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Preface

The aim of this handbook is to present most commonly used stochastic models
for repairable systems and to consider some fundamental problems of estimating
unknown parameters of these models. Special attention is paid to the trend-
renewal process (TRP), which is recently widely discussed in the literature. The
class of these processes covers non-homogeneous Poisson and renewal processes.
As alternatives to the maximum likelihood (ML) method, three other method
of estimation are proposed for the models considered. The alternative methods,
called the least squares (LS) method, the constrained least squares (CLS) method
and the method of moments (M method) can be useful when the ML method fails
(as for some non-homogeneous Poisson software reliability models) or the renewal
distribution of a TRP is unknown.

In Chapter 1 some basic notions from survival analysis are reminded and
the classification of lifetime distributions in terms of ageing is presented (IFR,
DFR, IFRA, DFRA, NBU, NWU and bathtub-shaped failure classes). Chapter 2
provides a review of parametric families of lifetime distributions.

The most commonly used stochastic models for repairable systems, such as
the homogeneous Poisson, renewal, non-homogeneous Poisson (with its special
cases, with power law intensity function and with bounded mean value function)
and TRP’s are described in Chapter 3. In the handbook a grater deal of attention
is paid to the TRP’s, whose basic properties are presented in Sections 3.2.6 and
3.2.7. Maximum likelihood estimation problem in the non-homogeneous Poisson
process with power law intensity function is considered in Chapter 4.

Chapter 5 is devoted to estimation problems in TRP models. In Section 5.2
the form of likelihood function for a TRP process is presented. The likelihood
function and the likelihood equations for estimating the parameters of the TRP
with Weibull renewal distribution and power law trend function are given in Sec-
tion 5.3. Mainly, in Chapter 5, methods of estimating unknown parameters of a
trend function for TRP’s are investigated in the case when the renewal distribu-



vi

tion function of this process is unknown. If the renewal distribution is unknown,
then the likelihood function of the TRP is unknown and consequently the ML
method cannot be used. In such situation, in Section 5.4 three other methods
of estimating the trend parameters are presented: the LS, CLS and M methods.
The problem of estimating trend parameters of a TRP with unknown renewal
distribution may be of interest in the situation when we observe several systems,
of the same kind, working in different environments and we are interesting in
examining and comparing their trend functions, whatsoever their renewal distri-
bution is. The estimation problem of the trend parameters in some special case of
the TRP is considered in Section 5.5. In Section 5.6 the estimators proposed are
examined and compared with the ML estimators (obtained under the additional
assumption that the renewal distribution has a known parametric form) through
a computer simulation study. Some real data are examined in Section 5.6.3. Sec-
tion 5.7 contains conclusions and some prospects. Chapter 5 contains the results
of Jokiel-Rokita and Magiera (2011).

In Chapter 6 a subclass of non-homogeneous Poisson processes is considered.
This subclass with bounded mean value function can be used to model software
reliability. The ML estimators of intensity parameters for a software reliability
model are given in Section 6.2. In certain cases the ML estimators do not exist.
In such cases the alternative methods of estimating proposed in Section 5.4 can be
used. In Sections 6.3 and 6.5 the LS and CLS methods are applied to the software
reliability model considered and to its special case. In Section 6.6 some numerical
results illustrating the accuracy of the proposed LS and CLS estimators with
comparison to the ML estimators are presented for a special case of the Erlangian
non-homogeneous Poisson process software reliability model. Chapter 6 contains
the results of Jokiel-Rokita and Magiera (2010).

Wroc law, November 15, 2011 Alicja Jokiel-Rokita Ryszard Magiera
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Chapter 1

Classes of Lifetime
Distributions in Reliability
Models

1.1 Functions characterizing lifetime distributions

1.1.1 Survival function

Let T be a non-negative valued random variable determining, for example, a
working time of a device (or unit). Such random variable is called the lifetime
or survival time. Let F (t) denote the cumulative distribution function (cdf) of
the random variable T .

Definition 1.1.1 The function

S(t) = P (T > t) = 1 − F (t)

is called a reliability function or survival function. 2

Reliability of a unit at time t is defined as the probability that the working
time of this unit is greater than t.

1.1.2 Failure rate function

Assume that T is a continuous type random variable with density function f(t).

Definition 1.1.2 The function defined by the formula

ρ(t) =
f(t)

1 − F (t)
=
f(t)

S(t)
= −S

′(t)

S(t)
(1.1)

1
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Figure 1.1: Survival functions of the Weibull We(α, β) distribu-
tion.

is called the failure rate function. 2

The failure rate function is also called the hazard function or hazard rate.

The failure rate function at time t is the density of the probability distribution
of the lifetime of a unit, given the lifetime is greater then t:

ρ(t) = lim
∆t→0

P (t < T ≤ t+ ∆t)

∆tP (T > t)
= lim

∆t→0

f(t)∆t+ o(∆t)

∆t[1 − F (t)]

= lim
∆t→0

[
ρ(t) +

o(∆t)

∆t

]
.

The failure rate function has the following interpretation: if at time t0 = 0 a unit
is included in a system to work, and it then works without failure until time t,
then the probability that it fails in the interval (t, t + ∆t] one can estimate by
ρ(t)∆t.

Under the assumption that S(t) > 0, it follows from formula (1.1) that

S(t) = exp
(
−
∫ t

0
ρ(u)du

)
, t ≥ 0.
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Thus an integrable function ρ(t) is the failure rate function if and only if

ρ(t) ≥ 0, t ≥ 0,

∫ ∞

0
ρ(t)dt = ∞. (1.2)

The failure rate function for the � exponential distribution (p. 13) E(λ) is the
constant function ρ(t) = 1/λ. For the � Weibull distribution (p. 17) We(α, β)
the failure rate function is of the form ρ(t) = αβ−αtα−1 (see Table 1.1).

Distribution ρ(t)

Exponential E(λ) 1/λ

Weibull We(α, β) αβ−αtα−1

Gamma G(α, λ)
tα−1 exp(−t/λ)

λαΓ(α)[1 − γ(t/λ, α)]

Gompertz Gom(α, β) βeαt

Table 1.1: Failure rate functions for some continuous distributions

The function γ(x, α) appearing in the formula for the failure rate function
in the � gamma distribution (p. 19) in Table 1.1 denotes the so called modified
incomplete gamma function.

Definition 1.1.3 The function

H(t) =

∫ t

0
ρ(u)du = − ln[S(t)]

is called cumulative hazard function. 2

1.1.3 Mean residual life function

Suppose that a unit has worked without failure up to time t, and denote by Tt its
residual lifetime up to next failure. Let St be the survival function corresponding
to Tt. We have

St(u) = P (Tt > u) = P (T > t+ u|T > t) =
S(t+ u)

S(t)
.

Definition 1.1.4 The mean residual life function is defined by

LF (t) = E(Tt) =

∫ ∞

0
St(u)du =

∫ ∞

0

S(t+ u)

S(t)
du, t ≥ 0.
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2

We then have the following relations:

LF (0) = E(T ),

ρ(t) = 1 +
L′
F (t)

L(t)
.

1.2 Classification of lifetime distributions in terms of
ageing

In this section we present a classification of lifetime distributions which is based
on monotonicity property of the failure rate function ρ(·). Such classification is
useful to survival and reliability analysis.

1.2.1 Increasing and decreasing failure rate classes

Definition 1.2.5 A lifetime X is said to have increasing failure rate (IFR),
or the distribution of X is said to belong to the class IFR, if the failure rate

function ρ(x) is increasing for x ≥ 0. 2

Example 1.2.1 Consider the Gompertz-Makeham distribution. This dis-
tribution is defined by the density function

f(x) = (αeβx + λ) exp

[
−λx− α

β
(eβx − 1)

]
, x ∈ R

+,

α > 0, β > 0, λ > 0. The corresponding cdf is given by

F (x) = 1 − exp

[
−λx− α

β
(eβx − 1)

]
,

and the corresponding failure rate function is

ρ(x) = αeβx + λ.

The Gompertz-Makeham law states that the death rate is the sum of an age-
independent component (the Makeham term) and an age-dependent component
(the Gompertz function) which increases exponentially with age. In a protected
environment where external causes of death are rare (laboratory conditions, low
mortality countries, etc.), the age-independent mortality component is often neg-
ligible. In this case the formula simplifies to a Gompertz law of mortality. The
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Gompertz law is the same as a Fisher-Tippett distribution for the negative
of age, restricted to negative values for the random variable (positive values for
age). 2

0 1 2 3 4 5 6
x0

2

4

6

8

10

12

14

ΡHxL

Α = 2, Β = 0.3, Λ = 2

Α = 1, Β = 0.5, Λ = 1

Α = 1, Β = 1, Λ = 0.2

Α = 0.5, Β = 0.1, Λ = 0.1

Figure 1.2: Hazard rate functions of the Gompertz-Makeham dis-
tribution.

Analogously, a lifetime X is said to have decreasing failure rate (DFR), or
the distribution of X is said to belong to the DFR class, if ρ(x) is non-increasing
for x ≥ 0.

Examples of IFR distributions are the Weibull distribution We(α, β) for α >
1 and the gamma distribution G(α, λ) for α > 1. For α < 1, these distributions
belong to the DFR class.

The exponential distribution E(λ) has the constant failure rate function
ρ(x) = 1/λ and it is the IFR as well as the DFR distribution. If a lifetime
has a constant failure rate function we say that we observe no ageing.

If a lifetime of units has an IFR distribution, then we say that the units are
ageing and we deal with an ageing process or with positive ageing.

If a lifetime of units has an DFR distribution, then we say that the units
are running in and we deal with an improvement process or with negative
ageing.
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Definition 1.2.6 A lifetime X is said to have a distribution with increasing
failure rate on the average (IFRA), or the distribution of X is said to belong
to the class IFRA, if the function H(x)/x is non-decreasing for x > 0, where
H(x) denotes the cumulative hazard function. 2

The class DFRA is defined in an analogous way.

Theorem 1.2.1 If F is the cdf of a continuous type random variable X and
F (0−) = 0, then X has the IFRA distribution if and only if

S(bx) ≥ [S(x)]b, (1.3)

for x > 0, 0 < b < 1. 2

For the DFRA distribution, the reverse inequality sign in (1.3) holds.

1.2.2 New better than used and new worse than used classes

A wider class than the distribution class IFR (IFRA) or DFR (DFRA) is the
class new better than used.

Definition 1.2.7 A non-negative valued random variable X is said to have new
better than used (NBU) distribution if

P (X ≥ x+ y|X ≥ x) ≤ P (X ≥ y), x, y ≥ 0.

2

This means that if X is the lifetime of a unit, then it has NBU distribution if
for all x, y ≥ 0 the probability that the unit which worked without failure up to
time x, it will work further without failure in the time interval of length at least
y, is less or equal to the probability that a new unit will work without failure in
the time interval of length at least y.

If F is a cdf of a continuous type random variable X with F (0−) = 0, then
X has the NBU distribution if

S(x+ y) ≤ S(x)S(y) for all x, y ≥ 0.

An analogous to the NBU class is the class of new worse than used (NWU)
distributions.

The following implications holds between the failure rate classes:

IFR =⇒ IFRA =⇒ NBU,

DFR =⇒ DFRA =⇒ NWU.
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1.2.3 Bathtub-shaped failure rate functions

The bathtub-shaped failure rate functions are widely used in reliability systems.
A formal definition of a bathtub-shaped failure rate is:

Definition 1.2.8 A failure rate function ρ(x) is said to have a bathtub shape
if there exist x1 and x2 such that 0 ≤ x1 ≤ x2 ≤ ∞ and

ρ(x) is





strictly decreases if 0 ≤ x ≤ x1,

almost constant if x1 ≤ x ≤ x2,

strictly increases if x ≥ x2.

(1.4)

2

The points x1 and x2 are called the first and second change points, re-
spectively. The time interval [0, x1] is called the infant mortality period; the
interval [x1, x2], where ρ(x) is (almost) flat and attains its minimum value, is
called the normal operating life or the useful life; and the interval [x2,∞]
is called the wear-out period. In other words, the bathtub curve describes
a particular form of the hazard function which comprises three parts: the first
part is a decreasing failure rate, known as early failures; the second part is
an almost constant failure rate, known as normal failures; the third part is an
increasing failure rate, known as wear-out failures. The name is derived from
the cross-sectional shape of a bathtub.
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Figure 1.3: Bathtub-shaped failure rate function.

The bathtub curve is generated by mapping the rate of early ”infant mor-
tality” failures when first introduced, the rate of random failures with constant
failure rate during its ”useful life”, and finally the rate of ”wear out” failures as
the product exceeds its design lifetime.

In less technical terms, in the early life of a product adhering to the bathtub
curve, the failure rate is high but rapidly decreasing as defective products are
identified and discarded, and early sources of potential failure such as handling
and installation error are surmounted. In the mid-life of a product – generally,
once it reaches consumers – the failure rate is low and constant. In the late life
of the product, the failure rate increases, as age and wear take their toll on the
product. Many consumer products strongly reflect the bathtub curve, such as
computer processors.

While the bathtub curve is useful, not every product or system follows a
bathtub curve hazard function, for example if units are retired or have decreased
use during or before the onset of the wear-out period, they will show fewer failures
per unit calendar time (not per unit use time) than the bathtub curve.

Let us consider some examples of bathtub-type hazard rate functions.
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Example 1.2.2 Let a lifetime X have the cdf defined by

F (x) = 1 − e
λ
(
1−exβ

)

(x > 0),

where λ > 0 and β > 0 are the parameters. This type of distribution was consid-
ered by Chen (2000) and we call it the Chen distribution. The corresponding
failure rate function of this distribution is

ρ(x) = λβxβ−1ex
β

(x > 0).

Since

ρ′(x) = λβxβ−2ex
β
[
(β − 1) + βxβ

]
(x > 0),

ρ(x) may have a bathtub shape when β < 1. The distribution has increasing
failure rate function when β ≥ 1. Figures 1.4 and 1.5 show the failure rate
functions for various values of λ and β. 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x0

2

4

6

8

10
ΡHxL

Β = 1.2, Λ = 2

Β = 0.8, Λ = 2

Β = 0.6, Λ = 1

Β = 0.4, Λ = 1

Figure 1.4: Hazard rate functions of the Chen distribution for
some λ ≥ 1.
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Figure 1.5: Hazard rate functions of the Chen distribution for
some λ < 1.

Example 1.2.3 Lai et al. (2003) introduced a modified Weibull distribution,
defined by the following form of cdf:

F (x) = 1 − exp
(
−αxβeλx

)
,

where α > 0, β ≥ 0, λ > 0 are the parameters. The corresponding hazard rate
function is given by the formula

ρ(t) = α(β + λx)xβ−1eλx,

which has a turning point (i.e., minimum) at x∗ = (
√
β − β)/λ for β < 1. 2
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Figure 1.6: Hazard rate functions of a modified Weibull distribu-
tion.
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Chapter 2

Parametric Families of
Lifetime Distributions

2.1 Gamma family

2.1.1 Exponential distribution

A random variable X is said to have exponential distribution with parameter λ
(λ > 0), which will be denoted by E(λ), if its density is defined by

f(x) = f(x;λ) =
1

λ
exp

(
−x
λ

)
1(0,∞)(x).

The cumulant distribution function is of the form

F (x) =
[
1 − exp

(
−x
λ

)]
1(0,∞)(x).

The characteristic function is

φ(t) =
1

1 − ιλt
.

The k-th moment of the random variable X is defined by E(Xk) = λkk!. In
particular,

E(X) = λ, Var(X) = λ2.

The mode and median are zero and λ ln 2, respectively, the skewness γ1 = 2 and
the excess γ2 = 6.

The exponential distribution E(λ) is a special case of the gamma distribu-
tion, the Weibull distribution and the � negative exponential distribution (p. 14).
Namely, it is the G(1, λ), We(1, λ) and NE(0, λ) distribution.

13
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If X1, . . . ,Xn are independent and identically exponential E(λ) distributed,
then

∑n
i=1Xi has the � gamma distribution G(n, λ) which is equivalent to the

� Erlang distribution Er(n, λ)).

In the class of continuous distributions, the exponential distribution is the
only one having the following property

P (X > s+ t|X > s) = P (X > t), s > 0, t > 0,

which is called the lack of memory property. Interpreting the random variable
X as a lifetime of a unit, the lack of memory property asserts that, independently
of the current working time, the future working time is independent of the past
and has the same distribution as the common distribution of the working time of
the unit. This property plays an important role in theory of stochastic processes,
especially in renewal theory and in theory of mass service and reliability.

2.1.2 Negative exponential distribution

A random variable X is said to have the negative exponential distribution with
location parameter µ and scale parameter σ (µ ∈ R, σ > 0), which we denote by
NE(µ, σ), if its density is of the form

f(x) = f(x;µ, σ) =
1

σ
exp

(
−x− µ

σ

)
1(µ,∞)(x). (2.1)

The cdf is defined by

F (x) =

[
1 − exp

(
−x− µ

σ

)]
1(µ,∞)(x).

The negative exponential distribution is also called the two-parameter expo-
nential distribution or location and scale exponential distribution.
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Figure 2.1: Density functions of the negative exponential distribution NE(µ, σ)

The characteristic function is of the form

φ(t) =
eιtµ

1 − ιtσ
.

The expected value and the variance of the negative exponential distribution
NE(µ, σ) are equal to

E(X) = µ+ σ, Var(X) = σ2,

respectively.
There are many applications of the statistical model defined by (2.1) in re-

liability and lifetime examinations. The parameter µ is often interpreted as a
threshold value of a minimal lifetime and it is then natural to assume that µ > 0.
If µ ≥ 0, then the negative exponential distribution is called the left truncated
exponential distribution. In the case µ = 0 the NE(µ, σ) distribution becomes
the exponential distribution E(σ).

2.1.3 Erlang distribution

A random variable X is said to have the Erlang distribution with parameters k
and µ (k ∈ N, µ > 0), which will be denoted by Er(k, µ), if its density has the
following form

f(x) =
1

µk(k − 1)!
xk−1 exp

(
−x
µ

)
1(0,∞)(x).
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The expected value and the variance are equal to

E(X) = kµ, Var(X) = kµ2,

respectively.

The Erlang distribution is a special case of the � gamma distribution (p. 19),
namely it is equivalent to the gamma distribution G (k, µ) for k ∈ N. When
k = 1, the distribution Er(k, µ) becomes the exponential distribution E (µ).

The distribution of the total lifetime until k events of the Poisson process
with intensity λ = 1/µ have been observed has the Erlang distribution Er(k, µ).
The Erlang distribution is used in the theory of mass service and in examination
of service times and incoming streams.

2.1.4 Rayleigh distribution

A random variable X is said to have Rayleigh distribution with parameter σ
(σ > 0), which will be denoted by Ra(σ), if its density is defined by

f(x) = f(x;σ) =
x

σ2
exp

(
− x2

2σ2

)
1(0,∞)(x).

The cdf has the form

F (x) =

{
1 − exp

(
− x2

2σ2

)}
1(0,∞)(x).

The parameter σ is the scale parameter.

The moments of order k are

E(Xk) = 2k/2σkΓ

(
k

2
+ 1

)

(Γ denotes the gamma function). In particular,

E(X) =

√
π

2
σ (≈ 1.25331σ), Var(X) =

(
2 − π

2

)
σ2 (≈ 0.429204σ2).

The mode and the median are equal to σ and
√

2 ln 2σ (≈ 1.17741σ), respec-
tively.
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Figure 2.2: Density functions of the Rayleigh Ra(σ) distribution

The Rayleigh distribution is a special case of the Weibulla distribution,
namely it is equivalent to the We(2,

√
2σ) distribution. It is used first of all

in reliability theory.

2.1.5 Weibull distribution

A random variable X is said to have Weibull distribution with parameters α and
β (α > 0, β > 0), which will be denoted by We(α, β), if its density is of the form

f(x) = f(x;α, β) = αβ−αxα−1 exp

[
−
(
x

β

)α]
1(0,∞)(x)

=
α

β

(
x

β

)α−1

exp

[
−
(
x

β

)α]
1(0,∞)(x).

The parameter α is the shape parameter, and the parameter β is the scale pa-
rameter. The cdf of the Weibull distribution We(α, β) is

F (x) =

{
1 − exp

[
−
(
x

β

)α]}
1(0,∞)(x).
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Figure 2.3: Density functions of the Weibull distribution We(α, β)

The moments are defined by

E(Xk) = βkΓ

(
1 +

k

α

)
.

In particular,

E(X) = βΓ

(
1 +

1

α

)
, Var(X) = β2

[
Γ

(
1 +

2

α

)
− Γ2

(
1 +

1

α

)]

(Γ denotes the gamma function). The mode and the median are equal to 0 and
β(ln 2)1/α, respectively.

The moment generating function of the random variable Y = lnX, when X
has the Weibull distribution We(α, 1), is defined by

E
(

et lnX
)

= E(Xt) = Γ

(
1 +

t

α

)
.

Special cases of the Weibull distribution are:

We(1, λ) – � exponential distribution E(λ);

We(2,
√

2σ) – � Rayleigh distribution Ra(σ).
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If X has the We(α, β) distribution, then the random variable Y = − lnX
has a � double exponential distribution (p. 21) DE(− ln β, 1/α) (i.e. the � ex-
treme value distribution of type I (p. 23)), and the random variable −X has the
� extreme value distribution of type III (p. 24) with parameter α.

The Weibull distribution one obtains as a limit distribution of the minimum
of independent and identically distributed random variables. It finds important
applications in reliability theory by description of failure-free working times of
devices.

2.1.6 Three-parameter Weibull distribution

A more general form of the Weibull distribution is the three-parameter Weibull
distribution with additional location parameter x0 (x0 ∈ R). We deal with such
distribution if the random variable X − x0 has the usual two-parameter Weibull
distribution.

2.1.7 Gamma distribution

A random variable X is said to have gamma distribution with parameters α and
λ (α > 0, λ > 0), which will be denoted by G(α, λ), if its density is of the form

f(x) = f(x;α, λ) =
1

λαΓ(α)
xα−1 exp

(
−x
λ

)
1(0,∞)(x),

where Γ(α) is the gamma function. The parameter α is the shape parameter; λ
is the scale parameter.

The characteristic function is

φ(t) =
1

(1 − ιλt)α
.

The k-th moment of the random variable X is defined by

E(Xk) =
λkΓ(k + α)

Γ(α)
= α(α + 1) · · · (α+ k − 1)λk.

In particular,

E(X) = αλ, E(X2) = α(α+ 1)λ2, Var(X) = αλ2.

Special cases of the gamma distributions are:

G(1, λ) – � exponential distribution with the parameter λ, E(λ);

G (k, µ) – � Erlang distribution with the parameters (k, µ), k ∈ N, µ > 0;



20 A. Jokiel-Rokita, R. Magiera

The distribution G
(
n
2 , 2
)

is called the chi-square distribution (χ2) with n
degrees of freedom.

2.1.8 Three-parameter gamma distribution

A random variable X is said to have the three-parameter gamma distribution
with parameters α, λ and γ (α > 0, λ > 0, γ > 0), if its density is of the form

f(x) = f(x;α, λ, γ) =
γ

λα/γΓ(α/γ)
xα−1 exp

(
−x

γ

λ

)
1(0,∞)(x).

The parameter λ is the scale parameter, the parameters α and γ are the shape
parameters. This distribution we denote by GGam(α, λ, γ). The three-parameter
gamma distribution is also called the generalized gamma distribution .

Special cases of the generalized gamma distribution are

GGam(α, λ, 1) – gamma distribution G(α, λ);

GGam(n/2, 2, 1) – chi-square distribution with n degrees of freedom χ2(n);

GGam(α, βα, α) – Weibull distribution We(α, β);

GGam(2, 2σ2, 2) – Rayleigh distribution Ra(σ).

2.1.9 Four-parameter generalized gamma distribution

A random variable X is said to have the four-parameter generalized gamma
distribution with parameters α, λ, µ and γ (α > 0, λ > 0, µ ∈ R, γ > 0), if its
density has the following form:

f(x) = f(x;α, λ, γ, µ)

=
γ

λα/γΓ(α/γ)
(x− µ)α−1 exp

[
−(x− µ)γ

λ

]
1(µ,∞)(x).

We denote this distribution by GGam1(α, λ, µ, γ). When µ = 0 one obtains
the density of the generalized gamma distribution, i.e. GGam1(α, λ, 0, γ) =
GGam(α, λ, γ). A random variable X has the four-parameter generalized gamma
distribution GGam1(α, λ, µ, γ) if and only if the random variable X − µ has the
generalized (three-parameter) gamma distribution GGam(α, λ, γ).

2.2 Inverse gamma distribution

A random variable X is said to have inverse gamma distribution with parameters
α and λ (α > 0, λ > 0), which will be denoted by IGam(α, λ), if its density has
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the following form

f(x) = f(x;α, λ) =
1

λαΓ(α)
x−α−1 exp

(
− 1

λx

)
1(0,∞)(x).

The expected value and the variance are given by

E(X) =
1

(α− 1)λ
, jeżeli α > 1; Var(X) =

1

(α− 1)2(α− 2)λ2
, jeżeli α > 2,

respectively. The random variable 1/X has the � gamma distribution (p. 19)
G(α, λ).

2.3 Gompertz distribution

A random variable X follows the Gompertz distribution with parameters α and
β (α > 0, β > 0), denoted by Gom(α, β), if its density function is defined by

f(x) = βeαx exp

[
β

α
(1 − eαx)

]
1[0,∞)(x).

This distribution was introduced by Gompertz in 1825 to describe mortality
curves.

2.4 Gumbel distributions

2.4.1 Double exponential distribution

A random variable X is said to have double exponential distribution with location
parameter µ and scale parameter σ (µ ∈ R, σ > 0), which will be denoted by
DE(µ, σ), if its density function has the following form:

f(x) = f(x;µ, σ) =
1

σ
exp

[
− exp

(
−x− µ

σ

)
− x− µ

σ

]

=
1

σ
exp

(
−x− µ

σ

)
exp

[
− exp

(
−x− µ

σ

)]
, x ∈ R.

The cdf is defined by

F (x) = exp

[
− exp

(
−x− µ

σ

)]
.
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The characteristic function has the following form:

φ(t) = eιµtΓ(1 − ισt)

(Γ denotes the gamma function).

The expected value and the variance of the DE(µ, σ) distribution are equal to

E(X) = µ+ σC, Var(X) =
π2σ2

6
,

respectively, where C = −Γ′(1) = 0.57721566490 . . . denotes the Euler constant.
The skewness of this distribution is γ1 = 12

√
6ζ(3)/π3 ≈ 1.1395, and the excess

γ2 = 2.4. The mode and the median are equal to µ and µ−σ ln ln 2, respectively.

-4 -2 0 2 4 6 8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f(
x;
µ,

σ)

µ = 0, σ = 1

µ = 0, σ = 2

µ = 0, σ = 4

µ = 4, σ = 2

µ = 4, σ = 4

µ = −2, σ = 3

x

Figure 2.4: Density functions of the double exponential distribution DE(µ, σ)

If X follows the DE(µ, σ) distribution, then the random variable Y =
exp(−X) has the Weibull distribution We(1/σ, exp(−µ)), which becomes the
exponential distribution E(exp(−µ)) for σ = 1. The double exponential distribu-
tion is equivalent to the � extreme value distribution of type I (p. 23). For this
reason the double exponential distribution is often called the extreme value
distribution or the Gumbel distribution Gum(µ, σ).

The double exponential distribution is used in reliability theory and among
others in evaluating maximal precipitations, water levels and earthquakes.
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2.4.2 Generalized Gumbel distribution

The generalized Gumbel distribution is usually meant as the � generalized ex-
treme value distribution (p. 24) GEV(µ, σ, γ). The name of generalized Gumbel
distribution is often referred to the following slight modification of the generalized
extreme value distribution. A random variable X is said to have the generalized
Gumbel distribution with parameters µ, σ and ν (µ ∈ R, σ > 0, ν ∈ R\{0}),
if its density function has the following form:

f(x) = f(x;µ, σ, ν)

=





1

σ

(
1 + ν

x− µ

σ

)(1/ν)−1
exp

[
−
(

1 + ν
x− µ

σ

)1/ν]
1[µ−σ/ν,∞)(x), ν > 0,

1

σ

(
1 + ν

x− µ

σ

)(1/ν)−1
exp

[
−
(

1 + ν
x− µ

σ

)1/ν]
1(−∞,µ−σ/ν](x), ν < 0.

The distribution defined above we denote by GGum(µ, σ, ν). In the limit case,
when ν → 0, one obtains the Gumbel distribution Gum(µ, σ) (� extreme value
distribution (p. 23)).

A random variable X has the GGum(µ, σ, ν) distribution when

(
1 + ν

X − µ

σ

)1/ν

∼ E(1).

2.4.3 Extreme value distribution

Let X1, X2, . . . be a sequence of independent and identically distributed ran-
dom variables with a cdf F (x). Denote Wn = max{X1, . . . ,Xn} and let
(an), (bn), bn > 0, n = 1, 2, . . . , be sequences of real numbers. If the sequence
of random variables Yn = (Wn − an)/bn converges in law to a random variable
X with non-degenerated distribution defined by a cdf G, then G can take only
one of the following form

(1) extreme value distribution of type I :

G1(x) = exp

[
− exp

(
−x− µ

σ

)]
, x ∈ R;

(2) extreme value distribution of type II :

G2(x) = exp

[
−
(
x− µ

σ

)−α
]
1[µ,∞)(x);
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(3) extreme value distribution of type III :

G3(x) =





exp

[
−
(
−x− µ

σ

)α]
for x ≤ µ,

1 for x > µ,

where µ ∈ R, σ > 0 and α > 0 are parameters. The corresponding distributions
of the random variable −X are also called the extreme value distributions.

The existence of the sequences (an), (bn), bn > 0, n = 1, 2, . . . , such that the
cdf’s of the random variables Yn converge to a cdf of non-degenerated distribution,
as well as the type of the limit distribution determined by G depends on the cdf
F .

The extreme value distribution of type I is called the Gumbel distribution.
We denote this distribution by Gum(µ, σ). The distributions of type II and III
can be come down to the Gum(µ, σ) distribution by using the simple transfor-
mations Z = log(X − µ) and Z = − log(X − µ). Because of this, all the types
of distributions above are often called the Gumbel distributions. The extreme
value distribution of type II is also the Fréchet distribution.

The extreme value distribution of type I corresponds to the � double ex-
ponential distribution (p. 21). If X has the distribution of type I, then Z =
exp[−(X−µ)/σ] follows the exponential distribution E(1). If Y has the extreme
value distribution of type III, then the cdf of −Y is defined by x 7→ 1−G3(−x),
which leads to the � Weibull distribution (p. 17).

The extreme value distributions and their generalizations (� generalized ex-
treme value distribution (p. 24)) have applications among others in natural phe-
nomena analysis (such as rapid heavy rains, floods, hurricanes, earthquakes, air
pollution, corrosion), in reliability analysis and in insurance analysis.

2.4.4 Generalized extreme value distribution

A random variable X is said to have generalized extreme value distribution with
parameters µ, σ and γ (µ, γ ∈ R, σ > 0), if its cdf is defined by

F (x) = F (x;µ, σ, γ)

=





exp

[
−
(

1 − γ
x− µ

σ

)1/γ]
1(−∞,µ+σ/γ](x), if γ > 0,

exp

[
−
(

1 − γ
x− µ

σ

)1/γ]
1[µ+σ/γ,∞)(x), if γ < 0,

exp
[
− exp

(
− x− µ

σ

)]
, x ∈ R, if γ = 0.
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This distribution we denote by GEV(µ, σ, γ). The case γ < 0 covers the extreme
value distribution of type II; the case γ > 0 corresponds to the extreme value
distribution of type III; the case γ = 0 leads to the extreme value distribution
of type I (the Gumbel distribution).

The density function corresponding to the GEV(µ, σ, γ) distribution has the
following form:

f(x) = f(x;µ, σ, γ)

=





1

σ

(
1 − γ

x− µ

σ

)(1/γ)−1
exp

[
−
(

1 − γ
x− µ

σ

)1/γ]
1(−∞,µ+σ/γ](x), γ > 0,

1

σ

(
1 − γ

x− µ

σ

)(1/γ)−1
exp

[
−
(

1 − γ
x− µ

σ

)1/γ]
1[µ+σ/γ,∞)(x), γ < 0,

1

σ
exp

(
− x− µ

σ

)
exp

[
− exp

(
− x− µ

σ

)]
, x ∈ R, γ = 0.

2.5 Lognormal distributions

A random variable X is said to have the lognormal distribution with parameters
µ and σ2 (µ ∈ R, σ > 0), which we denote by LN (µ, σ2), if its density function
is of the form

f(x) = f(x;µ, σ2) =
1√

2πσx
exp

[
−(lnx− µ)2

2σ2

]
1(0,∞)(x).

The moments of order k (k = 1, 2, . . .) are defined by

E(Xk) = exp

(
1

2
k2σ2 + kµ

)
.

In particular,

E(X) = exp

(
1

2
σ2 + µ

)
, Var(X) = exp(σ2 + 2µ)

(
expσ2 − 1

)
.

The mode is equal to exp(µ− σ2), and the median is exp(µ).
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Figure 2.5: Density functions of the lognormal distribution LN (µ, σ2)

A random variable X has the LN (µ, σ2) distribution, if lnX follows the
normal distribution N (µ, σ2). If Y has the normal distribution N (0, 1), then
X = exp(σY + µ) is LN (µ, σ2) distributed.

If X1, . . . ,Xk are independent random variables with Xi (i = 1, . . . , k) hav-
ing the LN (µi, σ

2
i ) distribution, then

∏k
i=1 aiXi, where ai, i = 1, . . . , k, are any

positive constants, has the lognormal distribution LN (
∑k

i=1(µi+ln ai),
∑k

i=1 σ
2
i ).

The lognormal distribution is used in describing the life data resulting from
a single semiconductor failure mechanism or a closely related group of failure
mechanisms. This is a suitable model for patients of tuberculosis or other diseases
where the potential for death increases early in the disease and then decreases
when the effect of the treatment is evident. This distribution is widely applied
in statistical examinations in physics, geology, economics and biology.

2.6 Pareto family

2.6.1 Pareto distribution

A random variable X is said to have the Pareto distribution with parameters x0
and α (x0 > 0, α > 0), which we denote by Pa(x0, α), if its density function has
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the following form:

f(x) =
α

x0

(x0
x

)α+1
1(x0,∞)(x).

The cdf is defined by

F (x) =
[
1 −

(x0
x

)α]
1(x0,∞)(x), x0 > 0, α > 0.

The moment generating function of the random variable Y = lnX, when X
has the Pa(x0, α) distribution, is expressed by the formula

ψY (t) = E
(

et lnX
)

= E(Xt) =
αxt0
α− t

.

The expectation and the variance of the random variable X are given by

E(X) =
αx0
α− 1

for α > 1, Var(X) =
αx20

(α− 1)2(α − 2)
for α > 2,

respectively. The median of the random variable X equals 21/αx0.
If X has the Pa(x0, α) distribution, then the random variable ln(X/x0) follows

the exponential distribution E(1/α).
The Pareto distributed random variable can take its values only above a

positive level x0. minimalnym.

2.6.2 Generalized Pareto distribution

The generalized Pareto distribution is defined by the following form of the cdf

F (x) = F (x;β, γ) =





[
1 −

(
1 − γx

β

)1/γ]
1(0,β/γ)(x), gdy γ > 0,

[
1 −

(
1 − γx

β

)1/γ]
1(0,∞)(x), gdy γ < 0,

(
1 − e−x/β

)
1(0,∞)(x), gdy γ = 0,

where β > 0. This distribution we denote by GPa(β, γ). The density function
of the GPa(β, γ) distribution has the form

f(x) = f(x;β, γ) =





1

β

(
1 − γx

β

)(1/γ)−1

1(0,β/γ)(x), gdy γ > 0,

1

β

(
1 − γx

β

)(1/γ)−1

1(0,∞)(x), gdy γ < 0,

1

β
e−x/β1(0,∞)(x), gdy γ = 0.
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Let us note that for γ = 0 this is the exponential distribution with mean β, and
for γ = 1 this is the uniform distribution on the interval (0, β), i.e. GPa(β, 0) =
E(β) and GPa(β, 1) = U(0, β).

If X ∼ GPa(β, γ), then the random variable X − u, under the condition
X > u, has the generated Pareto distribution GPa(β−γu, γ), given β−γu > 0.
This property is called threshold-stability (compare with the lack of memory
property of the exponential distribution).

The � failure rate function (p. 2) of the GPa(β, γ) distribution has the form
ρ(x) = (β − γx)−1. Thus, this is the IFR distribution for γ > 0, and the DFR
distribution for γ < 0. For γ = 0 this is the IFR as well as the DFR distribution.

If 1+γk > 0, then there exists the moment of order k of the random variable
X distributed according to GPa(β, γ), and it is defined by the formula

E

[(
1 − γX

β

)k
]

=
1

1 + γk
.

In particular,

E(X) =
β

1 + γ
, Var(X) =

β2

(1 + β)2(1 + 2β)
.

2.7 Burr distributions

From among the distributions belonging to the family of Burr distributions we
present the following ones:

(1) the distribution Bu(1)(λ, µ) with shape parameters λ and µ (λ > 0, µ > 0),
whose density function is defined by

f(x) = λµxλ−1(1 + xλ)−(µ+1)1(0,∞)(x);

(2) the distribution Bu(2)(λ, µ) with parameters λ and µ (λ > 0, µ > 0), whose
density function is defined by

f(x) = λµxλ−1(µ + xλ)−21(0,∞)(x).

The cdf of the Bu(2)(λ, µ) distribution has the form

F (x) =
xλ

µ+ xλ
1(0,∞)(x).
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2.8 Time-transformed exponential family

Consider the exponential family of distributions with the following density

f(x;ω) = s′(x)ω exp[−ωs(x)]1(µ,∞)(x),

where s(x) is strictly increasing and differentiable with s(µ) = 0. The cumulative
distribution function is of the form

F (x;ω) = {1 − exp[−ωs(x)]}1(µ,∞)(x).

The parameter ω is unknown and µ is known. This exponential family covers
many distributions serving as lifetime distributions in reliability models. Some
of important members of this family are contained in Table 2.1.

Distribution and its density s(x) ω

Exponential E(η), η > 0

f(x; η) = η exp(−ηx)1(0,∞)(x) x η

Rayleigh Ra(η)

f(x; η) =
x

η2
exp(− x2

2η2
)1(0,∞)(x) x2/2 η−2

Pareto Pa(x0, η), x0 > 0 – known

f(x; η) =
η

x0
(
x0
x

)η+11(x0,∞)(x) ln(x/x0) η

Weibull We(α, η), α > 0 – known

f(x; η) = αηαxα−1 exp[−(xη)α]1(0,∞)(x) xα ηα

Location-and-scale parameter exponential NE(µ, η), µ ∈ R – known

f(x; η) = η exp[−η(x− µ)]1(µ,∞)(x) x− µ η

Table 2.1: Members of the time-transformed exponential family
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Chapter 3

Most Commonly used Models
for Repairable Systems

3.1 Perfect repair and minimal repair models

Let N(t) denote the number of failures (events) in the time interval (0, t] and
let Ti be the time of the ith failure. The times Ti are called failure times or
event times. Define T0 = 0 and denote Xi = Ti − Ti−1, i = 1, 2, . . . , – the
time between failure number i− 1 and failure number i. The times Xi are called
working times or waiting times and also inter-arrival times.

The observed sequence {Ti, i = 1, 2, . . .} of occurrence times T1, T2, . . . (failure
times) forms a point process, and {N(t), t ≥ 0} is the corresponding counting
process.

Following Ascher and Feingold (1984), a repairable system is defined to be a
system which, after failing to perform one or more of its functions satisfactorily,
can be restored to fully satisfactory performance by any method, other than
replacement of the entire system.

A restoration wherein a failed system (device) is returned to operable condi-
tion is called ’repair’. It could involve replacing failed components by working
ones, restoring broken connections, mending it or any part of it by machining,
cleaning, lubricating etc.

In the context of failure-repair models it is assumed here that all repair times
are equal to 0. In practice this corresponds to the situation, when repair actions
are conducted immediately or the repair times can be neglected with comparison
to the working times Xi.

A repair under which a failed system is replaced with a new identical one is
called a perfect repair.

31
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By a minimal repair we mean a repair of limited effort wherein the device
is returned to the operable state it was in just before failure.

Formal definitions of minimal repair are given below. For a comparison of
definitions of this notion, see, for example, Arjas (2002).

A definition of minimal repair used by Sheu (1990) and then by others, e.g.,
Bagai and Jain (1994), Bae and Lee (2001), uses the survival function as below.

Definition 3.1.1 If F is a cdf of lifetime distribution of a device, the cdf of
lifetime X following a perfect repair is always F ; but the cdf of lifetime distri-
bution following a minimal repair performed at age s is given by

P (X > t|X > s) = S(t|s) =
S(s+ t)

S(s)
.

2

The definition of minimal repair written in a more formal way by Nakagawa
and Kowada (1983) as follows: suppose the system begins to operate at time 0
and that the time for repair is negligible. Let T0, T1, T2, . . . (T0 = 0) denote the
system of failure times and let Xi = Ti − Ti−1, i = 1, 2, . . . , denote, as above, the
times between failures (the working times).

Definition 3.1.2 Let F (t) = P (X1 ≤ t), t ≥ 0. The system undergoes minimal
repairs at failures if and only if

P
(
Xn < u

∣∣∣
n−1∑

i=1

Xi = t
)

=
F (t+ u) − F (t)

F (t)
, n = 2, 3, . . .

for u > 0, t ≥ 0, such that F (t) < 1. 2

Following Andersen et al. (1993, Section II.4) the conditional intensity
λ(t|Ft−) of a point process {N(t), t ≥ 0} is defined by

γ(t) := λ(t|Ft−)

= lim
∆t↓0

P (failure in a point process in [t, t + ∆t)|Ft−)

∆t
, t > 0, (3.1)

where Ft− = σ{N(u), u < t}. Thus, γ(t)∆t is approximately the probability
of failure in the time interval [t, t + ∆t), conditional on the experienced failure
history before time t.

For a � renewal process (p. 35) with inter-arrival distribution F it is well
known that γ(t) = ρ(t − TN(t−)), where ρ is the hazard rate corresponding to
the distribution F , and t−TN(t−) is the time since the last failure strictly before
time t. Thus at each failure, the conditional intensity is returned to what it was
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at time 0, which means that the system is as good as new immediately after each
failure. This is a perfect repair model.

On the other hand, a � non-homogeneous Poisson process (p. 36) with inten-
sity function λ(t) has the conditional intensity γ(t) = λ(t). This means that the
conditional intensity after a failure is exactly as if no failure had ever occurred.
Thus at failures, the system is only restored to a condition where it is exactly as
good (or bad) as it was immediately before the failure. this is a minimal repair
model.

3.2 Models for repairable systems

In this section we recall the definitions of the most common point processes
which are used to model of repairable systems. The two point processes, non-
homogeneous Poisson process {N(t), t ≥ 0} and renewal process {Ti, i = 1, 2, . . .},
are widely investigated in the literature on reliability to model minimal repairs
and perfect repairs (renewals). In Section 3.2.6, a wider class of processes,
the class of so called trend-renewal processes, is described, which covers non-
homogeneous Poisson and renewal processes.

3.2.1 Homogeneous Poisson process

Definition 3.2.3 The process N(t), t ≥ 0 is said to be a (homogeneous) Poisson
process with rate (or intensity) λ > 0 if

(i) N(0) = 0;

(ii) the number of events N(s2) − N(s1) and N(t2) − N(t1) in disjoint time
intervals (s1, s2] and (t1, t2] are independent (independent increments);

(iii) the distribution of the number of events in a certain interval depends only
on the length of the interval and not on its position (stationary increments);

(iv) lim
∆t→0

P (N(∆t) = 1)

∆t
= λ;

(v) lim
∆t→0

P (N(∆t) ≥ 2)

∆t
= 0.

2

The process defined above will be denoted by HPP(λ). Note that if the
random variables X1,X2, . . . (waiting times) are independent and exponentially
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distributed E(1/λ), the counting process {N(t), t ≥ 0} is the HPP(λ). The
corresponding sequence {Ti, i = 1, 2, . . .} is also called the HPP(λ).

Let us note that in the HPP(λ) the number of events in an interval of length
t is a random variable having the Poisson distribution P(λt), and that the time
of the n-th event is a random variable G(n, 1/λ) distributed.

Major weakness of a HPP are the constant rate assumption and the fact that
the distribution of the number of events in an interval depends only on the length
of the interval and not on its position.

Poisson process simulation

To generate n first successive event times of the HPP(λ) one can use the fact
that the inter-arrival times Xi, i = 1, 2, . . . , are independent random variables
having the exponential distribution E(1/λ). One of the simulation methods of
the HPP(λ) is then generating the inter-arrival times Xi, i = 1, 2, . . . , according
to the inversion method formula Xi = − 1

λ lnUi, where Ui are random numbers
from the uniform distribution U(0, 1). Then

Tj =

j∑

i=1

Xi, j = 1, . . . , n,

are the successive n event times of the HPP(λ).
Let us note that to generate the event times on a given interval time (0, t),

the number of failures in this time interval is determined by the formula

inf
{
n :

n∑

i=1

Xi > t
}
− 1.

Thus in generating the HPP(λ) in the interval (0, t) one can use the following
algorithm:

1: s = 0, n = 0;

2: generate the random number U ∼ U(0, 1);

3: set X = − 1
λ lnU ;

4: s = s+X; if s > t, then stop the procedure;

5: n = n+ 1, Tn = s;

6: go to step 2.
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The last value n in the algorithm above represents the number of failures in the
process in the interval (0, t), and T1, . . . , Tn are the successive n event times of
the HPP(λ) in this time interval.

Generating the HPP(λ) until a given number of failures appears is conducted
according to the following main formula:

Ti =

(
Ti−1 +

1

λ
ln

1

1 − Ui

)
, i = 1, 2, . . . , (3.2)

T0 = 0, where Ui are random numbers from uniform distribution U(0, 1). The
generating formula is equivalent to

Ti =

(
Ti−1 −

1

α
lnUi

)
, i = 1, 2, . . . ,

but for numerical computation reasons the first formula is more useful.

3.2.2 Renewal process

Definition 3.2.4 The process {N(t), t ≥ 0} is a renewal process if the random
variables X1,X2, . . . are independent and identically distributed with cumulative
distribution function (cdf) F with F (0) = 0. 2

The renewal process will be denoted by RP(F ). The sequence {Ti, i =
1, 2, . . .} is called the RP(F ) too. If F is the cdf of the exponential distribu-
tion E(λ), then RP(F ) is HPP(λ).
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RP(F )

-
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Figure 3.1: The idea of the RP model

3.2.3 Non-homogeneous Poisson process

Definition 3.2.5 A process {N(t), t ≥ 0} is a non-homogeneous Poisson
process with intensity function λ(t), t ≥ 0, if

(i) N(t) = 0, i.e. there are no events at time 0;

(ii) the numbers of events N(s2) − N(s1) and N(t2) − N(t1) in disjoint in-
tervals (s1, s2] and (t1, t2] are independent random variables (independent
increments);

(iii) there exists a function λ(t) such that

lim
∆t→0

P (N(t + ∆t) −N(t) = 1)

∆t
= λ(t);

(iv) for each t > 0, lim∆t→0
P (N(t + ∆t) −N(t) ≥ 2)

∆t
= 0.

2

The process defined above will be denoted by NHPP(λ(·)).
The important consequence of conditions (i)–(iv) is that the number of fail-

ures in the interval (s, t], t > s, has the Poisson distribution with the parameter
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∫ t
s λ(u)du, i.e.,

P (N(t) −N(s) = k) =

(∫ t
s λ(u)du

)k

k!
exp

(
−
∫ t

s
λ(u)du

)

The functions λ(t) and Λ(t) =
∫ t
0 λ(u)du are called the intensity function

and the cumulative intensity function of the process, respectively.
Of course, if λ(t) ≡ λ, then the NHPP(λ(·)) is the HPP(λ).
Note that the definition of a NHPP relaxes the stationarity assumption of a

HPP.

Fact 3.2.1 The process {N(t), t ≥ 0} is an NHPP(λ(·)) if the time-transformed
process Λ(T1),Λ(T2), . . . forms an HPP(1), i.e., if N(t) = Ñ(Λ(t)), where
{Ñ (t), t ≥ 0} is an HPP(1). 2

Theorem 3.2.1 Suppose that events are occurring according to an HPP(λ).
Suppose that, independently of anything that occurred before, an event that
happens at time t is counted with probability p(t). Then the process {N(t), t ≥ 0}
of counted events constitutes an NHPP(λp(t)). 2

The mean value function of an NHPP(λ(·)) is E(N(t)) = Λ(t). This function
gives the mean (expected) number of failures up to time t.

Let Fi denote the distribution function of the occurrence times Ti, i = 1, 2, . . . ,
and fi be the density function. We have

Fi(t) = P (Ti ≤ t) = P (N(t) ≥ i) = 1 −
i−1∑

k=1

P (N(t) = k)

= 1 −
i−1∑

k=0

(∫ t
0 λ(y) dy

)
k

k!
e−(

∫ t

0 λ(y) dy) = 1 −
i−1∑

k=0

[Λ(t)]k

k!
e−Λ(t)

and

fi(t) =
dFi(t)

dt
= −

i−1∑

k=0

(
k[Λ(t)]k−1Λ′(t)

k!
e−Λ(t) +

[Λ(t)]k

k!
e−Λ(t)(−Λ′(t))

)

= Λ′(t)e−Λ(t)

(
[Λ(t)]i−1

(i− 1)!

)
= λ(t)e−Λ(t)

(
[Λ(t)]i−1

(i− 1)!

)
.

If FΛi
denotes the distribution function of Λ (Ti), then

FΛi
(t) = P (Λ (Ti) ≤ t) = P

(
Ti ≤ Λ−1(t)

)
= 1 −

i−1∑

k=0

tk

k!
e−t.
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On the other hand,

FΛi
(t) = P

(
Ñ(t) ≥ i

)
=

∞∑

k=i

tk

k!
e−t =

1

(i− 1)!

∫ t

0
ui−1e−udu.

It then follows that Λ(Ti) =
∑i

k=1Wk, i = 1, 2, . . . , has the gamma distribution
G(i, 1); Wk = Λ(Tk) − Λ(Tk−1), k = 1, 2, . . . , are exponentially distributed E(1)
and that the transformed counting process {N(Λ(t)), t ≥ 0} is the Poisson process
with intensity 1, i.e., it is the HPP(1) as a special renewal process RP(1−exp(−t)).

Special classes of NHPP’s which play important role in modeling reliability
systems will be presented in the next two subsections.

Simulation of a non-homogeneous Poisson process

A. Random sampling or thinning approach. The procedura follows the follow-
ing steps: 1) choose a λ such that λ(t) ≤ T for all t ≤ T ; 2) generate events

according to a HPP(λ); 3) accept the event, say at time t, with probability λ(t)
λ ,

independently of what has happened before. The process of the counted events
then forms the NHPP(λ(t)), λ(t), t ≤ T .

The algorithm is:

1: t = 0, n = 0;

2: generate a random number U ∼ U(0, 1);

3: set X = − 1
λ lnU ;

4: t = t+X; If t > T then stop;

5: generate a random number U ∼ U(0, 1);

6: if U ≤ λ(t)/λ, set n = n+ 1, Tn = t;

7: go to step 2.

In the output, n is the number of events in the time interval (0, T ), and T1, . . . , Tn
are the successive n event times of the NHPP(λ(t)) in this time interval.

B. The method of direct generation of successive event times Ti, i = 1, 2, . . .,
relies on the Fact 3.2.1, i.e., on the formula Λ(Ti) − Λ(Ti−1) ∼ E(1) ∼ − lnUi.

This corresponds to the formula: Ti = Λ−1
(

Λ(Ti) − lnUi

)
.
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3.2.4 Power law process (PLP)

Definition 3.2.6 The NHPP(λ(·)) for which λ(t) = λ(t;α, β) = αβtβ−1, α >
0, β > 0, is called the Power Law Process. 2

This process will be denoted by PLP(α, β). This NHPP is also known
as Weibull NHPP. The cumulative intensity function for this process is
Λ(t;α, β) = αtβ.

Figures 3.2, 3.3 and 3.4 show the plots of the intensity functions λ(t;α, β),
the cumulative intensity functions Λ(t;α, β) and the plots of trajectories of the
PLP(α, β) for three chosen pairs of α and β.
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Figure 3.2: Intensity functions λ(t;α, β) of the PLP(α, β) for three cho-
sen pairs of α and β.
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Figure 3.3: Cumulative intensity functions Λ(t;α, β) of the
PLP(α, β) for three chosen pairs of α and β.
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Figure 3.4: Sample paths of the PLP(α, β) for three chosen pairs
of α and β.
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Figure 3.4 shows three sample paths of the PLP(α, β) for each of the three
chosen combinations (50, 0.2), (15, 2) and (2, 5) of the pair (α, β). The experi-
mental average numbers of jumps evaluated from 100 generated repetitions of
the PLP for the three chosen pairs of α and β in the simulation are equal to 48,
61, 52, respectively (compare with the values of n̂ in Table 4.1 for T = 2).

Simulation of a power law process

Generating the PLP(α, β) process until a given number of jumps (failures) is
based on the following formula:

Ti =

(
T β
i−1 +

1

α
ln

1

1 − Ui

)1/β

, i = 1, 2, . . . , (3.3)

T0 = 0, where Ui are random numbers from uniform distribution U(0, 1). The
generating formula is equivalent to

Ti =

(
T β
i−1 −

1

α
lnUi

)1/β

, i = 1, 2, . . . ,

but for numerical computation reasons the previous formula is more useful.

3.2.5 Non-homogeneous Poisson processes with bounded mean
value function

Let {N(t), t ≥ 0} be a NHPP with intensity function λ(t) and the mean value
function Λ(t) =

∫ t
0 λ(u)du (cumulative intensity) having the following parametric

form

Λ(t;α, β) = αF (t/β), (3.4)

where α, β > 0 are unknown parameters, and F (·) is a known continuous, dif-
ferentiable distribution function. The corresponding intensity function is given
by

λ(t;α, β) =
α

β
f(t/β), (3.5)

where f(·) is the differential coefficient of F (·). It is obvious that the model
defined by (3.4) has bounded mean value function. This is the reason for which
this model is used as a software reliability model, because a software system
contains only a finite number of faults. The parameter α is called the expected
number of faults to be eventually detected (see Yamada and Osaki (1985)) and
β is a scale parameter.
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3.2.6 Trend-renewal process (TRP)

The TRP was introduced and investigated first by Lindqvist (1993) and by Lin-
qvist et al. (1994) (see also Lindqvist and Doksum (2003)).

Let λ(t) be a nonnegative function defined for t ≥ 0, and let Λ(t) =
∫ t
0 λ(u)du.

Definition 3.2.7 The process {N(t), t ≥ 0} is called a trend-renewal process
TRP(F, λ(·)) if the time-transformed process Λ(T1),Λ(T2), . . . is an RP(F ), i.e.
if the random variables Λ(Ti) − Λ(Ti−1), i = 1, 2, . . . are i.i.d. with cdf F . 2
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Figure 3.5: The idea of the TRP model.

The cdf F is meant as the renewal distribution function, and λ(t) is called
the trend function.

Let us note that for F (t) = 1 − exp(−t) the TRP(1 − exp(−t), λ(·)) becomes
the NHPP(λ(·)). Let us also remark that in particular, the TRP(F, 1) is the
RP(F ).

The class of TRP’s is defined by properties of the sequence {Ti, i = 1, 2, . . .}
and includes the NHPP’s and RP’s. Equivalently, the corresponding counting
process {N(t), t ≥ 0} can be considered, where N(t) = Ñ(Λ(t)) and {Ñ(t), t ≥ 0}
represents an RP.

Note that the representation TRP(F, λ(·)) is not unique. For uniqueness we
assume that the expected value of the renewal distribution defined by F equals
1.

The form of conditional intensity function of the TRP(F, λ(·)) one obtains



Models for repairable systems 43

from formula (3.1). Namely, we have

γ(t) = lim
∆t→0

P (failure in TRP in (t, t + ∆t)|Ft−)

∆t

= lim
∆t→0

P (failure in RP(F ) in (Λ(t),Λ(t + ∆t))|Ft−)

∆t

= lim
∆t→0

P (failure in RP(F ) in (Λ(t),Λ(t + ∆t))|Ft−)

∆Λ(t)

∆Λ(t)

∆t
.

The conditional intensity function of the RP(F ) is given by γ(t) = ρ(t−TN(t−)),
where ρ(t) is the � hazard rate (p. 1) corresponding to F . It then follows that
for the TRP(F, λ(·)) the conditional intensity function is

γ(t) = ρ(Λ(t) − Λ(TN(t−))) lim
∆t→0

Λ(t+ ∆t) − Λ(t)

∆t
= ρ(Λ(t) − Λ(TN(t−)))λ(t). (3.6)

3.2.7 Weibull-power law TRP

Let us consider the TRP(F, λ(·)) with

λ(t;α, β) = αβtβ−1, α > 0, β > 0, Λ(t;α, β) = αtβ (3.7)

and

F (x) = F (x; γ) = 1 − exp
[
−
(
Γ(1 + 1/γ)x

)γ]
(γ > 0), (3.8)

studied by Lindqvist et al. (2003). The renewal distribution function F corre-
sponds to the Weibull distribution We(γ, 1/Γ(1+1/γ)) with the parametrization
resulting in the expectation 1.

Definition 3.2.8 The TRP(F, λ(·)) with λ(·) and F defined by 3.7 and 3.8 is
called the Weibull-Power Law TRP. 2

The Weibull-Power Law TRP will be denoted shortly by WPLP(α, β, γ).
The hazard function corresponding to F is

ρ(x) = ρ(x; γ) = (Γ(1 + 1/γ))γ γxγ−1. (3.9)

In the case γ = 1 the renewal distribution function F corresponds to the expo-
nential distribution E(1) and the WPLP(α, β, 1) becomes the NHPP(λ(t)) with
λ(t) = αβtβ−1, i.e., it becomes the PLP(α, β). Note that in this case ϕ = α.

If γ = 1 and β = 1, then the WPLP(α, 1, 1) is the TRP(1 − exp(−t), α), i.e.,
it is the HPP(α).
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Figure 3.6: Sample paths of the WPLP(α, β, γ) for three chosen
triplets of α, β and γ.

Figure 3.6 shows three sample paths of the WPLP(α, β, γ) for each of the three
chosen combinations (50, 0.2, 3), (15, 2, 1.5) and (2, 5, 0.8) of the triplet (α, β, γ).
The experimental average numbers of jumps evaluated from 100 generated repe-
titions of the WPLP for the three chosen triplets of α, β and γ in the simulation
are equal to 51, 50, 53, respectively (compare with the values of n̂ in Table 4.1
for T = 2).

Denote by s = s(γ) the variance of the renewal distribution defined by F . For
the WPLP(α, β, γ) we then have

s == s(γ) =
Γ(1 + 2/γ)

Γ2(1 + 1/γ)
− 1. (3.10)

In particular, s = 1 for the PLP(α, β).
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Figure 3.7: Variance function of the renewal distribution in the
WPLP.

Figures 3.8 – 3.10 illustrate how variability of a WPLP is reflected by the vari-
ance of the renewal distribution. The variability of the process becomes evidently
greater as the variance s of the renewal distribution defined by F decreases. The
variance function s(γ) is strictly decreasing for γ > 0 and increases rapidly for
γ < 1 (see formula (3.10) and Figure 3.7).
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Figure 3.8: Sample paths of the WPLP(15, 2, 3).
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Figure 3.9: Sample paths of the WPLP(15, 2, 1).
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Figure 3.10: Sample paths of the WPLP(15, 2, 0.5).

It follows from formula (3.9) that the hazard function ρ(x; γ) corresponding
to F of the WPLP is decreasing in x for γ < 1 (belonging then to DFR class)
and increasing in x for γ > 1 (belonging then to IFR class). For γ = 2 it is the
linear function ρ(x; 2) = 1.5708x, and for γ = 1 it is a constant function which
equals 1 and corresponds to the exponential distribution E(1).
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Figure 3.11: Hazard functions of the renewal distribution in the
WPLP.

Simulation of a Weibull-power law TRP

The successive jump times T1, T2, . . . of the WPLP(α, β, γ) are generated accord-
ing to the following formula:

Ti =

[
T β
i−1 +

1

αΓ(1 + 1/γ)

(
ln

1

1 − Ui

)1/γ
]1/β

, i = 1, 2, . . . , (3.11)

T0 = 0, where Ui are random numbers from uniform distribution U(0, 1). The
generating formula is equivalent to

Ti =

[
T β
i−1 −

1

αΓ(1 + 1/γ)
(lnUi)

1/γ

]1/β
, i = 1, 2, . . . ,

but for numerical computation reasons formula (3.11) is more useful.



Chapter 4

Parameter Estimation in
Non-homogeneous Poisson
Process with Power Law
Intensity Function

4.1 Likelihood function for stochastic processes

Let {Y (s), s ≥ 0} be a stochastic process observed in the time interval [0, t]. Sup-
pose that for each t the distribution P t of the process {Y (s), s ≥ 0} observed up
to time t is an element of a family of distributions {P t

ϑ, ϑ ∈ Θ}. Assume that for
some fixed ϑ0 ∈ Θ, all the measures P t

ϑ, ϑ ∈ Θ, are absolutely continuous with
respect to the measure P t

ϑ0
. The corresponding density (the Radon-Nikodym

derivative)

L(t;ϑ) = L(t, y(·);ϑ, ϑ0) =
dP t

ϑ

dP t
ϑ0

(y(·)) (4.1)

regarded as a function of ϑ given the data (realization) y(·) is called the likeli-
hood function of the process {Y (s), s ≥ 0} observed in the time interval [0, t].

In the discrete time process {Y (s), s = 0, 1, 2, . . .} the likelihood function
always exists if the distributions P t

ϑ, P t
ϑ0

have positive densities, and it coincides
with the ratio of these two densities.

The likelihood function can be often calculated using the limit relation

L(t;ϑ) = lim
n→∞

pϑ (y(t1), . . . , y(tn))

pϑ0 (y(t1), . . . , y(tn))
,

49
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where pϑ denotes the density of the vector (y(t1), . . . , y(tn)), while {t1, . . . , tn} is
a dense set in [0, t].

Note that by the fundamental identity of sequential analysis for stochastic
processes, which is a consequence of the optional stopping theorem, the form of
the likelihood function of (4.1) remains the same, where the end time t is replaced
with a random finite stopping time τ with respect to the family Ft = σ{Y (s), s ≤
t}, t ≥ 0,.

If {Y0, Y1, Y2, . . .} forms a homogeneous Markov chain, then under quite gen-
eral assumptions the likelihood function is

dP t
ϑ

dP t
ϑ0

(y(·)) = p0(Y0;ϑ)p(Y1|Y0;ϑ) · · · p(Yt|Yt−1;ϑ),

where p0 and p are the initial and transition densities of the distribution.

Let {Y (s), s ≥ 0} be a homogeneous Markov process with a discrete state
space and differentiable transition probabilities pi,j(s). The transition probability
matrix is determined by the matrix Q =

(
qi,j
)
, where qi,j = p′i,j(0). Denote

qi = −qi,i and let y0 = i0 be independent of Q at the initial time. By choosing
any matrix Q0 =

(
q0i,j
)
, one finds

dP t
Q

dP t
Q0

(y(·)) = exp
[(
q0y(tN(t))

− qy(tN(t))

)
t
]N(t)−1∑

k=0

qy(tk),y(tk+1)

q0y(tk),y(tk+1)

· exp
[
xk
(
qy(tN(t)) − qy(tk) − q0y(tk) + q0y(tN(t))

)]
,

where N(t) is the number of jumps of the process {Y (s), s ≥ 0} in the interval
[0, t]; tk is the k-th jump time; xk = tk+1 − tk is the inter-arrival time. The ML

estimators of the parameters qi,j are q̂i,j =
Ki,j(t)

Si
, where Ki,j(t) is the number

of transitions from state i to state j in the time interval [0, t], and Si(t) is the
time spent in state i before t.

Let {Y (s), s ≥ 0} be the linear birth-and-death process with birth rate λ > 0
and death rate µ > 0. The counting process N(t) in this model is the number of
births and deaths in the time interval [0, t]. For the process Y we have qi,i+1 = iλ,
qi,i−1 = iµ, qi,i = 1 − i(λ + µ) and qi,j = 0 if |i− j| > 1. Assume that Y (0) = 1.
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The likelihood function is

L((λ, µ); t) =
dP t

(λ,µ)

dP t
(λ0,µ0)

(y(·))

=

(
λ

λ0

)B(t) ( µ

µ0

)D(t)

exp [−(λ+ µ− λ0 − µ0)S(t)]

= exp
[
ϑ1B(t) + ϑ2D(t) −

(
eϑ1 + eϑ2

)
S(t)

]
=: L(ϑ; t),

where (ϑ = (ϑ1, ϑ2) = (log λ, log µ), B(t) is the number of births (jumps of
measure +1) in [0, t], D(t) is the number of deaths (jumps of measure -1) in [0, t],
and

S(t) =

∫ t

0
y(s)ds

is the total time lived in the population before time t. The ML estimators of λ
and µ are

λ̂(t) =
B(t)

S(t)
, µ̂(t) =

D(t)

S(t)

If {N(s), s ≥ 0} is the HPP(λ), then the likelihood function is

L(λ; t) = λN(t) exp(−λt) = exp
[
ϑN(t) − eϑt

]
=: L(ϑ; t),

where ϑ = log λ. The ML estimator of λ is λ̂ =
N(t)

t
.

4.2 Maximum likelihood estimators in a PLP

Let {N(t), t ≥ 0} be a NHPP with a mean value function Λ(t;ϑ) and intensity
function λ(t;ϑ), where ϑ is an unknown vector parameter. For this process ob-
served on the time interval [0, τ ], the likelihood function based on the observed
arrival times t1, t2, . . . , tN(τ) and N(τ) is of the form

L(τ ;ϑ) = L(t1, t2, . . . , tN(τ), N(τ);ϑ) =



N(τ)∏

i=1

λ(ti;ϑ)


 exp [−Λ(τ ;ϑ)] , (4.2)

dropping the factor which does not depend on an unknown parameter. The
form of the likelihood function follows from the formula given by Andersen et al.
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(1993) for the likelihood function of a point process (see also Thompson (1988)).
That likelihood function of a point process is used in the next section. Formula
(4.2) one obtains from formula (5.1) by assuming that the conditional intensity
γ(t) = λ(t).

In particular, for the PLP(α, β) the likelihood function defined by (4.2)
takes the form

L(τ ;α, β) = (αβ)N(τ)

N(τ)∏

i=1

tβ−1
i exp

(
−ατβ

)

For the PLP(α, β) the ML estimators of α and β can be explicitly determined
(see e.g. Rigdon and Basu (2000), pp. 136–137).

The log-likelihood function for the PLP(α, β) is

ℓ(τ ;ϑ) := logL(τ ;ϑ) = logL(τ ;α, β)

= N(τ)(lnα+ ln β) + (β − 1)

N(τ)∑

i=1

ln ti − ατβ .

Solving the likelihood equations





∂ℓ(τ ;α, β)

∂α
= 0,

∂ℓ(τ ;α, β)

∂β
= 0.

(4.3)

we obtain the form of the ML estimators given in the following fact:

Fact 4.2.1 For the PLP(α, β) the ML estimators α̂ML and β̂ML of α and β,
based on the observation up to any stopping time τ , are of the form

α̂ML =
N(τ)

τ β̂ML

(4.4)

and

β̂ML = N(τ)

(
ln

τN(τ)

∏N(τ)
i=1 Ti

)−1

= N(τ)




N(τ)∑

i=1

ln
τ

Ti




−1

. (4.5)

2

In the case when the observation is finished at the n-th failure time point, i.e.,
τ = TN(τ) and N(τ) = n, in other words if the observation time is the random
stopping time τ = inf{t ≥ 0;N(t) = n}, then we say that the stopping time τ
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determines the so called inverse estimation plan . This way of terminating
the observation of the process, as soon as a predetermined number of failures has
been observed, is called failure truncation.

In the case when the observation is finished at a predetermined time, say T ,
i.e., τ = const = T , then we say that the stopping time τ determines the so
called simple estimation plan . This way of terminating the observation of
the process is called time truncation.

Fact 4.2.2 In the inverse estimation plan for the PLP(α, β) the ML estimators
of α and β are defined by

α̂I
ML =

n

T
β̂I
ML

n

, where β̂IML = n
(

ln
T n
n∏n

i=1 Ti

)−1
= n

( n−1∑

i=1

ln
Tn
Ti

)−1
. (4.6)

In the simple estimation plan for the PLP(α, β) the ML estimators of α and β
are defined by

α̂S
ML =

N(T )

T β̂S
ML

, (4.7)

where

β̂SML = N(T )
(

ln
TN(T )

∏N(T )
i=1 Ti

)−1
= N(T )

(N(T )∑

i=1

ln
T

Ti

)−1
. (4.8)

2

For the HPP(α) the ML estimator of α in the inverse estimation plan is

α̂I
ML =

n

Tn
, (4.9)

and in the simple estimation plan is

α̂S
ML =

N(T )

T
. (4.10)

Let us note that in the simple estimation plan for a PLP the ML estimators
depend on N(T ), the number of failures up to time T , and on the failure times
Ti, i = 1, . . . , N(T ); 0 < T1 < T2 < · · · < TN(T ) ≤ T . Remark that the number
N(T ) as well as the failure times Ti are random, whereas in the inverse estimation
plan the ML estimators are determined only by T1, . . . , Tn, where n is the number
of failures given at advance.
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4.3 Expected number of failures

The expected number of failures in the PLP(α, β) up to time T can be estimated

by the formula ̂E(N(T )) = α̂T β̂, where α̂ and β̂ are estimates of the parameters
α and β.

Table 4.1 contains estimates of α for given values of β and the expected
number of failures n̂ at the termination time T for the PLP(α, β). The estimates α̂
of the parameter α are evaluated according to the formula n̂ = Λ(T ; α̂, β) = α̂T β.

n̂ = 50
T/β 0.2 0.5 0.8 1. 1.5 2. 3. 4. 5.
1.5 46.105 40.825 36.149 33.333 27.217 22.222 14.815 9.877 6.584

2 43.528 35.355 28.717 25.000 17.678 12.500 6.250 3.125 1.562
3 40.137 28.868 20.762 16.667 9.623 5.556 1.852 0.617 0.206
4 37.893 25.000 16.494 12.500 6.250 3.125 0.781 0.195 0.049
5 36.239 22.361 13.797 10.000 4.472 2.000 0.400 0.080 0.016

10 31.548 15.811 7.924 5.000 1.581 0.500 0.050 0.005 0.0005
n̂ = 100

T/β 0.2 0.5 0.8 1. 1.5 2. 3. 4. 5.
1.5 92.211 81.650 72.298 66.667 54.433 44.444 29.630 19.753 13.169

2 87.055 70.711 57.435 50.000 35.355 25.000 12.500 6.250 3.125
3 80.274 57.735 41.524 33.333 19.245 11.111 3.704 1.235 0.412
4 75.786 50.000 32.988 25.000 12.500 6.250 1.562 0.391 0.098
5 72.478 44.721 27.595 20.000 8.944 4.000 0.800 0.160 0.032

10 63.096 31.623 15.849 10.000 3.162 1.000 0.100 0.010 0.001
n̂ = 200

T/β 0.2 0.5 0.8 1. 1.5 2. 3. 4. 5.
1.5 184.422 163.299 144.596 133.333 108.866 88.889 59.259 39.506 26.337

2 174.110 141.421 114.870 100.000 70.711 50.000 25.000 12.500 6.250
3 160.548 115.470 83.049 66.667 38.490 22.222 7.407 2.469 0.823
4 151.572 100.000 65.975 50.000 25.000 12.500 3.125 0.781 0.195
5 144.956 89.443 55.189 40.000 17.889 8.000 1.600 0.320 0.064

10 126.191 63.246 31.698 20.000 6.325 2.000 0.200 0.020 0.002

Table 4.1: Estimates of α for given values of β and the expected number of
failures n̂ at the termination time T for the PLP(α, β).



Chapter 5

Estimation of Parameters for
Trend-renewal Processes

5.1 Introduction

In this chapter, methods of estimating unknown parameters of a trend function
for trend-renewal processes (TRP’s) are investigated in the case when the renewal
distribution function F is unknown. If the renewal distribution is unknown, then
the likelihood function of the trend-renewal process is unknown and consequently
the maximum likelihood method cannot be used. In such situation, three other
methods of estimating the trend parameters are presented. The methods consid-
ered can also be used to predict future occurrence times. The performance of the
estimators based on these methods is illustrated numerically for some TRP’s for
which the statistical inference is analytically intractable.

Parametric inference on the parameters of the TRP was considered in the
paper of Lindqvist et al. (2003), where the authors also proposed corresponding
models, called heterogeneous TRP’s, that extend the TRP to cases involving
unobserved heterogeneity. Nonparametric ML estimation of the trend function
of a TRP(F, λ(·)) under the often natural condition that λ(·) is monotone was
considered by Heggland and Lindqvist (2007).

Peña and Hollander (2004) presented a general class of models that allows
the researcher to incorporate the effect of interventions performed on a unit after
each event occurrence, the impact of accumulating events on a unit, the effect of
unobservable random effects of frailties, and the effect of covariates that could
be time-dependent. The ML estimators of this general models parameters were
presented, and their finite and asymptotic properties were ascertained by Stocker
and Peña (2007).
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From practical point of view, the problem of estimating trend parameters of
the TRP with unknown renewal distribution may be of interest in the situation
when we observe several systems, of the same kind, working in different environ-
ments and we are interesting in examining and comparing their trend functions,
whatsoever their renewal distribution is.

In Section 5.2 the form of likelihood function for a TRP is presented. The
likelihood function and the likelihood equations for estimating the parameters of
the Weibull-Power Law TRP are given in Section 5.3. The likelihood equations
are also presented in the form which is used in simulation study to obtain the ML
estimators of the TRP parameters. In Section 5.4, three methods of estimating
the trend parameters in the case when the ML methods can not be used. The
estimation problem of the trend parameters in some special case of the TRP is
considered in Section 5.5. In Section 5.6 the estimators proposed are examined
and compared with the ML estimators (obtained under the additional assumption
that the renewal distribution has a known parametric form) through a computer
simulation study. Some real data are examined in Section 5.6.3. Section 5.7
contains conclusions and some prospects.

5.2 Likelihood function for a TRP

For a point process N(t) observed in the interval time [0, τ ] with the realiza-
tions t1, t2, . . . , tN(τ) of the jump (failure) times T1, T2, . . . , TN(τ) and conditional
intensity function γ(t), the likelihood function is of the form

L(τ) =
[N(τ)∏

i=1

γ(ti)
]

exp

(
−
∫ τ

0
γ(u)du

)
(5.1)

(Andersen et al. (1993)). The conditional intensity function γ(t) is defined by
(3.1).

Taking into account formula (3.6), the likelihood function of (5.1) takes the
following form for the TRP(F, λ(·)):

L(τ) =

[N(τ)∏

i=1

ρ(Λ(ti) − Λ(ti−1))λ(ti) · exp

(
−
∫ ti

ti−1

ρ(Λ(u) − Λ(ti−1))λ(u)du

)]

· exp

(
−
∫ τ

tN(τ)

ρ(Λ(u) − Λ(tN(τ)))λ(u)du

)
.

Consequently, for a TRP(F, λ(·)) observed in the time interval [0, τ ], by applying
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the substitution v = Λ(u) − Λ(Ti−1), the likelihood function takes the form

L(τ) =

[N(τ)∏

i=1

z
(
Λ(ti) − Λ(ti−1)

)
λ(ti) exp

(
−
∫ Λ(ti)−Λ(ti−1)

0
ρ(v)dv

)]

· exp

(
−
∫ Λ(τ)−Λ(tN(τ))

0
ρ(v)dv

)
(5.2)

(Linqvist et al. (2003, formula (2, ch.2)) and the log-likelihood function is
defined by

ℓ(τ) := logL(τ)

=

N(τ)∑

i=1

[
log
(
ρ(Λ(ti) − Λ(ti−1))

)
+ log

(
λ(ti)

)
−
∫ Λ(ti)−Λ(ti−1)

0
ρ(v)dv

]

−
∫ Λ(τ)−Λ(tN(τ))

0
ρ(v)dv. (5.3)

5.3 Estimation in the Weibull-Power Law TRP

5.3.1 Likelihood function

For the WPLP(α, β, γ) the likelihood function defined by (5.2) takes the form

L(τ) = L(τ ;ϑ) =

N(τ)∏

i=1

ϕβγtβ−1
i (tβi − tβi−1)

γ−1

exp


−

N(τ)∑

i=1

ϕ(tβi − tβi−1)
γ − ϕ(τβ − tβN(τ))

γ


 ,

where ϑ = (ϕ, β, γ) and

ϕ = ϕ(α, γ) = [αΓ(1 + 1/γ)]γ . (5.4)

The log-likelihood function for the WPLP(α, β, γ) is

ℓ(τ ;ϑ) := logL(τ ;ϑ)

= N(τ)(lnϕ+ ln β + ln γ) + (β − 1)

N(τ)∑

i=1

ln ti + (γ − 1)

N(τ)∑

i=1

ln(tβi − tβi−1)

−ϕ
[N(τ)∑

i=1

(tβi − tβi−1)
γ + (τβ − tβN(τ))

γ
]
.
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In the inverse estimation plan the likelihood function is given by

L̃(n;ϑ) = (ϕβγ)n
n∏

i=1

tβ−1
i [tβi − tβi−1]

γ−1 exp

{
−ϕ

n∑

i=1

[tβi − tβi−1]
γ

}
,

and the log-likelihood function is

ℓ̃(n;ϑ) = n(lnϕ+ ln β + ln γ)

+
n∑

i=1

[
(β − 1) ln ti + (γ − 1) ln(tβi − tβi−1) − ϕ[tβi − tβi−1]

γ
]
.

5.3.2 ML estimators

The solution to the equation ∂ℓ/∂ϕ = 0 with respect to ϕ is

ϕ̃ = ϕ̃(β, γ) =
N(τ)

∑N(τ)
i=1 (tβi − tβi−1)γ + (τβ − tβN(τ))

γ
. (5.5)

Performing the likelihood equations for the parameters β and γ we have the
following fact.

Fact 5.3.1 The ML estimators ϕ̂ML, β̂ML and γ̂ML of the parameters ϕ, β and
γ, based on the observation up to any stopping time τ , are determined as follows:

ϕ̂ML =
N(τ)

∑N(τ)
i=1

(
tβ̂ML

i − tβ̂ML

i−1

)γ̂ML +
(
τ β̂ML − tβ̂ML

N(τ)

)γ̂ML

,

where β̂ML and γ̂ML are the solutions of the following system of likelihood equa-
tions

N(τ)

β
+

N(τ)∑

i=1

{
(
tβi ln ti − tβi−1 ln ti−1

)[ γ − 1

tβi − tβi−1

− ϕ̃γ(tβi − tβi−1)
γ−1
]

+ ln ti

}

−ϕ̃γ
(
τβ − tβN(τ)

)γ−1(
τβ ln τ − tβN(τ) ln tN(τ)

)
= 0,

N(τ)

γ
+

N(τ)∑

i=1

ln(tβi − tβi−1)
[
1 − ϕ̃(tβi − tβi−1)

γ
]
− ϕ̃

(
τβ − tβN(τ)

)γ
ln
(
τβ − tβN(τ)

)
= 0,

where ϕ̃ = ϕ̃(β, γ) is defined by (5.5). 2

In particular, for the WPLP(α, β, 1), i.e. for the PLP(α, β), we obtain the
explicit form of the ML estimators of α and β, which are given in Fact 4.2.1
(formulae (4.4) and (4.5)).
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In the inverse sequential estimation plan, the solution to the equation ∂ℓ̃/∂ϕ =
0 with respect to ϕ is

ϕ̃ = ϕ̃(β, γ) =
n

∑n
i=1(t

β
i − tβi−1)γ

, (5.6)

and we have the following special case of Fact 5.3.1.

Fact 5.3.2 The ML estimators ϕ̂ML, β̂ML and γ̂ML of the parameters ϕ, β and
γ in the inverse estimation plan are determined as follows:

ϕ̂ML =
n

∑n
i=1[t

β̂ML

i − tβ̂ML

i−1 ]γ̂ML

, (5.7)

where β̂ML and γ̂ML are the solutions of the following system of likelihood equa-
tions

n

β
+

n∑

i=1

{
[tβi ln ti − tβi−1 ln ti−1]

[ γ − 1

tβi − tβi−1

− ϕ̃γ(tβi − tβi−1)
γ−1
]

+ ln ti

}
= 0,

(5.8)

n

γ
+

n∑

i=1

ln(tβi − tβi−1)
[
1 − ϕ̃(tβi − tβi−1)

γ
]

= 0,

where ϕ̃ = ϕ̃(β, γ) is defined by (5.6). 2

The estimator α̂ of α is evaluated according to the formula

α̂ =
ϕ̂1/γ̂

Γ(1 + 1/γ̂)
, (5.9)

where ϕ̂ and γ̂ are estimators of ϕ and γ.
Regarding that t0 = 0, to avoid indeterminate expressions 0 · (−∞) in the

numerical evaluations we express the formula for the log-likelihood function in
the following form

ℓ̃(n;ϑ) = n(lnϕ+ ln β + ln γ) + (β − 1) ln t1 + (γ − 1) ln tβ1 − ϕtβγ1

+
n∑

i=2

[
(β − 1) ln ti + (γ − 1) ln(tβi − tβi−1) − ϕ(tβi − tβi−1)

γ
]
. (5.10)

The derivative ∂ℓ̃/∂β is

∂ℓ̃

∂β
=

n

β
+ γ(1 − ϕtβγ1 ) ln t1

+

n∑

i=2

{
[tβi ln ti − tβi−1 ln ti−1]

[ γ − 1

tβi − tβi−1

− ϕγ(tβi − tβi−1)
γ−1
]

+ ln ti

}
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and in the numerical computation we use the likelihood equation

n

β
+ γ
(

1 − ϕ(β, γ)tβγ1

)
ln t1

+

n∑

i=2

{
[tβi ln ti − tβi−1 ln ti−1]

[ γ − 1

tβi − tβi−1

− ϕ(β, γ)γ(tβi − tβi−1)
γ−1
]

+ ln ti

}
= 0

instead of equation (5.8).

5.4 The alternative methods of estimating trend pa-

rameters of a TRP

In the case when both the form of the renewal distribution function F and the
form of the trend function λ(·) of the TRP(F, λ(·)) are known one can estimate
unknown parameters of this process using the maximum likelihood (ML) method.
The problem is to find the estimators of unknown parameters of F and λ for which
the likelihood function defined by (5.2) or the log-likelihood defined by (5.3) takes
its maximum.

In the case when the form of F is unknown, we present in Sections 5.4.1, 5.4.2
and 5.4.3 the three methods for estimating unknown parameters of the trend
function of a TRP(F, λ(·)), where λ(·) = λ(t;ϑ) and ϑ is a vector of unknown
parameters. The problem of estimating trend parameters of the TRP with un-
known renewal distribution may be of interest in the situation when we observe
several systems, of the same kind, working in different environments and we are
interesting in examining and comparing their trend functions, whatsoever their
renewal distribution is. Moreover, the following limit results for the TRP hold

N(t)

Λ(t)
→ 1, a.s.,

V (t)

Λ(t)
→ 1 as t→ ∞,

where V (t) = E(N(t)) (see Lindqvist et al. (2003)). For NHPP(λ(t)) the equality
V (t) = Λ(t) holds for every t. Thus we may, at least asymptotically, think of
Λ(t) as the expected number of failures until time t. Therefore, we can use
Λ̂(t0) = Λ(t0; ϑ̂) as an estimator of V (t0), for some t0 large enough, whatsoever
renewal distribution of the TRP is.



Estimation in TRP’s 61

5.4.1 The least squares (LS) method

The least squares (LS) method consists in determining the value of ϑ̂LS that
minimizes the quantity

S2
LS(ϑ) =

N(τ)∑

i=1

[Λ(ti;ϑ) − Λ(ti−1;ϑ) − 1]2, (5.11)

where ti are the realizations of random variables Ti, i = 1, . . . , N(τ), and Λ(t0) :=
0. Let us note that the transformed inter-arrival times

Wi = Λ(Ti) − Λ(Ti−1)

are the observations from the distribution with the expected value 1 (this is as-
sumed for the uniqueness of the representation of a TRP). Thus the LS method
consists in deriving such estimate of the unknown parameter ϑ (of the trend func-
tion) which minimizes the sum of squares of deviations of the random variables
Wi from the expected value 1 (i.e. minimizes the sample variance).

5.4.2 The constrained least squares (CLS) method

The constrained least squares (CLS) method consists in determining the value of
ϑ that minimizes the quantity S2

LS(ϑ) defined by (5.11) subject to the constraint

1

N(τ)

N(τ)∑

i=1

[Λ(ti;ϑ) − Λ(ti−1;ϑ)] = 1,

i.e., under the condition

Λ
(
tN(τ);ϑ

)
= N(τ). (5.12)

Thus in the CLS method we assume additionally that the sample mean

W =
1

N(τ)

N(τ)∑

i=1

Wi

is equal to the theoretical expected value 1 of the distribution defined by F .
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5.4.3 The method of moments (M)

If the value of the variance of the renewal distribution F is known, say s, then
we can state the following condition on the sample variance:

1

N(τ) − 1

N(τ)∑

i=1

[Λ(ti;ϑ) − Λ(ti−1;ϑ) − 1]2 = s.

Taking into account (5.12) we have the following first two sample moment con-
ditions:





Λ
(
tN(τ);ϑ

)
= N(τ),

∑N(τ)
i=1 [Λ(ti;ϑ) − Λ(ti−1;ϑ)]2 = (s+ 1)N(τ) − s.

(5.13)

If ϑ = (ϑ1, ϑ2), then the method of moments (M method) consists in determining
any solution ϑ̂M to the system of equations (5.13).

5.4.4 Some remarks

Remark 5.4.1 The LS, CLS and M methods can be useful when we do not know
the form of the cumulative distribution function F (the renewal distribution), and
consequently, when we do not know the likelihood function of the TRP(F, λ(·)).

2

Remark 5.4.2 The LS, CLS and M methods can be used to predict the next
failure time. For example, we have T̂N(τ)+1 = Λ̂−1[Λ̂(TN(τ)) + 1], where Λ̂(t) =

Λ(t; ϑ̂). 2

Remark 5.4.3 The LS, CLS and M methods can be the alternative methods
of obtaining the estimators of an unknown parameter ϑ in the case when the
maximum likelihood estimator does not exist. For example, in the case of k-
stage Erlangian NHPP, which was first mentioned in Khoshgoftaar (1988), the
maximum likelihood estimator exists and is unique if and only if some condition
concerning the realizations of the process is satisfied (see Zhao and Xie (1996),
Theorem 2.1 (ii)). 2

Remark 5.4.4 In the NHPP models for which the number of failures is bounded
there are no consistent estimators of the unknown parameters (see Nayak et al.
(2008), Theorem 1). Thus, in these cases of the TRP, the estimators obtained by
the ML, LS, CLS or M method are not consistent. 2
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5.5 Estimation of trend parameters in special models
of the TRP

Consider a TRP(F, λ(·)), where λ(t) = αβtβ−1, α > 0, β > 0. If the renewal
distribution function F is not specified, we will call this process the Power Law
TRP(F, λ(·)) and denote it by PTRP(α, β).

5.5.1 The LS method

Using the LS method we denote

S2
LS(α, β) =

N(τ)∑

i=1

[Λ(ti;α, β) − Λ(ti−1;α, β) − 1]2,

and the optimization problem considered is to find

(α̂LS , β̂LS) = arg min
(α,β)∈R+×R+

S2
LS(α, β).

For the PTRP(α, β) considered, the equality
∑N(τ)

i=1 (tβi − tβi−1) = tβN(τ) holds,
and consequently

S2
LS(α, β) = α2

N(τ)∑

i=1

(tβi − tβi−1)
2 − 2αtβN(τ) +N(τ). (5.14)

Substituting the value

α = αLS(β) =
tβN(τ)

∑N(τ)
i=1 (tβi − tβi−1)2

, (5.15)

which minimizes the trinomial S2
LS(α, β), into formula (5.14) we have

S2
LS(αLS(β), β) = N(τ) −

t2βN(τ)
∑N(τ)

i=1 (tβi − tβi−1)
2
,

and the optimization problem reduces to the problem of finding

β̂LS = arg min
β∈R+

S̃2
LS(β), (5.16)

where

S̃2
LS(β) = −

t2βN(τ)
∑N(τ)

i=1 (tβi − tβi−1)
2
.
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For numerical reasons (to avoid ln 0 in evaluating the estimator β̂LS), formula
(5.14) is expressed in the form

S2
LS(α, β) = α2t2β1 + α2

N(τ)∑

i=2

(tβi − tβi−1)
2 − 2αtβN(τ) +N(τ).

The condition ∂S2
LS(α, β)/∂β = 0 leads to the equation

2α
[
αt2β1 ln t1 − tβN(τ) ln tN(τ) + α

N(τ)∑

i=2

(
tβi − tβi−1

)(
tβi ln ti − tβi−1 ln ti−1

) ]
= 0.

Taking into account formula (5.15) gives

t2β1 ln t1 − ln tN(τ)

N(τ)∑

i=1

(
tβi − tβt−i

)2
+

N(τ)∑

i=2

(
tβi − tβi−1

)(
tβi ln ti − tβi−1 ln ti−1

)
= 0,

which can be rewritten in the form

t2β1 ln
t1

tN(τ)
+

N(τ)∑

i=2

(
tβi − tβi−1

)(
tβi ln

ti
tN(τ)

− tβi−1 ln
ti−1

tN(τ)

)
= 0. (5.17)

Consequently, we have

Proposition 5.5.1 The LS estimators α̂LS and β̂LS of α and β are determined
by

α̂LS =
tβ̂LS

N(τ)

∑N(τ)
i=1

(
tβ̂LS

i − tβ̂LS

i−1

)2 (5.18)

and the β̂LS which is the solution to equation (5.17). 2

5.5.2 The CLS method

Using the CLS method we denote

C(τ) =
{

(α, β) : Λ(tN(τ);α, β) = N(τ)
}
, (5.19)

and the optimization problem considered is to find

(α̂CLS , β̂CLS) = arg min
(α,β)∈C(τ)

S2
LS(α, β).
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For the PTRP(α, β) considered the restriction set defined by (5.19) takes the
form

C(τ) =
{

(α, β) : αtβN(τ) = N(τ)
}
.

Denote

αCLS = αCLS(β) =
N(τ)

tβN(τ)

and

S2
CLS(β) = S2

LS(αCLS(β), β).

Thus, under the CLS criterion the optimization problem reduces to the problem
of finding

β̂CLS = arg min
β∈R+

S2
CLS(β),

where

S2
CLS(β) =

N2(τ)

t2βN(τ)

N(τ)∑

i=1

(tβi − tβi−1)
2 − 2

N(τ)

tβN(τ)

tβN(τ) +N(τ)

= N(τ)


N(τ)

t2βN(τ)

N(τ)∑

i=1

(tβi − tβi−1)
2 − 1


 .

Hence, the problem of finding the estimator β̂CLS is equivalent to the problem of
finding

β̂CLS = arg min
β∈R+

S̃2
CLS(β), (5.20)

where

S̃2
CLS(β) =

1

t2βN(τ)

N(τ)∑

i=1

(tβi − tβi−1)
2.

Observe that

S̃2
CLS(β) = −

[
S̃2
LS(β)

]−1
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and the extrema appear at the same points as in the LS method, so β̂CLS = β̂LS .

The condition ∂S̃2
CLS(β)/∂β = 0 leads to the equation

t2β1 ln
t1

tN(τ)
+

N(τ)∑

i=2

(
tβi − tβi−1

)(
tβi ln

ti
tN(τ)

− tβi−1 ln
ti−1

tN(τ)

)
= 0, (5.21)

which has the same form as that one defined by (5.17) for deriving β̂LS in the LS
method.

Proposition 5.5.2 The CLS estimators α̂CLS and β̂CLS of α and β are deter-
mined by

α̂CLS =
N(τ)

tβ̂CLS

N(τ)

(5.22)

and the β̂CLS which is the solution to equation (5.21). 2

5.5.3 The M method

For the PTRP(α, β) considered, the system of equations of (5.13) takes the form





αtβN(τ) = N(τ),

α2
∑N(τ)

i=1 (tβi − tβi−1)
2 = (s + 1)N(τ) − s.

Thus we have the following

Proposition 5.5.3 The M estimators α̂M and β̂M of α and β are determined
by

α̂M =
N(τ)

tβ̂M

N(τ)

(5.23)

and the β̂M which is the solution to the equation

N2(τ)

t2βN(τ)

N(τ)∑

i=1

(tβi − tβi−1)
2 − (s + 1)N(τ) + s = 0. (5.24)

2
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For numerical computation reasons the following equivalent form of equation
(5.24)

N2(τ)





(
t1

tN(τ)

)2β

+

N(τ)∑

i=2

[(
ti

tN(τ)

)β

−
(
ti−1

tN(τ)

)β
]2


−(s+ 1)N(τ) + s = 0 (5.25)

is more useful.

Recall here that for the WPLP(α, β, γ) the variance s of the renewal distri-
bution defined by F is given by formula (3.10). In particular, s = 1 for the
PLP(α, β).

5.6 Numerical results

In this section some numerical results are presented to illustrate the accuracy
of the LS, CLS and M estimators proposed in the PTRP(α, β) model (with F
unspecified) and in the WPLP(α, β, γ). The samples of the PLP(α, β) and the
WPLP(α, β, γ) were generated up to a fixed number n of jumps is reached and for
k = 500 samples for each chosen combination of the parameters α, β and γ. The
estimates of the unknown parameters α, β and γ are evaluated as the means of the
estimates derived on the basis of individual realizations of the process considered.
The variability of an estimator η̂ of an unknown parameter η was measured
by the root mean squared error (RMSE) which is expressed by RMSE(η̂) =√

(sd(η̂))2 + (mean(η̂) − η)2, where sd stands for the standard deviation. In the
tables the abbreviation se(η̂) is used for this error.

In constructing the executable computer programs, procedures of the package
Mathematica 8.0 were used.

5.6.1 The estimates in a PLP

The values of the estimators of α and β were evaluated numerically using two
numerical methods: constrained local optimization through solving equations
(CLOSE method) and constrained global optimization (CGO method).

The CLOSE method in obtaining ML estimators relies on using the explicit
formulae for α̂ML and β̂ML given by (4.4) and (4.5), respectively, in Fact 4.2.1.

The CLOSE method in evaluating the LS estimators relies on Proposition
5.5.1, i.e. on solving numerically equation (5.17) with respect to β > 0 and
then substituting the solution for the estimator β̂LS into formula (5.18) for the
estimator α̂LS .
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The CLOSE method in evaluating the CLS estimators relies on Proposition
5.5.2, i.e. on solving numerically equation (5.21) with respect to β > 0 and
then substituting the solution for the estimator β̂CLS into formula (5.22) for the
estimator α̂CLS .

The M estimators were obtained by Proposition 5.5.3, i.e. by solving numeri-
cally equation (5.25) (for s = 1) with respect to β > 0 and then substituting the
solution for the estimator β̂M into formula (5.23) for the estimator α̂M .

To investigate the numerical results for those processes for which the op-
timization problems can not be even partially solved explicitly (in contrast to
the PLP(α, β)), an analogous numerical investigation is conducted by using
CGO method. The CGO method in evaluating ML estimators relies on solving
the problem (α̂ML, β̂ML) = arg max

(α,β)∈R+×R+

L(τ ;α, β) or equivalently (α̂ML, β̂ML) =

arg max
(α,β)∈R+×R+

ℓ(τ ;α, β) by using a constrained global optimization procedure with

respect to both variables α and β.
The CGO method in evaluating LS and CLS estimators relies on solving the

problems defined by (5.16) and (5.20), respectively, by using constrained global
optimization procedures with respect to the variable β, and then substituting the
solutions into formulas (5.18) and (5.22), respectively. The results carried out by
the CGO numerical method have had the same accuracy as those carried out by
the CLOSE numerical method, and the latter are not presented in the paper.

The estimates α̂LS , α̂CLS, β̂(C)LS , α̂M and β̂M proposed in the PTRP(α, β)
are evaluated on the basis of the realizations (samples) of the generated PLP(α, β)
and compared with the ML estimates α̂ML and β̂ML for the latter model. The
values of the estimators and their measures of variability are contained in Tables
5.1 – 5.4 for n = 50, n = 100 and for k = 500 samples for each pair (α, β).

5.6.2 The estimates in the Weibull-power law TRP

The ML estimates β̂ML and γ̂ML of β and γ are found by maximizing the log-
likelihood function in solving the optimization problem

(β̂ML, γ̂ML) = arg max
(β,γ)

ℓ̃(n; (ϕ, β, γ)),

by using a constrained global optimization (CGO) procedure, where ℓ̃(n; (ϕ, β, γ))
is given by (5.10) with ϕ = ϕ̃(β, γ) defined by (5.6). The ML estimate α̂ML of
α is evaluated using formula (5.9) with ϕ̂ defined by (5.7). In the optimization
problem the procedure NMaximize of Mathematica package is used.

The tables provide the numerical results for the WPLP(α, β, γ) in comparison
to a PTRP(α, β) (the TRP with unknown F ). The CLS estimates α̂CLS and β̂CLS
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of the parameters α and β are evaluated on the basis of the realizations of the
generated WPLP(α, β, γ) supposing that we do know nothing about the renewal
distribution function F , i.e., that we observe the PTRP(α, β). The estimates
α̂CLS and β̂CLS are evaluated using Proposition 5.5.2 and the CGO method.
The estimates α̂M and β̂M were obtained by Proposition 5.5.3 for s evaluated
according to formula (3.10).

The values of the estimators and their measures of variability are contained in
Tables 5.5 – 5.12. We assumed n = 50 and n = 100, and used k = 500 simulated
realizations for every combination of the three parameters α, β and γ.

5.6.3 Some real data

Let us take into account some real data of failure times, namely the data set
contained in the paper of Lindqvist et. al. (2003), given in Table 5.13. These
data contain 41 failure times of a gas compressor with time censoring at time
7571 (days).

Supposing that the set of failure times of Table 5.13 forms a TRP belonging
to the class of WPLP(α, β, γ), the ML estimates α̂ML, β̂ML and γ̂ML of α, β
and γ have been evaluated and presented in Table 5.14. On the other hand, if
no assumptions are made on the renewal distribution function F , the estimates
α̂CLS and β̂CLS of α and β are given as the parameters of the PTRP(α, β).

As the results of Table 5.14 show, the real data of failure times considered
can be recognized as the WPLP(0.048, 0.763, 0.842) or the PTRP(0.028, 0.823).
In both cases, the estimates of β are almost the same. In Table 5.14 the relative
errors re(α̂CLS) = |α̂CLS − α̂ML|/α̂ML and re(β̂CLS) = |β̂CLS − β̂ML|/β̂ML are
given too. For comparison, in Table 5.14 there are also given the sum of squares
SSCLS := S2

LS(α̂CLS , β̂CLS) and SSML := S2
LS(α̂ML, β̂ML), where S2

LS(ϑ) is
defined by (5.11). Note that the sum of squares SSCLS is somewhat smaller then
SSML.

Let us denote by ENFML(t) = Λ(t; α̂ML, β̂ML) = α̂MLt
β̂ML the estimated

number of failures up to time t evaluated on the basis of the ML estimators,

and analogously by ENFCLS(t) = Λ(t; α̂CLS , β̂CLS) = α̂CLSt
β̂CLS the estimated

number of failures up to time t evaluated on the basis of the CLS estimators.
In Table 5.15 we compare the estimated numbers of failures with the observed
number of failures ONF (t) for some chosen values of t. The CLS method provides
satisfactory estimates of the number of failures.
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5.7 Concluding remarks

A good performance of the estimators α̂CLS and β̂CLS is observed, which are
obtained by the CLS method. This method leads to satisfactory accuracy of
these estimators in the TRP(F, λ(·)) model considered with unspecified F in
comparison to the ML estimators α̂ML and β̂ML for this model with specified F .

The CLS method leads in average to more accurate estimators than the LS
and M methods.

The LS method considerably underestimates the parameter α. In most
cases considered we have RMSE(α̂CLS) < RMSE(α̂LS), and in all cases,
RMSE(α̂CLS) < RMSE(α̂M ).

The RMSE(α̂M ) is about two, or even more, times greater than the
RMSE(α̂CLS). Similar remark concerns the RMSE(β̂M ) and RMSE(β̂CLS).

In some cases the RMSE(α̂CLS) is even less than the RMSE(α̂ML), and the
RMSE(β̂CLS) is less than the RMSE(β̂ML).

For a given number n of failures, the RMSE’s of all the estimators in the
WPLP(α, β, γ) become significantly smaller as the parameter γ increases. Re-
mark that, according to formula (3.10), the variance s of the renewal distribution
F decreases evidently as γ increases. For example, s = 1 for γ = 1, s = 0.2732 for
γ = 2, s = 0.0787 for γ = 4. A smaller value of γ (a larger value of the variance s)
causes larger variability of the estimators (recall that the RMSE determines the
mean squared deviation of the estimate from the true value of the parameter – the
risk). In the WPLP(α, β, 1), i.e. in the PLP(α, β), the variance of F is equal to 1
and constitutes a great value in reference to the same value of the expectation of
the renewal distribution as well as in reference to the assumed value 1 of the sam-
ple mean of the transformed working times Wi = Λ(Ti)−Λ(Ti−1), i = 1, . . . , N(τ).

A great value, such as 1, of the variance of the renewal distribution causes
larger variability and instability of the RMSE’s of the LS, CLS and M estimators
in the case of relatively small sample sizes n. It may then happen that in some
cases for γ = 1 the RMSE(α̂LS), RMSE(α̂CLS) and/or RMSE(α̂M ) increase as
n increases. Further simulation study for γ = 1 and much greater than n = 100
numbers of failures shows that these RMSE’s decrease as n increases. They
decrease much more slowly than the RMSE’s of the parameter β.

For γ ≥ 2, the RMSE(α̂CLS) decreases as n increases.

If the number of jumps n increases then all the RMSE’s of the parameter β,
i.e. the RMSE(β̂ML), RMSE(β̂CLS) and RMSE(β̂M ) decrease.

If the renewal distribution function is unknown, then using the CLS method
is recommended to obtain the estimators of the unknown parameters of the trend
function or the expected number of failures.

The CLS method can also be used to predict the next failure time. Examina-



Estimation in TRP’s 71

tion of asymptotic properties of the CLS estimators would be desirable, among
others, for constructing the confidence intervals for unknown parameters or for
the expected number of failures.
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5.8 The tables

No. α β Tn α̂ML β̂ML α̂LS α̂CLS β̂(C)LS α̂M β̂M
1 20 0.8 3.20 19.7126 0.8305 11.2212 21.0444 0.7766 20.6414 0.8309
2 15 1 3.31 14.6992 1.0545 8.6936 16.3002 0.9714 15.8796 1.0459
3 5 2 3.15 4.7882 2.1119 3.0020 5.6651 1.9511 6.1284 2.0992
4 1 3 3.68 0.9896 3.1501 0.6486 1.2292 2.9107 1.9286 3.0972
5 0.5 4 3.15 0.5461 4.1386 0.3245 0.6139 3.9135 1.1481 4.0914
6 0.2 5 3.02 0.2144 5.2257 0.1276 0.2429 4.8894 0.5600 5.2572
7 5 1 9.98 4.8411 1.0507 3.1241 5.8862 0.9779 6.4392 1.0340
8 1 2 7.04 1.0137 2.0918 0.6966 1.3172 1.9453 1.8174 2.0593
9 0.5 3 4.64 0.4993 3.1460 0.3283 0.6205 2.9369 1.0099 3.1879

10 0.2 4 3.98 0.2279 4.1454 0.1310 0.2504 3.9148 0.5561 4.1892

Table 5.1: The ML estimates of α and β in the PLP(α, β) and the LS, CLS and
M estimates of α and β in the PTRP(α, β). The number of jumps n = 50.

No. α β se(α̂ML) se(β̂ML) se(α̂LS) se(α̂CLS) se(β̂(C)LS) se(α̂M ) se(β̂M )
1 20 0.8 4.0017 0.1252 9.2031 4.6789 0.1547 6.7959 0.3138
2 15 1 3.3799 0.1700 6.6997 4.2260 0.1902 6.3619 0.3737
3 5 2 1.8023 0.3391 2.2577 1.9989 0.2823 4.2556 0.7833
4 1 3 0.6163 0.4766 0.4315 0.5171 0.3212 2.1844 1.2008
5 0.5 4 0.3527 0.6276 0.2203 0.2621 0.3520 1.4657 1.5090
6 0.2 5 0.1785 0.8114 0.0867 0.0975 0.3565 0.8084 2.0052
7 5 1 1.7517 0.1666 2.3094 2.6501 0.1955 4.5391 0.4048
8 1 2 0.6019 0.3200 0.4780 0.7487 0.2928 2.0740 0.7657
9 0.5 3 0.3317 0.4674 0.2288 0.3041 0.3247 1.3625 1.1364

10 0.2 4 0.1889 0.6537 0.0901 0.1183 0.3500 0.8735 1.5046

Table 5.2: The measures of variability of the ML, LS, CLS and M estimates of α
and β. The number of jumps n = 50.
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No. α β Tn α̂ML β̂ML α̂LS α̂CLS β̂(C)LS α̂M β̂M
1 20 0.8 7.57 19.6564 0.8168 10.8982 21.0258 0.7890 21.4116 0.8138
2 15 1 6.64 14.8118 1.0243 8.4449 16.3125 0.9797 16.6752 1.0127
3 5 2 4.46 4.8790 2.0593 2.9003 5.6046 1.9758 6.4385 2.0319
4 1 3 4.63 0.9943 3.0943 0.6258 1.2199 2.9398 1.7474 3.0440
5 0.5 4 3.75 0.5424 4.0651 0.3144 0.6066 3.9344 1.1275 3.9990
6 0.2 5 3.47 0.2049 5.1247 0.1228 0.2384 4.9218 0.5083 5.0422
7 5 1 20.00 4.9431 1.0223 2.9833 5.7906 0.9820 6.5638 1.0126
8 1 2 9.93 1.0050 2.0583 0.6507 1.2635 1.9767 1.7931 2.0102
9 0.5 3 5.86 0.5024 3.0737 0.3193 0.6181 2.9465 0.9616 3.0427

10 0.2 4 4.73 0.2142 4.0854 0.1252 0.2430 3.9479 0.5168 4.0244

Table 5.3: The ML estimates of α and β in the PLP(α, β) and the LS, CLS and
M estimates of α and β in the PTRP(α, β). The number of jumps n = 100.

No. α β se(α̂ML) se(β̂ML) se(α̂LS) se(α̂CLS) se(β̂(C)LS) se(α̂M ) se(β̂M )
1 20 0.8 3.9049 0.0862 9.5037 5.0847 0.1182 8.9502 0.2311
2 15 1 3.2128 0.1090 6.9290 4.4487 0.1401 7.6363 0.2744
3 5 2 1.6100 0.2225 2.3639 2.1384 0.2453 4.5891 0.5753
4 1 3 0.5071 0.3460 0.4576 0.5521 0.2964 1.8783 0.8647
5 0.5 4 0.2913 0.4330 0.2266 0.2662 0.3281 1.4226 1.1547
6 0.2 5 0.1251 0.5209 0.0904 0.0980 0.3408 0.6981 1.4549
7 5 1 1.5318 0.1046 2.3453 2.4555 0.1438 4.8208 0.2934
8 1 2 0.4922 0.2230 0.5025 0.7488 0.2518 1.9405 0.5515
9 0.5 3 0.2680 0.3088 0.2341 0.3074 0.2909 1.1825 0.8043

10 0.2 4 0.1360 0.4353 0.0945 0.1174 0.3188 0.7747 1.1057

Table 5.4: The measures of variability of the ML, LS, CLS and M estimates of α
and β. The number of jumps n = 100.
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No. α β γ T n α̂ML β̂ML γ̂ML

1 15 1 1 3.32962 15.1619 1.0368 1.0885
2 5 2 1 3.17269 5.3976 1.9964 1.0771
3 1 3 1 3.66570 1.3147 2.9155 1.0592
4 0.5 4 1 3.15200 0.7100 3.8705 1.0442
5 15 1 2 3.33842 15.0668 0.9969 2.2657
6 5 2 2 3.16118 5.2531 1.9725 2.1992
7 1 3 2 3.68059 1.1986 2.9013 2.1112
8 0.5 4 2 3.15758 0.6307 3.8560 2.0721
9 15 1 4 3.33383 14.8703 0.9926 4.8756

10 5 2 4 3.15973 5.1408 1.9724 4.5728
11 1 3 4 3.68595 1.0875 2.9454 4.1946
12 0.5 4 4 3.16234 0.5643 3.9147 4.0732

Table 5.5: The ML estimates of α, β and γ in the WPLP(α, β, γ). The
number of jumps n = 50.

No. α β γ α̂LS α̂CLS β̂(C)LS α̂M β̂M
1 15 1 1 8.4899 15.5415 1.0099 15.9159 1.0466
2 5 2 1 2.9514 5.4646 1.9763 6.6879 1.9894
3 1 3 1 0.6510 1.2038 2.9419 1.8761 3.0830
4 0.5 4 1 0.3055 0.5710 3.9710 1.1167 4.1872
5 15 1 2 12.0570 14.9190 1.0128 15.1474 1.0136
6 5 2 2 4.0270 4.9722 2.0237 5.2634 2.0276
7 1 3 2 0.8286 1.0247 3.0201 1.2190 3.0156
8 0.5 4 2 0.4107 0.5075 4.0335 0.6213 4.0406
9 15 1 4 13.9616 14.7163 1.0182 15.0521 1.0038

10 5 2 4 4.5967 4.8461 2.0332 5.0424 2.0149
11 1 3 4 0.8883 0.9368 3.0594 1.0349 3.0255
12 0.5 4 4 0.4392 0.4625 4.0821 0.5365 4.0183

Table 5.6: The LS, CLS and M estimates of α and β in the PTRP(α, β).
The number of jumps n = 50.
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No. α β γ se(α̂ML) se(β̂ML) se(γ̂ML)
1 15 1 1 3.33457 0.15557 0.16199
2 5 2 1 1.78142 0.27868 0.93242
3 1 3 1 0.73484 0.39724 1.94492
4 0.5 4 1 0.45766 0.53774 2.95805
5 15 1 2 1.80166 0.07315 1.30066
6 5 2 2 0.97649 0.15192 0.34360
7 1 3 2 0.39435 0.23876 0.92567
8 0.5 4 2 0.23856 0.30699 1.94106
9 15 1 4 0.94914 0.04010 3.93850

10 5 2 4 0.50364 0.07720 2.63491
11 1 3 4 0.18483 0.12200 1.29288
12 0.5 4 4 0.11374 0.16595 0.46185

Table 5.7: The measures of variability of the ML estimates
of α, β and γ in the WPLP(α, β, γ). The number of jumps
n = 50.

No. α β γ se(α̂LS) se(α̂CLS) se(β̂(C)LS) se(α̂M ) se(β̂M )
1 15 1 1 6.94033 4.13278 0.19882 6.72476 0.39719
2 5 2 1 2.30323 1.96049 0.29032 4.59692 0.73614
3 1 3 1 0.44004 0.52805 0.32762 2.22384 1.12291
4 0.5 4 1 0.22956 0.23550 0.34672 1.45936 1.57426
5 15 1 2 3.33391 1.96074 0.08493 3.31304 0.17297
6 5 2 2 1.25120 0.98412 0.16400 2.06921 0.35251
7 1 3 2 0.29908 0.31353 0.22921 0.78828 0.53535
8 0.5 4 2 0.15346 0.15749 0.25820 0.45190 0.66774
9 15 1 4 1.36704 1.02954 0.04660 1.85616 0.09534

10 5 2 4 0.60101 0.51363 0.08390 1.07829 0.18743
11 1 3 4 0.18418 0.17018 0.13490 0.38390 0.28681
12 0.5 4 4 0.09863 0.09214 0.17502 0.22913 0.37755

Table 5.8: The measures of variability of the LS, CLS and M estimates
of α and β in the PTRP(α, β). The number of jumps n = 50.



76 A. Jokiel-Rokita, R. Magiera

No. α β γ T n α̂ML β̂ML γ̂ML

1 15 1 1 6.65959 15.2537 1.0106 1.0432
2 5 2 1 4.49654 5.3817 1.9808 1.0361
3 1 3 1 4.62962 1.2442 2.9300 1.0246
4 0.5 4 1 3.75459 0.6478 3.9004 1.0193
5 15 1 2 6.67911 15.1817 0.9957 2.1258
6 5 2 2 4.47066 5.2200 1.9805 2.0860
7 1 3 2 4.64077 1.1413 2.9350 2.0476
8 0.5 4 2 3.75763 0.5914 3.9068 2.0315
9 15 1 4 6.66444 15.0487 0.9947 4.3797

10 5 2 4 4.47187 5.1345 1.9817 4.2772
11 1 3 4 4.64240 1.0568 2.9697 4.0841
12 0.5 4 4 3.76311 0.5447 3.9437 4.0555

Table 5.9: The ML estimates of α, β and γ in the WPLP(α, β, γ). The
number of jumps n = 100.

No. α β γ α̂LS α̂CLS β̂(C)LS α̂M β̂M
1 15 1 1 8.2955 15.8372 0.9962 16.6449 1.0165
2 5 2 1 2.8901 5.5234 1.9765 6.5350 2.0163
3 1 3 1 0.6340 1.2202 2.9356 1.7638 3.0461
4 0.5 4 1 0.3055 0.5885 3.9480 1.0603 4.0136
5 15 1 2 11.9492 14.9728 1.0050 15.5671 0.9975
6 5 2 2 3.9958 5.0149 2.0086 5.3982 2.0018
7 1 3 2 0.8237 1.0336 3.0002 1.2009 2.9886
8 0.5 4 2 0.4120 0.5169 4.0073 0.5902 4.0298
9 15 1 4 13.8816 14.8064 1.0082 15.0318 1.0047

10 5 2 4 4.6145 4.9207 2.0135 5.0642 2.0089
11 1 3 4 0.9025 0.9628 3.0300 1.0275 3.0194
12 0.5 4 4 0.4549 0.4850 4.0290 0.5416 4.0005

Table 5.10: The LS, CLS and M estimates of α and β in the PTRP(α, β).
The number of jumps n = 100.
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No. α β γ se(α̂ML) se(β̂ML) se(γ̂ML)
1 15 1 1 3.14694 0.09949 0.09575
2 5 2 1 1.62619 0.19181 0.96731
3 1 3 1 0.59630 0.28980 1.97709
4 0.5 4 1 0.33198 0.37474 2.98187
5 15 1 2 1.77660 0.05361 1.14043
6 5 2 2 0.84431 0.10308 0.19245
7 1 3 2 0.29881 0.16427 0.96563
8 0.5 4 2 0.18406 0.22068 1.97425
9 15 1 4 0.90038 0.02865 3.40073

10 5 2 4 0.45525 0.05646 2.30391
11 1 3 4 0.14197 0.08341 1.13197
12 0.5 4 4 0.08742 0.11630 0.33783

Table 5.11: The measures of variability of the ML estimates
of α, β and γ in the WPLP(α, β, γ). The number of jumps
n = 100.

No. α β γ se(α̂LS) se(α̂CLS) se(β̂(C)LS) se(α̂M ) se(β̂M )
1 15 1 1 7.11759 4.51018 0.14632 7.98056 0.28053
2 5 2 1 2.37319 2.12398 0.24919 4.68815 0.58681
3 1 3 1 0.44665 0.53891 0.28675 1.99083 0.85777
4 0.5 4 1 0.22869 0.24739 0.31908 1.25473 1.13285
5 15 1 2 3.40104 1.90465 0.05921 3.88282 0.13443
6 5 2 2 1.20606 0.84533 0.11109 2.09510 0.26953
7 1 3 2 0.26997 0.26255 0.16401 0.69686 0.38839
8 0.5 4 2 0.14504 0.14744 0.21073 0.37910 0.50564
9 15 1 4 1.40465 0.94442 0.03051 2.17527 0.07461

10 5 2 4 0.55396 0.44468 0.05755 1.13060 0.15219
11 1 3 4 0.15325 0.13267 0.08847 0.34732 0.22260
12 0.5 4 4 0.07923 0.07255 0.11161 0.22158 0.31295

Table 5.12: The measures of variability of the LS, CLS and M estimates
of α and β in the PTRP(α, β). The number of jumps n = 100.

1 4 305 330 651 856 996 1016 1155 1520 1597 1729
1758 1852 2070 2073 2093 2213 3197 3555 3558 3724 3768 4103
4124 4170 4270 4336 4416 4492 4534 4578 4762 5474 5573 5577
5715 6424 6692 6830 6999

Table 5.13: The real data
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α̂ML β̂ML γ̂ML α̂CLS β̂CLS re(α̂CLS) re(β̂CLS) SSML SSCLS

0.047985 0.763104 0.842064 0.027980 0.823383 0.41690 0.078993 58.08 56.8

Table 5.14: The ML and CLS estimates applied to the real data of Table 5.13.

t ENFML(t) ENFCLS(t) ONF (t)
1000 9.341 8.260 7
2000 15.854 14.617 14
3000 21.603 20.410 18
4000 26.906 25.866 23
5000 31.901 31.083 33
6000 36.663 36.117 37
7000 41.240 41.005 41

Table 5.15: Comparisons of estimated numbers of failures
with the observed number of failures for the real data.



Chapter 6

Parameter Estimation in
Non-homogeneous Poisson
Process Models for Software
Reliability

6.1 The software reliability model

In this chapter a subclass of non-homogeneous Poisson processes is considered,
which besides of its theoretically interesting structure it can be used to model
software reliability. As alternative to the ML method, two other methods are
proposed for estimating parameters in the process models. It is demonstrated
that in certain cases the ML estimators do not exist despite the fact that we
have sufficient information in the form of a large number of faults observed. The
methods proposed yield satisfactory estimates of unknown parameters and can
be also applied in some process models in which the ML estimators do not exist.

Let {N(t), t ≥ 0} be a NHPP with intensity function λ(t) and the mean
value function Λ(t) =

∫ t
0 λ(u)du (cumulative intensity) having the parametric

form defined by (3.4). Since the model defined by (3.4) has bounded mean value
function, this is the reason for which this model is more appropriate as a software
reliability model than the NHPP’s with unbounded mean value function, because
a software system contains only a finite number of faults.

As alternative to the ML method, for estimating parameters α and β of the
NHPP with the mean value function Λ(t;α, β) one can use the LS method or the
CLS method proposed in Section 5.4. The LS and/or the CLS method can be
applied to the models for which the ML method fails. The LS and CLS methods

79
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can also be used to predict the next failure time.
The methods proposed will be applied to the general NHPP software relia-

bility model defined by (3.4) and, in particular, to the NHPP software reliability
model defined by the following cumulative intensity

Λ(t;α, β) = α
[
1 − exp(−t/β)

k∑

j=0

(t/β)j

j!

]
, α, β > 0, (6.1)

or equivalently, by

λ(t;α, β) =
α(t/β)k

βk!
exp(−t/β). (6.2)

The model defined by (6.1) is a special case of the model (3.4) and was first men-
tioned in the paper of Khoshgoftaar (1988). It is called the k-stage Erlangian
NHPP software reliability model .

In Section 6.6 some numerical results illustrating the accuracy of the proposed
LS and CLS estimators with comparison to the ML estimators are presented for
a special case of the Erlangian NHPP software reliability model.

6.2 ML method for the software reliability model

In particular, for the NHPP with the mean value function Λ(t;ϑ), ϑ = (α, β),
defined by (3.4), the likelihood function based on the observed arrival times
t1, t2, . . . , tN(T ) and N(T ) takes the form

L(α, β) ∝ exp [−αF (T/β)] (α/β)N(T )

N(T )∏

i=1

f(ti/β),

and the log-likelihood function is

logL(α, β) ∝ −αF (T/β) +N(T ) log(α/β) +

N(T )∑

i=1

log f(ti/β). (6.3)

The value of α maximizing the log likelihood function is

α =
N(T )

F (T/β)
=: αML(β). (6.4)

Substituting this value into formula (6.3) yields

logL(αML(β), β) ∝ −N(T ) +N(T ) log

[
N(T )

βF (T/β)

]
+

N(T )∑

i=1

log f(ti/β).
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Fact 6.2.1 The ML estimators α̂ML and β̂ML of α and β are determined by

α̂ML =
N(T )

F (T/β̂ML)
(6.5)

and the β̂ML which maximizes

L̃(β) := N(T ) log
[

N(T )
βF (T/β)

]
+
∑N(T )

i=1 log f(ti

β)
(6.6)

with respect to β. 2

In particular, for the k-stage Erlangian NHPP software reliability model de-
fined by (6.1), formulae (6.5) and (6.6) take the following form

α̂ML =
N(T )

1 − exp(−T/β̂ML)
∑k

j=0
(T/β̂ML)j

j!

(6.7)

and

L̃(β) := N(T ) log


 N(T )

β[1 − exp(−T/β)]
∑k

j=0
(T/β)j )

j!




+

N(T )∑

i=1

log
(ti/β)k

k!
−

N(T )∑

i=1

ti
β
. (6.8)

For the model with k = 0, formulae (6.7) and (6.8) have the following simple
form

α̂ML =
N(T )

1 − exp(−T/β̂ML)
(6.9)

and

L̃(β) := N(T ) log

[
N(T )

β[1 − exp(−T/β)]

]
−

N(T )∑

i=1

ti
β
. (6.10)

6.3 The LS and CLS methods as alternatives to the

ML method

The ML estimators of the parameters α and β of the model (3.4) do not always
exist. In particular, it follows from Theorem 2.1 of Zhao and Xie (1996) that for
the model defined by (6.1) the ML estimators do not exist with the probability

P
(

1
N(T )

∑N(T )
i=1 ti ≥ k+1

k+2T
)
, where N(T ) is the number of arrives up to time T

and t1, . . . , tN(T ) are the arrival times observed.
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6.3.1 The LS method for the software reliability model

For the NHPP with the cumulative intensity function defined by (3.4) the sum
of squares of (5.11) takes the following form

S2
LS(α, β) =

N(T )∑

i=1

[Λ(ti;α, β) − Λ(ti−1;α, β) − 1]2

=

N(T )∑

i=1

[αF (ti/β) − αF (ti−1/β) − 1]2

= α2

N(T )∑

i=1

[F (ti/β) − F (ti−1/β)]2 − 2αF (tN(T )/β) +N(T ) (6.11)

Expression (6.11) regarded as a trinomial with respect to α is minimized by

α = αLS(β) =
F (tN(T )/β)

∑N(T )
i=1 [F (ti/β) − F (ti−1/β)]2

.

Substituting this value into formula (6.11) yields

S2
LS(αLS(β), β) = N(T ) − F 2(tN(T )/β)

∑N(T )
i=1 [F (ti/β) − F (ti−1/β)]2

.

Thus we have the following

Proposition 6.3.1 The LS estimators α̂LS and β̂LS of α and β are determined
by

α̂LS =
F (tN(T )/β̂LS)

∑N(T )
i=1 [F (ti/β̂LS) − F (ti−1/β̂LS)]2

(6.12)

and the β̂LS which maximizes

S̃2
LS(β) =

F 2(tN(T )/β)
∑N(T )

i=1 [F (ti/β) − F (ti−1/β)]2
(6.13)

with respect to β. 2

The estimator β̂LS of the parameter β is a solution to the equation

F (tN(T )/β)

N(T )∑

i=1

[F (ti/β) − F (ti−1/β)][f(ti/β)ti − f(ti−1/β)ti−1]

−f(tN(T )/β)tN(T )

N(T )∑

i=1

[F (ti/β) − F (ti−1/β)]2 = 0.
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6.3.2 The CLS method for the software reliability model

For the NHPP process considered the constraint given by (5.12) takes the form

1

N(T )

N(T )∑

i=1

[Λ(ti;α, β) − Λ(ti−1;α, β)]

=
α

N(T )

N(T )∑

i=1

[F (ti/β) − F (ti−1/β)] =
α

N(T )
F (tN(T )/β) = 1.

It then follows that

α =
N(T )

F (tN(T )/β)
=: αCLS(β).

Substituting this value into formula (6.11) we obtain

S2
LS(αCLS(β), β) = N(T )

[
N(T )

∑N(T )
i=1 [F (ti/β) − F (ti−1/β)]2

F 2(tN(T )/β)
− 1

]
.

Thus we have the following

Proposition 6.3.2 The CLS estimators α̂CLS and β̂CLS of α and β are deter-
mined by

α̂CLS =
N(T )

F (tN(T )/β̂CLS)
(6.14)

and the β̂CLS which maximizes S̃2
LS(β) given by (6.13). 2

Let us recall that the CLS estimate β̂CLS takes the same values as the estimate
β̂LS in the LS method.

In general, the optimization problems consisting in finding the ML, LS and
CLS estimators for a NHPP, with any mean value parametric function Λ(t;α, β),
can be defined by

(α̂ML, β̂ML) = arg max
(α,β)∈R+×R+

logL(α, β), (6.15)

(α̂LS , β̂LS) = arg min
(α,β)∈R+×R+

S2
LS(α, β), (6.16)

(α̂CLS , β̂CLS) = arg min
(α,β)∈C

S2
LS(α, β), (6.17)
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respectively, where L(α, β) is the corresponding likelihood function, S2
LS(α, β) is

defined by (5.11) with ϑ = (α, β), and the restriction set

C =
{

(α, β) :
1

N(T )

N(T )∑

i=1

[Λ(ti;α, β) − Λ(ti−1;α, β)] = 1
}
.

By Fact 6.2.1 and Propositions 6.3.1 and 6.3.2, for the NHPP defined by (3.4)
we have the following

Corollary 6.3.1 In the case of the NHPP defined by (3.4), the optimization
problems (6.15), (6.16) and (6.17) reduce to the following ones

β̂ML = arg max
β∈R+

L̃(β), (6.18)

β̂(C)LS = arg max
β∈R+

S̃2
LS(β), (6.19)

where L̃(β) and S̃2
LS(β) are defined by (6.6) and (6.13), respectively. The ML,

LS and CLS estimators α̂ML, α̂LS and α̂CLS of the parameter α are determined
by formulas (6.5), (6.12) and (6.14), respectively. 2

6.4 Remarks on consistency of the estimators

It follows from Zhao and Xie (1996) that the ML estimators of α and β in the
NHPP model defined by (3.5) are not consistent when the fixed total testing time
T tends to infinity.

Recently, Nayak, Bose and Kundu (2008) proved that for the NHPP models
with the intensity function of the form λ(t) = µfϑ(t), 0 < µ < ∞, ϑ ∈ Θ, and
satisfying the condition limt→∞ Λ(t) < ∞, there is no consistent estimator (not
just the ML one) of a parametric function, say ψ(µ, ϑ), if ψ(µ, ϑ) is not a constant
function of µ. It then follows that there is no consistent estimator of α in the
NHPP model considered.

6.5 Some special models

6.5.1 The k-stage Erlangian NHPP software reliability model

Let us consider the special case of the model defined by (3.4), where

F (t/β) = 1 − exp(−t/β)

k∑

j=0

(t/β)j

j!
, (6.20)
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and

f(t/β) =
(t/β)k

k!
exp(−t/β).

Thus this is the k-stage Erlangian NHPP software reliability model with the
cumulated intensity function Λ(t;α, β) and intensity function λ(t;α, β) defined
by (6.1) and (6.2), respectively. The parameter k is usually a small integer and
it is assumed to be known.

The k-stage Erlangian software reliability model contains the exponential
model proposed by Goel and Okumoto (1979) and the delayed s-shaped model
studied by Yamada, Ohba and Osaki (1984) as special cases (with k = 0 and
k = 1). These two models are the most widely used NHPP software reliability
models in practice.

Applying Propositions 6.3.1 and 6.3.2 to the k-stage Erlangian NHPP we
obtain the following result.

Proposition 6.5.3 For the k-stage Erlangian NHPP defined by (6.1) the LS and
CLS estimators of α and β are determined by

α̂LS =
1 − exp(−tN(T )/β̂)

∑k
j=0

(tN(T )/β̂)
j

j!
∑N(T )

i=1

[
exp(−ti−1/β̂)

∑k
j=0

(ti−1/β̂)j

j! − exp(−ti/β̂)
∑k

j=0
(ti/β̂)j

j!

]2 ,

α̂CLS =
N(T )

1 − exp(−tN(T )/β̂)
∑k

j=0
(tN(T )/β̂)j

j!

,

and the β̂ which maximizes the function

S̃2
LS(β) =

[1 − exp(−tN(T )/β)
∑k

j=0
(tN(T )/β)

j

j! ]2

∑N(T )
i=1

[
exp(−ti−1/β)

∑k
j=0

(ti−1/β)j

j! − exp(−ti/β)
∑k

j=0
(ti/β)j

j!

]2

with respect to β. 2

6.5.2 The Goel and Okumoto model

For k = 0 we have from Proposition 6.5.3 the following

Corollary 6.5.2 For the Goel and Okumoto model the LS and CLS estimators
of α and β are determined by

α̂LS =
1 − exp(−tN(T )/β̂)

∑N(T )
i=1 [exp(−ti−1/β̂) − exp(−ti/β̂)]2

, (6.21)
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α̂CLS =
N(T )

1 − exp(−tN(T )/β̂)
, (6.22)

and the β̂ which maximizes the function

S̃2
LS(β) =

[1 − exp(−tN(T )/β)]2

∑N(T )
i=1 [exp(−ti−1/β) − exp(−ti/β)]2

(6.23)

with respect to β. 2

6.6 Numerical results

In this section, for a given values of pairs of the parameters α and β in the Goel
and Okumoto model we present some numerical results illustrating the accuracy
of the proposed LS and CLS estimators of these parameters with comparison
to the ML estimators. The numerical results are contained in Tables 6.1 – 6.16
for five observation times T = 0.5, 1, 2, 5, 10. The variability of an estimator
η̂ of an unknown parameter η was measured by the root mean squared error
which is defined by se(η̂) =

√
(sd(η̂))2 + (mean(η̂) − η)2. The tables contain

the numerical results obtained on the basis of 2000 generated random samples
(trajectories of the NHPP) for each pair (α, β).

The values of estimators of α and β are evaluated using numerical constrained
global optimization procedures to solve the problems (6.18) and (6.19) for the
Goel and Okumoto model, i.e. for the functions L̃(β) and S̃2

LS(β) defined by
(6.10) and (6.23), respectively. The resulting estimates of β have been substituted
into formulae (6.9), (6.21) and (6.22) to get estimates of α: α̂ML, α̂LS and α̂CLS ,
respectively. In constructing the executable computer program, procedures of the
package Mathematica 8.0 were used.

The results given in Tables 6.1, 6.4 and 6.7 demonstrate that for short obser-
vation times T the ML estimators as well as the (C)LS estimators do not always
exist. For example, for T = 0.5 and the pairs of the parameters α and β numbered
by No. 8 – 10 there is about 40 percentage of no-existence of the ML estimators
as well as about 40 percentage of no-existence of the (C)LS estimators. However,
there is about 10 percentage that the ML estimator does not exist, whereas the
(C)LS estimator does exist. Note that in this case the ML estimator does not
exist despite the fact that we have sufficient information in the form of a large
number of faults observed in relatively short observation time. Table 6.16 gives
the LS and CLS estimates of α and β for some distinct cases in which the ML es-
timator does not exist, whereas the (C)LS estimator does exist. The table shows
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that in some cases when the ML method fails one could apply the CLS method
yielding satisfactory estimates.

In general, one observes a good performance of the CLS method. The nu-
merical results show that the CLS method yields the estimates of α and β which
are practically so accurate as the ML estimates. The LS method considerably
underestimates the parameter α.

Tables 6.1, 6.4, 6.7, 6.10 and 6.13 demonstrate that the percentage of non-
existence of the ML as well as the (C)LS estimators of α and β tends to zero
as T grows. The likelihood function for this process is analytically tractable and
it follows from the results of Zhao and Xie (1996) that the ML estimators exist
with probability 1 as T → ∞.

Legend:

MJN – the mean jump (fault) number (the estimate of the mean value of the

process at time T ),

MLJT – the mean last jump time,

DT – the difference time: T − MLJT,

RDT – the relative difference time: (T − MLJT)/MLJT,

M’S– the percentage of no-existence of the ML estimator and existence of the

(C)LS estimator,

MS’- the percentage of existence of the ML estimator and no-existence of the

(C)LS estimator,

M’ - the percentage of no-existence of the ML estimator,

S’ - the percentage of no-existence of the (C)LS estimator.

T = 0.5
No. α β MJN MLJT DT RDT M’S MS’ M’ S’

1 100 0.01 99 0.0522 0.4478 857.4703 0 0 0 0
2 100 0.1 99 0.4217 0.0783 18.5647 0 0 0 0
3 100 0.2 91 0.4782 0.0218 4.5510 0 0 0 0
4 100 0.5 63 0.4863 0.0137 2.8233 0.65 4.65 1.20 5.20
5 200 0.5 126 0.4931 0.0069 1.3910 0.05 1.35 0.05 1.35
6 200 1 78 0.4917 0.0083 1.6903 3.95 11.8 12.6 20.5
7 400 2 88 0.4936 0.0064 1.2997 8.45 13.5 29.4 34.5
8 600 3 92 0.4942 0.0058 1.1834 9.20 14.4 36.8 41.9
9 1000 4 117 0.4956 0.0044 0.8848 10.8 12.9 40.5 42.6

10 1000 5 95 0.4946 0.0054 1.0943 11.0 10.6 45.0 44.6

Table 6.1: The overall simulation results.
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T = 0.5

No. α β α̂ML β̂ML α̂LS α̂CLS β̂(C)LS

1 100 0.01 99.8345 0.0100 52.2729 101.1500 0.0104
2 100 0.1 99.9675 0.1002 52.3981 101.4977 0.1041
3 100 0.2 100.7728 0.2039 53.9772 103.7871 0.2159
4 100 0.5 118.3959 0.6442 72.6766 137.2270 0.7709
5 200 0.5 217.5279 0.5717 123.2118 240.2897 0.6517
6 200 1 261.0310 1.3775 135.0313 258.3311 1.3440
7 400 2 388.8401 1.9358 186.3353 357.3556 1.7416
8 600 3 459.7785 2.2096 221.3808 422.5211 1.9947
9 1000 4 615.6102 2.3567 308.7377 594.5541 2.2343

10 1000 5 495.7357 2.3140 234.5192 451.2913 2.0706

Table 6.2: The ML, LS and CLS estimates of α and β.

T = 0.5

No. α α̂ML α̂CLS se(α̂ML) se(α̂CLS) β β̂ML β̂CLS se(β̂ML) se(β̂(C)LS)
1 100 99.8345 101.1500 9.90144 10.03231 0.01 0.0100 0.0104 0.00102 0.00173
2 100 99.9675 101.4977 10.07896 10.39099 0.1 0.1002 0.1041 0.01110 0.01819
3 100 100.7728 103.7871 11.08243 13.84747 0.2 0.2039 0.2159 0.03490 0.06168
4 100 118.3959 137.2270 73.33553 130.02049 0.5 0.6442 0.7709 0.57050 0.97258
5 200 217.5279 240.2897 75.58821 155.99518 0.5 0.5717 0.6517 0.31190 0.61326
6 200 261.0310 258.3311 234.83429 248.02734 1 1.3775 1.3440 1.46389 1.55398
7 400 388.8401 357.3556 315.26841 320.11645 2 1.9358 1.7416 1.77728 1.80022
8 600 459.7785 422.5211 384.00196 406.00755 3 2.2096 1.9947 2.04542 2.20174
9 1000 615.6102 594.5541 595.58671 647.47248 4 2.3567 2.2343 2.51025 2.74133

10 1000 495.7357 451.2913 633.66514 674.42133 5 2.3140 2.0706 3.31122 3.55877

Table 6.3: The ML and CLS estimates of α and β and their measures of variability.

T = 1
No. α β MJN MLJT DT RDT M’S MS’ M’ S’

1 100 0.01 100 0.0517 0.9483 1833.8208 0 0 0 0
2 100 0.1 100 0.5147 0.4853 94.2821 0 0 0 0
3 100 0.2 99 0.8416 0.1584 18.8180 0 0 0 0
4 100 0.5 86 0.9655 0.0345 3.5686 0 0.1 0 0.1
5 200 0.5 172 0.9819 0.0181 1.8468 0 0 0 0
6 200 1 126 0.9862 0.0138 1.3983 0.05 1.25 0.2 1.4
7 400 2 157 0.9918 0.0082 0.8252 2.75 10.1 7.45 14.9
8 600 3 170 0.9927 0.0073 0.7310 4.90 13.4 17.7 26.2
9 1000 4 221 0.9949 0.0051 0.5162 7.40 14.6 24.8 31.9

10 1000 5 181 0.9938 0.0062 0.6223 9.10 14.3 33.7 38.9

Table 6.4: The overall simulation results.
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T = 1

No. α β α̂ML β̂ML α̂LS α̂CLS β̂(C)LS

1 100 0.01 100.1640 0.010 52.4544 101.5036 0.0104
2 100 0.1 100.1059 0.0998 52.4574 101.4632 0.1039
3 100 0.2 99.8849 0.2004 52.6806 101.4310 0.2089
4 100 0.5 101.5468 0.5217 55.2204 106.6399 0.5703
5 200 0.5 201.5128 0.5087 104.9520 205.8927 0.5295
6 200 1 214.5388 1.1097 120.0287 233.7313 1.2459
7 400 2 458.9113 2.3749 237.9817 464.1703 2.3770
8 600 3 617.2464 3.0991 287.8927 563.8495 2.7445
9 1000 4 919.1599 3.6178 428.8319 841.9079 3.2419

10 1000 5 785.1667 3.7907 370.1944 722.8201 3.4242

Table 6.5: The ML, LS and CLS estimates of α and β.

T = 1

No. α α̂ML α̂CLS se(α̂ML) se(α̂CLS) β β̂ML β̂CLS se(β̂ML) se(β̂(C)LS)
1 100 100.1640 101.5036 10.08721 10.35084 0.01 0.010 0.0104 0.00101 0.00164
2 100 100.1059 101.4632 10.10175 10.34173 0.1 0.0998 0.1039 0.01001 0.01670
3 100 99.8849 101.4310 9.84716 10.16721 0.2 0.2004 0.2089 0.02260 0.03708
4 100 101.5468 106.6399 13.83005 22.38979 0.5 0.5217 0.5703 0.12561 0.25610
5 200 201.5128 205.8927 18.16194 23.19862 0.5 0.5087 0.5295 0.07760 0.12606
6 200 214.5388 233.7313 64.26733 110.93369 1 1.1097 1.2459 0.50859 0.86813
7 400 458.9113 464.1703 238.88032 283.68599 2 2.3749 2.3770 1.52034 1.76431
8 600 617.2464 563.8495 309.60911 314.13970 3 3.0991 2.7445 1.82292 1.81713
9 1000 919.1599 841.9079 446.78420 464.90551 4 3.6178 3.2419 2.01064 2.08058

10 1000 785.1667 722.8201 435.79853 477.32375 5 3.7907 3.4242 2.38954 2.63843

Table 6.6: The ML and CLS estimates of α and β and their measures of variability.

T = 2
No. α β MJN MLJT DT RDT M’S MS’ M’ S’

1 100 0.01 100 0.0517 1.9483 3765.2803 0 0 0 0
2 100 0.1 100 0.5223 1.4777 282.9558 0 0 0 0
3 100 0.2 100 1.0294 0.9706 94.2811 0 0 0 0
4 100 0.5 98 1.8001 0.1999 11.1065 0 0 0 0
5 200 0.5 196 1.8883 0.1117 5.9167 0 0 0 0
6 200 1 172 1.9648 0.0352 1.7904 0 0 0 0
7 400 2 252 1.9857 0.0143 0.7193 0 0.45 0 0.45
8 600 3 291 1.9904 0.0096 0.4847 0.45 4.00 1.15 4.7
9 1000 4 393 1.9934 0.0066 0.3334 1.00 7.75 4.25 11.0

10 1000 5 329 1.9925 0.0075 0.3766 3.90 13.2 13.5 22.8

Table 6.7: The overall simulation results.
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T = 2

No. α β α̂ML β̂ML α̂LS α̂CLS β̂(C)LS

1 100 0.01 100.1210 0.010 52.2545 101.3905 0.0103
2 100 0.1 100.1305 0.100 52.4474 101.4425 0.1039
3 100 0.2 100.3011 0.2003 52.7626 101.6802 0.2090
4 100 0.5 100.0520 0.5021 52.8052 101.7973 0.5232
5 200 0.5 200.6302 0.5019 102.9576 202.2732 0.5146
6 200 1 200.9636 1.0145 104.4107 204.6843 1.0477
7 400 2 413.8203 2.1167 219.6360 432.8315 2.2552
8 600 3 632.6611 3.2300 330.6663 651.9038 3.3414
9 1000 4 1059.0552 4.2896 530.8757 1051.5443 4.2347

10 1000 5 998.1929 4.9716 484.0811 955.2734 4.6826

Table 6.8: The ML, LS and CLS estimates of α and β.

T = 2

No. α α̂ML α̂CLS se(α̂ML) se(α̂CLS) β β̂ML β̂CLS se(β̂ML) se(β̂(C)LS)
1 100 100.1210 101.3905 9.97175 10.24861 0.01 0.010 0.0103 0.00101 0.00166
2 100 100.1305 101.4425 9.80921 10.03947 0.1 0.100 0.1039 0.01010 0.01714
3 100 100.3011 101.6802 9.96455 10.19913 0.2 0.2003 0.2090 0.01990 0.03450
4 100 100.0520 101.7973 10.13708 10.57259 0.5 0.5021 0.5232 0.06226 0.10135
5 200 200.6302 202.2732 14.40906 14.75109 0.5 0.5019 0.5146 0.04273 0.06367
6 200 200.9636 204.6843 17.96299 22.03652 1 1.0145 1.0477 0.15364 0.23706
7 400 413.8203 432.8315 72.55890 118.92414 2 2.1167 2.2552 0.57770 0.96890
8 600 632.6611 651.9038 166.80740 220.84577 3 3.2300 3.3414 1.15839 1.52343
9 1000 1059.0552 1051.5443 304.00612 352.31364 4 4.2896 4.2347 1.53550 1.78781

10 1000 998.1929 955.2734 291.40354 314.83987 5 4.9716 4.6826 1.75030 1.90834

Table 6.9: The ML and CLS estimates of α and β and their measures of variability.

T = 5
No. α β MJN MLJT DT RDT M’S MS’ M’ S’

1 100 0.01 99 0.0516 4.9484 9588.3850 0 0 0 0
2 100 0.1 100 0.5149 4.4851 870.9928 0 0 0 0
3 100 0.2 99 1.0307 3.9693 385.1239 0 0 0 0
4 100 0.5 99 2.5602 2.4398 95.2995 0 0 0 0
5 200 0.5 199 2.9163 2.0837 71.4528 0 0 0 0
6 200 1 198 4.5183 0.4817 10.6615 0 0 0 0
7 400 2 366 4.9402 0.0598 1.2115 0 0 0 0
8 600 3 486 4.9743 0.0257 0.5164 0 0 0 0
9 1000 4 713 4.9856 0.0144 0.2881 0 0 0 0

10 1000 5 631 4.9865 0.0135 0.2708 0 0.6 0 0.6

Table 6.10: The overall simulation results.
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T = 5

No. α β α̂ML β̂ML α̂LS α̂CLS β̂(C)LS

1 100 0.01 99.9015 0.0100 52.6948 101.3996 0.0104
2 100 0.1 100.2555 0.0999 52.5178 101.6082 0.1042
3 100 0.2 99.9290 0.2001 52.3069 101.2768 0.2084
4 100 0.5 99.9255 0.4997 52.4787 101.3558 0.5220
5 200 0.5 199.9839 0.4995 102.5104 201.2169 0.5121
6 200 1 199.7320 1.0001 102.4012 201.0208 1.0169
7 400 2 400.5251 2.0130 204.0943 403.5445 2.0481
8 600 3 601.1071 3.0166 305.5299 606.0451 3.0574
9 1000 4 1007.1716 4.0491 511.2744 1018.5122 4.1218

10 1000 5 1013.6533 5.1109 516.7032 1026.8711 5.2013

Table 6.11: The ML, LS and CLS estimates of α and β.

T = 5

No. α α̂ML α̂CLS se(α̂ML) se(α̂CLS) β β̂ML β̂CLS se(β̂ML) se(β̂(C)LS)
1 100 99.9015 101.3996 10.16475 11.76965 0.01 0.0100 0.0104 0.00102 0.00288
2 100 100.2555 101.6082 9.87321 10.15561 0.1 0.0999 0.1042 0.01008 0.01636
3 100 99.9290 101.2768 9.87946 10.10133 0.2 0.2001 0.2084 0.01990 0.03409
4 100 99.9255 101.3558 10.05046 10.28690 0.5 0.4997 0.5220 0.05065 0.08931
5 200 199.9839 201.2169 14.25428 14.40052 0.5 0.4995 0.5121 0.03553 0.05595
6 200 199.7320 201.0208 14.29414 14.36701 1 1.0001 1.0169 0.07732 0.11306
7 400 400.5251 403.5445 22.47987 24.10586 2 2.0130 2.0481 0.17146 0.24931
8 600 601.1071 606.0451 37.38264 46.44106 3 3.0166 3.0574 0.31511 0.45285
9 1000 1007.1716 1018.5122 69.77062 94.41023 4 4.0491 4.1218 0.46060 0.67581

10 1000 1013.6533 1026.8711 102.65836 142.62692 5 5.1109 5.2013 0.79590 1.14531

Table 6.12: The ML and CLS estimates of α and β and their measures of vari-
ability.

T = 10
No. α β MJN MLJT DT RDT M’S MS’ M’ S’

1 100 0.01 99 0.0517 9.9483 19253.8649 0 0 0 0
2 100 0.1 100 0.5208 9.4792 1820.1137 0 0 0 0
3 100 0.2 100 1.0264 8.9736 874.2933 0 0 0 0
4 100 0.5 99 2.5959 7.4041 285.2206 0 0 0 0
5 200 0.5 200 2.9125 7.0875 243.3421 0 0 0 0
6 200 1 200 5.8037 4.1963 72.3028 0 0 0 0
7 400 2 397 9.4281 0.5719 6.0660 0 0 0 0
8 600 3 578 9.8657 0.1343 1.3610 0 0 0 0
9 1000 4 915 9.9516 0.0484 0.4865 0 0 0 0

10 1000 5 865 9.9630 0.0370 0.3713 0 0 0 0

Table 6.13: The overall simulation results.
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T = 10

No. α β α̂ML β̂ML α̂LS α̂CLS β̂(C)LS

1 100 0.01 99.8560 0.010 52.3971 101.1986 0.0104
2 100 0.1 100.0595 0.1002 52.5124 101.3912 0.1043
3 100 0.2 100.0195 0.1997 52.5651 101.4310 0.2088
4 100 0.5 99.8295 0.4997 52.3013 101.1690 0.5187
5 200 0.5 200.2260 0.4997 102.7633 201.5462 0.5124
6 200 1 200.3899 0.9991 102.7611 201.5969 1.0222
7 400 2 399.8627 2.0059 202.4707 401.1568 2.0282
8 600 3 600.3302 3.0032 302.8656 602.0908 3.0245
9 1000 4 998.4622 4.0045 502.4132 1001.3562 4.0312

10 1000 5 1002.4721 5.0252 505.5559 1006.4256 5.0622

Table 6.14: The ML, LS and CLS estimates of α and β.

T = 10

No. α α̂ML α̂CLS se(α̂ML) se(α̂CLS) β β̂ML β̂CLS se(β̂ML) se(β̂(C)LS)
1 100 99.8560 101.1986 9.65000 9.85634 0.01 0.010 0.0104 0.00098 0.00163
2 100 100.0595 101.3912 9.73298 9.90838 0.1 0.1002 0.1043 0.01017 0.01701
3 100 100.0195 101.4310 10.08540 10.34112 0.2 0.1997 0.2088 0.02037 0.03460
4 100 99.8295 101.1690 10.16657 10.35191 0.5 0.4997 0.5187 0.04905 0.08528
5 200 200.2260 201.5462 14.44262 14.55868 0.5 0.4997 0.5124 0.03538 0.05697
6 200 200.3899 201.5969 14.24994 14.41365 1 0.9991 1.0222 0.07112 0.10774
7 400 399.8627 401.1568 20.14591 20.17262 2 2.0059 2.0282 0.11269 0.16418
8 600 600.3302 602.0908 25.36019 25.91476 3 3.0032 3.0245 0.16111 0.22880
9 1000 998.4622 1001.3562 35.13743 37.13600 4 4.0045 4.0312 0.20847 0.30171

10 1000 1002.4721 1006.4256 40.17269 46.87337 5 5.0252 5.0622 0.33539 0.47756

Table 6.15: The ML and CLS estimates of α and β and their measures of vari-
ability.

No. α β T M’S α̂LS α̂CLS β̂(C)LS

7 400 2 0.5 8.45 306.8854 592.5294 3.0851
8 600 3 0.5 9.20 344.1557 651.6280 3.2350
9 1000 4 0.5 10.8 495.1580 946.3645 3.6824

10 1000 5 0.5 11.0 365.4143 708.0149 3.4497
8 600 3 1 4.90 414.1261 814.9304 4.2234
9 1000 4 1 7.40 590.0903 1167.8799 4.7378

10 1000 5 1 9.10 492.6215 969.8215 4.8369
10 1000 5 2 3.90 618.7331 1230.9129 6.4051

Table 6.16: The LS and CLS estimates of α and β when the ML estimator does
not exist, whereas the (C)LS estimator does exist.
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221–237. Birkhäuser Boston, Boston, MA.



Bibliography 97

[42] Lai C.-D. and Xie M. (2006). Stochastic Ageing and Dependence for Relia-

bility. Springer, New York.

[43] Lakey M. J. and Rigdon S. E. (1992). The modulated power-law process. In

Proceedings of the 45th Annual Quality Congress, pages 559–563.

[44] Langaas M., Lindqvist B. H. and Ferkingstad E. (2005). Estimating the

proportion of true null hypotheses, with application to DNA microarray

data. J. R. Stat. Soc. Ser. B Stat. Methodol., 67(4):555–572.

[45] Langseth H. and Lindqvist B. H. (2003). A maintenance model for compo-

nents exposed to several failure mechanisms and imperfect repair. In Mathe-

matical and statistical methods in reliability (Trondheim, 2002), volume 7 of

Ser. Qual. Reliab. Eng. Stat., pages 415–430. World Sci. Publ., River Edge,

NJ.

[46] Langseth H. and Lindqvist B. H. (2006). Competing risks for repairable

systems: a data study. J. Statist. Plann. Inference, 136(5):1687–1700.

[47] Lawless J. F. and Thiagarajah K. (1996). A point-process model incor-

porating renewals and time trends with application to repairable systems.

Technometrics, 38(2):131–138.

[48] Lindqvist B. H. (1993). The trend-renewal process, a useful model for re-
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