzanie przesyłanymi da­
nymi [Bilski, Dubielewicz 1991, 1993]

specification ProsteUsługiTransportowe[t\
type TPDU is.... endtype
type KPP is.... endtype
type TJU is.... endtype
type T-polecenie is TConReq, TConlnd, TConResp, TConConf,

TDataReq, TDatalnd, TDisReq, TDisInd
endtype
behaviour

T-usługi[t\
where

process T-usługi[t]: noexit :=
Updul : TPDU Ikppl : KKP ? prym : TConReq\
(T-usługi[t]

III
let pdu2 : TPDU = przeznaczeniePDU(prym) in
(* przeznaczeniePDU jest selektorem jednego z parametrów

polecenia usługowego prym, które jest żądaniem nawiązania
połączenia

*)
(OtwórzPołączenie[t\(pdul, kppl, pdu2)
» accept kkp2 : KPP in

TransferDwukierunkowy[t](pdul, kppl, pdu2, kpp2)
[> ZamkmjPołączenie[t\(pdul, kppl,pdu2, kpp2))

)
where

process OtwórzPołączenie[t\
(pdul : TPDU, kppl : KPP, pdu2 : TPDU):

exit(KPP) :=

124 Rozdział 6

t \pdu2 lkpp2 : KPP \TConlnd(pdul) ;
(* jest tu pokazany jawnie parametr pdu 1 polecenia TConlnd *)
(t \pdu2 \kpp2 \TConResp ;

t \pdul Ikppl \TConConf \
ex\t(kpp2)

[] t lpdu2 \kpp2 YTDislnd ;
stop

)
endproc
process TransferDwukierunkowy[t]

(pdul : TPDU, kppl : KPP,pdu2 : TPDU) :
exit(KPP) :=

JednokierunkowyTransfer\t\(pdul, kppl, pdu2, kpp2)

III
JednokierunkowyTransfer[t](pdu2, kpp2, pdul, kppl)

where
process JednokierunkowyTransfer\t\

(pdul : TPDU, kppl : KPP, pdu2 : TPDU, kpp2 : KPP) :
noexit :=

t \pdul \kppl Iprym : TDataReą ;
JednokierunkowyTransfer[t\(pdul, kppl, pdu2, kpp2)

[] t \pdu2 \kpp2 ?prym : TDatalnd ;
JednokierunkowyTransfer[t\(pdul, kppl, pdu2, kpp2)

endproc
endproc
process Zamknij Połączenie[t]

(pdul : TPDU, kppl : KPP,pdu2 : TPDU) :
noexit(A7V) :=

t \pdul \kppl \TDisReq ;
Zamknij[t](pdu2, kpp2)

[] t \pdu2 \kpp2 \TDisReq ;
Zamknij[t](pdu 1, kppl)

where
process Zamknij[t](pdu : TPDU, kpp : KPP) : noexit(AiPP) :=

t \pdu \kpp \TDisReq ; stop
[] t \pdu \kpp \TDislnd ; stop
[] t \pdu \kpp Iprym : TDataReq ; Zamknij[t](pdu, kpp)

Specyfikacja usług i protokołów sieciowych 125

[] t Ipdu \kpp Iprym : TDatalnd; Zamknij[t]fpdu, kpp)
endproc

endproc
endproc

endspec

Specyfikacja ProsteUsługiTransportowe[t\ jest definicją najbardziej zewnętrznego
procesu. Definicja ta określa używane typy, a zasadnicząjej częścią jest definicja pro­
cesu T-usługi[t], Usługi transportowe polegają na przesyłaniu danych przez połączenie
transportowe, określone przez dwa identyfikatory końcowych punktów połączenia
przypisanych do, być może tych samych, punktów dostępu do usług. Realizacja usług
przebiega w trzech fazach: ustanawiania połączenia, transferu danych, zwalniania po­
łączenia. W pierwszej fazie obowiązuje zasada potwierdzania realizacji poleceń.
Oznacza to, że polecenie żądania nawiązania połączenia TConReq, skierowane do
warstwy transportowej przez inicjatora ustanowienia połączenia, dociera od warstwy
transportowej do adresata w postaci polecenia wskazania TConlnd. Adresat odpowia­
da na tę propozycję poleceniem TConResp, kierowanym do warstwy transportowej,
która przekazuje je do inicjatora w postaci polecenia TConCnf. W fazie nawiązywania
połączenia, oprócz wskazania adresata, negocjowane są parametry transferu danych.
Zaprezentowana wyżej specyfikacja nie przedstawia negocjowanych parametrów.
W pozostałych fazach żądanie przesłania danych TDataReq oraz żądanie zwolnienia
połączenia TDisReq przez jednego z partnerów połączenia są przekazywane przez
warstwę transportową do drugiego partnera, odpowiednio w postaci poleceń TDatalnd
oraz TDisInd, których nie trzeba już potwierdzać.

Warto zwrócić uwagę na funkcjonalności procesów reprezentujących poszczególne
fazy transferu. Procesy OtwórzPołączenie oraz Zamknij Połączenie mają funkcjonal­
ność exit, natomiast proces TransferDwukierunkowy - funkcjonalność noexit. Bezpo­
średnio oznacza to, że proces TransferDwukierunkowy nie kończy się, ale nie oznacza
to, że faza transferu danych ma trwać nieograniczenie długo, gdyż jest ona przerywana
przez proces ZamknijPołączenie - złożenie deaktywujące

TransferDwukierunkowy[f](pdul, kppl, pdu2, kpp2)
[> 7amknijPołączenie[t](pdul, kppl, pdu2, kpp2) j

Jak wspomniano, przedstawiona specyfikacja jest uproszczona, nie uwzględnia wszy­
stkich ograniczeń nałożonych na usługi transportowe. Dodatkowe ograniczenia, które
należy uwzględnić, można wyrazić przez rozbudowę tej specyfikacji. Poniżej przed­
stawiono przykład takiej rozbudowy, która wiąże się z koniecznością zapewniania
przesyłania danych do odbiorcy w takiej kolejności, w jakiej wysyła je nadawca.

Rozbudowa polega na wprowadzeniu procesu, który nadzoruje wprowadzanie i wy­
prowadzanie do kolejki przesyłanych danych. Podstawowym typem, wykorzystywa­

126 Rozdział 6

nym przez ten proces, będzie Kolejka. Generyczny (sparametryzowany) typ kolejkowy
ma następującą definicję

type Kolejka is Boolean
formalsorts element
sorts kolejka
opns pustaKolejka : -> kolejka

dołącz : element, kolejka -> kolejka
pierwszy : kolejka -> element
usuńPierwszy : kolejka -> kolejka
jestPusta : kolejka -> Bool

eqns forall x, y : element, q : kolejka
ofsort element
pierwszy(dolącz(x, pustaKolejka) = x ;
pierwszy(dolącz{x, dołączmy, q)) = pierwszyldołączly, q)) ;
ofsort kolejka
usuńPierwszy(dolącz(x, pustaKolejka)) = pustaKolejka ;
usuńPierwszy(dolącz(x, dolączty, q)) =

dołącz(x, usuńPierwszy(dołącz(y, q)));
ofsort Bool
jestPusta(pustaKolejka) = true ;
jestPusta(dolącz{x, q)) -false ;

endtype

Przedstawiony typ wymaga aktualizacji, formalny rodzaj element powinien być zastą­
piony rodzajem reprezentującym transportowe jednostki usługowe, co może mieć
postać

type KolejkaTJU is Kolejka
actualizedby TJU using
sortnames tju for element

endtype
gdzie tju jest nazwą rodzaju wcześniej wprowadzonego, ale niezdefiniowanego typu
TJU.

Nowa wersja specyfikacji różni się tylko definicją procesu T-usługi, w którym po­
jawia się nowy proces składowy ZarządcaKolejki, a pozostałe procesy składowe po-
zostają niezmienione

process T-usługi[t] : noexit :=
t'lpdul : TPDU ?kppl : KKP ? prym : TConReq\

Specyfikacja usług i protokołów sieciowych 127

(T-usługi[t]
III

let pdu2 : TPDU = przeznaczeniePDU(prym) in
(Otwórz.Połączenie[t](pdul, kppl,pdu2)
» accept kkp2 : KPP in

ZarządcaKolejki[t](pdul, kppl,pdu2, kpp2, pustaKolejka)
II

ZarządcaKolejki[t](pdul, kppl,pdu2, kpp2, pustaKolejka)

(TransferDwukierunkowy(t](pdul, kppl, pdu2, kpp2)
[> ZamknijPołączenie[t](pdul, kppl, pdu2, kpp2))

)
)

where
process OtwórzPołączenie\f\

(pdul : TPDU, kppl: KPP, pdu2 : TPDU):
exit(ATP) :=

endproc
process TransferDwukierunkowy[t\

(pdul : TPDU, kppl : KPP, pdu2 : TPDU):
eiat(KPP) :=

endproc
process ZamknijPołączenie[t]

(pdul : TPDU, kppl : KPP, pdu2 : TPDU):
noexit(£PP) :=

endproc
process Zarz.ądcaKolejki[t](pdul : TPDU, kppl : KPP,

pdu2 : TPDU, pdu2 : TPDU, q : kolejkaTJU):
noexit :=

t \pdul \kppl Iprym : TDataReq ;
ZarządcaKolejki(t}(pdul, kppl, pdu2, kpp2, dołącz(dane(prym), q))

[] [not(jestPusta(q)] -> t \pdu2 lkpp2 2prym : TDatalnd(pierwszy(q));
(* jest tu jawnie pokazany parametr pierwszy(q) polecenia TDatalnd *)
ZarządcaKolejki[t](pdul, kppl, pdu2, kpp2, usuńPierwszy(q))

endproc
endproc

128 Rozdział 6

Nowe ograniczenie reprezentowane przez proces ZarządcaKolejki, dokładniej przez
dwie instancje tego procesu po obu stronach połączenia, jest składane równolegle
z procesem TransferDwukierunkowy.

6.4. Uwagi końcowe

W tym rozdziale omówiono zwięźle model referencyjny ISO/OSI i zasady wykorzy­
stania języka LOTOS do reprezentacji usług i protokołów. Prezentacja ma charakter
nieformalny, odwołujący się do wprawdzie do prostych przykładów, ale dobranych
tak, aby zilustrować możliwości języka i przedstawić pewne przyjęte konwencje jego
zastosowania. Bardziej szczegółowe omówienie zasad i konwencji zawiera książka
[van Eijk, Vissers, Diaz 1989]. Przykłady opracowano na podstawie pracy [Huzar
1990],

Specyfikacja standardów sieciowych, poza normami dotyczącymi modelu ISO/OSI
oraz wybranych standardów internetowych, na przykład:

• IEEE Connectionless Interneting Protocol,
• ISO Network Service,
• ISO Transport Protocol,
• ISO Transport Service,
• ISO Session Protocol,
• ISO Session Service,
• ISO Presentation Protocol,
• ISO Transaction Protocol,
• ISO File Transfer Service and Protocol,
• ISO Job Transfer and Manipulation Service and Protocol,

była również przedmiotem wielu innych prac, na przykład: [van Eijk, Vissers, Diaz
1989], [Schneider 1996], [Comer 1997],

129

7. Metodyka specyfikowania

7.1. Proces specyfikowania
Systematyczne tworzenie systemu oprogramowania powinno się odbywać zgodnie
z przyjętą metodyką. Wyznacza się więc pewne etapy, które - niezależnie od kon­
kretnej metodyki - obejmują specyfikację, projektowanie i implementację. Każdy
z etapów może się składać z wielu kroków. W dalszym ciągu skupimy się tylko na
etapie specyfikacji w LOTOSie. Etap ten może się składać z sekwencji kroków, któ­
rych rezultatem są kolejne specyfikacje:

Spec\, Specz,..., Spec,,

Pierwsza specyfikacja Speci powstaje zwykle na podstawie opisu tekstowego w języku
naturalnym lub w języku formalnym, a ostatnia Spec,, powinna prowadzić przynaj­
mniej do prototypu implementacji.

Pomiędzy specyfikacjami powinny zachodzić odpowiednie relacje. Kolejne specyfi­
kacje są rozwinięciami lub uszczegółowieniami specyfikacji wcześniejszych. Pomię­
dzy dwiema sąsiednimi specyfikacjami Spec^, i Speck(k = 2, ..., n) można wyróżnić,
jako podstawowe, następujące rodzaje zależności:

• Speck może być strukturalnym uściśleniem Speck_], Przedstawiony w postaci
„czarnej skrzynki” opis systemu lub jego fragmentu może być zastąpiony opisem
w postaci „szarej” lub „białej skrzynki”. Pomiędzy specyfikacjami powinna za­
chodzić relacja równoważności obserwowalnej (zob. p. 7.2) lub równoważności
testowej (zob. p. 7.3).

• Speck może być restrukturyzacją Speck_\. Przedstawiony w postaci „białej
skrzynki” opis systemu lub jego fragmentu może być zastąpiony opisem w po­
staci innej „białej skrzynki”, której wewnętrzna struktura może lepiej od­
powiadać potrzebom projektowym. Również w tym przypadku pomiędzy spe­
cyfikacjami powinna zachodzić relacja równoważności obserwowalnej lub
testowej.

• Speck może być rozszerzeniem Speck^. Rozszerzenie jest oczywiste tam, gdzie
proces specyfikowania rozpoczyna się od ustalenia podstawowych zachowań,
a w kolejnych krokach specyfikację uzupełnia się dodatkowo zidentyfikowanymi
zachowaniami. Jeżeli na przykład specyfikacja Speck~\ jest reprezentowana przez
wyrażenie behawioralne Bk.i, to specyfikacja Speck może być reprezentowana
przez wyrażenie Bk_[[] B, gdzie B jest wyrażeniem reprezentującym dodatkowe
zachowania.

• Speck może być redukcją Speck^. Redukcja, chociaż jej stosowanie może się wy­
dawać niepotrzebnie restryktywne, często się przydaje, gdy specyfikacja ma być
bezpośrednio przetransformowana w implementację systemu. W takich sytu­

130 Rozdział 7

acjach redukcja może służyć do eliminacji dopuszczalnych wcześniej opcji lub
niedeterminizmu, który dopuszcza specyfikacja. Od implementacji najczęściej
oczekuje się własności niedeterminizmu. Specyfikacja Spec^i może na przykład
dopuszczać zachowania reprezentowane wyrażeniem behawioralnym a; Bi [] a; B2,
a specyfikacja Speck postaci a; B2 będzie wyrażać pewną decyzję projektową
- postępowania zgodnie z wyrażeniem B2, gdy nastąpi realizacja akcji a.

7.2. Równoważność obserwacyjna

Zdefiniowane w rozdziale 2. relacje równoważności dla języka CCS mają swoje od­
powiedniki w języku LOTOS. Pojęcia silnej i słabej bisymulacji dla LOTOSa są defi­
niowane tak samo, jak poprzednio dla CCS (definicje 2.7 i 2.9). Podobnie definiuje się
relację kongruencyjnej równoważności obserwacyjnej (definicja 2.12).

Przypomnijmy: wyrażenia Bi oraz B2 są bisymulacyjnie silnie równoważne, co ozna­
cza się B} ~ B2, gdy istnieje relacja bisymulacji R taka, że <Bi, B2>eR, oraz są obser­
wacyjnie równoważne, co oznacza się Bi = B2, gdy istnieje słaba bisymulacja S taka,
że <Bi, B2>eS.

Kongruencyjna równoważność obserwacyjna Bi B2 oznacza, że te dwa wyrażenia
behawioralne można wzajemnie zastępować w dowolnym wyrażeniu (kontekście) bez
zmiany obserwowanego zachowania całego wyrażenia.

Badanie kongruencyjnej równoważności obserwacyjnej można prowadzić analitycznie
na podstawie odpowiednich praw. Poniżej przestawiono zbiór aksjomatów do badania
kongruencyjnej równoważności obserwacyjnej [ISO 8807]:

Prawa dla prefiksowania akcją

g...1x:s... [c]; B ~ g../ly : s... [x:=y][c]; [x:=y]B
g..P x : 5... [c]; B =c choice x : 5 [] g... \x,B
g lti...lt„ [c];B=e[c] ->g [c];B

Prawa dla wyboru

Bi [] B2 B2 [] Bi
Bi [] {B2 [] Bj) (Bi [] B2) [] B,
B [] B = B
B [] stop B
[x := e]B [] choice x : 5 [] B choice x : 5 [] B

jeśli [e]6 Termx(0)/ =v,

choice x : 5 [] B B jeśli x nie jest zmienną wolną w B
choice x : s [] exit(..„ x,...) =c exit(..„ any, ...)

Metodyka specyfikowania 131

Prawa dla złożenia równoległego

W zapisie tych praw będą stosowane następujące konwencje: symbol | oznacza tu ope­
rator złożenia równoległego z dowolnym ciągiem bramek synchronizujących, 1,1^
są ciągami bramek synchronizujących, przez set(l) będzie oznaczany zbiór elementów
listy l, a przez FG(B) - zbiór bramek wolnych wyrażenia behawioralnego B (funkcja
FG nie jest tu definiowana; jej definicja jest oczywista - zob. na przykład definicje
funkcji FAct w tabeli 2.2 oraz FB w tabeli 3.1).

B, | B2 =c B21 B,
B, |(B2|B3) ^(BjB^lB,
exit(t..... . t„) | exit(tp ' exit(r,,..., t„)

gdy n = m, [r,] = [r'] lub tj = any s oraz sort(Ą) = 5 dla i = 1,..., n

exit(t|,..., | exit(r[,..., t'^ stop w przeciwnym przypadku

exit(...) | stop =c stop
Bi |[/|]| B2 =c 6, |[/|] | B2 jeśli Zf zawiera te same elementy, co

B1|[/|]|B2 b, |[Z,z] i b2 jeśli set(l't)

By |[/]| B2 Bt || B2
= set(h) n (set(FG(Bi)) u set(FG(B2)))

jeśli set(FG(B\)) u set(FG(B2)) c set(l)
Bi |[]| B2 Bi Ul B2

Prawa dla złożenia aktywującego

Symbol »* oznacza dowolne złożenie aktywujące, to znaczy przekazujące dowolne
zestawy wartości pomiędzy składowymi wyrażenia aktywującego:

stop »* B stop
exit » B i; B
exit(Z|,..., t„) » accept a,: ..., a„: s„ in B =c i; [a, := r,,..., x„ := t„]B
(B| » B2) » B3 Bi » (B2 » B3)
B »* stop B Ul stop

Prawa dla złożenia deaktywującego

stop [> B B
exit(...) [> B exit(...) [] B
(Bi [> B2) [> B3 - B, [> (B2 [> B3)
(Bi [>B2) [] B2^cBi[> B2
B [> stop =c B

132 Rozdział 7

Prawa dla przesłonięcia

hide l in B =c hide V in B
hide / in B =c hide l' in B
hide / in B =L B
hide l in hide /' in B «c hide l" in B
hide l in g\t(...!z„; B =c i; hide l in B
hide ling, B g; hide l in B

jeśli P zawiera te same elementy, co l
jeśli set(l') = set(l} n FG(B)
jeśli set(l) n FG(B) = 0
jeśli setU") = set(l)<Jset(r)
jeśli ge setll)
jeśli g£ set(l)

hide / in B} [] B? hide l in B, [] hide l in B2
hide / in B, |[/']| B2 =c (hide l in B,) |[/']| (hide / in B2)

jeśli set(l) n set(P) = 0
hide l in B, »" B2 =c (hide / in Bt) »’ (hide l in B2)
hide l in Bi [> B2 =c (hide / in B|) [> (hide / in B2)

hide l in [c] -> B = [c] -> (hide l in B)

Prawa dla dozorów

[c] -> B ~c B jeżeli c = true
[c] -> B =c stop jeżeli c = false

Prawo dla instancji procesu

B[A,, h,„](t,. ..., t„) =c [a,:= t|, ...,x„:= Z„]B[g,:= ht, g,„;= h,„]
jeśli
process p[g],5„,](xi: 5|,x„: s„) : funkcjonalność := B endproc

Prawa dla przemianowania bramek

Niech [5] oznacza dowolne przemianowanie bramek postaci [gi::= h\, g,F-= hH],
gdzie g, g/dla i j (i,j = 1, n). Przemianowanie to wyznacza funkcję przemiano­
wania bramek S, określoną następująco:

S(gi) = hi dla z = 1, n

S(g) = g dla g * g, dla / = 1,n

stop[S] ~c stop
exit(...)[5] =c exit(...)
(a; B)[5] S(a); B[S]
(B, [] B2)[5]=cB,[S] [] B2[5]
(B| |[/]| B2)[S] B|[S] |[/]| B2[S] jeśli Sjest iniekcją na FG^B^ u FG^Bf) u setjl)

Metodyka specyfikowania 133

(B1»łB2)[5]-cB1[5]»*B2[5]

(B, [>B2)[S>CB,[S] [>B2[S]
(hide /' in B)[S] =c hide l in B[S]
B[S] = B
BlS^B&i]
B[Si][S2]^B[SloS2]

jeśli Sjest iniekcją na FG(B) u /'oraz S(l') = /
jeśli S jest identycznością na FG(B)
jeśli S,(g) = S2(g) dla geFG(B)
gdzie ° jest symbolem złożenia funkcji

Prawa dla akcji wewnętrznych

a ; i ; B a ; B
B [] i ; B ~c i ; B
a,(Bt [] i; B2) [] a; B2 =a; (B, [] i; B2)
[x := t]B [] choicex.s [] i; B =c choicex:s [] i; B jeśli [t]e Terms(0)/ =x

7.3. Równoważność testowa i implementacyjna

Badanie czy pomiędzy dwiema specyfikacjami zachodzi relacja równoważności ob­
serwacyjnej jest równie trudne, jak weryfikacja poprawności programów względem
danych specyfikacji. W przypadku specyfikacji, dla których odpowiadający etykieto­
wany system przejść jest skończony, istnieją algorytmy badania spełnialności relacji
równoważności obserwacyjnej, nie ma natomiast takich algorytmów dla dowolnych
etykietowanych systemów przejść. Nawet przy prostych specyfikacjach, z powodu
eksplozji stanów, algorytmy okazują się nieefektywne obliczeniowo [Turner 1993].
Z tych powodów weryfikację zastępuje się testowaniem. Praktyczne podejście do ba­
dania równoważności obserwacyjnej specyfikacjami stosuje pojęcie równoważności
testowej.

Relacja równoważności testowej dwóch specyfikacji oznacza, że specyfikacji tych nie
można rozróżnić przez testowanie pewnym zbiorem testów TEST. Dla dwóch zbiorów
testów takich, że TEST\ ę TEST2, jeśli dwie specyfikacje są równoważne testowo
względem TEST2, to są również równoważne testowo względem TESTt.

Jeśli dwie specyfikacje są równoważne obserwacyjnie, to są także, oczywiście, rów­
noważne testowo. Odwrotna implikacja natomiast nie zachodzi. Jeżeli zbiór testów
jest dostateczny (odpowiednio duży), to zachodzenie równoważności testowej pociąga
zachodzenie równoważności obserwacyjnej specyfikacji. Problem określenia zbioru
testów jest trudny. Podstawowa trudność wynika z tego, że dostateczny zbiór testów
jest często nieskończony albo - w przypadku skończoności - zbyt duży, aby przepro­
wadzać pełne testowanie. Generowanie odpowiednich testów jest oddzielnym, trud­
nym problemem [Behforoz, Hudson 1996], [Górski 1999], [Maciaszek 2004], Stosuje
się wielorakie techniki automatycznej generacji testów. Dla języka LOTOS istnieją

134 Rozdział 7

środowiska programistyczne, w pewnym zakresie wspomagające generację testów, na
przykład w środowisku LOLA [Quemada, Pavón, Fernandez 1989] lub CADP [Ga­
ra vel, Lang, Mateescu 2001],

Relacja równoważności testowej abstrahuje od wewnętrznej struktury specyfikacji,
skupiając się tylko na komunikacji na zewnętrznych bramkach.

Test dla instancji specyfikacji o funkcjonalności noexit postaci

..., g„](rh ..., t,„)

można określić jako instancję dowolnego procesu postaci

..., g„, sukces](...)

Układem testującym specyfikacji Spec nazywamy wyrażenia behawioralne postaci:

Spec[g{,..., g„](/|,..., tm)
|[#u — gJl

..., g,„ sukces](...)

Układ testujący dla specyfikacji o funkcjonalności exit jest postaci:

Spec[gi, ..., g„](ti,..., t,„) » sukces-, stop

Test[g}, ..., g,„ sukces]^...)

Każde obliczenie układu testującego, które zakończy się zajściem zdarzenia na wy­
różnionej bramce sukces, oznacza zakończenie testu z powodzeniem. Jeżeli natomiast
obliczenie zakończy się, ale na bramce sukces nie zajdzie zdarzenie, oznacza to nie­
powodzenie testu.

Dwie specyfikacje deterministyczne są równoważne testowo względem pewnego zbio­
ru testów (wyrażonego instancjami procesów), jeżeli dla dowolnego procesu testują­
cego obliczenie układu testującego dla obu specyfikacji kończy się zawsze tym sa­
mym rezultatem (powodzenie albo niepowodzenie).

Dwie specyfikacje niedeterministyczne są równoważne testowo względem pewne­
go zbioru testów, gdy dla dowolnego procesu testującego istnieje obliczenie koń­
czące się sukcesem (niepowodzeniem) dla jednej ze specyfikacji, wówczas także
istnieje obliczenie kończące się sukcesem (niepowodzeniem) dla drugiej specy­
fikacji.

Z podanych określeń bezpośrednio wynika, że badanie równoważności testowej spe­
cyfikacji niedeterministycznych jest bardziej złożone od badania specyfikacji deter­
ministycznych.

Wyrażenia behawioralne LOTOSa mogą być przedmiotem badania, ale mogą także
być wykorzystane do definiowania testów budowanego systemu na podstawie jego

Metodyka specyfikowania 135

tekstowej specyfikacji. W przypadku takich opisów często mamy do czynienia
z dwoma rodzajami testów: z testami akceptacyjnymi i testami odrzucającymi. Testy
akceptacyjne określają dopuszczalne zachowania systemu podczas współdziałania
z otoczeniem. Testy odrzucające określają natomiast zbiory zdarzeń, których system
w danym stanie nie powinien akceptować.

Pojedynczy test akceptacyjny wyznacza pojedynczy ciąg zdarzeń zdefiniowany jako
proces o strukturze

process TestAkceptujący[g\, ..., g,„ sukces] : noexit :=
e\ ; ... ; e,„; sukces ; stop

endproc

gdzie e^ dla i = 1, ..., m, jest akcją komunikacyjną na jednej z bramek gh ..., g„.

Pojedynczy test odrzucający, stosowany do danego stanu testowanego systemu, jest
zdefiniowany jako proces o strukturze

process TestOdrzucający[gh ..., g,„ sukces] : noexit :=
; stop

[] ; stop

[] em ; stop
[] i ; sukces ; stop

endproc

gdzie e, mają znaczenie jak poprzednio, ale zajście któregokolwiek z nich oznacza
niepowodzenie testu, gdyż testowany system akceptuje to, czego nie powinien. Dodat­
kowo należy przyjąć, że w tym teście akcje komunikacyjne mają priorytet wyższy od
priorytetu akcji wewnętrznej, co oznacza, że akcja wewnętrzna jest wykonywana tylko
wtedy, gdy nie można wykonać żadnej akcji komunikacyjnej.

Pomiędzy specyfikacją a implementacją systemu powinien zawsze zachodzić odpo­
wiedni związek. W przypadku specyfikacji wyrażonej w LOTOSie związek ten jest
określony jako relacja implementacji.

Relacja implementacji jest określana [Brinksma, Scollo 1986], [Turner 1993] jako
połączenie dwóch relacji: relacji redukcji i rozszerzenia. Połączenie to należy rozu­
mieć jako zastosowanie jednej z tych relacji lub ich złożenie w dowolnej kolejności.
Kolejność składania relacji odzwierciedla kolejność podejmowania decyzji projekto­
wych podczas tworzenia implementacji.

Relacja redukcji oznacza eliminację ze specyfikacji niedeterminizmu powodowanego
istnieniem akcji wewnętrznych. Polega to na przepisaniu specyfikacji z ustaleniem
opcjonalnych wyborów.

136 Rozdział 7

Relacja rozszerzenia oznacza taką rozbudowę specyfikacji, która dopuszcza nowe,
zachowując wszystkie stare zachowania. Inaczej: dopuszcza dołączenie do specyfi­
kacji nowych funkcjonalności.

Obie relacje są wyrażane przez odpowiedzi na tzw. testy akceptująco-odrzuceniowe,
które stanowią sekwencyjne połączenie dwóch poprzednio zdefiniowanych testów:
testów akceptujących i testów odrzuceniowych. Testy te mają sprawdzać akceptację
danych sekwencji obserwowalnych zdarzeń, a po ich zajściu odrzucanie pewnych
zbiorów zdarzeń. Mają one następującą strukturę

process TestAkceptującoOdrzuceniowy[gi, ..., g,„ sukcesAkcept, sukcesOdrz] :
noexit :=

akcept i ; ... ; akcept m ; sukcesAkcept;
(odrz\ ; stop

[] odrz?; stop

[] odrzk; stop
[] i; sukcesOdrz ; stop

)
endproc

gdzie: akcepty dla i = 1, ni, oraz odrzj, dla i = 1, ..., k, są akcjami komunikacyjnymi
na jednej z bramek gi,..., g„.

Specyfikacja Speci jest testowo zgodna ze specyfikacją Spec?, jeśli dowolny test ak-
ceptująco-odrzuceniowy, zbudowany w taki sposób, że jego część akceptująca jest
testem dla specyfikacji Spec?, a część odrzucająca jest oparta na dowolnym zbiorze
akcji obu specyfikacji, jest testem akceptująco-odrzuceniowym dla specyfikacji Spec\,
to jest także testem akceptująco-odrzuceniowym dla specyfikacji Spec?.

Specyfikacja Spec? jest rozszerzeniem specyfikacji Spec\, jeżeli obie specyfikacje są
testowo zgodne oraz SeqObs(Spec\) ę SeqObs(Spec?).

Specyfikacja Spec?]est redukcją specyfikacji Spec\, jeżeli obie specyfikacje są testowo
zgodne oraz SeqObs(Spec?) ę SeqObs(Speci').

Na zakończenie warto wspomnieć, że - oprócz języka LOTOS - do definiowania te­
stów można używać innych języków. Standardem ISO do specyfikacji testów dla sys­
temów komunikacyjnych jest zwłaszcza TTCN (Tree and Tabular Combined Nota-
tion) [ISO/IEC 9646-3, 1998],

7.4. Style specyfikowania

LOTOS jest przeznaczony przede wszystkim do tworzenia specyfikacji zachowań
systemów. Wyróżnia się dwie kategorie specyfikacji: specyfikacje ekstensjonalne

Metodyka specyfikowania 137

i intensjonalne. Specyfikacje ekstensjonalne są formułowane w oderwaniu od przy­
szłej implementacji, w tym sensie, że specyfikacja nie narzuca ograniczeń na strukturę
przyszłej implementacji. Struktura specyfikacji intencjonalnej jest natomiast sugestią
postaci przyszłej implementacji. Podany podział jest nieco umowny, gdyż wszystkie
specyfikacje w LOTOSie, jako wykonywalne, można traktować jako prototyp imple­
mentacji. W ramach każdej z tych kategorii można wyróżnić po dwa style specyfiko­
wania - dla specyfikacji ekstensjonalnych:

• monolityczny,
• zorientowany na ograniczenia,

a dla specyfikacji intensjonalnych:
• zorientowany na maszyny stanowe,
• zorientowany na zasoby (inaczej: zorientowany na implementację).

Styl monolityczny wiąże się z twierdzeniem o ekspansji, z którego wynika, że dowolne
wyrażenie behawioralne, na drodze pojedynczych transformacji, daje się sprowadzić
do postaci, która zawiera tylko operatory wyboru i prefiksowania akcją. Twierdzenie
o ekspansji dla języka CCS przedstawiono w rozdziale 2. Siła ekspresji języka
LOTOS jest taka sama jak języka CCS, dlatego twierdzenie o ekspansji odnosi się
także do języka LOTOS. Jeżeli stosowanie transformacji opisanych twierdzeniem
o ekspansji prowadzi do skończonej długości wyrażenia behawioralnego, to jest ono
zapisane w stylu monolitycznym. Styl monolityczny dopuszcza też użycie operatora
rekursji procesów do definiowania pętli. Na ogół konstruowanie specyfikacji wiąże się
z wyobrażeniem drzewa zachowań budowanego systemu. Można uznać ten styl za
bardziej abstrakcyjny od pozostałych.

W stylu zorientowanym na definiowanie ograniczeń specyfikacja jest złożeniem rów­
noległym procesów, przy czym każdy proces wyznacza pewien zbiór ograniczeń, któ­
re muszą być łącznie zachowane przez cały system. Oznacza to, że zachowanie pro­
cesu składowego specyfikacji jest ograniczone zachowaniem innych procesów,
z którymi dany proces się synchronizuje. Gdy procesy składowe nie synchronizują się
ze sobą, obserwowalne zachowania systemu są pewnego rodzaju „sumą” - przeplotem
zachowań procesów składowych, gdy natomiast procesy składowe synchronizują się
ze sobą, obserwowane zachowanie systemu jest pewnym „przekrojem” zachowań
procesów składowych. Podstawową konstrukcją jest złożenie równoległe procesów,
często używane do synchronizacji multilateralnej. Drugą konstrukcją jest predykat
ograniczający akcje komunikacyjne.

Styl zorientowany na definiowanie ograniczeń jest stosowany w przypadku podejścia
zstępującego do tworzenia specyfikacji, jak na przykład w definiowaniu standardów
sieci komputerowych (zob. rozdz. 6.).

Styl zorientowany na maszyny stanowe polega na przedstawieniu specyfikacji jako
pewnej sekwencyjnej maszyny stanowej (automatu skończonego z pamięcią). Przy

138 Rozdział 7

takim podejściu wyklucza się użycie konstrukcji złożenia równoległego. Można wy­
różnić dwie odmiany stylu, różniące się sposobem identyfikacji stanów maszyny sta­
nowej. Pierwsza polega na wykorzystaniu zmiennych do identyfikacji stanów, a druga
- na wykorzystaniu procesów. Schematycznie pierwsza odmiana prowadzi do specy­
fikacji, których treść przyjmuje schemat

process Spec, ...](stan : int): ... :=
[stan = 0] -> ar, Spec[...](l)

[] [stan = 1] -> az, Spec[...](2)

[] [sron = N] -> a,;, Spec[...](N)
endproc

gdzie ah dla i = 1, ..., N, są akcjami wykonywanymi w przejściach pomiędzy stanami.
Poszczególne stany są reprezentowane wywołaniami procesów Spec[...](J) dla j = 0,..., N.

Schemat specyfikacji w drugiej odmianie ma postać

process Spec[...] : ... :=
Stan0...

where
process Stan0[...] : ... :=

ar, StanJ[...]
[] az, Stan2[...]

endproc

process StanN[...] : ... :=
br, Stanl[...]

[] bz, Stan2[...]

endproc
endproc

Tak jak w poprzedniej odmianie, ah a2, ..., b{, b2, ... są akcjami wykonywanymi
w przejściach pomiędzy stanami, poszczególne stany są reprezentowane instancjami
procesów Stanj[...].

Styl zorientowany na definiowanie maszyn stanowych jest podobny do stylu mono­
litycznego w tym, że wykorzystuje w zasadzie ten sam zestaw operatorów języka.
Może być zalecany wtedy, gdy zależy nam na bezpośredniej transformacji specyfi­
kacji w program.

Metodyka specyfikowania 139

Styl zorientowany na zasoby jest najbardziej intuicyjnym, powiązanym z implementacją
stylem specyfikowania. W tym podejściu specyfikowany system jest widziany jako
zbiór komunikujących się procesów. Procesy reprezentują elementy składowe (moduły
albo zasoby) systemu, które mają współpracować ze sobą za pośrednictwem wspólnych
bramek. Synchronizacja procesów odzwierciedla zachodzącą pomiędzy nimi ko­
munikację i dlatego mamy do czynienia tylko z synchronizacją par procesów. Operator
przesłonięcia służy do przesłaniania komunikacji wewnętrznych składowych procesów.
Styl ten jest stosowany w przypadku podejścia wstępującego do tworzenia specyfikacji.

Często w obrębie jednej specyfikacji mamy do czynienia z kilkoma stylami. Sytuacja
taka występuje w dalej przedstawionym przykładzie, w którym możemy odnaleźć
zastosowanie stylu zorientowanego na definiowanie maszyn stanowych i zorientowa­
nego na zasoby.

7.5. Przykładowy problem
Rozpatrzmy prosty system przydziału zwrotnych zasobów, na który składają się: ma­
gazyn zasobów, magazynier i dyspozytor. Z systemu korzystają klienci, którzy zwra­
cają się dyspozytora z zapotrzebowaniem na określoną ilość zasobów. Dyspozytor, na
podstawie analizy stanu magazynu zasobów, podejmuje decyzję o ilości zasobów dla
danego zapotrzebowania. W szczególności, odmawiając przydziału, ilość przydzielo­
nych zasobów określa jako liczbę zero. Po uzyskaniu decyzji o przydziale, klient
zwraca się do magazyniera po odbiór zasobów, przedstawiając mu decyzję. Magazy­
nier pobiera z magazynu zasoby i przekazuje je klientowi. Klient po wykorzystaniu
zasobów, za pośrednictwem magazyniera, zwraca je do magazynu.

Tak bardzo ogólnie sformułowany system można ukonkretniać, przypisując specyficz­
ną interpretacją jego elementom. Może to być na przykład element systemu banko­
wego, w którym magazynem jest skarbiec, magazynierem - kasjer, dyspozytorem -
pracownik banku upoważniony do udzielania pożyczek, a klientami - osoby fizyczne
lub prawne.

Strukturę systemu zasobów przedstawiono na rysunku 7.1. Elementy składowe komu­
nikują się ze sobą przez bramki, z których wnk, dec, poż, zwr służą do udostępniania
usług systemu, a pozostałe są wewnętrznymi bramkami systemu.

W przypadku wstępującego tworzenia specyfikacji może być zastosowany styl zorien­
towany na zasoby. Załóżmy, że wcześniej zostały utworzone specyfikacje procesów
modelujących składowe elementu systemu

process Magazyn[stanS, stanN, daj, masz](n: Naf) : noexit := ... endproc
process Magazynier[pob, zwr, daj, masz] : noexit := ... endproc
process Dyspozytor[zap, dec, stanS, stanN] : noexit := ... endproc
process Klient[zap, dec,pob, zwr] : noexit := ... endproc

140 Rozdział 7

Klient

Rys. 7.1. Struktura prostego systemu zasobów

Pomijamy dalej treści niektórych procesów, ograniczając się tylko do przedstawienia
ich sygnatur. Stosując styl zorientowany na zasoby, definicje te można potraktować
jako elementy składowe (zasoby), które służą do utworzenia specyfikacji całego sys­
temu. Specyfikacja taka, zgodna z rysunkiem 7.1, ma postać

Klient[zap, dec, pob, zwr]
llzap, dec, pob, zwr]|

hide stanS, stanN, daj, masz in
(Dy spożyto r[zap, dec, stanS, stanN]

|[]|
Magaz.ynier[pob, zwr, daj, masz]

)
| [stanS, stanN, daj, znasz] |

Magazyn[stanS, stanS, daj, masz]
Specyfikacje procesów składowych można uzyskać, stosując styl zorientowany na de­
finiowanie maszyn stanowych. Rozważmy na przykład definicje dwóch procesów
Magazyn oraz Dyspozytor

process Magazyn[stanS, stanN, daj, masz](n : int): noexit :=
stanS !n; Magazyn[stanS, stanN, daj, masz](n)

[] stanN Im : inf, Magazyn[stan, daj, masz}{tn}

Metodyka specyfikowania 141

[] daj Im : inf, Magazyn[stan, daj, masz](n)
[] masz Im : inf, Magazyn[stan, daj, masz](n + m)

endproc
process Dyspozytor[zap, dec, stanS, stanN] : noexit :=

zap lid : Identyfikator lilość : inf,
stanS ?zapas : inf,
([ilość < zapas] ->

(declidlilość’,
stanN [(zapas - ilość)',
Dyspozytor[zap, dec, stanS, stanN]

[] v, dec[id[Q\
Dyspozytor[zap, dec, stanS, stanN]

)
[] [zapas < ilość] -> dec\id\Q', Dyspozytor[zap, dec, stanS, stanN]

)
endproc

W przedstawionej specyfikacji, dla czytelności, wykorzystano typ całkowitoliczbowy
(inf) w tradycyjnej programistycznej notacji.

Łatwo zauważyć, że struktura wyrażenia będącego treścią procesu Magazyn stanowi
odmianę stylu, polegającą na wykorzystaniu zmiennych do identyfikacji stanów ma­
szyny stanowej - wartościowanie występującej w tym wyrażeniu zmiennej n reprezen­
tuje stan procesu. Podobne uwagi można odnieść do drugiego z procesów.

Przedstawiony przykład jest ilustracją nie tylko różnych stylów specyfikowania, ale
służy również do omówienia jeszcze innych problemów.

Problem pierwszy wiąże się z przyjętym interfejsem komunikacyjnym pomiędzy pro­
cesami, a zwłaszcza komunikacji procesu Klient z systemem zasobów. Przyjęta
w przykładzie koncepcja interfejsu różni się do koncepcji przedstawionej w rozdziale 6.
Poprzednio komunikacja pomiędzy warstwami sieci komputerowej odbywała się za
pośrednictwem jednej bramki, obecnie komunikacja odbywa się za pośrednictwem kilku
bramek. Łatwo zauważyć, że pomiędzy takimi formami interfejsu daje się ustanowić
wzajemnie jednoznaczny związek. Jeżeli mianowicie przyjąć, że komunikaty wymie­
niane pomiędzy dwoma procesami za pośrednictwem jednej bramki mają postać

polecenie(argumenf)
gdzie zbiór różnych poleceń jest skończony, a argumenty mają określone typy, to ko­
munikacja może się odbywać za pośrednictwem zbioru bramek, z których każda odpo­
wiada dokładnie jednemu poleceniu. Wysłanie więc lub odebranie takiego komunikatu
będzie wyrażone odpowiednio przez akcje komunikacyjne:

polecenie ! argument lub polecenie 1 argument: typ.

142 Rozdział 7

Drugi problem wynika z niedeterminizmu i nieokreśloności w specyfikacji. W przy­
kładzie własności te odnoszą się do definicji procesu Dyspozytor.

Z treści procesu Dyspozytor wynika, że dyspozytor może, ale nie musi, przydzielić
zasoby w żądanej ilości tylko wtedy, gdy liczba zasobów w magazynie jest większa od
liczby żądanej. W wyniku realizacji akcji wewnętrznej i dyspozytor odmawia przy­
działu zasobu. Pozostawienie niedeterminizmu w treści procesu przesłania sposób
podejmowania przez dyspozytora odpowiedniej decyzji. Takie użycie niedeterminizmu
jest typowym sposobem przesłaniania procesów decyzyjnych w procesie tworzenia spe­
cyfikacji. Inny problem jest związany z przypadkiem, gdy zapas = ilość. Jest to problem
nieokreśloności - dla tego przypadku definicja nie określa zachowania procesu.

Eliminacja obu przypadków - niedeterminizmu i nieokreśloności - może być podsta­
wą konstrukcji kolejnej specyfikacji. Eliminacja niedeterminizmu prowadzi do nowej
specyfikacji, na przykład

process Dyspozytor l[zap, dec, stanS, stanN] : noexit :=
zap lid : Identyfikator lilość : int;
stanS Izapas : int;
([ilość < zapas] ->

dec\id\ilość;
stanN [(zapas - ilość);
Dyspozytorl [zap, dec, stanS, stanN]

[] [zapas < ilość] -> dec[id[Q; Dyspozytorl[zap, dec, stanS, stanN]
)

endproc
Łatwo zauważyć, że proces Dyspozytor jest testowo zgodny z procesem Dyspozytorl
oraz SeqObs(Dyspozytorl) c SeqObs(Dyspozytor), proces Dyspozytorl jest zatem
redukcją procesu Dyspozytor.

Eliminacja nieokreśloności, która nadal pozostaje w procesie Dyspozytorl, prowadzi
na przykład do specyfikacji

process Dyspozytor2[zap, dec, stanS, stanN] : noexit :=
zap lid : Identyfikator lilość : int;
stanS Izapas : int;
([ilość < zapas] ->

dec\id\ilość;
stanN \{zapas - ilość);
Dyspozytor2[zap, dec, stanS, stanN]

[] [zapas < ilość] -> dec\id\Q; Dyspozytor2[zap, dec, stanS, stanN]
)

endproc

Metodyka specyfikowania 143

Podobnie jak wcześniej, proces Dyspozytor! jest testowo zgodny z procesem Dyspo­
zytor? oraz SeqObs(Dyspozytorl) Q SeqObs(Dyspozytor?), proces Dyspozytor? jest
zatem rozszerzeniem procesu Dyspozytor!.

Trzeci problem to rozwinięcie specyfikacji, polegające na dopuszczeniu jednoczesnej
obsługi wielu klientów. Jednoczesna obsługa wymaga takiej modyfikacji procesów
Dyspozytor i Magazyn, aby były one zdolne do równoległej obsługi klientów. Poniżej
pokazano tylko modyfikację ostatniej wersji procesu Dyspozytor?

process Dyspozytor3[zap, dec, stanS, stanN] : noexit :=
choice id: Identyfikator in

zap Ud ?ilość : inf,
stanS ?zapas : inf,
([ilość < zapas] ->

dec\id\ilość\
stanN \(zapas - ilość)-,
Dyspozytor3[zap, dec, stanS, stanN]

[] [zapas < ilość] -> decUdłO; Dyspozytor3[zap, dec, stanS, stanN]
)

|[]|
Dyspozytor3[zap, dec, stanS, stanN]

endproc
Przedstawiona wersja jest bardzo „rozrzutna”, gdyż wywołanie procesu pociąga za
sobą nieograniczoną liczbę równoległych, niezależnych, to znaczy niekomunikujących
się ze sobą, kopii procesu Dyspozytor3. Każda z kopii będzie się komunikować tylko
z jednym procesem Klient o ustalonym identyfikatorze. Proces Dyspoz.ytor3 jest roz­
szerzeniem procesu Dyspozytor?.

7.6. Środowiska wspomagające specyfikowanie w LOTOSie

Rozwojowi LOTOSu towarzyszył rozwój środowisk programowych wspomagających
używanie języka do specyfikowania i projektowania systemów oprogramowania.
Przykładem jednego z najwcześniejszych jest pakiet LOLA (od LOtos LAboratory),
opracowany na uniwersytecie w Madrycie [Quemada, Pavón, Fernandez 1989], udo­
stępniany w Internecie w wersji na komputery typu IBM PC.

Obecnie najbardziej rozwinięty jest pakiet CADP - akronim oznaczający począt­
kowo C/ESAR/ALDEBARAN Development Package, obecnie stanowiący rozwinię­
cie od Construction and Analysis of Distributed Processes. Jest on wynikiem prac,
prowadzonych od początku lat dziewięćdziesiątych ubiegłego wieku, w INRIA
(Institut National de Recherche en Informatique et en Automatique), we współpra­

144 Rozdział 7

cy z innymi ośrodkami europejskimi i kanadyjskimi [Garavel, Lang, Mateescu
2001],

Pakiet CADP, umożliwiając pisanie specyfikacji w LOTOSie, pozwala na analizę włas­
ności tworzonych specyfikacji oraz na automatyczną generację i testowanie programów.
Pakiet składa się z modułów działających w otwartym środowisku OPEN/C/ESAR. Śro­
dowisko przyjmuje format BCG (Binary Coded Graphs) reprezentacji etykietowanych
systemów przejść oraz oferuje kolekcję bibliotek i programów związanych z tym for­
matem.

Głównymi modułami funkcjonującymi w środowisku OPEN/C^ESAR są:

• Kompilatory CAESAR i CAESAR.ADT - służące do translacji specyfikacji
w LOTOSie w kod w języku programowania C. Pierwszy z nich dokonuje trans­
lacji części behawioralnej specyfikacji w LOTOSie na kod w języku C, a drugi
kompiluje abstrakcyjne typy zdefiniowane w specyfikacji na typy i funkcje ję­
zyka C.

• Symulator OCIS - umożliwiający wizualizację i śledzenie obliczeń specyfikacji
napisanych w LOTOSie. Dopuszcza kilka form wizualizacji (m.in. ciągi i drzewa
zdarzeń, diagramy sekwencji), różne sposoby prowadzenia obliczeń (m.in. praca
krokowa, według zadanych scenariuszy), modyfikację i rekompilację specyfika­
cji).

• Analizator ALDEBARAN - służący do weryfikacji systemów komunikacyjnych
reprezentowanych w postaci etykietowanych systemów przejść. Umożliwia on
redukcję etykietowanych systemów przejść względem wybranych relacji równo­
ważności (różnych relacji bisymulacji) i stwierdzanie równoważności zreduko­
wanych etykietowanych systemów przejść, opartych na algorytmach Paige-
Tarjana [Paige, Tarjan 1987] oraz Fernandeza-Mouniera [Fernandez, Mounier
1995],

• EVALUATOR - weryfikator formuł temporalnych, który pozwala na sprawdze­
nie, czy specyfikacja w LOTOSie ma własności dające się wyrazić w językach
logiki temporalnej, między innymi: HML [Hennessy, Milner 1985], CTL [Ciar­
kę; Emerson, Sistla 1983], ACTL [de Nicola, Vaandrager 1990] i LTAC [Queil-
le, Sifakis 1983].

• Generator testów TVG - służy do wyprowadzania zestawu testów ze specyfikacji
formalnej na podstawie celu testu. Cel testu określa się przez wskazanie stanów
akceptujących albo stanów odrzucających.

• Graficzny interfejs EUCALYTUS - umożliwiający jednolity dostęp do zintegro­
wanych modułów.

Pakiet CADP ciągle się rozwija. Są dwa zasadnicze kierunki rozwoju:

Pierwszy wynika z zamiaru integracji różnych formalnych języków specyfikacji, dla­
tego przyjęto etykietowane systemy przejść jako jednolitą formę abstrakcyjnej repre­

Metodyka specyfiko won ia 145

zentacji specyfikacji, gdyż możliwe jest sprowadzenie do niej nie tylko specyfikacji
w LOTOSie, ale także w innych językach formalnych, na przykład: SDL i UML/RT.

Drugi kierunek wiąże się z przystosowaniem narzędzia do potrzeb przemysłowych.
Zwraca się uwagę na efektywność narzędzi tak, aby mogły dokonywać analiz spe­
cyfikacji o odpowiednio dużych rozmiarach, a także aby uwzględniać te języki spe­
cyfikacji, które znajdują uznanie i zastosowanie w przemyśle, stąd między innymi,
wynika uwzględnienie języków SDL i UML/RT.

7.7. Uwagi końcowe

W tym rozdziale dokonano przeglądu stylów tworzenia specyfikacji w języku LO­
TOS. Ponieważ tworzenie specyfikacji może być procesem wieloetapowym, zaryso­
wano problemy związane z porównywaniem kolejno po sobie następujących specyfi­
kacji. Zagadnienia te są dokładniej omawiane w wielu publikacjach, między innymi
w: [Vissers, Scollo, van Sinderen 1988], [Brinksma 1989], [Logrippo, Probert, Ural
1990], [Garavel, Sifakis 1990], [Vissers, Scollo, van Sinderen, Brinksma 1991], [Le-
duc 1992]. Przeglądowym podsumowaniem tych prac jest książka [Turner 1993].

Style specyfikowania zilustrowano oryginalnym, prostym przykładem, który pokazu­
je, że w specyfikacji stosunkowo prostego zagadnienia stosuje się pewną mieszaninę
stylów elementarnych. Wydąje się, że nie jest to szczególna własność języka LOTOS,
ale można ją odnieść również do innych technik, nie tylko formalnych. Brak jedno­
rodnego stylu, albo - ogólniej - uniwersalnej metodyki stosowania języka LOTOS nie
tylko w specyfikacji, ale w projektowaniu i implementacji systemów, jest jedną
z przyczyn krytycznych ocen języka wyrażanych przez przedstawicieli przemysłu
[Logrippo 2000], [Babich, Deonto 2002],

Badanie równoważności testowej, omówione w rozdziale bardzo ogólnie, było przed­
miotem wielu prac, na przykład: [De Nicola, Hennessy 1984], [Bolognesi, Smolka
1987].

Samo testowanie jest natomiast przedmiotem między innymi norm ISO. W powiąza­
niu z rozwojem formalnych technik specyfikacji opracowano język TTCN (Tree and
Tabular Combined Notation) specyfikacji testów. Norma [ISO/IEC 9646-3, 1998] jest
jedną z wcześniejszych szeregu norm dotyczących TTCN-1, standardu, który prakty­
cznie wyszedł z użycia. Obecnie prace nad rozwojem tej grupy standardów są pro­
wadzone pod auspicjami ETSI (European Telecommunications Standards Institute).
Ich wynikiem jest opracowanie grupy standardów TTCN-3, a także technik i narzędzi
testowania - szczegółowe informacje na ten temat można znaleźć między innymi na
stronach internetowych:

http://www.etsi.org
http://www.ttcn-3.org

http://www.etsi.org
http://www.ttcn-3.org

146

8. Problem blokad w LOTOSie

8.1. Ukryte blokady

Standardowa semantyka języka LOTOS, przedstawiona w rozdziale 6., ma pewien
defekt, który można określić mianem ukrywania blokad [Huzar, Kuźniarz 1993]. Każ­
da semantyka jest formalną reprezentacją pewnych postulatów w LOTOSie, podobnie
jak w CCS, dotyczących sposobu komunikacji procesów.

Specyfikacja w LOTOSie wyznacza kolekcję procesów. Dany proces wykonuje akcje
komunikacyjne, synchronizując się z innymi procesami, które stanowią jego otocze­
nie, bądź wykonując akcje wewnętrzne. Akcje wewnętrzne mogą być określane jaw­
nie lub mogą być rezultatem przesłonięcia komunikacji pomiędzy procesami składo­
wymi danego procesu. Intencja związana z akcją wewnętrzną, stanowiącą wynik
przesłonięcie komunikacji, jest następująca:

jeżeli na przesłoniętej bramce nastąpiła komunikacja pomiędzy procesami (co naj­
mniej dwoma!), to akcja taka, z punktu widzenia obserwatora niedostrzegającego
przesłoniętej bramki, jest dostrzegana jako akcja wewnętrzna.

Standardowa semantyka tymczasem postulatu tego nie spełnia. Rozpatrzmy wyrażenie
behawioralne postaci

g a\ a2... ak,B

gdzie: a2... ak są elementami komunikacyjnymi związanymi z akcją na bramce g.
Jedyną możliwą tranzycją dla tego wyrażenia jest, oczywiście, tranzycja wynikająca
z komunikacji na bramce g

g at a2... ak\ B—■> B' (8.1)

Tranzycję tę interpretujemy następująco: wyrażenie g a2 ... ak-, B w rezultacie wy­
konania akcji komunikacyjnej na bramce g (to znaczy na skutek synchronizacji ze
swoim otoczeniem i wymianie odpowiednich wartości) będzie się dalej zachowywać
zgodnie z wyrażeniem B', które jest modyfikacją wyrażenia B, wynikającą z podsta­
wienia za zmienne wolne występujące w akcji g ct\ a2 ... ak komunikowanych wartości
- aksjomat (A-pre,

Rozpatrzmy teraz wyrażenie behawioralne postaci

hide g in g a\ a2... ak; B (8.2)

Z aksjomatu (A-pre oraz reguły (R2-hide) wynika, że zachodzi tranzycja

hide g in g; cą a2... ak; B ——» hide g in B’ (8.3)

Problem blokad w LOTOSie 147

gdzie B' ma być odpowiednią modyfikacją wyrażenia B. Nasuwa się pytanie: jaka to ma
być modyfikacja? Ponieważ nie zachodzi tu komunikacja z innym procesem, wejścio­
wym elementom komunikacyjnym można przypisać, w niedeterministyczny sposób,
dowolne wartości odpowiadających im typów; semantyka obserwacyjna hide g in g;
«i a2... o^; B jest więc równoważna semantyce obserwacyjnej wyrażenia choice x: s [] B.

Nasuwa się pytanie: jak interpretować tranzycję (8.3)? Nie można jej traktować tak jak
tranzycji (8.1), gdyż na bramce g nie zachodzi komunikacja z innym procesem, ale
jednocześnie postać wyrażenia B'jest taka jak w przypadku poprzednim. Nasuwa się
natomiast sugestia, by wyrażenie hide g in g; a2 ... ak; B interpretować jako wyra­
żenie z wewnętrzną blokadą, czyli takie wyrażenie, które nie oferuje swemu otoczeniu
żadnych komunikacji i jednocześnie nie może wykonać żadnej akcji wewnętrznej.

Zauważmy jednocześnie, że wyrażenie behawioralne postaci

hide g in g?x : s; B, |[g]|gfi; B2

nie stwarza wątpliwości interpretacyjnych. W tranzycji

hide g in g?x : s; B, |[g]|g!r;B2 hide gin |[g]| B2

akcja wewnętrzna wyraża przesłonięcie komunikacji pomiędzy wyrażeniami składo­
wymi złożenia równoległego.

Spełnienie postulatu, aby właściwie interpretować wyrażenie przesłonięcia bramki
prowadzi do nowej semantyki języka. Semantyka ta jest przedstawiona w następnym
podrozdziale.

8.2. Semantyki zmodyfikowane

Przedstawiono dwa rozwiązania problemu w postaci dwóch równoważnych semantyk.

Rozwiązanie 1

Zasadnicza idea, na której opiera się pierwsza semantyka, jest następująca: Aksjomat
(A “PP^c-omm)

g oą a2... ak\ B—> B'

przedstawia tylko potencjalną tranzycję. Tranzycja ta powinna zajść tylko wtedy, gdy
znajdzie się komunikacyjny partner na bramce g. Dlatego tranzycję postaci

B,—^^B2 (8.4)

zastąpimy tranzycjami postaci

B, > B2 (8.5)

148 Rozdział 8

gdzie n>l jest dodatkowym parametrem etykiety, oznaczającym liczbę procesów uczest­
niczących w komunikacji na bramce g. Jeżeli n = 1, to tranzycja jest tylko potencjalna
-jej zajście jest uwarunkowane kontekstem, jeżeli n > 1, to tranzycja może zajść.

Nowy etykietowany system przejść jest postaci

TS[(Spec) = <Beh, Act{, Tr}, Bn> (8.6)
gdzie:

Beh jest, jak poprzednio, zbiorem wyrażeń behawioralnych,
Acr, = {<n, g v> | n>l, geG u {6}, veTemirspec (0)} {<h *>} jest zbiorem in­
terakcji,
Tr\ = { —| aeActi} jest zbiorem relacji przejść,
Bo jest treścią procesu początkowego p0.

Zbiór aksjomatów i reguł jest modyfikacją TS^Spec), która - oprócz wprowadzenia
dodatkowego parametru etykiety tranzycji - zmienia tylko aksjomaty oraz dwie reguły
systemu TS(Spec).

Prefiksowanie akcją wewnętrzną B = i; B\

B <"'!>~^Bi (Arpre„„)

Prejtksowanie akcją komunikacyjną B = g a^ a2 ... cą[c]; B{

B^^^[Xi ::=ti]B.
L Jl Jl ’ Jm Jm J 1

{Al -precomm)

wtedy i tylko wtedy, gdy:
vi = [Ą-J» gdy a, si/.oraz Ą jest termem stałym, dla i = 1,..., n,

v,e Term,.. {0)1 =, gdy aj = ?Xj : Sj, dla i = 1, ..., n,

Xj jest zmienną taką, że aj = 1 Xj : Sj , dla i = 1, ..., n.

oraz
D I- c[x, ::-t: ,..., x, ::=t,] L Jl J\ * ’ Jm Jm J

Proces zakończenia B s exit(7i,..., t„)

B —<l’,>—» stop

Przesłonięcie B = hide g„ in 5,
D <n,a> . n'
4———4 gdy name(a)e {g,,..., gj (Rrhided
n--------- --------- n.

<n,a> o'
——------gdy name{a)e {g^..., g,,}, n>l {Rrhide2)
-------- -------- n.

Problem blokad w LOTOSie 149

Istotna jest tu reguła (Ri-hidez), gdyż wprowadza ograniczenie na możliwe tranzycje -
wyklucza ona tranzycję dla wyrażenia postaci hide g in g cą Oh ... oik; B.

Złożenie równoległe B = Bt |[gb g„]|

--^--1----------- — góy nanieś\g„...,gn,3} (R^-par^

B2 >B2

5
gdy name(a)i {g. (Rrpar.J

Bt <"'“> >B{

B2 ę'2
gdy name(a)e [g{,..., gn,3] (Rrpar3)

Reguła (Ri-par3) różni się od reguły (R-par3) tylko tym, że wprowadza liczenie pro­
cesów uczestniczących w akcji na tej samej bramce.

Semantyki akcyjna i obserwacyjna są definiowane tak, jak w przypadku semantyki
standardowej.

Rozwiązanie 2

Drugie rozwiązanie zakłada, że postać tranzycji nie ulega zmianie, lecz wprowadza się
funkcje pomocnicze, które służą do definiowania ograniczeń na zachodzenie tranzycji.
Są to funkcje:

F: Beh -> 2C

C: Beh -> 2G
(8.7)

Ich definicje są zawarte w tabeli 8.1. W definicji funkcji C wykorzystuje się funkcję
pomocniczą h, określoną następująco:

h(Z) =
(0 gdy Z = 0

[{i} gdyZ*0
(8.8)

Funkcja F(B) dla wyrażenia behawioralnego B wyznacza zbiór tych jego akcji, które
ze względu na składnię mogą być wykonane w pierwszej kolejności. To, która z tych
akcji zajdzie jako pierwsza, zależy od otoczenia danego wyrażenia. Funkcja C(B) wy­
znacza natomiast na podstawie zbioru F(B) podzbiór tych akcji wewnętrznych, które
mogą być wykonane niezależnie od otoczenia wyrażenia B.

150 Rozdział 8

Tabela 8.1

B F(B) C(B)
stop 0 0
i;B> {i} {•}

ga{ a,,^ (g) 0
exit(t..... . t„) {i} {i)

Bt » acceptx,: ó h ...,
x„: s„ in B2 FIBO C{B.)

Bt[]B2 C(B|)u C(B2)

hideg...... . g„inB| F(Bt)\{
mBJnfg!, ...,g„})

C(B1)\{g1,...,g„ |uC(B2)\
(g,, ...,g„ }uF(B,)nF(B2)

n{ gh ...,g„})
B, [> B2 F(Bi) u F(B2) C(Bt) u C{B2)

Bi |[gi, ...,g„]|B2 F^B^uF^) C(BMg^...,gn}^h(C(B')
^{gu -.-gj)

k]->Bi F^B.) C{B.)
let*| = rb ...,x„ = r„inB| F(Bt) C{B\)
choice gin[gi.......g„] B} F(B|[g|/g]) u...u FfBdg^g]) C{B}[gJg})u ...kj C{BAg,Jg])

choice x : s [] B\ F^B,) C(B{)
parg in [g........g„]

|[/2i,...,A,„]|Bl FtB^gdg]) o ... u F(B,[g„/g]) CiBAgJg]^ -^C(B,[g„lg\)

p[gi. ■ ••,gJOi, HBdg,//!,,...,^,/^]) C(B\[gJh\, ..., gjh,,})

(5i) F^B^ C(BX)

Etykietowany system przejść jest postaci

TS2(Spec) = <Beh, Act, Tr2, Bo> (8.9)

gdzie inaczej, w stosunku do semantyki standardowej, jest zdefiniowana tylko relacja
tranzycji. Jest ona określona przez taki sam zbiór aksjomatów jak semantyka stan­
dardowa i tylko ma inną regułę dla przesłonięcia.

Przesłonięcie B = hide gi, ..., gn in B\

B—^B{
gdy name^i {g,,g„} (Ri-hidei)

b—^b' gdy name(a)E [g^..., gJnC^) (R2-hicie2)

Problem blokad w LOTOSie 151

Reguła (R^-hidei), przez wykorzystanie funkcji C, wprowadza ograniczenie na możli­
we tranzycje.

Semantyki akcyjna i obserwacyjna są definiowane tak, jak w przypadku semantyki
standardowej.

Oznaczając przez Seą^B) oraz Seq2(B) zmodyfikowane obliczenia, można pokazać, że
są one równoważne, czyli Seq\(B) = Seq2(B).

Twierdzenie i dowód równoważności są przedstawione w artykule [Huzar, Kuźniarz
1993].

Rozwiązanie drugie jest bardziej eleganckie i bliższe prezentacji standardowej seman­
tyki, dlatego rozważania dalszej części rozdziału są oparte na nim. Zmodyfikowany
zbiór ciągów akcji generowany przez wyrażenie behawioralnego B będziemy ozna­
czać dalej przez Seq,nml{B).

8.3. Wykrywanie blokad

Blokada jest niepożądaną własnością specyfikacji. Z punktu widzenia zewnętrznego
obserwatora zachowania reprezentowanego przez dane wyrażenie behawioralne blo­
kada jest nieodróżnialna od zakończenia aktywności wyrażenia.

W rozważaniach prowadzonych w dalszej części rozdziału ograniczymy się do bazo­
wej wersji języka LOTOS, która abstrahuje od wartości komunikowanych pomiędzy
procesami. Ograniczenie to wynika przede wszystkim stąd, że daje ono możliwość
jednoznacznego rozstrzygnięcia o zachodzeniu blokad na podstawie analizy tekstu
specyfikacji. W przypadku natomiast pełnej wersji języka pojawianie się blokad może
zależeć od konkretnego obliczenia związanego ze specyfikacją, a przebieg obliczenia
zależy od komunikowanych wartości.

Składnia uproszczonej wersji języka jest następująca:

B ::= stop | i; B} | g; 5, | exit | S, » B21 ^ [] B21 hideg,, ..., g„ inB, |
[>B2\Bi |[g,, ...gJlBjptg,, ..„gJKB,)

W wersji tej rezygnujemy również z konstrukcji:
choicegin [g,, ...,g„]5|
par gin [g,, ...,g„] |[/i,, ...,h,„]\Bt

gdyż można je wyrazić za pomocą konstrukcji pozostałych.

Najpierw rozpatrzmy dwa przykłady, które wyjaśnią rozumienie behawioralnego wy­
rażenia z blokadą:

g; stop | [g, ń] | ń; stop
hide g in g; stop

152 Rozdział 8

Pierwsze z wyrażeń jest wyrażeniem z blokadą zarówno w sensie semantyki standar­
dowej, jak i semantyki zmodyfikowanej, drugie natomiast jest wyrażeniem z blokadą
tylko w sensie semantyki zmodyfikowanej.

Mamy również inne wyrażenia, które - nie będąc wyrażeniem stop - są semantycznie
jemu równoważne, będąc pewnym złożeniem procesów stop, na przykład:

stop [] stop
stop [> stop

Wprowadzimy rodzinę wyrażeń STOP, zdefiniowaną rekursywnie następująco:

stop ::= stop j' stop []srop T stoP |[5]| stoP T hide g in stop j'
stop » stop j' stop [>stop j' (stop)

gdzie stop jest metazmienną.

Rodzina STOP wyznacza ten zbiór wyrażeń behawioralnych, wewnątrz których nie
ma akcji komunikacyjnych i które są równoważne procesowi pustemu. Rodzinę tę bę­
dziemy odróżniać od zbioru wyrażeń z blokadą, wewnątrz których są wprawdzie akcje
komunikacyjne, ale nie mogą być zrealizowane.

Definicja 8.1
Wyrażenie behawioralne B jest wyrażeniem z blokadą wtedy i tylko wtedy, gdy
spełnia predykat D(B), zdefiniowany następująco:

D(B) =«• (Seq,„ml(B) = 0 a Bi STOP) (8.11)

Tabela 8.2

B P(B)
1 2

stop 0
i; 5, P(Bi)
g’, Bi P(Bi)
exit 0

Bi » B2 P(Bi)uP(B2)
Bi [] B2 P(Bi)uP(B2)

hide#h ..., g„ in B} P(Bi)
Bi [> B2 P(Bi)uP(B2)

Bi |[£i, ...,£„]| B2 P(Bi)uP(B2)
plg...... , Aj {Pi

(Bi) P(Bi)

Rozpatrując dane wyrażenie, jesteśmy zainteresowani nie tylko tym, czy wyrażenie jest
wyrażeniem z blokadą, ale także tym, czy wyrażenia osiągalne z danego mogą być rów­

Problem blokad w LOTOSie 153

nież wyrażeniami z blokadami. Rozważania będą ograniczone do wyrażeń regularnie
zbudowanych. Wyrażenia te zdefiniujemy tu ściśle, wprowadzając następujące pojęcia:

Mówimy, że proces p wywołuje bezpośrednio proces q, jeżeli wywołanie procesu q jest
zawarte w wyrażeniu Bp, stanowiącym treść procesu p. Przez CALL ę Proc x Proc,
gdzie Proc jest zbiorem nazw procesów danej specyfikacji, oznaczmy relację bezpo­
średniego wywołania procesów

CALL = {<p, q> | q^ P(Bp)}

gdzie zbiór P^Bp) jest zdefiniowany tabelą 8.2.

Niech CALL+ będzie tranzytywnym domknięciem relacji CALL.

Definicja 8.2
Wyrażenie behawioralne B jest regularnie zbudowane, gdy dla każdego procesu
pe Proc jest spełniony warunek: dla każdego podwyrażenia wyrażenia Bp, stano­
wiącego treść procesu p, postaci

B\ op Bi, dla ope {|[S]|, », [>},

jeśli q& u P(B^, to <q, p>£ CALL+.

Lemat 8.1
Jeżeli wyrażenie B jest regularnie zbudowane, to zbiór wyrażeń osiągalnych z B
jest skończony.

Dowód (szkic)
Szczegółowy dowód, przeprowadzony metodą indukcji strukturalnej, jest prosty,
ale uciążliwy - przy rozpatrywaniu kolejnych postaci wyrażenia B indukcja prze­
biega względem długości ciągu tranzycji. Główna idea jest natomiast prosta: jeżeli
wyrażenie B jest regularnie zbudowane, to rekursywne wywołania procesów są
skończone. Istotnie, liczba wyrażeń, do których może nastąpić tranzycja z wyraże­
nia regularnie zbudowanego B, jest skończona. Dla dowolnego procesu p&Proc
każde z podwyrażeń wyrażenia B, jeśli zawiera wywołanie jakiegoś procesu, to
- z definicji wyrażenia regularnego - nie prowadzi ani bezpośrednio, ani pośred­
nio do wywołania procesu p. Zbiór wyrażeń osiągalnych z wyrażenia B jest zatem
również skończony.

Wprowadzamy dwie kategorie wyrażeń z blokadą: wyrażenia silnie i słabo blokujące.

W celu sprecyzowania tych pojęć w zbiorze SeqFin(B) wyróżnimy zbiór ciągów ter­
minalnych - podzbiór zbioru ciągów skończonych wyznaczanego przez semantykę
akcyjną

SeqTerm(B) =def {s^SeqFin(,B) | -ds'* s'* Ea 5 A s' eSeqFin(B)} (8.12)

154 Rozdział 8

Uwaga: Jeżeli wyrażenie B jest regularnie zbudowane, nie oznacza to skończoności
zbioru ciągów terminalnych SeqTerm{B).

Wyrażenie behawioralne B jest silnie blokujące wtedy i tylko wtedy, gdy spełnia pre­
dykat

SD(B) =def SeqInf(B) = 0 a Vse SeqTerm(B) • B —B' a D(B') (8.13)

Oznacza to, że semantyka wyrażenia nie ma nieskończonych ciągów tranzycji, a każ­
dy skończony terminalny ciąg tranzycji z wyrażenia B prowadzi do wyrażenia z blo­
kadą.

Wyrażenie behawioralne B jest słabo blokujące wtedy i tylko wtedy, gdy spełnia pre­
dykat

WD(B) =det 3se SeąTermjB) • B —B' a D{B') (8.14)

Oznacza to, że dla wyrażenia istnieje skończony ciąg tranzycji terminalnych, który
z wyrażenia B prowadzi do wyrażenia z blokadą.

Przykład 8.1
W celu zilustrowania wyrażeń blokujących rozpatrzmy następujące wyrażenia be­
hawioralne:

B} = a; stop
B2 = a-, stop |[o, b]| b; stop
Bi, = hide a in a; stop
Bą = a; P[a] gdzie process P[a] := a; P end
B$ = a; P[a] [] b; stop
B, = B, [] B2
By = Bą [> B2
Bs — Bą [> a\ B2

Semantyka klasyczna oraz zmodyfikowana tych wyrażeń przedstawiają się na­
stępująco:

Seq(B}) = Seą^Bt) = {«}
Seq(B2) = Seą^ilB^ = 0
Seq{B2)-{i} natomiast Seqmmi(B2) = 0
Seq(B^ = SeqIIU)(i{B^ = {a, aa, ..., aa ... a ,...} o {aa ... a ...}
Seq(B5) = Seqmmi(Bj) = {b, a, aa, ..., aa ... a, ...} u {aa ... a ...}
Seq{B6) = Seq,mKi(B^ = {a, aa, ..., aa ... a, ...} o {aa ... a ...}

Problem blokad w LOTOSie 155

Seq{B2) = Seqmod(Bf) = {a, aa, ..., aa ... a, ...} u {aa ... a ...}
Seq(Bf) = Seqm,d(B$) = {a, aa, aa ... a, ...} u {aa ... a ...}

Zbiory ciągów terminalnych wyznaczonych dla zmodyfikowanej semantyki:
SeqTerm„u,d{B^ = {a}
SeqTerin,md(B2) = 0
SeqTermm,d{Bf) = 0
SeqTermmid{Bf) = 0
SeqTermimd(Bf) = {&}
SeqTermm„d(B^ = 0
SeqTerm,md(Bf) = 0
SeqTermmnd(Bf) = {a, aa, ..., aa ... a, ...}

Zauważmy, że chociaż

Seqm>d(B-i) Seqim)d(Bff
to
SeqTerm„mfBz) * SeqTerm„md(Bf).

Na podstawie definicji łatwo obliczyć warunki silnego i słabego blokowania (tab. 8.3).

Tabela 8.3

B SD(B) WD(B)

B\ fałsz fałsz
b2 prawda prawda
By prawda prawda
B, fałsz fałsz
B, fałsz fałsz.
Bb fałsz. fałsz
B, fałsz fałsz
Bi fałsz. prawda

Z definicji wynika, że badanie czy dane wyrażenie jest silnie lub słabo blokujące wy­
maga zbadania, czy zbiór ciągów SeqInf(B) jest niepusty oraz czy zbiór ciągów
SeqTerm(B') prowadzi do wyrażeń z blokadą.

Teraz przedstawiamy dwa algorytmy związane z tymi dwoma badaniami. W prezen­
tacji algorytmów będziemy wykorzystywać dla danego wyrażenia behawioralnego B
zbiór wyrażeń, który bezpośrednio po nim następuje w wyniku wykonania pojedyn­
czej tranzycji

Succ(B) = {B' | BaeAct • B—-—>B'} (8.15)

156 Rozdział 8

Dla danego wyrażenia B zbiór ten można wyznaczyć się na podstawie zbioru aksjoma­
tów i reguł określających relację tranzycji w systemie przejść.

Algorytm badania czy zbiór ciągów SeqInf(B) jest niepusty przedstawimy w postaci
rekursywnego obliczania wartości funkcji logicznej NotEniptySeqlnf(B). Funkcja obli­
cza wartość prawda, gdy zbiór Seqlnf(B) jest niepusty, oraz fałsz, w przypadku prze­
ciwnym. Jej definicja wyraża się przez funkcję pomocniczą NESI(B, pred), gdzie pred
jest zmienną pomocniczą, której wartościami są podzbiory wyrażeń behawioralnych.
Definicja jest przedstawiona w samowyjaśniającej się konwencji programistycznej

NotEmptySeqlnfB) := NESI(B, 0)

gdzie:

NESl(B,pred) :=
begin

if F(B) = 0 then return(/«A’) endif; - 1
for B’eSucc(B) do

if B'e pred then returnów w/a) endif; - 2
endfor;

pred := predu {B};
for B'eSucc(B) do

if NESI(B', pred) then return(praWa) endif; - 3
endfor;
return(/a/.sz); - 4

end ;

Objaśnijmy algorytm. Parametr formalny pred reprezentuje zbiór wyrażeń behawio­
ralnych, które w pewnym obliczeniu, prowadzącym do wyrażenia B, mogą wyrażenie
to poprzedzać. Oznacza to, że istnieje obliczenie postaci

B, g| >B2 ■ ■ —->B3 ...B,,., a" >B (8.16)

gdzie B|, B2, ..., B„_ \Epred. Początkową wartością parametru pred jest zbiór pusty.

Algorytm, badając zbiór następników Succ(B), kończy się na mocy lematu, gdyż zbiór
wyrażeń osiągalnych z danego wyrażenia B jest skończony. Zakończenie algorytmu
następuje w czterech przypadkach:

W pierwszym przypadku (linia z etykietą 1) algorytm kończy się obliczeniem war­
tości fałsz, gdy wyrażenie B spełnia warunek F(B) = 0. Oznacza to, oczywiście, że
Seq„mt(B) = 0, więc i SeqInfm)d(,B) = 0.

Problem blokad w LOTOSie 157

W drugim przypadku (linia z etykietą 2) algorytm kończy się obliczeniem wartości
prawda, gdy napotka się wyrażenie B', osiągalne z B, które może prowadzić do pewnego
wyrażenia ze zbioru pred. Oznacza to, że istnieje pętla - obliczenie nieskończone.

Jeśli nie stwierdzi się istnienia pętli, przechodzi się do obliczania wartości funkcji NESI
dla wyrażeń ze zbioru Succ(B), w poszerzonym zbiorze poprzedników pred u {B}. Jeśli
B'&Succ(B), oznacza to istnienie obliczenia

B{ a' >B2 >B3 ...B,,^ a'<-yB—^B' (8.17)

W tym przypadku (linia z etykietą 3) zakończenie algorytmu następuje, gdy stwierdzi
się, że wartość funkcji NESI dla pewnego wyrażenia B'&Succ(B) jest prawdą. Jeśli
natomiast dla wszystkich wyrażeń ze zbioru Succ(B) wartość funkcji NESI jest fał­
szywa, to oznacza, że wartość tej funkcji jest również fałszywa dla wyrażenia B (linia
z etykietą 4).

Drugi algorytm bada, czy wyrażenie jest silnie blokujące. Jest on przedstawiony w po­
staci rekursywnego obliczania wartości funkcji logicznej StrongDeadock(B). Funkcja
oblicza wartość prawda, gdy zbiór SeqFin(B) jest pusty i każde wyrażenie osiągalne
z B, które nie ma następników, nie należy do zbioru wyrażeń STOP, czyli spełnia pre­
dykat SD. W przypadku przeciwnym funkcja oblicza wartość fałsz. Jej definicja wyra­
ża się za pomocą poprzednio zdefiniowanej funkcji NotEmptySeqInf(B) oraz nowej
funkcji SD(B, pred), gdzie pred jest zmienną pomocniczą, której wartościami są pod­
zbiory wyrażeń behawioralnych.

StrongDeadock(B) :=
begin

if NotEmptySeqInf(B) then return(/hfcz); endif;
SD{B, 0);

end ;
gdzie:

SD(B, pred) :=
begin

if Succ(B)\pred = 0
then

if B&STOP then return(/dfcz) endif
else

for B'eSucc(B) do
if not SDfB ’, pred u SuccfB)) then return(/ćdsz) endif

endfor;
return(prawda);

end ;

158 Rozdział 8

Obliczenie czy wyrażenie jest słabo blokujące jest przedstawione w postaci rekur-
sywnego obliczania wartości funkcji logicznej WeakDeadock{B). Funkcja oblicza
wartość prawda, gdy istnieje wyrażenie osiągalne z B, które nie ma następników,
nie należy do zbioru wyrażeń STOP, czyli spełnia predykat SD, a w przypadku
przeciwnym funkcja oblicza wartość fałsz. Jej definicja wyraża się za pomocą
funkcji WD(B, pred), gdzie pred jest zmienną pomocniczą, której wartościami są
podzbiory wyrażeń behawioralnych.

WeakDeadock(B) := WD(B, 0);

gdzie:

WD(B, pred) :=
begin

if Suce (B)\pred = 0
then

if Suce (B) = 0 a Bi STOP then return(prawJa) endif
else

for B'iSucc(B) do
if WD(B', pred u Succ(B)) then return(prawr/a) endif

endfor;
return(/a£sz);

end

Przeprowadzona analiza blokad dotyczyła wyrażeń behawioralnych bazowej wersji
języka LOTOS, abstrahującej od wartości komunikowanych pomiędzy procesami.
Komunikacja wartości może być przyczyną nowych sytuacji, w których następują
blokady. Rozpatrzmy przykład prostego wyrażenia

a ! true; stop |[«]| a \false\ stop

Jest to wyrażenie z silną blokadą, chociaż jego odpowiednik w bazowym LOTOSie
a-, stop |[a]| a-, stop

jest wyrażeniem wolnym od blokad. Wynika z tego oczywisty wniosek, że przeprowa­
dzona analiza określa warunki konieczne, ale niewystarczające do oceny zachodzenia
blokad w wyrażeniach behawioralnych. Równie oczywiste jest to, że nie jest możliwa
analiza blokad dla pełnego LOTOSa oparta wyłącznie na analizie tekstowej, bez ana­
lizy obliczenia wyrażenia.

Warto natomiast zaznaczyć, że przedstawione algorytmy wykrywania blokad można,
po prostej korekcie, zastosować do bazowego, oryginalnego LOTOSa. Korekta wyni­
ka z różnicy semantyk, wyrażających się funkcją Suce.

Problem blokad w LOTOSie 159

Związki pomiędzy blokadami w obu wersjach języka są oczywiste: jeżeli dla wyra­
żenia behawioralnego B w wersji oryginalnej zachodzi SD(B) (albo WD(B\), to także
zachodzi SD(B) (albo WD(B)) w wersji zmodyfikowanej.

8.4. Uwagi końcowe

W tym rozdziale omówiono specyficzny problem ukrytych blokad w standardowej se­
mantyce języka LOTOS, wynikający z niekonsekwentnego traktowania komunikacji
między procesami. Skorygowana semantyka, pozbawiona tego defektu, była przed­
miotem artykułu [Huzar, Kuźniarz 1993], Raport [Huzar, Kużniarz, Łach 1997] przed­
stawia implementację algorytmów wykrywania blokad w zmodyfikowanym języku
LOTOS. Implementację oparto na języku programowania ML [Milner, Tofte, Harper
1990],

Warto zaznaczyć, że w języku LOTOS problem blokad występuje niezależnie od
omawianych tu blokad ukrytych. Na przykład takim wyrażeniem z blokadą jest

hideg, gi ing; B{ |[g]|gi; B2

Do wykrywania blokad w standardowym LOTOSie można stosować opisany w po­
przednim rozdziale pakiet CADP [Garavel, Lang, Mateescu 2001].

160

9. Rozszerzenia czasowe LOTOSa

9.1. Wstęp

Przedstawiony w poprzednich rozdziałach język LOTOS nie pozwala na specyfikację
systemów czasu rzeczywistego. Czas może być modelowany tylko jakościowo za pomo­
cą akcji wewnętrznych. W tym rozdziale zaprezentowano dwa podejścia do czasowego
rozszerzenia języka LOTOS. Podejścia te różnią się sposobem modelowania akcji.

Pierwsze podejście zakłada, że akcje są natychmiastowe, a ich własności czasowe
określają przedziały czasu, w których akcje te mogą zachodzić. Dokładniej: z akcją
komunikacyjną wiąże się przedział czasu, w którym ta akcja może nastąpić, natomiast
z akcją wewnętrzną jest związany przedział czasu, w którym akcja musi zajść. Podej­
ście to było prezentowane między innymi w artykułach: [Bolognesi, Lucidi 1992],
[Leduc, Leonard 1992], [Quemada, Azcorra, Frutos 1990], znalazło też odbicie
w nowej wersji języka E-LOTOS [ISO/IEC FDIS 15437], Wspólnym elementem tych
prac było założenie, że wszystkie rodzaje akcji są akcjami natychmiastowymi.

Dla akcji komunikacyjnej wprowadza się notację

g{tinT.. r+] (9.1)

która oznacza, że akcja może zajść w przedziale czasu t~.. t+, gdzie 0 < t" < t+. Jeżeli
akcja na bramce g nie zajdzie w zadanym przedziale czasu, to po jego upływie już
zajść nie może.

Podobną notację wprowadza się dla akcji wewnętrznej i akcji exit

i {t in r".. r+) exit {? in C.. r+] (9.2)

W odróżnieniu od akcji komunikacyjnej, notacja oznacza, że akcja musi zajść w prze­
dziale czasu t~.. t+, gdzie 0 <t~ < t+. Jeżeli akcja nie zajdzie przed chwilą t+, to musi
zajść w chwili t+.

Opis akcji czasowych i komunikacji zachodzącej w czasie rzeczywistym wymaga po­
jęcia chwil i przedziałów czasowych. Chwile czasowe będą się odnosić do momentów
rozpoczynania i kończenia akcji, przedziały zaś będą się odnosić do opóźnień i czasów
przeterminowania. Zakładamy przy tym strukturę liniowego i gęstego czasu abso­
lutnego. Dla ukonkretnienia przyjmujemy, że dziedziną takiej struktury jest zbiór liczb
wymiernych, dalej oznaczany symbolem Time. Strukturę taką można zdefiniować jako
typ abstrakcyjny [Huzar, Magott 1997a].

Przedstawione podejście to ma tę zaletę, że pozwala na zachowanie zgodności z LO-
TOSem bezczasowym, jego wadą wydaje się brak naturalności, co może powodować
większą złożoność specyfikacji.

Rozszerzenie czasowe LOTOSa 161

Drugie podejście do czasowego rozszerzenia LOTOSa zakłada istnienie akcji czaso­
wych i było przedstawiane w pracach: [Huzar 1991], [Huzar, Magott 1995a], [Huzar,
Magott 1995b], [Huzar, Magott 1996], [Huzar, Magott 1997a], [Huzar, Magott
1997b], Własności czasowe akcji, podobnie jak w przypadku języka RT-CSS (rozdz. 3.),
są wyrażane przez zbiór dopuszczalnych czasów wykonywania się akcji.

Dla uproszczenia rozważania będą odnoszone do takiej samej bazowej wersji języka
LOTOS, jaką rozpatrywano w rozdziale 8. (8.5). Czasowe rozszerzenie tej wersji bę­
dzie oznaczane dalej jako język RT-B-LOTOS. Rozszerzenie polega na wprowadze­
niu dwóch elementów:

• zastąpieniu akcji (bezczasowych) akcjami czasowymi,
• wprowadzeniu nowego rodzaju akcji, zwanej akcją przeterminowania.

Akcje na bramce g (podobnie akcje wewnętrzne i) będą zastąpione akcjami czaso­
wymi g[A] (odpowiednio i[zl]), gdzie A^Time oznacza zbiór dopuszczalnych czasów
wykonania akcji czasowej. Wykonaniu akcji czasowej towarzyszą takie dwie chwile
czasowe: rozpoczęcia oraz zakończenia r2, że t2 - A Dla uproszczenia rozważań
będziemy zakładać, że różnym akcjom czasowym na bramce g będzie zawsze odpo­
wiadać taki sam zbiór A, różnym czasowym akcjom wewnętrznym mogą natomiast
odpowiadać różne zbiory A.

Zakładamy, że akcje czasowe są nieprzerywalne: akcja raz rozpoczęta musi być wy­
konana do końca.

Komunikacja zbioru n akcji czasowych na bramce g przebiega w dwóch fazach.
W pierwszej fazie akcje oczekują na synchronizację. Synchronizacja następuje w naj­
wcześniejszej możliwej chwili, zgodnie z zasadą ASAP (As Soon As- Possible).
W chwili nastąpienia synchronizacji, co będzie modelowane zajściem zdarzenia
czasowego <t\, g-beg>, rozpoczyna się faza druga - faza wymiany danych, która trwa
do chwili r2, takiej, że 6 - t^A. Zakończenie tej fazy będzie modelowane zajściem
zdarzenia czasowego <t2, g-end>.

Nowa akcja czasowa - akcja przeterminowania - ma postać timeout(J), gdzie Se Time.
Jest to akcja, której realizacja rozpoczyna się w momencie jej zaoferowania r, i trwa
przez odcinek czasu 3. Rola tej akcji polega na sygnalizacji upływu odcinka czasu dłu­
gości 3, mierzonego od momentu rozpoczęcia akcji. Wykonanie akcji przetermino­
wania będzie modelowane tylko zajściem zdarzenia czasowego <t2, timeout>, określa­
jącego jej zakończenie w chwili tz = 6 + 3, jej rozpoczęcie natomiast nie będzie wy­
różniane odrębnym zdarzeniem.

W tym rozdziale przedstawiono oba podejścia do czasowego rozszerzenia LOTOSa, przy
czym - w celu uproszczenia - ograniczono się tylko do wersji bazowej języka, do­
datkowo z wyłączeniem niektórych konstrukcji, na przykład choice, let, accept. Podej­
ście pierwsze jest reprezentowane przez TE-B-LOTOS, a drugie przez RT-B-LOTOS.

162 Rozdział 9

9.2. Składnia i semantyka języka TE-B-LOTOS

Uproszczona, ograniczona do części bazowej, bez komunikacji danych, wersja języka
TE-B-LOTOS ma następującą składnię:

Q ::= stop |exit{/ in d~..d+} | g{t in d~.. d+}; Q\ i{r in d~.. d+}-, | wait(J); Q\

0j [] 021 01 |[/?]| 021 hide /? in 21 01 » 021 01 [> 021p[gi,g»] | (9.3)

(Q)\Age(d,Q)

Symbole 0, 0i, Qo są metazmiennymi, oznaczającymi wyrażenia behawioralne; będą
one często używane zamiast symboli B, B\, ..., w celu bezpośredniego odróżnienia
wyrażeń języka TE-B-LOTOS od języka RT-B-LOTOS.

Ostatni element przedstawionej składni Age(d, Q) nie należy do języka TE-B-LOTOS,
to znaczy konstrukcji tej nie używa się podczas tworzenia specyfikacji. Jest on nato­
miast stosowany jako element pomocniczy podczas definiowania semantyki języka,
dlatego, ściśle traktując, składnia przedstawia rozszerzony język TE-B-LOTOS, na­
zywany dalej TE-B-LOTOS+. Zbiór wyrażeń behawioralnych języka TE-B-LOTOS*
będzie oznaczany przez TEBeh*, a zbiór wyrażeń języka TE-B-LOTOS - przez
TEBeh.

Deklaracje procesów będą miały postać

process P[S] : funkcjonalność := P endproc

gdzie: Pt Proc, SeSeqG oraz PeTEBeh, a funkcjonalność przyjmuje jedną z postaci
exit albo noexit. Zbiór deklaracji procesów będzie oznaczany przez Decl.

Specyfikacja TESpec w języku TE-B-LOTOS jest określona tak samo, jak specyfika­
cja w LOTOSie bazowym, to znaczy składa się z dwóch elementów:

• czasowego wyrażenia behawioralnego Pe TEBeh,
• zbioru deklaracji procesów Decl = {Dt, ..., D,,}. Elementarne procesy stop i exit

nie wymagają, oczywiście, deklaracji. Zakładamy przy tym, że realizacja procesu
exit jest natychmiastowa, proces stop trwa natomiast nieskończenie długo.

Semantyka języka jest wyznaczana przez etykietowany system przejść

TES(RTSpec) = <TEBeh+, TEvent, TETrans, P> (9.4)
gdzie:

TEvent= {g | ge G u {exz7)} u {/} u {dI deTimej

TETrans = { ——> c TEBeh* KTEBeh* | ee G u {exz7} u {/}}

u{ ——> £ TEBeh+ X TEBeh* | Je Time}

jest zbiorem relacji przejść.

Rozszerzenie czasowe LOTOSa 163

Wyróżnia się dwa rodzaje przejść: zdarzeniowe —£—» i czasowe ——>.

Przejście zdarzeniowe Q—e—^Q' oznacza, że wyrażenie Q może się zaangażować
w wykonanie akcji e, a po jej wykonaniu dalsze zachowanie jest określone przez wy­
rażenie Q\ Przejście czasowe Q——>Q' oznacza, że wyrażenie Q może być opóź­

niane przez odcinek czasu o długości d, a dalsze jego zachowanie jest określone przez
wyrażenie Q'.

Dalej będą stosowane oznaczenia:
Q—> oznacza, że istnieje Q' takie, że Q—L-^Q',

Q!——> oznacza, że nie istnieje Q' takie, że Q—

[Z ::= t']Q oznacza, że ograniczenia czasowe dotyczące akcji występujących
w wyrażeniu Q są zmodyfikowane tekstowo w taki sposób, że zmienna t jest za­
stępowana tekstowo wyrażeniem t'.

Zbiór relacji przejść TETrans jest definiowany rekursywnie za pomocą przedstawio­
nego niżej zestawu aksjomatów i reguł.

Aksjomaty dla prefiksowania akcją komunikacyjną:

g{t in O..d+}; Q। —[Z ::= 0]Q} (TE-prec<mm.i)

g{t in d + d..d++ d}\Qi —g{t in d~..d+}-, [Z ::= t + r/](2i (TE-precomn.2)

g{t in d~..d*}; 0, —stop gdy d > d+ (TE-prec„mm.2)

g{t in d\.d+ + d};Ql d > g{t in O..J+}; [Z ::= t + d]Qt gdy d>d~ (TE-prea)limh4)

Aksjomat (TE-prec,mm.2) odnosi się do sytuacji, gdy akcja na bramce g nie została wy­
konana w przedziale czasu d~.. d+. Oznacza to zablokowanie dalszych obliczeń całego
wyrażenia prefiksowanego akcją na bramce g.

Aksjomaty dla prefiksowania akcją wewnętrzną:

i{rinO..tZ+}; (2i ——» [z::=0](2i (JE-preinM)

i{zinJ“ + d..d++ d}; (2i —> i{zind~.. d+}; [z ::= t + d](2i (TE-preiM,2)

i{zin<F..t/+ + d}\ (2i ——> i{z in 0..t/+}; [z ::= t + z/]0i gdyd>d (TE-pre,,,,.^

Aksjomaty dla procesu exit:

exit{z in O..J+}—» stop (TE-exit{)

exit{zin d~ + d..d++ d}\ <2i ——> exit{zin d~..d+} (TE-exit2)

164 Rozdział 9

Age(d, P) zachowuje się tak, jakby zachowywało się wyrażenie P po upływie odcinka

exit{r in d ..d+}; stop gdy d> d+

exit{/ in O..d+ + d}; Q\ d > exit{t in O..J+}

(TE-exity)

(TE-exit4)

Aksjomat i reguły dla prefiksowania opóźnieniem:

P—^P'
(TE-wait[)

wait(0);P—t—tP'

wait(r/'+ J); P ——> wait(<7'); P’ (TE-waiP)

P—-^P'
d (TE-waity)

wait(J);P d+d. >P

Reguły dla wyboru B = P[]Q:

13

da

(O

eo

“1
3

&S

>e

>3

0̂
5

\ \

to

\ \
to (O

(TE-choice\)

(TE-choicei)

(TE-choice-s)
B—7-t^P'[]Q'

d+d

Reguły dla prefiksowania przesunięcia czasowego:

P—-^P" P"—^P'
d (TE-agey)

Age(d,P)^^P'

P ,, >P'
d+d (TE-age2)

Age{d ,P) d >P

czasu d. Jeśli PI——, oznacza to, że Age(d, P) jest procesem nieaktywnym, równo­

ważnym stop.
Reguły dla złożenia równoległego B =P | [5] | Q:

P—^P'
B-^P'\[S]\Q

Q^-^Q'

(TE-parA

(TE-par-y)

Rozszerzenie czasowe LOTOSa 165

P—^P' Q—^Q'
B-^P'\[S]\Q'

p^p' Q^Q'

B—j—>P'\[S]\Q'

Reguły dla przesłonięcia B = hide S in P:

p —^P'
g e set(S)

B-^-->hide S in P'

P —^P'
g e set(S)

B-^- hide Sin P'

P—-^P'
a

Wg e set(S) • (PI—^/sWP'Wd'<d • (P—P' => P'/—^)

B——> hide Sin P'
(l

(TE-par^)

(TE-par^

(TE-hide^

(TE-hiden)

(TE-hideJ)

Ostatnia reguła oznacza, że przesunięcie czasu może nastąpić, co najwyżej, do naj­
wcześniejszego wystąpienia akcji komunikacyjnej, a akcje na przesłoniętych bram­
kach są wykonywane zgodnie z zasadą maksymalnego postępu (as soon as possible).
Reguły dla złożenia aktywującegoB=P»Q:

P—^P'
——-——----— g.event±exit (TE-acceptC)

B i iP'^Q (TE-accept,)

P—P', PWP"Wd' <d* (P——^P" => P"! ex" >)
------ --- *---------------------------- (TE-acceph)

B-^P'»Q '

Ostatnia reguła oznacza, że przesunięcie czasu może nastąpić pod warunkiem, że nie
jest realizowana akcja exif, akcja ta jest wykonywana zgodnie z zasadą maksymalnego
postępu.

Reguły dla złożenia deaktywującego B = P[> Q:

P—^P'
-------------------- g.event*exit (TE-disi)
B-^-^P[>Q

Q^^Q'
B-^Q'

(TE-disi)

166 Rozdział 9

P
B-^-^P'

P^P\Q^Q'

B-^P'»Q'

Reguły dla wywołania procesu B = p [h,,..., hn]:

GLg^...... 8,r--=M-^Q'
B^^Q'

Q[g! gn ■■=h„]—r^Q'

B^Q'

(TE-disi)

(TE-disĄ)

(TE-insti)

(TE-instz)

9.3. Wybrane własności języka TE-B-LOTOS

Własności języka TE-B-LOTOS są zgodne z własnościami języka LOTOS. Należą do
nich własności zdefiniowane dla LOTOSa w podrozdziale 7.2.

Zachodzi też twierdzenie o ekspansji. Wprowadzimy następujące oznaczenia:

Pt jest skrótem zapisu P^ gdzie zj,..., z„G/.
/e Z

22 | c}, gdzie c jest wyrażeniem logicznym, wyznacza podzbiór podwyrażeń skła-
/€/

dowych wyrażenia 22 które spełniają warunek c.
iel

Niech będą dane dwa czasowe wyrażenia behawioralne w normalnej sekwencyjnej
postaci normalnej:

P-£“iUin<-<};^[]^..d^^Pj InJ = 0
ie / Je J

(9.5)
Q = ^bk{tkmd;:..d{}-,Qk KnL = 0

keK leL

Twierdzenie o ekspansji pokazuje, że różne złożenia takich wyrażeń daje się również
wyrazić w sekwencyjnej postaci normalnej.

Twierdzenie 9.1
Zachodzą następujące równoważności w sensie relacji silnej bisymulacji:

Rozszerzenie czasowe LOTOSa 167

dla złożenia równoległego:

P|[5]|2~ |[S]| Age(r, ,0)k.ev^^ set(S)u {exit}}
iE/

[] ^{bk kindk-dk };(Qk I ki I Ag^k ’I bk event £ Set(s)u {^11

kEK

"=M0)k = a, = bk A

fe/
ci.evente. set(S)/\keK]

[] £iy{tj in<..<}; {Pj | [S] | Age(tj,0)

leL

dla złożenia deaktywującego:

Pl>Q~ Q
11 21^/16 ind, Age(t,■,2)) | a,,eventi set(S')u{exit}}

iel

[]Sk{Mnd~..d,}};^k,event = exit}

[] z i jUj ind- ..d*};(P] [> Age(tj, Q))
jej

dla złożenia aktywującego:

P»Q~ S«,.{r,in<..<};(^ »Age(ti,Q))
iEl

[] Siyind-..d;]-,(Pj » Age(tj,Q))

dla przesłonięcia:

hide S in P ~ {a, {tj in d[. .d^}; hide S in P, | a, .event g set(S) u {exit}}
fe/

[] ^{i{t, indf.z?^};hide S in Pj \aj.evente set(S)u{exit}}
fe/

[] ^ijt; ind[..d^};hide S in Pj
jej

dla opóźnienia:

wait(d);P ~ ^a,{r, inrf,"..d^};[?, ::=?,• -d]Pj
iel

[]yjij{tjmd;..d;}-,[ti-tj-d]Pj

168 Rozdział 9

dla przesunięcia czasowego:

Age(d,P)~ ^aft^ndj -d..dj -d};[r, ::=r, + d]Pj
iel

n in< -d..< -d};[r,. -.^t, +d]Pj
Jej

9.4. Składnia i nieformalna semantyka języka RT-B-LOTOS

Wprowadźmy oznaczenia:

G - zbiór nazw bramek obserwowalnych,
Proc - zbiór nazw procesów,
Time - dziedzina chwil czasowych,
TBeh - zbiór czasowych wyrażeń behawioralnych.

Zbiór wszystkich akcji czasowych jest zdefiniowany jako suma mnogościowa

Act =]g[J] | g&G, A^Time} u{i[zl] | AęTime} u {timeout(J) | <5e Time} (9.6)

Niech SeqG oznacza zbiór takich ciągów nad zbiorem G, w których nie ma powtórzeń
dwóch tych samych nazw bramek, to znaczy

SeqG = {gb ..., g„\g.eG, g,*gj dla i ^j, n = 0, 1, ...} (9.7)

Jeżeli ReSeqG oraz R = gh ..., g,„ to set(R) = { gb ..., gn} oraz len(R) = n dla n > 0.

Deklaracje procesów będą miały postać

process P[S] '.funkcjonalność := B endproc

gdzie: PeProc, SeSeqG oraz BETBeh, a funkcjonalność przyjmuje jedną z postaci
exit albo noexit. Zbiór deklaracji procesów będzie oznaczany przez Decl.

Instancją procesu będzie wyrażenie postaci BU?], gdzie ReSeqG oraz len(R) = len(S).
Wyrażenie to jest szczególną postacią czasowego wyrażenia behawioralnego. Zbiór
wszystkich czasowych wyrażeń behawioralnych TBeh, w notacji BNF, jest określony
następująco:

B stop I exit I g[J]; B, I i[d]; B, I timeout(ó); Bi I Bi » B21 B{ [] B2 I
(9.8)

hide R in Bx | B} [> B21 B| |[7?]| B21 P[B] | (B,)

gdzie: B, Bi, B2& TBeh, P^Proc, RE.SeqG. Kolejność wprowadzenia operatorów odpo­
wiada malejącej kolejności ich priorytetów.

Nieformalnie semantyka czasowych wyrażeń behawioralnych, oprócz czasowej roz­
ciągłości akcji, jest podobna do semantyki wyrażeń LOTOSa standardowego. Dodat­

g%25e2%2580%259e/g.eG

Rozszerzenie czasowe LOTOSa 169

kowe różnice wynikają z wprowadzenia akcji przeterminowania. Bezpośrednio sama
akcja timeout(J) oznacza opóźnienie o odcinek czasu długości 8. Obecność natomiast
tej akcji w różnych kontekstach ma wpływ na przebieg obliczeń. Rozpatrzmy na przy­
kład trzy wyrażenia behawioralne, w których może ona wystąpić:

g[żl]; By [] timeout(J); B2 (9.9)

By [> timeout(^); B2 (9.10)

By |[/?]| timeout(J); B2 (9.11)

Pierwsze wyrażenie (9.9) reprezentuje następujące zachowanie: jeżeli w odcinku cza­
su o długości 8, mierzonym od momentu jego przygotowania, rozpocznie się reali­
zacja akcji czasowej na bramce g, to dalsze zachowanie - jak przy konstrukcji wyboru
- przebiegnie zgodnie z wyrażeniem By, w przypadku natomiast przeciwnym w mo­
mencie upływu odcinka czasu ^rozpocznie się realizacja wyrażenia B2.

Drugie wyrażenie (9.10) reprezentuje następujące zachowanie: jeżeli w odcinku czasu
o długości 3, mierzonym od momentu jego przygotowania, nie nastąpi zakończenie
wyrażenia By, to w momencie upływu odcinka czasu 3 nastąpi jego przerwanie i roz­
pocznie się realizacja wyrażenia B2.

W przypadku natomiast trzeciego wyrażenia (9.11) akcja przeterminowania odgrywa
tylko rolę opóźnienia momentu rozpoczęcia wykonania wyrażenia B2.

Dwa pierwsze wyrażenia są typowymi konstrukcjami, które można spotkać w językach
programowania czasu rzeczywistego, na przykład w języku Ada 95 [Huzar i inni 1998],

Definiowany język zawiera te same źródła niedeterminizmu, co LOTOS standardowy
- dotyczy to konstrukcji wyboru oraz selekcji zestawów komunikujących się proce­
sów. W rozważaniach przyjmujemy niedeterministyczny wybór czasów wykonania
akcji czasowej ze zbioru A, określającego dopuszczalne czasy wykonania. Możliwe są
też inne sposoby, na przykład wybór losowy zgodnie z zadanym rozkładem praw­
dopodobieństwa, tak jak to przedstawiono w artykule [Huzar, Magott 1997a].

Specyfikacja RTSpec w języku RT-B-LOTOS jest określona tak samo jak specyfikacja
w LOTOSie bazowym, to znaczy składa się z dwóch elementów:

• czasowego wyrażenia behawioralnego Be TBeh,
• zbioru deklaracji procesów {Dy, ..., D,,}, gdzie D^Decl. Elementarne procesy stop

i exit nie wymagają oczywiście deklaracji. Zakładamy przy tym, że realizacja pro­
cesu exit jest natychmiastowa, proces stop trwa natomiast nieskończenie długo.

9.5. Semantyka formalna języka RT-B-LOTOS
Semantyka operacyjna specyfikacji jest definiowana w sposób strukturalny na pod­
stawie definicji składniowych wyrażeń behawioralnych.

170 Rozdział 9

Wprowadzenie czasu powoduje, że w wyrażaniu semantyki konieczne staje się rozwa­
żanie przejściowych sytuacji, w których oczekuje się jedynie na upływ czasu. Z tego
względu wprowadza się pomocniczą akcję opóźnienia, oznaczaną delay(g, ó), gdzie
geG u {i}, której jedynym znaczeniem jest opóźnianie akcji na bramce g o zadany
odcinek czasu J.

Wprowadzenie akcji opóźniającej rozszerza zbiór wyrażeń behawioralnych. Rozsze­
rzony zbiór czasowych wyrażeń behawioralnych, oznaczany XTBeh, w notacji BNF,
jest zdefiniowany następująco: Niech B jest metazmienną reprezentującą wyrażenie
behawioralne ze zbioru TBeh, a XB, XB\, XB2 są metazmiennymi reprezentującymi
zbiór wyrażeń XTBeh, wówczas

XB ::= B | delay(g, S); B | XB{ |[S]| XB21 hide 5 in XB | XB»B | XB [> B (9.12)

Rozszerzony zbiór wyrażeń behawioralnych służy do przedstawiania konfiguracji za­
chodzących w trakcie obliczeń - są to zarówno konfiguracje zasadnicze, reprezento­
wane przez wyrażenia behawioralne języka RT-B-LOTOS, jak i konfiguracje pomoc­
nicze, reprezentowane przez rozszerzone wyrażenia behawioralne. Składnia wyrażeń
rozszerzonych jest zdefiniowana tak, aby uwzględniać tylko możliwe do osiągnięcia
konfiguracje pomocnicze. Nie jest na przykład możliwa do osiągnięcia konfiguracja,
która byłaby reprezentowana przez wyrażenie XB\ [] XB2, gdyż oznaczałaby przejścio­
wą konfigurację, w której trwa realizacja wyrażeń po obu stronach operatora wyboru.
Jest to oczywiście niemożliwe, gdyż realizacja wyrażenia behawioralnego z opera­
torem wyboru prowadzi do wyboru tylko jednego wyrażenia składowego.

Wprowadzamy zbiór nazw zdarzeń czasowych Event, zdefiniowany jako

Event = {g-beg | ge G} u {g-end\g&G} u {i-beg, i-end, exit, timeout} (9.13)

Jeżeli Se.SeqG, to

Evevt(S) = {g-beg | ge se^S)} u {g-end | ge set(S)} (9.14)

Zbiór zdarzeń czasowych TEvevt jest zdefiniowany jako produkt

TEvevt - Time X Event

Jeżeli e = <t, h>& TEvent, to

e.time = t oraz e.event = h.

Dla specyfikacji RTSpec = < {B, {£>,, ..., £>„}> etykietowany system przejść czaso­
wych jest zdefiniowany jako

RTS(RTSpec) = <XBeh, TEvent, RTrans, B> (9.15)
gdzie

RTrans = { —> ę XBehx XBeh | ee TEvent} jest zbiorem relacji przejść.

Rozszerzenie czasowe LOTOSa 171

Zbiór relacji przejść RTrans jest definiowany rekursywnie za pomocą przedstawio­
nego niżej zestawu aksjomatów i reguł. W regułach występuje kilka funkcji pomocni­
czych.

Pierwsza z nich, funkcja o sygnaturze

First: XTBeh -> 2C

dla danego rozszerzonego czasowego wyrażenia behawioralnego B, wyznacza zbiór
bramek, które są przygotowane do komunikacji. Definicję funkcji przedstawiono
w tabeli 9.1.

Tabela 9.1

B First(B)

stop 0
exit 0

gMJ; Bt {#}
iMJ; Bt 0

delay(^, 8); Bi (geGu {i)) 0
timeout(Ą; Bt 0

Bt [] B2 First(B0 U First(B2)

imi b2 (First(BA\set(S)) O (First(B2)\set(S'»
u (First(Bi) n First(B2) n set(S)

hide S in B^ First{B\)\set{S)

P[^]
FirstiBx[S.:=R])

Bt jest treścią procesu P
Bt» B2 First(B\)
B । [> Bi First(BA u First(B2)

(5.) First(B\)

Dwie następne funkcji o sygnaturach:

Age : XTBeh X Time —> XTBeh

Next: XTBeh —> Timem

służą do modelowaniu upływu czasu. Pierwsza z nich, Age(B, 3), transformuje rozsze­
rzone czasowe wyrażenie behawioralne w nowe wyrażenie, które jest tylko rezultatem
upływu czasu o odcinek 8.

Druga funkcja, Next(B), dla danego rozszerzonego czasowego wyrażenia behawioral­
nego B, wyznacza, poczynając od danej chwili, najwcześniejszy moment, w którym

172 Rozdział 9

może się rozpocząć akcja czasowa, niezależnie od otoczenia wyrażenia B. Zbiór war­
tości funkcji Time^ = Time u {°°}, gdzie element <» ma następujące własności:

V/e Time • +

Jeżeli najwcześniejszy moment akcji czasowej dla wyrażenia B zależy wyłącznie od
jego otoczenia, to wartość funkcji jest zdefiniowana jako Next(B) = <». Funkcje są
zdefiniowane w tabeli 9.2.

Tabela 9.2

B Age(B, 5) Next(B)

stop stop oo

exit exit oo

gM; By oo

0
delay(g, Ą); By

geGu(i) delay(g, 3y - 8y, By2) 3y

timeout(Ą); By timeout(Ą - 8)\ By2) s^
By [] B2 Age(By, 3) [] Age(B2,3)* min(Next(By), Next(B2))

B. |[5]| B2 Age(By, 3) \[S]\Age(B2, 3)3} min(Next(By), Next(B2))

hide S in By hide 5 in Age(By, 3)4) 0 gdy First(By) n set(S) * 0
Next(By) w przypadku przeciwnym

F[B]
Age(By[S ::= R], 3) 41

By jest treścią procesu P
Next(By[S ::= /?])

By » B2 Age(By,3)» B2i} Next(By)
B] [> S? Age(By,8)(>Age(B2, 3)^ min(Next(By), Next(B2))

(By) Age(By,3)4} Next(By)

Zdefiniowane tylko dla 3=0.
Zdefiniowane tylko dla 3< 3y.
Zdefiniowane tylko dla 3< min(Next(Bt), Next(B2))-
Zdefiniowane tylko dla 3<min(Next(By).

Wreszcie ostatnia funkcja pomocnicza, o sygnaturze

Abort: XTBeh -> XTBeh

dokonuje transformacji rozszerzonego czasowego wyrażenia behawioralnego B, która
odzwierciedla konsekwencje zerwania obliczeń wyrażenia. Jedynym powodem zerwa­
nia obliczenia jest zastosowanie konstrukcji złożenia deaktywującego By [> B2. Jeżeli
wyrażenie B2 rozpocznie swą aktywność, to musi nastąpić zakończenie wyrażenia Bj.
Ponieważ akcje czasowe są nieprzerywalne, zakończenie wyrażenia By nie następuje

Rozszerzenie czasowe LOTOSa 173

w momencie rozpoczęcia wyrażenia fi2, lecz dopiero wówczas, gdy zakończą się
wszystkie aktualnie wykonywane akcje czasowe wyrażenia B], Taki łagodny model
zrywania obliczenia (soft abortion) wyrażenia behawioralnego wyraża funkcja Abort,
zdefiniowana w tabeli 9.3.

Tabela 9.3

B Abort(B)

stop stop
exit stop

stop
stop

delay(g, S); Bi geGu {i} delay(g, Sy stop
timeout(ó); Bt stop

Bi [] B2 Abort(BA [] Abort(B2)
[]i[F2];B2 stop

Bi |[5]| B2 AborRBj) |[S]| Abort(B2)
hide S in Bi hide 5 in AborRBA

P[5]
Abort(Bi[S :■.= /?])

B\ jest treścią procesu P
B\ » Bi Abort(B\)
Bi [> B2 Abort(Bi) |[0]| Abort^Bj)

(5.) Abort(B\)

Proces pusty stop - brak aksjomatów.

Proces zakończenia B = exit
B > stop (RT-exit)

gdzie t > 0.

Proces exit wykonuje się natychmiast, jeśli tylko w jego otoczeniu istnieją już przygo­
towane procesy, które się z nim synchronizują. W przypadku przeciwnym proces exit
oczekuje na synchronizację.

Prefiksowanie akcją komunikacyjną B = g[żl]; B\

B <M^.<->delay(g, S),Bl (RT-pre,,mm)

gdzie ?>0, Se A i geG.

Akcja komunikacyjna rozpoczyna się w chwili synchronizacji z otoczeniem, co może
nastąpić w dowolnym momencie t > 0, i trwa odcinek czasu Se A, uzgodniony przez
komunikujące się procesy.

174 Rozdział 9

Prefiksowanie akcją wewnętrzną B = i[zl]; B,

B >delay(;,ó-);B, (RT-preinl)

gdzie Je A

Akcja wewnętrzna rozpoczyna się w chwili jej zaoferowania otoczeniu i trwa odcinek
czasu Je A ustalony przez proces zawierający akcję, bez wpływu otoczenia.

Prefiksowanie akcją opóźniającą B = delay(g, fi); B^

B (RT-preM„fi

Rozpoczęta akcja opóźniająca trwa nieprzerwanie, aż do zakończenia.

Prefiksowanie akcją przeterminowania B = timeout(J); B\

B {RT-preti„mM)

Rozpoczęta akcja przeterminowania kończy się po upływie zadanego odcinku czasu fi,
ale - w odróżnieniu od akcji wewnętrznej - może być przerwana: wynika to z dalej
przedstawionych reguł dotyczących konstrukcji wyboru i złożenia deaktywującego.

Wybór B = B\[] B2

{RT-choice^)
B—^B'

jeśli e.time < Next(B2) oraz
e.event = g-beg, dla ge G u {i} lub e.event = timeout

b2—^b2 .
—------------ (RT-choice->)
B^^B2

jeśli e.time < Next(B\) oraz
e.event = g-beg, dla gE G u {i} lub e.event = timeout

Reguły opisujące wybór sprowadzają się do stwierdzenia, że wybiera się to wyrażenie
składowe, dla którego najwcześniej zajdzie zdarzenie czasowe. W przypadku równo­
czesnego wystąpienia zdarzeń dla obu wyrażeń składowych wybór jest niedetermini-
styczny.

Złożenie równoległe B = B\ |[S]| B2

------ ----------------------------------- (RT-part)
B —> B{ | [5] | Age(B2, e.time)

jeśli e.event£ Event(S) o {exźt} oraz e.time < Next(B2)

Rozszerzenie czasowe LOTOSa 175

B2——>B2
B——>Age(B} .e.time) |[S] | B2

(RT-par2)

jeśli e.event£ Event(S) U {exźt} oraz e.time < Next(B\)

fi C—>B}

B2 e >B2
b^-^b;\[s]\b2

(RT-par^

jeśli e.eventeEvent(S) u {exit} oraz e.time < min(Next(B}), Next{B2))

Dwie pierwsze reguły opisują transformację złożenia równoległego, gdy nastąpi zda­
rzenie czasowe w jednym z wyrażeń składowych, które nie angażuje wspólnych bra­
mek komunikacyjnych. Najwcześniejsze zajście takiego zdarzenia powoduje odpo­
wiednią transformację składowej, w której ono zaszło; transformacja drugiej
składowej polega natomiast tylko na modyfikacji wynikającej z upływu czasu.

Trzecia reguła dotyczy sytuacji, gdy zachodzi zdarzenie związane ze wspólną bramką
komunikacyjną obu składowych wyrażenia.

Przesłonięcie B = hide S in B\

Bt ^'-^--^B'
B <0J'beg> >B'

(RT-hide\)

dla ge set(S)

B,
B >B'

{RT-hidei)

dla gE set(S) oraz t > 0

fi ' > fi

B^^B{
(RT-hidei)

dla e.event£set(S)

Reguły dotyczące przesłonięcia wynikają z przyjęcia semantyki standardowego języka
LOTOS, a nie języka zmodyfikowanego, przedstawionego w rozdziale 8. Dwie pierw­
sze reguły są odpowiednikiem pojedynczej reguły (RT-hide^ dla języka LOTOS
i wynikają stąd, że pojedyncza akcja w języku LOTOS jest reprezentowana dwoma
zdarzeniami czasowymi w RT-B-LOTOS. Trzecia reguła jest taka sama jak druga
reguła dla języka LOTOS.

176 Rozdział 9

Instancja procesu B = F[S]

gjg-g]—^g;
g—^g;

(RT-inst)

gdzie g| jest treścią procesu P.

Obliczenie instancji procesu przebiega tak jak obliczenie zmodyfikowanego wyra­
żenia g|, stanowiącego treść procesu. Modyfikacja polega na zastąpieniu listy bramek
formalnych R listą bramek aktualnych S - oznaczenie gj/? ::= 5],

Złożenie aktywujące B = Bt» B2

B—^B{» B2
(RT-enabli)

jeśli e.event exit

g, >B[(RT-enablz)

Przedstawione reguły, oprócz wprowadzenia zdarzeń czasowych, nie różnią się od
reguł dla złożenia aktywującego dla języka LOTOS.

Złożenie deaktywujące B = B\ [> B2

b^^b;
B ——> B{[> Age(B2,e.time)

(RT-disC)

jeżeli e.event * exit oraz e.time < Next(B2)

:^^B{
p <0,mi7> v n'

(RT-disj)

B2—^B2
B—^AbortęB^^^B^

(RT-dis3)

Pierwsza reguła dotyczy sytuacji, gdy najwcześniej zachodzącym jest zdarzenie czasowe
w składowej gb Transformacja całego wyrażenia jest w tym przypadku podobna do sy­
tuacji opisanej regułą R-par\ dla złożenia równoległego. Druga reguła, dotycząca również
składowej B\, ale zajścia zdarzenia kończącego tę składową, jest taka sama jak odpo­
wiednia reguła dla języka LOTOS. Trzecia reguła jest specyficzna tym, że zajście zda­
rzenia rozpoczynającego g2 uruchamia działania zmierzające do zakończenia składowej
gi, dokładniej - do dokończenia wszystkich aktualnie trwających akcji czasowych.

Rozszerzenie czasowe LOTOSa 177

Nawiasy B =(Bi)

B{ —■'—*B}
(RT-brace)

Warto porównać sposób definiowania języka RT-B-LOTOS z definiowaniem języka
TE-B-LOTOS.

Pierwsza różnica odnosi się do tranzycji: w języku RT-B-LOTOS mamy do czynie­
nia tylko z jednym rodzajem tranzycji związanych ze zdarzeniami czasowymi,
w TE-B-LOTOS są natomiast dwa rodzaje: tranzycje czasowe i tranzycje zdarzenio­
we. Druga różnica dotyczy postaci reguł: w języku TE-B-LOTOS występują reguły
z przesłankami negatywnymi (trzecia reguła dla przesłonięcia i dla złożenia aktywują­
cego), których nie ma w RT-B-LOTOSie. Reguł z przesłankami negatywnymi [Groote
1990] udało się w RT-B-LOTOSie uniknąć, dzięki wprowadzeniu funkcji Next, która
- w razie braku komunikacji z otoczeniem - wyznacza najwcześniejsze zdarzenie
powodujące tranzycję.

Podobieństwem w obu sposobach definiowania jest wprowadzenie języków pomocni­
czych, stanowiących rozszerzenie TE-B-LOTOSa - chodzi o TE-B-LOTOS+, oraz
RT-B-LOTOSa - chodzi o rozszerzony zbiór wyrażeń behawioralnych XTBeh. W obu
przypadkach powodem rozszerzeń jest opis sytuacji przejściowych podczas wykony­
wania tranzycji.

9.6. Wybrane własności języka RT-B-LOTOSa

Etykietowany system przejść czasowych RTS(RTSpec) wyznacza zbiór obliczeń dla
specyfikacji RTSpec. Obliczenie jest zdefiniowane jako skończony albo nieskończony
ciąg tranzycji postaci:

B —^B^ —^B2...—^Bn (9.16a)

B —^B,—L̂ B2...—^B„—S^... (9.16b)

gdzie: Bt, B,„ ...eXBeh, ..., e„, e„+i, ...eTEvent.

Semantykę akcyjną i obserwowalną definiuje się podobnie jak we wcześniej rozważa­
nym przypadku języka LOTOS (rozdz. 5.).

Na podstawie definicji relacji tranzycji i definicji zbioru wyrażeń XTBeh (9.12) łatwo
sprawdzić, że zachodzi własność:

Twierdzenie 9.2

Dla obliczenia skończonego postaci (9.16a) Bne TBeh.

178 Rozdział 9

Dowód

Wystarczy zauważyć, że dowolne wyrażenie behawioralne BeXTBeh\TBeh za­
wiera przynajmniej jedną akcję opóźnienia delay. Z definicji zbioru wyrażeń
XTBeh (9.12) i funkcji First (tab. 9.1) wynika, że każda akcja opóźnienia jest ele­
mentem zbioru First^B). Akcja delay prefiksuje pewne podwyrażenie wyrażenia
B. Zachodzą tu tylko następujące możliwości:

B = delay(g, B}
B = delay(g, B{ [] B2
B = delay(g, <5); B} |[S]| B2
B = delay(g, J); Bt » B2
B = delay(g, J); B[[> B2

W każdym z tych przypadków istnieje tranzycja z wyrażenia B do innego wyra­
żenia. Jeśli zatem BeXTBeh\TBeh, to B nie może być wyrażeniem końcowym
skończonego obliczenia.

Należy zwrócić uwagę na to, że w definiowaniu semantyki zastosowano konwencję
czasu względnego. Oznacza to, że moment zachodzenia kolejnego zdarzenia czaso­
wego jest odniesiony do chwili osiągnięcia wyrażenia behawioralnego, z którego na­
stępuje tranzycja pod wpływem tego zdarzenia. Jest to konwencja wygodniejsza od
konwencji czasu bezwzględnego, która była stosowana w definiowaniu semantyki
języka RT-CCS (rozdz. 3.). Chwila t,, dla i = 1,2, ..., w której nastąpiła tranzycja do
wyrażenia B, wynosi

t, = e\.time + ... + ei.time

Porównując definicję semantyki LOTOSa bezczasowego i czasowego, łatwo zauwa­
żyć podobieństwo reguły tranzycji. Semantyka standardowego języka LOTOS jest
semantyką przeplotową, to znaczy wyznacza ona zbiór obliczeń, w których pewne
akcje mogą być przestawione w permutacje. Wprowadzenie czasu wyklucza możli­
wość takiego podejścia i wymaga semantyki prawdziwie równoległej (true concurren-
cy semantic). Taka jest właśnie semantyka języka RT-B-LOTOS. Semantyka ta różni
się od semantyki przeplotowej tym, że na zbiór obliczeń wyznaczonych przez seman­
tykę przeplotową narzuca pewne ograniczenia na dopuszczalne ciągi akcji (zdarzeń
czasowych). Ograniczenia te mają postać warunków dopuszczających stosowanie
poszczególnych reguł. W warunkach tych występują, jako zasadnicze, funkcje po­
mocnicze związane z modelowaniem upływu czasu.

Język RT-B-LOTOS zachowuje część własności języka LOTOS (wyrażonych w p. 7.2)
dotyczących silnej bisymulacji.

Twierdzenie 9.3
Zachodzą następujące związki:

Rozszerzenie czasowe LOTOSa 179

Prawa dla wyboru

[] B2 ~ B2 [] Br

Br [] (B2 [] Bj) ~ (Br [] B2) [] B,

B[]B~B
B [] stop ~ B

Prawa dla złożenia równoległego

Br |[S]|B2~B2|[5]|B1

Br |[S]|(S2 |[Z?]| Z?3) ~ (Bi |[SW

exit |[S] | stop ~ stop

Prawa dla złożenia aktywującego

stop » B ~ stop
(B\ » Bj) » B2 ~ B\ » (B2 » Bj)

B » stop ~ B |[0]| stop

Prawa dla złożenia deaktywującego

stop [> B ~ B

exit [> B ~ exit [] B
(B,[> B2) [> B,~Br [> (B2 [> 53)

(B{ [> B2) [] B2 ~ Br [> B2

B [> stop ~ B

Prawa dla przesłonięcia

hide S in B ~ hide S' in B jeśli set(S') = set(S) n FG(B)

hide S in B ~ B jeśli set(S) n FG(B) = 0

gdzie FG(B) jest zbiorem bramek, które występują w wyrażeniu B jako bram­
ki wolne, to znaczy niezwiązane operatorem przesłonięcia (formalna definicja
funkcji FGjest tu pominięta).

hide S in hide S’ in B ~ hide S" in B

hide S in g[A] ; B ~ i[zl] ; hide S in B

hide S in g[zl]; B ~ g[zl] ; hide S in B

jeśli set(S'j = set(S) u set(S')

jeśli ge set(S)

jeśli g^set(S)

hide S in Br [] B2 ~ hide 5 in Br [] hide 5 in B2

180 Rozdział 9

hide S in B, |[S']| B2 ~ (hide 5 in B,) |[5']| (hide S in B2)

jeśli set(S) n set(S’) = 0

hide 5 in B| » B2 ~ (hide S in B,) » (hide S in B2)
hide S in B, [> B2 ~ (hide 5 in B() [> (hide S in B2)

Prawo dla instancji procesu

B[5] ~ B[S/B] jeśli process p[B] : funkcjonalność := B endproc

Dowód
Pełny dowód, oparty na indukcji strukturą, jest długi i uciążliwy, ze względu na
dużą liczbę przypadków wymagających rozważenia. Poniżej przedstawiamy tylko
szkic dowodu, przy czym ograniczymy się tutaj tylko do własności dla złożenia
równoległego.

Rozpatrzmy równość wyrażającą przemienność złożenia równoległego

B, |[S]|B2~ B2|[S]|B,

Wynika ona z reguł tranzycji (RT-parj), (RT-parf) i (RT-parf). Na podstawie tych
reguł zawsze jako pierwsze do obliczenia jest wybierane zdarzenie czasowe,
spośród zdarzeń oferowanych przez B| i przez B2, które występuje najwcześniej.
Reguła (RT-part) dotyczy przypadku, gdy najwcześniej jest oferowane zdarzenie
czasowe przez wyrażenie Bt, które nie angażuje bramki ze zbioru set(S), czyli
zachodzi niezależnie od wyrażenia B2. Podobnie reguła (RT-parf) dotyczy przy­
padku najwcześniejszego zdarzenia niezależnego oferowanego przez B2. Reguła
(RT-parj) dotyczy natomiast przypadku, gdy najwcześniejsze zdarzenie czasowe
zachodzi z udziałem obu składowych, czyli gdy jest zaangażowana bramka ze
zbioru set(S). Gdy najwcześniejsze zdarzenia oferowane przez B| i przez B2 lub
jednocześnie przez oba te wyrażenia odnoszą się do tej samej chwili, mamy niede-
terminizm, co wyraża się zbiorem obliczeń, w których zdarzenia te występują
w przeplocie.

Po wykonaniu tranzycji wynikających z uwzględnienia najwcześniejszego zdarze­
nia czasowego e

B, | [S] |B2 —> Bfl [5] |B2 oraz B2| [5] |B, B'21 [S] |Bf

znajdujemy się w sytuacji podobnej do analizowanej, to znaczy kolejne zdarzenie
czasowe, które mogą wygenerować wyrażenia BflfBjlB^oraz B^t^HBfsą takie
same, czyli B^SJlBÓ- B21 [5] |Bf. Zatem B| |[S]| B2 ~ B2 |[S]| B|.

Druga równość, wyrażająca łączność

B^ |[5]| (B2 |[B]| B3) ~ (B, |[S]| B2) |[/?]| B,

Rozszerzenie czasowe LOTOSa 181

zachodzi, podobnie jak równość pierwsza, na mocy tych samych reguł tranzycji:
jako pierwsze jest zawsze wybierane zdarzenie czasowe najwcześniejsze spośród
zdarzeń oferowanych przez składowe Bh B2, B2, a po jego zajściu osiągnięte nowe
wyrażenia oferują te same zbiory kolejnych zdarzeń czasowych.

Trzecia równość

exit |[S]| stop ~ stop
jest oczywista.

Dla języka RT-LOTOS nie zachodzą natomiast inne równoważności, na przykład dla
akcji wewnętrznych, takie jak:

B [] i[4] ; B = i[4] ; B

g[Ą] ; (5, [] i[4] ; [] gtĄ] ; B2 ; (B, [] i[4] ; B2)

gdzie symbol = oznacza dowolną z relacji ~, =c, =. Podobnie dla akcji exit

exit » B =c i; B

Dla języka RT-LOTOS nie zachodzi, niestety, także twierdzenie o ekspansji, to znaczy
złożenie wyrażeń w sekwencyjnej postaci normalnej nie zawsze daje się sprowadzić do
wyrażenia w sekwencyjnej postaci normalnej. Warto rozpatrzyć ilustrujący to przykład.

Niech będą dwa wyrażenia behawioralne w normalnej postaci sekwencyjnej:

P = a[AaV,Px [] b[Ah] \P2

0 = c[4];P3[] b[Ah]-P<

Dla wyrażenia postaci P |[Z?]| Q twierdzenie o ekspansji, stanowiące odpowiednik
twierdzenia o ekspansji dla języka LOTOS, miałoby w tym przypadku postać:

P |[B]| Q ~ «[41; (Pi |U>]| Q) [] d4]; (Pj M P) [] b[Ah]; (P2|[Z>]| P4)

Tymczasem rozpatrzmy przejścia do nowego wyrażenia; możliwe są następujące sytuacje:

1. Jako pierwsze zachodzi zdarzenie czasowe a, które nie jest związane z bramką
synchronizującą P z Q.

2. Jako pierwsze zachodzi zdarzenie czasowe b na bramce synchronizującej P lQ.
3. Jako pierwsze zachodzi zdarzenie czasowe c, które nie jest związane z bramką

synchronizującą P z Q.

W przypadku pierwszym, po rozpoczęciu akcji czasowej a[4L następnymi akcjami są
nie tylko zakończenie akcji a, ale także - jeszcze przed zakończeniem akcji a - rozpo­
częcie akcji c. Przedstawiona postać twierdzenia o ekspansji tej ostatniej możliwości
nie przewiduje.

182 Rozdział 9

9.7. Język RT-LOTOS

Język RT-B-LOTOS został wprowadzony przede wszystkim w celu zwartego przed­
stawienia prawdziwie równoległej semantyki, bez uwzględnienia typów danych, które
nie mają zasadniczego wpływu na definicję semantyki. Przyjmując definicję języka
RT-B-LOTOS, można łatwo - w oczywisty sposób - rozszerzyć ją po dołączeniu ty­
pów danych do języka. W zastosowaniach praktycznych wymagamy zwykle języka
dysponującego danymi, dlatego na podstawie definicji (9.8) dokonamy oczywistego
rozszerzenia składni czasowych wyrażeń behawioralnych. Zakładamy przy tym, że
definicja i semantyka typów danych są zgodne z odpowiednimi definicjami podanymi
w rozdziale 4.

Zbiór wyrażeń behawioralnych, oznaczany RT-TBeh, jest zdefiniowany, za pomocą
notacji BNF, w sposób następujący:

B ::= stop | exit | gax...a,,[4]; B} | i[zl]; Bx | timeout(ó); Bx | Bx » B21

B\ [] B21 hide R in B{ | Bx [> B21 Bx |[/?]| B21 P[R] | (B,) | [c] -> Bx

gdzie: B, Bx, B2 są metazmiennymi, ax ...On (n > 0) są elementami komunikacyjnymi
zdefiniowanymi tak jak dla akcji strukturalnych (5.2), c jest predykatem - wyrażeniem
logicznym, czyli termem rodzaju Bool.

Postać specyfikacji w języku RT-LOTOS jest zgodna ze składnią języka LOTOS i nie
wymaga oddzielnej definicji.

Nieprzedstawianą tutaj formalnie semantykę specyfikacji można łatwo wyprowa­
dzić na podstawie definicji języka LOTOS, przedstawionej w rozdziale 5., i defini­
cji języka RT-B-LOTOS, przestawionej w bieżącym rozdziale.

W przedstawionych definicjach abstrahujemy od sposobu wyboru czasu wykonania
akcji. W zastosowaniach, jak wspominaliśmy, przyjmuje się różne mechanizmy wy­
boru. Ze względu na potrzeby dalej rozważanego przykładu specyfikacji założymy tu
sposób wynikający z podziału akcji komunikacyjnych na dwie kategorie: akcje czynne
i akcje bierne [Bernardo, Gorrieri 1998]. Akcje czynne to akcje, z którymi jest zwią­
zany zbiór dopuszczalnych czasów wykonania (tak samo jak dotychczas rozważane
akcje czasowe). Akcje bierne nie mają natomiast określonego z góry zbioru dopu­
szczalnych czasów wykonania. Czas wykonania akcji biernej jest określany przez czas
akcji czynnej, z którą akcja bierna synchronizuje się podczas komunikacji.

W celu odróżnienia akcji czynnych od biernych, akcja bierna będzie oznaczana

gdzie: * jest dodatkowym wyróżnionym symbolem, a akcja czynna jest oznaczana jak
dotychczas

gax...ą,[4]

Rozszerzenie czasowe LOTOSa 183

Para synchronizujących się akcji, na przykład

g!10[{2,3}]

będzie się wykonywać 2 albo 3 jednostki czasu.

Podział na akcje czynne i bierne ma dobre odniesienie do wielu sytuacji praktycznych,
kiedy komunikacja przebiega pomiędzy dwoma procesami, z których jeden jest usłu­
godawcą, a drugi usługobiorcą. Czas komunikacji w takich przypadkach wyznacza
zwykle usługodawca, a usługobiorca czas ten akceptuje. W przypadku wielu synchro­
nizujących się akcji co najwyżej jedna może być akcją czynną.

9.8. Przykład specyfikacji w RT-LOTOSie

Rozważanym problemem jest sporządzenie specyfikacji systemu czasu rzeczywistego
na podstawie następującego opisu tekstowego [Heitmeyer, Mandrioli 1996]:

Zadanie polega na wyspecyfikowaniu funkcji systemu komputerowego sterującego ru­
chem pojazdów na drodze przez przejazd z n torami kolejowymi (n > 0). Na strzeżonym
przejeździć kolejowym są rogatki, które - opuszczone lub podniesione - pozwalają na
bezpieczny przejazd. Decyzję o opuszczeniu i podniesieniu bramek ma podejmować
system sterujący przejazdem, na podstawie informacji otrzymywanych z czujników
rozmieszczonych na torach w rejonie skrzyżowania drogi z torami. Zakłada się, że
przez dany tor pociągi mogą przejeżdżają w jednym kierunku. Przy wjeździe na tor k
{k = 1, ..., n), w rejonie skrzyżowania, znajduje się czujnik rejestrujący wjazd pociągu
(sensor typu Wjazd), a przy wyjeździe - czujnik rejestrujący wyjazd (sensor typu Wy­
jazd).

Rys. 9.1. Skrzyżowanie drogi z przejazdem kolejowym

184 Rozdział 9

System sterujący rozpoczyna pracę, gdy w rejonie skrzyżowania nie ma pociągów.
Następnie oczekuje na sygnał o pojawieniu się pociągu. Po otrzymaniu sygnału z sen­
sora typu Wjazd, na torze k, system włącza sygnalizację świetlno-dźwiękową oraz
opuszcza bramki. Po odbiorze sygnału z sensora typu Wjazd, system komputerowy
oczekuje na sygnał z sensora typu Wyjazd, dla tego samego toru k. Jeżeli to nastąpi,
i w tym czasie nie pojawi się nowy sygnał wjazdu, to bramka się podnosi i wyłącza
sygnalizację świetlno-dźwiękową. W przeciwnym razie, to znaczy gdy przed wyjaz­
dem pociągu na torze k wjedzie inny pociąg na inny tor, bramka pozostaje opuszczona
aż do momentu, gdy pojawią się sygnały o wyjeździe wszystkich pociągów z rejonu
skrzyżowania.

Niech (wjazdi, wyjazdy oznacza i-ty przedział czasu (i = 1, 2, ...), w którym przejazd
jest zajęty, tzn. wjazdi jest momentem, w którym nastąpił wjazd pierwszego pociągu
w rejon skrzyżowania, gdy uprzednio było ono wolne, wyjazd zaś jest momentem,
w którym ostatni pociąg opuścił rejon skrzyżowania, gdy uprzednio było ono zajęte
(rys. 9.2).

Rys. 9.2. Diagram czasowy włączania sygnalizacji i położenia bramek na przejeździe

Opuszczanie i podnoszenie rogatek może następować z pewnym opóźnieniem w sto­
sunku do momentów, w których odnotowuje się wjazd i wyjazd pociągów. Niech TB,,
oznacza okres, po którym powinno nastąpić opuszczenie bramek, od momentu zgło­
szenia pierwszego sygnału z sensora typu Wjazd, w momencie wjazd,, oraz niech TBP
oznacza okres, po którym powinno nastąpić podniesienie bramek, od momentu zgło­
szenia ostatniego sygnału z sensora typu Wyjazd, w momencie wyjazd,. Od systemu
sterowania wymaga się własności bezpieczeństwa i użytkowalności.

Własność bezpieczeństwa oznacza, że:

• dla każdej chwili z przedziału [wjazdi + TB„, wyjazdy bramki muszą być opu­
szczone.

Rozszerzenie czasowe LOTOSa 185

Własność uiytkowalności oznacza, że:

• dla każdej chwili spoza przedziału (wjazdy wyjazd, + TBp) bramki muszą być
podniesione.

Ustalmy założenia dotyczące komunikacji specyfikowanego systemu z jego otocze­
niem.

Zapora jest urządzeniem, do którego system sterowania, przez bramki o nazwach
podnieś, opuść, będzie kierować polecenia opuszczenia i podnoszenia bramki.

Specyfikacja zachowania zapory jest następująca:
process Zapora [opuść, podnieś] : noexit :=

OpUSC[{ [opuszczanie }] i
podnies[{ [podnoszenie }] ,

Zapora[opuść, podnieś]
endproc

Wartości tOpUXZCZailie oraz (podnoszenie mogą być dowolne pod warunkiem, że są mniejsze od
zadanych wartości TB„ i TBP. Z przedstawionej specyfikacji wynika, że nie można
przerywać operacji podnoszenia lub opuszczania zapory - operacja raz rozpoczęta
musi się zakończyć.

Sygnalizacja jest urządzeniem, do którego system, przez bramki włącz, wyłącz, będzie
kierować polecenia włączenia i gaszenia świateł sygnalizacyjnych. Jej specyfikacja
jest podobna do specyfikacji zapory i ma postać:

process Sygnalizacja [włącz, wyłącz] : noexit :=
włącz[[t włączanie }] >

wyłącz[{t wyłączanie }];

Sygnalizacja[włącz, wyłącz]
endproc

Wartości [„^czanie oraz (wyłączanie są oczywiście mniejsze od czasów opuszczania i pod­
noszenia zapory, a tym samym od zadanych wartości TB,, i TBP.

Łącznie, co wynika z dalej przedstawionej postaci specyfikacji, wymaga się, aby:

(włączanie + (opuszczanie — TB„ (9.18)

[wyłączanie + [podnoszenie — TBp. (9.19)

Nawet w tym prostym przykładzie uwidacznia się niejednorodność stylu specyfiko­
wania. Zapora i sygnalizacja są zasobami, których obecność w specyfikacji jest od­
zwierciedleniem stylu specyfikacji ukierunkowanego na zasoby. Struktura natomiast

186 Rozdział 9

treści specyfikacji systemu sterowania zaporą odzwierciedla styl ukierunkowany na
ograniczenia (rozdz. 7.) i ma postać podaną poniżej.

Stanowiące treść specyfikacji wyrażenie behawioralne jest złożeniem równoległym
czterech procesów: Bezpieczeństwo, Użyteczność, Sygnalizacja i Zapora:

specification WymaganiaPodstawowe[wjazd, wyjazd]: noexit :=
behaviour
hide włącz, wyłącz, opuść, podnieś in

Sygnalizacja [włącz, wyłącz]
|[włącz, wyłącz]!

(Bezpieczeństwo [wjazd, wyjazd, opuść, w/ącz](0)
wyjazd]!

Użyteczność [wjazd, wyjazd, podnieś, wyłącz](0)
)
popuść, podnieś]!

Zapora [opuść, podnieś]
where

process Zapora [opuść, podnieś] : noexit :=

endproc
process Sygnalizacja [włącz, wyłącz] : noexit :=

endproc
process Bezpieczeństwo[wjazd, wyjazd, opuść, włącz](n : nat) : noexit :=

endproc
process Użyteczność[wjazd, wyjazd, podnieś, wyłącz](n : nat): noexit :=

endproc
endspec

Składowe procesy specyfikacji są zdefiniowane poniżej.

Proces Bezpieczeństwo został zdefiniowany tak, aby odzwierciedlać warunek bezpie­
czeństwa:

process Bezpieczeństwo[wjazd, wyjazd, opuść, włącz](n : nat) : noexit :=
[n = 0]->

wjazd[*];
włącz[*];

Rozszerzenie czasowe LOTOSa 187

opuść[*];
— Ze względu na semantykę języka i założenie (9.18), akcja kończy
- się nie później niż po upływie odcinka czasu TB„ od chwili
- zakończenia pierwszej akcji wjazd^] w sytuacji, gdy wcześniej
- - przejazd był pusty.
— Oznacza to spełnienie własności bezpieczeństwa.

Bezpieczeństwo[wjazd, wyjazd, opuść, włącz](n + 1)
[] [«> 1] ->

wjazd[*]',
Bezpieczeństwo[wjazd, wyjazd, opuść, włączeń + 1)

[][«>!]->
wyjazd[*];
Bezpieczeństwo[wjazd, wyjazd, opuść, włącz](n- 1)

endproc

Proces Użyteczność odzwierciedla warunek użytkowalności:

process Użyteczność[wjazd, wyjazd, podnieś, wyłączeń : nat) : noexit :=
wjazd[*]-,
Uźyteczność[wjazd, wyjazd, podnieś, wyłącz](n + 1)

[] [n > 1] ->
wyjazd[*];
Użyteczność [wjazd, wyjazd, podnieś, wyłącz](n- 1)

[][«=!]->
wyjazd^]-,
podnieś[*]\
wytącz[*]\

- 7^ względu na semantykę języka i założenie (9.19), akcja kończy
- się nie później niż po upływie odcinka czasu TBP od chwili
— zakończenia ostatniej akcji wyjazd[*] w sytuacji, gdy wcześniej
- przejazd był zajęty.
— Oznacza to spełnienie własności użytkowalności.

Użyteczność[wjazd, wyjazd, podnieś, wyłącz](0)
endproc

Warto zauważyć, że w komunikacji na bramkach wjazd i wyjazd uczestniczą dwa pro­
cesy składowe specyfikacji: Bezpieczeństwo i Użyteczność oraz otoczenie specyfikacji.
Czas wykonywania akcji z udziałem tych bramek jest określony przez otoczenie spe­
cyfikacji. W komunikacji na pozostałych bramkach wewnętrznych uczestniczą tylko
pary procesów.

188 Rozdział 9

Rozpatrywany przykład jest nie tylko ilustracją zastosowania języka RT-LOTOS, ale
jest również ciekawy z tego względu, że dotyczy systemów związanych z bezpieczeń­
stwem. Przedstawiona specyfikacja WymaganiaPodstawowe przedstawia funkcjo­
nowanie systemu po jego uruchomieniu w warunkach normalnych.

Każdy system zwykle wymaga operatora, który system uruchamia i zatrzymuje, prze­
prowadza testowanie jego działania, wspomaga system w niektórych sytuacjach awa­
ryjnych. Sytuacje awaryjne mogą powstać na skutek różnych okoliczności, gdy zacho­
wanie się elementów składowych systemu, to jest zapory i sygnalizacji, a także
zachowanie się pociągów przejeżdżających przez rejon skrzyżowania, mogą odbiegać
od założonych [Huzar 2001]. Na przykład akcje opuszczania lub podnoszenia zapory
mogą się nie zakończyć w założonym okresie, pociąg może się zatrzymać i cofnąć
w rejonie skrzyżowania itp. Rozpatrzenie różnych możliwych okoliczności i okre­
ślenie odpowiedniego postępowania wymaga oddzielnej analizy związanej z bezpie­
czeństwem [Magott 2005]. Analiza ma zidentyfikować potencjalne zagrożenia, a na­
stępnie należy ustalić sposoby postępowania zapobiegające ewentualnym skutkom
zagrożeń. Wynikiem jest zwykle znaczna rozbudowa specyfikacji, w której uwzględ­
nia się dodatkowe zachowanie.

Rozważmy na przykład tylko jeden przypadek, gdy opuszczanie zapory nie zakończy
się przed upływem zadanego odcinka czasu i przy założeniu, że światła sygnali­
zacyjne pracują poprawnie. Aby ostrzec pojazdy na drodze przed potencjalnym nie­
bezpieczeństwem, można - zamiast stałych świateł - włączyć światła pulsujące. Re­
zultatem będzie rozbudowa specyfikacji, a głównie procesu Bezpieczeństwo. Nowy
proces Bezp ma definicję

process Bezp[wjazd, wyjazd, opuść, włącz, wyłącz, koniec](n : nat) : noexit :=
[n = 0] ->

wjazd[*]',
w/ącz[*];
(opuść[*]',

exit
[> timeout(r„„.„™);

SwiatłaPulsujące[włącz, wyłącz, koniec]
)
» Bezp[wjazd, wyjazd, opuść, włącz, wyłącz, konieć](n + 1)

[][«>!]->
wjazd[*];
Bezp[wjazd, wyjazd, opuść, włącz, wyłącz, konie c\(n + 1)

[][n>l]->
wyjazd[*]\

Rozszerzenie czasowe LOTOSa 189

Bezp [wjazd, wyjazd, opuść, włącz, wyłącz, koniec](n - 1)
where

process SwiatłaPułsujące[włącz, wyłącz, koniec] : exit :=
wyłącz[*];
H {tuylącz U’

— okres wyłączenia świateł
włączl*];
H { włącz }] >

- okres włączenia świateł
SwiatłaPulsujące[włącz, wyłącz, koniec]

[] koniec[*]\ exit
endproc

Złożenie deaktywujące

op»5Ć[*]; exit [> timeout(z„TOr,„); SwiatłaPułsujące[włącz, wyłącz, koniec]

spowoduje, że jeśli akcja czasowa opuść nie zakończy się przed upływem odcinka
czasu tam,ria, nastąpi jej przerwanie i zostanie zainicjowany proces postępowania awa­
ryjnego ŚwiatłaPulsujące. Jednocześnie należy zauważyć, że sama akcja czasowa
opuść, jeśli się już zaczęła, nie zostanie przerwana.

W definicji procesu pojawiła się nowa bramka koniec, która ma służyć zakończeniu
postępowania awaryjnego. Zakłada się tu, że komunikacja na tej bramce, po usunięciu
awarii zapory, zachodzi na skutek zewnętrznej interwencji operatora, którego istnienie
jest konieczne, a dotychczas nie było uwzględniane.

9.9. Uwagi końcowe
W tym rozdziale przedstawiono i porównano dwa podejścia do czasowego rozszerze­
nia języka LOTOS. Oba podejścia są równoważne w sensie ekspresywności, różnią się
natomiast własnościami.

Podejście pierwsze, zakładające zachowanie akcji natychmiastowych, było rozwijane
między innymi w pracach: [Leduc, Leonard 1992], [Quemada, Fernandez 1987],
[Quemada, Azcorra, Frutos 1990], [Quemada, Frutos, Miguel 1993]. Przedstawiany
w tym rozdziale język TE-B-LOTOS stał się podstawą definicji języka E-LOTOS
[ISO/IEC FDIS 15437, 2001]. Dwiema zasadniczymi własnościami języka E-LOTOS
są bowiem rozszerzenie czasowe i nowy sposób definiowania typów danych.

Drugie podejście, oparte na wprowadzeniu akcji czasowych, było rozwijane w pra­
cach: [Huzar, Magott 1995a, 1995b], [Huzar, Magott 1996], [Huzar, Magott 1997a,
1997b, 1997c, 1997d], Opisywany w bieżącym rozdziale język RT-B-LOTOS jest

190 Rozdział 9

uogólnieniem tych prac. Polega to na przypisaniu akcji czasowych zbioru dopuszczal­
nych czasów wykonania i abstrahowaniu mechanizmu uzgadniania czasu trwania
wspólnie realizowanych akcji.

Wadą drugiego z podejść, w stosunku do podejścia pierwszego, jest niezachowanie
wszystkich własności języka LOTOS. Zaletą natomiast jest to, że wersja z akcjami
czasowymi - bardziej naturalna - bezpośrednio odpowiada mechanizmom komuni­
kacji, jakie spotykamy w językach programowania czasu rzeczywistego, na przykład
w języku Ada [Huzar, Fryźlewicz, Dubielewicz, Hnatkowska, Waniczek 1998]. Warto
zauważyć, że modelowanie akcji czasowych języka RT-B-LOTOS wymaga użycia
w języku TE-B-LOTOS nie tylko dwóch akcji natychmiastowych, ale także wyrażenia
powiązania przyczynowo-skutkowego obu tych akcji.

Wydaje się także, że podejście z akcjami czasowymi jest dobrym kandydatem do roz­
szerzenia języka do wersji probabilistycznej.

Przedstawiono dwie wersje języka opartego na założeniu akcji czasowych - wersję
bazową RT-B-LOTOS i wersję pełną RT-LOTOS. W wersji pełnej wprowadzono
mechanizm ustalania czasu wspólnie realizowanych akcji komunikujących się pro­
cesów, wykorzystujący akcje czynne i bierne [D’Argenio, Hermanns, Katoen 1998],
[Bernardo, Gorrieri 1998]. Możliwości modelowania języka RT-LOTOS pokazano na
przykładzie systemu sterowania przejazdem kolejowym, zaczerpniętego z [Heitmeyer,
Mandrioli 1996] oraz [Huzar 2001]. Przykład ten jest dodatkowo ilustracją stylów
specyfikacji omówionych w rozdziale 7.

191

10. Rozszerzenia wydajnościowe LOTOSa

10.1. Wstęp
Przedstawione w poprzednim rozdziale czasowe rozszerzenia języka LOTOS cha­
rakteryzuje duży stopień niedeterminizmu. W przypadku języka TE-LOTOS odnosi
się to do przedziału czasów, w których może zachodzić akcja, a w przypadku języka
RT-LOTOS - do czasu trwania akcji czasowej. W obu językach wspólnym źródłem
niedeterminizmu jest otoczenie specyfikowanego systemu, które dokonuje wyboru
jednej z oferowanych akcji - jest to niedeterminizm zewnętrzny, oraz niedeterministy-
czny wybór jednej spośród oferowanych akcji wewnętrznych - jest to niedeterminizm
wewnętrzny.

Często, przed przystąpieniem do implementacji na podstawie specyfikacji, specyfika­
cja jest przedmiotem odrębnych badań. Jednym z rodzajów takich badań jest badanie
własności wydajnościowych. Badania wydajnościowe są badaniami ilościowymi, któ­
re rzadko można przeprowadzać na modelach niedeterministycznych, można je nato­
miast skutecznie prowadzić na modelach deterministycznych lub probabilistycznych.
W tym rozdziale przedstawiono rozszerzenie języka LOTOS, które polega na wpro­
wadzeniu probabilistycznej charakterystyki czasów trwania akcji oraz na eliminacji
z języka mechanizmów niedeterministycznych i zastąpieniu ich priorytetami i mecha­
nizmami probabilistycznymi. Priorytety mają służyć, w pierwszej kolejności, do wy­
znaczania jednej akcji, spośród akcji, w danym stanie, kandydujących do wykonania.
Gdy priorytety nie rozstrzygają o wyborze akcji, wyboru dokonuje się na podstawie
mechanizmu probabilistycznego.

Przyjmuje się, że obowiązują następujące zasady przydzielania priorytetów: Zakłada­
my, że mamy dwa rodzaje akcji: akcje czasowe i natychmiastowe. (Podział taki wyni­
ka z pragmatyki: akcje, których czas trwania jest znikomo krótki względem pozosta­
łych, traktuje się jako natychmiastowe, akcje zaś, których czas trwania - w kontekście
konkretnej sytuacji - jest zauważalny, traktuje się jako akcje czasowe.) Akcjom natych­
miastowym przypisuje się jako priorytety dodatnie liczby naturalne. Akcjom czaso­
wym przypisuje się natomiast jednakowy, najniższy priorytet zero. Wynika to z przy­
jęcia zasady wyścigów podczas wykonywania akcji czasowych: najpierw wykonują
się akcje o najwcześniejszych chwilach rozpoczęcia wykonywania.

Charakterystyki probabilistyczne można wprowadzać różnie, tu chodzi o taki sposób,
aby na podstawie specyfikacji w LOTOSie można w jednoznaczny sposób otrzymać
pewien skończony łańcuch Markowa. Łańcuchy Markowa są wygodnym modelem pro­
babilistycznym, dla którego są znane metody obliczania interesujących charakterystyk
[Czachórski 1999], [Bronsztejn, Siemiendiajew, Musiol, Miihling 2004]. W tym celu
przyjmuje się, że czasy wykonywania akcji czasowych charakteryzuje rozkład wykład­
niczy, a akcje natychmiastowe są wykonywane w zerowym czasie.

192 Rozdział 10

Dwoma źródłami niedeterminizmu są wybór i złożenie równoległe wyrażeń behawio­
ralnych. Wyrażeniom tym przypisuje się pewne, dalej omówione, parametry probabi­
listyczne.

Przedstawiane dalej rozszerzenie języka LOTOS jest nazywane MB-LOTOS. Wypły­
wa to z faktu, że rozszerzenie jest rozszerzeniem markowowskim, a ponadto - podob­
nie jak w poprzednim rozdziale - prezentacja ogranicza się tylko do części bazowej,
czyli bez uwzględniania komunikacji danych. Dodatkowo prezentacja ma charakter
techniczny, co oznacza, że używane dalej oznaczenia akcji są rozbudowane tak, aby
wygodnie wyrażać pewne własności, co nie jest wymagane w przypadku posługiwania
się językiem do specyfikowania systemów.

10.2. Składnia i nieformalna semantyka języka MB-LOTOS

Wprowadźmy oznaczenia:
G zbiór nazw bramek obserwowalnych,
L = Gu {exit} zbiór nazw akcji obserwowalnych rozszerzony 0 akcję exit,

wykonywaną na bramce nieobserwowalnej exit.
A = L u {i} zbiór nazw wszystkich akcji obserwowalnych i nieobserwo-

walnych,
Nat zbiór liczb naturalnych,
AP = Nat U {00} zbiór priorytetów; symbol °° oznacza najwyższy priorytet,
PR = [0, 1] zbiór prawdopodobieństw,
AR = MOM") zbiór wartości parametrów intensywności rozkładów wykład-

nicznych, gdzie R+ jest zbiorem nieujemnych liczb rzeczywi­
stych,

Proc zbiór nazw procesów,
Time = R+ dziedzina chwil czasowych.

Jak wspomniano, akcje będą przedstawiane w rozszerzonej postaci

(g,a,A,^ (10.1)
gdzie:

geA oznacza nazwę akcji,
che Nat oznacza indeks jednoznacznie identyfikujący każde wystąpienie akcji,
AeAR oznacza parametr czasowy akcji; jeżeli A * °°, to A oznacza akcję cza­

sową o rozkładzie wykładniczym czasu wykonania, w przypadku prze­
ciwnym, gdy A = oo, oznacza akcję natychmiastową,

tieAP oznacza priorytet akcji; jeżeli n = 0, oznacza to akcję czasową n> 0
oznacza akcję natychmiastową.

Indeksy wystąpień akcji wprowadza się tylko w celu prezentacji formalnej semantyki.
Ze względu na zastosowanie języka są one zbędne. Szczegółowe powody ich wpro­

Rozszerzenie wydajnościowe LOTOSa 193

wadzenia są dwa: Po pierwsze - idzie o jednoznaczne rozróżnienie wystąpień tej sa­
mej akcji w tym samym stanie. Drugi powód, ze względów technicznych, jest nawet
ważniejszy, gdyż idzie o wygodną i jednoznaczną identyfikacją akcji złożonych, to
jest takich, które są wynikiem synchronizacji wielu akcji na tej samej bramce. Dalej
będziemy zakładać, że jest stosowany pewien mechanizm jednoznacznego indekso­
wania akcji. Szczegółowo mechanizm taki jest przedstawiony w pracach [Huzar, Ma­
gott 1997b] i [Huzar, Magott 1997d], jest także używany w pracach innych autorów,
np. [D’Argenio, Hermanns, Katoen 1998].

Wystąpienie akcji jest jednoznacznie identyfikowane przez swój indeks, stąd wynikają
oznaczenia: jeżeli akcja ma postać (g, a, A, Ti), to z definicji

name^a) = g, rateja) = A, prior^a) = zr (10.2)

Zbiór n akcji składowych, synchronizujących się na bramce g^L, nazwany dalej akcją
zagregowaną, będzie reprezentowany przez ciąg ich indeksów, oznaczany przez

<P= a ... ą, (10.3)

gdzie a * aj, dla i j (i,j = 1,..., n). Oczywiście

name^a) = ... = nanie(a„) = g (10.4)

oraz z definicji:

name(<P) = name(dla i = 1, ..., n (10.5)

Zakładamy, że priorytet akcji zagregowanej reprezentowanej przez (10.3) jest równy

priori) = prior(a) - ... = prior^a,) (10.6)

co wynika z założenia, że priorytety akcji składowych wykonywanych na tych samych
bramkach mają być równe. Nie oznacza to, że bramki wyznaczają priorytety akcji, ale
że jeśli akcje się synchronizują na danej bramce, to mają takie same priorytety, co nie
wyklucza, że na danej bramce mogą się sychronizować różne zbiory akcji o różnych
priorytetach.

Założenie dotyczące priorytetów przyjęto tylko dla uproszczenia rozważań. Możliwe
są oczywiście różne sposoby obliczania priorytetu akcji zagregowanej, na przykład
priorytet akcji zagregowanej mógłby być sumą priorytetów akcji składowych.

Składnia zbioru wyrażeń behawioralnych MBeh języka MB-LOTOS przedstawia się
następująco:

Q ::= stop | (g, a,A,ri);Q\ (i, a, A, Jty, Q | (exit, a, », ~) | Q} [p] q2 |

Q\ IM,- Qi | hide R in Q | Q{ » Q21 Q{ [> Q21 p[/?] | (0
Symbole Q, Qi, Q2 są metazmiennymi, oznaczającymi wyrażenia behawioralne, geG
jest bramką, ReSegG jest ciągiem niepowtarzających się bramek, AeAR parametrem

194 Rozdział 10

intensywności, theAP priorytetem oraz p, s, r G PR są prawdopodobieństwami. Kolej­
ność wprowadzenia operatorów odpowiada malejącej kolejności ich priorytetów.

Dalej, podobnie jak we wcześniejszych rozdziałach, zakładamy, że rozważamy tylko
wyrażenia dozorowane, regularnie zbudowane.

Znaczenia poszczególnych wyrażeń są następujące:

Wyrażenia stop oraz (exit, a, <») mają takie same znaczenia, jak we wszystkich
poprzednio rozważanych wersjach języka. O akcji exit zakładamy dodatkowo, że jest
akcją natychmiastową o najwyższym priorytecie. Podobne, jak poprzednio, znaczenie
mają wyrażenia prefiksowania akcją obserwowalną (g, a, A, rip, Q oraz wewnętrzną
(i, a, zł, #); Q.

Bardziej złożone jest znaczenie wyrażenia wyboru Q\ [/?] 02- Wyrażenie oferuje do
wykonania te akcje, które są przygotowane w wyrażeniach Q\ oraz Q2. Wybór jednej
spośród nich jest dokonywany dwufazowo. W pierwszej fazie jest wyznaczany spo­
śród tych akcji zbiór akcji o najwyższym priorytecie, a w drugiej fazie następuje wy­
bór jednej z nich. Jeżeli akcjami o najwyższym priorytecie są akcje natychmiastowe
i wśród nich jest co najmniej jedna akcja z wyrażenia oraz co najmniej jedna akcja
z wyrażenia Q2, to do wykonania, z prawdopodobieństwem (1 -p), może być wybrana
dokładnie jedna akcja należąca do <2i, albo - z prawdopodobieństwem p - dokładnie
jedna akcja należąca do Q2. Jeżeli akcjami o najwyższym priorytecie są akcje czaso­
we, to wybór jednej z nich następuje zgodnie z zasadą wyścigów: wybierana jest ta,
która rozpoczyna się najwcześniej. Po wyborze akcji do wykonania dalsze zachowanie
wyrażenia [pj Q2 jest takie same jak w poprzednich wersjach języka.

Równie złożona jest semantyka wyrażenia złożenia równoległego <2i |[R]k r Q> Wy­
bór akcji do wykonania także przebiega dwufazowo: najpierw wyznacza się zbiór
akcji o najwyższym priorytecie, oferowanych przez wyrażenia Q\ oraz Q2, a następnie
wybiera się z nich jedną akcję. Wybrana ostatecznie akcja może być akcją należącą
albo do wyrażenia Q{, albo Q2, albo też może być akcją złożoną z synchronizujących
się akcji należących do Q\ i Q2. Jeżeli wśród akcji o najwyższym priorytecie są akcje
należące do wyrażenia (2i oraz do wyrażenia Q2, to - z prawdopodobieństwem 5 - są
wybierane akcje synchronizujące się na wspólnych bramkach R oraz akcje exit, akcje
natomiast, które nie synchronizują się na bramkach R, inne od exit, są wybierane
z prawdopodobieństwem (1 - 5). W przypadku wyboru akcji niesynchronizujących się
na bramkach R, spośród nich - z prawdopodobieństwem r - zostaje wybrana akcja
należąca do wyrażenia Q2, a z prawdopodobieństwem (1 — r) — akcja należąca do Q2.

Znaczenie pozostałych wyrażeń behawioralnych: przesłonięcia hide R in Q, złożenia
aktywującego Q\ » Q2, złożenia deaktywującego Q\ [> Q2 oraz wywołania procesu
/?[/?] są takie same jak w poprzednio omawianej wersji języka. Zakładamy przy tym,
że akcje wewnętrzne, będące wynikiem przesłonięcia, mają takie same własności cza­
sowe jak akcje przesłaniane.

Rozszerzenie wydajnościowe LOTOSa 195

Tak samo jak w poprzednich wersjach są określane deklaracje procesów, ich funkcjo­
nalność oraz specyfikacja.

W celu przybliżenia mechanizmów probabilistycznego wyboru akcji rozpatrzymy dwa
przykłady wyboru akcji natychmiastowych.

Przykład 10.1
Niech dane będzie wyrażenie behawioralne Q.

(gi, «i, #i); 2i
W ((g2, a-i, ; Qz [<7] (g3, ^3); 23))

W skład wyrażenia wchodzą tylko akcje natychmiastowe. Jeżeli ich priorytety #1,
^2, ^3 są różne, to wartości prawdopodobieństw p oraz q są nieistotne, a jako
pierwsza - pod warunkiem, że otoczenie wyrażenia Q będzie gotowe - zostanie
wybrana i wykonana akcja o najwyższym priorytecie. Jeżeli priorytety są równe,
wybór akcji jest probabilistyczny. Z prawdopodobieństwem p następuje wybór
prawej strony wyrażenia Q

((g2, «2, ^2); & [?] (g3. 03, °°, ^3); 2.3)),
a z prawdopodobieństwem (1 -p) - wybór lewej strony wyrażenia Q

(gi, ah «>, ^i); 2i
Pod warunkiem wyboru prawej strony akcja o indeksie będzie wybrana z praw­
dopodobieństwem (1 - q), akcja zaś o indeksie ćz3 z prawdopodobieństwem q.
Prawdopodobieństwo zatem wyboru akcji o indeksie a2 wynosi p(l - q), a akcji
o indeksie wynosi pq. Prawdopodobieństwo natomiast wyboru akcji o indeksie
cq wynosi (1 -p).

Przykład 10.2
Niech dane będzie wyrażenie behawioralne Q postaci:

((gi, «i, °°, ^1); Qi [p] (g2, «2, °°, ^2); 02)
|{g2}|.v

((g3, «3, ^3); 2.3 [<?] (g2, O|, «, ^ł); 24)

Załóżmy, że priorytety wszystkich akcji są takie same. Akcje natychmiastowe
o indeksach Oh i tłą synchronizują się na bramce g2. Oznacza to, że

prior(a}) = prior(a^ = priori) = priori) = priori oą)

Pod warunkiem, że otoczenie wyrażenia Q nie stwarza własnych ograniczeń, mo­
żliwe są trzy wybory akcji: jednej pary synchronizujących się akcji o indeksach a,
i cq oraz jednej z dwóch akcji o indeksach a\ i niesynchronizujących się na
wspólnej bramce g2.

196 Rozdział 10

W podwyrażeniu

((gi, ah ^); Ci [p] (g2, ^2); 0?)

akcja o indeksie a\ jest wybierana w tym wyrażeniu z prawdopodobieństwem
a akcja o indeksie a2 z prawdopodobieństwem/?.

Podobnie, w podwyrażeniu

((g3, a3,«, Q3 [<7] (g2, Ot, o®, 274); 04)

akcja o indeksie 6$ jest wybierana z prawdopodobieństwem (1-q), akcja o indek­
sie a2 z prawdopodobieństwem q.

Selekcja akcji w równoległym złożeniu obu podwyrażeń odbywa się dwufazowo.
W pierwszej fazie z prawdopodobieństwem s są wybierane akcje a2, synchroni­
zujące się na bramce g2, a w drugiej fazie są wybierane akcje niesynchronizujące
się na tej bramce: akcja z prawdopodobieństwem (l-s)*(I-r), oraz akcja a3
z prawdopodobieństwem (l-s)*r.

Oprócz opisanego mechanizmu probabilistycznego wyboru akcji, drugim elementem
charakteryzującym język MB-LOTOS jest mechanizm wyznaczania czasu trwania
synchronizujących się akcji. Pojedyncze akcje czasowe mają wykładniczy rozkład
prawdopodobieństwa czasu realizacji. Synchronizujące się akcje mają również rozkład
wykładniczy, ale parametr intensywności tego rozkładu jest wyznaczany w specyficz­
ny sposób.

Tabela 10.1

9 m p gdy g = g
r ((g ,a,A,0y,Q) = <

[0 w przypadku przeciwnym

gdy g e set(R)

gdy ge (G u {i}) \ set(R)

Ol Qi) = Wi) + rAQ^)

'x(2iin.,-22) = <
^(2|) + rg(22)

l> 2?) = rg(2i) + rK(Q2)

» 22) = rs(2i)

rg (hide R in Q) = ■
rg(2)

■ 0

V , /ff/s-(2) + ri(2)
igeseHR) k

,]) = r.,(2[g|::= hh..„ g,h,„Y)

gdy g 6 G\set(R')

gdy g e set(R)

gdy g = i

gdzie Q jest treścią procesu P.

Rozszerzenie wydajnościowe LOTOSa 197

W przypadku szczególnym, gdy rozważamy dwie synchronizujące się akcje na bramce
ge G, na przykład

(g, ci\, Ai, rt) oraz (g, a2, A2, rt}

parametrem rozkładu prawdopodobieństwa, charakteryzującym wspólny czas ich wy­
konania, będzie wartość mm{A\, A2).

Ogólnie wyznaczanie parametru intensywności akcji czasowych w wyrażeniu beha­
wioralnym Q przedstawia się następująco: Dla akcji o nazwach geG u {i} w wyraże­
niu Q definiuje się parametr intensywności akcji czasowych r/g). Definicja parame­
tru jest rekursywna (tab. 10.1).

Przedstawiony mechanizm oparto na pracy [Hilston 1996], w której opisuje się język
PEPA, stanowiący czasowe uogólnienie języka CCS. Mechanizm ten umożliwia uzy­
skanie rozważanych dalej własności kompozycyjności.

10.3. Semantyka formalna języka MB-LOTOS

Akcje kandydujące do wykonania
Semantyka języka jest wyrażana - podobnie jak wcześniejsze wersje języka - przez
etykietowany system przejść. W odróżnieniu od języków przedstawianych w poprzed­
nim rozdziale, tu semantyka jest przeplotowa, co jest możliwe dzięki przyjęciu mar-
kowowskiego modelu czasu wykonywania akcji czasowych. Do zdefiniowania seman­
tyki potrzebne są funkcje pomocnicze. Pierwsza z nich, funkcja o sygnaturze

F: MBeh -> 2"'"* (10.8)

służy do wyznaczania zbioru indeksów akcji przygotowanych do wykonania w danej
konfiguracji. Jest ona zdefiniowana rekursywnie w sposób pokazany w tabeli 10.2.

Druga funkcja pomocnicza, o sygnaturze
w • 2^'-> 2W"' (10.9)

służy do wyznaczania w danym zbiorze indeksów akcji, podzbioru indeksów akcji
o najwyższym priorytecie. Jej definicja jest następująca: niech 0ę Nat będzie zbio­
rem indeksów akcji oraz niech mprior(0) = max{prior(<P) | 0], wówczas

M(0) = { 01 prior(0) = mprior(0)}. (10.10)

Jeżeli 0= F(Q), to ę F(Q) jest podzbiorem tych akcji wyrażenia Q przygo­
towanych do wykonania, które mają najwyższy priorytet. Jest to zbiór akcji wyrażenia
Q kandydujących do wykonania.

Zbiór akcji kandydujących może zawierać albo tylko akcje natychmiastowe, albo tylko
akcje czasowe, nie może natomiast zawierać obu rodzajów akcji, gdyż akcje czasowe
mają priorytet zerowy, akcje natychmiastowe zaś mają priorytet większy od zera. Wyra-

198 Rozdział 10

żenią behawioralne, dla których zbiór M(F(QY) zawiera tylko indeksy akcji natych­
miastowych, nazywa się wyrażeniem zanikającym, wyrażenia zaś, dla których zbiór
M(F(Q)) zawiera tylko indeksy akcji czasowych, nazywa się wyrażeniem uchwytnym.

Tabela 10.2

F(stop) = 0

F((g, a, A, 2) = {a}

F^ [p] Qi)^F(Qi)uF(Q2)

F^ |7?k, 02) - FA(Qh R) u FA(Q2, R)u FS(Qh Q2, R)

gdzie: FA(Q„ R)= {0E F{Q^ | name(<P)£ R u {exit}} (z = 1, 2)

FS(Qi, Q2, R)= { (PF | 0eF(2i) a Fe F(Q2) a prior(<P) = prior(F) a name(<P) =
= name(F)eR u (exit) }

F(hide R in Q) = F(Q [a, ::= ..., a,, ::= A])

gdzie: {ah ..., o;,} = {a| name(a)eR},

{^i, ..., /3n} jest zbiorem nowych indeksów innych od indeksów występujących
w 2, a 2f«i ::=^i, •••, tż, "= Al jest tekstowym zastąpieniem indeksów tzh ..., a,,
przez indeksy /?b /?„ w wyrażeniu Q. Nowe indeksy odróżniają akcje wyko­
nywane na bramkach R wewnątrz wyrażenia hide R in Q od tych, które są wi­
doczne na zewnątrz tego wyrażenia jako jego akcje wewnętrzne. Nowe akcje
o indeksach $ (z = 1, ..., zz) mają następujące własności:

name(J3j) = i, rate(J$) = ratę (a,), and prior{P^ = priortOj)

F(Qt » Qi) = F(2.)

F^ [>22) = F(2i)uF(22)
F(P[h..... . h,„]) = F(Q[gt::=hh ..., gm;-.= h,„])

gdzie 2 jest treścią procesu F[g..... . g,„].

Jeżeli zbiór akcji kandydujących jest jednoelementowy, to wyznacza on jednoznacznie
akcję do wykonania, jeżeli natomiast jest większy, to wybór akcji jest probabilisty­
czny.

Etykietowany system przejść
Semantykę języka przedstawiono dwuetapowo. W pierwszym etapie zdefiniowano
etykietowany system przejść, który dla danej konfiguracji wyznacza możliwe przej­
ścia do nowej konfiguracji, inaczej: wyznacza zakres niedeterminizmu. W drugim
etapie określono prawdopodobieństwa przejścia do nowych konfiguracji, przy czym

Rozszerzenie wydajnościowe LOTOSa 199

oddzielnie rozważano przejścia realizowane w wyniku zajścia akcji czasowych oraz
natychmiastowych.

Dla specyfikacji MSpec = <{Q, {Di, Dn}> etykietowany system przejść jest zdefi­
niowany jako

MTS(MSpec) = <MBeh, MEvent, MTrans, Q> (10.11)

gdzie:
MEvent = {(g, a, A, Ti) | geA \azNat /\ A.&AR a tu^AP} jest zbiorem zdarzeń,

MTrans = { e > c MBeh^MBeh | eeMEvent} jest zbiorem relacji przejść.

Zbiór relacji przejść jest definiowany rekursywnie w sposób następujący:

Proces pusty stop - brak aksjomatów

Proces zakończenia Q = exit
Q-- (exit.a,A.n) >

Prefiksowanie akcją Q = (g, a, A, rt); Qt

(A_pre)

Wybór probabilistyczny Q = Qi [p] Q2

gdy (PeM(F{Q)) dlaż = 1,2.

Qi... (R-choice)

gdy oraz giset^R) u{exit},

Złożenie równoległe Q = Q\ |[/?]|A,r Q2

Q\....
Q >Q;i[R]\s,r Q2

(R-part)

Q'2 lR-par2)

g, >Q{

q2^^- >q2
(R-par[2)

gdy (PY t M(F(Q)) oraz geset(R) u{exit}

200 Rozdział 10

gdzie

gdy Tl - 0

gdy 7t > 0

Złożenie deaktywujące Q = Q\ [> <2a

q [>q2
dla 0e A/(F(<2)) oraz g * exit

&

(R-dist)

(R-disj)

dla 06 A/(F(0)

Q, >Q{
Q .

dla 06 M(F(0) orazg = exit

Złożenie aktywujące Q = Q\» Qi

q, >q;
Q >Q,»Q2

dla 06 M(F(Q)) orazg*exit

Q,
q^M^Q2

dla 06 M(F(Q)) oraz g - exit

Przesłonięcie Q = hide R in <2i

^LZ==Ż2L
Q (g.^))hide R

dla 06 M(F(Q)) oraz g £set(R)

Q _S^^Q{

Q >hideFin

dla 06 M(F(Q)) orazg eset(R)

(R-dis2)

(R-accepti)

(R-accept,)

(R-hide ।)

(R-hidej)

gdzie 0'jest nowym indeksem różnym od wszystkich indeksów występujących w Q.

Rozszerzenie wydajnościowe LOTOSa 201

Instantacja procesu Q = p[gi......

W-g.....hn^gn]..... (-^) >Q' (R-inst)

dla M{F{Q{hx ::=gp..., hn ::= g„])), gdzie <2i jest treścią procesu p.

Probabilistyczny wybór akcji do wykonania
W celu przedstawienia probabilistycznego wyboru akcji do wykonania będziemy się
posługiwać algebrą indeksów akcji. Niech

D = {<0,, X|>, <0,„ x„>} (10.12)

gdzie 0, oraz są parami rozłącznych sekwencji indeksów akcji, oraz x,€R+ dla
i = 1, ..., n. Liczby x, będą interpretowane jako prawdopodobieństwa albo jako para­
metry intensywności. Interpretowane jako prawdopodobieństwa liczby będą wyzna­
czać do wykonania akcje natychmiastowe, a jako parametry intensywności - będą
wyznaczać akcje czasowe.

Jeżeli 0 <x, < 1, dla ż = 1,..., n, oraz jest spełniony warunek

£x.=l (10.13)
;=i

to zbiór postaci (10.12) nazywamy rozkładem prawdopodobieństwa.

Dla zbiorów postaci (10.12) definiujemy następujące operacje:

• Mnożenie przez stałą. Jeśli pe PR, to

P*D = def {<&\,p xi>, ..., <<Pn,p *„>} (10.14)

Jeżeli D = 0, to p*D = det 0.

• Normalizacja. Jeżeli zbiór D nie jest rozkładem prawdopodobieństwa, to może
być sprowadzony do rozkładu prawdopodobieństwa za pomocą operacji normjD),
zdefiniowanej następująco

norm(D} =def D (10.15)

• Obcięcie bramkowe. Jeżeli Fę L, to obcięcie bramkowe jest zdefiniowane jako

D|p=def {<^i, Xj> | <0„ x,>eD a name(,^& F} (10.16)

• Suma. Dla zbiorów D{, Di postaci (10.12) ich suma jest określona jako suma
mnogościowa.

202 Rozdział 10

• Mnożenie. Niech będą dane zbiory Di, Dy.

D\ = {<^\,xx>,<0,„x„>}
D2={<^i,yl>,...,<^„y„,>}

Ich iloczynem D} ® D2 będzie zbiór postaci

Di® D2 =def Xj• yj> | <0, xi>eDi a < 0, yj>eD2 a
(10.17)

name(= name(a prior(= priori }

• Agregacja parametrów intensywności. Niech będą dane zbiory Dh D2:

Di= {«Pi,Ai>,..., <0„A„>}

D2= A„>}

gdzie ą są parametrami intensywności. Agregacją parametrów intensywności,
oznaczaną Di ® D2, będzie zbiór postaci

Di® D2 =def

' < ’ —77;------- min(ar (D^),ar (D^)>
1 ar^Di) ar^D.) A A ' (10.18)

< 0, A, >e Di a < j,]u j >G £>2 a name^j) = nameWj) = g •

gdzie ar (D) = / A dla ge G.

• i-przeindeksowanie. Operacja jest określona dla zbioru D postaci (10.12), dla któ­
rego namei^d # i dla i = 1, n. Wynikiem jest zbiór

reind(D) =det {<0, /li>, ..., <<P'n, An>} (10.19)

gdzie 0/ zastępują Ą oraz name = i.
Rozpatrzmy najpierw prawdopodobieństwa wyboru akcji natychmiastowych. Jeżeli dla
danego wyrażenia Q zbiór M(F(Q)) zawiera więcej niż jeden element, to przejście do no­
wego wyrażenia jest wyznaczone przez pewien rozkład prawdopodobieństwa określony
na zbiorze M(F(Q)Y Rozkład ten jest zdefiniowany rekursywnie w sposób następujący:

PjD(stop) = 0
PDUg, a, oo, rty, Q) = {<ct, !>}
PD(Qi [p] Q2) =facti*PD(Qi) fact^PD^

gdzie facti, fact2 &PR są współczynnikami, których wartość zależy od prawdziwości
formuł

empty, =def M(F(Q^ n M(F(Qi [p] g2)) = 0 dla i = 1,2.

Rozszerzenie wydajnościowe LOTOSa 203

Współczynniki te zdefiniowano w tabeli 10.3 (symbole T oraz F oznaczają odpowied­
nio prawdę i fałsz).

Tabela 10.3

emptyi empty2 facti faCt2
F F {-p P
F T 1 0
T F 0 1
T T 0 0

Łatwo sprawdzić, że dla każdej wartości formuł empty\ oraz empty2, jeśli PD(Qi) oraz
PD(QT) są rozkładami prawdopodobieństwa, to również wyrażenie

u fact2* PD(Q2)

jest rozkładem prawdopodobieństwa

PD(Qt |/?|.vQ2) =fact*PD\ fact\2*PD\2<Jfact2*PD2
gdzie:

PD, = norm(PD(Qi)\A\.v,nR))
PDn= norm(PD(QM[xew ® PD(Q2))\xet(ia)
PD2 = Horm(PD(22)|A\v«(R'))
set(R') = set(R) u {exit}
FA(Q) = {<g, tt> | (P^F^O) /\ g = name(<P) a n= prior(cP)}

fact\, fact\2, fact2 ePR są natomiast współczynnikami, których wartości zależą od
prawdziwości następujących formuł:

emptyi =def n M(F(Qi |/?|v.r Q2)) = 0 dla i = 1, 2,

empty i2 = empty2} =mM(F(Q\ Q2))\xel(R') = 0

Wartości współczynników określono w tabeli 10.4.

Tabela 10.4

emptyi empty i2 empty2 fact} fact \2 fact2
T F F 0 s l-.r
T F T 0 1 0
T T F 0 0 1
T T T 0 0 0
F F F s (l-.v)*r
F F T 1-j s 0
F T F 1-r 0 r
F T T 1 0 0

204 Rozdział 10

PD(hide R in Q) = PD(Q [ą :.=0t,a,, ::= 0,,])

gdzie zbiór indeksów {ah a,,} = {a\ name{a)eseRR)] jest zastąpiony przez zbiór
indeksów {^, 0„\, różnych od wszystkich indeksów występujących w Q.

» Qi) = PD{Q^

PD(Ql [> &) = ^(G, |0|o, i &) = PD^ M 02)

PD(P[h\,hm]) = PD(Q[g] ::= hh gm ::= h„,])

gdzie Sjest treścią procesu p[gb g,„], a Q[g} ::= hh gm ::= hm] tekstowym zastą­
pieniem bramek gb gm przez h\,.... hm w wyrażeniu Q.

Rozpatrzmy teraz prawdopodobieństwa wyboru akcji czasowych, gdy dla danego
wyrażenia Q zbiór M{F{Q)) zawiera więcej niż jeden element. W celu wyznaczenia
rozkładu prawdopodobieństwa określonego na zbiorze M(F(Q)) wprowadzimy funk­
cję pomocniczą RATE(Q). Funkcja jest zdefiniowana rekursywnie w sposób nastę­
pujący:

RATE(stop) = 0
RATĘ ({g, a, rty, Q) = {<a, A>}
RATĘ (Qt [p] 02) = RATE(Q\) o RATE(Q2)

RATE(Qi 02) = RATEi u RATĘi2 u RATE2

gdzie:
RATEt = RATE(Q^\„}
RATEn= RATE(Q,)\xel(K} ® RATE(Q2)\„,W
RATE2= RATE(Q2)\^elW

RATE(hide R in Q) = RATE(Q)\AXvim u reind(RATE(Q)\sel(R)
RATE(Q} » Q2) = RATE(Qd
RATE{Q} [> Q2) = RATE(Qi) RATE^
RATE(p[h\, h,„]) = RATE(Q[gi g„, ::= ń,,,])

Po zdefiniowaniu funkcji RATĘ rozkład prawdopodobieństwa akcji czasowej jest
określony wyrażeniem

PD(Q) = norm(RATE(Q)) (10.20)

10.4. Wyprowadzanie łańcuchów Markowa

Specyfikację w języku MB-LOTOS można przetransformować w łańcuch Markowa
z czasem ciągłym. Jeżeli wchodzące w skład specyfikacji wyrażenia behawioralne
spełniają warunek regularności (rozdz. 2.), to łańcuch ma skończoną liczbę stanów.

Rozszerzenie wydajnościowe LOTOSa 205

Skończony jednorodny łańcuch Markowa jest dyskretnym procesem stochastycznym,
określonym przez skończony zbiór stanów S = {si, sn} oraz prawdopodobieństwa
przejść pomiędzy stanami, które nie są zależne od czasu. Takiemu łańcuchowi odpo­
wiada stała macierz przejść

Pu

P n\

P\n

Pnn

(10.21)

gdzie pjj oznacza prawdopodobieństwo przejścia ze stanu s,do stanu Sj, dla i, j = 1,..., n.

Zastosowane podejście do transformacji opiera się na metodzie przedstawionej
w pracy [Ajmone Marsan, Balbo, Conte 1984] dla uogólnionych stochastycznych sieci
Petriego.

Przypomnijmy, że wyrażenia behawioralne, dla których zbiór akcji o najwyższym
priorytecie zawiera tylko indeksy akcji natychmiastowych, nazywa się wyrażeniem
zanikającym, wyrażenia zaś, dla których ten zbiór zawiera tylko indeksy akcji czaso­
wych, nazywa się wyrażeniem uchwytnym.

Dalej zakładamy, że reprezentujące specyfikację wyrażenie Q jest komunikacyjnie
zamknięte (rozdz. 2.). Gdy tak nie jest, to znaczy specyfikacja reprezentuje pewien
system współpracujący z otoczeniem, dla zbudowania łańcucha Markowa konieczne
jest przyjęcie pewnego modelu tego otoczenia w taki sposób, aby złożenie równoległe
wyrażeń reprezentujących system i otoczenie stało się zamkniętym wyrażeniem beha­
wioralnym.

Budowany łańcuch Markowa reprezentuje bezpośrednio tylko wyrażenia uchwytne.
Wyrażenia zanikające nie są bezpośrednio reprezentowane, gdyż przejścia natychmia­
stowe pomiędzy wyrażeniami zanikającymi będą łączone z przejściami czasowymi.

Rozważając przejścia pomiędzy wyrażeniami uchwytnymi, należy rozpatrzyć dwa
przypadki:

• bezpośrednie, jednokrokowe przejście z wyrażenia uchwytnego Q do innego wy­
rażenia uchwytnego Q\

Q—^Qt (10.22)

gdzie rate(e)G R+\{ 0},

• pośrednie, wielokrokowe przejście z wyrażenia uchwytnego Q, poprzez przejścia
pośrednie pomiędzy wyłącznie wyrażeniami zanikającymi Qiy ..., Qk, do innego
wyrażenia uchwytnego Qk+1

Q-^Qx^^.:-^Qk >Qm (10.23)

gdzie rare^ijeR+MO} oraz rateiej = dla i = 2, ..., Z:+l.

206 Rozdział 10

W pierwszym przypadku wyrażenie Q\ jest bezpośrednim następnikiem wyrażenia Q,
w drugim natomiast - jest następnikiem pośrednim.

Dla wyrażeń zanikających i wyrażeń uchwytnych odpowiednie rozkłady prawdopodo­
bieństwa PD(Q\ określone odpowiednio na zbiorach akcji natychmiastowych i czaso­
wych, były przedstawione w poprzedniej części rozdziału.

Na tej podstawie przedstawimy najpierw prawdopodobieństwo przejścia z wyrażenia
zanikającego Q\, będącego bezpośrednim następnikiem wyrażenia uchwytnego Q, do
wyrażenia uchwytnego Qk+\- Wszystkie te przejścia odbywają się natychmiastowo.

Niech B(Q) oznacza zbiór wszystkich wyrażeń behawioralnych osiągalnych z wyra­
żenia Q. Zbiór ten jest skończony, co wynika z założenia o regularności budowy roz­
patrywanych wyrażeń. Zbiór B(Q) dzieli się na dwa rozłączne podzbiory, oznaczane
VB(Q) oraz TB(Qa), oznaczające odpowiednio podzbiór wyrażeń zanikających i uch­
wytnych osiągalnych z wyrażenia Q, czyli spełniających własności

VB(Q) u TB(Q) = B(Q) oraz VB{Q) nTB(Q) = 0 (10.24)

W celu określenia prawdopodobieństw przejść z wyrażeń zanikających (będących
bezpośrednimi następnikami wyrażeń uchwytnych) do wyrażeń uchwytnych wyko­
rzystamy prawdopodobieństwa przejść z wyrażeń zanikających do zanikających
oraz z wyrażeń zanikających do uchwytnych. Prawdopodobieństwa takie moż­
na zestawić w dwie macierze: V oraz T o wymiarach n x n oraz n x m, gdzie
n = card(VB(Q)) i m = card{TB{Q)Y Elementy Vy oraz tg obu macierzy są zdefi­
niowane następująco:

Pa gdy Qi —Qj z prawdopodobieństwem p0, dla Qi, Qj 6 VB(Qa),

0 gdy nie istnieje przejście z 2, do 27

oraz

Pij gdy Q,——>Qj z prawdopodobieństwem .

dla 2, e VB(Q), Qj e TB(QY (10.26)

0 gdy nie istnieje przejście z 2, do 2y

Sposób obliczania prawdopodobieństw stanowiących elementy obu macierzy został
przedstawiony w poprzedniej części rozdziału.

Niech 0+l = Vk * V, dla k = 0,1,..., gdzie * oznacza symbol mnożenia macierzy, oraz
nich vkj będzie elementem macierzy Vk. Element vkj jest prawdopodobieństwem zaj­

ścia sekwencji przejść o długości k, prowadzących z zanikającego wyrażenia 2/ do
zanikającego wyrażenia Qj.

Rozszerzenie wydajnościowe LOTOSa 207

Ze względu na założenie, że rozważane są tylko wyrażenia behawioralne regularnie
zbudowane, a więc także dozorowane, nie są możliwe nieskończenie długie sekwencje
przejść wyłącznie pomiędzy wyrażeniami zanikającymi. Istnieje zatem pewna liczba
k^ taka, że Vk jest macierzą zerową dla k > k^.

Element v*- macierzy

k0

y- = ^yk (10.27)
*=0

wyraża więc prawdopodobieństwo przejścia z zanikającego wyrażenia behawioralne­
go Qi do zanikającego wyrażenia Qj przez zajście wszystkich możliwych sekwencji
tranzycji, w tym sekwencji pustej, prowadzących wyłącznie poprzez wyrażenia zani­
kające.

Ostatecznie element vtjj macierzy

*0
v~*T = ^Vk*T (10.28)

t=o

wyraża prawdopodobieństwo przejścia z wyrażenia zanikającego Q, do wyrażenia
uchwytnego Qj przez zajście wszystkich możliwych sekwencji przejść wyłącznie po­
przez wyrażenia zanikające.

Dalsze rozważania są prowadzone przy założeniu, że analizowane wyrażenie Q jest
wyrażeniem uchwytnym.

Niech A^, gdzie m = card(TB(Q), będzie macierzą intensywności przejść Aj dla
bezpośredniego przejścia z uchwytnego wyrażenia Q, do uchwytnego wyrażenia Qj.

Niech A^, gdzie n = card(VB(Qj, będzie macierzą intensywności przejść A^ dla
bezpośredniego przejścia z uchwytnego wyrażenia Qi do zanikającego wyrażenia Qj.
Zdefiniujmy teraz macierz A~xm, która będzie macierzą intensywności przejścia
z wyrażenia uchwytnego do uchwytnego poprzez dowolną liczbę wyrażeń zanikają­
cych. Macierz ta wyraża się przez

A' = /l7' + /l'* V' * T (10.29)

i stanowi macierz definiującą intensywności przejść w łańcuchu Markowa z czasem
ciągłym, wyprowadzonym z etykietowanego sytemu przejść dla początkowego wyra­
żenia Q.

Macierz A' jest podstawą do obliczenia macierzy P prawdopodobieństwa przejść po­
między wyrażeniami uchwytnymi oraz do określenia średniego czasu pozostawania
w danym wyrażeniu uchwytnym.

208 Rozdział 10

Element macierzy P, określający prawdopodobieństwo przejścia z uchwytnego
wyrażenia Q, do uchwytnego wyrażenia Qj, jest zdefiniowany wzorem

(10-30)

4=1

w którym Ąy są elementami macierzy A".

Średni natomiast czas t, pozostawania w wyrażeniu uchwytnym Q, oblicza się z zależ­
ności

r,=^- (10.3D
Ż4
4=1

W celu ilustracji przedstawionych wyżej rozważań rozpatrzmy przykład prostego sys­
temu obsługi. System składa się z serwera, reprezentowanego procesem S, oraz dwóch
klientów, reprezentowanych procesami Cj oraz C2. Każdy z klientów działa cy­
klicznie, na przemian wykonując obliczenia lokalne i obliczenia we współpracy z ser­
werem. Definicje procesów klientów, dla i = 1, 2, mają postać

process C,[loc, work, req, serv] : noexit :=
(loc, °°, 7t);
(work, Kork, 0);
(req, °°, n);
(serv, Awn., 0);
Ci[loc, work, req, serv]

endproc
W celu uproszczenia dalszych zapisów akcje nie będą jawnie indeksowane. Natych­
miastowe akcje loc oraz req rozpoczynają odpowiednio fazę obliczeń lokalnych i obli­
czeń wspólnych, akcje czasowe work oraz serv modelują zaś realizację tych faz.

Definicja procesu serwera ma postać
process S[req, serv] : noexit :=

(req, o°, 7t);
(serv, 0);
S[req, serv]

endproc
Akcja natychmiastowa req rozpoczyna fazę współpracy, a akcja czasowa serv modelu­
je okres współpracy. Współpraca pomiędzy procesami klientów a serwerem jest oparta
na następujących zasadach:

Rozszerzenie wydajnościowe LOTOSa 209

1. Dostęp klientów do serwera jest rozłączny, przy czym prawdopodobieństwo do­
stępu obu procesów do serwera, w przypadku jednoczesnego ubiegania się o taki
dostęp, jest jednakowe.

2. Jeżeli jeden z procesów klientów zamierza rozpocząć fazę pracy lokalnej, a dru­
gi - współpracy z serwerem, to prawdopodobieństwo wyboru współpracy z ser­
werem jest trzykrotnie większe od wyboru pracy lokalnej.

Specyfikacja całego systemu spełniającego podane zasady przyjmuje postać
specification System[](): noexit :=
behaviour

hide req, serv, loc, work in
(Cj[/oc, work, req, órrv] |0|*. 0.5 C2U0C, work, req,)

\[req, jmdlojs.*
S[req, jen']

endspec
Symbol * w miejscu przeznaczonym na umieszczenie prawdopodobieństwa oznacza,
że wartość prawdopodobieństwa, w danym kontekście, jest nieistotna. Rzeczywiście,
symbol gwiazdki w złożeniu równoległym procesów Cj oraz C? wynika z faktu, że
procesy te nie synchronizują się ze sobą, a zatem nie nastąpi sytuacja, w której należy
podejmować decyzję o wyborze akcji synchronizujących się. Druga z gwiazdek wyni­
ka z faktu, ze proces S nie wykonuje akcji niezależnych od swego otoczenia, a zatem
nigdy nie będzie podejmowana decyzja o wyborze tego rodzaju akcji.

Dla wyrażenia behawioralnego, stanowiącego treść specyfikacji, wyznaczymy zbiór
wyrażeń osiągalnych. W celu skrócenia dalszych zapisów wyrażenie to i wyrażenia od
niego pochodne będą zapisywane bez operatora przesłonięcia. Dodatkowo przed każ­
dym wyrażeniem będzie wstawiona etykieta (liczba naturalna) jednoznacznie je iden­
tyfikująca. Wyrażenie początkowe będzie mieć postać

1: (CJ/oc, work, req, serv]
|0|» o.5 C2U0C, work, req, .serv])
|[re<7, jerv]| 0 75. * S[req, jen1]

Z wyrażenia o etykiecie 1 są osiągalne następujące wyrażenia:

2: ({work, Kmrk, 0); (req, °°, Tl); (serv, X,w., 0); C\[loc, work, req, jerv]
|0|*.o.5 C2U0C, work, req, jerv])
|[re<7, ^rv]|o.75. * S[req, jen']

3: (C\[loc, work, req, jen']
|0|*. 0.5 (work, Xmirk, 0); (req, °°, 7t); (serv, Xwn., 0); C2U0C, work, req, jerv])
)[req, jen^lojs.» S[req, jen1]

4: ((work, 0); (req, n); (serv, X,m., 0); C\[loc, work, req, .sen-’]

210 Rozdział 10

|0|*.o.5(M/or^, km,rk, 0); (req, n); (serv, kxem 0); C2U0C, work, req, serv])
l(req, serv]|o,75, * S[req, serv]

5: ((req, °°, 7t); (serv, kxen., 0); Ct[loc, work, req, serv]
|0|*. 0.5 (work, kwark, 0); (req, <», 7t); (serv, kxem 0); C2[loc, work, req, sery])
l[req, serv]|o.75. * S[req, sery]

6: ((work, kwark, 0); (req, °°, n); (serv, kxerv, 0); C^loc, work, req, sery]
|0|*.o.5(^<?, °°, Tl); (serv, kxen„ 0); C?[loc, work, req, serv])
|[ray, serv]|() 75 * S[req, sery]

7: ((sery, kxem 0); C^loc, work, req, serv]
|0|*. 0.5 (work, kwark, 0); (req, °°, n); (sery, kxerv, 0); C2{loc, work, req, sery])
l(req, serv]10.75. * (serv, kserv, 0); S[req, sery]

8: ((work, kwark, 0); (req, °°, (sery, kxm, 0); C\[loc, work, req, sery]
|0|*.o.5 (serv, kxerv, 0); C2U0C, work, req, sery])
l[req, rerv]|0.75. * (serv, kxem 0); S[req, serv]

9: ((serv, kserv, 0); C^/oc, work, req, sery]
|0|*,o.5(^, 00,7t); (sery, kxcm 0); C2[/oc, work, req, serv])
\[req, 5erv]|0 75. * (serv, kxerv, 0); S[req, serv]

10: ((req, n); (serv, kxem 0); C\[loc, work, req, serv]
|0|*.o.5 (serv, kxm, 0); Czlloc, work, req, serv])
l[req, jerv]| ().75, * (serv, kxm, 0); S[req, serv]

11: (C\[loc, work, req, sery]
|0|», 0.5 (req, 7t); (sery, kxem 0); C2(loc, work, req, sery])
l[req, serv]|0.75. * S[req, sery]

12: ((req, n); (serv, kxem 0); Ci[loc, work, req, serv]
|0|*. 0.5 C2U0C, work, req, serv])
l[req, serv]10.75. * S[req, serv]

13: ((work, kwark, 0); (f^q, °°, ^)- (serv, kxen„ 0); CMoc, work, req,
|0|*,o.i(req, °°, 7t); (serv, kxem 0); C2U0C, work, req, sery])
|[re<7, ^rv]|o,75. * S[req, sery]

14: ((req, n); (serv, kxerv, 0); C\[loc, work, req, sery]
|0|«, 0.5 (work, kwark, 0); (req, °°, 7t); (serv, kxen., 0); Czlloc, work, req, sery])
l[req, serv]| 075. * S[req, sery]

15: (Ci[loc, work, req, serv]
|01*. 0.5 (serv, kxerv, 0); C2[loc, work, req, serv])
j[req, sery]10.75. * (sery, kxem 0); S[req, sery]

Rozszerzenie wydajnościowe LOTOSa 211

16: ((serv, Xsen., 0); Ci[loc, work, req, serv]
|0|*. o.5 C2U0C, work, req, serv])
\[req, serv]| 0.75, * (serv, 0); S[req, serv]

17: ((work, Kmrh, 0); (req, <», Tl); (serv, 0); C][loc, work, req. sen']
|0|*.o.5(^^, Kseń, 0); Cz[loc, work, req, sen'])
l[req, serv]|o.75,» (sen', Kxem 0); S[req, sen,]

18: ((serv, Kseń, 0); Cilloc, work, req, sen']
|0|* o.5 (work, Kw<>rk, 0); (req, °°, 7t); (serv, \sem 0); C2U0C, work, req, serv])
l(req, serv]|0.75, * (serv, Kxerv, 0); S[req, serv]

Zbiór wyrażeń uchwytnych TB(Q), gdzie Q jest wyrażeniem o etykiecie 1, składa się
z {4, 7, 8, 9, 10, 17, 18], a zbiór wyrażeń zanikających VB(Q) składa się z {1,2, 3, 5,
6, 11, 12, 13, 14, 15, 16}. Na grafie tranzycji na rysunku 10.1 wyrażenia zanikające są
przedstawiane w postaci kwadratów, a uchwytne - w postaci kółek.

Rys. 10.1. Graf tranzycji
dla przykładowego wyrażenia

212 Rozdział 10

Macierz prawdopodobieństw Vnxn jest macierzą, której jedynymi niezerowymi ele­
mentami są:

Vl.2 ~ Vl.3 = Vl 1.13 = Vl 1,15 = VI2.I4 = VI2.I6 =

Dolne indeksy elementów tej i następnych macierzy są etykietami wyrażeń.

Zauważmy, że V2 jest macierzą zerową, dlatego V~ = V.

Podobnie, jedynymi niezerowymi elementami macierzy Tltxl są:

^2.4 = ^3.4 = ^5.7 = ^6,8 = ^13.17 = ^15.17 = ^16.18 ~ ^14,18 —

Macierz V~*T, wyrażająca prawdopodobieństwa przejścia z wyrażenia zanikającego
do wyrażenia uchwytnego, przez zajście wszystkich możliwych sekwencji przejść
wyłącznie poprzez wyrażenia zanikające, ze względu na prostotę systemu, ma tylko
elementy 0 oraz 1. Elementami o wartościach 1 są:

V/| 4 = V/2,4 = V/3.4 = V,5.7 = V?6,8 = 1.17 =

V^13.17 =V^15,17 = ^12,18 =V^16.18 = V,14,18 =

Macierz intensywności przejść dla bezpośredniego przejścia z wyrażenia uchwytnego
do zanikającego A^xi] ma następujące elementy niezerowe:

J V _ 7 V _ i
/l7.3— ^S.2- Aym,

_]v — lv — 2
4,5“ 4,6” 9.11“ 10.12- ^work

Macierz A^ wyraża intensywności przejścia z wyrażeń uchwytnych do uchwytnych
poprzez dowolną liczbę wyrażeń zanikających. Niezerowymi jej elementami są:

A.7 — A.8 = A.9 — Aj.|0 “ A7.IO = A 8.9 “ ^work

A.17 = Ao.18 “ A.4 = A,2 =Aerv

Niezerowymi elementami macierzy P prawdopodobieństwa przejść pomiędzy wyraże­
niami uchwytnymi są:

P4.7 = P4.8 “

P17.10 ~ PI8.9 = P9.I7 ~ Pl0.18 = 1

n - n =—______P7.9 H8.I0 , •,
Awork + Asen-

A.

Pi A = ^8.2 --------
\vork

Rozszerzenie wydajnościowe LOTOSa 213

10.5. Silna bisymulacja markowowska

Silna rozszerzona bisymulacja markowowska wyznacza klasy równoważności na
zbiorze wyrażeń behawioralnych, które mają te same własności funkcjonalne i nie­
funkcjonalne - czasowe i probabilistyczne. W celu zdefiniowania tej relacji wprowa­
dzimy pomocnicze oznaczenia i definicje.

Jeżeli R jest relacją równoważności na zbiorze X, to przez AjR będzie oznaczany zbiór
ilorazowy wyznaczany przez R, a przez [%] będzie oznaczana klasa abstrakcji genero­
wana przez ag X.

Przez ..., x„ będziemy oznaczać wielozbiór nad zbiorem liczb rzeczywistych.
Wyrażenie S"{| Aj, ..., x„ Ir- będzie sumą wszystkich elementów tego wielozbioru.

W szczególnym przypadku, dla wielozbioru pustego, z definicji Z0 = 0.

Definicja 10.1
Zagregowanym prawdopodobieństwem dla wyrażenia behawioralnego Q wzglę­
dem zbioru wyrażeń C będziemy nazywać funkcję częściową A Prób o sygnaturze

AProb : BEH xAxAPx 2BEH -> PR (10.32)

zdefiniowaną przez wyrażenie

AProb(Q, g, n, C)
(10.33)

= Z I p | «Z>, p>G PD(Q) a Q —(g,0,°o,^)^ Q' a Q'e CI (■

Zagregowane prawdopodobieństwo jest sumą prawdopodobieństw przejścia z wyraże­
nia Q do dowolnego wyrażenia ze zbioru C, w wyniku wykonania akcji natych­
miastowych o nazwie geA i priorytecie n.

Definicja 10.2
Zagregowaną intensywnością dla wyrażenia behawioralnego Q względem zbioru
wyrażeń C będziemy nazywać funkcję częściową ARate o sygnaturze

ARate : BEH xAx P(BEH) R+ (10.34)

zdefiniowaną przez wyrażenie

ARate(Q, g, C)
. (10.35)

= Z’! 1A1 <0 A>e RATE(Q) x Q—(g,0/l,O)->0' a Ae a Q'e CI }•

Zagregowana intensywność jest sumaryczną intensywnością przejścia z wyrażenia Q do
dowolnego wyrażenia ze zbioru C w wyniku wykonania akcji czasowej o nazwie geA.

214 Rozdział 10

Definicja 10.3

Relacja równoważności B ę BEHkBEH jest silną rozszerzoną bisymulacją mar-
kowowską (EMB), wtedy i tylko wtedy, gdy jeśli <Qt, Q2>eB, to dla wszystkich
gtA, n^AP, i dowolnej klasy CeBEH\b zachodzą związki:

AProb(Q], g, n, C) = AProb(Q2, g, n, C), (10.36)

ARate(Q\, g, C) = ARate{Q2, g, C). (10.37)

Fakt, że wyrażenia Q\ oraz Q2 są w relacji EMB będzie zapisywany w postaci 0i ~ Q2-

Lemat 10.1

Niech ~EMB będzie mnogościową sumą wszystkich silnych rozszerzonych bisymu-
lacji markowowskich. Relacja ~EMB jest największą silną rozszerzoną bisymulacją
markowowską (największą EMB).

Dowód. Analogiczny dowód jest pokazany w pracy (Bernardo&Gorieri, 1998).

Relacja ~EmB jest również kongruencją. Pokazuje to poniższe twierdzenie, które spro­
wadza się do wykazania, że relacja jest zachowywana przez wszystkie operatory języ­
ka oraz przez instancje procesów.

Twierdzenie 10.2

Niech Q\, Q2eBEH. Jeżeli 0| ~EMBQ2AO'

1. Dla dowolnych gEA, oje N, AeAR, theAP
(g, a, A, rtp, Q\ ~EmB (g, a, A, xt)-, Q2 (10.38)

2. Dla dowolnych Qe BEH, pE PR

Q\ [p] Q ~emb [p] Q oraz Q [p] Q\~EMbQ [p] 02 (10.39)

3. Dla dowolnych QeBEH, r, se PR, FqG

0i |[/?lk Q ~EMB Qz |[7?]|v.r Q oraz Q |[R]|,f Q}~EMBQ |[R]|.,., Q2 (10.40)

4. Dla dowolnego Qe BEH

Q\[p>Q ~emb Q2\p>Q oraz Q [p > Q\~EMB Q[p > Q2 (10.41)

5. Dla dowolnego QeBEH

Q\» Q~embQ2» Q oraz Q » Q\~EMB Q » 02 (10.42)

6. Dla dowolnego R ESeqG
hide R in Q{ ~EMB hide R in 02 (10.43)

Dowód - zob. Dodatek 1.

Rozszerzenie wydajnościowe LOTOSa 215

W celu pokazania, że relacja ~emb jest zachowana przez instancje procesów, wprowa­
dzimy pewne definicje pomocnicze.

Proces niemający definicji w danym zbiorze definicji jest określany jako wolny wzglę­
dem tego zbioru.

Wyrażenie Q jest częściowo dozorowane względem danego zbioru definicji procesów,
jeśli dowolna nazwa procesu P, występująca w Q, jest albo wolna względem danego
zbioru definicji, albo proces ten ma definicję postaci P[h\, ..., h,„] := Q' oraz każdy
proces o nazwie P', który występuje w Q', jest dozorowany.

Wprowadźmy pojęcie rekursywnego podstawienia wyrażenia Q za wywołanie procesu
p[7?] w wyrażeniu Qt. Oznaczenie

Q^[<P[R-.:=Q>]
ma następującą definicję:

stop[<P[g ।,..., g„]: := Q >] s stop
(exit, a, o®, «>)[</>[/?] z=Q>] = (exit, a, °°,
((g, a, A, zip, 0,)[<P[/?J ::= Q>] = (g, a, A, zfi QA<P[R] ”= 0>]
(0i [p] Q2)[<P[R] "= Q>] = 0i[<P[*] "= Q>] [p] 02[<W "= Q>1
(0i |[5]k 02)[</’[/?] "= Q>] = 0i[<W ::= 0>] |[U,- 02[<P[/?] ::= 0>]
(hide R in 01)[<P[/?] ::= 0>] = hide R in 0,[<P[/?] ::= QP>]
(0! » 02)[<P[/?1 "= 0>] = 0I[<P[/?] ::= Q>] » 02[<P[/?] ::= Q>]
(0i [> 02)[<P[/?] "= 0>] = 0.[<™ ::= 0>] [> 02[<P[/?] ::= 0>]
(p[/?'D [<P[/?] ::= 0>] =

0 gdyp[Z?'] = P[P]
■ p[Pz] gdy = P[/?]) a p[/?'] wolny w zbiorze definicji

Qp[<PlR] -'=Q>] gdy-i(p[/?']sP[/?])A0/, jest treścią p[Z?']

(0i) [<W 0>1 0i[<W ::= 0>]

Twierdzenie 10.3
Niech 0i, Q2&BEH będą częściowo dozorowanymi wyrażeniami względem dane­
go zbioru definicji oraz niech P[gi, ..., g„] będzie jedynym wolnym procesem wy­
stępującym w 0| oraz 01. Niech dane będą dwie rekursy wne definicje procesów:

^ifel............gJ -=QA<P[§1, ■■;gn] '^PAgi, •••,gJ>]
........ g„] := 02[<P[gi, •••, g„] "= ^[gi, g„]>] (10 44)

Jeżeli 0| ~embQz, to Pi[gi, ..., g„] ~EMBPz[g\, •••, g„L

Dowód - zob. Dodatek 1.

216 Rozdział 10

10.6. Uwagi końcowe

W bieżącym rozdziale przedstawiono wydajnościowe rozszerzenie języka LOTOS,
które opiera się przede wszystkim na wcześniejszych pracach: [Huzar, Magott 1996],
[Huzar, Magott 1997b], [Huzar, Magott 2001], Istotnymi cechami język MB-LOTOS
są akcje natychmiastowe i czasowe, z wykładniczym rozkładem prawdopodobieństwa,
oraz probabilistyczne operatory wyboru i złożenia równoległego. Wybór akcji do wy­
konania następuje, w pierwszej kolejności, na podstawie priorytetów, a następnie na
wyborze probabilistycznym. Mechanizmy te, eliminując niedeterminizm, umożliwiają
tym samym prowadzenie analizy probabilistycznej specyfikacji wyrażonych w tym
języku. Wprowadzone mechanizmy probabilistycznego wyboru akcji są zależne od
otoczenia. Jest to rozwinięcie języka w stosunku do wcześniejszych prac: [Huzar,
Magott 1999a], [Huzar, Magott 1996], [Huzar, Magott 197a], a także prac innych au­
torów, na przykład: [Schieferdecker 1995], [Miguel, Fernandez, Vidaller 1993], [Her-
manns, Rettelbach 1996].

Dla przedstawionego rozszerzenia języka zdefiniowano relację silnej bisymulacji mar-
kowowskiej i pokazano, że jest kongruencją, co oznacza kompozycyjność języka.
Pokazano też jak dla specyfikacji wyrażonej w języku MB-LOTOS wyprowadzać
łańcuchy Markowa. Opisane wyprowadzanie łańcuchów Markowa było zastosowane
między innymi w pracach: [Babczyński, Huzar, Magott 1999], [Huzar, Magott 2000],
[Babczyński, Huzar, Magott 2000],

Algebry procesowe, oparte na językach CCS, CSP, ACP, LOTOS i innych, były
przedmiotem wielu prac, na przykład: [Reed, Roscoe 1986] [Bolognesi, Lucidi 1992],
[Fidge 1992], [Herrmanns, Rettelbach 1994], [Brinksma, Katoen, Latella 1995],
[Schieferdecker 1995], [Rettelbach 1995], [Hermanns, Rettelbach 1996], [Hillston
1996], [Bravetti, Bernardo 2000], [Hermanns, Herzog, Katoen 2002]. Wśród nich
warto wyróżnić: [Nicollin, Sifakis 1992], [Bernardo, Gorrieri 1998] i [Hermanns,
Herzog, Katoen 2002], ze względu na zawarty w nich obszerny przegląd literatury.

Można stwierdzić, że prace nad algebrami procesowymi przerodziły się w oddzielny
nurt poszukiwania modeli formalnych i narzędzi programowych wspomagających ich
stosowanie. Na przykład dla LOTOSa pierwsze rozszerzenie stochastyczne, oparte na
semiłańcuchach Markowa przedstawiono w pracy [Rico, von Bochmann 1991] oraz
w pracy [Valderrutten, Hjiej, Benzekri Gazal 1992], pokazującej wyprowadzanie sys­
temów kolejkowych na podstawie rozszerzonych specyfikacji. Stochastyczne rozsze­
rzenie LOTOSa z dowolnymi rozkładami, ale ograniczoną kompozycyjnością, jest
przedstawione w pracy [Ajmone Marsan, Balbo, Conte, Donatelli, Franceschinis
1994], Język TIPP [Gótz, Herzog, Rettelbach 1993], początkowo pomyślany jako
algebra z dowolnymi rozkładami czasów wykonywania akcji, skupił się ostatecznie na
rozkładach wykładniczych, podobnie jak PEPA: [Hilston 1996] i EMPA [Bernardo,
Gorrieri 1998]. Prace [Brinksma E., Katoen J.-P., Latella D., 1995] i [Katoen,

Rozszerzenie wydajnościowe LOTOSa 217

Brinksma, Latella, Langerak 1996] są propozycją stosowania semantyki nieprzeplo-
towej, umożliwiającej rozważanie bardziej ogólnych rozkładów prawdopodobieństwa.
Inną propozycją podobnego podejścia jest praca [Priami 1996], dotycząca stocha­
stycznej wersji rachunku n, oraz praca [Herzog 1996]. Propozycje niemarkowowskich
modeli zawiera między innymi praca [D’Argenio, Hermanns, Katoen 1999].

Do budowania modeli wydajnościowych sięga się także po inne metody formalne.
Przykładem są materiały warsztatów na temat systemów czasu rzeczywistego [Gnesi,
Schieferdecker, Rennoch 2000]. Wśród różnych metod formalnych ważną rolę odgry­
wają sieci Petriego. Do przykładowych prac należą tu między inymi: [Murphy 1991],
[Juanole, Atamna 1991], [Magott 2005],

Krótkie omówienie innych metod formalnych przedstawiono w następnym rozdziale.

218

11. Zakończenie

11.1. LOTOS a inne techniki formalne

Omawiany LOTOS jest jedną z wielu technik formalnych wykorzystywanych w pro­
cesie wytwarzania systemów informatycznych. Poniżej omówiono krótko inne metody
formalne i półformalne, które zasługują na uwagę ze względów historycznych lub
stopień ich upowszechnienia. Do metod wspólnie rozwijanych z LOTOSem należą,
wspominane wcześniej, standardy SDL [ITU-T 1999] i ESTELLE [ISO 9074],
LOTOS, SDL i ESTELLE były przeznaczone do definiowania i badania standardów
dotyczących sieci komputerowych i sieci telekomunikacyjnych. Oprócz norm ISO
i wielu odrębnych opisów, jak np. pozycje [Ellsberg, Hogrefe, Sarma 1997], [Szmuc
1998] dotyczące SDL, czy prace [Budkowski, Dembiński 1987], [Budkowski, Dem­
biński 1989], dotyczące ESTELLE, łączny opis tych trzech technik zawiera książka
[Turner 1993],

Oprócz nich były rozwijane inne metody, przeznaczone ogólnie do wspomagania pro­
cesów specyfikowania i projektowania systemów rozproszonych [ISO/ODP 10746].
Należą do nich między innymi metody i związane z nimi narzędzia programowe, jak
SPIN i UPPAL, rozwijane przede wszystkim w środowiskach akademickich [Babbich,
Deontio 2002]. Oddzielną grupę stanowią metody wykorzystujące sieci Petriego,
a w ostatnim okresie metodyki oparte na języku UML czy też modele kolejkowe.

Wspólną cechą LOTOSa, SDL, ESTELLE, SPIN i UPPAL jest to, że służą do kon­
struowania specyfikacji wykonywalnych i wspólnie odwołują się do pojęcia, różnie
definiowanej, maszyny stanowej.

SDL [ITU-T 1999] jest w zasadzie językiem półformalnym, przeznaczonym do opisu
systemów reaktywnych i systemów czasu rzeczywistego. Specyfikacja w SDL przed­
stawia pewną rozszerzoną maszynę stanową. Struktura specyfikacji jest określona
przez zbiór równoległych komunikujących się procesów. Komunikacja odbywa się
w sposób asynchroniczny, za pośrednictwem komunikacyjnych kanałów (kolejek
FIFO skończonej długości). Zachowanie procesów jest określane oddzielnymi diagra­
mami aktywności, ukazującymi reakcje procesów na przychodzące pobudzenia. Poszcze­
gólne aktywności mogą być opisywane w języku naturalnym lub w języku programowa­
nia. Opis zachowania dopuszcza niedeterminizm. Procesy operują na własnej przestrzeni
danych. Początkowo SDL (podobnie jak LOTOS) opierał się wyłącznie na abstrakcyj­
nych typach danych, później dołączono typy danych z języka programowania C.

Dzięki intuicyjnej, graficznej postaci specyfikacji uzyskał dużą popularność zarówno
w środowiskach akademickich, jak i przemysłowych. (Warto dodać, że powszechnie
stosowanej notacji graficznej zawdzięcza swą popularność także język UML - de
facto standard w wytwarzaniu systemów oprogramowania.)

Zakończenie 219

Głównym obszarem zastosowań SDL są systemy telekomunikacyjne, dlatego wśród
komercyjnych narzędzi programowych wspomagających posługiwanie się tym języ­
kiem jest Telelogic Tau Suitę - produkt firm Swedish Telelogic oraz Object-Geode,
umożliwiający generowanie kodu w C i C++, testowanie i wykonywanie aplikacji na
podstawie specyfikacji w SDL. Część testująca narzędzia wykorzystuje język TTCN
- standard ISO definiowania testów dla systemów telekomunikacyjnych.

W ogólnej ocenie języka SDL pozytywnymi cechami są: modularne podejście do two­
rzenia specyfikacji, z wyraźnym oddzieleniem definiowania struktury od definicji za­
chowań. Język jest zorientowany na szybkie tworzenie aplikacji, stąd wynika powią­
zanie z językami programowania C oraz C++, a ze względu na obszar zastosowań,
również powiązanie z notacją ASN.l do zapisu składni abstrakcyjnej typów danych
oraz do kodowania danych transmitowanych w sieciach telekomunikacyjnych. Bada­
nie własności prototypu wygenerowanego na podstawie specyfikacji w SDL wymaga
pełnego testowania. Walidacja samej specyfikacji wymaga natomiast jej transformacji
do innego formalizmu, na przykład do LOTOSa.

ESTELLE, podobnie jak SDL, bazuje na rozszerzonych maszynach stanowych i ko­
rzysta z notacji języka Pascal do operowania na danych. Dzięki temu specyfikacje
w ESTELLE są podstawą szybkiego generowania wykonywalnego prototypu.
ESTELLE, bardziej niż LOTOS, jest ukierunkowany na implementację.

Specyfikacja składa się z modułów, które mogą się ze sobą komunikować asynchroni­
cznie za pośrednictwem dwukierunkowych kanałów komunikacyjnych. Moduł dyspo­
nuje własnym zbiorem danych, na których można wykonywać określone operacje.
Moduły mogą być zagnieżdżane. ESTELLE ma dobrze określone podstawy teorety­
czne i znalazł zastosowanie w licznych projektach; ocenia się jednak, że dla zastoso­
wań przemysłowych wymagane byłoby opracowanie odpowiednio przyjaznych śro­
dowisk wspierających [Babbich, Deotio 2002].

SPIN (Simple ProMeLa Interpreter) jest narzędziem przeznaczonym do specyfikacji,
symulacji i walidacji protokołów komunikacyjnych. SPIN korzysta z notacji ProMeLa
{Process Meta Language), zbliżonej do języka C, co ułatwia szybkie generowanie
wykonywalnego kodu. SPIN dostarcza ponadto mechanizmów weryfikacji mode­
lowej, m.in. przez badanie inwariantów i formuł logiki temporalnej. Podstawowymi
komponentami specyfikacji są procesy. Komunikacja pomiędzy procesami odbywa się
przez kanały komunikacyjne - kolejki FIFO o skończonej długości. Gdy kolejki mają
długość zerową, komunikacja jest synchroniczna - odbywa się w trybie randez vouz,
natomiast w przypadku przeciwnym komunikacja jest asynchroniczna. Zachowanie
procesu jest opisywane przez zbiór możliwych tranzycji pomiędzy stanami procesu.
Tranzycja może nastąpić, gdy jest prawdziwy odpowiedni dozór - wyrażenie logiczne
określone na wartościach zmiennych lokalnych procesu lub zmiennych globalnych,
oraz gdy zajdzie odpowiednia akcja wejścia-wyjścia. Możliwa jest sytuacja niedeter-
ministyczna, gdy możliwe są do wykonania przynajmniej dwie tranzycje.

220 Rozdział 11

Dzięki otwartemu, bezpłatnemu dostępowi SPIN należy do najbardziej popularnych
i najczęściej stosowanych narzędzi do specyfikacji i weryfikacji protokołów, co wyra­
ża się między innymi organizacją cyklu warsztatów poświęconych rozwojowi i zasto­
sowaniom tego narzędzia. Jednym z interesujących zastosowań jest wykorzystanie
SPIN do badania własności specyfikacji zapisanych w SDL. Osiąga się to dzięki pro­
stej transformacji specyfikacji w SDL na specyfikację w SPIN.

UPPAL (skrót od UPPsala and AALborg - miast, w których mieszczą się współpracu­
jące ze sobą uniwersytety) jest narzędziem służącym do modelowania, symulacji i we­
ryfikacji automatów czasowych. Strukturę specyfikacji wyznacza zbiór synchronicz­
nie komunikujących się procesów. Dopuszcza się, że komunikacja może trwać skoń­
czony odcinek czasu. Głównym obszarem zastosowania narzędzia jest specyfikowanie
i badanie protokołów komunikacyjnych czasu rzeczywistego.

Pełniejsze omówienie i porównanie wymienionych wyżej technik można znaleźć
w pracy [Babich, Deotto 2002]. Oprócz wymienionych, istnieje również wiele innych,
opartych na automatach czasowych i maszynach stanowych, które dostarczają narzę­
dzi do specyfikowania i badania różnych własności, na przykład VerICS [Dembiński,
Janowska, Janowski, Penczek, Półrola, Szreter, Woźna, Zbrzezny 2003],

Sieci Petriego stanowią oddzielną, bardzo szeroką klasę technik, z którą są związane
liczne narzędzia wspomagające. Aktualny przegląd w tym zakresie zawiera książka
[Girault 2003], przykładów wykorzystania sieci Petriego dostarczają prace [Szmuc
1998], [Szmuc, Motet 1998], [Szpyrka 1999], [Magott 2005], ciekawe związki pomię­
dzy sieciami Petriego a rachunkiem CCS analizuje Kułakowski [2004]. Równie sze­
roką klasę, rozwijaną od dziesiątków lat, stanowią modele kolejkowe, przykładem ich
zastosowań do systemów komputerowych jest książka [Czachórski 1999].

Oprócz omawianych, należy wspomnieć o technikach, które wyrosły z języków pro­
gramowania czasu rzeczywistego w środowiskach przemysłowych. Należą do nich ta­
kie języki i związane z nimi środowiska wspomagające, jak: Esterel [Esterel Techno­
logies, 2005], Signal [Le Guernic, Gautier, Le Borgne, Le Maire 1991] i Lustre [Halb-
wachs, Caspi, Raymond, Pilaud 1991], stosowane między innymi w europejskim
przemyśle lotniczym i awionice. Omówienie tych języków i ich zastosowań zawiera
praca [Benveniste, Caspi, Edwards. Halbwachs, Le Guernic, De Simone 2003]. Do tej
samej grupy technik można zaliczyć język Ada i związane z nim środowiska projek­
towe. Obecnie trwają prace nad ustanowieniem standardu ISO wersji Ada 2005, sta­
nowiącej rozwinięcie poprzedniej wersji Ada 1995 [Huzar, Fryźlewicz, Dubielewicz,
Hnatkowska, Waniczek 1998],

11.2. LOTOS a UML
Współczesne metody wytwarzanie systemów oprogramowania opierają się na para­
dygmacie modelowania obiektowego - cykl wytwarzania oprogramowania jest po­

Zakończenie 221

strzegany jako proces budowy ciągu powiązanych ze sobą modeli [Hnatkowska, Hu­
zar, Tuzinkiewicz 2001], a podstawowym językiem modelowania jest obecnie UML
[UML 2003], [Booch, Rumbaugh, Jacobson 1999]. UML jest językiem półformalnym
- składnia bezkontekstowa (opis jest wyrażony w podzbiorze języka UML) i kontek­
stowa (opisana w języku OCL - Object Constraint Language) są opisane formalnie,
semantyka natomiast jest opisana w języku naturalnym.

LOTOS natomiast nie jest ani językiem projektowania obiektowego, ani też nie może
być uważany za język programowania obiektowego. Uzasadnienie tego faktu wynika
z następującego rozumowania:

Zakładając, że LOTOS jest językiem programowania obiektowego, należałoby przy­
jąć, że instancja procesu jest odpowiednikiem obiektu, a definicja procesu jest odpo­
wiednikiem klasy. Podobieństwo polega na tym, że instancja procesu komunikuje się
ze swym otoczeniem przez dobrze określony interfejs, chociaż ograniczony tylko do
wskazania bramek, bez jawnego określenia typów komunikowanych danych, i stanowi
hermetyzację danych, na których proces operuje. Na tym jednak kończą się podobień­
stwa z językiem programowania obiektowego, gdyż pomiędzy procesami nie ma me­
chanizmu dziedziczenia (dziedziczenie jest ograniczone w LOTOSie tylko do typów
danych) ani też mechanizmu polimorfizmu [Górski 1999].

Zakładając zaś, że LOTOS jest językiem projektowania obiektowego, należałoby
oczekiwać dodatkowych własności: po pierwsze - definiowania asocjacji pomiędzy
klasami (definicjami procesów), wraz z odpowiednimi ograniczeniami licznościowy-
mi, oraz - po drugie - możliwości tworzenia powiązanych instancji obiektów (instan­
cji procesów) spełniających te ograniczenia. W języku UML własności te są wyrażane
przez diagramy klas i diagramy obiektów - instancje diagramów klas. LOTOS może
definiować dowolny zbiór procesów, ale - poza zagnieżdżeniami - nie może określać
żadnych związków pomiędzy ich definicjami, struktura powiązań pomiędzy instan­
cjami procesów jest natomiast ograniczona tylko do tych możliwości, jakie dają opera­
tory składania procesów - w zasadzie chodzi tylko o operator złożenia równoległego.
Wprawdzie tworzenie różnych struktur powiązań pomiędzy instancjami procesów jest
możliwe, ale wymaga to oddzielnego postępowania [Haj-Hussein, Logrippo 1991],
prowadzącego do znacznej rozbudowy wyrażeń behawioralnych.

Analiza możliwości stosowania języka LOTOS w kontekście obiektowego podejścia
do wytwarzania oprogramowania była rozważana jeszcze w latach dziewięćdziesią­
tych ubiegłego wieku, na przykład [Gibson 1993], [Hnatkowska 1996], ale ostatecznie
praktyka przesądziła o dominującej roli języka UML. Nie oznacza to, że LOTOS stał
się niepotrzebny, ale że może pełnić inną rolę. Tą rolą w stosunku do języka UML,
jest użycie LOTOSa do definiowania behawioralnego aspektu semantyki UML. Przy­
kładami takiego zastosowania LOTOSa są prace: [Clark, Moreira 2000], [Hnatkowska,
Huzar 2000], [Hnatkowska, Huzar 2001], [de Saqui-Sannes, Apvrille, Lohr, Senac,
Courtiat 2002], [Cichoń, Huzar 2005], [Cichoń, Huzar 2006] oraz [Walkowiak 2006].

222 Rozdział 11

11.3. Diagramy stanów UML a LOTOS

W tym podrozdziale przedstawiono propozycję reprezentacji diagramów stanów języ­
ka UML w postaci wyrażeń behawioralnych LOTOSa, opartą na pracy [Hnatkowska,
Huzar 2001].

Diagramy stanów w UML są graficzną reprezentacją maszyn stanowych i opierają się
na koncepcji map stanów Harela [Harel 1987], których istotnym mechanizmem jest
zagnieżdżanie stanów. Zagnieżdżanie oznacza, że we wnętrzu stanu może być zawarta
inna maszyna stanowa, reprezentowana nowym diagramem stanów. Zagnieżdżanie
stanów pozwala ograniczać eksplozję stanów, która jest zasadniczym problemem
związanym ze stosowaniem metod operacyjnych.

Stany i tranzycje pomiędzy stanami są reprezentowane odpowiednio w postaci wierz­
chołków i łuków grafu. Wyróżnia się dwie podstawowe kategorie stanów:

• Pseudostany, na które składają się stan początkowy i końcowy, łączniki histo­
ryczne (płytki i głęboki), rozgałęzienie, rozwidlenie i złączenie równoległe.

• Stany właściwe, krótko stany, wśród których wyróżnia się stany proste i złożone,
a te ostatnie dzieli się na złożone sekwencyjnie i równolegle. W stanie prostym
nie są zagnieżdżone inne stany. W stanie złożonym, „rodzicielskim”, są zagnież­
dżone inne stany, stany „potomne”, nazywane też podstanami. Podstan jest bez­
pośrednim podstanem danego stanu, jeśli nie jest zagnieżdżony w innym stanie,
a przeciwnym razie jest podstanem przechodnim tego stanu.

Diagram stanów można przedstawić jako etykietowany graf. Graf diagramu stanów
jest definiowany jako szóstka

S = <BoxN, childB, typeB, defaultB, ArcN, Arc> (11.1)

gdzie:
BoxN jest skończonym zbiorem nazw wierzchołków, reprezentujących stany wła­
ściwe; nazwa wierzchołka jest utożsamiana z nazwą stanu.
childB ę BoxN x BoxN jest relacją hierarchii stanów: <bh b2>£ childB oznacza, że
b2 jest bezpośrednim „potomkiem” stanu „rodzicielskiego” b\. Zbiór BoxN oraz re­
lacja hierarchii childB definiują drzewo. Korzeń tego drzewa r nie ma „rodziców”,
a jego liście nie mają „potomków”. Zwrotne i przechodnie domknięcie relacji
childB jest oznaczane przez childB .
typeB : BoxN —> {PRIM, XOR, AND, FIN} jest funkcją określającą typ danego
wierzchołka. Korzeń r, z definicji jest typu XOR, liście są typu PRIM lub FIN, pozo­
stałe zaś wierzchołki mogą być albo typu XOR (sekwencyjnie złożony podstan), albo
AND (równolegle złożony podstan). Liście typu FIN reprezentują stany końcowe.
defaultB : BoxN —» 2*"'* jest funkcją, która dla danego stanu złożonego określa te
jego podstany, które są stanami początkowymi. Dla wierzchołka typu XOR jest to

Zakończenie 223

zawsze zbiór jednoelementowy, dla wierzchołka typu AND jest to zbiór co najmniej
dwuelementowy. Dla wierzchołka typu PRIM zbiór podstanów początkowych jest
pusty. Rozszerzeniem funkcji defaultB jest funkcja DefaultB : BoxN —> 2BaM,
określona przez następujące własności: b^DefaultBfb') oraz dla wierzchołków
b'EBoxN, takich że <b, b'>^childB\ wymaga się, aby b'& DefaultB{b) wtedy i tyl­
ko wtedy, gdy defaultBfb') Q DefaultB(b~).
ArcN jest skończonym zbiorem nazw łuków: BoxN n ArcN =0.
Arc c BoxNx ArcN x Bo^jest zbiorem łuków. Łuk azArc jest trójką <b\, a, b2>
z wierzchołkiem początkowym source^a) = blt końcowym target(a) = b2 oraz na­
zwą name(a) - a.

Zarówno wierzchołki, jak i łuki grafu diagramu stanów S mają swoje etykiety.

Wierzchołki (stany) są etykietowane przez pięć elementów:

• akcje (niepodzielne i nieprzerywalne czynności obliczeniowe) wykonywane bez­
pośrednio po wejściu do stanu,

• ciągi akcji (aktywności) wykonywane podczas przebywania w danym stanie; cią­
gi te mogą być przerywane w dowolnej chwili po wykonaniu każdej z akcji,

• akcje wykonywane bezpośrednio przed wychodzeniem ze stanu,
• tranzycje wewnętrzne, określone przez dwa elementy: zdarzenia, jakie mogą za­

chodzić podczas przebywania w stanie, i przez akcje, które są wykonywane po
zajściu tych zdarzeń,

• zdarzenia odroczone - zdarzenia, których zajście jest tylko rejestrowane i przeka­
zywane do kolejnych stanów.

Każdy z wymienionych elementów jest opcjonalny (może nie występować); w dal­
szych rozważaniach uwzględnimy tylko trzy pierwsze elementy - akcje wejściowe,
ciągi akcji wewnętrznych i akcje wyjściowe.

Łuki grafu diagramu stanów są etykietowane trzema elementami:

• zdarzeniem wyzwalającym tranzycję ze stanu, od którego łuk wychodzi, do sta­
nu, do którego łuk prowadzi,

• dozorem - wyrażeniem logicznym, określonym przez wartości atrybutu obiektu
(ogólniej instancji klasyfikatora), którego zachowanie jest opisywane diagramem
stanów; prawdziwość dozoru w momencie zajścia zdarzenia wyzwalającego jest
warunkiem koniecznym tranzycji,

• akcją, która jest wykonywana podczas tranzycji ze stanu do stanu (akcja jest wy­
konywana po wykonaniu akcji wyjściowej w stanie, z którego następuje tranzy-
cja, a przed wykonaniem akcji wejściowej stanu, do którego następuje tranzycja).

Każdy z wymienionych elementów jest opcjonalny, przy czym jawny brak zdarzenia
wyzwalającego w etykiecie łuku oznacza, że zakończenie ciągu akcji wewnętrznych
w danym stanie jest interpretowane jako zdarzenie wyzwalające trazycję. Wyróżnia

224 Rozdział 11

się cztery rodzaje zdarzeń wyzwalających: zdarzenie odbioru sygnału, wywołania
operacji, zdarzenie czasowe i zdarzenie zmiany wartości. Sygnały i wywołania opera­
cji mogą przenosić wartości.

Diagram stanów jest określony jako trójka

MS - <S, labB, labA> (11.2)
gdzie:
S jest grafem diagramu,
labB oraz labA są funkcjami etykietującymi wierzchołki oraz łuki.

Funkcja labB każdemu wierzchołkowi b&BoxN przypisuje piątkę

labB(b) = <entry(b), dolb), exit(b), deferrablelb), internal(b)> (11.3)
gdzie:

entry(b), do(b), exit(b) są ciągami akcji,
deferrable(b) jest ciągiem par: zdarzenie, akcja,
internal(b) jest ciągiem zdarzeń.

Zakładamy, że dla wierzchołka-korzenia labB(r) jest puste.

Funkcja labA każdemu łukowi a^ArcN przypisuje trójkę

labA(a) = <trigger(a), effect^a), guard(a)> (11 -4)
gdzie:

trigger(a) jest zdarzeniem wyzwalającym tranzycję po łuku a; gdy element ten
jest pusty - oznacza to, że tranzycja może nastąpić w wyniku zakończenia aktyw­
ności wewnętrzej,
effect{a) jest akcją; gdy element ten jest pusty - oznacza to brak akcji,
guard^a) jest warunkiem logicznym; gdy element ten jest pusty - oznacza to, że
warunek jest tożsamościowe prawdziwy.

W dalszych rozważaniach będzie wykorzystywana następującą funkcja pomocnicza

TypeA : ArcN{EV-LAB, TO-LAB,UN-LAB} (11.5)

która ma odróżniać jedną z trzech sytuacji, gdy zdarzenie wyzwalające tranzycję (a)
jest przesłaniem sygnału lub wywołaniem operacji - EV-LAB, (b) zdarzeniem czaso­
wym - TO-LAB lub (c) zdarzenie nie jest jawnie określone - UN-LAB.

Semantykę diagramu stanów opisuje się w terminach ciągów konfiguracji, w których
może się znajdować. Standard UML zmiany konfiguracji opisuje w sposób nieformal­
ny, dalej pokazujemy jak zmiany te można wyrazić w sposób formalny dzięki zasto­
sowaniu LOTOSa.

Konfigurację diagramu stanów w danym momencie określa się przez zbiór stanów
aktywnych. Konfiguracją diagramu stanów S jest podzbiór stanów B Q BoxN, taki że

Zakończenie 225

re B oraz dla każdego wierzchołka be B, jeżeli jego typ typeB(b) = AND, to wszystkie
jego potomne wierzchołki należą do B, a jeżeli typeB(b) = XOR, to dokładnie jeden
jego potomek należy do B. Hierarchia wierzchołków childB, ograniczona do zbioru B,
stanowi poddrzewo <B, childB n B x B> drzewa <BoxN, childB>. Początkowa konfi­
guracja diagramu S jest określona jako Binil = defaultB(r).

Niech lca(b\, b^ oznacza najmniejszy wspólny poprzednik wierzchołków b} oraz b2
w drzewie <BoxN, childB>, to znaczy < lca(bh b2) , bp&childB dla i = 1, 2, oraz nie
istnieje inny wierzchołek b taki, że <b, b,>e childB oraz < lca(bi, b2), b>echildB .

Dwa wierzchołki b\, b2EBoxN są niezależne w sensie równoczesnego wykonywania
aktywności - krótko: są niezależne, jeżeli żaden z nich nie jest poprzednikiem drugie­
go i type(lca(b\, b^)) = AND. Dwa łuki <b\, ah b\> oraz <b2, a2, b'2> są niezależne,
jeżeli wierzchołki lca(bi, b'\) oraz lca(b2, b'^) są niezależne.

Tranzycja T z konfiguracji B do konfiguracji B' jest określona jako największy zbiór
nazw wzajemnie niezależnych łuków, których wierzchołki początkowe należą do
zbioru B.

Zmiana konfiguracji następuje w wyniku zajścia zdarzenia wyzwalającego. Tranzycja
diagramu stanów zależy od konfiguracji i od otoczenia diagramu, które jest źródłem
zdarzeń wyzwalających. Wyróżnia się dwa rodzaje tranzycji: tranzycje niskopozio-
mowe pomiędzy stanami prostymi i tranzycje wysokopoziomowe, związane z prze­
chodzeniem od lub do stanu złożonego. Tranzycje wysokopoziomowe mają priorytet
nad tranzycjami niskopoziomowymi.

W przedstawianej formalizacji przyjmuje się następujące założenia ograniczające:
• Rozważamy wyłącznie tak zwane strukturalne diagramy stanów, to znaczy takie,

które nie zawierają łuków przecinających granice stanów. Oznacza to, że jeżeli
<bh a, b2>eArc, to istnieje taki b'&&BoxN typu XOR, że <b', b\>, <b', b2>&childB
(inaczej: wierzchołki b}, b2 mają wspólnego rodzica typu XOR). Ograniczenie to ma
na celu nie tylko uproszczenie rozważań, ale jest ono także zaleceniem meto­
dycznym; niestosowanie się do tego zalecenia jest analogonem całkowicie swo­
bodnego wykorzystywania instrukcji skoku bezwzględnego w programowaniu.

• Rozważamy tylko stany normalne oraz tylko dwa pseudostany: początkowy
i końcowy. Ograniczenie to ze względów praktycznych nie jest istotne, gdyż bar­
dzo rzadko wykorzystuje się inne rodzaje pseudostanów, a z teoretycznego punk­
tu widzenia siła ekspresji diagramów stanów nie ulega tu ograniczeniu.

• Funkcja etykietująca wierzchołki labB jest ograniczona tylko do trzech pierw­
szych elementów, pomijamy tranzycje wewnętrzne i zdarzenia odraczane. Wy­
nika to z chęci uproszczenia rozważań, gdyż uwzględnienie zwłaszcza zdarzeń
odraczanych wprowadziłoby istotną rozbudowę przedstawianych transformacji.

• Dodatkowo przyjmujemy, że nazwy wszystkich akcji są unikatowe, a zbiory
nazw akcji, wierzchołków, łuków i zdarzeń są parami rozłączne.

226 Rozdział 11

Omawiana transformacja każdemu diagramowi stanów przyporządkowuje wyrażenie
behawioralne. Transformacja polega na przypisaniu wyrażenia behawioralnego każde­
mu wierzchołkowi (stanowi) diagramu stanów, a następnie połączeniu wyrażeń skła­
dowych w jedno wyrażenie końcowe. Strukturę wyrażenia końcowego, złożonego
z trzech komunikujących się procesów, pokazano na rysunku 11.1.

Rys. 11.1. Struktura specyfikacji diagramu stanów

Proces StateHandler obejmuje stany aktywne, odpowiadające stanom złożonym sek­
wencyjnie, to jest stanom typu XOR.

Proces Synchronizer, przez bramkę syn, blokuje odbiór zdarzeń, przez bramkę arcN,
w stanie, do którego nastąpi tranzycja dopóty, dopóki nie stanie się on stanem sta­
bilnym, to znaczy do chwili zakończenia wykonywania akcji wejściowej w tym sta­
nie i we wszystkich jego stanach zagnieżdżonych. Blokowanie jest ograniczone do
najmniejszego wspólnego następnika stanów, z którego i do którego nastąpiła tran­
zycja.

Proces Complete jest odpowiedzialny za wykonanie zagnieżdżonych akcji wejścio­
wych i wyjściowych stanów złożonych. Po nadejściu kolejnego zdarzenia proces wy­
konuje następujące działania:

1. Dla danego łuku a, pod warunkiem, że typeB(source(a)) - XOR, pobiera przez
bramkę getS od procesu StateHandler aktywny stan (zbiór nazw stanów).

2. Wykonuje, być może zagnieżdżone, akcje wyjściowe stanu, z którego następuje
tranzycja.

3. Wykonuje, być może zagnieżdżone, akcje wejściowe stanu, do którego następuje
tranzycja.

4. Ustala nowy stan aktywny i komunikuje go do procesu StateHandler przez
bramkę putS.

5. Odblokowuje odbiór zdarzeń w najmniejszym wspólnym następniku stanów, od
którego i do którego następuje tranzycja.

Zakończenie 227

Główną częścią transformacji diagramu stanów jest funkcja B_Trans(b), która wy­
znacza wyrażenia behawioralne dla dowolnego beBoxN. Wyrażenie takie reprezen­
tuje konfigurację początkową poddiagramu stanów o korzeniu b. Wierzchołek-ko-
rzeń r reprezentuje, oczywiście, konfigurację początkową całego diagramu stanów.
Funkcja ta wykorzystuje dwie funkcje pomocnicze procD‘(b) oraz procD(b), gene­
rujące definicje procesów, reprezentujących odpowiednio wierzchołki typu AND
oraz XOR.

W definicji funkcji B_Trans(b) zastosowano następujące oznaczenia pomocnicze:
równoległe i alternatywne złożenia skończonego zbioru wyrażeń behawioralnych F„
dla ze/, są oznaczane odpowiednio n,e/ą oraz czyli

fi, , oraz£/=i / IIIĄ |||...|||^ (H.6)

Dalej zakładamy, że wszystkie tranzycje etykietowane zdarzeniem czasowym są uni­
kalnie numerowane, oraz że z danego stanu wychodzi co najwyżej jeden łuk etykieto­
wany zdarzeniem czasowym, czyli card{aEleaving(b) | typeA^a) = TO-LAB} < 1.

B _Trans(b) = •

b[ExtArcN] jeślitypeB(b) = PR1M lubtypeB(b) = FIN

B _ Trans(defaultB(b)) [> b [ExtArcN]

jeśli typeB(b) = XOR

oraz dla wszystkich b'e cluldB(b)jest generowana

definicja nowego procesu przez funkcję procD(b')

^btchildBib)B -Trans(b'»l> b 1 ExtArcN]

jeśli typeB(b) = AND

oraz dla wszystkich b'E cbildB(b) jest generowana

definicja nowego procesu przez funkcję procD (b')

gdzie:

ExtArcN = Ust({putS, getS, syn} u ActionNames u ArcN)

ActionNames = U heBmN (AS_Names(entry(b)) u AS_Names{exit{b))

U AS_Names(do(b)y)

EventArcN = {aeArcN • typeA(a)= EV-LAB}

(11.7)

(H.8)

(H.9)

Funkcja list(S) transformuje zbiór S na listę zawierającą wszystkie elementy ze zbio­
ru S, a funkcja AS_Names(a) dany ciąg akcji a transformuje na zbiór nazw akcji nale­
żących do tego ciągu.

228 Rozdział 11

Definicja procesu reprezentującego wierzchołek-korzeń r jest niezależna od diagramu
stanów i ma postać

process r[ExtA rcN]: noexit: = stop endproc (11.10)

Definicja funkcji procD, dla danego stanu b, przedstawia się następująco:
procD*(b) = process b[£A7ArcAG: noexit := stop endproc (H.ll)

Funkcja procD*jest bardziej złożona, jej definicja, dla danego stanu b, przedstawia się
następująco:

1. Jeżeli typeB(b) = FIN, to

procD(b) = process b[ExtArcN]: noexit := stop endproc (11.12)

2. Jeżeli typeB(b) A FIN, to

ProcD(b) = process b[ExtArcNY noexit :=
(Do_Trans{b) Time_Out(leaving(,b))

Disabling_Part(b) (11.13)
) After_Time_Out(leaving(b))

endproc
Funkcje, które występują w definicji funkcji procD, są określone w sposób następu­
jący:

do^bf,
Do _Trans(b) = j

I puste

gdy do(b) jest niepustą sekwencją akcji

w przypadku przeciwnym

Disabling _ Part(b) = <

[> (S , ,, A (trigger(a);exit)<b,a,b >E Arc 66 ' ’

» Complete[ExtArdV](o)

» B_Trans(b'y)

gdy istnieje ag leaving(b) taki, żetypeA(x) = EY-LAB
puste w przypadku przeciwnym

stop
Time _Out(A) = j

[trigger(a);exit

gdy dla dowolnego ae A typeA(a) = EV-LAB

gdy istnieje «g A taki, że typeA(a) = TO-LAB

Aft er _ Time _ Out (A) = ■

» CompIetelEwArćWfa)
» B _Trans(target{a))

gdy istnieje a G A taki, ie.typeA(a) = TO-LAB
puste w przypadku przeciwnym

Pełna definicja funkcji transformującej SM_Trans jest dosyć złożona; pełną jej postać
przedstawiono w Dodatku 2.

Zakończenie 229

Poprawność zdefiniowanej funkcji została zbadana przez testowanie. Najpierw przy­
gotowano zestaw testowych diagramów stanów, które ręcznie, zgodnie ze zdefiniowa­
ną funkcją transformacji, przekształcono na specyfikacje w LOTOSie. Dla testowych
diagramów stanów opracowano też scenariusze zachowań - ciągi zdarzeń. Specyfika­
cje te następnie badano za pomocą pakietu programowego LOLA [Pavon, Larrabeiti,
Rabay 1995], Badanie polegało na wykonaniu i porównaniu scenariuszy zachowań
diagramów stanów i ich odpowiedników w LOTOSie.

Inny sposób wyrażania semantyki diagramów stanów UML, nieodwołujący się do ję­
zyka LOTOS, przedstawiono w pracy [Huzar, Magott 2000], a wykorzystanie tej se­
mantyki w badaniu wydajności systemów zawarto w pracach: [Babczyński, Huzar,
Magott 2001], [Babczyński, Huzar, Magott 2003],

11.4. Perspektywy technik formalnych

LOTOS jest jedną z technik formalnych wykorzystywaną w procesie wytwarzania
oprogramowania. Nasuwa się pytanie: jaka jest obecnie rola technik formalnych
w przemysłowym wytwarzaniu oprogramowania? Opinie na ten temat są zróżnicowa­
ne, ale wydaje się, że dominuje przeświadczenie, iż stosowanie metod formalnych
znacznie spowalnia proces wytwarzania oprogramowania, nie dając przy tym istot­
nych korzyści. W stosunku do wszystkich współcześnie stosowanych metod formal­
nych wysuwa się następujące zastrzeżenia [Logrippo 2000]:

• Żadna z metod oddzielnie nie ma zastosowania w pełnym cyklu wytwarzania
oprogramowania.

• Znajomość metod formalnych wśród analityków i projektantów jest ograniczona,
a w przypadku ich znajomości nie ma dominującego standardu.

Można postawić tezę, że jedną z przyczyn wymienionych słabości jest skoncentro­
wanie uwagi rozwijanych metod formalnych tylko na obliczeniowej i informacyjnej
perspektywie modelowania, czyli skupienie uwagi wyłącznie na wymaganiach funk­
cjonalnych, podczas gdy od metod oczekuje się także możliwości modelowania in­
nych perspektyw, w tym inżynierskiej i technologicznej [ISO/IEC 10746-1, 1995],

Należy też dodać, że narzędzia programowe, wspomagające stosowanie technik for­
malnych, są ciągle niedojrzałe. Na przykład dla języka LOTOS najbardziej zaawanso­
wane środowisko CADP [Garavel, Lang, Mateescu 2001] można uważać za narzędzie
o charakterze półprzemysłowym, a pierwsze narzędzie - pakiet LOLA [Pavon, Larra­
beiti, Rabay 1995] ma charakter akademicki.

Zastrzeżenia te nie oznaczają, że nie dostrzega się zalet metod formalnych (precyzja,
jednoznaczność, możliwość wsparcia programowego). Wynikiem krytyki i jednocze­
śnie doceniania metod formalnych jest rozwój metod pośrednich - półformalnych.
Obecnie UML, jako najbardziej rozpowszechniony język specyfikacji, modelowania

230 Rozdział 11

i dokumentowania projektów informatycznych, jest wyrazem takiego pośredniego
podejścia.

Nie oznacza to jednak, że metody formalne nie są wcale używane. Są one bowiem
stosowane w wytwarzaniu oprogramowania związanego z bezpieczeństwem. Podczas
projektowania tych systemów jednym z wymagań jest dowiedzenie poprawności wy­
tworzonego systemu. Samo testowanie, chociaż niezbędne, nie jest wystarczające
- wymaga się weryfikacji zbudowanego systemu względem specyfikacji albo zagwa­
rantowania jego poprawności na mocy poprawności konstrukcji transformujących
specyfikację w implementację. W tym przypadku koszt i trud projektowania są re­
kompensowane uzyskaniem wysokiego, chociaż nieabsolutnego, stopnia przekonania
o poprawności i wiarygodności zbudowanego systemu.

Dążenie do formalizacji znajduje też częściowe odzwierciedlenie w obecnych tenden­
cjach rozwoju metod wytwarzania oprogramowania. Współczesne podejście do wy­
twarzania oprogramowania jest co raz częściej oparte na MDA {Model Driven Archi-
tecture) [MDA 2003], co oznacza, że proces wytwarzania wyraża się jako ciąg
transformacji modeli. Zdefiniowanie transformacji modeli, podobnie jak i samych
modeli, wymaga posługiwania się metodami formalnymi. Opracowany nowy standard
grupy OMG [MOF QVT 2005] dotyczy właśnie języka definiowania transformacji.

Niezależnie od stosowania metod półformalnych lub formalnych warunkiem koniecz­
nym zastosowania każdej metody jest wsparcie narzędziowe w postaci komplekso­
wych środowisk projektowo-implementacyjnych. Chodzi o narzędzia programistycz­
ne, wspierające uczestników procesu wytwarzania przynajmniej od fazy wymagań,
przez fazy analizy i projektowania, aż do fazy implementacji, a często również fazy
analizy dziedzinowej. W obrębie każdej fazy od narzędzia wspomagającego oczekuje
się, oprócz możliwości edycji modelu, badania jego spójności wewnętrznej, a w prze­
chodzeniu pomiędzy kolejnymi fazami oczekuje się mechanizmów transformacji ele­
mentów jednego modelu w kolejny model lub możliwości sprawdzenia zgodności po­
między modelami [Huzar, Kuźniarz, Reggio, G., Sourrouille 2005], Spełnienie
wymienionych oczekiwań jest możliwe wyłącznie za pomocą formalizacji modeli i ich
transformacji.

231

Dodatek 1

Dowód twierdzenia 10.2

Dowód poprowadzono według następującego schematu: Zakładając, że relacja D jest
silną EMB, taką że <Qh Q2>eD, konstruuje się pewną relację B - rozszerzenie relacji
D, która jest również silną EMB, taką że < Q{, Q2 >eB, gdzie wyrażenia Q\ oraz Q2
są w jednej postaci (10.)—(10.) Ponieważ relacja ~aw?jest sumą wszystkich relacji będą­
cych silnymi bisymulacjami, dlatego wystarczy pokazać, że jeśli para < Q{, Q2 >g B, to
również < Q{, Q2 >e ~emb, dlatego w poszczególnych wyróżnionych przypadkach, wyko­
rzystując indukcję strukturalną, pokazano, że jeśli ~EMB Q2, to <Q[, Q2 >eB, gdzie B
jest relacją EMB, a waz Q2 są w jednej postaci (10.)—(10.).

W celu pokazania, że <0p Q2 >eB, należy dowieść, że:

• jeżeli <2p02 są wyrażeniami behawioralnymi takimi, że inprior (M (F> 0,
dla i = 1,2, czyli że M^F^)) zawiera tylko akcje natychmiastowe, to

AProb(Q{, g, n, C) = AProb(Q2, g, n, C) (D. 1)

dla dowolnych g&A, neAP oraz Ce BEH\b,

• jeżeli Q{, Q2 są wyrażeniami behawioralnymi takimi, że mprior(M(F(Q'y)) = 0,
dla i= 1,2, czyli że M(F(Q')) zawiera tylko akcje czasowe, to

ARate{ Q{, g, C) = ARate(Q2, g, O (D.2)

dla dowolnych geA, neAP oraz Ce BEH\b.

Poniżej podano dowody tylko dla równości dotyczących zagregowanych prawdopodo­
bieństw. Dowody odpowiednich równości dla zagregowanych intensywności są po­
dobne i dlatego je pominięto.

Dalej rozważono tylko przypadki, gdy otoczenie wyrażenia Q jest gotowe do uczest­
niczenia w akcjach na bramce g, gdyż w przeciwnym razie z semantyki języka wyni­
ka, że AProb(Q, g, n,C)- 0.

1. Niech D c BEH x BEH będzie relacją EMB taką, że <Gi, Qz>^D. Zdefiniujmy
relację B w sposób następujący:

B = (D u {<(g, a, oo, ^); ^1, (g, a, «>, ^); Q2>,

<g, a, n); Q2, (g, a, ^); Q\>}?
(D.3)

232 Dodatek I

Relacja B jest tranzytywnym domknięciem sumy relacji równoważności, a zatem jest
także relacją równoważności. Rozpatrzmy dwa przypadki:

Przypadek 1

Jeśli
<(g, a, °°, zry Q{, (g, a, oo, ny Q2>eD

to
B = D

czyli B jest silną EMB, taką że

<g, a, oo, zry Q\, (g, a, oo, zry Q2>e b (D.4)

Przypadek 2

Niech <{g, a, oo, zry Q\, (g, a, °o, zry Q2>^D.

Zachodzi następujący związek

BEH\b = (BEH\d\ {[(g, a, oo, zry GJo, [(g, a, oo, „y 02b})
(D.5)

u {[(g, a, °o, zry Q{]d<j [(g, a, °°, zry Q2]D}

Rozpatrzmy teraz dowolne elementy <Ph P2>eB, h^A, pEPR oraz CeBEH\b.
Mamy do rozważenia trzy podprzypadki:

Podprzypadek 1

Jeśli <P\, P2>eDoraz CeBEH\d\ {[(g, a, zry Q\\D, [(g, a, °o, zry Q2]D}), to

AProb{P\, h, p, C) = AProb(P2, h, p, C) (D.6)

Podprzypadek 2

Jeśli <P|, P2>eD oraz C = {[(g, a, °°, ny Qi]o^ [(g, °°, ^);

to dla ze {1, 2} zachodzi

AProb(P„ h, p, C)

= AProb(Ph h, p, [(g, a, zr); Qt]D) (D.7)

+ AProb^Pj, h, p, [(g, a, °o, Q2]D)

Ponieważ AProb(P{, h, p, C) = AProb(P2, h, p, C) dla dowolnego C, zatem

AProb(Pi, h, p,Q= AProb(P2, h, p, C) (D.8)

Podprzypadek 3

Jeśli <P{, P2>eB\D, co oznacza, że P^e [(g, a, °°, zry Qi]D oraz P2e [(g, a, °o, ny Q2]o,
to dla ze {1,2} mamy

Dodatek I 233

1 gdyC = [0LAProb(Pi,h,p,C) = \n 8 (D.9)
[O w przeciwnym przypadku

Ponieważ [0]B = [0]b, zatem AProb(P\, h, p, 0 = AProb(P2, h, p, C).

2. Niech D ę BEH x BEH będzie silną relacją EMB taką, że <Qt, Q2>&D. Relacja B,
zdefiniowana jako

B = (D u {«2({pj Q, Q2 [p] Q>, <Q2 [p]Q,Q, [pl Q>})+ (D. 10)

jest relacją równoważności. Dalszy dowód jest podobny jak w punkcie 1. Przeana­
lizujemy tylko przypadek 2., czyli gdy <Qi [p] Q, Q2 [p] Q>^ D. Zachodzi następu­
jący związek

BEH\b = (BEH\d\ {[0 [p] Q]d, [Q2 [p] 0D})

ua^ipiebotaipieb}

Rozpatrzmy <P\, P2>eB, pePR, he A, pe PR oraz Ce BEH\b ę L.

Podprzypadki 1. oraz 2. są podobne do analogicznych podprzypadków w punk­
cie 1. Rozpatrzymy tylko podprzypadek 3., gdy <P|, P2>eB\D, co oznacza, że
P{e I2i [p] Q\d oraz P2e [Q2 [p] Q]D, wówczas dla ze {1,2} mamy

AProb(Ph h,p,Q = AProb(Q, [p] Q, h, p, C) «D
= factt* AProb(Qh h, p, C) +facti2* AProb(Q, h, p, 0

gdzie fact^ oraz facti2 są zdefiniowane tak, jak w tabeli 10.1 dla wyrażeń behawio­
ralnych Qi [p] Q.

Zauważmy, że fact u =fact2\ oraz factl2 =fact22. Wartości współczynników/acz,i
zależą od wartości p i od prawdziwości formuł

MCF^) n [p] 6)) = 0 dla ż = 1, 2 (D. 13)

Gdyby zachodziło

M(F(Q^ n [p] 0) = 0
oraz (D-14)

M(F(0))nM(F(0[p] 0)^0

przeczyłoby to założeniu, że Q\ ~EMB Q2. Istotnie, oznaczałoby to, że istnieje zbiór
indeksów taki, że ^M(F{Q2)) n M(F(Q2 [p] 0) oraz ^M(F(Q])) n M(F(Q{
[p] 0), co dla g = name((P) dawałoby nierówność

AProb(Q}, g, p, C) * AProb{Q2, g, p, 0 (D. 15)

Podobnie można pokazać równość współczynników fact\2 oraz fact22.

234 Dodatek 1

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

Rozpatrzmy dwie dalsze możliwości ze względu na postać C.

Możliwość 1

Niech CeBEH\D\ {[Q, [p] Q2]o, [Q2 [p] 0iJd}- Ponieważ <0i, Q2>&D, zachodzi

AProb(Q], h, p, 0 = AProb(Q2, h, p, C)
stąd

AProb(Ph h, p, C) = AProb(P2, h, p, 0

Możliwość 2
Jeśli C = [0, [p] Q\d u [Q2 [p] Q1d, to dla ze {1,2} zachodzi

AProb(Qi, h, p, 0
= AProb^, h, p, [Qt [p] Q]D) + AProb(Q„ h, p, [Q2 [p] Q1d)

Ponieważ <Q\, Q2>eD, więc

AProb(Qh h, p, C) = AProb(Q2, h, p, 0
i ostatecznie

AProb(P\, h, p, C) = AProb(P2, h, p, 0

3. Pokażemy tylko, że dla dowolnych QeBEH, RzSeqG, oraz s,rePR zachodzą
następujące związki:

Q\ |[^]|x,r Q ~EMBaitRiL-e (D.2i)

Dowód dla Q |[R]|.ę., Q\ ~emb Q |[R]|v.r 02 jest podobny. Rozpatrzmy relację

B = luD (D.22)

gdzie 7 jest relacjąjednostkową na zbiorze BEH, a

D = {<0, |[/?]|A,r Q, Q2 |[R]|A.r Q> | 0, ~EMB 02} (D.23)

Pokażemy, że relacja Bjest silną EMB.

Łatwo sprawdzić, że B jest relacją równoważności. Zauważmy, że dla klasy rów­
noważności C relacji B, dla danych R, r i s, albo każdy element klasy C ma opera­
tor złożenia równoległego |[R]|.s r jako najbardziej zewnętrzny operator, albo żaden
element tej klasy operatora tego nie ma.

Rozpatrzmy dowolne <Ph P2>&B, heA, p&AP, C&BEH\b, ReSeqG oraz r, sePR.
Należy przeanalizować dwa przypadki:

Jeśli <P}, P2>e l, to oczywiście AProb(P\, h, p, 0 = AProb(P2, h, p, 0.

Jeżeli natomiast <P\, P2>& D, to istnieją takie R\, R2eBEH, że R\ ~Emb R2,
PiE [R| |[R]|.,,, 0]BorazP2e [R2 |[R]|.v.r Q1b- Rozpatrzmy teraz dwa podprzypadki:

Dodatek 1 235

Podprzypadek 1

Żadne z wyrażeń behawioralnych w klasie C nie ma |[/?]|.v.r jako najbardziej ze­
wnętrznego operatora. W tej sytuacji

AProb(Ph h, p, C) = AProb(P2, h, p,C) = 0 (D.24)

Podprzypadek 2

Wszystkie wyrażenia behawioralne w klasie C mają |[/?]|,.r jako najbardziej ze­
wnętrzny operator, dlatego istnieją takie wyrażenia behawioralne E oraz F, że
C = {E' |[/?]|A,f F | E'~emb F}. W tej sytuacji, dla P, = R, |[/?]|v_, Q, gdy ie {1, 2}

AProb(Ph h, p, C) = AProb^R, |[/?]| ,,r g, h, p. C). (D.25)

Jeśli h£Set(R) o {exit}, to

AProb(Ph h, p, C) = facty * AProb(Rj, h, p, [£"] _)
(D.26)

+ fact2 * AProb{Q, h, p, {E})

gdzie fact{ oraz fact2i są zdefiniowane zgodnie z tabelą 2. dla wyrażeń behawio­

ralnych Ri |[Z?]|.v,r Q-

W sposób podobny jak w punkcie 2., możemy pokazać, że fact^ = fact^ oraz

/acr2| = fact22.

Ponieważ Ry ~EMB R2, dlatego

AProb^Ry, h, p, [E']) = AProb{R2, h, p, [E'])

oraz

AProb^Py, h, p, O = AProb(P2, h, p, C)

Jeśli he. Set(R) u {exit}, to rozważmy tranzycje, dla ie {1, 2}, postaci

Rt |U?]U Q ~(h, oo, R' |[/?]|vr Q'

gdzie:
Ri —(h, oo, p)-^ R- oraz [R',]_ = [R^]_

Q —{h, 'P, oo, p)^ Q' oraz R' |[E]|.V,,. Q'eC

Wystarczy przeanalizować przypadek, gdy C = {E' |[E]|vr Q' | E'~emb E}, ponie­
waż w przeciwnym razie, gdy F *Q'

AProb^Ri |[/?]|.,,r Q, h, p,Q = 0 (D.31)

(D.27)

(D.28)

(D.29)

(D.30)

236 Dodatek 1

Niech

MFS(Rh Q, R, h, p)

=def { F(Q) | 3 0E F^) • M(F(R, |[/?]|.v, Q)) (D.32)
a name('P) = h /\ prior(*F) = p\

Łatwo zauważyć, że MFS(R\, Q, R, h, p) = MFS(R^ Q, R, h, p), ponieważ w prze­
ciwnym razie otrzymuje się sprzeczność, z założeniem, że R\ ~EMB R2, stąd

AProb(Ri |[/?]| v Q, h, p, O

= /a<?t|2*^ “ii

e norm(PD{Rh FA(Q))\xel{R^ ® PD(Q, FA(R^\xe.^) (D.33)

a/?,|[/?]Lc-</j, r' w„sa

% |[/?]|4.,.sec|^

gdzie: set(Rr) = set(R) u {exit} oraz

PD{Q, FA^.^ = PD(Q, FA{R2y)\seW}) (D.34)

Dalej, niech p^e PD{Q, FA(Rf))\xel(R)), wówczas

AProb(Ri |[7?]| A.r Q, h, p, C)

= faCt[2i*np*^MES{^^^

*2 P<P>ePD(Rh FA(Q))\xeRR^
a R, —(h, oo, p)-> R' A R' e [/?0 ~EMB (D'35)

A/?, |[*JLrC—R- |[/?]|.v-5 1^

= /^12| ^VeMFS^r^ ^AProb^Fp^R'])

gdzie iij (i = 1, 2) jest współczynnikiem normalizującym.

Jak poprzednio można pokazać, że factn^ = fact^.

Ponieważ
AProb(Rh g, p, [R\]) = AProb(R2, g, p, [R[]) (D.36)

oraz
MFS(Ri, Q, R, h, p) = MFS(R2, Q, R, h, p) (D.37)

stąd jednakowe są współczynniki normalizujące n} oraz n2, dlatego

AProb{R{ |[/?]|.s.r 2, g, p, O = AProb(R21[/?]|g, g, p, C) (D.38)

Dodatek 1 237

4. Dowód można sprowadzić do szczególnego przypadku punktu 3. twierdzenia, po­
nieważ semantyka wyrażenia Q,[p > Q jest równoważna semantyce wyrażenia
&|[]|o.p0.

5. Dowód prowadzi się w sposób podobny, jak w punkcie 3.

Najpierw pokażemy, że dla dowolnego Qe BEH zachodzi następujący związek

Q\ » Q ~embQ2 » Q (D.39)

Przeanalizujmy relację
B = Z u D (D.40)

gdzie
O = {< Qi » Q, Q2» Q > | Qi ~embQ2 } (D.41)

Relacja B - jak łatwo sprawdzić - jest relacją równoważności. Jeśli <Pt, P2>eD,
to istnieją takie R\, R2 e BEH, że R\ ~EMB R2, Pi&[R\» Q\B oraz P2e [R2» Q1b-

Rozpatrzmy tylko przypadek, gdy wszystkie wyrażenia w klasie C mają »jako
najbardziej zewnętrzny operator. Istnieją zatem takie wyrażenia behawioralne E
oraz F, że C = {E'» F | E'~emb F}.

Dla Pj = Qj» Q, ie {1, 2), jeśli

Qi» Q~(h, a, Q- » Q dla heA (D.42)
to

AProb(Pi, h, p, C)
= AProb(P„ h, p, [R,» Q]B) = AProb(Qi, h, p, [R,] .J (D 43)

Ponieważ AProb(Qi, h, p, [R,]. emb) = AProb{Q2, h, p, [R2] ~m), więc

AProb(P\, h, p,C) = AProb(P2, h, p, C) (D.44)

Dowód, że Q » Qi ~EMB Q » 02 dla dowolnego Qg BEH zachodzi w taki sam
sposób, jak dla » Q ~EMB Q2» Q.

6. Ponownie zdefiniujmy relację równoważności

B = /UD (D.45)
gdzie

D = {<hide R in Qh hide R in Q2> | Q\ ~EMB Q2] (D.46)

Rozpatrujemy tylko przypadek, gdy <Pt, P2>eD, wówczas istnieją takie wyraże­
nia Rh R2eBEH takie, że Ri ~EMBR2oraz

Pi = hide R in <2, P2 s hide R in Q2

238 Dodatek 1

Rozważmy tylko podprzypadek, gdy wszystkie wyrażenia w klasie C relacji B ma­
ją hide R in jako najbardziej zewnętrzny operator, dlatego istnieje takie wyraże­
nie (2, że C = {hide R in Q' | Q'~emb Q} • Dla wyrażeń P,, gdzie /G {1, 2}, zachodzi

AProb(P„ h, p, C) = AProb(Q„ h, p, C) gdy heL\set(R) (D.47)

oraz
AProb(Ph h, p,Q = 0 gdy he set(R) (D.48)

Ponieważ <2i ~embQi, więc AProb(P\, h, p,C) = AProb(J\ h, p, C).

Dowód twierdzenia 10.3
Dowód polega na pokazaniu, że dla dowolnej relacji ~emb (spełniającej twierdzenie
10.3) można skonstruować jej rozszerzenie, które będzie spełniać tezę twierdzenia.
W tym celu wystarczy pokazać, że relacja B' = B<j B~\ gdzie

B={<Q\, 02 > | 0i = 0[<S[gh • ••.g»] "=Pi[gi, • ••,gJ>]

A02 = 0[<S[gi, ...,g„] ::= /^[gi, ■ ••,g„]>] (D49)

a 5[gi, ..., gn] jest co najwyżej jedynym wolnym procesem względem
danego zbioru definicji procesów}

jest silną rozszerzoną relacją bisymulacji markowskiej względem ~emb-

Relacja B' = B u B~l jest relacją równoważności. B' jest symetryczna z definicji i jest
zwrotna, ponieważ jeśli 0 nie zawiera wolnych zmiennych procesowych lub Pt s P2,
to 0i = 02 = 0- Relacja jest również przechodnia, gdyż istnieje co najwyżej jedna
zmienna procesowa wolna w S.

Zauważmy, że złożenie ~Emb 0 B' 0 ~emb relacji równoważności ~Emb oraz relacji rów­
noważności B'jest również relacją równoważności.

Aby pokazać tezę, wystarczy dowieść, że B' jest silną EMB względem relacji ~emb, to
znaczy że dla danych geA, t^AP oraz Ce BEH\~Emb ° b ° -emb

AProb(Q\, g, n,C) = AProb(Q2, g, n, C) (D.50)
oraz

ARate{Q\, g,C) = ARate(Q2, g, C) (D.51)

Będziemy rozpatrywać klasy równoważności zbioru ilorazowego BEH\~Emb° b'°-emb-

Dla danych geA, neAP oraz CeBEH\~Emb ° b'° -emb, pokażemy przez indukcję struktu­
ralną na 0 tylko dla (10.37a). Dowód dla (10.37b) przebiega w podobny sposób.

Dowód pokażemy tylko dla najbardziej reprezentatywnych konstrukcji: prefiksowania
akcją, wyboru i złożenia równoległego.

Dodatek 1 239

1. Dla Q = (g, a, <», #); £2'oraz i= 1,2, mamy

Qi = (g, a, °o, rt); <2'[<5[gi, g„] ::= P,[gi,.... g„]>]

Ponieważ

<2'[<5[gi,§„]::= PiL?i,^»]>], <2'[<S[g,, §„]::= P2[gi, #J>]g B

więc

C = [<2'[<S[gl, g„] "= P |[g|, gn\>]-EMB° B'° -EMB

= [0'[<5[gi, ..., g„] ::= P2[g|, ..., g^>]-EMB° B'° -EMB

Dla tego przypadku

AProb(Qi, g, n, O = AProb(Q2, g,n,C)=\

2. Dla Q = Q' [p] Q" oraz i = 1,2, mamy

Q^Q't<S[gi, ...,g„] ::=Pt[gi,[p]

<2"[5[<gi, ...,g„] ::=P,[gi,...,<?„]>]

Hipoteza indukcyjna stanowi, że

AProb(Q'[<S[gh ...,g„] ::=Pi[gi, ...,g„]>],g, n, C)

= AProb(Q'[<S[gt, ...,g„] ::=P2[gi, ...,g„]>],g, n, C)
oraz

AProb(2"[<S[gi, ..., g„] ::= PJgi, ..., #„]>], g, n, C)

=APro/>(0"[<S[gi, ..., g„] ::= P2[g........g, O

Ponieważ

AProb(Qi, g, n, C)

= (1 -p) * AProb(Q'[<S[gi, ...,g„] ::=F,[gi, ..., g„]>], g, C)

+ p * AProb(Q"[<S[gh ...,g„] ::=Pi[gi, ...,g„]>],g, K O

zatem

AProb(Q\, g, n, C) = AProb(Q2, g, ^r, C)

3. Dla Q = Q' Q" oraz i = 1,2, mamy

Q,= Q'[<S[gi,...,g„]::=Pilgi,...,g„]>l

m.,Q"[<S[gi,...,g,.]-:=Pi[g......

(D.52)

(D.53)

(D.54)

(D.55)

(D.56)

(D.57)

(D.58)

(D.59)

(D.60)

240 Dodatek 1

Rozważmy dwa przypadki dla gGA.

Przypadek 1

Jeśli giset^R), to albo (2'[<S[gi, g„] ::= P,[gi, g„]>] przechodzi do S',
gdzie

S'g C'<S'|[Z?]|v,r<2"[<S[g...... ,g„] ::=Pi[gi....... g„]>]] -EMB°B-~ems (D.61)

albo C"[<S[gb ...,g„] ::=Pi[gt, g„]>] przechodzi do S', gdzie

S"e C*= [<S[gbgn] ::= (/[P/tgu.... g/<]>] |[R]|.v St] ~emB°B’°~emB (D.62)

Dla danego Cg BEH\^emb »B<« -EMB oraz C' (podobnie dla C*) albo C' ę C, albo
C' n C = 0, zatem odpowiednio albo

AProb(Q'[<S[g\,g„] ::= P/[g।,g„]>], g, C)
, (D.63)

= AProb(Q'[<S[gh g„] ::= P,[gi,g„]>], g, S,)

albo

AProb(Q'[<S[g\,.... g„] ::= P,[gh g„]>], g, n, O = 0 (D.64)

Z hipotezy indukcyjnej

AProb(Q'[<S[gi,g„] ::= P\[gb g„]>], g, n, S)
(D.65)

= AProb(Q'[<S[gh g„] ::= P2[gi, £„]>]. g, 5)

oraz

AProb(Q"[S[g....... g„] ::= <Pt[gi,g,,]], g, n, S)
= AProb(Q'\<P^ g„] /5[gb g„], g, 5) (D‘66)

dla dowolnego Se BEH\-EMB o b. = „EMB, oraz z formuły

AProb(Qi, g, n, S)

= (1 - r) * (1 - i) * AProb(Q'[<S[gi,g„] ::= P,[gi,.... g„]>], g, C) (D.67)

+ r*(l -.s) * AProft((2"[<S[gi,g„] ::= P,[gi,.... g„]>], g, C)

wynika, że AProb{Q\, g, n, S) = AProb(Q2, g, n, S).

Przypadek 2

Jeśli gGset(R), to (McSfgb g„] ::= P,[gi,g„]>] przechodzi do

S'e C'g BEH\ -EMB« B'°~EmB z prawdopodobieństwem

Dodatek / 241

4Profe(0'[<5[gi......g„] ::= P,[gb ..., g, S') (D.68)

oraz C"[<S[gb gj ::= ^[gi, g„]>] przechodzi do S"eC"e BEH\ -EMB ° B' ° -EMB

z prawdopodobieństwem

AProb(Q"[<S[g{,g„] ::= P,[gb g„]>], g, n, S") (D.69)

zatem

<2'[<5[gb g„] ::= P,[g.......g„]>] |[P]|.V Q"[<S[g....... g„] ::= P,[gb g„]>] (D.70)

przechodzi do S e BEH\~emb°b^-emb z prawdopodobieństwem

AProb(Q'[<S[g{......g„] ::= P^,g„]>] |[P]|iZ C"[<5[gb g„]

"= Pi[g....... gn]>L g, ^5)
= 5 * AProb(Q'[<S[gl......gj ::= P,[g........ £„]>], g, (D 71)

AProb^^Slgt...... #„] ::= P,{g,...... g„]>], g, S)

Z hipotezy indukcyjnej:

AProb{Q'[<S[gx,g„] ::= P,[gb g„]>], g, n, S)
= AProb(Q'[<S[gi......g„] ::= P2[gb g„]>], g, S) (D 72)

oraz

AProb(Q"[<S[gl,g„] ::= P,[gb g„]>], g, S)
= AProb(Q"[<S[g....... g„] ::= P2[gb g„]>], g, 5) (D 73)

wynika, że AProb(Qi, g, 71, S) = AProb{Q2, g, 7t, S).

242

Dodatek 2

Definicja funkcji SM_Trans

W przedstawionej definicji funkcji transformacyjnej SM_Trans przyjmuje się, że na­
zwy funkcji pisane kursywą oznaczają funkcje transformacyjne, natomiast funkcje
pisane czcionką prostą oznaczają tekst w języku LOTOS.

Główna część definicji funkcji SM_Trans ma postać

SM_Trans{ms) =
specification S[list(ActionNames u EventArcN)] : noexit

type ArcNames is
sorts arcN
opns

a,: -> arcN (* dla a^ArcN takich, że typeA(di)=EV-LAB *)
triggerfjm,): -> arcN (* dla tm^ArcN takich, że typeA(tmi)=TO-LAB*)

default: -> arcN (* wskazuje stan początkowy *)
endtype

type BoxNames is
sorts boxN
opns

bi: -> boxN
endtype

(* dla b^ BoxN *)

behaviour
hideputS, getS, syn, list({trigger(tmi)}) in

(* dla tmiEArcN takich, że typeA(t>nj)=TO-LAB *)

StateHandler[pwrS, getS]
|[p«z5, getS] |

(Ćomplete[ExMraV](default)»
B_Trans(r) (*r jest nazwą stanu początkowego *)

|[syn, Hst(ArcN)]\
Synchronisert^yn, list(ArcN)](TrueLisf)

where
(* definicje trzech głównych procesów składowych *)

process Synchroniser[5yn, list(ArcW](BoxList): noexit :=

Dodatek 2 243

LetExpression(r) (*r jest nazwą stanu początkowego *)
(^beBoxN • typeB(by=PRlM or iypeB(b)=F/N (

syn !boxN(b); Synchroniser[^n, list(ArcN)}{CliangeBoxList(b)))
[] ^aeArrN • b=source(a) ([6] ->

trigger(ay, Synchroniser[sy/i, Ust(ArcN)](ChangeBoxList(target(a)y))
)
endproc (* Synchroniser *)

process StateHandler[pHZS, getS] : noexit :=
BmA • lypeB{h)=XOR b[putS, getS](default(b))

where
process bi[putS, getS](s: boxN): noexit :=

(* rodzina procesów dla b^BoxN takich, że typeB(bl)=XOR *)
getS \bi !s; b[putS, getS](s)

[] ILaeduhiBwPutS \b, \a\ b:\putS, getS]{a)
endproc (* b, *)

endproc (* StateHandler *)

process Complete[£xM/cA^](5: arcN): exit :=
([s = default] ->

Entry_r[£xMrcAQ;
SetDefaultBox(r);
exit)

[] ^aeArcN (([s — ri] —>

(*r jest nazwą stanu początkowego *)

Exit_source(a)[ExtArcN];
Entry_target(a) [ExtA rcN];
SetDefaultBox(target{a)y,
SetStableBox(target(a))\

exit)
endproc (* Complete *)

(* przyjęcie zdarzenia *)
(* przejście do stanu niestabilnego *)
(* wykonanie akcji wejściowej *)
(* wykonanie akcji wyjściowej *)
(* wyznaczenie nowego stanu aktywnego *)
(* odblokowanie odbioru zdarzeń *)
(* przejście do stanu stabilnego *)

endspec
(* definicje procesów składowych są podane niżej *)

Definicje procesów składowych występujących w głównych procesach składowych są
podzielone na kilka grup.

Definicje procesów wykonujących akcje wejściowe w danym stanie b,:

process Entry_6,[£xrArcA^: exit := (* dla b/E. BoxN takich, że typeB{b^-PRlM *)
entty{b^) exit

(* funkcja entry zwraca ciąg akcji separowanych i zakończonych średnikiem *)
endproc

244 Dodatek 2

process Entry_bi[ExtArcN]: exit := (* dla b^.BoxN takich, że typeB(bj)=FIN *)
exit

endproc

process Entry _/?,[ErMrcWj: exit := (* dla b^ BoxN takich, że typeB(bj)=XOR *)
entry(bi) Entry_default(bi')

(* funkcja entry zwraca ciąg akcji separowanych i zakończonych średnikiem *)
endproc

process Entry_bi[ExtArcN]: exit := (* dla b/E BoxN takich, że typeB (b^=AND *)
entry{b^
m<,ed>udB(b} Entry_a[£.xzArcW])

(* funkcja entry zwraca ciąg akcji separowanych i zakończonych średnikiem *)
endproc
Definicje procesów wykonujących akcje wyjściowe w danym stanie b,.

process Exit_bj[ExtArcN]: exit := (* dla b,E BoxN takich, że typeB^b^PRlM *)
exit(bi) exit

(* funkcja exit zwraca ciąg akcji separowanych i zakończonych średnikiem *)
endproc

process Exit_bi[ExtArcN]: exit := (* dla b,E BoxN takich, że typeB(b^=FlN *)
exit

endproc

process Exit_/j,[EttArcA^: exit := (* dla btE BoxN takich, że typeB(b^=XOR *)
(* oraz b r *)

getS \bj ?s : boxN;
('Z.aeehiidBw ([s = a] -> Exit_a[£xMrcAQ); exit(bi) exit

(* funkcja exit zwraca ciąg akcji separowanych i zakończonych średnikiem *)
endproc

process Exit_bi[ExtArcN]: exit := (* dla bjE BoxN takich, że typeB(b,)=AND *)
(Exit_a[ExtArcN]); exit(bi) exit

(* funkcja exit zwraca ciąg akcji separowanych i zakończonych średnikiem *)
endproc

Do następnej grupy należy definicja procesu początkowego, reprezentującego stan r,
oraz definicje procesów generowanych przez funkcje procD oraz procD \ które były
zdefiniowane w rozdziale 11.

Funkcje pomocnicze, które wystąpiły w definicji funkcji transformacji, są określone
następująco:

Dodatek 2 245

putS !*'!/»;

putS Ib'Ib;

SetDefaultBox(default(b))

SetDefaultBox(default(b))

SetDefaultBox(b) = <

putS Ib'Ib;

SetDefaultBox(by)...

SetDefaultBox(b^)

SetDefaultBox(b\)...

SetDefaultBox(b^)

syn \b ;

SetStableBox(b) = SetStableBox(default(by)
SetStableBox(bl)...

SetStableBox(bk)

gdy typeB(b) = PRIM lub typeB(b) = FIN

oraz Bb' e BoxN •be childB(b') oraz

typeBfb') = XOR

gdy typeB(b) = XOR oraz

Bb' 6 BoxN »be childB(b')oraz

typeB(b') = XOR

gdy typeB(b) = XOR oraz

Sb' e BoxN • be childB(b') oraz

typeB(b') = XOR

gdy typeB(b) = AND oraz b- e childB(b)

oraz 3h' e BoxN • be childB(b') oraz

typeB(b’) = XOR

gdytypeB(b) = AND oraz b- e childB(b)

orazSb'e BoxN »be childB(b')oraz

typeB(b") = XOR

gdy typeB(b) = PRIM

hib typeB(b) = FIN
gdy typeB(b) = XOR
gdy typeB(b) = AND

oraz bj e childBIb)

LetExpression(b\)...LetExpression(bk)

Let b: bool = (^and... and bk) in gdy typeB(b) = XOR lub
LetExpression{b) = • typeB(b) = AND oraz

bj e chiIdB(b)
puste w przypadku przeciwnym

246 Dodatek 2

TrueList =
true',..., true*

k = cardę {be BoxN | typeBęb)=PRIM lub
typeBęb)=FIN })

BoxList = b\. bool, bk. bool gdzie b ।,... ,bk = listę {be BoxN |
typeB(b)=PRIM lub typeB{b)-FIN })

ChangeBoxList(b)=
if-notęb, b\)if-notęb, bk)

gdzieb!,...,bk = listę{beBoxN |
typeBęb)=PRIM lub typeBęb)=FlN })

b2

if -notębl,b2) = -

noięb2)
if-notędefaultę^),b2)

if-notęb3,b2~)

*
gdy b^ * b2 oraz ęb2 £ childB ęb\)

lubęb2 e childBębl)orazdefaultBębl)^b2))
gdy^ =b2
gdy typeBę^) = XOR oraz

b2 e childB ęb{)
gdy typeBębt) = AND oraz

by e childBę^)

and b-, 6 childB (b3)

Funkcje SetDefaultBox oraz SetStableBox służą do generowania tekstów stanowiących
fragmenty wyrażeń behawioralnych w obrębie definicji procesu Complete.

Pozostałe funkcje są związane z definicją procesu Synchroniser. Ich parametry for­
malne i aktualne są określone odpowiednio przez funkcje BoxList oraz TrueList.
Liczba parametrów formalnych jest łączną liczbą stanów typu PRIM i FIN. Zawarte
w wyrażeniu LetExpression zmienne b\, ..., bk rodzaju bool reprezentują podstany
odpowiednich stanów. Wartość true zmiennej b, oznacza, że odpowiedni stan jest
stabilny, a w przypadku przeciwnym, że jest niestabilny. Stan złożony jest stabilny
tylko wtedy, gdy stabilne są wszystkie jego podstany. Wartości tych zmiennych są
obliczane na podstawie parametrów aktualnych procesu Synchroniser.

Specyfikacja przykładowego diagramu stanów

Przedstawiana dalej specyfikacja w LOTOSie jest wynikiem zastosowania funkcji
SM_Trans do diagramu stanów przedstawionego na rysunku D2.1.

Dodatek 2 247

Rys. D2.1. Przykładowy diagram stanów

Diagram składa się ze stanów bA, bB, bC, bD. Stany bA, bB, bC są stanami prosty­
mi, a stan bD jest złożony sekwencyjnie. Pomiędzy stanami są przejścia, z których
jedno, oznaczone tm1, jest przejściem czasowym.

Zakładamy, że każdy stan prosty ma akcje wejściowe i akcje wyjściowe - są one re­
prezentowane przez odpowiednie bramki. Przyjęto konwencję: bramka ia odpowiada
akcji wejściowej do stanu A - pierwsza litera i oznacza wejście, druga a odnosi się do
stanu A; bramka ea odpowiada akcji wyjściowej do stanu A - pierwsza litera e ozna­
cza wyjście, druga - jak poprzednio - odnosi się do stanu.

Specification S[ia,ea,ib,eb,ic,ec,bl,b2,a]: noexit
library Boolean endlib

type ArcNames is
sorts arcN
opns

bl,b2,a :-> arcN
tml :-> arcN
default :-> arcN

endtype

type BoxNames is
sorts boxN
opns bA, bB, bC, bD:->boxN
endtype

behaviour

hide putS, getS, syn, tml in
(* przejścia czasowe 'time-out' są ukryte *)
(

StateHandler[putS, getS]

248 Dodatek 2

|[putS, getS]|
(

Complete[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml](default) >>

(bA[putS,getS,syn,ia, ea, ib,eb,ic,ec,bl,b2,a,tml]
[> bD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

)
)
|[syn,bl,b2,a,tml]|

Synchroniser[syn,bl,b2,a,tml](true, true, true)

where

process Synchroniser[syn,bl,b2,a,tml](A,B,C: bool):
noexit :=
let bD: bool = (A and B and C) in
(syn !bA; Synchroniser[syn,bl,b2,a,tml](not(A),B,C)
[]
syn !bB; Synchroniser[syn,bl,b2,a,tml](A,not(B),C)
[]
syn !bC; Synchroniser[syn,bl,b2,a,tml](A,B,not(C))
[]
[A]->bl; Synchroniser[syn,bl,b2,a,tml](A,not(B),C)
[]
[A]->tml; Synchroniser[syn,bl,b2,a,tml](A,B,not(C))
[]
[B]— >a; Synchroniser[syn,bl,b2,a,tml](not(A),B,C)
[]
[C]->b2; Synchroniser[syn,bl,b2,a,tml](A,not(B),C)
)
endproc (* Synchroniser *)

process StateHandler[putS, getS]: noexit :=
bD[putS, getS](bA)

where

process bD[putS, getS](s: boxN): noexit:=
getS !bD !s; bD[putS, getS](s)
[]

putS !bD !bA; bD[putS, getS](bA)
[]

putS !bD ibB; bD[putS, getS](bB)
[]

putS !bD !bC; bD[putS, getS](bC)
endproc (* bD *)
endproc (* StateHandler *)

Dodatek 2 249

process Complete[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml](s: arcN) : exit :=

([s=default] ->
EntrybD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
» putS !bD !bA; exit
)
[]
([s=bl] ->
ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]

>> EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec, bl,b2,a,tml]
>> putS !bD !bB; syn !bB; exit

)
[J
([s=b2] ->

ExitbC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
>> EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
>> putS !bD !bB; syn !bB; exit
)
[]
([s=a] ->

ExitbB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
>> EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
>> putS !bD !bA; syn !bA; exit
)
[]
([s=tml] ->
ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
>> EntrybC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
>> putS !bD !bC; syn !bC; exit)
endproc

(* ------------------- akcje wejścia 'entry' i wyjścia 'exit' -----
--*)

process EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ia; exit
endproc

process ExitbA[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ea; exit
endproc

process EntrybB[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ib; exlt
endproc

250 Dodatek 2

process ExitbB[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

eb; exit
endproc

process EntrybC[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ic; exit
endproc

process ExitbC[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

ec; exit
endproc

process EntrybD[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml]: exit :=

EntrybA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
endproc

(* ----------------------- definicje procesów-------------------------- *)
process bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

((* DoTrans is empty *)
tml; exit (* Time Out *)

[> (* Disabling Part *)
((bl; exit)

> > Complete[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml](bl)

» bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
)

) (* After Time-Out *)
> > Complete[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml](tml)
> > bC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
endproc

process bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

(stop (* przeterminowanie 'time out' *)
[> (* część deaktywująca 'disabling' *)
((a; exit)
> > Complete[putS,getS,syn,ia,ea,ib,eb,ic,
ec,bl,b2,a,tml](a)

>> bA[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
)
) (* puste po zdarzeniu przeterminowania *)
endproc

Dodatek 2 251

process bC[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

(stop (* Time Out *)
[> (* cześć deaktywująca 'disabling' *)

((b2; exit)
» Complete[putS,getS,syn,ia,ea,ib,eb,ic,
ec, bl,b2,a,tml] (b2)

>> bB[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]
)
) (‘puste po zdarzeniu przeterminowania *)
endproc

process bD[putS,getS,syn,ia,ea,ib,eb,ic,ec,bl,b2,a,tml]: noexit

stop (* root *)
endproc
endspec

252

Literatura
Ajmone Marsan M., Balbo G., Conte G„ 1984, A class of generalized stochastic Petri netsfor

the performance evaluation of multiprocessor systems, ACM Trans. Computer Systems,
Vol. 2, 93-122.

Ajmone Marsan M., Balbo G., Conte G., Donatelli S., Franceschinis G., 1994, A LOTOS exten-
sion for the performance analysis of distributed systems, IEEE/ACM Trans. Networking,
Vol. 2 (2), 151-164.

Apt K., Olderog E.-R., 1991, Yerification of Sequential and Concurrent Programs, Springer.

Apvrille L., Courtiat J.-P., Lohr C., de Saqui-Sannes P., 2004, TURTLE: A Real-Time UML
profile supported by a formal validation toolkit, IEEE Transactions on software Engineer-
ing, Vol. 30, No. 7, 473-486.

Babczyński T., Huzar Z., Magott J., 1999, Algebraic semantics for Markovian statecharts, in:
Proc. 15Ih Annual UK Performance Engineering Workshop, University of Bristol, July
22-23, 105-120.

Babczyński T., Huzar Z., Magott J., 2000, Derivation of Markov processes form the UML
statecharts, Archiwum Informatyki Teoretycznej i Stosowanej, t. 12, z. 3, 141-171.

Babczyński T., Huzar Z., Magott J„ 2001, Performance modelling and evaluation ofcontinu-
ous media transport protocol using statecharts, Archiwum Informatyki Teoretycznej
i Stosowanej, t. 13, z. 4, 329-342.

Babczyński T., Huzar Z., Magott J., 2003, Performance evaluation in analysis of ATM network
signalling, in: Proc. IASTED Int. Conference On Modelling, Identification and Control,
Innsbruck, 341-346.

Babich F., Deonto L„ 2002, Formal Methods for Specification and Analysis of Communication
Protocols, IEEE Communications Surveys, The Electronic Magazine of Original Peer-
Reviewed Survey articles, Vol. 3, No. 1. http://www.comsoc.org/pubs/surveys.

Baeten J.C.M., 2004, A brief history of process algebra, Rapport CRS 0402, Vakgroep Infor-
matica, Technische Universitat Eindhoven.

Baeten J.C.M., Bergstra S.A., Smolka S.A., 1995, Axiomatizing probabilistic processes: ACP
with generative probabilities, Information and Computation, 121, 234—255.

Baeten J.C.M., Bergstra S.A., 1991, Real Time Process Algebra, Formal Aspects of Comput-
ing, 3 (2), 183-235.

Baeten J.C.M., Middelburg C. A., 2002, Process Algebra with Timing, Springer.

Behforooz A., Hudson F.J., 1996, Software Engineering Fundamentals, Oxford University
Press.

Berard B. Bidoit M., Finkel A., Laroussinie F., Petit A„ Petrucci L., Schnoebelen P., and
Mckenzie P., 2001, Systems and Software Yerification: Model-Checking Techniąues and
Tools, Springer.

http://www.comsoc.org/pubs/surveys

Literatura 253

Belina F., Hogrefe D., 1989, The CCITT - Specification and Description Language SDL,
Computer Networks and ISDN Systems, Vol. 16, 311-341.

Benveniste A., Caspi P., Edwards S., Halbwachs N., Le Guemic P., De Simone R., 2003, The
synchronous languages 12 years later, Proceedings of the IEEE, VoL 91, No. 1,66-83.

Bergstra J.A., Klop J.W., 1985, Algebra for Comntunicating Processes with Abstraction, Theo-
retical Computer Science, Vol. 37, 77-121.

Bemardo M., Gorrieri R., 1998, A Tutorial on EMPA: A Theory ofConcurrent Processes with Non-
determinism, Priorities, Probabilities and Time, Theoretical Computer Science, 201, 1-54.

Bilski E., Dubielewicz I., 1991, Model odniesienia dla współdziałania systemów otwartych,
t. 1, Wydawnictwo Politechniki Wrocławskiej.

Bilski E., Dubielewicz I., 1993, Model odniesienia dla współdziałania systemów otwartych,
t. 2, Wydawnictwo Politechniki Wrocławskiej.

Bolognesi T., Smolka S.A., 1987, Fundamental results for the verification of observational
equivalence: a survey, in: Protocol Specification and Verification, VII, Rudin H„
West C.H. (eds.), Elsevier Science Publishers, IFIP, 165-179.

Bolognesi T., Lucidi F., Trigila S„ 1990, From Timed Petri Nets to Timed LOTOS, in: Protocol
Specification, Testing and Verification, X, Logrippo L., Probert R., Ural H. (eds.),
North-Holland, 395-408.

Bolognesi T., Lucidi F., 1992, LOTOS-like process algebra with urgent and timed interactions,
in: Formal Description Techniques, IV, Parker K., Rosę G. (eds.), North-Holland, 249-
264.

Bolognesi T., Lucidi F., Trigilla S., 1995, Converging towards timed LOTOS standard, Com­
puter Standards Interfaces, 16, 87-118.

Bolognesi T., Brinksma E., 1989, Introduction to ISO Specification Language LOTOS, in:
Eijk P.H.J. van, Vissers C.A., Diaz M. (eds.), The formal Description Technique LOTOS,
North-Holland, 23-73.

Booch G., Rumbaugh J., Jacobson I., 1999, The Unified Modelling Language User Guide,
Addison-Wesley.

Bortnik E„ Trćka N„ Wijs A.J., Luttik S.P., van de Mortel-Fronczak J.M., Baeten J.C.M.,
Fokkink W.J., Rooda J.E., 2004, Analyzing a Model of a Turntable System using Spin,
CADP and Uppaal, Technical Report, Department of Software Engineering, GB Amster­
dam.

Bbrger E., Stark R., 2003, Abstract State Machines. A Method for High-Level System Design
and Analysis, Springer.

Bravetti M„ Bernardo M., 2000, Compositional Asymmetric Cooperations for process algebras
with probabilities, priorities, and time, Electronic Notes for Theoretical Computer Sci­
ence, Vol. 39, No. 3, 34.

Brinksma E., Scollo G., 1986, Formal notions of implementation and conformance in LOTOS,
Technical Report, Computer Science Department, Twente University.

254 Literatura

Brinksma E. (ed.), 1988, Information processing systems - Open systems interconnection -
LOTOS - A formal description technique based on the temporal ordering of obsenational
behaviour, International Standard ISO 8807.

Brinksma E., 1989, Constraint-oriented specification in a constmctive formal description
teclinique, in: de Bakker J.W., de Roever W.-P., Rozenberg G. (eds.), Stepwise Refine-
ment of Distributed Systems. Models Formalism, Correctness, LNCS 430, Springer,
130-152.

Brinksma E., Katoen J.-P., Latella D„ 1995, A stochastic causality-based process algebra. The
Computer Journal, Vol. 38, 552-565.

Bronsztejn I.N., Siemiendiajew K.A., Musiol G., Miihlig H., 2004, Nowoczesne kompendium
matematyki, PWN.

Budkowski S., 1992, ESTELLE Development Toolset (EDT), Computer Networks and ISDN
Systems, 23 (5), North-Holland.

Budkowski S., Dembiński P., 1987, An introduction to ESTELLE: a specification language for
distributed systems, Computer Networks and ISDN Systems, 14 (1), North-Holland, 3-23.

Budkowski S., Dembiński P., 1989, The specification language ESTELLE, in: Diaz M. et al.
(eds.), The Formal Description Technique ESTELLE, North-Holland.

Burstall R.M., Goguen J.A., 1982, Algebras, Theories and Freeness: An Introduction for Com­
puter Scientists, Proc. 1981 Marktoberdorf NATO Summer School, Reidel, 329-348.

Cardelli L., Gordon A.D., 1998, Mobile Ambients, in: Nivat M. (ed.), Proceedings of the First
international Conference on Foundations of Software Science and Computation Structure,
Lecture Notes In Computer Science, Vol. 1378, 140-155.

CCITT, 1992, Specification and Description Language, CCITT Z100, International Consulta-
tive Committee on Telegraph and Telephony, Geneva.

Cichoń P., Huzar Z., 2005, Wyrażanie???, w: Kwiecień A., Gaj P. (red.), Systemy informatycz­
ne z ograniczeniami czasowymi, WKiŁ.

Cichoń P., Huzar Z., 2006, Wyrażanie synchronizacji zdarzeń w języku UML, w: Kwiecień A.,
Gaj P. (red.), Systemy informatyczne z ograniczeniami czasowymi, WKiŁ, 13-22.

Ciarkę E., Emerson E.A., Sistla A.P., 1983, Automatic verification of finite-state concurrent
systems using temporal logie, in: 10ltl Annual Symposium on Principles of Programming
Languages, ACM.

Clark R., Moreira A., 2000, Use of E-LOTOS in adding formality to UML. Journal of Universal
Computer Science, Springer Pub. Co., Vol. 6(11), 1071-1087.

Comer D.E., 1997, Sieci komputerowe TCP/IP. Zasady, protokoły i architektura, WNT.

Czachórski T., 1999, Modele kolejkowe w ocenie efektywności sieci i systemów kom­
puterowych, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego.

D’Argenio P.R., Hermanns H., Katoen J.-P., 1999, On generative parallel composition, in:
Proc. On Probabilistic Methods in Verification, ENTCS, Vol. 22, Elsevier.

Literatura 255

Esterel Technologies, 2005, The Esterel v7 Reference Manuał. Version v7_30 - initial IEEE
standarization proposal.

Dembiński P., 1997, Semantics of Timed Concurrent Systems, Fundamenta Informaticae, 29,
27-50.

Dembiński P„ Janowska A., Janowski P„ Penczek W., Półrola A., Szreter M., Woźna B.,
Zbrzezny A., 2003, A Tool for Verifying Timed Automata and Estelle Specifications, Pro-
ceedings of TACAS’03, 2619, Springer.

Dijkstra E.W., 1978, Umiejętność programowania, WNT.

Douglass B.P., 1998, Real-Time UML, Addison-Wesley.

Douglass B.P. 1999, Doing Hard Real. Developing Real-Time Systems with UML, Addison-
-Wesley.

Dubielewicz 1., Hnatkowska B., Huzar Z., Tuzinkiewicz L„ 2006, An Approach to Software
Quality Specification and Evaluation, Sacha K. (ed.), Software engineering Techniques:
Design for Quality, Springer, 155-166.

Ehrig H., Mahr B., 1985, Fundamentals ofAlgebraic Specifications 1, EATCS Monographs on
Theoretical Computer Science, Vol. 6, Springer.

van Eijk P.H.J., Vissers C.A., Diaz M. (eds.), 1989, The Formal Description Technique
LOTOS, North-Holland.

Ellsberg J., Hogrefe D, Sarma A., 1997, SDL Formal Object-Oriented Language for communi-
cation systems, Prentice Hall.

Fencott C„ 1996, Formal Methods for Concurrency, International Thomson Computer Press.

Fernadez J.-C., Mounier L., 1995, A Local Checking Algorithm for Boolean Equation Systems.
Rapport SPECTRE 95-07, VERIMAG, Grenoble.

Garavel H., Sifakis J., 1990, Compilation and Verification of LOTOS Specifications, in:
Logrippo L., Probert R.L., Ural H. (eds.), Protocol Specification, Testing, and Verifica-
tion, North-Holland.

Garavel H., Mateescu R., 1996a, French-Romanian proposal for capture of requirements and
espression of properties in E-LOTOS modules, Rapport SPECTRE 96-04, VERIMAG,
Grenoble, May 1996. Input document (KC4) to the ISO/IEC JTC1/SC21/WG7 Meeting
on Enhancements to LOTOS (1.21.20.2.3), Kansas City, Missouri, USA, May 12-21,
1996.

Garavel H., Sighireanu M., 1996b, French-Romanian integrated proposal for the user lan­
guage of E-LOTOS, Rapport SPECTRE 96-05, VERIMAG, Grenoble, May 1996. Input
document (KC3) to the ISO/IEC JTC1/SC21/WG7 Meeting on Enhancements to LOTOS
(1.21.20.2.3), Kansas City, Missouri, USA, May 12-21, 1996.

Garavel H., 1998, OPEN/C/ESAR: An Open Software architecture for Verification, Simulation
and Testing, in: Steffen B. (ed.), Proceedings of the First International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, LNCS Vol. 1384,
Springer, 68-84.

256 Literatura

Garavel H„ Lang F., Mateescu R., 2001, An overview of CADP 2001, INRIA, Rapport tech-
nique, No. 0254, December.

Garavel H., Hermanns H., 2001, On Combining Functional Verification and Performance
Evaluation using CADP, Rapport de Recherche 4492, INRIA.

Gibson J.P., 1993, Formal Object Oriented Development of Software Systems using LOTOS,
PH. D. Dissertation, Department of Computing Science, University of Stirling.

Girault C., Valk R., 2003, Petri Nets for Systems Engineering: a Guide to Modelling, Verifica-
tion and Applications, Springer.

Gnesi S., Schieferdecker L, Rennoch A. (eds.), 2000, 5lh International ERCIM Workshop on
Formal Methods for Industrial Critical Systems, Proceedings of FMICS‘2000, April 3-4,
Berlin, Report GDM - Forschungszentrum Informationstechnik.

Gbtz N., Herzog U., Rettelbach M., 1993, Multiprocessor and distributed system design: the
integration of functional and performance analysis using stochastic process algebras, in:
Donatiello L., Nelson R. (eds.), Performance Evaluation of Computer and Communica-
tion Systems, LNCS 729, Springer, 121-146.

Górski J., 2001, Inżynieria oprogramowania w projekcie informatycznym, Mikom.

Groote J.F., 1990, Specification and Verification of Real Time Systems in ACP, in: Logrippo
L., Probert R., Ural H. (eds.), Protocol Specification, Testing and Verification, X, North-
-Holland, 262-274.

Groote J.F., 1990, Transition system specifications with negative premises, in: Baeten J.C.M.,
Klop J.W. (eds.), CONCUR '90, LNCS, VoL 458, Springer, 332-341.

Le Guernic P„ Gautier P., Le Borgne M., Le Maire C., 1991, Programming real-time applica-
tions with SIGNAL, Proc. IEEE, Vol. 79, 1321-1336.

Haj-Hussein M., Logrippo L., 1991, Specifying Distributed Algorithms in LOTOS, in: Ko­
morowski W. (ed.), Proceedings of the Conference ‘Computer Networks’, Wydawnictwo
Politechniki Wrocławskiej, 50-62.

Halbwachs N., Caspi P., Raymond P., Pilaud D., 1991, The synchronous dataflow program­
ming language, Proceedings of the IEEE, Vol. 79 (9), 1305-1320.

Hanson H., Jonsson B., 1990, A calculus for communicating systems with time and probabili-
ties, Proc. 1 llh IEEE Real-Time Systems Symposium, 278-287.

Harel D., 1979, First Order Dynamie Logic, Springer.

Harel D., 1987, Statecharts: A visual formalism for complex systems, Science of Computer
Programming, Vol. 8, No. 3, 231-274.

Harel D., Kozen D„ Tiuryn J., 2000, Dynamie Logic, MIT.

Harel D., Marelly R., 2003, Come, Let’s Play, Springer.

HeitmeyerC., Mandrioli D. (eds.), 1996, Formal Methods for Real-Time Computing, Wiley.

Hennessy M.C.B., Plotkin G.D., 1979, Fuli abstraction for a simple programming language,
LNCS 74, Springer, 108-120.

Literatura 257

Hennessy Plotkin G.D., 1980, A term model far CCS, LNCS 88, Springer, 261-274.

Hennessy M.C.B, Milner R., 1985, Algebraic lawsfor nondeterminism and concurrencs, Jour­
nal ofthe ACM, Vol. 32, 137-161.

Hennessy M.C.B, 1988, Algebraic Theory of Processes, The MIT Press.

Hennessy M.C.B., Reagan T., 1991, A temporal process algebra, in: Formal Description Tech-
niques, III, Quemada J., Manas J., Vazquez (eds.), North-Holland, 33-48.

Herrmanns H., Rettelbach M., 1994, Syntas, Semantics, Equivalences for MTIPP, in: Her­
zog U., Rettelbach M. (eds.), Proc, of 2"d Workshop on Process Algebras and Performance
Modelling.

Hermanns H., Rettelbach M., Weiss T., 1995, Formal characterisation of immediate actions in
SPA with nondete mini Stic branching, The Computer Journal, VoL 38, 530-541.

Hermanns H., Rettelbach M., 1996, A superset of Basic LOTOS for performance prediction. in:
Ribaudo M. (ed.) Proceedings of the 4lh Workshop on Process Algebras and Performance
Modelling, CLUT, 77-94.

Hermanns H., Herzog U., Katoen J.-P., 2002, Process Algebra for Performance Evaluation,
Theoretical Computer Science, 274,43-87.

Herzog U. 1996, A concept for graph-based stochastic process algebras, generally distributed
times, in: Ribaudo M. (ed.) Proceedings of the 4lh Workshop on Process Algebras and Per­
formance Modelling, CLUT, 1-20.

Hillston J., 1996, Compositional Approach to Performance Modelling, Cambridge University
Press.

Hnatkowska B., 1998, Obiektowy język specyfikacji systemów reaktywnych - O-LOTOS, roz­
prawa doktorska, Wydziałowy Zakład Informatyki, Politechnika Wrocławska.

Hnatkowska B., Huzar Z., 2000, Extending the UML with a multicast synchronization, Pro­
ceedings of Workshop on Rigorous Object Oriented Methods, York, UK, January 2000.

Hnatkowska B., Huzar Z., 2001, Transformatom of dynamie aspect of UML models into
LOTOS behaviour expressions. Int. J. Appl. Math. Comput. Sci., Vol. 11, No. 2, 537-556.

Hnatkowska B., Huzar Z., Tuzinkiewicz L., 2001, Związki pomiędzy modelami w metodyce
USDP, III krajowa konferencja Inżynierii oprogramowania, Mikom, 103-112.

Hoare C.A.R., 1978, Communicating seąuentialprocesses, Communications of ACM, Vol. 21,
666-677.

Hoare C.A.R., 1985, Communicating seąuentialprocesses, Prentice Hall International.

Huzar Z., 1989, Programowanie procesów komunikujących się w czasie rzeczywistym, Cen­
trum Obliczeniowe, Monografia 6/1, Wydawnictwo Politechniki Wrocławskiej.

Huzar Z., 1990, Specyfikacja formalna usług warstwy sesji dla poczty elektronicznej. Raporty
Centrum Obliczeniowego Politechniki Wrocławskiej, Ser. SPR nr 4,

Huzar Z., 1991, An operational approach to semantics of real-time programming language,
Computers and Artificial Intelligence, Vol. 10, 239-254.

258 Literatura

Huzar Z., 1991, Real Time LOTOS, in: Proceedings of the Computer Networks ’91 Conference,
Komorowski W. (ed.), 63-77, Computer Centre, Technical University of Wrocław.

Huzar Z„ 1996, Real-Time CCS*, Archiwum Informatyki Teoretycznej i Stosowanej, t. 8,
z. 1-2, 147-167.

Huzar Z., 2001, Zastosowanie UML do projektowania systemów czasu rzeczywistego - meto­
dyka ROPES, w: Systemy czasu rzeczywistego. Wykłady zaproszone, Szmuc T. (red.), VII
Konferencja, Kraków, 25-28 września 2000, Katedra Automatyki AGH, 3-60.

Huzar Z., 2002, Elementy logiki dla informatyków, Oficyna Wydawnicza Politechniki Wroc­
ławskiej.

Huzar Z., Fryźlewicz Z., Dubielewicz I„ Hnatkowska B„ Waniczek J., 1998, Ada 95, Helion.

Huzar Z., Kuźniarz L., I990a, Język LOTOS - specyfikacje typów danych, Informatyka, r. 25,
nr 1,19-22.

Huzar Z., Kuźniarz L. 1990b, Język LOTOS - specyfikacje procesów. Informatyka, r. 25, nr 2,
21-24.

Huzar Z., Kuźniarz L. 1990c, Język LOTOS - specyfikacja systemów. Informatyka, r. 25, nr 3,
26-28.

Huzar Z., Kuźniarz L„ 1993, Hiding deadlocks in LOTOS semantics, Archiwum Informatyki
Teoretycznej i Stosowanej, t. 5, z. 3—4, 409-427.

Huzar Z., Kuźniarz L., Łach M., 1997, A software tool for deadlock detection in basie Lotos
expressions, Raporty Wydziałowego Zakładu Informatyki Politechniki Wrocławskiej, ser.
SPR nr 16.

Huzar Z.. Kuźniarz L., Reggio G„ Sourrouille J.-L., 2005, Consistency Problems in UML-
based Software Development, in: Nunes N.J. et al. (eds.), «UML» Satellite Activities,
LNCS 3297, Springer, 1-12.

Huzar Z., Kuźniarz L., Spławski Z., Magott J., 1995, Specification of synchronization re-
cpiirements in multimedia systems, in: Proc. 2nd Conference on Real Time Systems.
Szklarska Poręba, 20-23 września, Oficyna Wydawnicza Politechniki Wrocławskiej,
122-131.

Huzar Z., Magott J., 1995a, Real-time and performance evaluation extensions of specification
language LOTOS, in: Proc. MASCOTS ’95 - IEEE and ACM International Workshop on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems. Janu­
ary 18-20, 1995, Durham, USA, 382-386.

Huzar Z., Magott J., 1995b, Timing requirement specification in a real-time LOTOS extension,
in: Proc. Conference on Real-Time Systems, Paris, January 11-13, 5-20.

Huzar Z., Magott J., 1996, Reduction methodfor transition system ofa performance evaluation
extension of LOTOS, in: Ribaudo M. (ed.), Proc. 4lh Workshop on Process Algebras and
Performance Modelling, Torino, July 5-7, CLUT, 95-120.

Huzar Z., Magott J., 1997a, Syntax and semantics of a real-time and performance evaluation
extension of LOTOS, Fundamenta Informaticae, Vol. 29, 77-96.

Literatura 259

Huzar Z., Magott J., 1997b, Performance modelling extension ofTE-LOTOS, Archiwum Infor­
matyki Teoretycznej i Stosowanej, t. 9, z. 1—4, 3-31.

Huzar Z., Magott J., 1997c, Markovian Basic LOTOS with Priorities and Probabilities, in:
Proc. 5lh Workshop on Process Algebras and Performance Modelling, Twente, June
26-27.

Huzar Z., Magott J., 1997d, Probabilistic extension ofTE-LOTOS, in: Proc. 2nd Workshop on
Applied Formal Methods, Zagreb, 89-99.

Huzar Z., Magott J., 2000, New semantics for Markovian Statecharts, in: Proc. 16lh Annual UK
Performance Engineering Workshop, Durham, July, 115-128.

Huzar Z., Magott J., 2001, Markovian Extension of Basic LOTOS with priorities and prob­
abilities, in: Proc. 17lh Annual UK Performance Engineering Workshop, Leeds, July,
167-178.

Huzar Z., Splawski Z., 1989, Tworzenie oprogramowania sieciowego - problemy metodolo­
giczne i teoretyczne, Prace Naukowe Centrum Obliczeniowego Politechniki Wrocławskiej
9/4, Sieci komputerowe - projektowanie, zastosowania, eksploatacja, Wydawnictwo Poli­
techniki Wrocławskiej, 132-148.

ISO 7498, 1984, Information Processing systems - Open Systems Interconnection - Basic
Reference Model.

ISO 8870, 1989, Information Processing systems - Open Systems Interconnection -
LOTOS: A Formal Description Technique based on Temporal Ordering of Observation
Behaviour.

ISO 9074, 1989, Information Processing systems - Open Systems Interconnection - Estelle:
A Formal Description Technique based on Extended State Transition Model.

ISO/IEC 10746-2, 1995, Open Distributed Processing - Reference Model - Part 2: Founda-
tions.

ISO/IEC 10746-3, 1995, Open Distributed Processing - Reference Model - Part 3: Architec-
ture.

ISO/IEC 15437, 2001, Information Technology - Enhancements to LOTOS (E-LOTOS).

ISO/IEC 9621-1:2000, Software engineering - Product quality - Part 1: Quality model.

ISO/IEC TR 9621-2:2002, Software engineering - Product quality - Part 2: External met­
rics.

ISO/IEC 14598-3:2000, Software engineering - Product evaluation - Part 3: Process for de-
velopers.

ISO/IEC TR 9621-3:2002, Software engineering - Product quality - Part 4: Interna! metrics.

ISO/IEC TR 9621-4:2002, Software engineering - Product quality - Part 4: Quality in use
metrics.

ISO/IEC 10746-1, 1995, Information technology - Open Systems Interconnections - Data
Management and Open Distributed Processing - Overview.

260 Literatura

ISO/IEC 10746-2, 1995, Information technology - Open Systems Interconnections - Data
Management and Open Distrihuted Processing - Basic reference model of open distrih­
uted processing: Descriptń e model.

ISO/IEC 10746-3, 1995, Information technology - Open Systems Interconnections - Data
Management and Open Distrihuted Processing - Basic reference model of open distrib-
uted processing: Prescriptive model.

ISO/IEC 10746-4, 1995, Information technology - Open Systems Interconnections - Data
Management and Open Distrihuted Processing - Architectural semantics, specification
techniques andformalisms.

ISO/IEC 9646-3, 1998, Information technology - Open Systems Interconnections - Tree and
Tahular Comhined Notation.

ITU-T, 1999, Recommendation Z. 100, Specification and Description Language.

Jaszkiewicz A., 1997, Inżynieria oprogramowania, Helion.

Juanole G., Atamna Y., 1991, Dealing with arbitrary time distributions with the Stochastic
Timed Petri Net model - Applications to queuing networks, in: Proc. Workshop Petri Nets
and Performance Models, Melbourne, December 1991, IEEE Computer Society Press,
32-41.

Katoen J.-P., Brinksma E., Latella D., Langerak R., 1996, Stochastic simulation ofevent struc-
tures, in: Ribaudo M. (ed.), Proc. 4lh Workshop on Process Algebra and Performance
Modelling, CLUT Press, 21-40.

Kosmulska-Bochenek E., 2002, Wymiana informacji w heterogenicznych systemach siecio­
wych -język ASN.l, Oficyna Wydawnicza Politechniki Wrocławskiej.

Koymans R., Shyamasundar R.K., De Roever W.P., Gerth R., Arun-Kumar S., 1985, Composi-
tional semantics for real-time distrihuted computing, LNCS 193, 167-189, Springer.

Kułakowski K., 2004, Konstrukcja i analiza sterowników wspomagana metodami formalnymi,
rozprawa doktorska, Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki,
Akademia Górniczo-Hutnicza.

Leduc G., 1992, A methodology for the design oflarge LOTOS specifications and its applica-
tion to ISO 8073, University de Liege, Esprit Project 5341/ Sector OBS. SART 92/19/05.

Leduc G., Leonard L., 1992, A timed LOTOS supporting a dense time domain and including
new timed operators, in: Diaz M., Groź R. (eds.), Format Description Techniques, Par-
ticipants’ Proceedings, 99-114.

Leduc G., Leonard L., 1995, An introduction to ET-LOTOS for the description of time-sensitive
systems, Computer Networks and ISDN Systems, 29 (3), 271-292.

Linger R.C., Lipson H.F., McHugh J., Mead N.R., Sledge C.A., 2002, Life-Cycle Models for
Survivable Systems, Technical Report, Carnegie Mellon Software Engineering Institute -
2002-TR-026, ESC-TR-2002-026.

Logrippo L., Probert R.L., Ural H. (eds.), 1990, Protocol Specification, Testing, and Yerijica-
tion, North-Holland.

Literatura 261

Logrippo L., 2000, Immaturity and potential offormat methods: A personal view, Proceedings
of the 6lh Six International Workshop on Feature Interactions in Telecommunications and
Software Systems, IOS Press, 9-13.

Magott J., 2005, Techniki opisu formalnego systemów informatycznych czasu rzeczywistego, WKiŁ.

Manna Z., Pnueli A., 1992, A Temporal Logic ofReactive and Concurrent Systems, Springer.

Maciaszek L.A., 2004, Reąuirements Analysis and System Design, Pearson, Addison-Wesley.

MDA, 2003, Guide Version 1.0.1, Document OMG: omg/2003-06-01, OMG.

MOF QVT, 2005, Finał Adopted Specification, Document OMG: ptc/05-11-01.

Mouhoub M., Sadaoui S., 2005, Parkway W., Improving Lotos Simułation Using Constraint
Propagation, Proceedings of the 17th IEEE International Conference on Tools with Artifi-
cial Intelligence, IEEE.

Miguel C„ Fernandez A., Vidaller L„ 1993, LOTOS extended with probabilistic behaviour,
Formal Aspects of Computing, Vol. 5, 253-281.

Milner R., 1980, A Calculus of Communicating Systems, Springer.

Milner R., 1983, Calculi for Synchrony and Asynchrony, Theoretical Computer Science, Vol.
25,267-310.

Milner R„ 1989, Communication and Concurrency, Prentice-Hall.

Milner R., 1999, Communicating and Mobile Systems: the n-calculus, Cambridge University
Press.

Milner R., Tofte M„ Harper R., 1990, The Definition of Standard ML, MIT Press.

Molier F., Tofts C., 1989, A Temporal Calculus of Communicating Systems, Technical Report
ECS-LFCS-89-104, Laboratory for the Foundations of Computer Science, Edinburgh
University.

De Nicola R., Hennessy M.C.B., 1984, Testing Equivalence for Processes, Theoretical Com­
puter Science, Vol. 34, No. 1,2, 83-133.

De Nicola R., Vaandrager F.W., 1990, Action versus State based logicsfor transition systems,
LNCS 469, Springer, 407-419.

Nicollin X., Sifakis J., 1992, An Overview and Synthesis on Timed Process Algebras, in:
de Bakker J.W. et al. (eds.), Real-Time: Theory in Practice, LNCS, Vol. 600, Springer,
526-548.

Partów J.G., 1985, Fairness Properties in Process Algebra, PhD Thesis, DoCS 85/03, Com­
puter Science Department, Uppsala University.

Pavon S., Larrabeiti D., Rabay G., 1995, LOLA - LOTOS Laboratory, User Manuał,
Departamento de Ingenieria Telematica, Universidas Politechnica de Madrid,
LOLA/NS/V10.

Paige R., Tarjan R.E., 1987, Three Partition Refinement Algorithm, SIAM Journal of Comput­
ing, Vol. 16 (6), 973-989.

262 Literatura

Pelc L., 2004, Specyfikacja i walidacja protokołów komunikacyjnych czasu rzeczywistego,
rozprawa doktorska, Politechnika Wrocławska.

Priami C., 1996, Stochastic K-calculus with generał distributions, in: Ribaudo M. (ed.), Proc.
4lh Workshop on Process Algebra and Performance Modelling, CLUT Press, 41-57.

Plotkin G., 1981, A structural approach to operational semantics, Technical Report DAIMI-FN
19, Department of Computer Science, Aarhus University.

Queille J.-P., Sifakis J., 1983, Fairness and related properties in transition systems - a tempo-
ral logie to deal with fairness, Acta Informatica, Vol. 19, 195-220.

Quemada J., Fernandez A., 1987, Introduction to quantitative relative time into LOTOS, in:
Protocol Specification and Verification, VII, Rudin H., West C.H. (eds.), Elsevier Science
Publishers, IFIP, 105-121.

Quemada J., Pavdn S., Fernandez Z., 1989, State exploration by transformation with LOLA,
Workshop on Automatic Verification Methods for Finite State Systems, Grenoble,
June.

Quemada J., Azcorra A., Frutos D., 1990, TIC: A timed calculus for LOTOS, in: Formal De-
scription Techniques, II, Voung S.T. (ed.), North-Holland, 195-209.

Quemada J., Frutos D., Miguel C., 1993, The design of timed systems, in: Proc. lst AM AST
Workshop on Real-Time Systems, Nov. 3-4, 1993, Iowa City, USA.

Reed G.M., Roscoe A.W., 1986, A timed model for communicating sequential processes, Pro-
ceedings of ICALP ’86, LNCS 226, Springer, 314-324.

Reed G.M., Roscoe A. W., 1999, The timed failure-stability model for CSP, Theoretical Com­
puter Science, 11 (1-2), 85-127.

Reisig W., 1988, Sieci Pelriego, WNT.

Rettelbach M., 1995, Probabilistic branching in Markovian process algebras, The Computer
Journal, 38, 590-599.

Rico N., von Bochmann G., 1991, Performance description and analysis for distributed sys­
tems using a variant of LOTOS, in: Jonsson B. et al. (eds.), Protocol Specification, Testing
and Verification IX, North-Holland, 199-213.

Roscoe A.W., 1998, The Theory and Practise ofConcurrency, Prentice Hall.

Salaiin G., Serwe W., 2005, Translating Hardware Process Algebras into Standard Proc­
ess Algebras — lllustration with CHP and LOTOS, Rapport de Recherche 5666,
INRIA.

Sal wieki A., Miildner T., 1981, On the algorithmic properties of concurrent programs, LNCS
125, Springer, 169-197.

de Saqui-Sannes P., Apvrille L., Lohr C„ Senac P„ Courtiat J.-P., 2002, UML and RT-LOTOS
An Integration for Real-Tinte System Validation, European Journal of Automation (JESA),
Hermes, Vol. 36, 1029-1042.

Sawyer P., Kotonaya G., 2001, Software Requirements, in: SWEBOK, 2.1-2.26.

Literatura 263

Schieferdecker I.K., 1995, Perfonnance-oriented specification of communication protocols and
verification of deterministic bounds of QoS characteristics, Ph. D. Dissertation, GMD-
-Bericht Nr. 242, R. Oldenbourg Verlag.

Schneider S., 1995, An operational semantics for timed CCS, Information and Computing, 116,
193-213.

Schneider J.M., 1996, Protocol Engineering. A Rule-Based Approach, Springer.

Schneider K„ 2004, Verification ofReactive Systems. Fornal Methods and Algorithms, Springer.

Schieferdecker I.K., 1995, Performance-oriented specification of communication protocols and
verification of deterministic bounds of QoS characteristics, PhD Thesis, GMD-Bericht
Nr. 242, R. Oldenbourg Verlag.

Sjbdin P., 1991, From LOTOS Specifications to Distribute Implementations, PhD Thesis,
DoCS 91/31, Department of Computer Science, Uppsala University.

Spławski Z., 1997, Synchronization mechanisms for multimedia streams and their specification
in timed LOTOS, New Frontiers of Information Technology - Proceedings of the 23lh Eu-
romicro Conference, IEEE, 456-463.

SWEBOK - Guide to Software Engineering Body of Knowledge, 2001, IEEE Trial Version 1.0,
May.

Szejko S. (red.), 2002, Metody wytwarzania oprogramowania, MIKOM.

Szmuc T., 1998, Zaawansowane metody tworzenia oprogramowania czasu rzeczywistego,
CCATIE 15, Krakowskie Centrum Informatyki Stosowanej.

Szmuc T., Motet G., 1998, Specyfikacja i projektowanie oprogramowania czasu rzeczywistego,
CCATIE 6, Krakowskie Centrum Informatyki Stosowanej.

Szpyrka M., 1999, Wspomaganie tworzenia oprogramowania systemów reaktywnych z zasto­
sowaniem kolorowanych sieci Petriego, rozprawa doktorska, Wydział Elektrotechniki,
Automatyki, Informatyki i Elektroniki, Akademia Górniczo-Hutnicza.

Tatcher J„ Wagner E., Wright J.B., 1982, Data Type Specification: Parameterization and The
Power of Specification Techniques. Trans. Próg. Lang, and Systems, 4 (4), 711-732.

Tiuryn J., 2003, Wstęp do teorii mnogości i logiki, Uniwersytet Warszawski, Wydział Matema­
tyki, Informatyki i Mechaniki.

Tofts C., 1989, Timing Concurrent Processes, Technical Report ECS-LFCS-89-103, Labora-
tory for the Foundations of Computer Science, Edinburgh University.

Turner K.J. (ed.), 1993, Using Formal Description Techniques, Wiley.

Turner K.J., 2000, Realising Architectural Feature Descriptions using LOTOS. Parallel Com-
puters, Networks and Distributed Systems (Calculateurs Paralleles, Reseaux et Systemes
Repartis), Hermes.

UML, 1999, Unified Modeling Language, version 1.3, Object Management Group.

UML, 2003, Unified Modeling Language: Superstructure, version 2.0, Finał Adopted Specifi­
cation, ptc/03-08-02, Object Management Group.

264 Literatura

Valderrutten A., Hjiej O., Benzekri A., Gazal D„ 1992, Deriving queuing networks perform­
ance models from annotated LOTOS specifications, in: Pooley R., Hillston J. (eds.), Com­
puter Performance Evaluation - Modelling Techniques and Tools, Edinburgh University
Press, 167-178.

Vissers C.A., Scollo G„ van Sinderen M., 1988, Architecture and specification style in format
descriptions of distributed systems, in: Aggarwal S., Sabnani (eds.), Protocol Specifica­
tion, Testing and Verification, North-Holland, 189-204.

Vissers C.A., Scollo G., van Sinderen M., Brinksma E., 1991, Specification Styles in Distrib­
uted System Design and Yerification, Theoretical Computer Science, 89, 179-206.

Walkowiak A., 2006, Transformacja diagramów sekwencji języka UML 2.0 u' wyrażenia be­
hawioralne języka specyfikacji formalnych LOTOS, w: Kwiecień A., Gaj P. (red.), Syste­
my informatyczne z ograniczeniami czasowymi, WKiŁ, 41 -56.

Wallace D., Recker L., 2001, Software Quality, in: SWEBOK, 11.1-11.19.

Wang Y., 1991, CCS + Time = an Interleaving Model for Real Time Systems, in: Albert L.J.,
Mounier B., Artalego M.R. (eds.), Automata, Languages and Programming, LNCS 510,
Springer, 217-228.

monografii przedstawiono język LOTOS, jego zastosowania,

a także jego rozszerzenia, które umożliwiają wykorzystanie języka
w procesie specyfikacji i projektowania systemów czasu rzeczywistego.
Omówiono dwa rodzaje rozszerzeń: rozszerzenia czasowe, które

pozwalają na specyfikowanie systemów czasu rzeczywistego z silnymi
ograniczeniami czasowymi, oraz rozszerzenia wydajnościowe, które
umożliwiają analizę wydajnościową systemów czasu rzeczywistego
ze słabymi ograniczeniami czasowymi. Przedstawiono metodykę
stosowania LOTOSa, a zwłaszcza jego wykorzystanie w specyfikacji
usług i protokołów sieciowych jako głównego zakresu zastosowania
języka.

Omówiono również podstawy matematyczne, na których opiera
się LOTOS - są nimi: koncepcja algebraicznej specyfikacji

abstrakcyjnych typów danych oraz koncepcja algebraicznych
specyfikacji behawioralnych, oparta na rachunku komunikujących

się procesów. W monografii poświęcono dużo uwagi definiowaniu
i analizie semantyki języka, zwłaszcza w kontekście jego czasowych
i wydajnościowych rozszerzeń.

Wydawnictwa Politechniki Wrocławskiej są do nabycia w księgarni ,TECHł

plac Grunwaldzki 13, 50-377 Wrocław, budynek D-l PWr., tel. 071 320 29 35

Prowadzimy sprzedaż wysyłkową

ISBN 978-83-7493-335-3

Raport dostępności

		Nazwa pliku:

		Huzar_lotos_jezyk_formalnych_specyfikacji.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

