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Wykaz skrétéw i oznaczen

AFM - przym. amplitudowo-fazowo-morfologiczny
CCD - matryca CCD (ang. Charge Coupled Device)
ChR - charakterystyka robocza

COH - cyfrowa optyka Hilberta

EXIF - uniwersalny format wymiany informacji (Exchangeable Image File Format)
HSOE - hybrydowy SOE

IR - podczerwien

1S - zbiér liczb catkowitych

MWK - modele widmowo-korelacyjne (SCM)

OCR - optical character recognition

OZK - obiekt o zlozonym ksztalcie (CSO)

PChK - punkty charakterystyczne ksztateu (SChP)

R - zbiér liczb rzeczywistych

RGB - model barwny RGB

SIW (WIS) - system wideo-informacyjny

SMW - system modelowania i weryfikacji (MVS)
SOE - system optoelektroniczny

sRGB - standarised Red, Green, Blue - standaryzowany RGB
SZC - scena zorientowana na cel

TI - technologia informacyjna

TZK - tekstura o zalozonym ksztalcie (TCS)

uv - ultrafiolet

VIS - $wiatlo widzialne

W3C - World Wide Web Consortium

WCM - wektorowy ciert morfologiczny (VMS)

WEFM - wektorowa filtracja morfologiczna

WOS - wektorowy opis sygnaturowy (VSD)
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1. Wprowadzenie

1.1.0golne aspekty rozpoznawania oraz identyfikacja obiektow i tekstur

Identyfikacja obiektéw oraz tekstur jest niezwykle szerokim zagadnieniem, przede
wszystkim ze wzgledu na niezliczong ilo§¢ domen, w ktérych jest obecnie stosowana [3],
[11], [12]. Na ostatnia faz¢ identyfikacji sklada si¢ wiele etapow poprzedzajacych, jednym
z ktérych jest proces pozyskiwania [8], czyli akwizycji sygnaléw, stanowiacych podstawe dal-
szej procedury identyfikacyjnej [33]. Podczas akwizycji obrazy moga by¢ pozyskiwane
z r6zna pojemnoscia informacyjna [19]. W warunkach naturalnych trudnym moze by¢ uzy-
skanie obrazéw odpowiedniej jakosci. Jedne moga by¢ niskiej rozdzielczosci, inne za$ obar-
czone szumem. W takich sytuacjach konieczne okazuje si¢ przeprowadzenie analizy obrazu
jedna z drég:

— sztuczne zwigkszenie informacyjnosci obrazéw poprzez przetwarzanie wstgpne, majace na
celu zmniejszenie szuméw, filtracje histogramowa lub podniesienie lokalnych kontrastéw
np. przez zastosowanie filerow typu Unsharp Mask (Rozmyta maska), lub tez przez zfo-
zenie kilku obrazéw w jeden [39].

— zastosowanie metod wykazujacych si¢ wysoka skutecznoscia, umozliwiajaca identyfikacje
obiektu z wystarczajacym, zalozonym prawdopodobienstwem z obrazu z naturalnie obni-
zong informacyjnoécig (rozdzielczoé¢, szumy) [78], [80].

Ta ostatnia metodologia to m.in. cyfrowa optyka Hilberta, na ktéra skfada si¢ duzy zbiér

metod odpowiedzialnych za obrébke wtérng analizowanych obrazéw.

1.2.Cyfrowa optyka Hilberta

Cyfrowa optyka Hilberta jest zbiorem metod oraz narzedzi stuzacych podniesieniu in-
formacyjnosci cyfrowych obrazéw identyfikowanych obiektéw, a przez to skutecznosci iden-
tyfikacji [28], [81]. Wickszo$¢ metod korelacyjnych, ktérych funkcjonowanie opiera si¢ na
mniej lub bardziej ztozonej analizie poréwnawczej ma bardzo duze problemy z identyfikacja
obiektéw na cyfrowych obrazach obarczonych réznego rodzaju szumami. Nie chodzi tu je-
dynie o klasyczne szumy addytywne, ale rowniez szumy katowe, przy keorych klasyczne me-
tody poréwnawcze s3 bezuzyteczne. Cyfrowa optyka Hilberta dostarcza wielu metod umoz-
liwiajacych niwelowanie lub wrecz pomijanie niektérych typéw zaklécen, keére sq natural-
nym elementem rzeczywistych obrazéw obiektéw 3D. Metody identyfikacji oparte na cy-
frowej optyce Hilberta znacznie redukuja ztozonoé¢ obliczeniows, co ma niebagatelny wplyw
na czas, jaki jest potrzebny na otrzymanie wyniku z okreslonym prawdopodobienstwem

prawidtowej identyfikagji.
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1.3.Cel i zakres pracy

Celem niniejszej rozprawy jest zaproponowanie oraz przebadanie zestawu metod opar-
tych na przetwarzaniach Hilberta, poprawiajacych skutecznos¢ identyfikacji obiektow
przedstawionych na obrazach, bedacych szczegolng postacia sygnaléw tréjwymiarowych.
Do identyfikacji obiektéw wykorzystano proste oraz hybrydowe przetwarzania Hilberta
oraz przetwarzania majace na celu znaczng redukcje zlozonosci opisu obiektéw — tzw.
opisy sygnaturowe. Dla tych ostatnich koniecznym stalo si¢ opracowanie bazy danych
bedacej gléwnym zrédlem materialu poréwnawczego. Opisy sygnaturowe, poza zmini-
malizowaniem ich objetoéci (tworzeniem sygnatury) powinny ulatwi¢ opracowanie me-
tod identyfikacji obiektu, niezaleznych od:

— szumu katowego — obrotu obiektu w przestrzeni tréjwymiarowej,

— translacyjnego — przesunigcia obiektu w przestrzeni tréjwymiarowej,

— skalarnego - przyblizenia lub oddalenia obiektu od obserwatora.

Celem niniejszej rozprawy jest réwniez przedstawienie wynikéw badan wlasciwosci

i efektywnosci algorytméw amplitudowo-fazowej analizy i identyfikacji obrazéw obiek-

tow o ksztalcie ztozonym (OKZ), wystepujacych jako elementy obrazéw scen przestrzen-

no-czasowych i poddawanych znieksztalceniom wywotanym ruchami obrotowymi.

Osobnego uzasadnienia wymaga podjecie tematu w kontekscie przebadania wylacznie

stosunkowo prostego obliczeniowo przeksztalcenia Hilberta, nie zaglebiajac sie

w metody o duzo wigkszej zlozonosci obliczeniowej. Powodem takiego podejscia jest po-

tencjalna mozliwo$¢ aplikacji opracowan oraz wynikéw zawartych w niniejszej rozprawie

przy opracowywaniu analogowych procesoréw Hilberta, ktére nast¢pnie znalazlyby za-
stosowanie w aparatach latajacych, ktorych jedynym zadaniem jest rozpoznanie oraz skla-
syfikowanie obserwowanego z powietrza obiektu. Warunkiem koniecznym takiego roz-
wigzania jest zredukowana do minimum waga oraz gabaryty ukladu opartego na optyce

Hilberta. Metody o duzo wigkszej ztozonosci obliczeniowej pociagnelyby za sobg ko-

nieczno$¢ implementacji duzo cig¢zszej aparatury pomiarowo-obliczeniowej, co uniemoz-

liwitoby oderwania si¢ aparatu latajacego od ziemi.

Osiagnigcie wyzej przedstawionego celu, wymaga rozwigzania wielu probleméw natury sys-

temowej oraz semantycznej, z ktorych najwazniejsze to:

— krytyczna analiza przedmiotu oraz stanu wspélczesnej literatury z zakresu rozpoznawania
oraz identyfikacji obicktéw — analiza stanu wiedzy z zakresu rozpoznawania cyfrowych
obrazéw obiektéw z wykorzystaniem przetwarzan oraz algorytméw podnoszacych sku-
teczno$¢ identyfikacji;

— opracowanie szczegétowych algorytméw oraz schematéw postepowania podczas identyfi-

kacji obiektow — zdefiniowanie i opisanie poszczegélnych etapéw identyfikacji obiektow
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bez wzgledu na domeng, w ktérej metody cyfrowej optyki Hilberta miatyby by¢ stosowa-
ne;

dobér odpowiedniego zestawu metod (przetwarzan) w zaleznosci od domeny problemu -
eksperymentalny dobér hybryd przetwarzan dajacy w danej domenie najlepiej rozréznial-
ne wyniki obliczen korelacyjnych;

zdefiniowanie i usystematyzowanie sposobu zapisu informacji o obickcie — okreslenie ze-
stawu cech morfologicznych opisujacych obieckt w sposéb najbardziej rozréznialny spo-
$réd innych klas obiektow;

opracowanie bazy danych (etalonéw) wzorcow obicktow poréwnywanych w konkretne;
domenie (w niniejszej rozprawie - obiekty latajace) — zdefiniowanie wymagan stawianych
magazynowi probek bedacych podstawa do poréwnan z obiektem badanym;

opracowanie zasad tworzenia technologii informacyjnych realizujacych badane metody
ialgorytmy — zdefiniowanie probleméw sprzetowo-programowych mogacych wystapic
podczas wykonywanie poszczegdlnych etapéw identyfikacji obiektow;

oszacowanie zlozonosci obliczeniowej zaproponowanych algorytméw cyfrowej optyki
Hilberta — identyfikacja ,waskich gardel” systemu identyfikagji jako ogétu zastosowanych
technologii informacyjnych;

ewaluacja metod oraz okre$lenie wymiernych korzysci ptynacych z ich zastosowania - we-
ryfikacja skutecznosci metod korelacyjnych wykonywanych na zbiorze obrazéw podda-

nych przetwarzaniom z domeny cyfrowej optyki Hilberta.
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1.4. Uktad pracy

Niniejsza rozprawa sklada si¢ z tego rozdziatu oraz szesciu kolejnych.
Rozdzial 2 - Dokonano szczegétowej analizy wspolczesnego stanu rozwoju systeméw wi-
deo-informacyjnych. Oméwiono gtéwne problemy zwiazane z identyfikacja obiektow.
Rozdzial 3 - Zaproponowano zestaw bazowych algorytméw cyfrowej optyki Hilberta. Zba-
dano struktury oraz metody praktycznych algorytméw amplitudowo-fazowej analizy sygna-
6w oraz obrazéw cyfrowych.
Rozdzial 4 — Opracowano zestaw hybrydowych wielowymiarowych przetwarzan Hilberta,
Foucaulta oraz Radona.
Rozdzial 5 - Przedstawiono wyniki badan eksperymentalnych. Zaproponowano strukture
specjalizowanej bazy danych etalonéw — wzorcéw, z ktérymi poréwnywany jest obiekt po-
szukiwany.
Rozdzial 6 - Przeprowadzono ewaluacje efektywnosci oraz stabilnosci algorytméw analizy
oraz modelowania obrazoéw cyfrowych. Na potrzeby tejze ewaluacji zaimplementowano jed-
na z dostgpnych w statystyce miar podobienistwa — miar¢ pelnego $éredniego ryzyka podej-
mowania decyzji identyfikacyjnej.
Rozdzial 7 - podano uwagi koricowe ze wskazaniem oryginalnych opracowan zawartych

w niniejszej rozprawie oraz zaproponowano kierunki dalszych badan.
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2. Analiza wspotczesnego stanu rozwoju systemow wideo-
informacyjnych opartych na cyfrowej optyce

2.1. Wstep

Problemy identyfikacji scen zorientowanych na obiekt naleza do klasy probleméw sta-

bo sformalizowanych matematycznie, a do prawidtowego rozwiazania wymagaja zastosowa-
nia réznych metod algorytmicznych oraz heurystycznych, zaawansowanego sprzetu oraz
oprogramowania. Jednym z gléwnych probleméw tego rodzaju technologii informacyjnych
(TI) syntezy oraz realizacji systeméw identyfikacji jest redukcja objetosci opisu identyfiko-
wanego obiektu ztozonego ksztattu (OZK) [43], [79]. Przyspiesza ona znacznie caly proces
identyfikacji z jednej strony, ale prowadzi réwniez do wzrostu liczby blednych identyfikacji.
Kolejna klasa probleméw identyfikacji OZK zwiazana jest z dynamicznymi znieksztalcenia-
mi spowodowanymi zmianami struktury sceny oraz wlasnosci jej funkcjonalnych oraz struk-
turalnych elementéw.
Wszystkie te zjawiska zwigkszaja niepewnos¢ podejmowania decyzji. Na obnizenie rozdziel-
czosci czasowo-przestrzennej oraz jakosci identyfikacji moga réwniez mie¢ wplyw zmiany
strukturalne jak i parametryczne obnizenie sprawnosci kanatu informacyjnego hybrydowego
systemu optoelektronicznego (HSOE) spowodowane zmiang warunkéw obserwacyjnych.
Wszystkie te czynniki sprawiaja, ze analitycy oraz deweloperzy do zaprojektowania HSOE z
odpowiednio skutecznym modelowaniem oraz weryfikacja beda musieli korzystaé ze specjali-
stycznych zintegrowanych srodowisk projektowych (IDE).

Zasady projektowania oraz ogdlne struktury HSOE wykorzystujace polaczone metody
wektorowych opiséw sygnaturowych (WOS) oraz analizy amplitudowo-fazowej w domenie
cyfrowych przeksztalcen Hilberta (Foucault-Hilberta) zostaly doktadnie opisane we weze-
$niejszych publikacjach autora [55]+[59], [64]+[73]. Poprawa stabilnoéci dyskryminacji
ksztaltéw oraz jakosci identyfikacji jest wynikiem w/w metod z powodzeniem stosowanych
w obecnosci szuméw amplitudowych, przesunie¢ obrazu badanego obicktu, jego obrotu lub
znieksztalcenia perspektywicznego w segmentach technologii informacyjnej (TI) HSOE.
Gléwnym problemem zwigzanym z symulacja oraz badaniem takiego systemu modelowania
oraz weryfikadji jest jego ogromna ztozonos¢ obliczeniowa. Fakt ten lezy u podstaw automa-
tyzacji proceséw SMW z uwzglednieniem strukturalnej oraz parametrycznej optymalizagji
oraz ewaluagji jakosci hybrydowych systeméw optoelektronicznych. Aby sprosta¢ temu wy-
zwaniu, prébe zdefiniowania SMW w oparciu o metody cyfrowej optyki Hilberta, wektoro-

we opisy sygnaturowe oraz przeksztalcenia amplitudowo-fazowe, opisano w dalszej czgéci

rozprawy.
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2.1.1. Opis oraz reprezentacja uogolnionej struktury szkieletu SMW

Ponizej przedstawiono szkielet struktury systemu modelowania i identyfikacji, jako integral-
nego zbioru klas wstgpnych przetwarzan obrazéw badanych scen, modeli ich elementéw oraz
algorytméw identyfikacji i interpretacji scen zorientowanych na cel w informatyczno-

technologicznych segmentach hybrydowych systeméw optoelektronicznych.

Modelowanie bazowych algorytméw TI HSOE

standaryzacja tworzenie WCM Obliczanic i wektoryzacja:
obrébka wstepna synteza WOS - sum promicniowych
przeksztalcenia: fileracja morfologiczna (MF): - punktow charakeerystycz nych
- Fouriera (FT), - obrazy wyjsciowe - otoczek wypuklych
-Hilberta (HT), || - macierze przekszealcen | - wspolrzednych biegunowych
- Foucault-Hilberta (FcHT), OKZ - funkcji momentow
- Hybrydowe (HbT), -sygnatury WOS
- czastkowe (FT)
Modelowanie amplitudowo-fazowych algorytméw TI HSOE

filtracja aperturowa: Amplitudowo-fazowa (AF-) Wektorowa filtracja medianowa:
- skan6w wyjéciowych analizaw domenach: - skanéw wyjsciowych
-MPAF - Fouriera (FT), - kanalow widmowych
-WCM - Foucaulta (FcT), -MPAF
-WOS .| - Faucault-Fouriera (FcF), | - WCM

- czastkowego przetwarzania FT, -WOS

- Fouriera-Hilberta (FHT)

TI algorytméw identyfikacji modeli OKZ w HSOE

Modele widmowo-korelacyjne Modele statystyczne: Modecle funkcjonalne:
(MWK) wdomenach: - momentow - gonionetryczne (GMM)
- sygnalu wejsciowego/wyjsciowego - hismgmnm\\': - wiclokatow opisowych PChK
-MPAF -jednowymiarowych - sum promicniowych (RS)
-WCM || -wiclowymiarowych l.__| - integralnego WOS (IWOS)
-WOS - mieszanych

- punkeow charakeerystycznych

ksztaltu

Weryfikacja TI algorytméw identyfikacji OZK w HSOE

Analiza oraz klasyfikacja zdolnosci Analiza oraz ewaluacja odpornosci Analiza oraz ewaluacja stalosci
dyskryminacyjnej MWK. OKZ dynamicznej OKZ

- parametry: WOS, WCM,MPAE, ||

IWOS

- parametry: WOS, WCM, MPAFE,
IWOS

Rysunek 1. Strukeury technologii informacyjnej (TI) dla modelowania oraz weryfikacji algorytméw analizy wstepnej,
identyfikacji OZK w kolejnych segmentach informacyjnych Hybrydowych Systeméw Optoelektronicznych

Rysunek 1 przedstawia diagram strukturalny systemowych modeli programowych (algoryt-

méw) przetwarzania wstepnego, identyfikacje OZK (TZK) oraz ewaluacj¢ ich parametrow

wtérnych (profili) definiujacych strukturg systemu modelowania i weryfikacji zawierajaca

klasy algorytméw, odzwierciedlajace kolejne warstwy systemu:

— podstawowg obrébke obrazéw: standaryzacjg, normalizacjg, przeksztalcenia ortogonalne,
filtracj¢ nieliniows, obliczanie parametréw wtérnych obrazéw ztozonego ksztattu w roz-

nych domenach przeksztalcen,



— amplitudowo-fazowo-mofrologiczng (AFM) analiz¢ w przestrzeniach przeksztalcen oraz
obrébki wstepnej, a dokladniej — hybrydyzacj¢ analizy AFM opartej na algorytmach fil-
tracji rankingowej (wagowej),

— identyfikacji widmowo-korelacyjnej strukturalno-funkcjonalnego modelu obickeu (tek-

stury) w domenach przetwarzania wtérnego [62].

2.1.2. Strukturalno-funkcjonalne modele warstw Tl systemu modelowania
oraz weryfikacji

Rysunki ponizej przedstawiajg strukturalno-funkcjonalny model przetwarzania obrazu

w segmentach informacyjnych hybrydowych systemach oproelektronicznych, wlyczajac w to
tworzenie, przetwarzanie, analiz¢, identyfikacj¢ oraz interpretacje OZK jako elementu zlo-
zonej sceny. Pierwszy model (Rysunek 2) opisuje funkcje wykonywane w ramach etapu 1 -
Standaryzacja oraz etapu 2 — Obrébka wst¢pna. Celem niniejszych operacji jest zapew-
nienie systemowi poprawne;j i stabilnej identyfikacji modeli OZK, analizy sceny, a co za

tym idzie — prawidlowej interpretacji oprawy scenicznej orientowanej na obiekt.

Etap 1 - Standaryzacja
}
Tworzenie rastra Starlldaryzavqa energu.oraz | Formowanie sekwencji
b p rozmiaru obiektu o ztozonym brazéw skal h
SLEAER CYSIREES ksztalcie (lub fragmentu tekstury) obrazow skalowanyc
} i ! f |
Korekcja amplitudy Fragmentacja Kalibrowanie - przejscie do wzglednych
pola obrazu tekstury obrazu wsp6trzednych oraz wymiaréw
! f ! |
Wykeywaiie grariic Tworzenie obrazu Tworzeme. listy (l?.azy danyc%l) atrybutéw
- M |— oraz hierarchii segmentéw tektur
obiektéw - segmentacja tekstury ;
(fragmentéw)
1 1 ! I
Etap 2 - Obrébka wstepna (wejsciowa)
! ! !
ksPrz{estrzcnna korellzqa Przestrzenne wygtladzanie ) Preselekcja formy
ZE U OLaZ|PEISPEXLYW) tha - filtracja zaklécen OZK
0OZK
I I

Tworzenie wideo sekwencji
- liniowe przesunigcie OZK —

L . Tworzenie wideo sekwencji
Tworzenie wideo sekwengji )

—1 - zmiana konta obserwacji

ey - plaski obrét OZK 07K
I l I
Tworzenie wideo sekwencji Tworzenie wideo sekwengji Tworzenie wideo sekwencgji
- zmiana jasnoéci OZK 1 - dodawanie efektéw 3D [ - obliczanie dodatkowych
- rendering do OZK projekcji OZK
\/

Rysunek 2. Schemat pierwszych dwéch etapéw procesu identyfikacji obicktow

Etap 1 - Standaryzacja — zawiera procedury formowania cyfrowych obrazéw rastro-
wych: kwalifikacje wg rozmiaréw oraz ksztattow fragmentéw (lub calosci) rastra na podsta-

wie informacji o wzglednych wielkosciach charakterystycznych dla identyfikowanych obiek-
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téw lub tekstur, korekcj¢ amplitudy, wyréwnywanie nieréwnomiernosci o$wietlenia oraz
przestrzennych niejednorodnosci czutosci matrycy przetwornika optoelektronicznego (sen-
sora), ilustrowanie obrazéw obicktéw badanych z wyseparowaniem tla itp.[46], [50], [52].
Do segmentacji obrazu (przeksztalcenia powierzchni) wykorzystywane sa mechanizmy lo-
kalnego usrednienia, algorytmy energii chwilowej itp. tworzac przestrzenno-czasowa zmien-
ng cze$é obrazu (dynamicznie heterogeniczng), czyli segment zawierajacy obiekt lub prymi-
tyw tekturowy, bedacy elementem sceny. Po usunigciu na etapie segmentacji zwartych obsza-
réw obrazu obiektu (lub prymitywéw tekturowych), kedre moglyby zawieraé prymitywy tek-
turowe oraz kwazi-jednorodne tla, obraz jest analizowany pod katem wyznaczania wspol-
czynnika ksztaltu — w duzym uproszczeniu jest to iloraz powierzchni badanego obiektu oraz
obwodu w kwadracie. Jest to cecha na tyle unikalna, ze pozwala do$¢ precyzyjnie wydzielaé
poszczegélne, charakterystyczne klasy obiektéw. Na podstawie tej analizy fragmentu obrazu
powstaje tzw. ,mapa decyzji” sceny. Nast¢pnie, bazujac na wykryciu przez standaryzacje
energii oraz rozmiaru segmentu, przetwarzane i tworzone s3 zestawy cech charakeerystycz-
nych elementéw sceny. Elementy te zawieraja pojedyncze obickty i/lub prymitywy tekturo-
we. W celu uzyskania stabilnosci modeli widmowo-korelacyjnych oraz sprawnosci (odpor-
nosci) algorytméw identyfikacji korelacyjnej konieczna jest standaryzacja (normalizacja)
obrazu danego obicktu. W wyniku opisanej operacji przetwarzania obrazu (manipulacja)
mozliwym staje si¢ zunifikowanie wymiaréw obiektu (fragmentéw tekstury) podlegajacego
identyfikacji oraz stworzenie sekwencji obrazéw OZK ze zmiennymi, acz akceptowalnymi
wymiarami wzgledem pierwowzoru obiektu badanego.

W ten sposéb pobrane dane, jak wspétrzedne, istotne energetyczne wspolczynniki
widmowo-przestrzenne, widmowo-fotometryczne, kolorymetryczne oraz inne parametry
dostarczane sg jako atrybuty do bazy danych zawierajacej list¢ obicktéw oraz strukture hie-
rarchiczng obrazéw (map¢ segmentadji).

Etap 2 — Obrébka wst¢pna — realizowana jest tu obrébka wstgpna identyfikowanych
obrazéw, segmentéw i(lub) fragmentéw stworzonych w ramach pierwszego etapu. Jako ze
rzeczywiste sceny zawierajace OZK (TZK) obserwowane sa przez podsystem sensordw
HSOE w czasie oraz przestrzeni w réznych warunkach o$wietlenia oraz obrazowania, pierw-
sz operacja na tym etapie jest kompensacja perspektywy oraz ocena kata obserwacji, co po-
woduje, ze testowane obrazy sa bardziej podobne do tych zapisanych w bazie jako wzorce.

Poprawia to w sposob naturalny stalo$¢ oraz efektywnoé¢ identyfikacji.

2-4



Etap 3 - Przeksztalcenia

1
1. Tworzenie bazowych algorytméw przetwarzaii ortogonalnych
l I I
Wybér klasy przetwarzania Wybér atrybutéw Wybér wspétrzednych
bazowego (Tx) przeksztatcenia przeksztalcert
I I I

Hanckela Ilo$¢ pomiaréw Kartezjanskie
Hartleya Dhugos¢ wektora probek Biegunowe
Hybrydowe Rozktad: Szesciokatne
Hilberta: - operatoréw Fragmentaryczne - katowe

- anizotropowe - wspdlczynnikéw Fragmentaryczne - sekcyjne

- izotropowe Prébki wektora symetrii 1

- mieszane Typy procedur:
Kosinusowe - wygladzanie Obliczanie rdzeniu
Wielomianowe - wizualizacja przeksztakcenia
Radona - lokalnos¢ I
Smufow.e ~hybipyzaca : Ustalanie parametréw
Zamienione FT - rozklad na czastki . . . .

Obliczanie macierzy rdzenia

Numeryczne Faktoryzacja rdzeni
Falkowe fyzaca rezenia
Eoacanlia Syntcz.a oraz reahza}qa
Fouriera szybkich algorytméw
Czastkowe

I l

2. Strukturalizacja typéw w obrebie przetwarzan jednej klasy

l l

I

l l

Jednowymiarowe
(z ustawieniem osi)

Dwuwymiarowe
(rozdzielne)

Dwuwymiarowe
(nierozdzielne)

Wielowymiarowe
(rozdzielne)

Wielowymiarowe
(nierozdzielne)

3. Hybrydyzacja klas oraz frakcjonowanie przetwarzan

leni ;
Ustalenie typu = e Ustalenie typu Ustalem'e
hybrydyzacji || i fakgonowanis | | b o
e hybrydyzacji J frakcjonowania
Synteza algorytmu hybrydowego Synteza algorytmu czastkowego

Rysunek 3.
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Trzeci etap identyfikacji — synteza algorytméw przeksztalcen

Podobng korekcje mozna przeprowadzi¢ po obliczeniu pierwotnych informacji, przez
adaptacje¢ wzorcow, czyli wypetnienie bazy danych etalonéw prébkami bedacymi kopig obra-
zu pierwotnego znicksztalconego wg $cisle okreslonych regut ruchu obiektu. Poréwnanie
obrazéw badanych OZK (TZK) ze ,znicksztalconymi” wzorcami oraz wybor najbardziej
podobnego pozwala na zgrubna oceng parametréw znicksztalcenn przestrzennych (wstgpne
przyblizenie) z pdzniejsza oceng optymalizacji parametréw przestrzenno-czasowych. Poza
tym — wprowadzenie zadanych zaklécen takich jak: przesunigcie, obroét plaski, zmiana katow
obserwacji, rendering oraz innych zaklécen tréjwymiarowych — pozwala na zwigkszenie

zdolnosci dyskryminacyjnych oraz skutecznosci identyfikacyjnych na etapie syntezy WOS,




analizy AFM oraz goniometrycznych obliczen profili. Wyzej wymienione zadawane zakléce-
nia wprowadzane s3 w odpowiednich krokach (blokach) danego etapu.

Kolejny model strukturalno-funkcjonalny, ktéry przedstawia rysunek 3 opisuje opera-
cje przetwarzania obrazéw realizowane przez system na etapie 3. Jako ze wigkszos¢ algoryt-
méw filtracji oraz kodowania obrazéw realizowane s3 w domenie czgstotliwoéci (przetwa-
rzanie widmowe), szeroko stosowane sa klasy przeksztalcen ortogonalnych, jak np. prze-
ksztalcenie Fouriera itp. Algorytmy przetwarzan ortogonalnych realizowane s3 na trzech
poziomach etapu trzeciego:

1. tworzenie (projektowanie) algorytmu bazowego;

2. strukturalizacja wewnatrz klasy przetwarzania;

3. hybrydyzacja klasy
Nature oraz zawarto$¢ konkretnych operacji zostala jednoznacznie wyrazona w nazwach
blokéw na schemacie opisujgcym etapy dzialania systemu.
Sposéb dzialania powyzszych algorytméw zostal szczegdlowo opisany w rozdziatach 3.4 oraz
4.1 niniejszej rozprawy.

Rysunek 4 przedstawia trzeci model strukturalno-funkcjonalny, na ktéry skladaja si¢
operacje realizowane w ramach etapow 4-10.

Etap 4 — odpowiada za tworzenie wektorowych cieni morfologicznych. Realizowana jest tu
obrébka wstepna identyfikowanego obrazu poprzez histogramows analiz¢ oraz separacje
ekstreméw, ich adaptywna kwantyfikacj¢ oraz filtracj¢ rankingowa (progowa).

Etap S - tu przeprowadzana jest synteza wektorowego opisu sygnaturowego (WOS) prze-
twarzanego obrazu. Na tym etapie okreslane sa: sposéb skanowania projekcji wyjsciowych
oraz parametry algorytmoéw skanowania takie jak:

— liczba oraz orientacja trajekeorii,

— ustalenie wspéirzednych $rodka cigzkosci (centroidu),

— rozmiary sektora skanowania.

Nastepnie dobierany jest odpowiedni model wektorowego opisu sygnaturowego najbardziej
adekwatny dla rodzaju badanego obrazu obiektu. Dobér ten nastgpuje przez okreslenie typu
oraz kwalifikacji wymaganej wymiarowosci wektorowego filtra stosowanego w celu filtrowa-
nia szuméw impulsowych, ktorych parametry nie sa znane a ich odréznienie od sygnaléw
badanych jest niezb¢dne dla identyfikacji przeprowadzonej z okreslonym prawdopodobien-
stwem. Sygnaly te s3 wykorzystywane w HSOE do wykrywania ich modulacji. W ostatnim
kroku przeprowadzane jest sumowanie sktadowych WOS prowadzac do radykalnej minima-
lizacji opisu wektorowego badanego obicektu. Jednym z takich przetwarzan prowadzacych do
znaczacej redukgji opisu obicktu jest przetwarzanie Radona, ktére zostalo szczegétowo opi-

sane wraz z przykladami zastosowania w rozdziatach 3.4.3 oraz 4.1.7.

2-6



Etap 4 - Tworzenie wektorowego modelu przeksztalcenia

ekstreméw

filtracji rankingowej

e P . Filtracja przestrzen-
, Obliczanie histogra- Obliczanie wspot- Japr
Wybér typu oraz | : ? s ik no-rankingowa
d Lo mu intensywnosci czynnika przestrzen- >
meny przeksztal- . : : w oparci
e oraz analiza no-amplitudowej opasciu
cenia obrazu o obliczony

wsp6lczynnik

Etap 5 - synteza wektorowego opisu sygnaturowego (WOS)

!
Dobér trajektoriéw Skanowanie .
, A P | splot filtrowania
Wybor typu skanowania oraz oraz czgsciowe deli id fikacii
opisu wektorowego parametréw usérednianie Hio OeIl(lZ e’rlttlzzl ag
skanowania skanéw ( )
!
Etap 6 - Filtracja morfologiczna
! ! ! !
Filtrowanie obrazu . .
ifciowero lub _Flltrowame zZnorma- L
Z:VZ: sl owatici lizowanej macierzy Filtrowanie Filtrowanie ZMPO
T e go przeksztatcania WOS ZOW WOS
(Zovf})’ 8 obrazu (ZMPO)
! ! I I ] {
IRozklad szkieletowej Rozklad szkicletowe [Rozklad szkieletowe;j Rozklad szkieletowe
struktury ZMPO strukeucy ZMBO struktury ZOW ] atittlcsury ZMEC
WOS yA0)\%
! ! 1 ! |
Rozklad szczegotowej Rozklad szczegétowej|  [Rozklad szczegdtowej Rozktad szczegbtowej
“cienkiej” struktury “cienkiej” struktury “cienkiej” struktury — “cienkiej” struktury
ZMPO ZMPO WOS ZOW ZMPO ZOW
} { i
Etap 7 - Obliczanie i wektoryzacja
i
Dobér warstwy Centroidy elementéw Wielokaty opisowe Wektoryzacja oraz
IWCM (wspétrzedne sceny w warstwie elementéw sceny  ——swprowadzanie modelu
i poziomy) WCM w warstwie WCM do bazy systemu IT
! i
Warstwa integralnej parametry pierscieniowe Biegunowe, promienio- Geometryczne
projekcji SMW ! “halo” warstwy modelu —fwe skanowanie warstwy — momenty
WCM WCM WCM

Strukturalno-funkcjonalne modele TI systemu modelowania i identyfikacji.

Rysunck 4.

Etapy: 4 — wektorowy model przeksztalcenia; 5 — synteza wektorowego opisu sygnaturowego; 6 — filtracja morfologicz-
na; 7 — obliczanie oraz wektoryzacja opisu

Etap 6 — na tym etapic przeprowadzane sg roznego rodzaju wektorowe filtracje morfologicz-
ne (WFM) obrazu oraz tworzone s3 macierze transformacji ich wektorowych opiséw sygna-
turowych (WOS). Realizacja tego etapu mozliwa jest dzigki réwnolegtemu trybowy operagji
WFM (lub innemu typowi filtracji rankingowej) na obrazach wyjsciowych, macierzach ich
przetwarza, WOS oraz innych prébek wektorowych. W wyniku tworzone sg struktury
szkieletowa (,,gruba”) oraz szczegétowa (,cienka”), co pozwala na dalsza analiz¢ oraz identy-
fikacje z sukcesywnym podnoszeniem efektywnej zdolnosci oraz wykrywania odpowiednich
szczegotoéw w obrazie. Uzywajac palety WFM ze zmieniajacymi si¢ aperturami widmowymi

obliczane s3 widma filtrowanych macierzy przeksztalcen.
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Etap 8 - Analiza amplitudowo-fazowo-morfologiczna

}
\)Zybér: Obliczanie macierzy .Obliczani'e Wektorowa Aperturowa
obrazu, |—+ - eksatalcenia —1 histograméw — fltracja fileracia
rrlzae;'zy . (Fouriera, Foucaulta) AF WOS rankingowa rankingowa
prze \leg ge“‘a’ amplitudy i fazy WOS | WOS
1 ‘ | I
" Etap 9 - Identyfikacja modelu
}
Wybér histogramu: MWK w domenie: ldentvfikacia .
WCM tytikac) Modele goniomet
obrazu, we. (wy.) * ["|modelu statystycznegol* | ryezne zbiordw:
macierzy —1{  WOS, macierzy ; L
kszralcent B (Pt macierzy przeksztalcen,
przeksztalcenia, -Hg,
WOS FFT itp. MWK, WCM, WOS
! 1
Etap 10 - Weryfikacja modelu
! } ! !
, . Ocena funkgji .
Wybér wyjécia: kr-koreicyine] (FK) Wgrowadzen}e
obrazu, macierzy kach , . znieksztalcenn
rzekszakcenia, | | v waraniac b dynamicznych
p : zakf6cenia oraz szumu FKK roboczych el 4
sceny i parametrycznych
1  charakeerystyk [ Ocena MWK
Analiza MWK: identyfikacyjnych i od s
Wybér modelu asymetria, odpowiednik OKZ :voar E 2121 Z;Cl[[:j
zaklocer obrazu |—q  FKK pikfakcor i znieksztalcen
(ustawienia) momenty

Rysunek 5. Strukturalno-funkcjonalne modele TT systemu modelowania i identyfikacji (c.d.).

Etapy: 8 — analiza amplitudowo-fazowo-morfologiczna; 9 — identyfikacja modelu; 10 — weryfikacja modelu

Etap 7 — Obliczanie i wektoryzacja — na tym etapie przetwarzane s3 komponenty (warstwy)
obrazu wyjéciowego, macierze przeksztalcen oraz ich opisy wektorowe. W tym momencie
mozliwa jest realizacja procedur obliczajacych:

— projekcje integralng (sumy promieniowe),

— wspéirzedne centroidéw klastréw dwuwymiarowych widm przekszratcen Hilberta,

— wielokatéw opisowych (otoczek wypuklych) w modelach punktéw charakterystycznych,
— modele skanéw biegunowych,

— momentéw geometrycznych.

Etap 8 — Analiza amplitudowo-fazowo-morfologiczna (AFM) — realizuje operacje zlozo-
nej analizy (amplitudowo-fazowej — AF) potaczonej z analiza morfologiczng (AM). Oblicza-
ne s3 tu pola amplitud (wektory), faza obrazéw wyjsciowych (analiza Foucaulta-Hilberta)
macierze przeksztalceri oraz wektorowe opisy sygnaturowe (WOS). Nastepnice pola te sa
przetwarzane za pomocg analizy morfologicznej, podobnie jak w etapie 7. Na potrzeby opisu
amplitudowo-fazowego obliczane sg histogramy réznych typéw z pdzniejsza analiza morfo-

logiczna wykorzystujaca aperturows i (lub) medianows filtracj¢ rankingowa.

Etap 9 - Identyfikacja modelu - laczy operacje syntezy obrazu (macierze przeksztalcen,

WCM, WOS) modelu widmowo-korelacyjnego (MWK), sekwencji wideo modeli goniome-
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trycznych itp. z pézniejsza identyfikacja modeli statystycznych — rozkltadem prawdopodo-
bieristwa parametréw MWK - estymacja klas OZK (TZK).

Etap 10 — Weryfikacja modelu — zawiera operacje formowania scen zorientowanych na cel
(SZC) przez poréwnanie wybranych obrazéw zapisanych w bazie danych (pél lub wekto-
ré6w) z komputerowo generowanymi zakléceniami oraz szumami z pézniejsza synteza mode-
lu widmowo-korelacyjnego oraz operacje identyfikacji. W nicktérych scenariuszach
z zakléceniami sceny dynamiczne tworzone sa w oparciu o obiekty oraz tekstury wstepnie
wyselekcjonowane z okreslong orientacja oraz modyfikacja ksztattu pierwotnego dalej ewa-
luowane za pomoca funkgji korelacji migdzy klasowych oraz zdolnosci identyfikacyjnej mo-
delu widmowo-korelacyjnego. Podstawa tworzenia narzedzi skutecznej identyfikacji oprawy
scenicznej zorientowanej na cel sa charakterystyki identyfikacyjne, zwane tez charakeerysty-
kami roboczymi (ChR) (jakos¢, doktadnos¢, skutecznos¢ identyfikacji OZK jako elementu
sceny). Charakterystyki robocze przedstawiaja oceng funkeji poprawnej identyfikacji para-
metréw oprawy scenicznej zorientowanej na cel. Charakeerystyki te réwniez stanowia row-
niez oceng stalosci oraz odpornosci na réznego rodzaju zaklécenia dynamiczne, szumowe

oraz parametryczne.

Niniejsza rozprawa stanowi mozliwie pelny opis realizacji podstawowych funkcji wszystkich

etapdw pracy systemow modelowania oraz weryfikacji.

2.2.Systemy wideo-informacyjne

Podstawa kazdego systemu wideo-informacyjnego jest podsystem akwizycji obrazu,
ktérego zadaniem jest zamiana wycinka promieniowania elektromagnetycznego na sygnal.
Jego zdefiniowanie oraz implementacja wymaga opracowania detektora scisle okreslonego
wycinka promieniowania elektromagnetycznego. Podstawy teoretyczne implementacji takie-
go detektora definiuje nauka zwana radiometrig. Jest ona szczegélowo zdefiniowana oraz
opisana w literaturze przedmiotu 8], [19], [30], [31], [52] i in.

2.2.1. Detekcja obrazéw cyfrowych

Poczatkowo w systemach obrazowania pierwszej generacji stosowane byly pojedyncze
detektory, pozniej linijki o niewielkiej ilosci elementéw. Do kazdego detektora przyporzad-
kowany byl przedwzmacniacz, umieszczony poza plaszczyzna obrazowa uktadu optycznego.

Takie systemy wymagaly skomplikowanych mechanizméw skanowania [8], [30], po-
nadto z powodu krétkiego czasu ekspozycji obrazu w polu ,widzenia” detektora uzyskanie
sygnatéw (obrazéw) wysokiej jakosci byto bardzo trudne o ile nie niemozliwe[47]. Obecnie

tworzone s3 urzadzenia zobrazowania drugiej generacji o znacznie wigkszej rozdzielczosci
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fizycznej oraz czuloéci. Urzadzenia takie maja o kilka rzedéw wielkosci wyzszg rozdzielczos¢
oraz czulo$é. Multipleksowanie sygnatu odbywa si¢ w plaszczyznie obrazowej ukladu op-
tycznego, a dzigki elektronicznej realizacji multipleksowania jest ono realizowane znacznie
szybciej, niz w przypadku multipleksowania mechanicznego. Dla takiego rozwiazania przyje-
fo si¢ okreslenie mozaika detektoréw z obrébka sygnatu w plaszczyznie obrazowej (ang. focal

plane arrays - FPA).
Obrazy:

a) posta¢ analogowa obrazu b) posta¢ dyskretna obrazu (a)

b) sktadowa R ¢) skltadowa G

d) sktadowa B
obrazy (b) - (d) - skfadowe kolorowe

w nomenklaturze modelu barwnego

RGB; tu - odmiana AdobeRGB

Rysunek 6. Przebieg dyskretyzacji kolorowego obrazu rzeczywistego

Uklad optyczny takiego urzadzenia ogranicza si¢ jedynie do skupienia obrazu na ma-
trycy detektoréw. Dwuwymiarowa matryca oprécz detekeji samego promieniowania petni
kilka réznych funkcji zwigzanych z przetwarzaniem zarejestrowanego sygnatu, czyli np. cal-
kowanie, kompensacja ni¢jednorodnosci elementéw, odejmowanie sygnatu tta, multiplekso-
wanie i inne.

W roku 1970 dwéch laureatéw nagrody Nobla Willard S. Boyle i George E. Smith
z Bell Telephone Laboratories przedstawili zasade dziatania przyrzadéw ze sprzg¢zeniem ta-
dunkowym oparta na transferze pakietéw tadunkéw w strukturze krzemowej. Urzadzenia

oparte na tej zasadzie nosza nazwe CCD (ang. charge-coupled-device), czyli urzadzenia ze

sprzezeniem fadunkowym. Wynalezienie matryc CCD [75], [79] mialo ogromny wplyw nie
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tylko na detektory VIS, ale réwniez IR. Pierwotnym ich zalozeniem bylo zastosowanie glow-
nie na uzytek naukowy, natomiast pierwsza aplikacja obejmowata astronomig, gdzie do dzi-
siaj s3 podstawowym narzedziem badawczym, wypierajac nawet inne techniki akwizycji ob-
raz6éw, zwlaszcza klisze fotograficzne.

Matryce CCD o coraz wyzszych rozdzielczosciach sa powszechnie stosowane w rézne-
go rodzaju aparatach cyfrowych, gdzie otrzymywane dane przetwarzane sa przez procesor
graficzny, a nastgpnie zapisywane w jednym z kilku popularnych formatach graficznych.
Obecnie stosowane matryce CCD majg rozdzielczosci od kilku do kilkunastu megapikseli,
natomiast najwicksze matryce, stosowane dzisiaj w obserwatoriach astronomicznych maja od

65 do ponad 100 megapikseli.
2.2.2. Modele barwne

Model barwny jest zestawem regul okreslajacych sposéb przechowywania informacji o
kolorze. Z punktu widzenia niniejszej rozprawy najistotniejszy jest model barwny Grey
(greyscale) gdyz to w nim zostaly przeprowadzone wszelkie badania oraz eksperymenty. Na-
lezy jednak pamigtaé, ze komputerowa posta¢ wszystkich obecnie stosowanych w cyfrowym
przetwarzaniu obrazow, modeli barwnych jest w pewnym sensie tozsama i rézni si¢ jedynie
zakresem widmowym, jaki jest mozliwy do przechowania w danym modelu barwnym [1],
[8], [9].

2.3.0ptyka cyfrowa jako dziat wspotczesnej technologii informacyjnej

Optyka to dzial fizyki zajmujacy si¢ badaniem natury $wiatla, prawami zwigzanymi z
opisem jego emisji, rozchodzenia si¢, oddziatywania z materig oraz pochtaniania przez nia.
Na potrzeby optyki wypracowano specyficzne metody pierwotnie przeznaczone do badania
$wiatta widzialnego (VIS), ktore obecnie s3 réwniez stosowane w badaniu rozchodzenia sig
innych zakreséw promieniowania elektromagnetycznego - podczerwieni (IR) oraz ultrafiole-
tu (UV) - czyli promieniowania niewidzialnego.

2.3.1. Metody stosowane w optyce cyfrowej

Wspolezesne systemy telekomunikacyjne i teleinformatyczne bazuja na metodach cy-
frowej obrobki sygnaléw, w tym obrazéw, ktérych celem jest kompresja, kodowanie (rysunek
6), filtracja oraz korekta sygnatléw w informacyjnych i transmisyjnych kanatach systeméw
(8], [43], [79]. Wyzej wymienione metody realizowane sa na etapie pierwotnej obrébki sy-
gnatéw bez strat (lub z minimalnymi stratami wynikajacymi przede wszystkim z charaketery-
styki sensoréw) informacji, nadchodzacej z sensoréw (systeméw informacyjno-pomiarowych
itp.). Wdrozenie technologii multimedialnych wymusza realizacj¢ funkcji sztucznej inteli-

gencji w tych systemach w domenie wtdrnej 0brdbki sygnatéw. Transmisja obrazéw i wielo-

wymiarowych (wektorowych) sygnaléw jest powiazana ze specyficznymi wymogami zasto-
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sowania metod wstepnego kodowania Zrédel ze stratg informadji, jej strukturalizacji oraz
upakowania (analiza-synteza semantyczna) [19], [43], [46], [52]. Wspdlczesne systemy op-
toelektroniczne (SOE) realizujg wiele funkcji wykorzystujac metody tzw. ,optyki cyfrowej”
(2], [42]. Ich projektowanie jest rozwojowym kierunkiem wspotczesnej techniki systeméw i
wymaga opracowywania problemowo zorientowanych metod obrébki informacyjnych sy-
gnaléw optycznych. Wirdd tych metod od dhuzszego czasu stosowane sa metody tzw. ,,opty-
ki Fouriera” tak do systemdéw analogowych, jak i cyfrowych. W ujeciu semantycznym uzycie
tych metod wiaze si¢ z pelnym przeksztalceniem wejsciowych strukeur informacyjnych do
przestrzeni widmowych, tracac przy tym przestrzenne zaleznosci miedzy elementami obra-
zéw analizowanych scen dynamicznych.

W ostatnich kilkudziesi¢ciu latach zaczgto stosowaé metody i techniki tzw. ,optyki
Hilberta” do obrébki wstepnej oraz wizualizacji obiektéw fazowych oraz tekstur w analogo-
wych procesorach koherentno-optycznych [30], [42], [54]. Przetwarzanie Hilberta trans-
formuje wejsciowa przestrzen sygnaléw do tej samej przestrzeni, a co najwazniejsze - zacho-
wuje wstepne relacje przestrzenne elementéw obrazu (strukture sceny), co ma kolosalne zna-
czenie w analizie strukturalno-semantycznej oraz kodowaniu obrazu. Implementacja technik
cyfrowej optyki Hilberta dla obrobki pierwotnej - wizualizagji, filtracji - oraz wtérnej - anali-
zy, modelowania, identyfikacji - sygnaléw wymaga opracowania oraz syntezy szybkich algo-
rytmow, jak réwniez metod analizy i identyfikacji strukturalnych elementéw scen zawieraja-
cych obrazy identyfikowanych obiektéw. Kolejnym krokiem jest opracowanie metod kodo-
wania oraz redukeji opisu jak najbardziej unikalnych struktur charakterystycznych dla obra-
26w obiektdw. Cechg wspélna systemdw identyfikagji jest stosowanie metod analizy struktu-
ralnej badanych obrazéw, zwlaszcza analizy morfologicznej oraz amplitudowo-fazowej uzy-
wanych do modelowania oraz strukturalizacji elementéw strukturalnych scen obrazéw cy-
frowych. Rozwdj wyzej wymienionych technik w aplikacja identyfikacji pozwala na otrzy-
mywanie niezwykle cennych i unikalnych cech informacyjnych oraz syntez¢ modeli analizo-
wanych scen. Sceny, jako zbiory elementéw badanych w ramach konkretnej aplikacji mozna
podzieli¢ na dwie podstawowe klasy semantyczne:

— struktury wartosciowe - elementy stanowigce obickty analizy (modelowania), bedace pod-
stawami pdzniejszych proceséw decyzyjnych,

— struktury szkodliwe - zaklécenia - nie przedstawiajace soba semantycznej wartosci w ra-
mach konkretnego procesu decyzyjnego.

Wyzej wymienione struktury sa obicktem przetwarzania wstgpnego (pomiar, normali-
zacja, analiza strukturalna - segmentacja, modelowanie), wzdrnego (identyfikacja, klasyfikacja,
analiza semantyczna) oraz skladnikiem procesu decyzyjnego. W realnie funkcjonujacym sys-

temie identyfikacji warunki jego pracy moga by¢ obarczone réznego rodzaju zakléceniami -
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szumami, artefaktami kompresji, dynamicznymi znieksztalceniami elementéw analizowa-

nych scen, takimi jak: ruch wzgledny, docelowa zmiana ksztattéw, charakeerystyk oraz try-

béw funkcjonowania oraz procesami parametrycznymi powigzanymi ze zmianami w struk-
turach oraz charakterystykach systemow.

W projektowaniu systeméw opartych na optyce cyfrowej mozna zauwazy¢ trend pole-
gajacy na hybrydyzacji metod obrébki sygnatu w réznych ich segmentach. Hybrydyzacja ta
polega gléwnie na mieszaniu lub taczeniu w bardziej ztozone tory obrébki wielu metod ob-
rébki obrazéw cyfrowych. Projektowanie hybrydowych systeméw optoelektronicznych
(HSOE) moze przebiega¢ w trzech kierunkach:

— polaczenie metod i ukltadéw analogowej oraz cyfrowej obrébki sygnatéw - realizacja eta-
pow wstgpnej obrébki sygnaléw (obrazéw) przetwarzanych w réznych przestrzeniach
funkcyjnych;

— strukturalizacja danych - detekcja, modelowanie i identyfikacja elementéw scen;

— interpretacja struktur scen (analiza semantyczna - synteza) oraz integracja z systemami
informatycznymi, np. — ekspertowymi lub wspomagania decyzji.

Na wszystkich etapach obrébki sygnatu (obrazu) moga by¢ stosowane nieliniowe algorytmy

cyfrowej optyki Hilberta.

2.4.Problemy identyfikacji obiektow i tekstur wedtug ksztattéow, struktur oraz
prymitywow teksturowych
Identyfikacja zbyt oddalonego lub czg¢sciowo przystonigtego obiektu przez nierucho-

mego obserwatora moze by¢ mocno utrudniona o ile nie niemozliwa. Najwickszym zagroze-
niem dla powodzenia identyfikacji obiektu z zalozonym prawdopodobienstwem sa zakt6ce-
nia (znieksztalcenia) geometryczne oraz impulsowe (szumy) jego obrazu. Metody stworzone
na potrzeby identyfikacji obicktéw na obrazach cyfrowych musza rozpatrywaé jeden
z ponizszych scenariuszy:
— scena z identyfikowanym obiektem musi zosta¢ tak przeksztalcona - geometrycznie lub

amplitudowo - aby doprowadzi¢ do postaci akceptowalnej dla algorytméw danej metody,
— badana scena nie musi by¢ przeksztalcana geometrycznie w jakikolwiek sposéb, gdyz

obiekt moze zosta¢ prawidtowo rozpoznany w takim ujeciu, w jakim znajduje si¢ w bada-

nej scenie.
Odrebng kwestig jest skuteczno$¢ danej metody w obecnosci szumow - zakléceniach procesu
akwizycji sceny. Odpornos¢ na nie jest jednym z kluczowych czynnikéw jej przydatnosci w
okreslonych warunkach akwizycji obrazu, np. bardzo stabe o$wietlenie, przy ktérym znacza-
co ro$nie stosunek szumoéw do sygnatu, a przez to spada prawdopodobienstwo prawidlowe;

identyfikacji obiektu.
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Pierwszy scenariusz wystepuje wéwczas, gdy badang klasa obiektéw s obickty ,pla-
skie”, tzn. takie, ktérych poprawna identyfikacja moze zachodzi¢ tylko wowczas, gdy bada-
nych obiekt umieszczony jest w scenie, ktéra ma symetryczny stozek ekspozycji, np. zdjecie
ludzkiej twarzy ,en face” (,na wprost”) w dokumentach biometrycznych lub przy rozpozna-
waniu napisow na tablicach rejestracyjnych.

Jesli chodzi o mozliwie najskuteczniejsza redukcj¢ znieksztalcen geometrycznych, ko-
nieczne jest najpierw ich prawidlowe rozpoznanie. W codziennym zastosowaniu metod
identyfikacji obiektow moga wystgpowa¢ nizej przedstawione przeksztalcenia znoszace znie-

ksztalcenia geometryczne.

2.4.1. Znieksztatcenia geometryczne

Przesunigcie - translacja

Podczas obserwacji przez stalego obserwatora obiektéw dynamicznych w ujeciu poklatko-
wym moze dojé¢ do sytuacji, w ktérej obserwowany obiekt zacznie ,znika¢” z kadru utrud-
niajac tym samym jego poprawng identyfikacje.

Obrot

W obliczu tego znieksztalcenia nalezy rozwazy¢ mozliwo$¢ jego laczenia z innym, np.
z przesunigciem, gdyz moze si¢ zdarzy¢ tak, ze obraz pierwotny zostanie obrécony nie wzgle-
dem $rodka geometrycznego kadru, tylko wokét innego dowolnego punkeu.

Skalowanie

Subiektywne postrzeganie skali obiektu jest zazwyczaj zwiazane z jego odlegloscia od obser-
watora.

Akwizycja obrazéw ze zmienng skalg przy uzyciu mechanizméw optyki cyfrowej nastrecza
szczegolnie wiele probleméw, keére nie wystgpowaly w optyce analogowej. Problemy te wy-
nikaja z faktu, iz obrazy cyfrowe maja posta¢ dyskretna. W czasie skalowanie ,w dot”, gdzie
W' < 1,0 nast¢puje nicodwracalna utrata informacji obrazowej, skutkiem czego jest obnize-
nie prawdopodobienstwa poprawnej identyfikacji. W taki sytuacjach konieczne jest ustale-
nie, czy rozmiar obiektu na przeskalowanym obrazie calkowicie nie wyklucza jego identyfi-
kagji.

Znieksztalcenie perspektywiczne

Wystepuje wszedzie tam, gdzie konieczne jest badanie obiektéw ,,plaskich” (2.4), a pozyska-
ny obraz przedstawia obiekt, ktérego plaszczyzna czolowa nie jest prostopadta do osi uktadu

optycznego systemu akwizycji obrazu. Scenariusz taki wystepuje najczgsciej w systemie roz-

"W, - wspétczynnik skali
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poznawania tablic rejestracyjnych pojazdéw. Obraz pochodzi z kamery, ktéra - ze wzgledéw

technicznych - nie moze by¢ umieszczona przed rejestrowanym pojazdem.

a) obraz pierwotny b) obraz dopasowany do prostokata

Rysunek 7. Obraz cyfrowy z usuni¢tym znieksztalceniem perspektywicznym

2.4.2. Znieksztatcenia amplitudowe

Znieksztalcenia JPEG

Jednym z cz¢sciej spotykanych zaki6écen amplitudowych sa artefakty stratnej kompresji
JPEG, powszechnie stosowanej podczas zapisu obrazow statycznych (bitmap) oraz dyna-
micznych (filmow). Artefakty kompresji JPEG moga znaczaco wplyna¢ na jakos$¢ podejmo-
wania decyzji identyfikacyjnej. Ich usunigcie jednak jest procesem dos¢ czasochtonnym i, jak
pokazuje rysunek 8 raczej pozbawiony sensu, ze wzgledu na bardzo mizerne rezultaty. R6zni-
ce w obu przebiegach wiersza 155 sa na tyle znikome, ze z punktu widzenia domeny identy-

fikacji obicktéw zastosowanie filtra redukujacego artefakty JPEG wydaje si¢ by¢ strata czasu.

a) Obraz zapisany w formacie JPEG (z kompresja)

b) Obraz z usuni¢tymi programowo artefaktami kompresji JPEG

wiersz nr 155

c) Wiersz 155 obrazu (a)

10 T T T T T T T T T
5 i 1§l
i I
’ 1 1 iny . i
0 r l (T I‘i | | | ‘ |
|
S or —— de(JPEG) - TIFF
—— JPEG - TIFF
_10 - 1

100 200 300 400 500 600 700 800 900
Rysunek 8. Wynik proby redukeji artefaktéw kompresji JPEG za pomocg programu Adobe Photoshop CS3 Extended
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Szumy amplitudowe

Kolejnym zagadnieniem sg zaktécenia czysto losowe, pochodzace np. z detektora obra-
zu, czy z jakiegokolwick innego elementu systemu analizujagcego eksponowanego na warunki
zewnetrzne. Szumy s3 gléwnym czynnikiem obnizajacym skutecznos¢ identyfikacji ze z gory
zalozonym prawdopodobienstwem. W niniejszej rozprawie - w rozdziatach poswi¢conych
badaniu skutecznosci identyfikacji oraz odpornosci algorytméw na wszelkie mozliwe zaklo-
cenia, z jakimi moze mie¢ do czynienia system identyfikacji obiektéw na podstawie ich obra-
26w cyfrowych - bedg omawiane gléwnie dwa rodzaje szumow: szum rownomierny oraz szum
gaussowski.
Ten drugi rodzaj szuméw wystgpuje powszechnie w naturze i cheae zbada¢ odpornos¢ algo-
ryeméw na te zakldcenia, konieczne bylo opracowanie oraz kontrola metod generowania
szumdw oraz nakladania ich na obrazy obiektéw - wzorcéw. Bez wzgledu na to, z jakim ty-
pem szumow system ma do czynienia, zawsze kluczowym czynnikiem dla badania jego od-
pornosci jest wspdlezynnik ¢ bedacy stosunkiem sygnatu do szumu:

g== (1)

n

gdzie: s - amplituda sygnalu, - amplituda (dla szuméw: rownomiernego i gaussowskiego) lub gestos¢ (dla szumu
»salt & pepper”)

a) Obraz pierwotny zapisany w formacie TIFF

b) Obraz pierwotny z nalozonym szumem réwnomiernym

wiersz nr 155

¢) Obraz pierwotny z nalozonym szumem gaussowskim
ey 1

wiersz nr 155

d) TIFF - Szum réwnomierny

T T T T T T T

N
o

-50

100 200 300 400 500 600 700 800 900
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e) TIFF - Szum gaussowski
100 T T T T T

T L T T

-50 4

100 200 300 400 500 600 700 800 900

-100

Rysunek 9. Przyklady najczestszych zakidcen amplitudowych - szumow.

Rysunek 9 przedstawia szumy réwnomierny oraz gaussowski natozone na obraz pierwotny ze
stalym wspolczynnikiem ¢ = 10.
2.4.3. Problemy identyfikacji obiektow znieksztatconych katowo

Jednym ze scenariuszy identyfikacji obiektéw jest przetwarzanie obrazu zawierajacego bada-
ny obieke, bez jakichkolwiek przeksztalcen majacych na celu usunigcie znieksztalcen kato-
wych. W odréznieniu od scenariusza opisanego wczesniej, stosowanego do identyfikacji
obiektéw ,na wprost” tu identyfikowane sa obiekty, ktérych potozenie moze si¢ dowolnie
zmieniaé w przestrzeni tréjwymiarowej wzgledem obserwatora. W' niniejszej rozprawie to
wlasnie takie obiekty s3 obiektem analizy oraz identyfikacji. Sposréd wielu klas takich obiek-
téw w rozprawie przedstawiono metody identyfikacji obiektow latajacych - samolotéw bo-

jowych, ktorych przyklady zawiera tabela 1.
Tabela 1. Przyklady obrazéw réznych obiektéw latajacych

Boeing E3 Sentry F35 Joint Strike Fighter

F22 Raptor
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Powyzsze obrazy pochodzg z bardzo wezesnej fazy analizy problemu; w warunkach bojowych
zazwyczaj wystepowaly dwie klasy widokéw obiektow latajacych:

— obiekty widziane z gory, np. zdjecia satelitarne,

— obiekty widziane z boku/przodu

Obiekty latajace obserwowane w innych warunkach, tzn. pod innymi katami to zazwyczaj
obiekty wykonujace réznego rodzaju manewry, majace na celu np. zmiang kierunku lotu itp.,
czyli operacje trwajace co najwyzej sckundy, jesli nie ich utamki. Wobec powyzszego ustalo-
no, ze z punktu widzenia niniejszej rozprawy to wilasnie te widoki bedg istotne dla analizy i
identyfikacji obiektéw. Rysunek 10 przedstawia rézne ujecia obiektdw, najczgéciej wystepu-
jace w warunkach naturalnych. Najprostszy z punktu widzenia identyfikacji obiektu jest wi-
dok satelitarny, zawierajacy tzw. plan obiektu - widok z gory, ktéry jest najbardziej unikalnym
obrazem identyfikowanego obicktu, najlatwiej rozréznialnym sposréd innych, nawet po-
dobnych obiektéw. Przypadek, w ktérym analizowany jest widok z boku jest juz bardziej zto-
zony, gdyz ten rzut charakteryzuje si¢ wyzszym wspotczynnikiem korelacji mi¢dzyklasowej,
niz w przypadku widoku satelitarnego. Najtrudniejszym do identyfikacji jest widok od przo-
du/tytu, gdyz - ze wzgledow konstrukcyjnych - wickszos¢ samolotow jest do siebie bardzo
podobna. Dodatkowo w przypadku widoku od przodu, pojawia si¢ czynnik czysto ludzki:

identyfikowaé, czy ewakuowad sie?
¥ ¢

widok satelitarny - Boeing E3 Sentry widok z boku - F35 Joint Strike Fighter

widok od przodu - F22 Raptor

Rysunek 10. Najczesciej spotykane rzuty roznych obiektéw latajacych
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3.Podstawowe struktury i metody cyfrowej optyki Hilberta

3.1.Podstawy teoretyczne cyfrowych przetwarzan Hilberta

Identyfikacja obiecktow jako elementéw strukturalnych sceny stanowi powazne wy-
zwanie metodologiczne z zakresu sztucznej inteligencji, a oparta jest ona na réznego rodzaju
metodach filtracji oraz oceny parametréw oraz ich zmian ksztattu, jak i wektora kierunku.
Powigkszenie czulosci systemow wideo-informacyjnych na w zatozeniu skutkowaé powick-
szeniem zdolnosci dyskryminacyjnej w procesie identyfikacji. Metody optyki cyfrowej opra-
cowywane s3 przez ostatnie p6t wieku, jednak najczesciej badane oraz stosowane sa metody
bazujace na przeksztalceniach Fouriera. Zastosowanie metod cyfrowej optyki Hilberta
(COH), czyli cyfrowego przetwarzania Hilberta do obrobki oraz analizy sygnatéw wielowy-
miarowych (obrazéw) nie jest jeszcze zbyt szeroko rozpowszechnione i znajduje si¢ w fazie

badan eksperymentalnych oraz modelowania.

Przeksztalcenie Hilberta (sygnal analityczny)

Sygnat analityczny definiowany jest jako zespolony i ma postac: z(z) = x(¢)+ ji(z).

L =L [ =L [
Pl1,5)= . X(5) ”J‘ &, x(t) J

1
w(s—t) (t—>s) s—t T

—co —oco

WY(s,2)= ds (2)

t—s

gdzie: s - zmienna czasowa
X(s) - transformata Hilberta sygnatu - funkcja czasu

Z tego powodu powyzsze definicje w postaci wzoréw czgsto zapisuje si¢ jako:

A= jﬂdhi@x(I), )= J.@a"r:—L(@f(t) (3)
TYt—7T Tt T t—7 T

—o0 —oo

gdzie: ® - operacja splotu, o ktorej wigcej w rozdziale [3.1]

Sygnaly opisywane w niniejszej pracy maja postaé cyfrowa (dyskretne czasu dyskretne-
go) i s3 wyrazone obrazami cyfrowymi, czyli sygnalami tréjwymiarowymi, gdzie dwa pierwsze
wymiary to wiersz i kolumna, trzecia natomiast to najczgsciej luminancja.

Zdolnos¢ dyskryminacyjna przeksztatcenn Hilberta moze by¢ podwyzszona w zaleznosci od
domeny, w ktérej opracowywany jest system identyfikacji. Na potrzeby hybrydyzacji dostep-
nych jest wiele przeksztalcen, ktére zostaty zebrane w tabeli ponizej.

Tabela 2. Klasyfikacja modyfikowanych algorytméw COH w analizie obrazéw

Metoda Macierzowy model algorytmu przetwarzania obrazéw
wy gorytmu p

1. Przeksztalcenia Hilberta

1-D HT Xy (x)= Hy Xy () Xy, (x) = |[Hy X ()

M-D HTI(A) DHTI{X(%)}= /i[HN'X(x, \f + pETI, X (Z)}= i|HN1)?(x,1

1 i=1
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DHTA{X(3)}=[Hy H, --[H, X(%)];

-1

M-D HTA(A) DHTAﬂh{X(x)}=|HNM - "[HMX(’?)]]I
2. Przetwarzanie Foucault-a (Foucault-a, Foucault-Hilberta hybrydowe)
M-D FuTI(A) Fug(B)= By (B 7 o 8); By, (B)= R @)+ R ., (B)
=" Full (£) = AR,y (2)+ B (s Full, (7)= A%, (2)+ jBX , (7)
3. Fouriera-Hilberta hybrydowe
M-D FHHTA FH, (&)= H2" |[F®M (X, @1
4. Hilberta-Fouriera hybrydowe
MCD HFHT B (@)= F TS X, ()] B (@)= B |3 X, ()]
S.  Czgstkowe (fractional) Hilberta hybrydowe
M-D FRHT FRA (X (x)}= X (F)cosar+ XN( L (@)sine
6. Radona-Hilberta (Radona-Hilberta-Fouriera) hybrydowe
RDHTI RD, AT, (3)}= RD LI, X, RN, RD T, (3)}= RD [HI,,,, (X, (#)]
RDHTA RD, {HA (3)}= RD,y [HA, X, (3)], RDy HA it ()= RDy[HA,,, [ X, (7)]
RDFHTI RD/\' I(A)N 1“:1\' (E)}Z N F\ [X\v (5)]‘],
RDFHTIA RO AHT(A) . (8)}= RD, (A 0| F X, (B)]

7.  Hilberta-Radona (Hilberta-Radona-Fouriera) hybrydowe

HTRDF Hy{RDy Fy ()} = Hy[RD,|Fy X, (R))),
HTRDFA (RD, F. (2)}= H L, )

Na bs

[RD,,

Nabs

Czgé¢ z powyzej przedstawionych przeksztalcen zostata przebadana w niniejszej pracy, jed-
nak bez wzgledu na rodzaj przeksztalcenia, ocena efektywnosci wybranych hybryd prze-

ksztalcens oparta zostala na metodach obliczania i analizy macierzy korelacyjnych obrazéw.

W celu stwierdzenia czy i na ile metody cyfrowej optyki Hilberta podnosza zdolno$¢ dys-
kryminacyjna systemu identyfikacji, przeprowadzono prosty eksperyment polegajacy na sko-
relowaniu ze sobg obrazéw 27 réznych obiektéw latajacych poddanych hybrydom prze-
ksztalcenia Hilberta.

Analiza korelacyjna zostata przeprowadzona na obrazach w odcieniach szarosci, ktore przez
poddaniem jakimkolwiek przetwarzaniom zostaly pozbawione tla, pozostawiajac jedynie
obrazy badanych obiektéw oraz przeskalowane do rozmiaréw 256x256 px.

Tabela 3. Przykladowe wzorce obiektéw zlozonego ksztattu (OKZ)

Nr Typ Nazwa Widok | Nr Typ Nazwa Widok
1 F-14A Tomcat dot 15 F/A-18C Super Hornet dot
2 F-14A Tomcat gora 16 F/A-18C Super Hornet gora
3 F-15C Eagle dot 17 JAS-39A Gripen dot
4 F-15C Eagle gora 18 JAS-39A Gripen gora
5 F-7MG - dot 19 MIG-29 Fulcrum-A dot
6 F-7MG - gora 20 MIG-29 Fulcrum-A gora
7 F-811M - dot 21 MIG-31 Foxhound dét
8 F-811M - gora 22 MIG-31 Foxhound gora
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9 A-1 Chi Kuo dot 23 Mirage 2000-5 Dassault Mirage dot
10 A-1 Chi Kuo gora 24 Mirage 2000-5 Dassault Mirage gora
11 AV-8B Harrier II plus dot 25 Dassault Rafale Omni réle dot
12 AV-8B Harrier II plus gora 26 Dassault Rafale Omni réle gora
13 F-16C Fighting Falcon dot 27 Su27 Flanker gora
14 F-16C Fighting Falcon gora

Graficzng interpretacj¢ eksperymentu przedstawia rysunek 11. Wynika z niego niezbicie, ze
zastosowanie odpowiednio dobranych hybryd przeksztalcenia Hilberta znacznie obniza ko-
relacj¢ obicktow, a co za tym idzie — ich rozréznialnos¢. Jest to oczywiscie eksperyment przy-
ktadowy, ktérego realizacja w warunkach rzeczywistych bylaby bardzo trudna, przede
wszystkim ze wzgledu na to, ze przedstawiony tu zbiér samolotéw jest czysto hipotetyczny z
bardzo prostej przyczyny — kazdy samolot w okreslonych warunkach (np. terytorialnych)
bedzie wystgpowal z réznym prawdopodobienstwem i nie mozna z gory zalozy¢, ze prawdo-
podobienistwo ich wystapienia w kazdych warunkach bedzie takie samo. Ta ,,lokalnos¢” miej-
sca powstania obrazu cyfrowego lezy u podstaw definiowania zbioru samolotéw, ktére beda

ze sobg korelowane.

a) b)
s e -
% w b ‘
- rE
# e

Rysunek 11.  Macierze korelacyjne dla samolotéw z tabeli z poprzedniej strony.

(a) — macierz obrazéw nieprzetworzonych — macierz potéwkowa, (b) — macierz przeksztalcen Foucault-Hilberta (FCx),
gora — przeksztalcenie izotropowe (FCI), dot — przeksztalcenie anizotropowe (FCA), (c) — macierz przeksztalcen Hil-
berta (HTx), géra — przeksztalcenie izotropowe (HTI), d6t — przeksztalcenie anizotropowe (HTA).

Nalezy réwniez pamigtaé, ze rozpoznawanie obiektéw oraz analiza scen oparta na metodach
cyfrowej optyki Hilberta wymaga wnikliwych badan algorytméw analizy oraz identyfikacji
na ich zdolnosci dyskryminacyjne oraz czuto$¢ na zmiany ksztaltéw oraz parametréw ruchu
w scenach. Od kilku juz lato prowadzone sg w tej dziedzinie badania, a ich wyniki przedsta-
wiono w [28], [33], [49], [55]+[59], [64]+[73]. Ze wzgl¢du na wyniki weze$niej opisanego
eksperymentu, w badaniach podstawowymi metodami cyfrowej optyki Hilberta s3 dwuwy-
miarowe izotropowe (HTI) oraz anizotropowe (HTA) przeksztalcenia Hilberta. W tym
kontekscie sa one niezwykle uzyteczne w metodach amplitudowo-fazowej analizy obrazéw

obiektéw oraz tekstur. Ich zastosowanie polega na obliczaniu p6l uogélnionych amplitud



oraz faz, czyli tworzeniu tzw. ,fazowych” obrazéw z ich pdzniejsza analiza korelacyjng oraz
oceng podstawowych parametréw morfologicznych.

Identyfikacja obiektéw opisana w niniejszej rozprawie opiera si¢ na wstgpnej analizie
i normalizacji obrazow, ich przetwarzaniu w przestrzeni transformaty Fouriera, obliczaniu
na tej podstawie jedno- i dwuwymiarowych transformat Hilberta, ksztaltowaniu transformat
Foucault-a i na ich podstawie obliczaniu i strukturalno-statystycznej analizy p6l amplitudy i
fazy.

3.2.Cyfrowa optyka Hilberta jako podrozdziat cyfrowej optyki Fouriera

Przeksztalcenie Hilberta, powszechnie stosowane w niniejszej rozprawie, bazuje bezpo-

$rednio na szybkim przeksztalceniu Fouriera.

Przeksztalcenie Fouriera (przeksztalcenie Laplace’a dlas = j271'= j w):

oo

V()= gl fl=e T, X(f)= [x00e P, x0)= [X(F)7Tdf (4)

—oco

gdzie X(f) - widmo czgstotliwoéciowe Fouriera sygnatu x()

Sygnaly przestrzenne L? (-eo, e0) s3 transformowalne przeksztalceniem Fouriera (rysunck 13
aib).
Dla dwoéch sygnatéw opisanych ta sama przestrzenig ich skalarny iloczyn réwna si¢ iloczy-

nowi skalarnemu ich widm:

oo

() =(XT) o [x0y@d= [ XU () (5)

—o00

adlay(z) =x(2):

WP =P o [lxer?ae= []x(Plar 6)

wychodzi réwno$¢ kwadratéw norm sygnatu oraz jego widma Fouriera, co dowodzi, iz prze-
ksztalcenie Fouriera zachowuje energi¢ sygnatu wejsciowego.

Sygnat analityczny dla dowolnego ciagu x ma jednostronne przeksztalcenie Fouriera,
czyli takie, dla ktorego czestotliwoéci ujemne przyjmuja wartos¢ 0. Dla ustalenia sygnatu ana-
litycznego obliczana jest FFT dla ciagu wejsciowego, nastgpnie wspétczynniki FFT odpowia-
dajace czestotliwosciom ujemnym zostaja zastapione zerami. Obliczana jest nastgpnie od-
wrotna FFT, jako wynik dzialania przeksztalcenia Hilberta. W' duzym uproszczeniu algo-

rytm przeksztalcenia Hilberta przedstawia si¢ nastgpujaco:
1. oblicza FFT z ciagu wejéciowego, zapisujac wynik w wektorze x;

2. tworzy wektor b, ktorego i-ty element obliczany jest wg ponizszej zaleznosci:
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— 1dlai=1, 2+

2
- 2d1ai=2,3,...,§
- Odlai=§+2,...,n;

3. oblicza elementowy iloczyn macierzy x i b;
4. oblicza odwrotne FFT dla ciggu otrzymanego w kroku 3 i zwraca pierwszych 7 cle-
mentow wyniku.

Jako ze wszystkie obliczenia opisane w niniejszej rozprawie byly prowadzone za pomocg $ro-
dowiska obliczen naukowych Matlab, skrypt 1 przedstawia realizacj¢ przeksztalcenia Hilber-
ta dla argumentéw € R. Sprawdza on czy argument wejsciowy nalezy do zbioru liczb rze-
czywistych. Jedli zmienna wejsciowa x7 jest macierza, funkcja hilbert dziala w bardzo podob-
ny sposéb, jak to przedstawia algorytm na poprzedniej stronie, z t3 réznica, ze jego dzialanie
obejmuje caly ksztalt macierzy.

3.3.Struktury i metody praktycznych algorytméw amplitudowo-fazowej analizy
sygnatéw i obrazow cyfrowych
Rysunek 12 przedstawia uogélnione schematy analizy amplitudowo-fazowej opartej na
procedurach wielowymiarowej cyfrowej optyki Hilberta:
— metoda dwuwymiarowego przeksztalcenia Hilberta jako obliczanie odpowiedzi filtra
przestrzenno-czgstotliwosciowego;

— metoda obliczania przeksztalcenia fazowego Fouriera (widma);
— metoda obliczania dwuwymiarowego przeksztalcenia fazy Hilberta (widma);
— metoda obliczania rozdzielnego dwuwymiarowego przeksztalcenia fazy Hilberta (widma);

— metoda uogélnione analizy AF (podejécie Hahna).

X(x,y) normal. 2-DFFT| |2-DHMM| [2-DIFFT| | Zormalizowane
OZK 1 (Shif) [ ] (Shify [ ] (Shify) [ ] (AAN, PVN)
(segment TZK) 2-D HT (A)])
X(x,) normal. 2-D FFT] Re(S(o, )} Widmo D(w,w)
OZK 1 (Shift) fazowe — (AAN,
(segment TZK) S(w,»,) Im{S(@,0,)} — d(w,o,) PVN)
X(x,y9) normal. 2-D HTA, Rg{X(x,y)} 2-D faza Hil- ¥ (x9)
OZK — HTI) - berta W(xy)=f— (AAN,
(segment TZK) X(xy) Im{X(x,y) arctg(’l:,—zt‘i\x:,l) PVN)
X(x,) normal. 1-DHT arctg(’k'—’:l«k——‘:f((:':;) Rozdzielna faza Y, (xy)
OZK 1 X(xy), — Hilberta ¥ (x,))=—| (AAN,
(segment TZK) X(xy) arctg(ﬁ%&‘fﬁfﬂ) Y (x)=+¥ (x) PVN)
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11;\[?NH} ((/:/;;I’ — Selektor [ Xr +Xy 1
Xm(x,y) — typu | ) X.-X.

X(x,y) normal. 5 i
OZK " 5),

(segment TZK) n) s

ZDHT (VA
(AAN, PVN)
X(x9), Xi(x)

arctg(—-ﬁ“’(fx.*:’ )

arctg(%)

Rysunek 12. Uogélniona struktura analizy AF opartej na procedurach wielowymiarowej optyki Hilberta

»Kontrola typu” — to kontrola przeksztalcenia oraz typu normalizacji przeksztalcenia;
»kontrola {(, o, T}” — kontrola warunkéw obrotéw katowych OZK w procedurach synte-
zy/analizy scen.

Sa to jedynie podstawowe struktury oraz algorytmy, ktére szczegétowo oméwiono w niniej-
szej rozprawie, a wyniki badania ich skutecznosci oraz powickszenia zdolnoséci dyskrymina-

cyjnej przedstawiono w rozdziale 5 wraz z podrozdziatami.

3.4. Modelowanie bazowych algorytmow cyfrowej optyki Hilberta

Wszystkie algorytmy przetwarzan oraz identyfikacji cyfrowej optyki Hilberta opieraja si¢ na
kilku bazowych przeksztalceniach, ktére sa nastgpnie hybrydyzowane, czyli mieszane z in-
nymi przetwarzaniami lub tez z ich transpozycjami. Wszystkie przetwarzania - bez wzgledu
na to czy amplitudowe, czy tez fazowe - zawsze w ktérym$ momencie wykorzystuja nizej opi-

sane przeksztalcenie - przeksztatcenie Fouriera oraz Hilberta.
3.4.1. Przeksztatcenie Fouriera

Przeksztalcenie Fouriera jest transformacjg catkows z dziedziny czasu w dziedzing czgstotli-
wosci i zostalo szczegélowo oméwione w rozdziale 3.1. Szereg Fouriera jest ciggiem parame-
tréw, ktére po wymnozeniu przez arbitralnie ustalony ciag funkcji okresowych daja dang
funkcje. Wynikiem dziatania przeksztalcenia Fouriera jest transformata, ktéra podaje, w jaki
sposdb poszczegolne czestotliwosci skiadajg si¢ na pierwotng funkcje[14], [18]. W niniejszej
rozprawie przeksztalcenie to jednak nie bedzie bezposrednio wykorzystywane, a jedynie jego

dwuwymiarowe odmiany, o ktérych wigcej w rozdziale 4.1.
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Rysunek 13.  Wynik dzialania szybkiego przeksztalcenia Fouriera (FFT) na sygnale dyskretnym (DFT).

(a) - sygnal pierwotny, (b) - ciag Fouriera sygnaltu pierwotnego (a), (c) - ciag Fouriera z odwréconymi potéwkami, (d) -
sygnal odtworzony z ciagu Fouriera (b).

3.4.2. Przeksztatcenie Hilberta

Obrazy cyfrowe s szczegdlng postacia sygnaléw dyskretnych. Ich macierzowy charak-
ter w przypadku obrazéw ciaglotonalnych wymusza okresowe, lokalne, dzialanie przeksztat-
cenia Hilberta. Z samej swojej natury (3.1) ma ono charakter nieskonczony, podobnie jak
szybkie przeksztalcenie Fouriera, z ktdrego powyzsze korzysta. Aby wige mozliwe bylo jego
stosowanie na obrazach cyfrowych zawierajacych elementy scen, konieczne jest ich takie
umiejscowienie, aby badane obickty nie przylegaly do granicy obrazu. Eksperymentalnie
ustalono, ze aby przeksztalcenie Hilberta nie naruszato cyklicznego charakteru obrazu, jego

obraz musi zosta¢ powigkszony z kazdej strony o polowe jego wymiaru. Zobrazowaniem tego



podejscia jest rysunek 14, w ktérym badany obiekt ma ksztatt bialego prostokata o wymia-
rach 128x128 pikseli, czarna obwdédka natomiast ma szerokos¢ 64 pikseli z kazdej strony.
Ponizej przedstawiono wynik dziatania przeksztalcenia Hilberta na obrazie binarnym. Jest

ono podstawg wszystkich hybryd przedstawionych w pracy.

50
100
150

200

250 .
50 100 150 200 250 50 100 150 200 250

Rysunek 14. Przeksztalcenie Hilberta obrazu binarnego

Obraz wejsciowy przedstawiony na powyzszym rysunku mial wymiary 256x256 pikseli. Ob-
szar czarny odpowiadal wartosci 0, za$ biaty - wartosci 1.

Ponizej przedstawiono widmowa posta¢ obrazu z wezesniejszego rysunku.

2 - 2

Ls ﬂ Ls|

1t 1

2K

0.5
SNy
0 0=

-0.5 -0.5

-1 -1
-1.5 —— Sygnat pierwotny 1 -L5 | — Sygnal pierwotny

—— przeksztalcenie Hilberta —— modul przeksztatcenia Hilberta
-2 2 . . . . -2 . . . > .
0 50 100 150 200 250 0 50 100 150 200 250

Rysunck 15. Widmowa posta¢ przeksztatcenia Hilberta

W rozprawie rownolegle stosowane s3 oba podejécia przedstawione na powyzszym ry-
sunku. Wykres po lewej stronie przedstawia naturalng posta¢ przeksztalcenia Hilberta, po
prawej za$ stronie wida¢ modut tego przeksztatcenia. Jest on podstawa jednej z wielu metod
minimalizowania opisu zwana metodg punktéw charakterystycznych (characteristic point

method - CPM).
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3.4.3. Przeksztatcenie Radona

Przeksztalcenie Radona oblicza projekcje matrycy obrazu w zadanym kierunku.

Projekcja dwuwymiarowej funkcji f{x,y) jest zbiér linii projekcji. Przeksztalcenie Radona
oblicza linie projekgji z wielu zrédel wzdhuz réwnoleglych éciezek lub wigzek w pewnym kie-
runku. Poniewaz przeksztalcenie Radona jest przeksztalceniem dyskretnym, wiazki lub linie
projekcji sa umieszczone w odstepach 1 piksela obrazu. Do stworzenia obrazu wykorzystuje
ono wiele wigzek lub linii réwnoleglych, z réznych katéw obracajac ich zrédlem wokét osi

obrazu. Ponizszy rysunek przedstawia pojedyncza projekcj¢ pod zadanym katem obrotu.

Detektory

kat obrotu
C)

Zrédto

Rysunek 16.  Sposéb projekcji badanego obicktu na powierzchni¢ detektoréw
Dla przykiadu: catka f{x, y) w kierunku pionowym jest projekcja funkeji /{x, y) na osi x, na-
tomiast catka f{x, y) w kierunku poziomym jest projekcja funkdji /%, y) na osi y. Ponizszy

rysunek przedstawia pozioma i pionowg projekcje prostej funkcji dwuwymiarowej.

Projekcja na of y

Projekcja na o$ x

Rysunek 17.  Pozioma oraz pionowa projekcja funkeji prostokatnej
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Projekcja przeksztalcenia Radona moze by¢ obliczona wzdtuz kata ©. W ogélnym przypad-
ku przeksztalcenie Radona funkeji /{, y) jest catka fréwnolegta do osi y’.

Ry(x")= J.f(x' cos@— y'sin B, x'sin @ — y' cos 8)dy' (7)
b X' cos@ sinf | x
gezie: y'| | —sin@ cos@|y
; J
J
o
ftxy)

Ro(x )

Rysunek 18. Geometria przeksztalcenia Radona
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4. Modelowanie bazowych struktur wideo-informacyjnych syste-
mow identyfikacji obiektow oraz tekstur w oparciu o metody
cyfrowej optyki Hilberta

4.1. Modele wielowymiarowych przetwarzan (transformacji) Hilberta.

W procesie identyfikacji obiektéw metodami korelacyjnymi, bedacymi podstawg ni-
niejszej rozprawy, najwazniejsze jest utworzenie jak najbardziej unikalnego opisu obiektu,
ktéry z jednej strony bedzie pozwalal na rozréznianie go sposréd innych klas obiektow (po-
dobienstwo obiektéw), z drugiej zas strony bedzie pozwalal na wykazanie jak najwigkszych
podobienistw do obiektéw z jednej klasy, jednak obserwowanych w odmiennych warunkach
zakltdcen - szczegdlnie katowych. Przedstawione ponizej przeksztalcenia zostaly opisane w tej
samej kolejnosci, jak w rozdziale 3.4, jednak w procesie identyfikacji obicktéw kolejno$é kro-
kéw przetwarzania wtérnego nie musi by¢ taka, jak tu przedstawiona, poniewaz zestaw oraz
kolejno$¢ uzytych metod bezposrednio zalezy od domeny oraz charakteru badanego obrazu.
Niniejszy rozdzial ma na celu przedstawienie klas podstawowych przeksztalcen, keorych hy-
brydy beda opisywane sukcesywnie w dalszej cz¢sci rozprawy. Podobnie, jak w rozdziale 3.1,
tak i tu oraz w calej rozprawie skrypty przedstawiajace poszczegélne elementy calego systemu

identyfikacji zostaly przedstawione za pomoca naturalnego dla pakietu Matlab - jezyka M.

4.1.1. Szybkie dwuwymiarowe przeksztatcenie Fouriera

Podstawa dla wszystkich stosowanych w rozprawie przetwarzan jest dwuwymiarowe prze-
ksztalcenie Fouriera - FFT2. Posta¢ jednowymiarowa zostala szczegotowo opisana w rozdzia-
le 3.4.1, jednak na potrzeby przeksztalcania obrazéw konieczne jest dwuwymiarowe prze-
ksztalcenie, ktérego transformata ma wymiary badanego obrazu.

Zwraca ono dwuwymiarowe dyskretne przeksztalcenie Fouriera (DFT) zmiennej x obliczo-
ne za pomocg algorytmu szybkiego przeksztalcenia Fouriera (FFT); wynik - zmienna Y ma te
same wymiary, cO X.

Dwuwymiarowe dyskretne przeksztalcenie Fouriera (fft2) moze byé¢ zrealizowane jako

EEL(EEE(X).') . : |

Powyzszy skrypt oblicza jednowymiarowe DFT kazdej kolumny X, a nastgpnie dla kazdego
wiersza wyniku. Czas potrzebny na obliczenie FFT zalezny jest od wymiaréw przeksztalce-
nia. Rysunek 19 przedstawia dwuwymiarowa transformate¢ Fouriera kilku prostych obiektéw
oraz przeksztalcenie ¢wiartkowe ffeshift.

Przedstawione na nim obrazy pierwotne zostaly przygotowane jako bitmapy 30x30 pikseli,

natomiast transformaty to macierze 256x256 pikseli. Cheac jednak traktowaé¢ dwuwymia-
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rowg transformate Fouriera jako unikalny identyfikator obicktu, konieczne jest jej prze-

ksztalcenie do postaci przedstawionej w punkcie 4.1.2.

a) b) )

obraz pierwotny

przeksztatcenie FFT

przeksztatcenie FETShift

Rysunek 19. Obraz pierwotny oraz jego transformata Fouriera i przeksztalcenie ¢éwiartkowe FFTShift.

4.1.2. FFTShift — czyli zamiana ¢wiartek transformaty Fouriera

Funkcja FFTSHIFT dokonuje rekompozygji transformaty Fouriera wygenerowanej funk-
cjami fft oraz fft2 przez przesunigcie skladnika zerowej czgstotliwosci do srodka macierzy.
Jest ona wykorzystywana do wizualizacji transformaty Fouriera ze skfadnikiem zerowych
czestotliwosci w $rodku widma. W przypadku wektoréw FFTShift zamienia miejscami lewa
i prawa potéwke wektora X. Ilustracja ponizej przedstawia proces zamiany ¢wiartek.

Domyslnie funkcja FFT Shift zamienia ¢wiartki transformaty jak to pokazuje rysunek 20.a,
jednak w szczegélnych przypadkach funkcje y = FFTShift(x,par) mozna wywota¢ z drugim
parametrem catkowitym, ktéry spowoduje, ze zamienione zostaja tylko potéwki transforma-
ty. Gdy par=1 wéwczas potéwki zostaja zamienione w pionie (rysunck 20.b), gdy zas par=2,

woéwczas poléwki zamieniane s3 w poziomie (rysunck 20.c).



a) b) )

Rysunek 20. Schemat dzialania funkcji FFT Shift(x)

Dziatanie funkcji FFTShift mozna odwréci¢ stosujac funkcje iFFTShift. Jesli macierz zawie-
ra nieparzystg liczb¢ elementéw, wowczas aby odzyskaé pierwotny ksztatt macierzy X nalezy
wykona¢ iffeshitf(FFTShift(X)). Proste dwukrotne zastosowanie FFTShift(X) nie da w wy-
niku X. Na potrzeby badan opisanych w niniejszej rozprawie dotyczacych zastosowania dys-
kretnej transformaty Fouriera wykorzystano pewien zabieg majacy na celu zmniejszenie ko-
relacji miedzyklasowych (korelacji réznych obiektéw).

Skrypt 2 (suplement), oprécz samego obliczenia transformaty dwuwymiarowej dys-
kretnej transformaty Fouriera, odwrécenia jej ¢wiartek, ,wycina” réwniez $rodek macierzy
odwréconej, dzigki czemu spada wspolczynnik korelacji transformat obiektéw niepodob-
nych.

Wycinanie to odbywa si¢ przez odpowiednie, gradientowe wymnozenie $rodkowych elemen-
téw transformaty przez wartosci z zakresu <0,1>. Szerokos¢ oraz wysokos¢ obszaru wycina-
nia okreslona jest zmienng coef, ktora okresla stosunek wymiaru wycigcia do wymiaru trans-
formaty. W niniejszej rozprawie we wszystkich eksperymentach, wktérych korzystano
z przestawionej transformaty Fouriera zmienna coef = 0.2.

Odrebng kwestig jest jeszcze przebieg gradientu mnozenia centrum transformaty. Na po-

trzeby powyzszego skryptu opracowano trzy rézne gradienty, ktére przedstawia rysunek 21.
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Rysunek 21.  Trzy rézne, mozliwe do zastosowania gradienty usuwania $rodka transformaty DFT
Rysunek 22 przedstawia natomiast efekt wycigcia $rodka macierzy ksztaltem z rys. 31.c.
Wspélczynnik skali (zmienna coef ) ustawiono na 0,2, a gradient wycigcia na ,sphere”. R6z-
nice w jasnosci obrazéw b i ¢ wynikaja z ich normalizacji na wyjéciu funkeji ffeshife2.

Jednym z najwazniejszych wzoréw jest wzér na obliczanie korelacji dwuwymiarowe;
dwéch macierzy. Wspoétczynnik ten jest podstawa wszystkich analiz oraz proceséw decyzyj-

nych opisanych w niniejszej rozprawie.

) ;;(Amn -4)8,,-B)
Jzze ez

gdzie: A - wartoé¢ srednia elementu A
B

- warto$¢ $rednia elementu B
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Obiekt 2325 Obiekt 2364 Obieke 2372

a)

b)

<)

Rysunek 22. Obraz pierwotny (a), transformata Fouriera z zamienionymi ¢wiartkami (b), transformata Fouriera b)
z usunietym komponentem zerowych czgstotliwosci (c)

Ponizej przedstawiono wyniki obliczen korelacji migdzyklasowych (réznych obicktow) dla
usunietych oraz nieusunigtych elementéw zerowych z transformaty Fouriera.

Tabela 4. Wspélczynniki korelacji dla obiektéw z nieusunietym $rodkiem transformaty

2325 2364 2372
2325 1,0000 0,6811 0,6458
2364 0,6811 1,0000 0,5958
2372 0,6458 0,5958 1,0000

Tabela 5. Wspélezynniki korelacji dla obiektéw z usunietym $rodkiem transformaty

2325 2364 2372
2325 1,0000 0,6352 0,5888
2364 0,6352 1,0000 0,5343
2372 0,5888 0,5343 1,0000

Z powyzszych danych jednoznacznie wynika, ze elementy zerowej czestotliwosci, ktore
obecnie znajdujg si¢ w centrum transformaty podwyzszaja korelacj¢ elementéw migdzykla-

sowych, co w pdzniejszej fazie obliczen miatoby znaczny wplyw na poszerzenie zbioru obick-
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téw podobnych. Wzgledne obnizenie wspétczynnikéw korelacji przedstawionych w tabeli 6
wzgledem tozsamych wspétezynnikéw z tabeli 5 od 6,7 do 10,3 % pozwala do$¢ mocno za-

wezi¢ zbior obiektéw ,,podejrzanych” o podobienstwo do obicktu badanego.

4.1.3. lzotropowe przeksztatcenie Hilberta

Izotropowe przeksztalcenie Hilberta (HTT) jest pierwszym, powszechnie stosowanym
w niniejszej rozprawie przeksztatceniem Hilberta (skrypt 3, suplement).
Sumuje ono dwa przeksztalcone obrazy: jeden przeksztalcony zgodnie z naturg przekszratce-
nia Hilberta (po osi x) oraz drugi przeksztalcony jako transpozycja obrazu pierwotnego (po
x'). Samo przeksztalcenie Hilberta ze swojej natury dziata tylko po osi x, wige cheac uzyska¢
zwigkszenie lokalnych kontrastow, a przez to wykrycie krawedzi, bez wzgledu na ich padanie
wzgledem osi przeksztalcenia, koniecznym jest zsumowanie obu przeksztatcen.
Rysunek 23 przedstawia poddany przeksztalceniu Hilberta obraz z rys. 34.a(lewa kolumna).
Samo przeksztalcenie jest niezwykle przydatne podczas wykrywania krawedzi badanego
obiektu, przy czym posta¢ HTI wykrywa krawedzie obiektu, wskazujac jednoczesnie tenden-
cje zmian jasnosci na obrazach w odcieniach szarosci. Rysunek 23.d przedstawia natomiast
sume modutéw przeksztalcern Hilberta poprowadzonych po obu osiach. Jest to bardzo uzy-
teczna postaé przeksztalcenia HTI, dzigki ktérej mozna bardzo fatwo wyznaczy¢ granice

badanego obicktu.

a) ox: Hilbert po x b) oy: Hilbert po x’

50
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250 : : 5 i 3
50 100 150 200 250 50 100 150 200 250

) ox+oy: HTI d) |ox| + |oy|: HTIA

50
100
150

200

250

100 150 200 250

50 100 150 200 250

Rysunck 23. Sposéb tworzenia izotropowego przeksztalcenia Hilberta

50
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4.1.4. Anizotropowe przeksztatcenie Hilberta
Drugim i zarazem najczgsciej wystgpujacym w niniejszej rozprawie przeksztalceniem,
jest anizotropowe przeksztatcenie Hilberta (HTA) (skrypt 4, suplement). W odréznieniu od
HTI wykrywajace granice obiektu HTA eksponuje mocne zmiany kierunku krawedzi bada-
nego obicktu. Powstaja wowczas tzw. punkty charakeerystyczne, ktére dla kazdego z bada-

nych w niniejszej rozprawie obiektow sa rozne.

a) Hilbert po x b) Hilbert po ox
50 t
100 | L ;
150
200
250 & e : i % % 3 . z i Bt
50 100 150 200 250 50 100 150 200 250
o [HTA|

50

100

150

200

250

50 100 150 200 250
Rysunek 24. Wynik dzialania przeksztalcenie HTA (b) oraz jego modut (c)

Jak wida¢ z powyzszego skryptu, odmiana HTA w drugim kroku tworzy przeksztalcenie
Hilberta nie z obrazu pierwotnego, jak to ma miejsce przy HTI, ale z transponowanej postaci
pierwszego przeksztalcenia Hilberta. Rysunek 24 przedstawia sposéb dziatania odmiany
HTA.

Przeksztalcenie HT'A, podobnie jak HTT, eksponuje oprécz punktéw charakterystycznych,
ich charakter oraz charakter zmiany odcieni szaro$ci w obrazie pierwotnym. HTAA, czyli
modul przeksztalcenia HTA eksponuje miejsca wystgpowania gwattownych zmian ksztattu
obiektu, bez wzgledu na kierunek zmiany odcieni szaroéci obrazu pierwotnego. Wynik prze-
ksztalcenia HTAA jest doskonalym materialem do badania metoda punktéw charaktery-
stycznych (CPM), w ktorej zaklada sig, ze informacje o punktach charakterystycznych moz-
na zapisa¢ w postaci listy wspéirzednych centroidéw ($rodkéw cigzkosci) poszezegélnych

punktow.



4.1.5. Izotropowe przeksztatcenie Foucault-a

Kolejnym hybrydowym przeksztalceniem z rodziny przeksztatcen Hilberta jest przeksztalce-
nie izotropowe Foucault-a (czyt. Fuko) (skrypt 5, suplement). Przeksztalcenie to, mimo iz
nazwane jest izotropowym nie korzysta z wynikéw HTI czy HTIA, ale oblicza kwadraty
pierwotnych przetwarzan Hilberta po obu osiach. Gléwna réznicg migdzy przekszralceniem
izotropowym Hilberta a Foucault-a jest to, ze to drugie oprécz obrazu, bedacego wynikiem
przeksztalcenia zawiera w sobie réwniez obraz pierwotny. Hybryda tu zastosowana daje wy-
lacznie wartoéci dodatnie ze wzgledu na fake, iz wszystkie operacje, na ktére sklada si¢ prze-
twarzanie izotropowe Foucault-a operuja na kwadratach wartosci, a nie na ich wartosciach
pierwotnych, stosujac w skrypcie wydzielenie cz¢sci urojonej transformaty Hilberta do po-

staci rzeczywistej badanej macierzy.

a)

50 50
100 100
150 150
200 200
250 250
50 100 150 200 250 50 100 150 200 250
<) d)
3
257 L J 1 so
2k T 1 :
100
1.5}
150 |
1_
200 F
0.5
3 _ . 250 PR s
0 100 200 50 100 150 200 250

Rysunek 25. Sposob dzialania izotropowego przeksztatcenia Foucault-a.

Rysunek 25 przedstawia wynik dziatania izotropowego przeksztalcenia Foucault-a. Obraz (a)
— binaryzowany obraz pierwotny, (b) — obraz transformaty Foucault-a, (c) — przebieg wid-

ma przeksztalcenia Foucault-a ze 65-go wiersza transformaty FCI .(d) - obraz wyjsciowy
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wygenerowany izotropowym przeksztalceniem Foucault-a, dla ktérego sygnalem wejécio-

wym byl rysunek 22.a (lewa kolumna).

4.1.6. Anizotropowe przeksztatcenie Foucault-a

Tak jak przeksztalcenie izotropowe Foucault-a jest podobne do izotropowego prze-
ksztalcenia Hilberta, anizotropowe przeksztalcenie Foucault-a jest podobne do anizotropo-
wego przeksztatcenia Hilberta. Skrypt 6 przedstawia realizacj¢ anizotropowego przekszralce-
nia Foucault-a.

W samej definicji przeksztalcenia Foucault-a istnieje pewna réznica: w przeksztalceniu ani-
zotropowym po drugiej iteracji Hilberta z obrazu bedacego wynikiem pierwszego przekszral-

cenia, wyniku nie podnosi si¢ do kwadratu.

a)

50 50
100 100
150 150
200 200
250 250
50 100 150 200 250
) d)
3
25 h 50
2.
100 F
1.5 | 1
\ 150 }
1t - ]
200 F i
0.5
3 iy, 250 LA :
0 100 200 50 100 150 200 250

Rysunek 26. Sposéb dzialania anizotropowego przeksztalcenia Foucault-a.

Powyisza sytuacja spowodowana jest tym, ze wynik przetwarzania Hilberta podniesio-

ny do kwadratu wg zaleznosci:

img = bilbert(/)i/bert(x)l ) 9)
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daje bardzo mocng ekspozycje maksiméw w punktach gwaltownego zatamania ksztaltu
obiektu, wzgledem obrazu pierwotnego, ktéry zawarty jest w wyniku przeksztalcenia Fou-
cault-a. Sytuacja taka powoduje, ze lepszym rozwigzaniem jest zastosowanie zwyklego prze-
ksztalcenia HT'A, gdyz daje ono w wyniku bardzo podobne sygnaly badawcze (transforma-
ty)-

4.1.7. Hybrydowe Przeksztatcenie Radona

Pierwotne przeksztalcenie Radona zostato opisane w rozdziale 3.4.3, jednak na potrze-
by niniejszej rozprawy opracowano pewng jej modyfikacje. Skrypt 7 (suplement) przedstawia
postaé przeksztalcenia Radona wykorzystywana w niniejszej rozprawie.

Skrypt ten jest jednym z najpotezniejszych narzedzi do wyznaczania sygnaturowego opisu
obiektu.

Sam skrypt sklada si¢ z dwéch gtéwnych instrukgji: pierwsza wywoluje predefiniowana funk-
cj¢ Matlaba — radon (data, theta); zmienna data to macierz, dla keérej bedg obliczane projek-
cje, theta natomiast to tablica katéw, dla ktérych ma by¢ obliczony zestaw projekcji. Na ko-
lejnych rysunkach pokazano, ze nie do kazdej klasy obrazéw pierwotnych przeksztalcenie
Radona przynosi okreslone korzyéci w postaci np. unikalnej sygnatury w kazdej klasie bada-
nych obiektéw. Przy odpowiednio dobranych, wstgpnie przetworzonych obrazach mozna
uzyska¢ charakterystyke sygnaturows, ktorej ksztatt bedzie niezmienny — bez wzgledu na kat
obrotu plaskiego obrazu badanego obicktu. Przetwarzanie to jest wrecz idealne do badania
oraz rozpoznawania obiektéw plaskich, np. liter tekstu, badz tez innych obiektéw, ktdrych
pierwotna natura pozwala na ich obserwacj¢ wylacznie z jednego kierunku. Przykiad algo-
rytmu wraz z kodem Zrédlowym skryptéw oraz wynikami w postaci charakeerystyk oraz ma-
cierzy korelacyjnych przedstawia rozdzial 4.4. Wyniki tego rozdziatu byly wskazéwka do
przeprowadzenia kolejnych eksperymentéw, ktére mialy na celu przyspieszenie dzialania
algorytméw identyfikujacych obiekty obserwowane w przestrzeni tréjwymiarowej, bez z gory
zadanego przestrzennego kata obserwacji obicktu. Obiekty tego typu stanowia podstawe ba-
dawczg niniejszej rozprawy, dlatego tez postanowiono blizej przyjrze¢ si¢ przetwarzaniu Ra-
dona oraz jego zastosowaniu przy definiowaniu opisu sygnaturowego jak najbardziej nieza-

leznego od kata obserwacji przestrzennej obiektu badanego.
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Rysunek 27. Wynik dzialania przeksztalcenia Radona na obrazie binarnym

Powyzszy rysunek przedstawia wynik przeksztalcenia Radona przeprowadzonego dla kilku
wybranych katéw projekgji. Poszczegdlne projekcje zostaly opisane wartosciami katéw nad
odpowiednim rysunkiem, suma projekcji natomiast zostata obliczona dla katéw z zakresu
0+179° z krokiem 1° - czyli 180 projekcji. Kolejny rysunek przedstawia identyczny schemat

przeksztalcenia Radona, jednak obraz zZrédtowy zostal poddany anizotropowemu przekszeal-
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ceniu Hilberta. Jak nalezalo si¢ spodziewa’, przebiegi poszczegélnych projekeji nie majg juz

tak oczywistego charakteru, jak to ma miejsce w przypadku nieprzetworzonego obrazu wej-

sciowego.
Obraz wejsciowy przetworzony (HTA) < 1072 a =0°
1 . -
0.8
50 0.6 t
0.4 t
100 } 63 |
0
150 -0.2
-0.4 t
200 20.6
-0.8
250 1 . .
50 100 150 200 250 0 100 200 300 400
o =45° < 107+ a=90°
50 : 2 : :
40 r 1 5
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10 } 0.5
0 0
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-50 . 2 . .
0 100 200 300 400 0 100 200 300 400
o =135° Suma projekgji
3000 f ) "
2000
1000
0
-1000
-2000
1
_50 . L L -3000 C " N " 3
0 100 200 300 400 0 100 200 300 400

Rysunek 28. Wynik dzialania przeksztalcenia Radona na przetworzonym HTA

W przypadku sumy projekcji na powyzszym rysunku mozna zauwaiyc’, ze przebicg sprawia

wrazenia, jakby sktadal si¢ z dwoch identycznych potéwek, z keérych jedna jest obrécona
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wzgledem drugiej o 180°. Taki przebieg charakterystyki sygnaturowej jest charakterystyczny
wylacznie dla obiektéw, ktére sg symetryczne przynajmniej po jednej osi. Dla obiektéw nie-
symetrycznych taka wlasnos¢ juz nie zachodzi. Rysunek ponizej przedstawia sytuacje, w keo-

rej jeden z badanych obiektéw jest symetryczny, a drugi — nie.

Obraz wejsciowy (HTA) - obiekt symetryczny Suma projekgji obiektu symetrycznego
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Rysunek 29. Suma projekcji Radona obiektéw: symetrycznego i niesymetrycznego

Rysunek 28 ujawnia jeszcze jedna cickawg wlasno$¢. Dla projekeji o katach 0° oraz 90° (oraz
ich fazowych przesunig¢) projekcja ma wartosci w okolicach zera. Wida¢ to po skali osi y obu
charakterystyk. Przy skali rzgdu 10"* + 10> w poréwnaniu do 10" + 10%, jak to ma miejsce
dla innych katéw przyjeto, ze przebieg charakterystyk dla katéw 0 oraz 90° to niedoktadnosci
zwigzane z kwantowaniem rzeczywistej postaci obrazu, a ich wartosci sa pomijalnie male.
Kolejna whasno$¢ przeksztatcenia Radona jest niezwykle uzyteczna podczas identyfi-
kacji obiektéw latajacych, z profilu satelitarnego. Cecha charakterystyczna tego profilu jest
to, ze obiekty widziane sa z gory, dzi¢ki czemu widoczna jest najbardziej unikalna, a co za
tym — najbardziej charakterystyczna strona badanego obiektu. Rysunck 30 przedstawia spo-

s6b wykorzystania przeksztalcenia Radona do rozpoznania kata kursowego obserwowanego
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obiektu. Dzigki wiedzy, jakim znieksztalceniem katowym obarczony jest obraz identyfiko-
wanego obiektu, przed przystapieniem do wiasciwej identyfikacji mozna to zniekszralcenie
usuna’. Jedng ze zmiennych wynikowych opracowanego przeksztalcenia Radona jest zmien-
na przechowujaca wszystkie 180 projekgji obiektu z zakresu 0+179°. Aby wyznaczy¢ kat, pod

jakim obrécony jest obiekt, nalezy zastosowa¢ nastgpujaca zaleznosé:

k=90 —index(max(c__))+1 (10)

corr

gdzie: €., - wartos¢ wspolezynnika korelacji lustrzanego odbicia projekcji przeksztalcenia Radona

index(max(c,,, )) - pozycja w zbiorze projekcji najwyzszego wspélczynnika koreladji ¢,

Powyzszy wzér powyzej wyszukuje pozycje w zbiorze przekszratcers Radona badanego obiek-
tu najbardziej symetrycznej projekcji. Wspoétezynnik symetrii obliczany jest jako wspétezyn-

nik korelacji lewej poléwki przeksztalcenia oraz lustrzanego odbicia prawej potéwki prze-

ksztalcenia.
Obiekt obrécony w planie o 30° projekcja numer 61
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Rysunek 30. Wyznaczone najbardziej symetrycznego przeksztalcenie Radona

W przyktadzie z rysunku 42 przedstawiono obiekt obrécony o kat 30°, dla ktérego pozycja

najwyzszego wspétczynnika symetrii wynosi 61. Stad wiadomo, ze badany obiekt obrécony
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jest o kat 90-61+1, czyli 30°. W drugim przypadku najbardziej symetryczne przeksztatcenie
znajduje si¢ pod indeksem 16, czyli obickt obrécony jest o kat: 90-16+1, czyli 75°.

W niniejszym podrozdziale przedstawiono najbardziej uzyteczne zastosowania prze-
ksztalcenia Radona. Inne natomiast zastosowania zostana, w miar¢ potrzeb, opisane w dalsze;
czg$ci rozprawy.

4.2.Struktury algorytmow analizy i identyfikacji obiektow na podstawie 2-D

COH.

Analiza oraz identyfikacja obicktéw, jako procedura przedstawiona w niniejszej rozprawie
opera si¢ na obliczaniu wspétczynnikéw korelacji obrazu obiektu badanego z obrazem po-
chodzacym z bazy wzorcow. Uogélniong procedurg korelacyjna przedstawia rysunek 31.
Oba obrazy przed korelowaniem zostaja poddane dokladnie tym samym przetwarzaniom.
Obrazy obiektu badanego pobierane sa z otoczenia za pomoca jednego z ogoélnie dostgpnych
systemow akwizycji, po czym nastepuje segmentacja sceny w celu oddzielenia obrazu obiektu
badanego od réznego rodzaju zaklécen — zazwyczaj tha sceny. W kolejnym kroku nastepuje
normalizacja rozmiaréw ksztaltu tak, aby rozmiar badanego obicktu odpowiadat rozmiarowi
obiektu z bazy wzorcéw. Ostatnim krokiem jest przeprowadzenie iteracyjne korelagji ze

zbiorem obiektéw wzorcowych.

Zrédlo Wstgpna [ IWHT (0x) [  Formowanic
obrazéw [ | normalizacja | —| NA, ND - un:;vf:l];::‘n:?::o
l I 1 I I I 1 obr._\;u .1mp|itt1do»\
= = = 1W HT () | wo-fazowego (API)
B ety otacja 3D L NA, ND Formowaniec AF-
chmen tac}a {a‘} =var l zestawu ki}[()\\{'g()
- obrazow obroconych
l I 2W HTL HTA [ obicktow (APAS)
Kontrola (x0h) NA, ND
warunkéw ] 1 l l
wstgpnej Formowanie Selektor typu NAPI NAPAS
segmentacji bazy obrazow, (NA, (NA,
ND) ND)
I T O
Selektor typu APSA NA-

| l l l l 1 l | Selektor typu B I
| Réwnolegly analizator korelacyjny |-—
!

::| Jednstka decyzyjna |—-| D = {Klasa; 0., B, 7./ I

Rysunek 31.  Uogélniona struktura algorytmu identyfikacji opartej na katowej analizie amplitudowo-fazowej

Obliczenia korelacyjne wewnatrzklasowe realizowane sa przez skrypt 8. Aby ponizszy skrypt
mégh réwniez realizowaé prawidtowo obliczenia korelacyjne mi¢dzyklasowe, konieczna jest

jego modyfikacja, polegajaca na warunkowym wykonywaniu instrukgji:

[fdone (y,x) = done (x,y); 1

Powinna ona byé¢ wykonywana jedynie dla korelacji wewnatrzklasowych. Alternatywnym
rozwigzaniem jest usuniecie tej linijki kodu, jednakze wiaze si¢ to ze zdwojeniem czasu po-

trzebnym na obliczanie macierzy korelacji wewnatrzklasowych.
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4.3.0pis oprogramowania badawczego do modelowania metod uogdlnionej
amplitudowo-fazowej analizy 2- i 3-D obrazéw cyfrowych.
Wszystkie badania opisane w niniejszej rozprawie zostaly zrealizowane za pomoca s$ro-
dowiska zaawansowanych obliczen matematycznych Matlab.
Matlab jest jezykiem wysokiego poziomu, ktérego polecenia, operatory oraz funkcje stosuje
sic do szeroko rozumianych obliczeri numerycznych — w szczegélnosci na macierzach oraz
liczbach zespolonych. Wszystkie wyniki obliczert moga by¢ wizualizowane za pomoca grafiki
2D oraz 3D nierzadko z wykorzystaniem mozliwosci wspétczesnych procesoréw graficznych.
Ponad 500 funkcji Matlaba realizuje podstawowe algorytmy numeryczne, operacje macie-
rzowe, wielomianowe, interpolacyjne, aproksymacyjne, transformacje Fouriera oraz wiele
innych. Pomijajac fake, iz sam pakiet Matlab jest programowaniem zamknigtym, to wszystkie
operatory mozliwe do wykorzystanie w tworzonych przez siebie rozwiazaniach, sa zapisane w
unikalnych plikach dyskowych, dzi¢ki czemu mozliwa jest stosunkowo prosta adaptacja juz
istniejacych funkgji na swoje potrzeby. Bardzo funkcjonalny, a jednoczeénie surowy interfejs
programu gléwnego skutecznie chroni uzytkownika przed nawatem informacji wyswietla-
nych podczas procesu kompilacji kodu, a ktére sa domeng wielu innych kompilatoréw jezy-
kéw wysokiego poziomu (np. Embarcadero Delphi). Dzigki temu uzytkownik moze zajaé si¢
tym, do czego Matlab zostat stworzony — prototypowaniem zaawansowanych obliczen i roz-
wigzahi numerycznych. Gliéwny interfejs zawiera kilka osadzonych okienek, m.in.: Com-
mand Window, Command History oraz Workspace, jednakze w wickszoéci przypadkéw jest
on jedynie wykorzystywany do wywolywania funkcji Matlaba lub uruchamiania samodziel-
nie tworzonych skryptéw. Rysunek 32 przedstawia wyglad podstawowego interfejsu pro-
gramu.

4 MATLAB 7.5 (R20075) 0686
T [ Debug Desriop Wndow Heb
1S E @Y BB @ curerdrectoy |05aMOLOTN_seres BOa
Shorcuts (] Howto Add (2] What's New
wooex - P

N & B s Q) New 1o MATLAS? Wetch this Vidao see Demos. or resd Qeing Started x

HNome Vane n

Rysunek 32. Interfejs gléwny programu Matlab.
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Skrypty mozna uruchamia¢ w wielu trybach, umozliwiajacych interakcje ze skryptem na r6z-
nym poziomie. Skrypty mozna uruchamia¢ tak, jak wszystkie inne funkcje Matlaba — przez
podanie nazwy, mozna je wykonywa¢ krok po kroku, ale mozna tez uruchamia¢ je w trybie
tzw. Rapid Code Iteration, dzigki czemu mozna wykonywa¢ tylko poszczegoélne czgsci skryp-
tu. Jednak skrypt tak musi by¢ odpowiednio zredagowany. Ponizej przedstawiono dwa funk-
cjonalnie tozsame skrypty, jednak skrypt po prawej moze by¢ wykonywany tylko w catoéci
lub krok po kroku. Natomiast skrypt po lewej zostal podzielony na bloki, ktére mozna wy-
konywa¢ catkowicie niezaleznie, nieliniowo i w catkowitym oderwaniu od pozostatych blo-
kéw skryptu. Aby wykona¢ dany blok, nalezy w jego wnetrzu ustawi¢ kursor (co zostanie
zasygnalizowane z6itym tlem bloku), a nast¢pnie wcisng¢ kombinacje klawiszy Cerl+Enter.
Jest to znakomity sposdb na ewaluacj¢ zmiennych oraz sledzenie poprawnosci wykonywania

poszczegdlnych cz¢sci kodu tworzonego whasnie skrypru.

£d0r - QASAMOLOTYLscripts¥TAm e e f Edter - QISAWOLOTY_scrptsiTAme 086
fle E@ Jed Q0 Cal Tgo Depug Desviop Window e  oax fle Eot Text Go Cal Tgois Depug Deskop Window Help LIEE)
ISH AMBR0C O Nesh B -BRRVND W[ [OW J8d 2 hBYC S Mesi b -EDRARRD ue( . OB

BEB -00 ]+ [0 _Ix AR Q L. -ho e [ ]x A% @

@ s e usen CetMode. Fox formation, see e apid code Lerston vioeo,the pumishng vieo o hep x
]

log] = BTA(imagel

HTA i1 cel HiA th1 Col 1

Rysunck 33. Okno skeyptu obliczajacego fnkeje anizotropowego pracksztalcenia Hilberta z wigczong funkejs Rapid
Code Iteration (po lewej) oraz kod w postaci liniowej (po prawej).

Do pozostatych zalet srodowiska mozna zaliczy¢:

— brak weryfikagji zgodnosci typéw na etapie wywolywania funkcji,

— pelna opcjonalnos¢ parametréw wywolania funkgji — tylko od programisty zalezy, ile zo-
stanie ich dostarczonych wywolywanej funkgji,

— banalnie prosta w zapisie skfadnia operacji macierzowych, ktére w innych jezykach pro-
gramowania wymagalyby wielu linijek kodu do ich funkcjonalnie tozsamej implementagji.

Matlab ma mozliwo$¢ praktycznie nieograniczonego rozbudowywania swoich funkgji i apli-

kacji $rodowiska dzigki tzw. zoolbox-om. Sg to zestawy procedur oraz funkcji tworzone przez

firme MathWorks — twércg programu Matlab. Sposob rozszerzania funkcji Matlaba mozna

poréwna¢ do wykorzystywania prekompilowanych modutéw w jezykach wysokiego pozio-

mu, gdzie w pierwszych linijkach kodu programu nalezy wskaza¢, z jakich modutéw tworzo-

ny program ma korzysta¢. W przypadku Matlaba koniecznym jest doinstalowanie modutéw

doktadnie w taki sam sposéb, w jaki instaluje si¢ program gléwny. Wszystkie mozliwosci

ograniczane sg jedynie tzw. numerem PLP podawanym w czasie instalagji, krory wskazuje, z

jakich toolbox-6w mozna korzysta¢, jaki jest sposob licencjonowania pracy pakietu itp. Ma-
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tlab wykorzystywany do badan na potrzeby niniejszej rozprawy byl zainstalowany jako licen-
cja badawcza zabezpieczona kluczem sprzetowy.

Oproécz programu giéwnego zostaly zainstalowane dwa foo/box-y pomocnicze: Signal Pro-
cessing Toolbox oraz Image Processing Toolbox. Oba one rozszerzaly podstawows funkcjo-
nalno$¢ Matlaba o funkcje przetwarzajace sygnaly dwuwymiarowe oraz tréjwymiarowe (ob-
razy). Jedng z podstawowych operacji obrébki wstepnej, szczegblowo opisanej w rozdziale
2.1.2 niniejszej rozprawy jest segmentacja sceny i wylonienie z badanego obrazu jedynie ob-
razéw obiektéw badanych z jednoczesnym odrzuceniem obrazéw obicktéw tha, ktére na tym
etapie obrébki stanowi szum informacyjny. Na potrzeby segmentacji obrazéw cyfrowych
wykorzystano algorytm, ktdrego trzonem jest dostarczona z Image Processing Toolbox funk-
Cja regionprops.

4.3.1. Segmentacja obrazéw cyfrowych.

Gléwnym celem segmentacji obrazéw cyfrowych w niniejszej rozprawie jest oddziele-
nie obrazéw badanych obiektéw od obrazéw bedacych tlem badanej sceny.
Pierwszym krokiem algorytmu segmentacji jest podzial obrazu na obwody zamknigte (seg-
menty). Zazwyczaj w kroku tym stosuje si¢ roznego rodzaju zabiegi pomocnicze, np. binary-
zacje, dzigki ktorej zredukowana zostaje ilo$¢ odcieni szarosci, redukujac tym samym ztozo-
no$¢ informacyjng obrazu cyfrowego. Po przeprowadzonej binaryzacji nastgpuje etykietowa-
nie poszczeg6lnych segmentéw, ktérych dalszy opis statystyczny realizowany jest za pomoca
niezwykle uzytecznej i uniwersalnej funkcji regionprops. Jej podstawowe parametry wej-
$ciowe oraz wyjsciowe oméwiono ponizej, natomiast przyklad jej zastosowania zostal omoé-
wiony na przyktadzie w rozdziale 4.4. Mimo, iz jest to do$¢ dobrze udokumentowana funk-
cja, jej ogolny opis zostat tu zamieszczony ze wzgledu na fake, iz niektére parametry wyjscio-
we funkgji sa znakomitymi unikalnymi identyfikatorami klas obicktow — w szczegélnosci
obiektéw plaskich (np. litery).
Funkcja regionprops dokonuje pomiaru podstawowych whasciwosci zamknigtych regionéw

w badanym obrazie. Ma ona stosunkowo proste wywolanie, a jego podstawowa sktadnia to:

{S = regionprops (img, wlasciwosci) I

gdzie: img — badany obraz binarny
whasciwosci — zestaw cech, jakie majg zosta¢ zwrécone przez funkeje

Zestaw cech okreslonych tu jako wlasciwosci to ciagi znakéw, przedstawiajacych angielskie
nazwy zwracanych cech. Zazwyczaj stosowane sa tylko dwa ciagi znakéw: ‘all’ oraz ‘basic’.

W wyniku dzialania funkcji powstaje struktura danych, ktérg mozna poréwna¢ do tablicy
danych typu rekordowego w jezykach wysokiego poziomu. Ilo$¢ elementéw tablicy (rekor-
déw) odpowiada ilo$ci przebadanych elementéw (obszaréw zamknigtych) w obrazie, nato-

miast struktura pojedynczego rekordu zalezy od ciagu (ciagéw) znakéw okreslonych jako
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wlasciwosci wywolania funkgji. Pefen zestaw cech zwracany przy zastosowaniu ciagu ‘all’
przedstawia si¢ nastgpujaco: ‘Area’, ‘BoundingBox’, ‘Centroid’, ‘ConvexArea’,
‘ConvexHull’, ‘ConvexImage’, ‘Eccentricity’, ‘EquivDiameter’, ‘EulerNumber’, ‘Extent’,
‘Extrema’, ‘FilledArea’, ‘FilledImage’, ‘Image’, ‘MajorAxisLength’, ‘MinorAxisLength’,
‘Orientation’, ‘Perimeter’, ‘PixelldxList’, ‘PixelList’, ‘Solidity’. W przypadku wlasciwosci
okre$lonej stowem ‘basic’ zwracane sg jedynie cechy: ‘Area’, ‘BoundingBox’ oraz ‘Centro-
id’. Na potrzeby prototypowania okreslonych rozwiazan mozna na wejsciu okresli¢ tylko te
cechy, ktére w danym rozwigzaniu beda potrzebne. Wéwczas zamiast stéw ‘all’ lub ‘basic” w
wywolaniu wypisuje si¢ list¢ pozadanych cech oddzielonych przecinkiem.

Ponizej przedstawiono krétki opis wlasnosci przydatnych podczas tworzenia mechanizméw
identyfikacji obicktéw na obrazach cyfrowych.

‘Area’ — liczba pikseli w pojedynczym regionie,

‘BoundingBox’ — najmniejszy prostokat opisujacy region, zwracany jako para wspotrzed-
nych, gdzie pierwsza z nich to wspétrzedne gérnego lewego naroznika, natomiast druga to
dlugos¢ prostokata podawana w kolejnoéci x, y. Warto$¢ wielowymiarowa moze by¢ stoso-
wana do tréjwymiarowych typéw danych — wéwczas zamiast prostokata opisujacego, zwra-
cany jest szescian,

‘Centroid’ — $rodek cigzkosci regionu. Pierwsza wspéirzedna jest horyzontalna (x), druga
natomiast jest wertykalna (y). Kolejne elementy wspotrzednej zwracane sa w kolejnosci wy-

miaréw badanej macierzy.

Rysunek 34. Badany region (biale pole) z podstawowym opisem statystycznym
Rysunek 34 przedstawia obraz binaryzowany z wydzielonymi trzema parametrami:
— BoundingBox - linia zielona — pokazuje najmniejszy prostokat opisujacy badane pole,
— Centroid - czerwona gwiazdka — pokazuje $rodek cigzkoéci obszaru,

— Perimeter (p) — niebieski obszar — symbolizuje obwéd obszaru.
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W pobieznej (zgrubnej) klasyfikacji obiektéw mozna postuzy¢ si¢ tzw. wspétczynnikiem

ksztateu (c;), ktéry mozna oblicza¢ dla poszczegdlnych obszaréw analizowanego obszaru:

&= (11)

gdzie: p — obwdd obszaru na obrazie binarnym

s — pole powierzchni obszaru

‘ConvexHull’ — otoczka wypukta. Pole to przechowuje listg¢ wspotrzednych elementéw wie-
lokata stanowiacego otoczke wypukta — powierzchniowo najmniejszego wielokata catkowicie
opisujaca badany region. Dziata tylko na obrazach dwuwymiarowych.

‘ConvexImage’ — obraz otoczki wypuklej. Pole to przechowuje obraz binarny otoczki wypu-
klej. Obraz w calo$ci miesci si¢ w prostokacie opisanym wspotrzednymi BoundingBox Dziata
tylko na obrazach dwuwymiarowych.

‘Eccentricity’ — mimosrdd elipsy odpowiadajacej drugiej identycznej elipsie w regionie. Mi-
mosrdd jest to stosunek odlegtosci migdzy ogniskami elipsy i dtugosci jej osi gléwnej. War-
tos¢ jest z zakresu 0..1 (wartosci 0 i 1 sa przypadkami skrajnymi). Elipsy, ktérych mimosréd
wynosi 0 s3 okregami, natomiast mimo$réd o wartosci 1 jest charakterystyczny dla odcinka.
Dziata tylko na obrazach dwuwymiarowych.

‘EquivDiameter’— promieri okr¢gu o tym samym polu, co badany region, obliczony jako:

4*' Area'
T

(12)

' EquivDiameter' =

Dziata tylko na obrazach dwuwymiarowych.

‘EulerNumber’~ wilasnos$¢ przechowuje réznicg ilosci obszaréw w regionie i ilosci dziur
w tymze regionie.

‘Extent’— wlasno$¢ wyrazona jako stosunek powierzchni obszaru do pola powierzchni pro-

stokata go opisujacego:

' Extent'= — i , (13)
s(' BoundingBox')

gdzie: s — pole powierzchni obszaru

Dziata tylko na obrazach dwuwymiarowych.

‘Extrema’~ macierz 8x2; wilasno$¢ przechowuje osiem wspoétrzednych punktéw zestawio-
nych z priorytetem okreslonych bokéw np. gora-lewo i lewo-géra. Dziala tylko na obrazach
dwuwymiarowych.

‘FilledArea’ — wlasno$¢ przechowuje ilo$¢ pikseli zawartych w obrazie bitowym przechowy-

wanym w zmiennej FilledImage’.
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‘FilledImage’ — wlasno$¢ przechowuje binarny obraz obiektu przechowywanego w zmiennej
Tmage’.

‘Image’ — wlasnos¢ przechowuje binarny obraz o rozmiarach opisanych w BoundingBox’,
w ktérym wlaczone piksele odpowiadaja badanemu regionowi, wylaczone za$ sa poza obsza-

rem regionu.

r v

}

y W

a) b)
Rysunek 35. Posta¢ dwoch zmiennych: a) Tmage’,b) FilledImage’

Zrédlo: Image Processing Toolbox Manual for Matlab
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4.4.Przyktady realizacji metod i oprogramowania do modelowania WIS-COH.

W niniejszym podrozdziale przedstawiono realizacj¢ przyktadowej procedury identyfi-
kacji obiektéw wg okreslonych, z géry zadanych kryteriow. Pierwsza cz¢s¢ tego zadania zosta-
fa zaczerpnieta z samouczka programu Matlab® i ze wzgledu na swoja powszechna dostep-
no$¢, ta cze$¢ zdania zostanie oméwiona tylko we fragmentach, ktorych znajomos¢ jest nie-
zbedna do wykonania jej drugiej cz¢sci. Procedura Identifying round objects jest bardzo do-
brym przykladem mozliwosci zastosowania hybrydowych przeksztatcenn Hilberta do zaawan-
sowanej identyfikacji obiektow na cyfrowych obrazach. Z pierwszej tresci zadania wynika, iz
nalezy odnalez¢ na obrazie cyfrowym wszystkie obiekty okrggle.

Etap 1 — Read Image — akwizycja obrazu. Pozyskanie cyfrowego obrazu dowolna metoda.
W tym zadaniu jest to odczyt z dysku, ale moze to by¢ dowolna metoda, ktéra daje w efekcie

obraz statyczny.

Rysunek 36. Cyfrowy obraz nieprzetworzony

Etap 2 — Threshold the Image — binaryzacja obrazu. Na tym etapie nast¢puje wstgpny po-
dzial na obszary, ktére beda traktowane jako obiekty lub tfo.

Rysunek 37.  Obraz pierwotny po binaryzacji oraz usunigciu szumu (etapy 2 i 3)

Etap 3 - Remove the Noise — usuni¢cie szumu. Na tym etapie zostaja usunigte wszystkie

obszary, ktérych powierzchnia jest mniejsza od 30px.

2 Dla Matlaba 2007b: Start -> Toolboxes -> Image Processing -> Demos -> Identifying Round Objects
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Etap 4 - Find the Boundaries — wyznaczenie granic obszaréw. Na tym etapie zostajg zdefi-
niowane tablice wspéirzednych, ktérych wekroryzacja odtwarza ksztalty wszystkich za-
mkni¢tych obszaréw na badanym obrazie.

Etap 5 — Determine which Objects are Round - wyznaczenie obicktéw ,,najbardziej okra-
glych”. Okraglo$¢ obiektu w tym przypadku okreslana jest zalezno$cia matematyczng wyra-

Z0Ng ponizszym wzorem:

m=—— (14)

gdzie: m — wspblczynnik okraglosci. Dla idealnego okregu m = 1
s — powierzchnia badanego ksztattu

0 — obwéd badanego ksztattu

W zadaniu przyjeto, ze kazdy ksztatt, dla ktérego m > 0,94 jest okregiem.

0.90

0.58\

0.95

096®

Rysunek 38. Wynik dziatania skryptu z zadania demonstracyjnego

Dalsza czgé¢ zadania stanowi catkowicie nowe, wlasne opracowanie na potrzeby wykazania
wlasciwosci niektérych hybryd przeksztalcenia Hilberta.

Etap 6 — Odnalezienie ksztaltu podobnego do wzorca — wyznaczenie obiektu najbardziej
podobnego do wzorca. W poprzednim etapie, gdzie wyznaczano obszary najbardziej okragte
przyjeto zasade, ze ,okragltos¢” obszaru mozna zdefiniowaé w postaci wzoru matematycznego
(wzbr 28).

W etapie széstym natomiast konieczne jest zastosowanie metod korelacyjnych do wyznacze-
nia segmentu badanego obrazu, ktérego wspétczynnik korelacji postaci przetworzonej oraz
tak samo przetworzonej postaci wzorca jest najwyzszy. Dla wykazania korzysci ptynacych z
zastosowania hybrydowych przeksztalcen Hilberta, eksperyment podzielono na kilka se-
kwengji korelacyjnych:

— korelacja obiektéw pierwotnych,

— korelacja wektoréw Radona na obrazach pierwotnych,

— korelacja obicktéw poddany hybrydzie HTA,
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— korelacja obiektéw poddanych hybrydzie HT A-Radon.

Wspélczynniki korelacji wzgledem wzorca przedstawiono ponizej.

a)

@EES & o

b)

Obrazy pierwotne badanych ksztattéw

Korelacja obrazéw pierwotnych ze wzorcem

1 T T

T

T T

1 2 3 4 5 6

19) Korelacja wektoréw Radona na pierwotnych ze wzorcem

3

4

Korelacja obrazéw HTA ze wzorcem

T

1 2 3 4 5 6
e) Korelacja wektoréw Radona na HTA ze wzorcem
1 T T T T T T
0.5 r
0
_05 1 | |
1 2 3 4 5 6

Rysunek 39. Wspoétezynniki korelacji w zaleznosci od przetwarzania



Charakterystyki korelacyjne, ktére przedstawia rysunek 39 obrazuja skrajne wartosci wspot-
czynnikéw korelagji dla réznych przetwarzan. Obraz wzorca, z ktérym poréwnywano po-

szczegdlne elementy obrazu, przedstawia rysunek 40 (obraz cyfrowy ksztaltu wzorca).

Rysunek 40. Cyfrowy obraz poszukiwanego ksztaltu.

Z poréwnania dwoch ostatnich rysunkéw wynika niezbicie, ze najlepsza sprawnoé¢ identyfi-
kacyjna ma w tym przypadku hybryda HT'A-Radon, dzigki ktérej mozliwa jest identyfikacja
obiektéw na bazie wzorcéw w warunkach uniemozliwiajacych okreslenie podstawowych
parametréw morfologicznych — skali oraz orientacji. W procedurze tej najistotniejszy jest
brak koniecznos$ci niwelowania weze$niej wymienionych znieksztalcenn morfologicznych; nie
do$¢, ze wzorzec stanowi 135% wielkosci obiektu na obrazie, to dodatkowo jest obrécony

0 30° (rysunek 41).

Rysunek 41. Porownanie rozmiaréw i orientacji obrazu badanego oraz wzorca

Skrypt 9 (suplement) realizuje szsty etap zadania.
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5.Badania eksperymentalne metod cyfrowej optyki Hilberta i tech-
nologii uogolnionej amplitudowo-fazowej analizy w wybranych
domenach obrazéw obiektow

5.1.Struktura specjalizowanej bazy obrazéw testowanych obiektow i tekstur.

Bez wzgledu na metodg poréwnawcza badz metody, ktdrych uzyto do identyfikacji obiektéw
— elementéw scen zlozonych — kazda z nich sprowadza si¢ do poréwnania obrazu badanego
obiektu ze wzorcem w ramach okreslonego systemu zarzadzania informacja. Wzorce nato-
miast, zanim stang si¢ etalonami obiektéw okreslonych klas, musza zosta¢ odpowiednio ob-
robione oraz skatalogowane.
Na potrzeby katalogu wzorcéw konieczne jest zdefiniowanie modelu danych, keéry bylby
zdolny do jak najpelniejszego opisu statystycznego oraz morfologicznego katalogowanych
probek obrazéw cyfrowych[6]. Poza koniecznoscig posiadania informacji, w jakich warun-
kach oprawy scenicznej pobrano konkretny obraz, ich przydatnos¢ jest nie do przecenienia
w sytuacjach, w ktérych nalezy odtworzy¢ pewne warunki srodowiskowe, aby wszystkie
probki byly pobierane w tych samych warunkach scenicznych. W przypadku systeméw
akwizycji obrazéw, w ktérych cyfrowy aparat fotograficzny odpowiada za pobieranie obrazu
do systemu, obrazy cyfrowe zazwyczaj zapisywane sa w jednym z formatéw JP(E)G, TIFF lub
RAW. O ile dwa pierwsze formaty maja otwarta specyfikacj¢ (niezalezng od producentéw
aparatéw cyfrowych), o tyle format okreslany jako RAW jest formatem charakterystycznym
dla konkretnego producenta sprzgtu do cyfrowej akwizycji obrazéw i nie ma ujednolicone;j
struktury. Najwazniejsze jest jednak to, ze bez wzgledu na format, wszystkie
trzy zdolne s3 do przechowywania informacji w formacie EXIF [22]. Jest to bardzo uniwer-
salny jezyk znacznikéw, ktéry ma zastosowanie nie tylko w dziedzinie cyfrowej fotografii, ale
réwniez w dziedzinie innych mediéw cyfrowych, np. sekwencji klatek video lub pliku audio
traktowanego jako sygnal. Przechowuje on w znormalizowanej formie najwazniejszej poza-
obrazowe informacje nt. parametréw, z jakimi pobrano cyfrowy obraz do systemu. Jego wy-
korzystanie nie ogranicza si¢ jedynie do dziatalnosci naukowej, ale réwniez w warunkach
domowych posiadanie mozliwie szerokiego zestawu informacji o wykonanym zdjeciu jest
szczegolnie uzyteczne. Na potrzeby zdefiniowania modelu logicznego danych opisujacych
probke mozna wykorzysta¢ kilkanascie znacznikéw formatu EXIF, ktérych wartosci zostang
wlaczone do zestawu cech opisujacych pojedynczy rekord — probke.

Tabcla6.  Zmicnneformatu BFIX whiczane doopisa probki

Znacznik [H] Nazwa znacznika Znaczenie (opis)
829A Exposure Time Czas ekspozycji
829D F Number Przestona
8822 Exposure Program Typ ekspozycji
8827 ISO Speed Rating Czulo$¢ ISO
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Znacznik [H] Nazwa znacznika Znaczenie (opis)
9000 Exif Version Numer wersji formatu EXIF
9003 Date Time Original Czas wykonania zdjgcia
9004 Date Time Digitized Czas zapisu zdjecia w postaci cyfrowej
9101 Components Config Informacje o kolejnosci i typie kanatéw
9202 Aperture Value Ogniskowa
9203 Brightness Value Jasno$¢ sceny
9204 Exposure Bias Value Korekcja ekspozycji (Ev)
9206 Subject Distance Odleglos¢ od celu
9208 Light Source Typ $wiatla oswietlajacego sceng
A001 Color Space Przestrzen barwna (sRGB lub niezdefiniowana)
A002 Pixel X Dimension Szeroko$é¢ obrazu w pikselach
A003 Pixel Y Dimension Wysokos¢ obrazu w pikselach

Format EXIF jest uzyteczny i pomocny przy katalogowaniu prébek, ale ma on jedynie zasto-
sowanie w przypadku aparatéw cyfrowych, jako zrédet obrazéw. Urzadzenia te nie sg jednak
jedynym zrédlem obrazéw cyfrowych. Bardzo czgsto Zrédiem obrazéw cyfrowych sg skanery
plaskie, badz b¢bnowe. W ich przypadku najczgéciej formatem wymiany danych jest TIFF,
jednakze programy skanujace nie zapisuja w plikach wszystkich w/w informagji, a jedynie
niektére z tych znacznikéw. W takim przypadku rodzi si¢ potrzeba uzupelnienia danych.
Jest to szczegélnie istotne, gdy np. tworzona jest baza obrazéw struktur krystalicznych metali
lub innych tekstur przestrzenno-dynamicznych. Woéwczas poza samym obrazem sceny,
w bazie przechowywane s obrazy poszczegdlnych elementéw tejze sceny (pojedyncze krysz-
taly). W takim zestawie danych bardzo istotne sa dodatkowe informacgje, jak np. informacje
o regionie, z ktérego pochodzi dany element sceny, powierzchnia pojedynczego krysztahy,
jego $rodek cigzkosci itp. Wszystkie te dane powstaja w czasie wstepnej analizy obrazéw
(segmentacji sceny). Whasnosci te w wigkszosci powstaja w czasie analizy obrazu, jako jeden
obszerny typ danych zawierajacy wszystkie niezbedne informacje otrzymywane podczas ana-
lizy statystyczno-morfologicznej. Jeden ze sposobéw pozyskiwania powyzszych informacji
zostal opisany w rozdziale 4.3.1, a zbi6r zawierajacy cz¢s$¢ cech opisujacych probke przedsta-

wia tabela 7.

Tabela 7. Parametry statystyczno-morfologiczne wlaczone do opisu probki
Wiasnosé Znaczenie
X offset Przesunigcie X obszaru segmentu wzgledem calego rysunku
Y offset Przesunigcie Y obszaru segmentu wzgledem calego rysunku
Parent ID Identyfikator obiektu nadrzednego
ExifID Identyfikator zestawu parametréw EXIF
BoundingBox Wspélrzedne obszaru obicktu na obrazie
ConvexHull Wspélrzedne wielokata otoczki wypuklej

Convex Image

Obraz wielokata otoczki wypuklej

Convex Area Powierzchnia otoczki wypuklej
Area Powierzchnia obiektu
Centroid Srodek cigzkosci obiektu
Perimeter Obwéd obiektu

Filled Area Powierzchnia obrazu bez dziur
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Wiasnosé Znaczenie
Filled Image Obraz bez dziur

Image Obraz segmentu (elementu strukturalnego SD)

Polgczenie zestawu whasciwosci z obu tabel daje mozliwie petny zestaw cech opisujacych po-
szczegolne elementy sceny.

Obie tabele stanowa logiczny model danych zdefiniowany na potrzeby opisywania etalonow
prébek. Zbiodr cech zawartych w tabeli powyzej zawiera pole Parent ID — jest to identyfika-
tor prébki wyzszego rzedu, ktéry odwotuje si¢ to tej samej tabeli. Taka relacja nosi nazwe
rekurencyjnej i wymaga specyficznego sposobu implementacji w wybranym fizycznym sys-
temie zarzadzania bazami danych. Cecha ExifID z kolei jest odwotaniem do tabeli zewngtrz-
nej przechowujacej rekordy danych EXIF. Nie zostala ona zintegrowana z zestawem cech
morfologicznych kazdej z prébek z bardzo prostej przyczyny — caly hierarchiczny zestaw re-
kordéw danych morfologicznych moze si¢ odnosi¢ do jednej tylko sceny, ktérej obraz zostat
pozyskany ze $ci$le okreslonymi parametrami sceny, ktére majg charakter pierwotny i nie

ulegaja zmianie wraz z kolejnymi etapami przetwarzanie — segmentacji sceny.
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5.2.Analiza i identyfikacja obrazéw amplitudowo-fazowych obiektow poruszaja-
cych sie

5.2.1. Metodologia eksperymentu korelacyjnego

Pomimo faktu, iz w literaturze podkreslano ztozonos¢ obliczeniowy iteracyjny algo-
rytméw korelacyjnych, podjgto probe jego implementacji — na razie w warunkach laborato-
ryjnych. Eksperyment 6w zaklada, ze zostang ze soba poréwnane obickty tréjwymiarowe
obracane w trzech wymiarach w zakresie 0+10° z krokiem 1°. Od razu bylo wida¢, ze do
stworzenia wszystkich prébek jednego obicktu konieczne bylo wygenerowanie obrazéw w
ilosci 113 (11 krokéw katowych i 3 wymiary), co dawato 1331 obrazéw obiektéw tylko jed-
nej klasy. Aby stworzy¢ jedng macierz korelacyjna, konieczne bylo poréwnanie 13312 obra-
26w, czyli 1,771,561 poréwnan. Przy zalozeniu, ze zostanie przebadanych 7 réznych prze-
ksztalcerr dla 6-ciu obiektow 3D, otrzymano do$¢ duzg ilos¢ wspétezynnikéw korelacji ko-
niecznych do policzenia: 297,622,248 korelacji tylko dla jednej orientacji obiektéw, a bylo
ich trzy: obiekty BW widziane z boku, obickty BW widziane z gory oraz obickty Grey wi-
dziane z boku.

Juz na etapie pierwszych eksperymentéw korelacyjnych z wykorzystaniem skryptu opi-
sanego w rozdziale 4.2, koniecznym stalo si¢ zoptymalizowanie danych, na keérych dokony-
wano obliczerr korelacyjnych, jako ze do obliczenia jednej macierzy sktadajacej si¢ z ok. 1,7
mln wspétezynnikéw potrzeba byto 20,5 h dla macierzy mi¢dzyklasowej oraz 10,25 h dla
macierzy wewnatrzklasowej. Zdecydowano si¢ wigc na zamiang typu danych, na ktérych
prowadzono eksperyment. Pierwotnie eksperyment prowadzony byl na typie double, ktéry
zmieniono na int8. Wspdtczynnik korelacji migdzy macierza double a int8 tej samej macie-
rzy wynidst $rednio 0,9995, co dawalo pewnos¢, ze wyniki eksperymentu korelacyjnego beda
wiarygodne.

W pierwszej fazie eksperymentu nieustannie prowadzono optymalizacje algorytmu,
ktéra po pewnym czasie zaowocowata zredukowaniem czasu obliczen dla macierzy we-
wnatrzklasowej z pierwotnych 10,25 h do 6 minut.

Optymalizacja mozliwa byla do osiagni¢cia w miejscach, w ktérych oprogramowanie
do modelowania technologii informacyjnej Matlab byto najmniej wydajne — na styku JVM
(wirtualna maszyna Javy) — fizyczne komponenty systemu komputerowego. I tak w pierw-
szym kroku przeniesiono dane podlegajace korelowaniu z sieci lokalnej na dyski twarde (o
ponadprzecigtnej wydajnosci, dodatkowo pracujace w rezimie RAID-0) komputera lokalne-
go, co skrécito obliczenia z 10,25 h do $rednio 40 minut. Przeniesienie danych korelowanych
z HDD do RAM-u komputera skrécito obliczenia do 12 min (Intel Core2Duo, 2,53 GHz,
Windows XP 32-bit, 2 GB RAM DDR2). Kolejna optymalizacja polegata na zmianie plat-
formy systemowej na Intel Core i5 2,53 GHz, Windows 7 Home Premium 64-bit, Matlab
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64-bit, gdzie osiagnicto satysfakcjonujace 6 minut na jedng macierz korelacji wewnatrzkla-
sowych.
5.2.2. Eksperyment korelacyjny

W celu wylonienia najskuteczniejszej $ciezki przetwarzan obrazéw obiektow latajacych
przyjeto wspdlne kryteria dla réznych klas obiektow. Wyniki przedstawione w niniejszym
podrozdziale odnosza si¢ do szesciu klas obiektéw, ktére przebadano metodami korelacyj-
nymi. Tabela 8 oraz tabela 9 przedstawia obiekty pogrupowane w szeéciu klasach. Oznacze-
nia koloréw wskazuja kolor charakterystyki uzyty dla danej klasy bez wzgledu na rodzaj ba-
danego przeksztalcenia hybrydowego.

Tabela 8. Ksztalty samolotéw (2325, 2364, 2368) uzyte do ewaluacji metod korelacyjnych. a) - widok samolotu pod
katem 90°/0°/0°, b) widok samolotu pod katem 0°/0°/0°, ¢) widok samolotu pod katem 10°/10°/10°

B 2325 Bl 2364

B 2368

B

[ 1

§ |

o

Wyniki przedstawione w niniejszym podrozdziale odnosza si¢ do eksperymentu,
w ktérym iteracyjnie poréwnywano ze soba samoloty, ktérych kat obserwacji zmieniat si¢ w
trzech wymiarach od 0° do 10° z krokiem co 1°, co dawato facznie (11°)* = 1771561 poréw-

nan. Dla kazdego z obicktéw przedstawiono réwniez obraz macierzy korelacji wewnatrzkla-
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sowej, czyli takiej, ktéra przedstawia wyniki korelacji obrazéw tego samego obiektu obser-
wowanego pod réznymi katami.

Tabela 9. Ksztalty samolotéw (2325, 2364, 2368) uzyte do ewaluacji metod korelacyjnych. a) - widok samolotu pod
katem 90°/0°/0°, b) widok samolotu pod katem 0°/0°/0°, ¢) widok samolotu pod katem 10°/10°/10°

B 2360 B 2372 B 2386

Eksperyment przeprowadzono na oémiu réznych postaciach tego samego obiekru,

z czego szes¢ to hybrydy przekszratcenia Hilberta:

— NTR - postaé pierwotna obrazéw - nieprzetworzona

— FFT - hybryda transformaty FFT z zamienionymi ¢wiartkami - FFTShift wraz z usunie-
tym komponentem statym ze wspéiczynnikiem 0,2 rozmiaru transformaty (wigcej w roz-
dziale 4.1.2)

— FCA - hybrydowe anizotropowe przeksztalcenie Hilberta-Foucault-a (4.1.6)

— FCI - hybrydowe izotropowe przeksztalcenie Hilberta-Foucault-a (4.1.5)

— HTA - hybrydowe anizotropowe przeksztatcenie Hilberta (4.1.4)

— HTI - hybrydowe izotropowe przeksztalcenie Hilberta (4.1.3)

— RAD_HTA - hybrydowe przeksztalcenie Hilberta-Radona (4.1.7)

— RAD_NTR - hybrydowe przeksztalcenie Radona na obrazach pierwotnych (NTR)
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Na potrzeby kazdego eksperymentu przygotowano taki sam zestaw probek. Byly to
pliki zapisane w formacie BMP bez kompresji z 8-bitowg glebia koloréw - odcienie szarosci.
Wszystkie obrazy nieprzetworzone (wejsciowe) mialy identyczna strukeure:

— wymiar pola obiektu: 128 x 128 px

— obwddka wokét pola obiektu: 64 px

Oznacza to, ze kazda badana bitmapa miata wymiar 256 x 256 px, z czego obickt zajmowal
srodek 128 x 128 px. Biala obwddka wokot obiektu byta niezbedna, gdy obraz poddawano
przeksztalceniu Hilberta, ktére jest podstawg wszystkich badan w niniejszej rozprawie i dzia-
la nie tylko na samym sygnale, ale rozciaga si¢ réwniez przed i po sygnale na ok. % jego dtugo-
$ci. Naturg tego przeksztalcenia oméwiono szczegétowo w rozdziatach 4.1.3 - 4.1.6.

W niniejszym eksperymencie przebadano dwie klasy obrazéw. Obrazy binarne oraz obrazy w
odcieniach szarosci. Tutaj obrazy binarne rozumiane s jako czarny ksztatt odpowiadajacy
ksztaltem obiektowi w odcieniach szarosci.

Tabela 10.  Klasy obrazéw badanych. (a) - obrazy binarne, (b) obrazy w odcieniach szarosci

a) b)

Obrazy binarne nie s3 - jakby mogta wskazywac¢ ich nazwa - obrazami jednobitowymi. Sg to

oémiobitowe bitmapy wygenerowane z antyaliasingiem (wygladzaniem krawedzi) domysl-
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nym dla programu 3D StudioMAX v.9. Zabieg taki ma na celu znaczne obnizenie ztozonosci
obliczeniowe eksperymentu. Antyaliasing ze swojej natury symuluje bitmape o duzo wyzszej
rozdzielczodci, niz jest w rzeczywistoéci. Jest to symulacja nie tylko na poziomie zmystu
wzroku, ale réwniez w petni wartosciowy mechanizm upraszczajacy ztozonosé obliczeniows
okolo szesnastokrotnie. Poza tym, mapa jednobitowa moze si¢ sprawdzi¢ jedynie jako obraz
pierwotny - nieprzetworzony. Wszystkie hybrydy przetwarzan zastosowane w niniejszej roz-
prawie produkuja na wyjéciu macierze, ktérych elementy sg liczbami zmiennoprzecinkowymi
podwdjnej precyzji. Dopiero na etapie normalizacji symetrycznej z macierzy bedacej wyni-
kiem dowolnego przeksztalcenia powstaje obraz o$miobitowy, wobec czego za whasciwe
uznano podejscie opisane powyzej.

W eksperymencie rozpatrzono dwa najczgéciej wystepujace przypadki podczas obser-
wacji obiektéw: obserwacj¢ z ziemi oraz obserwacjg satelitarna.
W pierwszym przypadku samolot widziany jest najcz¢sciej z boku. Obserwacja z ziemi
z punkeu kolizyjnego z kursem samolotu z reguly nie jest prowadzona ze wzgledéw prakeycz-
nych: nie jest to czas na identyfikacj¢ obiektu, a na ewakuacje...
Drugi przypadek natomiast to zdj¢cia satelitarne, w ktérych badany obiekt widziany jest
zgoéry. W tym przypadku obserwator najczesciej widzi samolot z gory w tzw. ,planie”.
Wszelkie zakldcenia katowe, mogace wystegpowaé w obu scenariuszach zazwyczaj s3 pomijane
ze wzgledu na fake, iz s3 one zwigzane z manewrami podczas lotu, a ktdre trwajg na tyle krot-
ko, ze proces identyfikacji obicktu mozna rozpoczaé zaraz po zakonczeniu manewru. Roz-
wigzanie to niesie ze sobg jeszcze jedna korzy$¢ w przypadku obserwagji satelitarnej - poza
sama mozliwoscig identyfikacji obiektu, mozliwe jest réwniez okreslenie jego biezacego kur-
su.

Prawdopodobienistwo podjecia biednej decyzji identyfikacyjnej zostalo szczegétowo
omdwione ponizej oraz przedstawione w tabeli pod koniec kazdego z eksperymentow. Wy-
korzystywang tu miarg jest miara petnego sredniego ryzyka podjecia blednej decyzji.

b

Rysunck 42. Schemat wyznaczania bledow identyfikacji.

gdzie: b — sumaryczny blad identyfikacji § = Z b, » b« — blad czgsciowy
x=1

b, — badane histogramy korelacyjne



Rysunek 42 przedstawia schemat obliczania prawdopodobienstwa blednej identyfikacji
obiektéw. Czes¢ wspdlna dwdch histograméw symbolizuje pole powierzchni (s) bledu iden-
tyfikagji (4). Poniewaz pola powierzchni obu badanych histograméw musza by¢ identyczne,

blad identyfikacji obliczany jest jako

_ )
s= (15)
»(h.)
gdzie: s — sumaryczne prawdopodobienstwo blednej identyfikacji

b — sumargezny biyd identyfikacii wyrazonyjako b =br#és

p - pole powierzchni obszaru
Na laczny biad identyfikacji sktadajy si¢ dwa bledy: by oraz ba. Pierwszy z nich to tzw. blad
»wypadnigcia z klasy”. Wystepuje on wéwczas, gdy badany obiekt nie zostat zakwalifikowany
do swojej macierzystej klasy. Drugi bfad natomiast to blad wlaczenia badanego obiektu do
klasy, z ktérej nie pochodzi. Wystepuje on wéwczas, gdy badany samolot zostanie blednie
rozpoznany i zakwalifikowany do niewtasciwej klasy.

W kazdy z przedstawionych ponizej eksperymentéw zamieszczono tabele btedéw iden-
tyfikacji. Poniewaz konieczne bylo przeanalizowanie bledéw identyfikacji wszystkich samo-
lotéw migdzy soba, kazda z tabel zawiera 15 wierszy odzwierciedlajac tym samym zalezno$ci
mig¢dzy samolotami na zasadzie ,kazdy-z-kazdym”, z wylaczeniem sze$ciu eksperymentéw, w
keérych poréwnywane byly samoloty wewnatrzklasowo.

Kolejng kwestia wymagajaca wyjasnienia jest graficzna interpretacja wewnatrzklaso-
wych macierzy korelacyjnych, ktére stanowig integralng czeé¢ kazdego z eksperymentow.
Poznanie ich struktury jest istotne dla zrozumienia, w jaki sposéb nastepuje rozklad wspot-
czynnikéw korelacji wewnatrz pojedynczej klasy badanych obiektéw. Powstaja one w wyni-
ku dziatania ponizszego skryptu, natomiast rysunck 43 przedstawia jeden petny wycinek ma-
cierzy korelacyjnej. Kazda macierz sklada si¢ ze 121 (11 x 11) takich wycinkow. Okresowy
wyglad macierz zawdzigcza iteracyjnemu przebiegowi eksperymentow. Jej wycinek przedsta-
wiony na wyzej opisanym rysunku réwniez ma iteracyjny charakter. Rysunek 43 poza samym
wycinkiem przedstawi kolejno$¢ przebiegu iteracji w calym eksperymencie. Zestaw szesciu
macierzy korelacji wewnatrzklasowych zawiera wspolng skale barwna opisujaca zakres warto-
$ci korelacji w catym eksperymencie.

Ze wzgledu na ograniczone mozliwosci technologiczne urzadzenia drukujacego, za
pomocy ktérego wydrukowano niniejsza rozprawe, w kazdym eksperymencie zamieszczono
réwniez przebieg transponowanej przekatnej macierzy korelacyjnej. Charakterystyka ta po-
kazuje wyrazniej ksztalt przebiegu wspétczynnikéw korelacji w istotnych dla eksperymentu

miejscach.
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ierzy korelacyjne;j.

Rysunek 43. Graficzna interpretacja mac
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5.2.3. Samoloty obserwowane z boku (obserwacja z ziemi). Obrazy binarne
BW NTR — Obrazy pierwotne, nie przeksztatcone

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

nieprzetworzonych (wejéciowych).

Tabela11.  Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla bitmap wejéciowych czarno-bialych nie
poddanych jakimkolwiek przeksztalceniom.
Klasa Si Sz 8
2325-2364 3,05E-05 4,52E-05 7,56E-05
2325-2368 0,178 5,53E-05 0,178
2325-2369 0,000 0,000 0,000
2325-2372 0,227 0,004 0,230
2325-2386 0,013 0,446 0,458
2364-2368 0,000 0,000 0,000
2364-2369 0,182 0,004 0,186
2364-2372 0,042 0,003 0,045
2364-2386 0,117 0,003 0,120
2368-2369 0,000 0,000 0,000
2368-2372 0,167 0,003 0,17
2368-2386 0,171 0,005 0,175
2369-2372 0,000 0,000 0,000
2369-2386 0,000 0,000 0,000
2372-2386 1,92E-05 0,522 0,522
Srednia: 0,073 0,066 0,139
Min 0,000 0,000 0,000
Max 0,227 0,522 0,522

0.4

Przekatna transponowana macierzy wewnatrzklasowych obrazéw nieprzetworzonych (NTR)

N

‘U

0 T N
A /|

17

A

2364

| —— 2325

2369

2372 2386 |

200

400

800

1000

1200

Rysunek 44. Wspélezynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (NTR)
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Rysunek 45. Graficzna interpretacja macierzy wspdtczynnikéw korelacji wewnatrzklasowych obrazéw pierwotnych
badanych obicktéw.
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x 10°* NTR 2325
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Rysunek 46. Histogram wspotczynnikéw korelacji wzgledem klasy 2325 BW NTR
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Rysunek 47. Histogram wspotezynnikéw korelacji wzgledem klasy 2364 BW NTR
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Rysunek 48. Histogram wspdiczynnikéw korelacji wzgledem klasy 2368 BW NTR
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Rysunek 49. Histogram wspéiczynnikow korelacji wzgledem klasy 2369 BW NTR
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Rysunek 50. Histogram wspolczynnikéw korelacji wzgledem klasy 2372 BW NTR
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Rysunek 51.  Histogram wspélezynnikéw korelacji wzgledem klasy 2386 BW NTR
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BW HTA — Hybrydowe anizotropowe przeksztatcenie Hilberta

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym anizotropowym przeksztalceniem Hilberrta.

Tabela 12.  Prawdopodobienistwo podjecia biednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu anizotropowemu przeksztalceniu Hilberta.
Klasa S S S
2325-2364 5,76E-04 1,96E-04 7,72E-04
2325-2368 0,125 5,40E-03 0,130
2325-2369 0,000 0,000 0,000
2325-2372 0,238 0,008 0,247
2325-2386 0,464 0,027 0,491
2364-2368 0,001 1,58E-05 0,002
2364-2369 0,221 0,015 0,237
2364-2372 0,075 0,010 0,086
2364-2386 0,132 0,005 0,136
2368-2369 0,000 0,000 0,000
2368-2372 0,002 0,265 0,267
2368-2386 0,188 0,010 0,198
2369-2372 0,000 0,000 0,000
2369-2386 0,017 0,000 0,017
2372-2386 7,89E-04 0,530 0,531
Srednia: 0,098 0,058 0,156
Min 0,000 0,000 0,000
Max 0,464 0,530 0,531

I T R AT T
T ] I Ll
09 R A N Ny A y n
W H i f all

I (<N T N | | | R T /R

WY { V N . i \ ¥ YA
os - fft M \ TR I L

‘ \ / \ 4 ‘ _ ‘ 7 N ¥ \ ‘ N A /) N ) .

B f A % ‘ | | | / ,‘ - A q z N |
oo B Bl B M M N MmN N
1 PR\ S N\ R VY N/ B/ A /A
R A O A A A L/ A/

AN I N N A S
0.4 , 1
l 2325 2364 2368 2369 2372 2386 ]
1 I | | L 1
200 400 600 800 1000 1200

Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (HTA)

Rysunek 52. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (HTA)
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Rysunek 53. Graficzna interpretacja macierzy wspotczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw prze-
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ksztalconych hybrydowym anizotropowym przeksztalceniem Hilberta.
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Rysunek 56. Histogram wspélczynnikéw korelacji wzgledem klasy 2368 BW HTA
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Rysunek 57. Histogram wspétczynnikow korelacji wzgledem klasy 2369 BW HTA
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Rysunek 58. Histogram wspolczynnikéw korelacji wzgledem klasy 2372 BW HTA
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Rysunek 59. Histogram wspolezynnikéw korelacji wzgledem klasy 2386 BW HTA
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BW RAD-HTA — Hybrydowe anizotropowe przeksztatcenie Hilberta-Radona

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektéw

przetworzone hybrydowym przeksztatceniem Hilberta-Radona.

Tabela 13.  Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu przeksztalceniu Hilberta-Radona.

Klasa S] Sz S
2325-2364 0,006 0,005 0,011
2325-2368 0,000 0,000 0,000
2325-2369 0,000 0,000 0,000
2325-2372 0,072 0,014 0,085
2325-2386 0,289 0,028 0,317
2364-2368 0,088 0,058 0,146
2364-2369 0,498 0,032 0,529
2364-2372 0,000 0,580 0,580
2364-2386 0,000 0,553 0,553
2368-2369 0,000 0,446 0,446
2368-2372 0,001 0,340 0,342
2368-2386 0,000 0,422 0,422
2369-2372 0,000 0,315 0,315
2369-2386 0,000 0,283 0,283
2372-2386 0,437 0,019 0,456

Srednia: 0,093 0,206 0,299
Min 0,000 0,000 0,000
Max 0,498 0,580 0,580

0.5

—— 2325 2364 2368 2369 2372 2386 ‘
-0.5 1 1 | 1 L 1
200 400 600 800 1000 1200

Rysunek 60. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (RAD-HTA)
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Rysunek 61. Graficzna interpretacja macierzy wspétczynnikéw korelacji wewngtrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym przeksztalceniem Hilberta-Radona.
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Rysunek 62. Histogram wspélczynnikéw korelacji wzgledem klasy 2325 BW RAD HTA
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Rysunek 63. Histogram wspéiczynnikéw korelacji wzgledem klasy 2364 BW RAD HTA
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Rysunek 64. Histogram wspélczynnikéw korelacji wzgledem klasy 2368 BW RAD HTA
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Rysunek 65. Histogram wspéiczynnikow korelacji wzgledem klasy 2369 BW RAD HTA
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Rysunek 66. Histogram wspotezynnikéw korelacji wzgledem klasy 2372 BW RAD HTA
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Rysunek 67. Histogram wspétczynnikéw korelacji wzgledem klasy 2386 BW RAD HTA
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BW RAD-NTR - Przeksztatcenie Radona na obrazach pierwotnych.

W niniejszym eksperymencie poddano analizie korelacyjne; binarne obrazy wejsciowe

obiektédw przetworzone przeksztatceniem Radona.

Tabela 14.  Prawdopodobienistwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap wejsciowych pod-

danych przeksztalceniu Radona.

Klasa Sx Sz S
2325-2364 0,000 1,000 1,000
2325-2368 0,000 1,000 1,000
2325-2369 0,000 1,000 1,000
2325-2372 0,000 1,000 1,000
2325-2386 0,000 1,000 1,000
2364-2368 0,000 1,000 1,000
2364-2369 0,000 1,000 1,000
2364-2372 0,000 1,000 1,000
2364-2386 0,000 1,000 1,000
2368-2369 0,000 1,000 1,000
2368-2372 0,000 1,000 1,000
2368-2386 0,000 1,000 1,000
2369-2372 0,000 1,000 1,000
2369-2386 0,000 1,000 1,000
2372-2386 0,000 1,000 1,000

Srednia: 0,000 1,000 1,000
Min 0,000 1,000 1,000
Max 0,000 1,000 1,000

Przekatna transponowana macierzy wewnatrzklasowych obrazéw pierwotnych przetworzonych przeksztalcenicm Radona (RAD-NTR)
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Rysunek 68. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (RAD-NTR)
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Rysunek 69. Graficzna interpretacja macierzy wspotczynnikéw korelacji wewnatrzklasowych obrazéw obiektow pier-
wotnych przeksztalconych przeksztatceniem Radona.
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BW HTI — Hybrydowe izotropowe przeksztatcenie Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym izotropowym przeksztalceniem Hilberta.

Tabela 15.  Prawdopodobieristwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-

dowemu izotropowemu przeksztalceniu Hilberta.

Klasa 81 Sz S
2325-2364 0,078 0,017 0,094
2325-2368 0,028 0,396 0,424
2325-2369 0,097 0,002 0,099
2325-2372 0,379 0,033 0,410
2325-2386 0,113 0,472 0,585
2364-2368 0,126 0,024 0,150
2364-2369 0,252 0,015 0,267
2364-2372 0,048 0,004 0,052
2364-2386 0,163 0,020 0,183
2368-2369 0,078 0,006 0,084
2368-2372 0,503 0,019 0,523
2368-2386 0,393 0,054 0,448
2369-2372 0,123 0,032 0,154
2369-2386 0,187 0,015 0,201
2372-2386 0,001 0,567 0,567

Srednia: 0,171 0,112 0,283
Min 0,001 0,002 0,052
Max 0,503 0,567 0,585

Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (HTT)
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Rysunek 71.  Wspélezynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (HTT)

5-26



HTI 2325 HTI 2364

1200 [T
200 400 600 800 1000 1200
HTI 2368

200 400 600 800 1000 1200
HTI 2369

200 e
400 . %"
600
800
1000 i

) X kS : X

1200 §

200 400 600 800 1000 1200 200 400 600 800 1000 1200
HTI 2372 HTI 2386

200

400

600

800

1000

1200

Ny
.

800 1000 1200 200 400 600 800

200 400 600 1000 1200

0.4 0.5 0.6 0.7 0.8 0.9 1

Rysunek 72. Graficzna interpretacja macierzy wspolczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym izotropowym przeksztatceniem Hilberta.
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BW FCA — Hybrydowe anizotropowe przeksztatcenie Foucault-Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym anizotropowym przeksztalceniem Foucault-Hilberta.

Tabela 16.  Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu anizotropowemu przeksztalceniu Foucault-Hilberta.
Klasa S1 Sz S

2325-2364 0,000 0,000 0,000
2325-2368 0,257 0,017 0,275
2325-2369 0,000 0,000 0,000
2325-2372 0,036 0,300 0,336
2325-2386 0,084 0,415 0,499
2364-2368 0,000 0,000 0,000
2364-2369 0,352 0,018 0,370
2364-2372 0,076 0,043 0,119
2364-2386 0,196 0,025 0,220
2368-2369 0,000 0,000 0,000
2368-2372 0,219 0,021 0,240
2368-2386 0,243 0,003 0,245
2369-2372 0,000 0,000 0,000
2369-2386 0,020 0,010 0,029
2372-2386 0,000 0,555 0,554
Srednia: 0,099 0,094 0,192
Min 0,000 0,000 0,000
Max 0,352 0,554 0,554

Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (FCA)
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Rysunek 73. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (FCA)
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Rysunek 74. Graficzna interpretacja macierzy wspéiczynnikéw korelacji wewngtrzklasowych obrazéw obiektow prze-
ksztalconych hybrydowym anizotropowym przeksztalceniem Foucaule-Hilberta.

5-29



BW FCl — Hybrydowe izotropowe przeksztatcenie Foucault-Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektéw

przetworzone hybrydowym izotropowym przeksztalceniem Foucault-Hilberta.

Tabela 17.  Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu izotropowemu przeksztalceniu Foucault-Hilberta.

Klasa S Sz S
2325-2364 0,000 0,000 0,000
2325-2368 0,159 0,011 0,170
2325-2369 0,000 0,000 0,000
2325-2372 0,276 0,010 0,286
2325-2386 0,089 0,422 0,511
2364-2368 0,000 0,000 0,000
2364-2369 0,207 0,013 0,220
2364-2372 0,025 0,004 0,028
2364-2386 0,129 0,005 0,134
2368-2369 0,000 0,000 0,000
2368-2372 0,179 0,020 0,198
2368-2386 0,137 0,034 0,171
2369-2372 0,000 0,000 0,000
2369-2386 0,000 0,000 0,000
2372-2386 0,000 0,542 0,542
Srednia: 0,080 0,071 0,151
Min 0,000 0,000 | 0,0000000
Max 0,276 0,542 0,542
Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (FCI)
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Rysunek 75. Wspélezynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (FCI)
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Rysunek 76. Graficzna interpretacja macierzy wspélczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym izotropowym przeksztalceniem Foucault-Hilberta.
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BW FFTShift — Szybkie przeksztatcenie Fouriera.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone szybkim przeksztalcenicm Fouriera.

Tabela 18.  Prawdopodobienistwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych szyb-
kiemu przeksztalceniu Fouriera.

Klasa S S, S
2325-2364 0,055 0,033 0,088
2325-2368 0,349 0,052 0,401
2325-2369 0,000 0,459 0,459
2325-2372 0,070 0,414 0,484
2325-2386 0,535 0,016 0,550
2364-2368 0,107 0,033 0,139
2364-2369 0,292 0,095 0,387
2364-2372 0,255 0,053 0,308
2364-2386 0,330 0,099 0,429
2368-2369 0,000 0,320 0,320
2368-2372 0,302 0,040 0,342
2368-2386 0,350 0,121 0,471
2369-2372 0,420 0,020 0,440
2369-2386 0,252 0,041 0,293
2372-2386 0,000 0,526 0,525

Srednia: 0,221 0,155 0,376
Min 0,000 0,016 0,088
Max 0,535 0,526 0,550

Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (FFTShift)
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Rysunek 77.  Wspélezynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (FFTShift)
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Rysunek 78. Graficzna interpretacja macierzy wspotczynnikéw korelacji wewngatrzklasowych obrazéw obiektéw prze-
tworzonych szybkim przeksztalceniem Fouriera.
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5.2.4. Samoloty obserwowane z gory (obserwacja satelitarna). Obrazy binarne.
BW NTR PLAN — Obrazy pierwotne, nie przeksztatcone

W niniejszym cksperymencie poddano analizie korelacyjnej binarne obrazy obicktow

nieprzetworzonych (wejsciowych).

Tabela 19.  Prawdopodobienistwo podjecia biednej decyzji identyfikacji dla bitmap wejéciowych czarno-biatych nie
poddanych jakimkolwiek przeksztalceniom.
Klasa S S: S
2325-2364 0,000 0,000 0,000
2325-2368 0,000 0,000 0,000
2325-2369 0,003 0,001 0,004
2325-2372 0,186 0,005 0,190
2325-2386 0,070 0,000 0,070
2364-2368 0,016 0,001 0,017
2364-2369 0,000 0,000 0,000
2364-2372 0,000 0,000 0,000
2364-2386 0,000 0,000 0,000
2368-2369 0,000 0,000 0,000
2368-2372 0,000 0,000 0,000
2368-2386 0,000 0,000 0,000
2369-2372 0,035 0,005 0,039
2369-2386 0,000 0,000 0,000
2372-2386 0,000 0,121 0,121
Srednia: 0,021 0,009 0,030
Min 0,000 0,000 0,000
Max 0,186 0,121 0,190
Przekatna transponowana macierzy wewnatrzklasowych obrazéw nieprzetworzonych (NTR PLAN)
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Rysunek 79. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (NTR PLAN)
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Rysunek 80. Graficzna interpretacja macierzy wspéiczynnikéw korelacji wewngtrzklasowych obrazéw pierwotnych
badanych obicktéw.
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Rysunek 81. Histogram wspélczynnikow korelacji wzgledem klasy 2325 BW NTR PLAN
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Rysunek 82. Histogram wspélczynnikéw korelacji wzgledem klasy 2364 BW NTR PLAN
£ 10° NTR PLAN 2368
6 T T T | T T T T |
Inclass 2368
Ll =— 2368 do 2325 )
2368 do 2364
2368 do 2369
4L 2368 do 2372 =]
2368 do 2386
3 .
2i -
1F \"\ ]
0 ! I L. I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rysunek 83. Histogram wspolczynnikéw korelacji wzgledem klasy 2368 BW NTR PLAN
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Rysunek 84. Histogram wspoltezynnikéw korelacji wzgledem klasy 2369 BW NTR PLAN
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Rysunek 86. Histogram wspolczynnikéw korelacji wzgledem klasy 2386 BW NTR PLAN
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BW HTA PLAN — Hybrydowe anizotropowe przeksztatcenie Hilberta

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obicktow

przetworzone hybrydowym anizotropowym przeksztalceniem Hilberta.

Tabela 20.  Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu anizotropowemu przeksztalceniu Hilberta.
Klasa Si Sz S
2325-2364 0,000 0,000 0,000
2325-2368 0,000 0,000 0,000
2325-2369 0,023 0,002 0,025
2325-2372 0,200 0,019 0,218
2325-2386 0,107 0,004 0,111
2364-2368 0,021 0,001 0,022
2364-2369 0,000 0,000 0,000
2364-2372 0,000 0,000 0,000
2364-2386 0,000 0,000 0,000
2368-2369 0,000 0,000 0,000
2368-2372 0,000 0,000 0,000
2368-2386 0,000 0,000 0,000
2369-2372 0,064 0,006 0,071
2369-2386 0,000 0,000 0,000
2372-2386 0,000 0,140 0,140
Srednia: 0,028 0,012 0,039
Min 0,000 0,000 0,000
Max 0,200 0,140 0,218
Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (HTA PLAN)
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Rysunek 87. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (HTA PLAN)
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Rysunek 88. Graficzna interpretacja macierzy wspolczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym anizotropowym przeksztalceniem Hilberta.
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Rysunek 89. Histogram wspétczynnikéw korelacji wzgledem klasy 2325 BW HTA PLAN
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Rysunek 90. Histogram wspélczynnikéw korelacji wzgledem klasy 2364 BW HTA PLAN
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Rysunek 91.  Histogram wspotezynnikéw korelacji wzgledem klasy 2368 BW HTA PLAN

5-40



< 10* HTA PLAN BW 2369

18 T | T T 1 T | T T
16 H Inclass 2369
—— 2369'd0:2325
14 U 2369 do 2364
2369 do 2368
12 H 2369 do 2372
2369 do 2386
10 -
8 -
6 -
‘r
2
0 I I I e X 1 I L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Rysunek 92. Histogram wspéiczynnikow korelacji wzgledem klasy 2369 BW HTA PLAN
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Rysunek 94. Histogram wspéiczynnikow korelacji wzgledem klasy 2386 BW HTA PLAN
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BW RAD-HTA PLAN — Hybrydowe anizotropowe przeksztatcenie Hilberta-

Radona

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym przeksztalceniem Hilberta-Radona.

Tabela21.  Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu przeksztalceniu Hilberta-Radona.

Klasa S1 Sz S
2325-2364 0,014 0,002 0,016
2325-2368 0,000 0,000 0,000
2325-2369 0,000 0,000 0,000
2325-2372 0,259 0,013 0,271
2325-2386 0,000 0,000 0,000
2364-2368 0,000 0,000 0,000
2364-2369 0,000 0,000 0,000
2364-2372 0,107 0,050 0,156
2364-2386 0,000 0,000 0,000
2368-2369 0,000 0,000 0,000
2368-2372 0,000 0,000 0,000
2368-2386 0,000 0,000 0,000
2369-2372 0,132 0,012 0,144
2369-2386 0,230 0,005 0,234
2372-2386 0,093 0,014 0,107

Srednia: 0,056 0,006 0,062
Min 0,000 0,000 0,000
Max 0,259 0,050 0,271

Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (RAD-HTA PLAN)
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Rysunek 95. Wspélezynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (RAD-HTA

PLAN)

5-42



RAD-HTA PLAN 2325 RAD-HTA PLAN 2364

200

400

600

800

1000

1200

200 400 600 800 1000 1200 200 400 600 800 1000 1200
RAD-HTA PLAN 2368 RAD-HTA PLAN 2369

200

400

600

800

1000

1200

200 400 600 800 1000 1200 200 400 600 800 1000 1200
RAD-HTA PLAN 2372 RAD-HTA PLAN 2386

200 §
400 §
600
800
1000 |

1200 §

200 400 600 800 1000 1200 200 400 600 800 1000 1200

0.8 0.85 0.9 0.95 1

Rysunek 96. Graficzna interpretacja macierzy wspdtczynnikéw korelacji wewnatrzklasowych obrazéw obiektow prze-
ksztalconych hybrydowym przeksztalceniem Hilberta-Radona.
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Rysunek 97. Histogram wspéiczynnikow korelacji wzgledem klasy 2325 RAD HTA
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Rysunck 98. Histogram wspolczynnikéw korelacji wzgledem klasy 2364 RAD HTA
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Rysunek 99. Histogram wspéiczynnikéw korelacji wzgledem klasy 2368 RAD HTA
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Rysunek 100. Histogram wspéiczynnikéw korelacji wzgledem klasy 2369 RAD HTA
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Rysunek 101. Histogram wspotczynnikéw korelacji wzgledem klasy 2372 RAD HTA
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Rysunek 102. Histogram wspdtczynnikéw korelacji wzgledem klasy 2386 RAD HTA
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BW RAD-NTR PLAN — Przeksztatcenie Radona na obrazach pierwotnych.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy wejsciowe

obiektéw przetworzone przeksztalceniem Radona.

Tabela 22.

danych przeksztalceniu Radona.

Klasa Si S, S
2325-2364 0,000 1,000 1,000
2325-2368 0,000 1,000 1,000
2325-2369 0,000 1,000 1,000
2325-2372 0,000 1,000 1,000
2325-2386 0,000 1,000 1,000
2364-2368 0,000 1,000 1,000
2364-2369 0,000 1,000 1,000
2364-2372 0,000 1,000 1,000
2364-2386 0,000 1,000 1,000
2368-2369 0,000 1,000 1,000
2368-2372 0,000 1,000 1,000
2368-2386 0,000 1,000 1,000
2369-2372 0,000 1,000 1,000
2369-2386 0,000 1,000 1,000
2372-2386 0,000 1,000 1,000

Srednia: 0,000 1,000 1,000
Min 0,000 1,000 1,000
Max 0,000 1,000 1,000

Przekatna tra.nsponowana macierzy wcwnqtrzklasowych obrazéw przcrworzonych (RAD-NTR PLAN)

Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla czarno-bialych bitmap wejsciowych pod-
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Rysunek 103. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (RAD-NTR)
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Rysunck 104. Graficzna interpretacja macierzy wspétczynnikoéw korelacji wewnatrzklasowych obrazéw obiektéw pier-
wotnych przeksztalconych przeksztalceniem Radona.
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BW HTI PLAN — Hybrydowe izotropowe przeksztatcenie Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obicktow

przetworzone hybrydowym izotropowym przeksztalceniem Hilberta.

Tabela23.  Prawdopodobieristwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu izotropowemu przeksztalceniu Hilberta.

Klasa 81 Sz S
2325-2364 0,000 0,000 0,000
2325-2368 0,000 0,000 0,000
2325-2369 0,003 0,001 0,004
2325-2372 0,206 0,004 0,210
2325-2386 0,075 0,003 0,077
2364-2368 0,006 0,000 0,006
2364-2369 0,000 0,000 0,000
2364-2372 0,000 0,000 0,000
2364-2386 0,000 0,000 0,000
2368-2369 0,001 0,001 0,002
2368-2372 0,000 0,000 0,000
2368-2386 0,000 0,000 0,000
2369-2372 0,001 0,001 0,002
2369-2386 0,000 0,000 0,000
2372-2386 0,190 0,006 0,196

Srednia: 0,032 0,001 0,033
Min 0,000 0,000 0,000
Max 0,206 0,006 0,210

Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (HTT PLAN)
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Rysunek 106. Wspétczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (HTI PLAN)
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Rysunek 107. Graficzna interpretacja macierzy wspétczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym izotropowym przeksztalceniem Hilberta.
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BW FCA PLAN — Hybrydowe anizotropowe przeksztatcenie Foucault-Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym anizotropowym przeksztalceniem Foucault-Hilberta.

Tabela24.  Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu anizotropowemu przeksztalceniu Foucault-Hilberta.
Klasa S] Sz S
2325-2364 0,000 0,000 0,000
2325-2368 0,000 0,000 0,000
2325-2369 0,059 0,002 0,061
2325-2372 0,269 0,010 0,279
2325-2386 0,173 0,001 0,174
2364-2368 0,000 0,090 0,089
2364-2369 0,004 0,000 0,004
2364-2372 0,017 0,001 0,017
2364-2386 0,045 0,002 0,047
2368-2369 0,019 0,002 0,021
2368-2372 0,000 0,000 0,000
2368-2386 0,000 0,000 0,000
2369-2372 0,118 0,013 0,131
2369-2386 0,030 0,002 0,032
2372-2386 0,000 0,246 0,246
Srednia: 0,049 0,025 0,073
Min 0,000 0,000 0,000
Max 0,269 0,246 0,279
Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (FCA PLAN)
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Rysunek 108. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (FCA PLAN)
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Rysunek 109. Graficzna interpretacja macierzy wspolczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym anizotropowym przeksztalceniem Foucault-Hilberta.
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BW FCI PLAN — Hybrydowe izotropowe przeksztatcenie Foucault-Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obicktow

przetworzone hybrydowym izotropowym przeksztatceniem Foucault-Hilberta.

Tabela25.  Prawdopodobieristwo podjecia blednej decyzji identyfikacji dla czarno-biatych bitmap poddanych hybry-
dowemu izotropowemu przeksztalceniu Foucault-Hilberrta.
Klasa Sl Sz S

2325-2364 0,000 0,000 0,000
2325-2368 0,000 0,000 0,000
2325-2369 0,000 0,000 0,000
2325-2372 0,078 0,281 0,359
2325-2386 0,170 0,002 0,172
2364-2368 0,016 0,001 0,017
2364-2369 0,001 0,000 0,001
2364-2372 0,020 0,000 0,020
2364-2386 0,012 0,001 0,013
2368-2369 0,000 0,000 0,000
2368-2372 0,000 0,000 0,000
2368-2386 0,000 0,000 0,000
2369-2372 0,021 0,004 0,026
2369-2386 0,000 0,000 0,000
2372-2386 0,000 0,207 0,207
Srednia: 0,021 0,033 0,054
Min 0,000 0,000 0,000
Max 0,170 0,281 0,359
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Przekatna transponowana macierzy wewngtrzklasowych obrazéw przetworzonych (FCI PLAN)
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Rysunek 110. Wspélezynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (FCI PLAN)
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Rysunek 111. Graficzna interpretacja macierzy wspotczynnikéw korelacji wewngtrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym izotropowym przeksztalceniem Foucault-Hilberta.
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BW FFTShift PLAN — Szybkie przeksztatcenie Fouriera.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obicktéw

przetworzone szybkim przeksztalceniem Fouriera.

Tabela 26.  Prawdopodobienistwo podjecia blednej decyzji identyfikacji dla czarno-bialych bitmap poddanych szyb-

kiemu przeksztalceniu Fouriera.

Klasa Si Sz S
2325-2364 0,000 0,000 0,000
2325-2368 0,000 0,000 0,000
2325-2369 0,088 0,110 0,197
2325-2372 0,000 0,000 0,000
2325-2386 0,000 0,000 0,000
2364-2368 0,000 0,000 0,000
2364-2369 0,000 0,000 0,000
2364-2372 0,000 0,000 0,000
2364-2386 0,000 0,000 0,000
2368-2369 0,005 0,330 0,335
2368-2372 0,000 0,307 0,307
2368-2386 0,246 0,046 0,292
2369-2372 0,213 0,013 0,226
2369-2386 0,165 0,004 0,169
2372-2386 0,179 0,029 0,208

Srednia: 0,060 0,056 0,116
Min 0,000 0,000 0,000
Max 0,246 0,330 0,335

Przekatna transponowana macierzy wewnatrzklasowych obrazéw przetworzonych (FFTShift PLAN)
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Rysunek 112. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (FFTShift)
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Rysunek 113. Graficzna interpretacja macierzy wspdtczynnikéw korelacji wewngtrzklasowych obrazéw obiektéw prze-
tworzonych szybkim przeksztalceniem Fouriera.
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5.2.5. Samoloty obserwowane z boku (obserwacja z ziemi). Obrazy ciggtoto-
nalne — odcienie szarosci.

GR NTR — Obrazy pierwotne, nie przeksztatcone

W niniejszym eksperymencie poddano analizie korelacyjnej ciagtotonalne obrazy

obiektéw nieprzetworzonych (wejsciowych).

Tabela27.  Prawdopodobieristwo podjecia blednej decyzji identyfikacji dla bitmap wejsciowych cigglotonalnych nie
poddanych jakimkolwiek przeksztalceniom.

Klasa S] Sz S
2325-2364 0,241 0,064 0,306
2325-2368 0,232 0,027 0,260
2325-2369 0,002 0,003 0,005
2325-2372 0,215 0,035 0,249
2325-2386 0,000 0,599 0,599
2364-2368 0,000 0,000 0,000
2364-2369 0,015 0,004 0,020
2364-2372 0,001 0,001 0,002
2364-2386 0,130 0,009 0,140
2368-2369 0,000 0,000 0,000
2368-2372 0,150 0,010 0,160
2368-2386 0,211 0,030 0,241
2369-2372 0,000 0,000 0,000
2369-2386 0,015 0,007 0,022
2372-2386 0,000 0,551 0,551

Srednia: 0,081 0,089 0,170
Min 0,000 0,000 0,000
Max 0,241 0,599 0,599

Przekatna transponowana macierzy wewnatrzklasowych szarych obrazéw nieprzetworzonych (GR NTR)
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Rysunek 114. Wspéiczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (GR NTR)
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Rysunek 115. Graficzna interpretacja macierzy wspdtczynnikéw korelacji wewnatrzklasowych obrazéw pierwotnych
badanych obiektéw.
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Rysunek 116. Histogram wspotezynnikéw korelacji wzgledem klasy 2325 BW NTR
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Rysunek 117. Histogram wspolczynnikéw korelacji wzgledem klasy 2364 BW NTR
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Rysunek 118. Histogram wspdiczynnikow korelacji wzgledem klasy 2368 BW NTR
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Rysunek 119. Histogram wspélezynnikéw korelacji wzgledem klasy 2369 BW N'TR
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Rysunek 120. Histogram wspolczynnikéw korelacji wzgledem klasy 2372 BW NTR
< 10° GR NTR 2386
8 T T T T T T T T T
Inclass 2386
7r 2386 do 2325 7
2386 do 2364
6 2386 do 2368 =
2386 do 2369
sk 2386 do 2372 i
4+ -
3F -
2 -
1FE a
0 ! ! .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rysunek 121. Histogram wspélczynnikéw korelacji wzgledem klasy 2386 BW NTR
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GR HTA — Hybrydowe anizotropowe przeksztatcenie Hilberta

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obicktow

przetworzone hybrydowym anizotropowym przeksztatceniem Hilberta.

Tabela28.  Prawdopodobienistwo podjecia blednej decyzji identyfikacji dla ciaglotonalnych bitmap poddanych hy-
brydowemu anizotropowemu przeksztalceniu Hilberta.

Klasa S S, S
2325-2364 0,174 0,084 0,258
2325-2368 0,116 0,026 0,141
2325-2369 0,001 0,001 0,002
2325-2372 0,158 0,025 0,182
2325-2386 0,000 0,580 0,580
2364-2368 0,000 0,000 0,000
2364-2369 0,029 0,006 0,0357
2364-2372 0,003 0,001 0,003
2364-2386 0,153 0,018 0,171
2368-2369 0,008 0,003 0,011
2368-2372 0,249 0,007 0,255
2368-2386 0,001 0,287 0,287
2369-2372 0,003 0,000 0,003
2369-2386 0,043 0,018 0,0616
2372-2386 0,000 0,557 0,557

Srednia: 0,063 0,107 0,170
Min 0,000 0,000 0,000
Max 0,249 0,580 0,580

Przekatna transponowana macierzy wewnatrzklasowych szarych obrazéw przetworzonych (GR HTA)
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Rysunek 122. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (GR HTA)
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Rysunek 123. Graficzna interpretacja macierzy wspélczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym anizotropowym przeksztalceniem Hilberta.
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Rysunek 124. Histogram wspéiczynnikéw korelacji wzgledem klasy 2325 GR HTA
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Rysunek 125. Histogram wspéiczynnikéw korelacji wzgledem klasy 2364 GR HTA
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Rysunek 126. Histogram wspélczynnikéw korelacji wzgledem klasy 2368 GR HTA

5-63



x10% HTA GR 2369

7 T T T | T T | T T
Inclass 2369
6 2369 do 2325 H
2369 do 2364
i 2369 do 2368 ||
3 2369 do 2372
2369 do 2386
4
3 -
2 —
l -
0 S I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Rysunek 127. Histogram wspolczynnikéw korelacji wzgledem klasy 2369 GR HTA
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Rysunek 128. Histogram wspotezynnikéw korelacji wzgledem klasy 2372 GR HTA
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Rysunek 129. Histogram wspéiczynnikow korelacji wzgledem klasy 2386 GR HTA
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GR RAD-HTA — Hybrydowe anizotropowe przeksztatcenie Hilberta-Radona

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym przeksztalceniem Hilberta-Radona.

Tabela29.  Prawdopodobienistwo podjecia blednej decyzji identyfikacji dla ciagtotonalnych bitmap poddanych hy-
brydowemu przeksztalceniu Hilberta-Radona.

Klasa Si S, S
2325-2364 0,001 0,000 0,001
2325-2368 0,000 0,000 0,000
2325-2369 0,000 0,000 0,000
2325-2372 0,062 0,018 0,080
2325-2386 0,074 0,041 0,115
2364-2368 0,000 0,000 0,000
2364-2369 0,020 0,019 0,0389
2364-2372 0,177 0,028 0,205
2364-2386 0,400 0,057 0457
2368-2369 0,172 0,046 0,218
2368-2372 0,036 0,012 0,048
2368-2386 0,002 0,001 0,002
2369-2372 0,000 0,299 0,299
2369-2386 0,186 0,035 0,221
2372-2386 0,344 0,045 0,390

Srednia: 0,098 0,040 0,138
Min 0,000 0,000 0,000
Max 0,400 0,299 0,457

Przekatna transponowana macierzy wewnatrzklasowych szarych obrazéw przetworzonych (GR RAD-HTA)
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Rysunek 130. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (GR RAD-HTA)
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Rysunek 131. Graficzna interpretacja macierzy wspotczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym przeksztalceniem Hilberta-Radona.
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Rysunek 134. Histogram wspotczynnikéw korelacji wzgledem klasy 2368 GR RAD HTA
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Rysunek 135. Histogram wsp6iczynnikéw korelacji wzgledem klasy 2369 GR RAD HTA
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Rysunek 136. Histogram wspolezynnikéw korelacji wzgledem klasy 2372 GR RAD HTA
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Rysunek 137. Histogram wspélczynnikéw korelacji wzgledem klasy 2386 GR RAD HTA
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GR RAD-NTR — Przeksztatcenie Radona na obrazach pierwotnych.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy wejsciowe

obiektéw przetworzone przeksztatceniem Radona.

Tabela 30.  Prawdopodobienistwo podjecia blednej decyzji identyfikacji dla ciaglotonalnych bitmap wejsciowych

poddanych przeksztalceniu Radona.

Klasa 81 Sz S
2325-2364 0,000 1,000 1,000
2325-2368 0,000 1,000 1,000
2325-2369 0,000 1,000 1,000
2325-2372 0,000 1,000 1,000
2325-2386 0,000 1,000 1,000
2364-2368 0,000 1,000 1,000
2364-2369 0,000 1,000 1,000
2364-2372 0,000 1,000 1,000
2364-2386 0,000 1,000 1,000
2368-2369 0,000 1,000 1,000
2368-2372 0,000 1,000 1,000
2368-2386 0,000 1,000 1,000
2369-2372 0,000 1,000 1,000
2369-2386 0,000 1,000 1,000
2372-2386 0,000 1,000 1,000

Srednia: 0,000 1,000 1,000
Min 0,000 1,000 1,000
Max 0,000 1,000 1,000

Przekatna [ransponowana macierzy wewnatrzklasowych szarych obrazéw pierwotnych przetworzonych przeksztalceniem Radona (RAD-NTR)
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Rysunek 138. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (GR RAD-NTR)
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Rysunek 139. Graficzna interpretacja macierzy wspotczynnikéw korelacji wewnatrzklasowych obrazéw obiektéw pier-
wotnych przeksztalconych przeksztalceniem Radona.
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Rysunek 140. Wspélny histogram wspolczynnikéw korelacji wzgledem wszystkich klas wzajemnie GR RAD-NTR

5-71




GR HTI — Hybrydowe izotropowe przeksztatcenie Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym izotropowym przeksztalceniem Hilberta.

Tabela31.  Prawdopodobienistwo podjecia blednej decyzji identyfikacji dla ciaglotonalnych bitmap poddanych hy-

brydowemu izotropowemu przeksztalceniu Hilberta.

Klasa S S, S
2325-2364 0,154 0,027 0,182
2325-2368 0,333 0,039 0,373
2325-2369 0,127 0,016 0,143
2325-2372 0,190 0,034 0,225
2325-2386 0,001 0,487 0,488
2364-2368 0,002 0,001 0,003
2364-2369 0,016 0,006 0,022
2364-2372 0,001 0,001 0,002
2364-2386 0,105 0,022 0,127
2368-2369 0,295 0,028 0,323
2368-2372 0,432 0,031 0,462
2368-2386 0,000 0,391 0,390
2369-2372 0,138 0,004 0,142
2369-2386 0,132 0,012 0,144
2372-2386 0,036 0,433 0,469

Srednia: 0,131 0,102 0,233
Min 0,000 0,001 0,002
Max 0,432 0,487 0,488

Przekatna transponowana macierzy wewnatrzklasowych szarych obrazéw przetworzonych (GR HTT)

Rysunek 141. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (GR HTT)
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Rysunek 142. Graficzna interpretacja macierzy wspétczynnikéw korelacji wewngtrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym izotropowym przeksztalceniem Hilberta.
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GR FCA - Hybrydowe anizotropowe przeksztatcenie Foucault-Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym anizotropowym przeksztalceniem Foucault-Hilberrta.

Tabela32.  Prawdopodobienstwo podjecia blednej decyzji identyfikacji dla ciaglotonalnych bitmap poddanych hy-
brydowemu anizotropowemu przeksztalceniu Foucault-Hilberta.
Klasa S S2 S
2325-2364 0,159 0,046 0,205
2325-2368 0,360 0,019 0,379
2325-2369 0,001 0,003 0,004
2325-2372 0,345 0,024 0,369
2325-2386 0,005 0,608 0,613
2364-2368 0,003 0,001 0,005
2364-2369 0,061 0,015 0,077
2364-2372 0,027 0,006 0,033
2364-2386 0,132 0,016 0,148
2368-2369 0,002 0,001 0,003
2368-2372 0,327 0,009 0,336
2368-2386 0,315 0,033 0,349
2369-2372 0,033 0,010 0,043
2369-2386 0,063 0,021 0,083
2372-2386 0,000 0,557 0,557
Srednia: 0,122 0,091 0,214
Min 0,000 0,001 0,003
Max 0,360 0,608 0,613
Przekatna transponowana macierzy wewnatrzklasowych szarych obrazéw przetworzonych (GR FCA)
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Rysunek 143. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (GR FCA)
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Rysunek 144. Graficzna interpretacja macierzy wspétczynnikéw korelacji wewngtrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym anizotropowym przeksztalceniem Foucault-Hilberta.
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GR FCl — Hybrydowe izotropowe przeksztatcenie Foucault-Hilberta.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone hybrydowym izotropowym przeksztalceniem Foucault-Hilberta.

Tabela33.  Prawdopodobieristwo podjecia blednej decyzji identyfikacji dla ciggtotonalnych bitmap poddanych hy-

brydowemu izotropowemu przeksztalceniu Foucault-Hilberta.

Klasa Sl Sz S
2325-2364 0,000 0,000 0,000
2325-2368 0,159 0,011 0,170
2325-2369 0,000 0,000 0,000
2325-2372 0,276 0,010 0,286
2325-2386 0,089 0,422 0,511
2364-2368 0,000 0,000 0,000
2364-2369 0,207 0,013 0,220
2364-2372 0,025 0,004 0,028
2364-2386 0,129 0,005 0,134
2368-2369 0,000 0,000 0,000
2368-2372 0,179 0,020 0,198
2368-2386 0,137 0,034 0,171
2369-2372 0,000 0,000 0,000
2369-2386 0,000 0,000 0,000
2372-2386 0,000 0,542 0,542

Srednia: 0,080 0,071 0,151
Min 0,000 0,000 0,000
Max 0,276 0,542 0,542

Przekatna transponowana macierzy wewnatrzklasowych szarych obrazow przetworzonych (GR FCI)

Rysunek 145. Wspélezynniki korelacji na przekatnej transponowanej macierzy wewnatrzklasowych (FCI)
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Rysunek 146. Graficzna interpretacja macierzy wspolczynnikéw korelacji wewngtrzklasowych obrazéw obiektéw prze-
ksztalconych hybrydowym izotropowym przeksztalceniem Foucault-Hilberta.
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GR FFTShift — Szybkie przeksztatcenie Fouriera.

W niniejszym eksperymencie poddano analizie korelacyjnej binarne obrazy obiektow

przetworzone szybkim przeksztalceniem Fouriera.

Tabela34.  Prawdopodobienistwo podjecia blednej decyzji identyfikacji dla cigglotonalnych bitmap poddanych szyb-
kiemu przeksztalceniu Fouriera.
Klasa Sl s;_ S
2325-2364 0,146 0,070 0,216
2325-2368 0,387 0,103 0,490
2325-2369 0,387 0,091 0,477
2325-2372 0,061 0,547 0,607
2325-2386 0,387 0,107 0,493
2364-2368 0,000 0,647 0,647
2364-2369 0,042 0,723 0,764
2364-2372 0,488 0,079 0,567
2364-2386 0,000 0,728 0,727
2368-2369 0,078 0,036 0,114
2368-2372 0,015 0,005 0,020
2368-2386 0,163 0,071 0,235
2369-2372 0,256 0,059 0,315
2369-2386 0,256 0,067 0,323
2372-2386 0,083 0,026 0,109
Srednia: 0,183 0,224 0,407
Min 0,000 0,005 0,020
Max 0,488 0,728 0,764
y Przekatna transponowana macierzy wewnatrzklasowych szarych obrazéw przetworzonych (GR FFTShift)
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Rysunek 147. Wspélczynniki korelacji na przekatnej transponowanej macierzy wewngtrzklasowych (GR FFTShift)
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Rysunek 148. Graficzna interpretacja macierzy wspotczynnikéw korelacji wewngtrzklasowych obrazéw obiektéw prze-
tworzonych szybkim przeksztalceniem Fouriera.
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5.3.Analiza i modelowanie statystyczne oraz morfologiczne obrazow amplitu-

dowo-fazowych

Eksperyment opisany w niniejszym rozdziale zostal przeprowadzony na dwéch klat-

kach obrazu zarejestrowanego ultraszybka kamera do zdj¢¢ ptynu optycznie aktywnego. Ob-

razy zostaly pozyskane w odstgpach 10 ms. Obrazy zrédlowe przedstawione na ponizszym

rysunku wykorzystano dzigki uprzejmosci [60], [61], ktéry prowadzil badania nad strefami

stagnacji w p¢kach rur wymiennikéw ciepta m.in. metodami DPIV.

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

2
|

D ) i

Rysunek 149. Dwie nastepujace po sobie ramki obrazu (a i b) badanego przeptywu oraz schemat kierunku przeptywu

w ukladzie (c).

Purpurowe kwadraty oznaczaja obszary, z ktérych pobrano etalony korelacyjne

W eksperymencie wykorzystano podejscie fazowe, ktérego hybrydyzowanie z innymi

przeksztalceniami z domeny COH jest szczegélnie uzyteczne podczas wykrywania zmian

obrazu w czasie. Podstawg eksperymentu jest przeksztalcenie fazowe opisane ponizszym

wzorcm:

gdzie:

P, =tan” == (16)

p — faza elementu tablicowego o wspéirzednych (x,y)
t — obraz pierwotny przeksztalcony przeksztalceniem z domeny COH

0 — obraz pierwotny nie przeksztalcony

Przebadano tu dwa podejscia fazowe. Pierwsze z nich zaklada, ze analiza fazowa zostanie

przeprowadzona na hybrydzie stanowiacej roznicg faz obrazéw przetworzonych z obrazami

pierwotnymi. Koncepcj¢ tego podejscia przedstawia rysunek 150.
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Zbidr dyskowy
l Ramka 1 |—’l Dowolne

przeksztalcenie

HT(A/I),

l Ramka 2 I—' FC(A/T)

Rysunek 150. Analiza fazowa oparta na réznicy faz

Faza(out,/r,)
wejscie
korelatora

Faza(out,/r,) [*

Drugie za$ podejécie to faza mi¢dzy obrazami wyjéciowymi obliczona migdzy fazami obrazéw
wynikowych i pierwotnych. Koncepcje tego podejécia przedstawia rysunek 151.

Zbiér dyskowy
l Ramka 1 I—‘r Dowolne

przeksztalcenied

HT(A/),

l Ramka 2 l——*" FC(A/T)

Rysunek 151. Analiza fazowa oparta na badaniu fazy mi¢dzy obrazami fazowymi

wejscie
korelatora

Faza(f,/f,)

Faza(out,/r,)

Eksperyment ma na celu wskazanie obszarow charakterystycznych, ktérych obecnos¢é moze
by¢ wykrywana przy wykorzystaniu opisanych tu hybryd fazowych.

HTI

1000y & s
100 200 300 400

100 200 300 400 100 200 300 400 100 200 300 400

Rysunek 152. Wizualizacja pierwszego kroku eksperymentu — przeksztalcenia obu klatek

Pierwszym krokiem w eksperymencie bylo przeksztalcenie obu klatek przetwarzaniami

z domeny COH FC(A/I) oraz HT(A/I) (rysunek 152).

wzorzec korelacyjny 11
wzorzec korelacyjny 2
wycinek lub plik 2 thresh(c,,g) 2 0,09

Rysunek 153. Schemat przebiegu korelacyjnej analizy hybrydowych przeksztalcen fazowych

wejscie
korelatora

Obraz badany

corr(ob,, ,/wy,)

corr(ob,,/wy,)

wyjscie
analiza statystyczna
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Przeksztalcenn dokonano na catych klatkach obrazu, bez segmentacji, ani dodatkowych bia-
tych obwodek, jak to miato miejsce w przypadku analizy obicktow latajacych. Przed urucho-
mieniem obliczen korelacyjnych na wszystkie przeksztalcone obrazy zostata natozona maska
usuwajaca ksztalty pekéw rur. Ksztalt maski przedstawia rysunek 149(c). Przebieg analizy
korelacyjnej ilustruje rysunek 153. Rysunki ze stron 5-83 + 5-88 poddano nast¢pnie analizie
statystycznej, ktérej zadaniem jest wskazanie sposobu identyfikacji obszaréw, krére w tego

rodzaju ukfadach przepltywu sa niepozadane.
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Réznica obrazéw fazowych

Obraz A Obraz B

N 4

100 200 300 400 100 200 300 400

Rysunek 154. Obraz réznicy faz obu klatek przetworzonych anizotropowym przeksztatceniem Hilberta (HTA) po
normalizacji jednostronnej, poddanych analizie korelacyjnej z wycinkiem obrazu badanego

Obraz A Obraz B
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Rysunek 155. Obraz réznicy faz obu klatek przetworzonych anizotropowym przeksztalceniem Hilberta (HTA) po
normalizacji jednostronnej, poddane analizie korelacyjnej ze wzorcem z pliku dyskowego
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Rysunek 156. Obraz réznicy faz obu klatek przetworzonych izotropowym przeksztalceniem Hilberta (HTT), po norma-
lizacji symetrycznej, poddane analizie korelacyjnej z wycinkiem obrazu badanego

Obraz A Obraz B

1000 -l N8 % KR NN
100 200 300 400

Rysunek 157. Obraz réznicy faz obu klatek przetworzonych anizotropowym przeksztalceniem Hilberta (HTA), po
normalizacji symetrycznej, poddane analizie korelacyjnej z wycinkiem obrazu badanego
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Obraz B

100 200 300 400 100 200 300 400

Rysunek 158. Obraz réznicy faz obu klatek przetworzonych izotropowym przeksztalceniem Foucault-Hilberta (FCI),
po normalizacji symetrycznej, poddane analizie korelacyjnej z wycinkiem obrazu badanego

Obraz B

100 200 300 400 100 200 300 400
Rysunek 159. Obraz réznicy faz obu klatek przetworzonych anizotropowym przeksztalceniem Foucaule-Hilberta
(FCA), po normalizacji symetrycznej, poddane analizie korelacyjnej z wycinkiem obrazu badanego
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Faza obrazéw fazowych

Obraz A

100 200 300 400

Rysunek 160. Obraz fazy obu klatek nie poddanych (NTR) jakimkolwick przeksztalceniom, poddany analizie korelacyj-
nej z wycinkiem obrazu badanego
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Obraz A Obraz B
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Rysunek 161. Obraz faz obrazéw fazowych klatek przetworzonych izotropowym przeksztalceniem Hilberta (HTT), po
normalizacji symetrycznej

Obraz A Obraz B

o #° . L v
100 200 300 400 100 200 300 400
Rysunek 162. Obraz faz obrazéw fazowych klatek przetworzonych anizotropowym przeksztalceniem Hilberta (HTA),

po normalizacji symetrycznej
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Obraz B
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Rysunek 163. Obraz faz obrazéw fazowych klatek przetworzonych izotropowym przeksztalceniem Foucault-Hilberta
(FCI), po normalizacji symetrycznej

Obraz B

100 200 300 400

Rysunek 164. Obraz faz obrazéw fazowych klatek przetworzonych anizotropowym przeksztalceniem Foucault-Hilberta
(FCA), po normalizacji symetrycznej
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5.4.Analiza i identyfikacja obrazow amplitudowo-fazowych tekstur metali koro-
dowanych

Eksperyment opisany w niniejszym rozdziale zostat przeprowadzony na jedenastu cy-

frowych obrazach przedstawiajacych powigkszony fragment wypolerowanej prébki stali

ST3S. Sekwencje zarejestrowanych obrazéw przedstawia rysunek 165.

0Oh lh

9h 10h

Rysunek 165. Sekwencja obrazéw korodowanej stali ST3S.

Wypolerowang probke stali ST3S poddano ekspozycji na wode destylowana. Po ekspozycji

probka zostala osuszona i sfotografowana. Caly proces powtarzano w odst¢pach jednogo-
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dzinnych. Pierwsza prébka zostata zarejestrowana zaraz po wypolerowaniu (0 h). Po zareje-
strowaniu jej obrazu, zostala ona poddana ckspozycji na wodg destylowang przez okres 1 h.
Caly proces powtérzono jeszcze dziewigé razy, a sumaryczny czas ekspozycji probki wynosit
10 godzin. Przed wykonaniem zdj¢cia prébki byla ona osuszana strumieniem goracego po-
wietrza. Mechaniczne usuni¢cie wody z powierzchni prébki mogloby doprowadzi¢ do usu-
nigcia réwniez produktéw ekspozycji prébki na wode, ktére sg tu przedmiotem badan. Dzig-
ki zastosowaniu wody destylowanej, w czasie jej odparowywania z prébki nie pozostawaly na
niej jakickolwiek osady, ktére wystgpowalyby przy zastosowaniu wody z kranu. Caly prze-
bieg ecksperymentu zostal opracowany przez ekspertow z dziedziny inzynierii materialowe;j,
na potrzeby ktérych powstaly procedury, ktérych wyniki przedstawiono w niniejszym pod-
rozdziale [10], [73], [74], [76]. Schemat akwizycji obrazéw przedstawia rysunek 166.

pierwoma B R R S SN L I R TR e AR
probka

E iteracja, 10 cykli
1
l i
1
]

|
| Obraz badany 'LH Ekspozycja przez (1 h)l——'l Suszenie ’—'| Obraz badany Il—'ﬂ"
1

baza dla l—‘ zestaw 11 obrazéw pierwotnych |'—

praeksztatcen COH

Rysunek 166. Akwizycja obrazéw do eksperymentu

Wszystkie badane probki poddano nastgpnie pieciu podstawowym przeksztalceniom z
dziedziny COH: FFT, HTA, HTI, FCA, FCI. Po ich przeksztalceniu probki poddano ana-
lizie fazowej celem okreslenia stopnia przyrostu powierzchni korodowanych w poszczegél-
nych godzinach eksperymentu. Ze wzgledu na fake, iz zmiana w obrg¢bie kadru prébki ma
charakter nieréwnomierny, eksperyment zostal podzielony na dwie cz¢éci. W pierwszej czg-
$ci poddano analizie fazowo-korelacyjnej cale kadry pozyskanego obrazu, w drugiej za$ —
segmenty obrazu powstale w wyniku podzialu kadru na fragmenty o boku 256 px, co dla ob-
razu o wymiarach 2048x1536 px daje 48 (8x6) fragmentow. Ta cz¢$¢ eksperymentu zostata z
kolei przeprowadzona na dwoch typach obrazéow przeksztalconych wycinkéw. Pierwszy z
nich powstal jako wynik przeksztalcen COH fragmentéw obrazu powigkszonych o bialy
obwdédke o szeroko$ci polowy wymiaréw fragmentu. Drugi typ powstal jako wynik prze-
ksztalcen COH fragmentéw obrazu bez obwdédki. Pierwsze podejécie bylo stosowane przy
wszelkich badaniach obiektéw latajacych omawianych w niniejszej rozprawie.

Rysunek 167 przedstawia macierze korelacyjne obrazéw poddanych przeksztalceniom
COH. Ponizsze macierze obrazujg wielko$¢ zmian - szczegélnie mi¢dzy godzina 3 i 4, jed-
nakze nie widaé tu charakteru tych zmian — nie wida¢ ognisk obszaréw podejrzanych o to, ze
stanowia korozj¢. Aby bylo to mozliwe, koniecznym bylo obliczenie pdl fazowych pokazuja-

cych charakter zmian w obrazach.
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Wynikiem niniejszego eksperymentu sa macierze korelacyjne opisujace zmiany pomie-
dzy poszczegélnymi godzinami eksperymentu oraz réznice bezwzgledne liczone od poczatku
eksperymentu (0 h) do okre$lonej jego godziny (x h).

W eksperymencie zamieszczono réwniez macierze korelacyjne obrazéw oraz ich wycinkéw
badanych metodami fazowymi. Eksperyment ten pokazuje jak czule sa one na niewielkie
zmiany w badanym obrazie. Polaczenie anizotropowego przeksztalcenia Hilberta z prze-
ksztalceniem fazowym obrazéw nastgpujacych po sobie w czasie jest bardzo skuteczna
i wydaja metodg identyfikacji zmian w obrazach we wszystkich badanych w niniejszej roz-
prawie domenach.

Szczegélowa interpretacje powstalych macierzy korelacyjnych pozostawiono ekspertom
z dziedziny inzynierii materialowej, na zlecenie ktérych przeprowadzono niniejszy ekspery-

ment.
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Rysunek 167. Macierze korelacyjne obrazéw przeksztalconych przeksztalceniami z domeny cyfrowej optyki Hilberta
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Rysunek 168 pokazuje natomiast, w jaki sposéb mozna wykorzystywa¢ analiz¢ fazow obra-

z6w przeksztatconych HTA.

Korelacja fazy do h, Korelacja fazy do h,,

S O 0o N A wn AW

Pt

0 0.2 0.4 0.6 ‘ 0.8 1

Rysunek 168. Macierz wspdiczynnikéw korelacji fazy obrazéw przeksztalconych HTA.
ho - faza liczona wzgledem godziny 0, h, - faza liczona migdzy kolejnymi godzinami eksperymentu

Jednak charakter obrazéw probek korodowanych nie pozwala na skuteczng identyfikacje
ognisk korozji obrazéw analizowanych jako calo$¢, koniecznym bylo wprowadzenie segmen-
tacji, dzielacej badany obraz na réwne czgsci. Sytuacja taka spowodowana jest nieréwno-
miernym przyrostem potencjalnych ognisk korozji w calym obszarze powierzchni badane;j
probki.

Rysunki ponizej przedstawiaja wyniki analizy metodami COH na segmentach obrazu cyfro-
wego wg schematu opisanego wczesniej. We wszystkich rysunkach oznaczenia nad macie-
rzami to godziny ekspozycji, migdzy ktérymi wyznaczano wspotczynniki korelacji. Rysunki

(a) to macierz wycinkéw bitmap przeksztalcanych z obwodka, rysunki (b) — bez obwédki.
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Rysunek 169. Macierze korelacyjne wycinkéw obrazéw poddane przeksztalceniu FFT
(eksperyment prowadzony tylko na segmentach bez obwédek)
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Rysunek 170. Macierze korelacyjne wycinkéw obrazéw poddane przeksztalceniu FCA

a) 0-1

Rysunek 171. Macierze korelacyjne wycinkéw obrazéw poddane przeksztatceniu FCI
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a) 0-1

Rysunek 173. Macierze korelacyjne wycinkéw obrazéw poddane przeksztatceniu HTT
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Ponizsze rysunki przedstawiaja faz¢ przeksztatcen HTA.
a) 0-1+0-2 0-2+0-3 0-3+0-4 0-4+0-5

Rysunek 174. Macierze korelacyjne fazy wycinkéw obrazéw w stosunku do hy poddane przekszralceniu HTA
a) 0-1+1-2 1-2+2-3 2-3+:3-4 3-4+4-5

Rysunek 175. Macierze korelacyjne fazy wycinkéw obrazéw w stosunku do hi, poddane przekszratceniu HTA
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6. Ewaluacja efektywnosci i parametryczno-dynamicznej stabilnosci
algorytmow uogodlnionej amplitudowo-fazowej analizy i modelo-
wania obrazow cyfrowych

Niniejszy rozdzial w calo$ci poswigcony jest analizie wynikéw zamieszczonych w roz-
dziale 5 z podrozdzialami. Zostaly tu szczegétowo oméwione sposoby analizy wydajnosci
algorytméw oraz metod cyfrowej optyki Hilberta w domenach opisanych we weze$niejszych

rozdziatach niniejszej rozprawy.

6.1.Metody analizy parametrow jakosci decyzji identyfikacyjnych obiektow
i tekstur na podstawie algorytmoéw uogdlnionej amplitudowo-fazowej anali-

zy.
Problem ewaluagji efektywnosci oraz stabilnosci algorytméw analizy i modelowania za-

zwyczaj sprowadza si¢ do dobrania zestawu metod przetwarzania obrazéw cyfrowych, zasto-

sowania ich w odpowiedniej kolejnoéci oraz stworzenia mechanizméw podejmowania lub

wspomagajacych podejmowanie decyzji klasyfikacyjnej — identyfikacyjnej. Metody korela-

cyjne stanowiace trzon badan, ktérych wyniki wraz z metodologia zostaly przedstawione w

niniejszej rozprawie stanowia jedng z powszechnie stosowanych metod klasyfikacyjnych.

Zastosowanie metod korelacyjnych zostalo przebadane w trzech domenach:

— identyfikacji obiektéw latajacych,

— identyfikacji obszaréw charakterystycznych w plynach optycznie aktywnych,

— identyfikacji obszaréw stanowigcych domniemane ogniska korozji w metalach.

Kazda z przedstawionych wyzej domen wymaga wst¢pnego przygotowania obrazéw pier-

wotnych. Wynika to z natury domeny, w ktérej prowadzono badania. W wigkszosci przy-

padkéw wstgpne przygotowanie obrazéw oznacza segmentacje, czyli wyseparowanie ksztal-

téw badanych obiektéw z badanej sceny lub ,,pocigcie” na réwne segmenty — w przypadku

badania tekstur.
6.2.Analiza petnego sredniego ryzyka podejmowania decyzji identyfikacyjnych.

Na potrzeby implementacji metod korelacyjnych opisanych w niniejszej rozprawie
powstato kilka $ciezek opisujacych kolejne kroki procesu identyfikacyjnego. Najistotniejsze z
punktu widzenia procesu identyfikacji sa informacje o znieksztalceniach, pod wpltywem keo-
rych obraz badanego obicktu pobierany jest do systemu identyfikujacego. Chodzi tu o rézne-
go rodzaju tzw. ,szumy” katowe, ale réwniez amplitudowe, krore jednak nie stanowia obiek-
tu badan w niniejszej rozprawie. Szumy katowe to znieksztalcenia, pod jakimi obserwowany
jest obiekt, a wiedza o nich przed rozpoczeciem procesu identyfikacji ma niebagatelny wplyw
na jej powodzenie. Zarzadzanie szumami katowymi jest rézne w zaleznosci od domeny, i tak

w przypadku identyfikacji obiektéw latajacych, moga by¢ one obserwowane pod réznymi
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katami w trzech réznych osiach oraz w zmiennej skali. W przypadku tworzenia systemu typu
OCR uwzgledni¢ nalezy znieksztatcenia innego rodzaju — w szczegdlnosci nie ma tu mowy o
znieksztalceniach katowych w trzech osiach, bo tekst z samej swojej natury moze by¢ po-
prawnie rozpoznany tylko przy pewnym zakresie znieksztalcenn katowych w dwéch osiach,
poniewaz tekst, jak kazdy inny rodzaj symbolu graficznego — jest dwuwymiarowy. Wystapi¢
tu moze jedynie znieksztalcenie perspektywiczne, ktére réwniez moze zostaé rozpoznane i —
w pewnym zakresie — usunigte. Analogicznie przedstawia si¢ sytuacja z rozpoznawaniem tek-
stur, keére — podobnie jak tekst — ma charakter dwuwymiarowy, nawet przy zatozeniu, ze
tekstura jest wytworem czynnika, ktéry poza samg teksturg zmienia rowniez charakter po-
wierzchni badanego fragmentu prébki.
Wszystkie trzy wymienione wezesniej domeny maja jedno wspélne znieksztalcenie, ktére
wystepuje niezaleznie od systemu akwizycji oraz innych czynnikéw majacych wplyw na
kompozycje sceny podlegajacej akwizycji. Mowa tu o skali, inaczej powickszeniu, ktore moze
by¢ wynikiem zmiany odleglosci obserwatora od obserwowanego obicktu, ale réwniez zmia-
ng parametréw uktadu akwizycji obrazu, np. rozdzielczoéci uktadu skanujacego.
Wszystkie wyzej opisane znieksztalcenia maja wplyw na warto$¢ petnego $redniego ryzyka
podjecia decyzji identyfikacyjnej. Ryzyko to jest réwniez pochodna jakosci oraz dbatosci,
z jaka zostala przygotowana baza etalonéw, czyli wzorcéw probek, z ktdrymi bedzie porow-
nywany obraz badanego obicktu. Ma to szczegélne znaczenie w przypadku préby identyfika-
cji obiektéw tréjwymiarowych, ktére moga by¢ obserwowane pod bardzo duzg iloscig kom-
binacji katéw we wszystkich trzech osiach. Koniecznos¢ przechowywania w specjalizowane;j
bazie probek obrazéw lub sygnatur obiektéw tréjwymiarowych obserwowanych pod rézny-
mi katami wynika z fakeu, ze wigkszosci znieksztalcen katowych po prostu nie da si¢ usunaé i
konieczne jest identyfikowanie obiektu w zastanych warunkach, nawet pomimo tego, ze
gléwnym zadaniem postawionym opisywanym tu metodom jest identyfikacja obicktu, czyli
klasyfikacja, a nie wyznaczenie orientacji badanego obicktu w przestrzeni. Z jednej strony
opisywane metody moga w niektorych przypadkach wspomoéc okreslenie orientacji obickeu,
z drugiej za$ strony znajomos¢ orientacji obiektu przed przystapieniem do jego identyfikacji
ma ogromny wplyw na szybko$¢ identyfikacji.
W przypadku domen, w ktérych identyfikowane obiekty sa dwuwymiarowe (np. tekst) za-
zwyczaj mozna dos¢ dokfadnie oszacowa¢ i usunaé znieksztatcenie katowe przed podjeciem
proby identyfikacji obiektu na obrazie cyfrowym.

6.3.Badania i ewaluacja jakosci decyzji identyfikacyjnych WIS-COH obiektow.

Badanie oraz ewaluacja jako$ci decyzji identyfikacji obiektéw przy wykorzystaniu ze-
stawu przeksztalcen cyfrowej optyki Hilberta zostalo przeprowadzone na tréjwymiarowych

obrazach obiektow latajacych — samolotéw, ktére z samej swojej natury moga by¢ obserwo-
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wane w trzech réznych wymiarach. Rozdzial 5.2 przedstawi wyniki badan korelacyjnych

przeprowadzonych na szesciu réznych samolotach poddanych pigciu réznym przekszralce-

niom macierzowym. Podczas przeprowadzania w/w eksperymentu poczyniono kilka wstep-
nych zalozen:

— obrazy wszystkich badanych obiektéw majg te same rozmiary bez wzgledu na rzeczywista
réznice w wymiarach tychze obiektéw. Procedury prowadzace do odréznienia np. samo-
lotu bojowego od pasazerskiego opieraja si¢ na innych technikach, niz analiza ksztattu.
Niezwykle istotne s3 tu parametry sceny, na ktérej zarejestrowano obieke, np. odlegtos¢ od
obiektu, powierzchnia skrzydel w stosunku do powierzchni kadtuba az w koncu tzw.
wspolczynnik ksztattu, ktéry w zaleznoéci od domeny obliczany jest jako kwadrat obwodu
przez pole powierzchni obrazu obiektu.

— nie wszystkie obiekty musza wystgpowa¢ w okreslonych warunkach badawczych z tym
samym prawdopodobienstwem. Podejscie to zaklada, ze w $cisle okreslonych warunkach
niemozliwe (lub wielce nieprawdopodobne) jest wystapienie pewnych obicktéw, dlatego
tez nie przeprowadza si¢ analizy prawdopodobienstwa ich wystapienia i przyjmuje si¢ ja
jako 0. To wlasnie na tej technice opiera si¢ sposéb podwyzszenia jakosci identyfikacji

(rozrézniania) obiektow.

Ponizej przedstawiono tabele bledéw identyfikacji obiektéw, ktérych obrazy poddano réz-
nym przeksztalceniom Hilberta lub ich hybrydom. W tabelach zaznaczono najnizsza oraz
najwyzsza warto$¢ bledu, co pozwolito na wyznaczenie klasy obiektu, ktéry najmocniej kore-
luje z obiektem danej klasy i odrzucenie jej jako niepozadanej (nieprawdopodobnej) w da-

nych warunkach.

Tabela35.  Macierz bledéw identyfikacji dla obrazéw pierwotnych BW (NTR)

2325 2364 2368 2369 2372 2386
2325 - 0,000 0,178 0,000 0,231 0,458
2364 0,000 - 0,000 0,186 0,045 0,119
2368 0,178 0,000 - 0,000 0,170 0,175
2369 0,000 0,186 0,000 - 0,000 0,000
2372 0,231 0,045 0,170 0,000 - 0,522
2386 0,458 0,119 0,175 0,000 0,522 -
Sam pax 2386 2369 2325 2364 2386 2372
Sred 1,988 1,558 1,016 No error 2,263 1,139
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Tabela 36.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW (HTA)
2825 2364 2368 2369 2372 2386
2325 = 0,001 0,131 0,000 0,247 0,491
2364 0,001 - 0,002 0,237 0,086 0,136
2368 0,131 0,002 . 0,000 0,267 0,198
2369 0,000 0,237 0,000 - 0,000 0,017
2372 0,247 0,086 0,267 0,000 = 0,531
2386 0,491 0,136 0,198 0,017 0,531 -
Sampax 2386 2369 2372 2364 2386 2372
Sred 1,989 1,737 1,350 14,034 1,986 1,081
Tabela37.  Macierz bledéw identyfikacji dla obrazéw przekszralconych BW (HTT)
2325 2364 2368 2369 2372 2386
2325 - 0,094 0,424 0,099 0,410 0,585
2364 0,094 - 0,150 0,267 0,051 0,183
2368 0,424 0,150 - 0,084 0,522 0,448
2369 0,099 0,267 0,084 - 0,154 0,201
2372 0,410 0,051 0,522 0,154 - 0,567
2386 0,585 0,183 0,448 0,201 0,567 =
Sam 2386 2369 2372 2364 2386 2325
Sred 1,380 1,462 1,167 1,328 1,086 1,030
Tabela 38.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW (FCA)
2325 2364 2368 2369 2372 2386
2325 - 0,000 0,274 0,000 0,336 0,498
2364 0,000 - 0,000 0,370 0,119 0,220
2368 0,274 0,000 - 0,000 0,240 0,245
2369 0,000 0,370 0,000 - 0,000 0,029
2372 0,336 0,119 0,240 0,000 - 0,554
2386 0,498 0,220 0,245 0,029 0,554 -
Sam pax 2386 2369 2325 2364 2386 2372
Sred 1,484 1,681 1,117 12,861 1,650 1,112
Tabela39.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW (FCI)
2325 2364 2368 2369 2372 2386
2325 = 0,000 0,170 0,000 0,286 0,510
2364 0,000 - 0,000 0,220 0,028 0,134
2368 0,170 0,000 - 0,000 0,198 0,170
2369 0,000 0,220 0,000 - 0,000 0,000
2372 0,286 0,028 0,198 0,000 - 0,542
2386 0,510 0,134 0,170 0,000 0,542 -
Sampax 2386 2369 2372 2364 2386 2372
Sred 1,786 1,646 1,163 No error 1,895 1,061




Tabela 40.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW (FFT)
2325 2364 2368 2369 2372 2386
2325 = 0,088 0,401 0,460 0,484 0,550
2364 0,088 - 0,139 0,387 0,308 0,429
2368 0,401 0,139 = 0,321 0,342 0,471
2369 0,460 0,387 0,321 - 0,440 0,293
2372 0,484 0,308 0,342 0,440 - 0,526
2386 0,550 0,429 0,471 0,293 0,526 -
Sama 2386 2386 2386 2325 2386 2325
Sred 1,138 1,110 1,175 1,043 1,087 1,047
Tabela41.  Macierz bledéw identyfikacji dla obrazéw pierwotnych BW PLAN (NTR)
2325 2364 2368 2369 2372 2386
2325 = 0,000 0,000 0,004 0,190 0,070
2364 0,000 - 0,017 0,000 0,000 0,000
2368 0,000 0,017 - 0,000 0,000 0,000
2369 0,004 0,000 0,000 - 0,039 0,000
2372 0,190 0,000 0,000 0,039 - 0,122
2386 0,070 0,000 0,000 0,000 0,122 -
Sam 2372 2368 2364 2372 2325 2372
Sted 2,701 No error | No error 9,722 1,568 1,723
Tabela 42.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW PLAN (HTA)
2325 2364 2368 2369 2372 2386
2325 - 0,000 0,000 0,025 0,218 0,111
2364 0,000 - 0,022 0,000 0,000 0,000
2368 0,000 0,022 - 0,000 0,000 0,000
2369 0,025 0,000 0,000 - 0,070 0,000
2372 0,218 0,000 0,000 0,070 - 0,140
2386 0,111 0,000 0,000 0,000 0,140 -
Sam . 2372 2368 2364 2372 2325 2372
Sced 1,961 No error | No error 2,889 1,556 1,260
Tabela43.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW PLAN (HTI)
2325 2364 2368 2369 2372 2386
2325 - 0,000 0,000 0,004 0,209 0,077
2364 0,000 - 0,006 0,000 0,000 0,000
2368 0,000 0,006 - 0,002 0,000 0,000
2369 0,004 0,000 0,002 - 0,002 0,000
2372 0,209 0,000 0,000 0,002 - 0,196
2386 0,077 0,000 0,000 0,000 0,196 B
Samy 2372 2368 2364 2325 2325 2372
Sred 2,709 No error 2,781 1,880 1,069 2,535
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Tabela 44.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW PLAN (FCA)
2325 2364 2368 2369 2372 2386
2325 - 0,000 0,000 0,061 0,279 0,174
2364 0,000 - 0,090 0,004 0,017 0,047
2368 0,000 0,090 - 0,021 0,000 0,000
2369 0,061 0,004 0,021 - 0,131 0,032
2372 0,279 0,017 0,000 0,131 - 0,246
2386 0,174 0,047 0,000 0,032 0,246 -
Sampa 2372 2368 2364 2372 2325 2372
Sred 1,606 1,922 4,256 2,146 1,136 1,414
Tabela 45.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW PLAN (FCI)
2325 2364 2368 2369 2372 2386
2325 = 0,000 0,000 0,000 0,359 0,172
2364 0,000 - 0,017 0,001 0,020 0,013
2368 0,000 0,017 - 0,000 0,000 0,000
2369 0,000 0,001 0,000 - 0,026 0,000
2372 0,359 0,020 0,000 0,026 - 0,207
2386 0,172 0,013 0,000 0,000 0,207 -
Sam 2372 2372 2364 2372 2325 2372
Sred 2,090 1,168 No error 23,623 1,736 1,204
Tabela 46.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych BW PLAN (FFT)
2325 2364 2368 2369 2372 2386
2325 - 0,000 0,000 0,198 0,000 0,000
2364 0,000 - 0,000 0,000 0,000 0,000
2368 0,000 0,000 - 0,336 0,307 0,292
2369 0,198 0,000 0,336 - 0,226 0,169
2372 0,000 0,000 0,307 0,226 - 0,208
2386 0,000 0,000 0,292 0,169 0,208 -
Samax 2369 2369 2369 2368 2368 2368
Sred 15809,318 | No error 1,094 1,483 1,356 1,406
Tabela47.  Macierz bledéw identyfikacji dla obrazéw pierwotnych GR (N'TR)
2325 2364 2368 2369 2372 2386
2325 — 0,306 0,259 0,006 0,25 0,599
2364 0,306 - 0,000 0,020 0,002 0,139
2368 0,259 0,000 - 0,000 0,160 0,241
2369 0,006 0,020 0,000 - 0,000 0,022
2372 0,250 0,002 0,160 0,000 - 0,551
2386 0,599 0,139 0,241 0,022 0,551 -
Sampax 2386 2325 2325 2386 2386 2325
Sred 1,959 2,196 1,075 1,107 2,210 1,086




Tabela 48.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych GR (HTA)
2325 2364 2368 2369 2372 2386
2325 - 0,258 0,141 0,002 0,183 0,580
2364 0,258 - 0,000 0,036 0,004 0,171
2368 0,141 0,000 - 0,011 0,255 0,287
2369 0,002 0,036 0,011 - 0,003 0,062
2372 0,183 0,004 0,255 0,003 - 0,557
2386 0,580 0,171 0,287 0,062 0,557 -
Sampax 2386 2325 2386 2386 2386 2325
Sced 2,249 1,505 1,125 1,726 2,180 1,042
Tabela49.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych GR (HTI)
2325 2364 2368 2369 2372 2386
2325 - 0,182 0,373 0,143 0,225 0,488
2364 0,182 - 0,003 0,022 0,002 0,127
2368 0,373 0,003 - 0,323 0,462 0,391
2369 0,143 0,022 0,323 - 0,142 0,144
2372 0,225 0,002 0,462 0,142 - 0,469
2386 0,488 0,127 0,391 0,144 0,469 -
Sam ., 2386 2325 2372 2368 2386 2325
Sced 1,309 1,435 1,183 2,234 1,015 1,039
Tabela 50.  Macierz bledéw identyfikacji dla obrazéw przekszralconych GR (FCA)
2325 2364 2368 2369 2372 2386
2325 - 0,205 0,379 0,004 0,369 0,613
2364 0,205 — 0,005 0,076 0,033 0,148
2368 0,379 0,005 - 0,003 0,336 0,349
2369 0,004 0,076 0,003 - 0,043 0,083
2372 0,369 0,033 0,336 0,043 - 0,557
2386 0,613 0,148 0,349 0,083 0,557 =
Sampax 2386 2325 2325 2386 2386 2325
Sted 1,619 1,381 1,086 1,092 1,511 1,100
TabelaS1.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych GR (FCI)
2325 2364 2368 2369 2372 2386
2325 - 0,000 0,170 0,000 0,286 0,511
2364 0,000 - 0,000 0,220 0,028 0,134
2368 0,170 0,000 - 0,000 0,198 0,170
2369 0,000 0,220 0,000 - 0,000 0,000
2372 0,286 0,028 0,198 0,000 - 0,542
2386 0,511 0,134 0,170 0,000 0,542 -
Sam 2386 2369 2372 2364 2386 2372
Sred 1,786 1,646 1,163 No error 1,895 1,061
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gdzie:

Z powyiszych tabel wynika, ze zaréwno klasa odrzuconego samolotu, jak i wspolczynnik
zmiany $redniego prawdopodobienistwa prawidlowej identyfikagji jest zmienny i nie stanowi
zadnego regularnego wzorca. Oznacza to, ze hybryde przeksztatcenia Hilberta nalezy dobie-
ra¢ zaleznie od zbioru klas identyfikowanych obiektéw. Jednak mimo powyzszego mozliwe
jest wskazanie, ktora klasa samolotéw i w jakich warunkach zostala najcz¢sciej odrzucana.
Dane te moga stanowi¢ podstawe analizy oraz dalszych badan nad doborem zestawu cech
charakteryzujacych poszczegélne klasy obicktow, a co za tym idzie — dalsze powigkszenie

skutecznosci identyfikacyjnej. Ponizej przedstawiono histogramy rozkladu odrzutéw po-

Tabela 52.  Macierz bledéw identyfikacji dla obrazéw przeksztalconych GR (FFT)

2325 2364 2368 2369 2372 2386
2325 = 0,216 0,489 0,477 0,607 0,493
2364 0,216 - 0,647 0,764 0,567 0,727
2368 0,489 0,647 - 0,114 0,020 0,235
2369 0,477 0,764 0,114 - 0,315 0,323
2372 0,607 0,567 0,020 0,315 - 0,108

2386 0,493 0,727 0,235 0,323 0,108 -
Sampax 2372 2369 2364 2364 2325 2364
Sred 1,232 1,051 1,321 1,601 1,071 1,475

Sam ., — klasa odrzuconego samolotu
Sted — wspdlczynnik zmiany $redniego prawdopodobienstwa prawidiowej identyfikacji

szczegblnych klas obiektow w zaleznosci od warunkéw prowadzenia eksperymentu.
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Rysunek 176. Rozklad ksztaltow odrzuconych dla zbioru obiektow BW obserwowanych z boku.
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Rysunek 177. Rozklad ksztattéw odrzuconych dla zbioru obiektéw BW obserwowanych z gory (plan).
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Rysunek 178. Rozklad ksztaltéw odrzuconych dla zbioru obiektéw GR obserwowanych z boku.

6.4.Badania i ewaluacja jakosci decyzji identyfikacyjnych WIS-COH tekstur.

Oba eksperymenty majace na celu identyfikacj¢ obszaréw charakeerystycznych na ob-
razach cyfrowych, ktérych wyniki zostaly przedstawione w rozdziatach 5.3 oraz 5.4 zostaly
przygotowane na zlecenie pracownikéw naukowych Katedry Technologii Uniwersytetu
Opolskiego, dlatego tez oméwienie wynikéw z w/w podrozdzialéw zostato ograniczone je-
dynie do algorytméw oraz sposobdéw stosowania hybryd przetwarzan Hilberta na potrzeby

szeroko rozumianej identyfikacji tekstur.
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Najwazniejszg roznicg migdzy eksperymentem z rozdziatu 5.2 i tych z rozdziatéw 5.3 oraz
5.4 jest zastosowanie kolejnej hybrydy przeksztalcenia Hilberta, ktdra wezesniej nie byta sto-
sowana. Chodzi tu o przeksztalcenie fazowe poprzedzone przeksztalceniem HTA. Prze-
ksztalcenie fazowe jest szczegélnie uzyteczne w przypadkach identyfikacji niewielkich zmian
w obrazach stanowiacych czasowa sekwencje. Poza tym réznicg migdzy identyfikacjg obiek-
téw i tekstur jest ,plaski” charakter tych drugich. Oznacza to, ze nie jest konieczne niwelo-
wanie tréjwymiarowego szumu katowego. Kolejng réznic jest wartosé progowa wspotezyn-
nika korelacji dla obicktéw oraz tekstur. W' przypadku obiektow, ktére mozna zaliczy¢ do
pewnej, tej samej klasy wspotezynniki korelacji oscyluja w granicach 0,65+0,75 natomiast w
przypadku analizy oraz identyfikacji obszaréw tekstur mozna méwi¢ jedynie o podobien-
stwie do wzorca. Wystarczy powiedzied, ze w eksperymencie z podrozdziatu 5.3 wspétezyn-
nik korelacji zastosowany przy filtracji progowej obrazéw ze stron 5-83 + 5-88 byt na po-
ziomie 0,12, czyli sze$ciokrotnie nizszym, niz w przypadku identyfikacji obiektow.

W podrozdziale 5.3 przedstawiono wyniki eksperymentu, w ktérym badane byly dwie
nast¢pujace po sobie klatki stanowiace obraz plynu optycznie aktywnego. W eksperymencie
zastosowano kilka réznych podejs¢ i sekwencji przetwarzan hybrydowych Hilberta. Kazde z
nich dawalo podobne, aczkolwick nieznacznie rézniace si¢ wyniki. Najwazniejsze w ekspe-
rymencie jest zastosowanie dwoch réznych zrédet wzorcéw do poréwnan. Pierwszy wzorzec
to arbitralnie wygenerowane prazki obrécone pod katem 60° od pionu (rysunek 155). Drugi
wzorzec natomiast to wycinki bitmap pochodzace z pierwszej klatki badanej sekwencji
(rysunek 149.c).

Odpowiednio sparametryzowane wzorce i dobrana warto$¢ progowa wspétczynnika korela-
cji moze by¢ bardzo przydatnym narzedziem do wykrywania powtarzalnych fragmentow
obrazu takich, jak pgki rur w wymiennikach ciepla (rysunck 161+185).

Kolejny eksperyment to dziesi¢ciogodzinna sekwencja postepéw korozji na wypolero-
wanej probee stali ST3S (rozdzial 5.4). Tu podobnie jak poprzednio zastosowano kilka po-

dej$¢ to tego samego materialu badawczego.[1]

6.5.Analiza powiekszenia jakosci metod identyfikacyjnych na podstawie hybry-
dyzacji algorytmow COH.

Identyfikacja obiektéw oraz tekstur to podstawowe procedury analityczne scen oraz
technologie interpretacji informacji, stuzace do rozwigzywania istotnych probleméw zwiaza-
nych z cyfrowym przetwarzaniem obrazéw [21], [30], [43], [79]. W ciagu ostatnich kilku
dekad metody optyki Hilberta zacz¢to stosowaé w inzynierii optycznej przy tworzeniu sys-

teméw oraz urzadzen wizualizacji oraz rozpoznawania. Przegladem teorii przeksztalcenn Hil-
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berta oraz ich stosowania w przetwarzaniu sygnaléw cyfrowych jest fundamentalne dzielo
prof. Stefana L. Hahna opisujace przeksztalcenia Hilberta w przetwarzaniu sygnatow[21].

Hybrydowe systemy optoelektronicznej mozna zdefiniowa¢ jako wideo-informacyjne
systemy posiadajace okreslone cechy: kanaly pobierania mediéw i obrobki wstepnej; funk-
cjonalne potaczenie (integracja) sygnaléw przestrzenno-czasowych oraz modeli widmowych
przetwarzanych danych; przynajmniej dwie podstawy (przestrzenie funkcjonalne) modelo-
wanych danych; hybrydowe srodowisko realizacji przetwarzan. Termin ,identyfikacja” ozna-
cza tu ekstrakcje zestawu wiasnosci wzorcow ksztattu obiektow, ich charakterystyki dyna-
micznej oraz modelowani i rozpoznawania opartego na réznych typach metod dyskrymina-
cyjnych.

Zastosowanie zlozonej analizy obrazéw w postaci uogélnionej analizy amplitudowo-
fazowej (GAPA - ang. generalized amplitude-phase analysis) w wielowymiarowej optyce
Hilberta stanowi perspektywe poprawy technologii informacyjnej identyfikacji obiektow.
Polepszenie zdolnosci identyfikacyjnych wymaga metod o wysokiej czutoéci na migdzy kla-
sowe zmiany ksztaltu obiektéw oraz wysokiej stabilnosci na osobliwosci wewnatrzklasowe;
dynamicznej zmiany ksztaltéw. Wiaze si¢ to ze swego rodzaju kompromisem miedzy sytuacja
a wymaganiami nowo tworzonych metod i ich wlasnosci badawczych. W szczegélnosci obra-
zy uogdlnionej dwuwymiarowej fazy identyfikowanego obicktu obliczanej dzicki zastosowaniu
cyfrowych przeksztatcer: Hilberta z punktu widzenia identyfikacji OZK(TZK). Analiza stanu
wiedzy wskazuje, ze algorytmy tej klasy nie zostaly jeszcze dostatecznie zbadane w kontekscie

formulowania rozwigzania wyzej przedstawionego problemu (identyfikacji).
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7.Zakonczenie, wnioski

Niniejsza rozprawa stanowi kompletny opis oraz ewaluacj¢ wybranych hybryd prze-
ksztalcenia Hilberta, uzytych w celu podniesienia skutecznosci identyfikacji obiektéw na
podstawie ich obrazéw cyfrowych.

W rozprawie jednoznacznie wykazano, iz hybrydyzacja metody Cyfrowej Optyki Hil-
berta w znacznym stopniu przyczynia si¢ do zwigkszenia skutecznosci identyfikacji obrazéw
obiektéw dwu- jak i trojwymiarowych. Zwigkszenie jakosci podejmowanych decyzji identy-
fikacyjnych nie jest w kazdym przypadku jednakowe i zalezy jednoczesnie od klasy cyfrowego

obrazu oraz od domeny, w ktorej zastosowano opisane w rozprawie przeksztalcenia Hilberta.

7.1.0ryginalny wkiad w dziedzine cyfrowej optyki Hilberta w analizie oraz roz-
poznawaniu obiektow.
Jako elementy nowosci w niniejszej rozprawie wskazaé nalezy przede wszystkim:

— zaproponowanie zestawu unikalnych cech charakterystycznych segmentowanego ksztaltu,
ulatwiajacego dalsza obrobke otrzymanego segmentu. Cechy charakterystyczne segmentu
s3 uzyteczne w kontekscie wykorzystywanych metod na dalszych etapach funkcjonowania
systemu klasyfikacji obiektow;

— opracowanie metody normalizacji danych oraz redukgji pojemnosci danych obrazowych.
Redukeja przyniosta bardzo wymierne korzysci ujawniajace si¢ w eksperymencie korela-
cyjnym (rozdziat 5.2);

— opracowanie zestawu oryginalnych procedur tworzenia opiséw sygnaturowych, ktére mia-
ly na celu dalszg redukcj¢ objetoéci opisu — kosztem podwyzszenia wspotczynnika korela-
cji migdzyklasowej (obnizenia jakosci identyfikacji);

— opracowano metody umozliwiajace wydobycie z opisu sygnaturowego informacji ,,ubocz-
nych” o orientacji obiektu w przestrzeni;

— opracowano metodg preselekeji etalonéw Obiektu Ztozonego Ksztattu (OZK)na pod-
stawie lokalnosci sceny oraz w oparciu o wspétczynnik ksztatu;

— opracowano metod¢ obnizania wspotczynnika korelacji przez usunigcie komponentu sta-
tego widma Fouriera;

— opracowano algorytm iteracyjny obliczajacych wspoétczynniki korelacji, stanowigce pod-
stawe eksperymentu opisanego w rozdziale 5.2 rozprawy., ktéry nastgpnie poddano wielu
optymalizacjom;

— opracowano przyktad zastosowania hybrydowych przeksztalcen Hilberta z ewaluacja wy-
nikéw na prostym obrazie cyfrowych zawierajacym kilka obiektéw, z ktdrych miat zostaé

wskazany tylko ten najbardziej podobny do wzorca;
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— zaproponowano struktur¢ specjalizowanej bazy danych stuzacej do przechowywania pré-
bek — etalonéw obiektéw, ktdre nastepnie stanowilyby baz¢ do poréwnan z obrazem ba-
danym. W rozwiazaniu tym zaproponowano hierarchiczng struktur¢ danych, umozliwia-
jaca zapisanie kompletnej sceny, wraz z jej segmentami w postaci pierwotnej, wtornej oraz
sygnaturowej;

— wykorzystano hybrydy cyfrowych przeksztalcen Hilberta do analizy tekstur w celu wykry-
cia obszaréw charakterystycznych (rozdziat 5.3 oraz 5.4);

— opracowano i zaimplementowano metodologi¢ ewaluacji metod oraz przeksztalcen cy-
frowej optyki Hilberta przy klasyfikacji obiektéw tréjwymiarowych na podstawie ich ob-
razéw cyfrowych. Metoda ewaluacji wynikéw eksperymentu opisanego w 5.2 jest meto-

da/miara $redniego pelnego ryzyka podejmowania decyzji.

Czes¢ wynikow opisanych w niniejszej rozprawie zostata opublikowana w nast¢puja-

cych publikacjach: [28], [33], [49], [55]+[59], [61], [64]+[73], [80].

7.2.Proponowane kierunki dalszych badan

Przeprowadzona analiza przedmiotu oraz otrzymane wyniki wskazuja $ciezke poten-
cjalnych przysztych badan nad:

— optymalizacja wykonywania procedur identyfikacyjnych pod katem skrécenia czasu ich
wykonywania. W szczegdlnosci dotyczy to iteracyjnych obliczent korelacyjnych, ktérych
skrypt w niniejszej rozprawie zostal tylko wstepnie zoptymalizowany;

— przystosowaniem niektdrych, najbardziej czasochlonnych obliczen o wykonywania réw-
noleglego. Autorytet w dziedzinie architektury mikroprocesoréw architektury x86 oraz
RISC [53] wskazuje mozliwos¢ wykorzystanie technik przetwarzania réwnoleglego, jaka
daja wspélczesne procesory komputerowe. Réwnie duze nadzieje mozna wiazaé z wyko-
rzystaniem na potrzeby obliczen réwnoleglych, procesoréw graficznych GPU — w szcze-
goélnosci procesoréw firmy nVidia, w keérych zaimplementowana zostata technologia
CUDA, ktéra w dramatyczny sposéb moze skréci¢ czas potrzebny na obliczenia korela-
cyjne, ale réwniez na etapy wczesniejsze — czyli etapy przetwarzania wstepnego, gdzie po-
wstajg modele przeksztalcen Hilberta oraz Fouriera. To wlasnie przeksztalcenia Fouriera
s3 powszechnie wykorzystywane podczas kompresji map bitowych stratng kompresja
JPEG, a procesory graficzne sa tworzone w kierunku maksymalizacji wydajnosci wlasnie
w domenie kompresji i dekompresji obrazéw w formacie JPEG.

— dalszg hybrydyzacja oraz opracowaniem metod skutecznego generowania unikalnych opi-
sow wektorowych podnoszacych jako$¢ podejmowanych decyzji identyfikacyjnych

w okreslonych domenach.
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kolejnych segmentach informacyjnych Hybrydowych Systeméw Optoelektronicznych 22
Schemat pierwszych dwéch etapéw procesu identyfikacji obiektow 23
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9-1
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11. Suplement

Poniicj zZamieszczono listingi najwainiejszych skrypt(')w omawianych W ninicjszej roz-

prawie

function x = hilbert(xr,n)

if nargin<2, n=[]; end

if ~isreal (xr)
warning ('HILBERT ignoruje urojona czes¢ wejsciowa.')
xr = real (xr);

:end

% Dzialanie wzdluz pierwszego wymiaru

. [xr,nshifts] = shiftdim(xr);

 if isempty(n)

n = size(xr,1);

end

| x = fft(xr,n,1); % n-punktowe FFT po kolumnach.

'h = zeros(n,~isempty(x)); % nxl dla niepustych. 0x0 dla pustych.

' if n > 0 && 2*fix(n/2) ==

% parzyste i niepuste
h([1l n/2+1]) = 1;
h(2:n/2) = 2;

jelseif n>0

% nieparzyste i niepuste

h(1l) = 1;
h(2:(n+l)/2) = 2;
end

' x = ifft(x.*h(:,ones(1l,size(x,2))));

ix = shiftdim(x,fgshifpgl;

% Konwersja do pierwotnego ksztaltu wejscia

Skrypr 1. Kod zrédlowy funkeji hilbert

| function [trans, norm, nlog] = FFTSHIFT2 (image, coef, shape)

F = fft2(double(image));
FFTShift (F);
log(abs(F));

cut off the centre of spectrum

o +h =
n

if coef > 0
[dx,dy] = size(image);
imread ([shape '.BMP']);
shape = double(shape) / 255;
shape resized = imresize(shape, [(dx*coef) (dy*coef)]);

shape

for x = l:size(shape resized,1)
for y = l:size(shape resized,2)
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uintl6 (dx/2* (1-coef)) -l+x;

XX

yy = uintl6 (dy/2* (1-coef))-1+y;
f (xx,yy) = £ (xx,yy) * shape resized(x,y);
end;
end;
end;
trans = £;

norm = normalize (f, min(min(f)), max(max(f)));
(log(£));
normalize (nlog, -5, max(max(nlog)));

nlog
nlog

Skrypt 2. Zmodyfikowana posta¢ funkcji FFTShift

function [trans, norm, nlog] = HTI(image)

| %% ustalenie typu danych wejsciowych

- original im = im2double(image);

%% Hilbert po x
ox = imag(hilbert(original im));

;%% Hilbert po y (transpozycja obrazu pierwotnego)

oy = imag(hilbert(original im'))';

%% Wlasciwy HTI

| trans = ox+oy;

%% Cala reszta do wyprowadzania wynikéw na ekran

t2 = abs(ox)+abs (oy);

norm = normalize (t2,min(min(t2)),max(max(t2)));
'nlog = (log(t2));
@ nlog = normalize (nlog, -5, max(max(nlog)));

Skrypt 3. Skrypt realizujacy izotropowe przeksztalcenie Hilberta

function [trans, norm, nlog] = HTA(image)
| $%ustalenie typu danych wejsciowych

original im = im2double (image);
%% Hilbert po x
ox=imag (hilbert (original im));

| %% Hilbert po y (transpozycja obrazu ox)

' original transform = imag(hilbert(ox'))';

%% Wiasciwy HTI
trans = original transform;
%% Cala reszta do wyprowadzania wynikow na ekran

t2 = abs(trans);

norm = normalize (t2,min(min(t2)),max(max(t2)));
nlog = (log(t2));
' nlog = normalize (nlog, -5, max (max(nlog)));

Skrypt 4. Skrypt realizujacy anizotropowe przeksztalcenie Hilberta
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function [trans, norm, nlog] = FOUCAULTI (image)
%% ustalenie typu danych wejsciowych
original im = double(image);

| %% Hilbert®2 po x

| ix = imag(hilbert(original im))."2;

% Hilbert”2 po y

- 0P

= (imag(hilbert (original im'))')."2;

(=
=

Suma obu Hilbertow

o°
o®

img = ix+iy;
| %% obraz pierwotny
' qoi = (original im)."2;
| %% wlasciwy FCI
ftrans = sqrt(img+goi) ;
| %% Cala reszta do wyprowadzania wynikéw na ekran
| norm = normalize (trans,min(min(trans)),max(max(trans)));
(log(trans)) ;
normalize (nlog, -5, max(max(nlog)));

' nlog
' nlog

Skrypt S. Skrypt realizujacy izotropowe przeksztalcenie Foucault-a
function [trans, norm, nlog] = FOUCAULTA(image) '

;%% ustalenie typu danych wejsciowych

original im = im2double (image);

| %% Hilbert”2 po x

ix = imag(hilbert (original im))."2;

| %% Hilbert®2 po y (transpozycja ix)

ioriginal_transform = imag(hilbert (ix'))';

' img = abs(original transform);

| %% obraz pierwotny

goi = (double(original im))."2;

%% wlasciwy FCA

trans = sqrt(img+qoi);

| %% Cala reszta do wyprowadzania wynikéw na ekran

' norm = normalize (trans,min(min(trans)),max(max(trans)));
(log(trans)) ;

normalize (nlog, -5, max(max(nlog)));

. nlog

nlog

Skrypt 6. Skrypt realizujacy anizotropowe przeksztalcenie Foucault-a

function [trans suma] = RADEK (data,theta)

trans = radon(data, theta);

suma = sum (trans')';
Skrypt 7. Skrypt realizujacy przeksztalcenie Radona

PR Startn WL R T G IO P ' ARy

clear;

| sam = {'2325' '2364' '2368' '2369' '2372' 12386'};
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‘%nazwy samolotéw do korelacji

transl = {'fea' 'fci% 'fft' ‘hta' 'hti' 'ntr'};

%nazwy plikéw rozpoczynaja sie od skrétu przetwarzania, a potem jest
informacja o koncie

%np. hta 001035090 - to plik z transformacja hilberta

%anizotropowa obiektu dla katéw: x = 1, y = 35, z = 90

trans2 = transl; % na wszelki wypadek, gdyby trzeba bylo korelowac¢ ze
gsoba wynyki réznych przetwarzan

%$wybdr przetwarzania do analizy
sel trans = char(transl(5));
| $naglowek nazwy katalogu tworzony przez wczesniejsze skrypty
header = 'sym norm 00 10 ';
%katalog, w ktorym mam wszystkie zrdédia i wyniki
root = 'J:\SAMOLOTY\';
wyniki = 'Q:\SAMOLOTY\';
ext = '.bmp'; %rozszerzenia odczytywanych plikéw
%skrypt bedzie rozpoznawal, czy ma dokonac¢ analizy
%korelacyjnej bitmap, czy zmiennych MATLAB-owskich
t start = now; %czas rozpoczecia obliczen
for start = 1:6 %od ktdorego katalogu zaczynac, opis w sam
%% czyszczenie zmiennych w petli
clear 'x' 'y' 'done';
| 3% tworzenie zmiennych Sciezek
for x = start:size(sam,2)
path(x,:) = [root header char(sam(x))];
‘end; %of for
nXP=R0k 10 nva=R0k 10 nZzE =050
%% zmienne logiczne
% macierz do przechowywania wartosci logiczny, czy juz obliczono dana
korelacje, czy nie.
% 0 - nie obliczono (stan pierwotny 1 - obliczono.
% Wypeinia wartosci (x,y) oraz (y,x)
done = logical (zeros ((size (nx,2))"3, (size (nx,2))"3));
for x = start:size(sam,2)

ciong = [sel trans ' ' char(sam(start)) ' ' char(sam(x)) ' = zeros ((size
(nx,2))"3, (size (nx,2))"3);'l;

eval (ciong); %macierz korelacyjna
end; %of for

x = 0;

for x1 = nx for yl = ny for zl = nz
plik = [char(path(start,:)) '\' sel trans ' ' sprintf('%03d',x1)
sprintf('%03d',yl) sprintf('%03d',zl) extl;
glowna = imread (plik);

glowna = glowna(65:192,65:192) ;
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X = x+1;

jY = 0;
| for x2 = nx for y2 = ny for z2 = nz
PERTY

| if done (x,y) ==

for a = start:size(sam,2)

macierze(:,:,a) = imread ([char(path(a,:)) '\' sel trans ' '
sprintf('%03d',x2) sprintf('%03d',y2) sprintf('%03d',z2) extl);
| end; %of for;

macierze = macierze (65:192,65:192,:);

 for a = start:size(sam,2)

eval ([sel trans ' ' char(sam(start)) ' ' char(sam(a)) '(x,y) =
 corr2(glowna,macierze(:,:,a));']);

"eval ([sel trans ' ' char(sam(start)) ' ' char(sam(a)) '(y,x) = '
' sel trans ' ' char(sam(start)) ' ' char(sam(a)) '(x,y);']l);

end; %of for
done (x,y) = 1;

| done (y,x) = done (x,y);
clear macierze;

end; end; end; end; end; end; end;
%% zapis zmiennych srodowiskowych do pliku dyskowego wg. ponizszego wzorca
nazwy
for a = start:size(sam,2)
plik = [wyniki ' WYNIKI\ BW\HTI SYM PLAN BW\' char(sam(start)) ' '
' sel trans ' ' char(sam(a)) ' ' sel trams '.mat'];
zmienna = char([sel trans ' ' char(sam(start)) ' ' char(sam(a))]);
save (plik,zmienna);
eval (['clear ' zmienna ';'l);
end; %of for
| %% KONIE PETLI GLOWNEJ
| end; %of for start...

now; %czas konca obliczen
(t_stop-t start)*86400/3600; %ile godzin zajely obliczenia??

't _stop

ggodzinr

Skrypt 8. Skrypt realizujgcy obliczenia korelacyjne wewnatrzklasowe

| %% czyszczenie zmiennych

' clear;

%%% tadowanie i przetwarzanie wzorca
;i = im2double(imread ('http://dasiek.info/pencap.bmp'));
;wzorzec.Image = g

' bkg = zeros(uintlé6(size(i,1)/2),uintl6(size(i,2)/2));
original im = blkdiag (bkg,i,bkg);

 wzorzec.Hta = HTA (original im);

RADEK (wzorzec.Hta,0:179);

RADEK (i,0:179);

i[q wzorzec.RadHta]
1
- [q wzorzec.RadNtr]
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http://dasiek.info/pencap.bmp'

RGB = imread('pillsetc.png');
%% segmentacja §
I = rgb2gray(RGB);

gthreshold = graythresh(I);
' bw = im2bw(I,threshold);

bw = bwareaopen (bw,30) ;

| se = strel('disk',2);
fbw = imclose (bw, se) ;

bw = imfill (bw, 'holes');

f[B,L] = bwboundaries (bw, 'noholes') ;

| %% przeksztalcenia

obrazy = regionprops (L,'Image');

ifor a = l:size(obrazy,1)

' X = obrazy(a,l).Image;
' bkg = zeros(uintl6(size(x,1)/2),uintl6 (size(x,2)/2));

' [q obrazy(a,1) .RadHta]
~ [q obrazy(a,1) .RadNtr]

original im = blkdiag (bkg,x,bkg);

obrazy(a,1l) .Hta = HTA (original im);

RADEK (obrazy(a,l).Hta,0:179);
RADEK (double(x),0:179);

‘end; %0f for a

%% korelacje
for a = l:size(obrazy,1)

k pierw(a) = corr2(imresize(obrazy(a).Image, [size(wzorzec.Image)],
'bicubic') ,wzorzec.Image) ;

k Hta(a) = corr2 (imresize (obrazy(a) .Hta, [size(wzorzec.Hta)l,
'bicubic'),wzorzec.Hta) ;

k RadHta(a) = corr2(imresize(obrazy(a).RadHta, [size(wzorzec.RadHta)],

_'bicubic'),wzorzec.RadHta);

k RadNtr(a) = corr2(imresize(obrazy(a).RadNtr, [size(wzorzec.RadNtr)],
'bicubic'),wzorzec.RadNtr) ;
end; %of for a |

o

% rysunki pierwotne

 for a = 1l:size(obrazy,1)

subplot (1,6,a); imagesc (l-obrazy(a).Image); colormap (gray);
end; %of for a

' subplot (4,1,1); bar (k pierw); title ('Korelacja obraz’w pierwotnych ze
 wzorcem'); ylim ([0 1]);

subplot (4,1,2); bar (k RadNtr); title ('Korelacja wektcrdéw Radona na
pierwotnych ze wzorcem');

gsubplot (4,1,3); bar (k _Hta); title ('Korelacja obrazdéw HTA ze wzorcem');

?subplot (4,1,4); bar (k RadHta); title ('Korelacja wektordw Radona na HTA
| ze wzorcem') ;

Skrypt 9. Skrypt realizujacy szosty, rozszerzony etap zadania z samouczka programu Matlab
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