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Abstract: This study investigates multi-factor dynamics in vertical roller mill separator using a BP 
neural network-Response Surface Methodology (BP-RSM) framework. Computational Fluid Dynamics 
(CFD) with a Dense Discrete Phase Model (DDPM) simulates particle motion, generating 60 datasets. 
The BP neural network achieves an integrated determination coefficient of 97.05% on these data, 
expanding to 12,150 virtual experiments. The relationships of the data generated by the BP neural 
network were expressed through RSM, realizing an explicit and visual representation of multiple factors 
(with an integrated determination coefficient of 99.76% and a predicted determination coefficient of 
99.75%), therefor the validation determination coefficient of BP-RSM joint fitting is 96.82%. BP-RSM 
surpasses traditional RSM in generalization and interpretability. The results indicate that the air 
injection velocity (vg), rotor rotation speed (ω), and rotor diameter ratio (d/d0) are significant factors 
influencing the separation size (dc). The variation in the rotor diameter ratio (d/d0) can modulate the 
intensity of vortices generated between moving blades, which significantly influences the adaptation to 
fluctuations in air injection velocity (vg). In the target particle size range of 40-60 µm, the rotor diameter 
ratio (d/d0) of separator is between 1.2 and 1.4. This configuration can enhance the adaptability of the 
equipment's air injection velocity (vg) by a factor of 2-3 times. This framework effectively addresses the 
challenges associated with multifactor coupled modeling and the explicit representation of high-
dimensional nonlinear relationships. It offers a solution for the multi-objective optimization of 
separators that is easy to operate, while ensuring both predictive accuracy and physical interpretability.                                                                         

Keywords: vertical roller mill separator, CFD-DDPM simulation, multifactor analysis, the BP neural 
network, response surface methodology (RSM) 

1. Introductory 

As a type of high-efficiency and energy-saving equipment, the vertical roller mill integrates the 
functions of grinding, drying, and classifying. Its widespread application in powder processing within 
the cement and mining industries can be attributed to its energy-saving advantages when compared to 
traditional ball mills (Fatahi et al., 2002; Hu et al., 2025; Wang et al., 2009). As a fundamental component 
of the vertical roller mill system, the separator facilitates particle separation by establishing a dynamic 
equilibrium between the centrifugal force field produced by the high-speed rotation of the rotor and the 
traction field generated by airflow. The accuracy of this separation has a direct impact on both product 
size distribution and overall system energy consumption (Li et al., 2016). Studies have demonstrated 
that the precise control of the separation size (dc) significantly influences the properties of cement. Key 
performance indicators include setting time and exothermic hydration, among others. Studies such as 
Esmaeilpour et al. (2024) and Pareek et al. (2021) confirmed through Computational Fluid Dynamics 
(CFD) simulations that optimizing the separation size (dc) can reduce the separator's energy 
consumption by 14.63% and increase its capacity from 203 t/h to 214 t/h, representing a growth of 5.4%. 
In terms of research methodology, the vertical roller mill is classified as large-scale equipment. The 
synergistic analysis of its structural and operational parameters often employs Computational Fluid 
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Dynamics (CFD) methods. This approach not only significantly reduces experimental costs but also 
enables a detailed characterization of the internal flow field within the vertical roller mill (Ismail et al., 
2022; Hu et al., 2025; Li et al., 2024). 

The current research on the separation mechanism of separators primarily focuses on single-factor 
and two-factor analyses, with a limited number of studies utilizing approximate models for three-factor 
coupling to optimize solutions. For instance, Geng et al. (2021) quantitatively elucidated the 
independent influence of system air volume and separator speed through mathematical modeling. 
Their findings indicated that a 10% increase in air volume could lead to an increase in cut particle size 
by 8-12 µm, where as a rise of 100 rpm in rotational speed could reduce the fineness of the finished 
product (measured as residue on an 80 µm sieve) by approximately 3-5%. Esmaeilpour et al. (2024) 
conducted a univariate analysis focusing on parameters such as feeding percentage and blade shape, 
highlighting that there remains an optimization potential of 15-20% for the current parameter regulation. 
Xu et al. (2000) conducted a two-factor test and discovered that, when the blade pitch is held constant, 
there exists a nonlinear coupling effect between the air volume and the feed concentration. Furthermore, 
the maximum particle size of fine particles exhibits a complex trend characterized by an initial increase, 
followed by a decrease, and then another increase. Huang et al. (2023) proposed a numerical calculation 
method for the coupled particle-fluid system within a large vertical mill, based on CFD-DPM theory 
and a multi-objective optimization approach. They employed the Kriging surrogate model to conduct a 
three-factor analysis involving inlet air velocity, powder separator speed, and outlet temperature. 
Subsequently, the NSGA-II algorithm was utilized to update the agent model and identify the optimal 
solution, resulting in an increase in vertical mill output by 5.34%. 

As a systematic project, the parameters of the separator are interrelated, and the mechanisms 
underlying performance changes involve the synergistic effects of multiple factors. This complexity 
reflects a high degree of intricacy, while the interaction among various parameters may further 
exacerbate these nonlinear effects. The flow field simulation conducted by Sun et al. (2012) indicates 
that the vortex flow within the separator interferes with the balance of traction and centrifugal forces. 
It is challenging to comprehensively elucidate its intrinsic principles through single-factor or two-factor 
analyses alone. Therefore, it is essential to investigate the effects of multiple factors in a coupled manner. 
However, as the number of factors increases and the experimental combinations expand exponentially, 
it becomes essential to implement more targeted data processing strategies. This approach is crucial for 
uncovering high-dimensional nonlinear relationships in engineering applications and achieving 
effective representations. 

The neural network methodology plays a crucial role in the detection of equipment faults and the 
prediction of performance under multifactorial conditions. Fatahi et al. (2025) employed XGBoost to 
achieve a high level of accuracy in predicting working pressure. Additionally, they utilized SHAP 
analysis to elucidate the model's decisions and quantify the contribution of each parameter to the 
working pressure. The S-type nonlinear interaction relationship between differential pressure and feed 
rate was established through multi-factor coupling, leading to the optimization of the matching process 
between roll pressure and feed rate. Based on this, the "Consciousness Lab" framework integrates data-
driven approaches with physical mechanisms to deliver interpretable real-time decision support for the 
optimization of industrial processes. However, Dobson et al. (2023) found that the black-box nature of 
neural networks poses challenges in obtaining a mathematical representation of the model for 
visualization purposes. In this context, Response Surface Methodology (RSM) can effectively and 
intuitively provide a representation suitable for multi-factor problems. Combined with hydrodynamic 
simulation cases, a visual representation of the multifactorial problem can be achieved, facilitating a 
more in-depth and intuitive exploration of its intrinsic principles. For instance, Taghinezhad et al. (2023) 
developed an optimization strategy that integrates Computational Fluid Dynamics (CFD) with 
Response Surface Methodology (RSM) to determine the optimal throat wind speed and constriction 
ratio. This approach aims to enhance the throat wind speed and output power of conduit-type wind 
turbines, ultimately reducing both design costs and time. However, the accuracy of its predictions is 
significantly influenced by both the volume of data available and the mathematical representation of 
the internal mechanisms pertaining to the research subject (Wang et al., 2022). Both approaches possess 
distinct advantages and illustrate the potential for complementing one another's strengths while 
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reinforcing their respective merits. 
To this end, the present study seeks to leverage the strengths of neural networks in addressing 

complex nonlinear problems, while integrating the explicit expression capabilities of Response Surface 
Methodology (RSM). This approach aims to achieve a more accurate representation of flow field 
relationships with a reduced amount of sample data. In-depth discussion of the five key factors 
influencing the separator performance in vertical roller mills: particle injection mass (mp), particle 
injection velocity (vp), rotor rotation speed (ω), air injection velocity (vg), and rotor diameter ratio (d/d0). 
This analysis aims to identify the core factors affecting the separation law of separation size and to 
develop an optimization program. This method not only provides a theoretical foundation and 
analytical solution for the design of operating parameters in separators, but also introduces innovative 
ideas and directions for future research on more complex influencing factors and conditions. 

2. Separator structure and force principle 

2.1. Separator structure and powder selection process 

The separation region of the separator is comprised of a gravitational zone and a centrifugal zone (Altun 
et al., 2017), as illustrated in Fig. 1. In the working process of the vertical roller mill, as illustrated in Fig. 
1(a), high-speed airflow from the nozzle ring carries material particles upward during grinding. In this 
ascending phase, larger particles are influenced by gravity and fall back onto the grinding disk to 
continue the grinding process (Huang et al., 2024). The smaller-sized material particles enter the 
centrifugal separation zone following gravity grading. At this stage, the material particles, influenced 
by the airflow and static blades, are directed into the annular region formed by both the static and rotor 
blades. In this region, the trailing force produced by the airflow interacts with the centrifugal force, 
resulting in the formation of a vortex, as illustrated in Fig. 1(b). The material particles within the 
separator undergo secondary separation as a result of the combined effects of trailing force and 
centrifugal force. 

 
Fig. 1. Schematic representation of the separator in a vertical roller mill 

2.2. Forces acting on particles in separation processes 
Material particles entering the separator are subjected to both trailing force and centrifugal force. If the 
trailing force exceeds the centrifugal force, the particles will be carried out of the separator by the airflow. 
Conversely, if the centrifugal force prevails, the particles will enter the fallback channel and ultimately 
settle into the coarse powder collection port. 

The centrifugal and trailing forces acting on the particles within the separator are presented in Eq. 1 
and Eq. 2, respectively: 
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                                    (1) 

                                  (2) 

where: the trailing force is denoted as 𝐹!, the centrifugal force is represented by 𝐹", and the particle size 
of the material entering the separator is indicated as 𝑑#. The particle density and air density are referred 
to as 𝜌# and 𝜌$, respectively. The angular velocity of the particles is expressed as the equation (𝜔# =
𝑣#%/𝑟), while the radial flow velocity of air is designated as 𝑣$&. The radial flow velocity of particles is 
represented by 𝑣#&, with the circumferential flow velocities for air and particles being denoted as 𝑣$% 
and 𝑣#%, respectively. Additionally, 𝑟 signifies the particle rotational radius, and K represents the drag 
coefficient. 

It can be observed from Eq. 1 and Eq. 2 that the centrifugal force is proportional to the cube of the 
particle diameter, whereas the trailing force is proportional to the square of the particle diameter. When 
the centripetal force (Fc) equals the drag force (Fd), the material particles will maintain a continuous 
rotational motion along a track with radius r. However, when the particle size increases such that Fc 
exceeds Fd, the resultant force acting on the material particles is directed opposite to the center of 
rotation. In this scenario, the particles will experience centrifugal motion, moving tangentially and 
colliding with static blades, resulting in a loss of momentum. Subsequently, they will descend onto the 
grinding disc for secondary grinding. 

When the particle size is small, and the condition (𝐹"＜𝐹') holds, the resultant force acting on the 
particles directs towards the center of rotation. Consequently, these particles will undergo centripetal 
motion, moving inward toward this center. This principle facilitates the selection of fine particles that 
conform to the specified material particle size standards, thereby achieving effective particle separation. 

When the forces Fc and Fd are equal, the separation size (dc) can be determined as follows: 
                               (3) 

                                  (4) 

Under multi-particle conditions, it is essential to incorporate the momentum exchange between the 
particle and air phases into the interphase force for proper balance. Specifically, this entails 
acknowledging that momentum transfer occurs between the particles and the air. The interphase force 
is primarily influenced by the trailing force equation. The traction force is represented in the multiphase 
flow volume balance Eq. 5 (Adnan et al., 2021) as follows:  

                                     (5) 

where, in accordance with the Wen-Yu traction model (Gidaspow et al., 1992), β represents the traction 
coefficient and is defined as follows: 

                           (6) 

where:   

where: 𝛽 represents the drag coefficient as defined by the Wen-Yu drag model. The variables 𝜀$ and 
𝜀( denote the volume fractions of the air and solid phases, respectively. Additionally, 𝜌$ indicates the 
density of the air phase, while 𝜈⃗( and 𝜈$ are the velocity vectors corresponding to the solid and air 
phases, respectively. The term 𝑑( refers to the diameter of a particle, and 𝑅) signifies the Reynolds 
number. 𝐶* is defined as the effective drag coefficient for a particle. 

2.3. Objectives and programs for parametric analysis 
From Eq. 4 and Eq. 6, it is evident that the separation size (dc) during the particle movement process in 
a vertical roller mill is primarily influenced by several factors, including the particle injection mass (mp), 
particle injection velocity (vp), rotor rotation speed (ω), air injection velocity (vg), and rotor diameter 
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ratio (d/d0). The response variable of this study is the separation size (dc). Taking into account the vortex 
strength between blades, particle concentration, particle motion velocity, and air motion velocity as 
influenced by equipment structure and operating parameters—considered here as passive and indirect 
analysis targets (Sun et al., 2012)—we establish fixed parameters including air viscosity, particle density, 
air density, flow field structure, and collision coefficient. Subsequently, we conduct fluid simulations to 
perform multi-factor analyses and mechanism investigations. This resulted in the establishment of the 
analytical framework illustrated in Fig. 2. 

 
Fig. 2. Critical factors influencing separation 

3. Simulation experiment and data analysis program 

3.1. Simulation model 

To derive the flow field characteristics, the vertical roller mill body and the separator blade region are 
modeled and simulated separately. The vertical roller mill body is modeled in three dimensions, with 
an emphasis on understanding the overall flow field and air injection velocity (vg) of the separator. In 
contrast, the separator component focuses on examining the motion state of particles in proximity to 
the rotor blades. Additionally, two-dimensional planes within the regions of both static and moving 
blades are extracted to conduct simulation analyses using a more refined mesh. 

To enhance computational efficiency, the vertical roller mill body employs a 1/3 periodic boundary 
to establish the flow field structure model. Subsequently, a hexahedral mesh is utilized, as illustrated in 
Fig. 3(a). The maximum cell size is set at 0.06 m, resulting in a total of 540,000 meshes. The maximum 
vertical-to-horizontal ratio of the mesh is 18.9, and the mass fraction of the mesh that is less than 0.4145 
accounts for only 0.1%. 

The rotor region is dedicated to characterizing the separation behavior of particles under conditions 
influenced by trailing force and centrifugal force, while disregarding the effects of gravity. This analysis 
focuses on intercepting the structure of the planar annular region, as illustrated in Fig. 3(b) and Fig. 3(c). 
A periodic boundary condition with a ratio of 1/10 was implemented, and a quadrilateral-dominated 
grid model was utilized, as illustrated in Fig. 3(d). The grid comprised a total of 34,962 elements, 
featuring a grid size of 0.005 m and an aspect ratio that reached a maximum value of 3.81. 

3.2. Numerical simulation of air-solid two-phase flow in a vertical roller mill for cement production 

According to the operating parameters of the vertical roller mill, the mass concentration (C) of particles 
in the air stream typically 0.9 Nm³/kg (standard cubic meter per kilogram of material). The density 𝜌( 
of cement particles is approximately 2800 kg/m³. Based on the equation (𝐶 = 𝜀#𝜌#), the particle volume  
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Fig. 3. Vertical roller mill body structure and mesh modeling 

fraction 𝜀# in the air-solid mixed flow is estimated to be around 0.03% (Huang et al., 2023). Although 
the volume fraction is low and theoretically exerts a negligible influence on air flow in the primary 
region, it is essential to consider the substantial increase in mixing density resulting from particle 
loading within the momentum exchange model. This particle state is encompassed within the 
framework of the bidirectionally coupled Discrete Phase Model (DPM) (Bagherzadeh et al., 2024). 
However, substantial localized particle aggregation was observed in the high-velocity gradient region 
between the moving and static blades. This area exhibited a complex flow field that approached the 
critical zone for particle separation. To more effectively illustrate the particle agglomeration 
phenomenon in this region and to improve the validity of the simulation, the Dense Discrete Phase 
Model (DDPM) (Xu et al., 2024) was employed. The model enhances the applicability of the traditional 
DPM framework and is better suited for representing particulate flow fields by incorporating particle-
specific forces and an improved interphase coupling mechanism. 

Anisotropic reflection coefficients were employed for the wall boundary conditions to accurately 
characterize the behavior of particle-wall collisions. Referring to the experimental measurements 
conducted by Wang et al. (2024), the normal and tangential reflection coefficients are set at 0.1 and 0.5, 
respectively. This specific combination of parameters effectively captures the velocity differences 
observed in various directions when material particles collide with both moving and static blades. 

To enhance the representation of the vortex flow field between moving blades and to improve 
computational efficiency, the RNG k-ε turbulence model has been employed. 

To investigate the differences in emissions associated with various particle sizes, the range of 
particle diameters (V) was established as [10, 500], rounding to the nearest ten for a set of fifty particles. 
The particles possess a density of 2800 kg/m³ and are injected in the face-normal direction, exhibiting a 
uniform distribution of diameters. The five key variables, namely particle diameter (V), particle injection 



7     Physicochem. Probl. Miner. Process., 61(4), 2025, 208769 

mass (mp), particle injection velocity (vp), rotor rotation speed (ω), air injection velocity (vg), and rotor 
diameter ratio (d/d0), are collectively referred to as core simulation parameters for the convenience of 
subsequent analysis and description. Its scope is shown in Table 1. In the simulation, to ensure a 
proportional relationship between the static and moving blades of the separator rotor, as well as the 
positioning of the moving blades, we set the rotor diameter ratio as d/d0, where d0 (5032 mm) represents 
the diameter of the current equipment prototype separator rotor. 

Table 1. Simulation parameter setting range 

 V (µm) mp (kg/s) vp (m/s) ω (rad/s) vg (m/s) d/d0 
Range [10, 500] [15, 30] [1.2, 15] [4, 20] [3, 15] [0.5, 1.5] 

3.3. Refinement of evaluation program 

To quantify the characteristics of particle separation, this study introduces the concept of escape rate. 
This is defined as the ratio of net outflow to net injection of particles of a specific size during a steady-
state flow period. Numerical simulation results indicate that the flow state of the system tends to 
stabilize at 0.2 seconds. Consequently, the time interval from 0.6 to 1.6 seconds is selected for data 
statistics in order to mitigate transient interference. The escape rate 𝛼+  is determined using the 
following equation:  

                                (7) 

where: 𝑛,,..01  denotes the outflow at 1.2 seconds for the ith particle size; 𝑛,,2.31  indicates the outflow at 
0.6 seconds for the ith particle size; 𝑛,,..0  represents the injected amount at 1.2 seconds for the ith 
particle size; and 𝑛,,2.3 refers to the injected amount at 0.6 seconds for the ith particle size. In response 
to the subsequent investigation into the necessity of a separation size under multifactorial conditions, 
an escape rate exceeding 80% was established as indicative of effective separation. The particle size 
corresponding to this threshold is defined as the separation size (dc). 

The simulation was conducted in accordance with the methodology outlined in Table 1. The escape 
rate was calculated based on the framework presented in Table 2. Subsequently, the separation size (dc) 
was determined using the escape rate, and the results of the simulation experiments are summarized in 
Table 2. 

Table 2. Data sheet for simulation experiment 

Number mp (kg/s) vp (m/s) ω (rad/s) vg (m/s) d/d0 dc (µm) 

1 25 1.8 12 3 1.5 20 
2 25 3 12 3 1.5 20 
3 20 2.4 12 3 0.5 40 
4 20 2.4 12 3 1 40 
5 20 2.4 16 6 1 40 
6 20 4.8 16 6 1 40 
7 25 6 16 6 0.75 40 
8 30 4.8 16 6 1 40 
9 20 1.2 12 3 0.5 50 
10 15 3.6 16 6 0.75 50 
11 25 3.6 16 6 0.75 50 
12 25 9 12 9 1.5 60 
13 25 5.4 12 9 1.5 60 
14 15 3.6 9 6 1.5 60 
15 15 8 13 10 1.5 60 
16 20 4.8 16 12 1 70 
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17 20 3.6 20 9 0.5 70 
18 30 9.6 16 12 1 70 
19 30 7.2 12 9 1 70 
20 20 9.6 16 12 1 80 
21 15 3.6 10 9 1.5 80 
22 25 7 8 7 0.75 80 
23 30 3 8 5 1 80 
24 25 7.2 16 12 0.75 90 
25 25 12 16 12 0.75 90 
26 15 5 6 5 1.5 90 
27 20 2.4 8 6 1 100 
28 20 4.8 8 6 1 100 
29 30 4.8 8 6 1 100 
30 20 2.4 7 4 0.75 100 
31 25 5 8 5 0.75 100 
32 25 7.2 15 12 1.5 100 
33 25 9 12 15 1.5 110 
34 25 15 12 15 1.5 110 
35 30 4.8 9 8 1 110 
36 15 3.6 8 6 0.75 120 
37 25 3.6 8 6 0.75 120 
38 25 6 8 6 0.75 120 
39 15 1.2 6 3 0.5 120 
40 25 5.4 11 9 0.75 120 
41 20 4.8 10 6 0.5 130 
42 20 3.6 12 9 0.5 140 
43 20 7.2 12 9 0.5 140 
44 20 11 14 11 0.5 140 
45 20 7.2 20 9 0.5 140 
46 20 6 18 15 0.5 150 
47 20 8 11 10 0.5 190 
48 20 3.6 7 6 0.5 190 
49 20 4.8 8 12 1 200 
50 20 9.6 8 12 1 200 
51 15 7.2 8 12 0.75 210 
52 30 9.6 8 12 1 210 
53 25 9 4 9 1.5 240 
54 25 3.6 4 9 1.5 240 
55 20 6 12 15 0.5 250 
56 20 12 12 15 0.5 250 
57 25 12 8 12 0.75 250 
58 25 5.4 4 9 1.5 250 
59 25 7.2 8 12 0.75 270 
60 30 9.6 8 12 0.5 350 

3.4.  Data analysis program 

3.4.1. Application of BP neural network for data fitting 

In order to establish the nonlinear coupling relationship among the core simulation parameters and the 
separation size (dc), a multilayer feed-forward backpropagation (BP) neural network was employed to 
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predict the separation size (dc) under the synergistic influence of multiple factors. The model 
architecture is illustrated in Fig. 4 and comprises the following components: an input layer that receives 
five-dimensional feature vectors corresponding to the aforementioned five categories of key influencing 
factors; a hidden layer consisting of five neuron nodes, utilizing a sigmoid activation function (𝜎(𝑥) =
1/(1 + 𝑒45)) to capture nonlinear features and ensure output smoothness; and an output layer that 
employs a linear activation function to classify the separation size (dc) as a single response variable. The 
dataset comprises 60 sets of numerical simulation results, which are randomly partitioned into a 
training set (42 sets), a validation set (9 sets), and a test set (9 sets) in the ratio of 70%:15%:15%. The 
network is trained utilizing the Levenberg-Marquardt optimization algorithm, with the mean square 
error (MSE) serving as the loss function. 

 
Fig. 4. Diagram of the structure of a BP neural network 

As illustrated in Fig. 5, the developed BP neural network model with a 5-5-1 architecture 
demonstrates strong capabilities for nonlinear fitting. The regression analysis revealed that the 
correlation coefficient of this BP neural network model exceeds 98% across the training set, validation 
set, test set, and the entire dataset. The results indicate a strong correlation between the predictions 
generated by the BP neural network model and the values obtained from simulation. Evaluation of the 
performance on validation and test sets demonstrates the generalization capability and stability of BP 
neural network prediction models. 

3.4.2. Response surface methodology (RSM) fitting 

Based on 60 sets of simulation data, the system was modeled and optimized utilizing the Response 
Surface Methodology (RSM). The factors considered in this analysis are core simulation parameters. The 
separation size (dc) served as the response variable in this study. The relationship between the factors 
and responses was elucidated through the application of polynomial analysis. During the analysis, 
coded data were employed to mitigate the impact of varying scales and units of measurement on the 
data analysis process. The analysis of variance (ANOVA) was employed to evaluate the model's error 
and uncertainty. The findings from the data analysis are presented in Table 3. The model under the 
Quadratic condition demonstrates the highest adjusted R² value of 0.9559, with a sequential p-value of 
less than 0.0001. This indicates a greater overall statistical significance for the model. In contrast, both 
the linear and two-factor interaction (2FI) models exhibit some explanatory power; however, their 
predictive capabilities are considerably weaker than those of the quadratic model. The cubic and quartic 
models demonstrate an overall lack of statistical significance. 
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Fig. 5. Results of regression analysis for the BP neural network model based on 60 sets of simulation data 

Table 3. Comparative analysis of response surface models based on 60 sets of simulation results 

Source Sequential p-value Adjusted R² Predicted R² 
Linear < 0.0001 0.7738 0.7359 

2FI 0.0005 0.8560 0.7663 
Quadratic < 0.0001 0.9559 0.9241 

Cubic 0.8947 0.9176  
Quartic  1.0000  

4. Comparison of joint modeling programs and effects 

4.1. Joint modeling program 

To emphasize the advantages of BP neural network, which can adaptively capture arbitrary continuous 
nonlinear relationships between input variables through the activation functions of nodes in the implicit 
layer (Mehrkash and Santini-Bell, 2025), as well as the benefits of response surface that provides explicit 
mathematical expressions and visual representations for intuitive analysis of parameter interactions 
(Liu et al., 2025). A data processing program for joint BP-RSM modeling has been developed, as 
illustrated in Fig. 6.  

Firstly, a total of 60 sets of simulation data were used, covering the core simulation parameters and 
the separation size (dc). These data were input into a BP neural network model, which was subsequently 
trained to construct a prediction model with the separation size (dc) as the output. Subsequently, a total 
of 12,150 parameter space nodes were generated through uniform interpolation within the model 
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prediction domain. These nodes were then input into the trained BP neural network model to yield 
12,150 sets of virtual experimental data based on predictions. Following this, the virtual experimental 
data were incorporated into the response surface model. Finally, the response surface plots derived 
from 12,150 sets of virtual experiments were generated through polynomial fitting, as illustrated in Fig. 
7(a). By analyzing the results of the Response Surface Methodology (RSM), one can elucidate the 
relationship between various factors, thereby enhancing the understanding of underlying objective 
principles (Song et al., 2024). 
 

 
Fig. 6. Data processing framework for joint BP-RSM modeling 

To compare the differences between the BP-RSM method and traditional Response Surface 
Methodology (RSM), we directly employed the Response Surface Methodology (RSM) to fit 
polynomials to the original 60 sets of simulation data. The resulting response surfaces are presented in 
Fig. 7(b). 

To assess the robustness of the method, the original dataset was further reduced by 50%, retaining 
30 sets. Subsequently, both the BP-RSM method and traditional RSM were employed to construct 
comparative models, resulting in two sets of response surface distributions, as illustrated in Fig. 7(c) 
and Fig. 7(d). 

 
(a) The BP-RSM method with 60 data sets       (b) Traditional RSM with 60 data sets 

 
(c) The BP-RSM method with 30 data sets        (d) Traditional RSM with 30 data sets 

Fig. 7. Comparison of the BP-RSM method with traditional RSM for analyzing response surface modeling of vg-ω 
interactions 
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To quantitatively assess the fitting accuracy of four methods—namely, the BP-RSM method with 60 
data sets, the BP-RSM method with 30 data sets, traditional RSM with 60 data sets, and traditional RSM 
with 30 data sets—the integrated R2 and predicted R2 values from direct fitting for each of these 
programs were evaluated. And the fitting accuracy of the BP neural network model in predicting virtual 
experimental data was compared under two conditions: 30 sets of data and 60 sets of data. To evaluate 
the fitting accuracy of four methods relative to the original dataset consisting of 60 sets, Eq. 8 (He et al., 
2025) was employed for comparison. The results of this comparison are presented in Table 4.  

                                     (8) 

Table 4. Comparison of goodness-of-fit between the BP-RSM method and traditional RSM 

group 
Integrated R2 of 

direct fitting 
Predicted R2 of 

direct fitting  
Integrated R2 of 

(RSM/BP) fitting 

Predicted R2 
of (RSM/BP) 

fitting 

Validated R2 
of  

joint fitting 
The BP-RSM 

method (60 data 
sets) 

97.05% 99.14% 99.76% 99.75% 96.82% 

Traditional 
RSM (60 data 

sets) 

97.08% 92.41% / / 97.08% 

The BP-RSM 
method (30 data 

sets) 

98.98% 98.18% 97.01% 96.93% 93.08% 

Traditional 
RSM (30 data 

sets) 

98.81% 66.71% / / 93.52% 

4.2.  Comparison of the BP-RSM method with Traditional RSM 

4.2.1. Integrated R2 analysis of direct fit 

As illustrated in the first and second columns of Table 4, the integrated R² values for direct fit using the 
BP neural network method and traditional RSM are 97.05% and 97.08%, respectively, under conditions 
involving a large sample size of 60 sets of data. The empirical fitting abilities of both models are 
demonstrated to be comparable, achieving values of 98.98% and 98.81%, respectively, under the 
condition of a small sample size (30 sets) of data. 

However, the predictive performances exhibit significant variations: in the full data prediction 
involving 60 sets, the BP neural network method achieves a direct fit prediction R² of 99.14%, 
representing an improvement of 6.73% over traditional RSM, which stands at 92.41%. In the context of 
small-sample prediction involving 30 sets, the BP neural network method demonstrates a remarkable 
retention of 98.18% in direct-fit prediction R². In contrast, traditional RSM experiences a significant 
decline to 66.71%, reflecting a decrease of 31.47%. The results presented above indicate that the BP 
neural network method effectively mitigates the issue of overfitting through its nonlinear generalization 
mechanism. Furthermore, it demonstrates enhanced engineering applicability in complex working 
conditions characterized by small sample sizes. 

4.2.2. An analysis of the validity in joint modeling 

As illustrated in columns 3 and 4 of Table 4, based on the 12,150 sets of virtual data generated by the BP 
neural network method, the Response Surface Methodology (RSM) demonstrates a very high fitting 
ability under the large sample (60 sets-12,150 sets) condition, and the integrated R2 (RSM/BP) and 
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predicted R2 (RSM/BP) of the RSM for the virtual experimental data generated by the BP method are 
respectively 99.76% and 99.75%, indicating that the response surface model can accurately resolve the 
prediction law of the BP neural network model. However, under the small sample (30 sets-12,150 sets) 
condition, the fitting of the response surface, although showing clear validity, showed a significant 
performance degradation, with its integrated R2 (RSM/BP) and predicted R2 (RSM/BP) dropping to 
97.01% and 96.93%, respectively, indicating that the RSM is not sufficiently adaptive to the larger 
nonlinear fluctuations of the BP neural network. 

The fifth column of Table 4 provides a comparative analysis of the effectiveness of various models 
in validating the original experimental data. For the large sample condition involving 60 sets, both 
traditional RSM and the BP-RSM method demonstrated comparable results in terms of goodness-of-fit. 
The joint fit validation R² values were recorded at 97.08% for traditional RSM and 96.82% for the BP-
RSM method, respectively. In the small sample condition (30 sets), both traditional RSM and the BP-
RSM method exhibited a decrease in goodness of fit. The joint fit validation R² values were recorded at 
93.52% for traditional RSM and 93.08% for the BP-RSM method, respectively. This suggests that, 
although there is a slight loss in accuracy due to the incorporation of the response surface model, the 
BP-RSM method serves as a crucial analytical tool for optimizing process parameters. This is achieved 
through the enhancement of virtual data with explicit mathematical representation, particularly 
improving prediction accuracy under neural network constraints. Such capabilities underscore its 
significant utility in engineering applications. 

4.2.3. Comparative analysis of response surface plots 
As illustrated in Fig. 7, the BP neural network model demonstrates graphical explicit results through 
the integration of BP neural network and response surface joint modeling, as depicted in Fig. 7(a) and 
Fig. 7(c). We also observe that the response surface results obtained from traditional RSM and the BP-
RSM method exhibit significant differences in the region characterized by air injection velocity (vg) and 
high rotor rotation speed (ω). When the air injection velocity (vg) is less than 6 m/s, the separation size 
(dc) predicted by traditional RSM, as illustrated in Fig. 7(b) and Fig. 7(d), appears to exhibit a non-
physical curved surface depression that decreases with rotor rotation speed (ω). At vg of 3 m/s, the 
separation size (dc) reaches a maximum of 100 µm at the highest rotor rotation speed (ω), subsequently 
increasing with air injection velocity (vg). Notably, a minimum value of -10 µm is observed, as shown 
in Fig. 7(b).  

For the model comprising 30 sets, the separation size (dc) attains a maximum of 110 µm at the highest 
rotor rotation speed (ω). Additionally, there exists a minimum value approaching 0 as the air injection 
velocity (vg) increases, as illustrated in Fig. 7(d), which contradicts the established physical principles 
governing particle separation mechanisms (Shang et al., 2024). In contrast, the BP-RSM method utilizing 
30 sets of experimental data effectively mitigates the reduction in the separation size (dc), as illustrated 
in Fig. 7(c). This is achieved through the nonlinear compensation provided by the BP neural network, 
which incorporates an extension of virtual data and adheres strictly to the physical constraint (dc>0). 
Under the condition of 60 sets of experimental data as illustrated in Fig. 7(a), the previously observed 
depressed region was completely eliminated, resulting in a higher degree of concordance with 
industrial observations (Pareek and Sankhla, 2021). The comparison of the fitting results confirms the 
physical validity and predictive stability of the BP-RSM method under complex operating conditions. 

The BP-RSM method effectively generates virtual data to construct the response surface model using 
a BP neural network. This approach addresses the issues of negative value paradoxes and surface 
distortions that arise from traditional methods when working with limited sample sizes. Furthermore, 
it demonstrates enhanced stability in scenarios where experimental data is scarce. Meanwhile, the 
explicit formulation of the response surface output, along with its corresponding graphical 
representation, offers intuitive analytical tools and theoretical support for optimizing the operational 
parameters of separators. 

5. Industrial experimental verification 

5.1. Experimental equipment and raw materials 

A self-made experimental mill (with a rotor diameter of 0.6 m and a height of 0.3 m) was used for air 
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separation, and iron ore powder (with a density of 5000 kg/m³) was used as the raw material. 

5.2. Experimental procedure 

5.2.1. Industrial experiment 

The iron ore powder was classified through 1.3 mm, 0.7 mm, 0.3 mm, 0.15 mm and 0.075 mm vibrating 
screens, and then mixed with 40 kg of samples in the proportion shown in Table 5. Then, the sorting is 
carried out under the air selection parameters in Table 6. After the fine powder in the mill was 
completely sorted, the machine was shut down. About 5 kg of the material was collected at the sampling 
port of the cyclone cylinder. 2.5 kg of the sample was sieved and weighed at 0.075 mm. The results are 
shown in Table 8. 

Table 5. Particle size distribution of iron ore powder 

Particle size range (mm) >1.2 >0.6 >0.3 >0.15 >0.075 <0.075 
Mass fraction (%) 30.3 20.7 16.6 11.6 8.3 12.5 

Table 6. Air selection operation parameters 

Parameter Set value 
vg (m/s) 1.08 
ω (rad/s) 7.85 

 

5.2.2. Simulation experiment 
Based on the industrial particle size distribution (Table 5), 12 groups of particle size intervals (dp) (Table 
7) were set, and the total particle injection mass (mp) was 20 kg/s to conduct the transient simulation of 
air-solid two-phase flow. 

Table 7. Particle injection parameters 

dp(mm) 0.04 0.07 0.08 0.11 0.2 0.25 0.4 0.5 0.8 1 1.4 1.6 

mp (kg/s) 1.25 1.25 0.83 0.83 1.16 1.16 1.66 1.66 2.07 2.07 3.13 3.13 

Mass 
fraction 

(%) 
6.25 6.25 4.15 4.15 5.80 5.80 8.30 8.30 10.35 10.35 15.65 15.65 

5.3. Experimental results 

5.3.1. Industrial experiment results 

The particle size distribution of the finished cyclone cylinder is shown in Table 8. 

Table 8. The particle size distribution of the finished cyclone cylinder 

Particle size range (mm) >0.6 >0.3 >0.15 >0.075 <0.075 
Mass fraction (%) 0 0 0 20 80 

5.3.2. Simulation experiment result 

The particle escape rate (α) is shown in Table 9. 

Table 9. Particle escape rate (α). (vg=1.08 m/s, ω=7.85 rad/s) 

dp (mm) 0.04 0.07 0.08 0.11 0.2 0.25 0.40 0.50 0.80 1 1.4 1.6 
α 1.0  1.0 0.5 0 0 0 0 0 0 0 0 0 



15     Physicochem. Probl. Miner. Process., 61(4), 2025, 208769 

5.4. Model verification 

5.4.1. Verification method 

The accuracy of the model was verified based on the proportion of particles with a particle size of less 
than 0.075 mm in the industrial experiment. 

                               (9) 

where: U represents the total escape mass and T represents the proportion of simulation products. 

5.4.2. Verification result 
As shown in Table 10, the absolute deviation between the simulation results and the industrial data 
results is less than 6%, and the relative deviation is +7.1%, which is within the allowable error range of 
the project. The reliability of the model has been verified, proving that the model has an excellent 
predictive ability for the powder selection process. 

Table 10. Verification result 

Parameter 
Industrial 

experiment 
Simulation experiment 

results 
Absolute 
deviation 

Relative 
deviation 

Proportion of particles < 0.075 
mm (%) 

80 85.7 +5.7% +7.1% 

6. Analysis and discussion of results 

6.1. Relevance analysis 

To attain more efficient and targeted data analysis, as well as to uncover the correlations among the 
data, it is essential to analyze the relationships between the responses of various factors. As indicated 
by the analysis of variance (ANOVA) results presented in Table 11, rotor rotation speed (ω) at C-C, air 
injection velocity (vg) at D-D, and rotor diameter ratio (d/d0) at E-E demonstrated highly significant 
main effects on the response variable—the separation size (dc). The corresponding F-values were 
64,328.02, 34,548.89, and 14,868.99 respectively (with mean squares of 2.363E +06, 1.269E +06, and 5.461E 
+05), which are one to three orders of magnitude greater than those for particle injection mass (mp) at 
A-A (F=76.28) and particle injection velocity (vp) at B-B (F=554.16). This suggests that parameters C-C, 
D-D, and E-E are critical regulatory factors influencing the outcomes observed in this study. 

The analysis of interaction effects further indicated that the coupling between rotor rotation speed 
(ω) and air injection velocity (vg) (CD, F=23,469.34), the relationship between air injection velocity (vg) 
and rotor diameter ratio (d/d0) (DE, F=9,013.56), as well as the interaction between rotor rotation speed 
(ω) and rotor diameter ratio (d/d0) (CE, F=2,773.91), all reached a highly significant level (p<0.0001). The 
mean squares for these interaction terms were 8.620E+05, 3.311E+05, and 1.019E+05, respectively. 

Table 11. Analysis of correlation among factors 

Source Mean 
Square 

F-value Source Mean 
Square 

F-value Source Mean 
Square 

F-value 

A-A 2801.65 76.28 AB 195.63 5.33 BD 19280.04 524.93 
B-B 20353.53 554.16 AC 18664.39 508.17 BE 21.42 0.5831 
C-C 2.363E+06 64328.02 AD 16275.42 443.12 CD 8.620E+05 23469.34 
D-D 1.269E+06 34548.89 AE 449.93 12.25 CE 1.019E+05 2773.91 
E-E 5.461E+05 14868.99 BC 12934.14 352.15 DE 3.311E+05 9013.56 

6.2. Key factors extraction 

The rotor rotation speed (ω) and rotor diameter ratio (d/d0) exhibit relative stability for each individual 
device. However, the distribution characteristics of air injection velocity (vg) demonstrate significant 
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nonuniformity, which can be attributed to the perturbation effects present in the flow field within the 
vertical roller mill region, as illustrated in Fig. 8. The high-velocity airflow in the nozzle ring region is 
divided into multiple zones of varying velocities as it circulates around the vertical roller mill rollers. 
This airflow maintains a distinct difference between the high and low velocity zones while spiraling 
upward, as illustrated in Fig. 8(a). Next, after passing through the throat opening region, the airflow is 
influenced by the negative pressure at this location. This interaction generates a low-velocity zone at 
the bottom of the rotor area, which is further guided by both the resistance of the flow field and the wall. 
Consequently, a low-velocity zone also forms at the top of the rotor area, as illustrated in Fig. 8(b). It 
ultimately generates characteristics of circumferential and axial velocity inhomogeneity at the interface 
between the outlet of the vertical roller mill and the inlet of the separator, as illustrated in Fig. 8(c). This 
non-uniformity in the flow field directly induces fluctuations in particle trailing, which serves as a 
critical factor contributing to the instability of the separation size (dc). 

               
 (a) Vertical roller mill body air trajectory line               ( b) Inlet air trajectory line of separator 

 
(c) Inlet air velocity cloud of separator 

Fig. 8. Perturbation effect of the flow field in the roller region of a vertical roller mill 

For this reason, to achieve a stable and accurate evaluation of the separation size (dc), an analytical 
framework was established with the air injection velocity (vg) as the key variable and the separation size 
(dc) as the target response. In the context of clear air injection velocity (vg) and the separation size (dc), a 
more distinct relationship can be observed between rotor rotation speed (ω) and the rotor diameter ratio 
(d/d0). Consequently, the design of rotor rotation speed (ω) is fundamentally based on the rotor 
diameter ratio (d/d0). To achieve more intuitive conditions for mechanistic analysis, the rotor diameter 
ratio (d/d0), which is associated with the equipment structure, was selected for optimization. The rotor 
rotation speed (ω) served as the adjustment variable, while the particle injection velocity (vp) and particle 
injection mass (mp) were utilized as auxiliary reference variables. 

There are variations in the width of the contours representing air injection velocity (vg) under 
different conditions. The broader region of contours indicates a relatively weak response in the 
separation size (dc) when subjected to significant variations in air injection velocity (vg). The area 
characterized by elevated contour gradients, conversely, suggests that the condition exhibits a more 
pronounced response to variations in air injection velocity (vg). Therefore, the contour width of the 
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separation size was utilized as the primary evaluation criterion. 
In summary of the aforementioned characteristics, a three-dimensional response surface analysis 

framework has been developed, incorporating three factors and multiple reference variables, as 
illustrated in Table 12. 

Table 12. 3D response surface analysis program 

Factors Impact 
Air injection velocity (vg) Essential Variables 
The separation size (dc) Response Target 

Rotor diameter ratio (d/d0) Optimization Objectives 
Rotor rotation speed (ω) The following variable 

Particle injection velocity (vp) Auxiliary reference variable 
Particle injection mass (mp) Auxiliary reference variable 

Contour width of the separation size (dc) Fundamental Evaluation Criteria 

6.3. Analysis of joint modeling results 

The target separation size (dc) of 40-60 µm was initially established. Under this condition, the objective 
was to obtain results characterized by broader contours within the range of 40-60 µm. Afterward, the 
focus of the analysis is clarified. The air injection velocity (vg) serves as the invariant coordinate, while 
the rotor rotation speed (ω) and rotor diameter ratio (d/d0) are paired coordinates. Additionally, the 
particle injection mass (mp) and particle injection velocity (vp) are adjusted coordinates utilized for 
conducting response surface analysis. Consequently, a response surface contour plot is generated, as 
illustrated in Fig. 9. Under the conditions of particle injection mass (mp) at 27.5 kg/s, particle injection 
velocity (vp) at 14 m/s, and rotor rotation speed (ω) at 12.8 rad/s, it is observed that the region of air 
injection velocity (vg) corresponding to the separation sizes (dc) ranging from 40 to 60 µm exhibits a 
tendency to initially increase and subsequently decrease as the rotor diameter ratio (d/d0) increases. 

 
        (a) 3D response surface plot                  (b) Response surface contour plot 

Fig. 9. Analyzing response surface modeling of vg-(d/d0) interactions 

As illustrated in Fig. 10(a), the maximum air injection velocity (max vg) and the minimum air 
injection velocity (min vg) corresponding to the separation size (dc) of 40-60 µm exhibit variation with 
respect to the rotor diameter ratio (d/d0). The distance between these two curves reaches its maximum 
when the rotor diameter ratio (d/d0) is within the range of 1.2-1.4. Further, Fig. 10(b) illustrates the 
difference in maximum and minimum air injection velocities, as well as the ratio of maximum to 
minimum air injection velocities, corresponding to the separation size (dc) range of 40-60 µm. This 
variation is analyzed in relation to the rotor diameter ratio (d/d0). Notably, there exists an optimal value 
that corresponds to a peak velocity within the specified interval for the separation sizes (dc). In terms of 
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both the difference in air injection velocity and the ratio of air injection velocities, the maximum values 
are observed under conditions where the rotor diameter ratio (d/d0) ranges from 1.2 to 1.4. That is, under 
the condition that the rotor diameter ratio (d/d0) ranges from 1.2 to 1.4, a more precise separation size 
(dc) can be achieved. At this point, the diameter of the separator should be between 6038 mm and 7045 
mm. 

 
    (a) Curve of velocity differences         (b) Curve of the velocity difference/ratio 

Fig. 10. The relationship between air injection velocity (vg) and rotor diameter ratio(d/d0) for the separation 
size(dc) of 40-60 µm 

6.4. Mechanism of the nonlinear effect of inter-blade flow field on the separation size 

Since the rotor is designed as a geometrically scaled model, under ideal conditions—where the particle 
injection mass (mp), particle injection velocity (vp), and air injection velocity (vg) remain constant—it can 
be inferred from Eq. 4 that the separation size (dc) in both the direction of rotor rotation speed (ω) and 
along the diameter should exhibit a consistent scaling relationship. However, the data analysis results 
consistently indicated a significant nonlinear shift in the separation size (dc). This phenomenon suggests 
that the vortex behavior generated by the moving blades substantially interferes with the particle 
separation process. As illustrated in Fig. 11, the strength of the vortex formed between the moving 
blades exhibits a gradual enhancement with an increase in the rotor diameter ratio (d/d0) and a decrease 
in air injection velocity (vg). 

 
     (a) ω=12 rad/s, vg=3 m/s, d/d0=0.5                (b) ω=16 rad/s, vg=12 m/s, d/d0=1 

    
(c) ω=12 rad/s, vg=9 m/s, d/d0=1.5               (d) ω=12 rad/s, vg=3 m/s, d/d0=1.5 

Fig. 11. Intensity of the vortex between moving blades under varying conditions of ω, vg, d/d0 
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Under the condition of a specific separation size (dc), it is essential to maintain the balance of 
centrifugal force. According to Eq. 1, as the rotor diameter ratio (d/d0) increases, although the angular 
velocity decreases, the linear velocity simultaneously increases. This leads to an increased velocity 
gradient between the moving and static blades, resulting in enhanced vortex strength between them. 
The vortex generated between the blades establishes a low-pressure zone that facilitates the intake of 
particle-laden air into the space between the rotor blades. This phenomenon results in an increased 
velocity of particles as they traverse through the moving blades, ultimately leading to their expulsion 
at the outlet due to the accelerating effect of the vortex. Due to the varying responses of different particle 
sizes to vortex traction, as described by Eq. 2 and Eq. 5, the acceleration and displacement of smaller 
particles are greater than those of larger particles. This differential behavior is advantageous for the 
separation of particles based on size. At this stage, under conditions of equilibrium for equal centrifugal 
force separation, the air injection velocity (vg) is decreased. As a result, the equi-separated particles 
demonstrate a slight deviation towards the lower-velocity region; however, the range of equal 
separation sizes becomes broader. As illustrated in Fig. 12, particles with sizes ranging from 10-50 µm 
exhibit a distinct positional variation after traversing the vortex generated by the moving blades. 
Smaller particles are more likely to exit the vortex region along with the airflow movement, whereas 
larger particles tend to be re-captured by the vortex due to the influence of centrifugal force. 

 
Fig. 12. Dynamics of 10-50 µm particles under vortex action 

When the rotor diameter ratio (d/d0) exceeds 1.2, the vortex intensity between the moving blades 
continues to enhance. Consequently, the separation capability of the rotor itself is progressively 
diminished, leading to a shift in the separation point curve towards the low-speed zone. Additionally, 
the band of equal separation sizes becomes narrower. The observed decline in separation capability can 
be attributed to the imbalance phenomenon in the contributions of vortex and rotor separation, which 
arises from the enhancement of vortex separation capabilities. On one hand, the unstable and non-
uniform characteristics of the vortex between the blades facilitate the breakthrough of larger particles 
(dp>60 µm) against the centrifugal force-dominated high-velocity laminar flow separation zone. This 
occurs under conditions of stronger vortex acceleration, allowing these particles to enter the exit channel 
where air injection velocity (vg) is relatively low. Consequently, this phenomenon results in a higher 
proportion of large particles escaping. On the other hand, the low-pressure zone created by the vortex 
at the rear of the blades exerts a negative pressure adsorption effect on large particles that accumulate 
in the region between the moving and static blades, such as those illustrated in Fig. 13. This 
phenomenon leads to an elevation of the base of potentially escaping large particles. At the same time, 
the proportion of large particles within the vortex region increases, leading to a localized enrichment. 
This phenomenon results in an elevated trailing force acting on the large particle population and 
consequently a higher proportion of escaping particles. The superposition of the two aspects results in 
an increased proportion of larger particles escaping under identical centrifugal force equilibrium 
conditions. This phenomenon leads to a deterioration in escape stability and causes a shift of equi-
separated particles towards the low-velocity zone, while simultaneously narrowing the band of equal 
separation sizes.  

It is evident that the vortex behavior occurring between the moving blades significantly influences 
the separation size (dc). Effectively harnessing this property can facilitate achieving a higher adaptability 
of air injection velocity (vg). Under the current conditions regarding rotor diameter, the optimal width 
of the band corresponding to equal separation sizes—indicative of superior air speed adaptability—is 
achieved by expanding the rotor diameter to between 1.2 and 1.4 times its original size. 
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Fig. 13. Large particle collection area between the moving and static blades 

6. Conclusions 

The study was based on CFD-DDPM to obtain 60 sets of flow field data and establish a joint BP-RSM 
modeling model. The experiments demonstrate that the BP-RSM method and traditional RSM exhibit 
similar validation R² values of 96.82% and 97.08%, respectively, under the condition of utilizing 60 data 
sets. However, the BP neural network method has a higher prediction R2 (99.14%). This advancement 
effectively addresses the shortcomings of conventional methods regarding the distortion of separation 
features in low-speed zones. The model offers both high accuracy and a clear expression program for 
the flow field analysis of separators, thereby broadening the application of numerical simulation and 
data analysis in the optimization of industrial equipment. 

By analyzing the key factors within the model of rotor diameter ratio (d/d0), air injection velocity 
(vg), and the separation size (dc), it can be found that the gradient of the separation size (dc) in the 
direction of air injection velocity (vg) is significantly different with the rotor diameter ratio (d/d0). At the 
target separation size of ±10 µm, the gradient of separation size (dc) exhibited an initial increase followed 
by a subsequent decrease as the rotor diameter ratio (d/d0) increased. The inflection point is located in 
the interval 1.2-1.4 times (6038mm-7044mm) when d0 is 5023mm.This observation suggests that the 
separation accuracy at this scale is enhanced under conditions characterized by multifactorial coupling. 
A novel analytical approach for optimizing the diameter parameters of separators is presented, drawing 
on insights gained from linear scale scaling in traditional design practices. 

The study further elucidates the limitations of the conventional centrifugal-tracer binary model by 
incorporating the influence of vortices generated between the moving blades, which arise from the 
velocity gradient between the moving and static blades. This factor significantly impacts the sorting 
efficiency of particles. The secondary vortex field induced by the velocity gradient of both the moving 
and static blades enhances the inertial separation efficiency of particles. However, it also leads to 
fluctuations in the separation size (dc). The mechanistic model effectively elucidates the anomalous 
inflection point phenomenon observed in the curves of rotor diameter ratio (d/d0) and the separation 
size (dc) during data analysis. Furthermore, it offers a novel regulatory perspective for the design of 
high-precision separation equipment. 
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