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Alleluja.
Chwalcie Pana z niebios, 
chwalcie Go na wysokościach! 
Chwalcie Go, wszyscy Jego aniołowie, 
chwalcie Go, wszystkie Jego zastępy! 
Chwalcie Go, słońce i księżycu, 
chwalcie Go, wszystkie gwiazdy świecące. 
Chwalcie Go, nieba najwyższe 
i wody, co są ponad niebem: 
niech imię Pana wychwalają, 
On bowiem nakazał i zostały stworzone, 
utwierdził je na zawsze, na wieki; 
nadał im prawo, które nie przeminie. 
Chwalcie Pana z ziemi, 
potwory i wszystkie morskie głębiny, 
ogniu i gradzie, śniegu i mgło, 
gwałtowny huraganie, co pełnisz Jego słowo, 
góry i wszelkie pagórki, 
drzewa rodzące owoc i wszystkie cedry, 
dzikie zwierzęta i bydło wszelakie, 
to, co się roi na ziemi, i ptactwo skrzydlate, 
królowie ziemscy i wszystkie narody, 
władcy i wszyscy sędziowie na ziemi, 
młodzieńcy, a także dziewice, 
starcy wraz z młodzieżą 
niech imię Pana wychwalają, 
bo tylko Jego imię jest wzniosłe, 
majestat Jego góruje nad ziemią i niebem 
i pomnaża moc swojego ludu.
Pieśń pochwalana dla wszystkich Jego świętych, 
synów Izraela - ludu, który Mu jest bliski. 
Alleluja.

Psalm 148

Mojej ukochanej żonie i dzieciom 
oraz moim rodzicom
w podziękowaniu za wszystko co mi dali
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€ 
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- zbiór danych w przestrzeni parametrów,
- funkcja celu,
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- przekształcenie algorytmiczne, 

przekształcenie dla danych zaburzonych w punkcie l w algorytmie 
aproksymacji parabolicznej,

V
Ui

D

- przestrzeń parametrów optymalizacji w teorii Zangwilla,
- ż-ty lewy wektor szczególny macierzy A,
- ż-ta wartość szczególna macierzy A,
- Operator różniczkowania kierunkowego,
- przekształcenie wyboru ż-tego kierunku z bazy kierunków 

ortogonalnych (sprzężonych),
M^M1^
T

- przekształcenia minimalizacji wzdłuż kierunku,
zbiór osiągalnych trójek w kolejnym kroku algorytmu optymalizacji 
parabolicznej,
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parabolicznej zaburzonego w punkcie l = {1,2,3},
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A*(C) - minimum paraboli skonstruowanej dla trójki ę, 
minimum paraboli skonstruowanej dla trójki £ zaburzonej 
w punkcie l = {1, 2, 3} błędem względnym na poziomie e

- odległość minimum paraboli zaburzonej od minimum paraboli 
dla danych niezaburzonych w algorytmie aproksymacji parabolicznej

un(C n= (1,.. 
c(-)
<7
A,B,C
S
h^n
7x(x)

. ,4) - trójka w następnym kroku algorytmu aproksymacji parabolicznej, 
- funkcja celu w algorytmie aproksymacji parabolicznej, 

transformacja rodziny parabol w jedną parabolę,
- wyrażenia w definicji transformacji q,
- zbiór punktów krytycznych pierwszego rzędu funkcji f,
- norma siatki,
- wskaźnik mierzący jakość otoczenia punktu x przez punkty 

ze zbioru X,
e 
Da 
.N^

- błąd reprezentacji zmiennopozycyjnej,
- operator różniczkowania stopnia a,
- przestrzeń natywna generowania przez funkcjię </>.



Rozdział 1

Wstęp

Wprowadzenie

Zadanie optymalizacji, w którym obliczenie funkcji celu jest bardzo czasochłonne 
pojawia się w wielu zagadnieniach projektowania oraz optymalizacji różnego rodzaju 
procesów w różnych dziedzinach techniki. Obliczanie wartości funkcji w takim 
zadaniu wiąże się z zazwyczaj z przeprowadzeniem złożonej i czasochłonnej operacji 
w zależności od zmiennych projektowych.

W dziedzinie automatyki i robotyki metody optymalizacji stanowią jedno z 
podstawowych narzędzi projektowania układów regulacji i konstrukcji algorytmów 
sterowania. Z optymalizacją układów regulacji mamy do czynienia w zadaniach

• sterowania optymalnego [16], [47],

• sterowania ekstremalnego [45],

• sterowania predykcyjnego [37].

W sterowaniu procesami wytwórczymi z przykładami funkcji, których obliczenie 
jest czasochłonne spotykamy się np. w sterowaniu run-to-run. Procesy sterowane 
run-to-run odgrywają istotną rolę w produkcji związków chemicznych czy w 
produkcji półprzewodników [36]. Typowym przykładem procesu sterowanego 
run-to-run jest modyfikacja czasu reakcji stechiometrią produkowanego związku 
lub temperaturą reaktora chemicznego. Podejście run-to-run motywowane jest 
brakiem bezpośredniego dostępu do sygnałów wpływających na jakość produktu 
w trakcie wykonywania danego podprocesu. Produkt może być zanalizowany 
pod względem jakości dopiero po wykonaniu całego długotrwałego podprocesu. 
Zadaniem sterownika run-to-run jest więc zmodyfikowanie parametrów schematu 
produkcji tak, aby minimalizować odchylenie produktu od wstępnej specyfikacji w 
kolejnych wykonaniach podprocesu.

Z optymalizacją parametrów sterowania procesów wytwórczych spotykamy 
się również w praktyce systemów procesów multiskalowych. Systemy procesów 
multiskalowych są to systemy, które łączą kilka silnie powiązanych ze sobą procesów 
sterowania w przestrzeniach stanów o różnych skalach. Przykładem z przemysłu 

13
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chemicznego może być nakładanie warstw związków chemicznych na powierzchnię 
metalu. Modelowanie takiego systemu wymaga sterowania fazą gazową w skali makro 
jak i rozpatrzenie fazy mikro jaką są zjawiska zachodzące na powierzchni metalu. 
W skali mikro nie jest zazwyczaj możliwe określenie modelu ciągłego, analogicznego 
do modelu ciągłego, jaki występuje w skali makro. Optymalizacja w skali micro 
wymaga przybliżonego rozwiązania równania różniczkowego za pomocą metody 
Monte-Carlo. Typowym problemem sterowania w tym zagadnieniu jest regulacja 
szybkości wzrostu warstwy związku na powierzchni metalu za pomocą składu 
gazu oraz temperatury substratów’ [10]. Różne metody optymalizacji parametrów' 
sterowania procesami chemicznymi w skali całej fabryki produkcyjnej na przykładzie 
procesów7 destylacji jest omawiana w monografii [35].

Motywacja do podjęcia badań

Z przykładami funkcji celu, których obliczenie wymaga rozwiązania równań 
Maxwella metodą elementów skończonych lub rozwiązania dużego zagadnienia 
własnego [8] dla obiektów7 dyskretyzowanych metodą różnic skończonych dla 
bardzo gęstych siatek, autor zetknął się w Europejskim Laboratorium Fizyki 
Cząstek CERN w procesie projektowania głównego magnesu zakrzywiającego 
dla zderzacza cząstek elementarnych LHC (Large Hadron Collider) [4] oraz 
w procesie projektowania wnęk przyspieszających dla akceleratora SPS (Super 
Proton Synchrotron) [6], [7] odpowiednio. Główmą motywacją do podjęcia próby 
skonstruowania metody eksploracji funkcji celu wielu zmiennych był czas obliczania 
funkcji celu w procesie projektowania głównego magnesu zakrzywiającego dla 
zderzacza cząstek elementarnych LHC (patrz rozdział 4.2). Obliczenie funkcji 
celu dla procesu projektowania elektromagnesów nadprzewodzących umożliwia 
program ROXIE (Routine for the Optimization of magent X-section, Inverse 
field calculation and coil End design) stworzony w CERNie przez profesora 
S. Russenschucka [28]. Funkcja celu w procesie projektowania elektromagnesów7 
dla akceleratorów7 opisuje jakość pola magnetycznego w aperturze, w której 
poruszają się wńązka cząstek elementarnych, podczas procesu pobudzania magnesu 
począwszy od poziomu natężenia pola przy wstrzyknięciu wiązki do akceleratora 
do natężenia nominalnego. Funkcja celu zawiera również składową opisującą 
tzw. prądy persystentne powstałe w jarzmie magnesu na skutek pobudzania- 
prądem [4], Obliczenie wartości funkcji celu w procesie projektowania elektor- 
magnesów nadprzewodzących może trwać nawet do 2h na komputerze DEC 
Alpha XP 1000. Mając na uwadze to, że proces optymalizacji elektro-magnesu 
nadprzewodzącego może wymagać obliczenia wartości funkcji celu dla nawet kilkuset 
zestawów7 wartości parametrów projektowych, wartościowe wydały się poszukiwania 
metody na skrócenie pełnego czasu procesu optymalizacji. Od początku tych 
poszukiwań autor rozwrażał tylko podejście ogólne - tzn. poszukiwał takiej metody, 
która nie będzie wykorzystywała żadnych specyficznych właściwości problemu lecz 
pozwoli przyspieszyć dowolny proces optymalizacyjny wykorzystujący jakiś algorytm 
optymalizacji lokalnej przy możliwie małych dodatkowych założeniach o funkcji 
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celu. Na gruncie automatyki i robotyki, metoda taka pozwoliłaby przyspieszyć 
zaawansowane warstwowe algorytmy sterowania procesami produkcyjnymi w skali 
całej linii technologicznej czy sterujących procesami zarządzania produkcją w skali 
fabryki. Algorytmy sterowania o strukturze warstwowej, w których występuje faza 
optymalizacji, która zależy nie tylko od sygnałów wejściowych i sterujących ale 
może zależeć również od innych parametrów procesu omawiane są szczegółowo np. 

.w monografii-[37]..
Do optymalizacji funkcji celu, których obliczenie jest czasochłonne zazwyczaj 

stosuje się algorytmy bezgradientowe ze względu na to, że gradient nie jest dostępny 
a aproksymacja gradientu jest zbyt czasochłonna lub niemożliwa.

Reasumując można powiedzieć, że każda zbieżna metoda, które pozwoli 
przyspieszyć proces optymalizacji jest pożądana. Przyspieszenie procesu 
optymalizacji rozumiemy tutaj jako skrócenie czasu działania algorytmu 
optymalizacyjnego, tzn. zmniejszenie liczby obliczeń bezpośrednich wartości 
funkcji.

Najpowszechniejszymi metodami przyspieszania algorytmów bezgradientowych 
dla funkcji, dla których obliczenie wartości jest czasochłonne, są metody regionu 
wiarygodności [11]. Metoda regionu wiarygodności polegają na konstrukcji modelu 
aproksymującego funkcję korzystając z wartości funkcji w punktach, w których 
funkcja została obliczona w sposób bezpośredni, w trakcie optymalizacji funkcji 
przez algorytm podstawowy. Zakłada się, że skonstruowany model dostatecznie 
wiarygodnie aproksymuje funkcje celu w najbliższym otoczeniu punktu ostatniego 
bezpośredniego wartościowania funkcji celu. Skonstruowany model jest następnie 
optymalizowany jedną z metod gradientowych w regionie wiarygodności. Jeśli po 
zakończeniu tej optymalizacji spełniony jest warunek dostatecznego zmniejszenia 
wartości funkcji to znalezione minimum jest punktem startowym do dalszej 
optymalizacji algorytmem podstawowym. W tym wypadku może nastąpić również 
zwiększenie promienia regionu wiarygodności. Jeśli natomiast nie jest spełniony 
warunek dostatecznego zmniejszenia wartości funkcji to następuje zmniejszenie 
promienia regionu wiarygodności i optymalizacja modelu algorytmem gradientowym 
jest powtarzana.

W niniejszej rozprawie prezentujemy metodę służącą do przyspieszania procesów 
optymalizacji funkcji ciągłych, która może być alternatywą dla metod regionu 
wiarygodności [11]. Prezentowana metoda, ogólnie rzecz biorąc, polega na 
konstrukcji modelu aproksymującego korzystając z wartości funkcji w części 
punktów ścieżki optymalizacyjnej algorytmu podstawowego w otoczeniu punktu, w 
którym wartość funkcji celu ma być obliczona w następnym kroku i na nieobliczaniu 
wartości funkcji w sposób bezpośredni lecz, jeśli to możliwie, zastąpieniu jej 
skonstruowanym modelem. Aproksymacja funkcji celu jest więc wiarygodna w 
swoistym oknie, które przesuwa się w kierunku minimum funkcji celu wraz z 
kolejnymi krokami algorytmu podstawowego. W zaproponowanej metodzie modelem 
aproksymującym jest sieć z radialnymi funkcjami aktywacji trenowana za pomocą 
metody regularyzacji Tikhonova, stąd nazwana została Search Procedurę Exploiting 
Locally Regularized Objective Approximation (SPELROA). Istotnym założeniem 
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zaproponowanej metody jest, że czas konstrukcji aproksymacji oraz obliczenia jej 
wartości w danym punkcie jest zaniedbywalnie mały w porównaniu z czasem 
potrzebnym na obliczenie funkcji celu w sposób bezpośredni. Omawiana metoda 
po raz pierwszy została zaprezentowana w pracy [2], natomiast w takiej formie w 
jakiej jest rozważana w niniejszej rozprawie została ona opisana w pracy [3] oraz [5] 
a dowód jej zbieżności został podany w pracy [1].

Charakterystyka problemu
Podsumowując stwierdzić możemy, że

• w wielu praktycznych interesujących zadaniach optymalizacyjnych obliczenie 
funkcji celu jest bardzo czasochłonne,

• do optymalizacji takich funkcji zazwyczaj stosuje się algorytmy 
bezgradientowe, chociaż dla małej liczby zmiennych możliwe jest stosowanie 
algorytmów gradientowych aproksymujących gradient metodami różnicowymi,

• procesy optymalizacji w takich zadaniach są bardzo długotrwałe.

Sformułowanie zadania
Dla tak scharakteryzowanego problemu długotrwałej optymalizacji w niniejszej 
rozprawie postawiliśmy sobie następujące zadanie: opracować zbieżną metodę 
przyspieszenie procesu optymalizacji.

Przyjęte założenia
W rozwiązaniu wyżej postawionego zadania przyjęliśmy następujące założenia:

• funkcja celu jest funkcją ciągłą, dla dowodu zaproponowanej metody potrzebna 
jest różniczkowalność funkcji,

• wartość funkcji celu nie powinna zawierać zakłóceń chociaż metoda powinna 
być odporna na małe zakłócenia,.. , , .......

• obliczanie ^.w&rtości funkcji na -tyle .czasochłonne, że czas konstrukcji 
aproksymacji jest zaniedbywalnie mały,

• w przyspieszanym algorytmie krok poszukiwania minimum wzdłuż kierunku 
powinien być realizowany przez sekwencyjną interpolację paraboliczną 
(założenie wykorzystwane w dowodzie zbieżności),

• zaproponowana metoda powinna współpracować z różnymi algorytmami 
optymalizacji lokalnej.

Elementy oryginalne w pracy
Nowymi elementami w pracy są:
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• Metoda Search Procedurę Exploiting Regularized Objective Approximation 
(SPELROA) przyspieszania procesów optymalizacji długotrwałej,

• dowód zbieżności metody SPELROA dla algorytmów bezgradientowych,

• wskaźnik określający czy dany punkt znajduje się w regionie dziedziny 
zawierającym dane dobrze go otaczające,

• metoda wyboru parametru regularyzacji w konstrukcji aproksymacji 
radialnymi funkcjami bazowymi.

• Testy metody SPELROA

- w połączeniu z algorytmem Gaussa-Seidela dla dziewięciu problemów 
testowych,

— w połączeniu z algorytmem Gaussa-Seidela dla problemów optymalizacji 
głównego magnesu zakrzywiającego zderzacza cząstek elementarnych 
LHC,

— w połączeniu z algorytmem BFGS quasi-Newton dla procesu strojenia 
regulatora PID.

Układ pracy

Rozprawa, oprócz niniejszego wstępu, zawiera pięć części.

• Rozdział drugi
W rozdziale tym wprowadzamy metodę SPELROA oraz podajemy twierdzenie 
o jej zbieżności. Do dowodu twierdzenia o zbieżności metody wykorzystujemy 
Twierdzenie Zangwilla o zbieżności algorytmów optymalizacji lokalnej oparte 
na teorii przekształceń domkniętych.

• Rozdział trzeci
W rozdziale trzecim omawiamy zagadnienie konstrukcji sieci neuronowej 
ze ściśle dodatnio określonymi radialnymi funkcjami aktywacji (RBF), 
która jest modelem aproksymującym funkcję celu w pewnym otoczeniu 
punktu, w którym ma być obliczana funkcja celu. Wprowadzamy wskaźnik, 
który skutecznie pozwala określić czy położenie punktu obliczania wartości 
funkcji względem punktów' z poprzednich iteracji zapewni wystarczającą 
jakość aproksymacji. Sieć aproksymującą trenujemy za pomocą metody 
regularyzacji Tikhonova z pojedynczym parametrem regularyzacji A. 
Omawiamy dwie istniejące metody wyboru wartości tego parametru, 
mianowicie metodę Uogólnionej Walidacji Krzyżowej [40] oraz metodę L- 
krzywej [17]. Proponujemy również nową metodę, która lepiej nadaje się 
do lokalnej aproksymacji niż dwie wcześniej wymienione. Jej przewagę 
pokazujemy na przykładzie trzech funkcji testowych z pracy [1].
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• Rozdział czwarty
W czwarty rozdziale przedstawiamy zastosowanie metody do rozwiązania 
ośmiu problemów testowym z pracy [23]. Te osiem wybranych funkcji 
jest podzbiorem zbioru funkcji zaproponowanych do testowania algorytmów 
optymalizacji lokalnej w [23]. Ponadto w rozdziale tym prezentujemy 
zastosowanie metody SPELROA do przyspieszenia procesu optymalizacji 
głównego magnesu dipolowego dla zderzacza cząstek elementarnych LHC 
zaimplementowanego w programie ROXIE [4],

• Rozdział piąty
Piąty rozdział pracy zawiera podsumowanie oraz określa kierunki dalszych 
badań.

• Dodatek
Ostatni rozdział stanowi dodatek, do którego przeniesiona została większość 
żmudnych wyprowadzeń wzorów potrzebnych w dowodzie zbieżności metody 
SPELROA omówionych w rozdziale drugim.



Rozdział 2

Optymalizacja

Niech dana będzie funkcja celu / : Rrf —> R oraz algorytm A minimalizujący funkcję 
f. Metoda SPELROA (Search Procedurę exploiting Locally Regularized Objective 
Approximation) połączona z algorytmem A zapisuje się w formie algorytmicznej w 
sposób następujący (patrz [2]):

Algorytm 1.
Metoda SPELROA

Wejście : f : Rd —* R - funkcja celu,
x0 e Rd - punkt startowy,
s > 0 - dokładność aproksymacji,
/(•) - aproksymacja funkcji /(•) za pomocą radialnych funk­

cji bazowych,
Is - liczba bezpośrednich obliczeń wartości funkcji w fazie 

początkowej w algorytmie A,
N < Is rozmiar zbioru danych używanych do konstrukcji apro­

ksymacji funkcji f^,
e-check - procedura sprawdzająca warunki zbieżności wymagane 

w twierdzeniu o zbieżności.

0. Wykonać Is obliczeń wartości funkcji celu /(•) w początkowych punktach 
wygenerowanych przez algorytmem A.

1. W k-tym kroku wygenerować za pomocą algorytmu A punkt Xk, w którym ma 
być obliczana funkcja celu.

2. Wygenerować zbiór X z N najbliższych punktowi punktów, w których 
funkcja /(•) była obliczona bezpośrednio.

3. Ocenić czy dla punktu można skonstruować wiarygodną aproksymację 
fM-

(a) Jeśli punkt leży we wiarygodnym regionie dziedziny to skonstruować 
aproksymację f oraz obliczyć f^k)-

19



20 ROZDZIAŁ 2. OPTYMALIZACJA

(b) Jeśli aproksymacja /(x^) była poprawnie skonstruowana to wykonać 
procedurę E-check (patrz paragraf 2.5).

(c) Jeśli wynik procedury E-check jest pozytywny to podstaw

fM <- fM

do algorytmu A.
(d) W przeciwnym razie oblicz f(x.k) w sposób bezpośredni.

j. Jeśli spełnione jest kryterium stopu algorytmu A to koniec.
W przeciwnym razie podstaw k := k + 1 i przejdź do kroku 1.

Podczas tworzenia zbioru X należy zadbać o to, aby punkty do niego włączone 
były dostatecznie od siebie oddalone. Jeśli dwa punkty leżą zbyt blisko siebie - gdzie 
minimalna dopuszczalna odległość jest kontrolowana przez parametr wprowadzany 
przez użytkownika, którego wartość jest proporcjonalna do średnicy zbioru X - 
jeden z punktów powinien zostać zamieniony na inny punkt do te pory nie włączony 
do konstruowanego zbioru. Taka procedura konstrukcji zbioru X gwarantuje, że 
odległości separująca (ang. separation distance ~ patrz [31]) jest większa od 
wartości parametru wprowadzanego przez użytkownika, co zaś zapewnia, że macierz 
interpolacyjna nie jest osobliwa (patrz [22]). Kluczowym krokiem powyższego 
schematu jest punkt 3. zawierający trójetapowe sprawdzenie czy aproksymacja /(x*.) 
może być użyta w algorytmie A zamiast wartości obliczonej bezpośrednio. Warunki 
sprawdzane w krokach 3.a) i 3.b) są związane z konstrukcją aproksymacji radialnymi 
funkcjami bazowymi i będą omówione w rozdziale 3, natomiast procedura e-check 
występująca w kroku 3.c) jest związana z założeniami twierdzenia o zbieżności i 
zostanie omówiona w paragrafie 2.2 niniejszego rozdziału.

2.1 Metoda Zangwilla dowodzenia zbieżności algo­
rytmów optymalizacji

Algorytmy optymalizacji nieliniowej kierunków dopuszczalnych mają postać 

xfc+1 = xfc + Tkdk

gdzie cP jest kierunkiem poszukiwania a Tk jest krokiem w A:-tej iteracji. Jedna 
iteracja w algorytmach kierunków dopuszczalnych jest złożeniem przekształceń 
algorytmicznych A = ADD gdzie D : Rd —> Rd x Rd jest przekształceniem 
generującym kierunek

= (x, d)
gdzie d G Rd jest wektorem kierunku, natomiast M1 : Rd x Rd —> Rrf jest 
przekształceniem minimalizującym funkcję celu /(•) wzdłuż kierunku d tzn.

M1(x, d) = {y : /(y) = min/(x + rd)}
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gdzie (x, d) E Rd x a J jest przedziałem zmienności parametru t.
W swojej monografii [46] Zangwill zaproponował metodę dowodzenia zbieżności 

algorytmów optymalizacyjnych kierunków dopuszczalnych bazującą na własnościach 
przekształcenia algorytmicznego A. W paragrafie tym omawiamy główne elementy 
teorii Zangwilla, za pomocą których będziemy mogli sformułować i udowodnić 
twierdzenie o zbieżności metody SPELROA połączonej z algorytmami poszukiwań 
bezpośrednich takimi jak metoda Gaussa-Seidela. Po drobnych modyfikacjach 
zaprezentowana metoda dowodu może być również zastosowana dla algorytmów 
kierunków sprzężonych.

Definicja 1. ([46], str. 92)
Przez przekształcenie A : V —+ V punktu w zbiór rozumiemy przyporządkowanie 
każdemu punktowi x E V zbioru A(x) C V. Działanie algorytmu A(-) będącego 
odwzorowaniem punktu w zbiór polega na przyporządkowaniu punktowi Xk zbioru 
A(xk) i wybraniu dowolnego

xk+1 E A(xfc).

Przekształcenie A = MXD określające algorytm optymalizacji kierunków 
dopuszczalnych jest przekształceniem punktu w zbiór.

Definicja 2. ([46], str. 96)
Mówimy, że przekształcenie A : V —* V jest domknięte w punkcie x°°, jeśli zachodzi 
następująca implikacja:

1 xoo) k G

2 . yk E A(xk), k E X,

3 yk yOO>

implikuje

j. y00 G d^),

gdzie /C jest ciągiem liczb naturalnych.
Mówimy, że przekształcenie A jest domknięte na zbiorze X E V, jeśli jest 

domknięte w dowolnym punkcie x E X.

Własność domkniętości przekształcenia algorytmicznego jest analogią własności 
ciągłości dla „zwykłych” funkcji.

Twierdzenie 1. (patrz [46], str. 99)
Niech przekształcenie A : V —* V punktu w zbiór wyznacza algorytm, który dla 
danego punktu xi, generuje ciąg {xfc}^=1. Niech będzie dany zbiór rozwiązań S C V.

Załóżmy, że

1. Wszystkie punkty xk należą do zbioru zwartego X CV.
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2. Istnieje funkcja Z : V —> R taka, że

(a) jeśli punkt x nie jest rozwiązaniem, to dla dowolnego y G A(x) zachodzi

Z(y) < Z(x)

(b) jeśli punkt x jest rozwiązaniem, to albo algorytm kończy działanie, albo 
dla dowolnego y E Afxż) zachodzi

ZM <

3. Przekształcenie A jest domknięte w punkcie x, jeśli punkt ten nie jest 
rozwiązaniem..

Wówczas, albo algorytm kończy działanie w punkcie będącym rozwiązaniem, albo 
każdy zbieżny podciąg ciągu generowanego przez algorytm ma granicę w zbiorze 
rozwiązań S.

Dodatkowo potrzebujemy jeszcze dwóch lematów z [46] mówiących o domk- 
niętości złożenia przekształceń domkniętych oraz o domkniętości przekształcenia 
minimalizacji wzdłuż kierunku Al1.

Lemat 1. (patrz [46], str. 104)
Niech C : W —> X C Rd będzie daną funkcją oraz B : X Y będzie 
przekształceniem punktu w zbiór. Załóżmy, że funkcja C jest ciągłą w punkcie w°° 
a B jest domknięte w C^w00). Wówczas odwzorowanie złożone A = BC : W —> Y 
jest domknięte w w°°.

Lemat 2. (patrz [46], str. 112)
Niech f będzie funkcją ciągłą. Wówczas przekształcenie Al1, jest domknięte jeśli 

zbiór J jest przedziałem domkniętym i ograniczonym.

2.2 Główne twierdzenie
W praktyce stosuje się inny operator poszukiwania minimum wzdłuż kierunku niż 
przekształcenie Al1. Wiele różnych implementacji operatora M1 można znaleźć 
w [46]. Niezależnie od implementacji wykonanie przekształcenia M1^,-) jest 
kosztowne.

Rozważmy operator poszukiwania minimum wzdłuż kierunku zdefiniowany 
następująco

d) = M1^, d) U {y = x + rd : /(y) < /(x) - A, r E J}. (2.1)

Jest to przekształcenie punktu w zbiór, którego wartością jest zbiór punktów dla 
których funkcja f zmniejsza wartość o A G R+ wzdłuż kierunku d począwszy od 
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punktu x lub gdy ten zbiór jest pusty przyjmuje on wartość minimalną funkcji / 
wzdłuż tego kierunku.

Sugestię praktycznego wykorzystania operatora M* znaleźć można w jednym z 
ćwiczeń w [46]. Poniżej prezentujemy dowód domkniętości operatora Al* co pokazuje, 
że może on być użyty w algorytmach optymalizacyjnych kierunków dopuszczalnych 
zamiast operatora M1. Zastosowanie operatora AT, który w końcowych fazach 
optymalizacji przechodzi w operator M1 jest praktyczniejsze od zastosowania tylko 
operatora Al1. Wynika to stąd, że w początkowej części poszukiwania minimum 
wzdłuż kierunku niezależnie od implementacji, występują najbardziej znaczące 
zmniejszenie wartości funkcji, natomiast kolejne kroki powodują znacznie wolniejsze 
zmniejszanie wartości funkcji.

W niniejszym paragrafie omówimy implementację operatora AT za pomocą 
zaburzonej interpolacji parabolicznej. Przez zaburzoną interpolację paraboliczną 
rozumiemy, algorytm Luenbergera [25], w którym przy pewnych warunkach 
wprowadzamy zaburzenie wartości funkcji z zadanym błędem e. Te wyniki pozwolą 
nam dowieść prawdziwości następującego twierdzenia:

Twierdzenie 2.
Załóżmy, że f : Q —* R; fi C Rrf jest funkcją celu w zagadnieniu optymalizacyjnym. 
Załóżmy, że mamy daną metodę aproksymacji funkcji celu f w pewnych punktach 
dziedziny El z błędem względnym E > 0. Jeśli funkcja f jest ściśle wypukła to metoda 
SPELROA w połączeniu z algorytmem Gaussa-Seidela z obrotem bazy kierunków 
poszukiwań, zbiega do punktu krytycznego pierwszego rzędu z0 G S, tzn. V/(z0) = 0.

Dowód Twierdzenia 2 będzie polegał na sprawdzeniu założeń Twierdzenia 1, gdzie 
przekształcenie A jest postaci

A = RM*DdAT D^1... ATD^TD1

gdzie Dl wybiera ż-ty kierunek z bazy kierunków ortogonalnych w Zc-tej iteracji a R 
jest przekształceniem ortogonalizującym wektory bazowe wzdłuż kierunku Xq-1x^-1 
z (k — l)-szej iteracji.

2.3 Domkniętość przekształcenia algorytmicznego
M*

Aby wykazać, że założenie 3. z twierdzenia 1 jest spełnione musimy najpierw 
pokazać, że transformacja Al* zdefiniowana przez (2.1) jest domknięta. Dowiedziemy 
następującego lematu:

Lemat 3.
Niech f będzie funkcją ciągłą. Wówczas przekształcenie Al* jest domknięte, jeśli J 
jest przedziałem domkniętym i ograniczonym.
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Poniżej prezentujemy dowód, który jest modyfikacją dowodu Lematu 2 podanego 
w [46].
Dowód
Zgodnie z definicją 2 rozważmy ciąg {(xfc, dfe)}£lj oraz {yk}^. Przy założeniu, że

1. (x\dfc) ^d00), kEK,

2. yk E M*(xk,dk), k E JC,

3. y y°°, k e /C,

należy pokazać, że
y°° 6 A(x°°).

Z definicji operatora Al* mamy

yk = Xk + Tkdk

gdzie jest takie, że

f(xk + rkdk) < f(xk) - A, (2.2)

gdy możliwe jest zmnijeszenie wartości funkcji o A lub

rk = argmin{xfc + rd^} (2.3)
T&J

w przeciwnym razie.
Ponieważ J jest domknięty i ograniczony jest również zwarty. Ponieważ rk E J 

dla k E Y a J jest zwarty, to istnieje zbieżny podciąg

Tk^T°°, kE/C\

gdzie KP C AS oraz t°° E J.
Dla ustalonego r E J z monotoniczności ciągu yk wynika, że istnieje takie ko, 

że dla k > ko nie może być użyta już składowa zminiejszająca wartość funkcji o A, 
lecz tylko składowa odpowiadająca operatorowi M1, mamy wówczas

f{ykY<f^k+rdk) dla k>k0. (2.4)

Sytuacja taka występuje dostatecznie blisko minimum lokalnego funkcji f.
Ponieważ funkcja f jest ciągła, to w granicy otrzymujemy

/(y°°) = lim /(yfc) < lim f(xk + rd*) = /(x°° + rd°°). (2.5)
keK1 keJC1

Ponieważ (2.5) zachodzi dla dowolnego r dla k > k0, więc i dla dowolnego punktu 
y* E Al*(x°°, d°°), mamy

/(y°°) < /(y*). (2.6)
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Z drugiej strony w punkcie y* € M*(x°°, d°°) funkcja f dla r £ J osiąga 
najmniejszą wartość

= X°° + T^d00, T°° E J.
więc

/(y*) < /(y°°). (2.7)
Porównując (2.7) z (2.6) otrzymujemy wynik

y°° e

□ 
Zauważmy, że dowód będzie również prawdziwy, jeśli funkcja f zawierać będzie 
pewną skończoną liczbę izolowanych punktów nieciągłości pierwszego rzędu 
znajdujących się w dostatecznie dużej odległości od minimum lokalnego.

Aby pokazać domkniętość przekształcenia A robiąc użytek z Lematu 1 
musimy również zauważyć, że przekształcenia 77 (x) = (x,dj (? = l,...,d) są 
funkcjami ciągłymi. Przekształcenie R, które generuje bazę kierunków ortogonal­
nych [dgew,.... d^] dla kroku o indeksie k jest określone jako

b^-1, [d„,.... d^,]) = (4, [dr, • • •, dri), 

gdzie ciąg nowych wektorów ortogonalnych jest określony jednoznacznie przez proces 
ortogonalizacji wektorów w0, wb...,

w0 — sodo + Sidi + .. . + Sd-ldrf-l

W1 + Sjd] + . + Sd-idd-i

Wd-1 — + Srf-idd-i

gdzie skalary s0, Si, • • •, s^-i odpowiadają rozmiarom kroków we wszystkich 
kierunkach z kroku k — 1. Przekształcenie R jest jednoznacznie określone bez 
żadnych dodatkowych warunków spełnianych przez skalary sq, Si,..., jeśli 
proces ortogonalizacji jest wykonany za pomocą algorytmu zaprezentowanego 
w |26]. W tym wypadku przekształcenie R jest również funkcją ciągłą. 
Ponieważ przekształcenie A jest złożeniem przekształceń M* z funkcjami ciągłymi 
Di (i = 0, ...,d — 1) oraz 7?, spełnione są założenia Lematu 1 i stąd 
otrzymujemy, że przekształcenie A jest domknięte. To dowodzi, że spełnione jest 
założenie 3. Twierdzenia 1 dla przekształcenia M* bez zaburzeń. W następnym 
paragrafie wykażemy, że przekształcenie M* może zostać zrealizowane za pomocą 
przekształcenia M1, do którego w każdym kroku może zostać wprowadzone 
zaburzenie.

2.4 Zaburzenie w algorytmie poszukiwania 
minimum wzdłuż kierunku

Dla algorytmów bezgradientowych z bazą wektorów ortogonalnych jako zbiorem 
kierunków poszukiwań przekształcenie M* jest jedynym miejscem w algorytmie 
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gdzie wprowadzane jest zaburzenie powstałe z aproksymacji funkcji celu w metodzie 
SPELROA. Tak więc aby pokazać, że założenie 2. Twierdzenia 1 są spełnione 
wystarczy, że implementacją AJ* z zaburzeniem wartości funkcji na poziomie e > 0 
minimalizuje funkcję / wzdłuż kierunku d.

Dowód zbieżności algorytmu poszukiwania minimum wzdłuż kierunku za pomocą 
interpolacji parabolicznej można znaleźć w pracach [21] lub [25]. W paragrafie tym 
podamy warunki jakie musi spełniać zaburzenie wartości funkcji wprowadzane do 
algorytmu, aby dowód podany w [25] pozostawał w mocy. W paragrafie tym staramy 
się aby notacja była możliwie najbardziej zbliżona do notacji dowodu w [25].

Niech funkcja / : R —> R będzie unimodalna. Dla trójka Q = (^, ^2, ^3) zachodzi

2 R3 - C2)/(O + R3 - + R2 - C)/R3)

Zbiór osiągalnych trójek AR) dla następnego kroku jest zbiorem trójek kandydatów, 
które mogą zamienić ( G T określając mniejszy przedział zawierający A w następnej 
iteracji algorytmu. Zdefiniujmy A° jak<>

A°«) := Tn {«,(<), MO, MC), “4O

gdzie

MOHO.mc2),

MOHMO.CM3), 
MC) = (0,0, MC))-

< min{/((A),/(£3)} tzn. przedział [CoCf] zawiera unikalne minimum funkcji 
f. Parabola interpolująca funkję w punktach «/,/«/)), w
formie Lagrange’a zapisuje się

-2 (Z-£)(■?-£*)
(c-aw-o

+
(x-^x-&
(<r-m3 - a

(2-8)

Dla niezaburzonej funkcji celu definiujemy zbiór osiągalnych trójek T c R3 
definiujących przedział [C1,^3], który zawiera minimum A*(£) jako

T := R G R3 : C1 < £2 < (3, <2) < min{m
U{< 6 R3 : C1 = c2 < ę3, /R1) < 0, <3) > /(C1)} 
u{C g R3 R1 < C2 = C3, /'(C3) > o, /R1) > /(C3)} 
UR G R3 : C1 = C = C3 = A}.

Dla < G T z C1 < C2 < C3 minimum paraboli (2.8) zapisuje się

(2.9)
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Załóżmy, że wartość funkcji jest zaburzona tylko w jednym z trzech punktów w 
trójce C = (CkC2,^) użytej do konstrukcji paraboli interpolującej. Dla zaburzenia 
wartości funkcji f na poziomie e / 0 definiujemy trzy zbiory trójek:

T1^) := {< e R3: c1 < e < c3,/^) < mm{/K*)(l - |e|)./K3)} } (2-10)

z minimum
m i [ta2 - +ki)+[(c3)2 - +t«2)2 - (c1) w3)

2 «3 _ (WW + H) + (C - C)/^) + _ £1)^3)

dla zaburzenia fftnkcji / w punkcie

T2(e) := {( GR3 : C1 < (2 < C3,-/«2)(l + |e|) < f^} } (2.11)

z minimum
i kc3)2 - (c^w1) + [(ć3)2 - (^)2]/«2)(i + kD + Kc2)2 - (a2w3) 

2l£j u 2 (e - + «3 - cw2)(i + kP + (c2 - cw3)
dla zaburzenia funkcji f w punkcie & oraz

T3(s) := {< G R3 : C1 < £2 < < minf/^1), /Ol - |e|)} } (2.12)

z minimum
.. 1K3)2 - + [K3)2 - KTK2) + [«2)2 - CT/tflt1 + H)

W W 2 (<-3 _ <Wi) + (<3 _ (i)/K2) + (C2 _ <W3)(1 +1£|)

dla zaburzenia funkcji f w punkcie (3. Takie definicje zbiorów Tz(e) (Z G {1,2,3}) 
zapewniają, że zaburzone minima znajdują się w przedziale [C1, £3]. Dla l G {1, 2,3} 
odpowiadający zbiór trójek osiągalnych definiujemy jako

A'(e; <) := T^e) n {^(e; <), Ą& (), u^; <). ufc; <)} (2.13)

gdzie

«i(s;C) = (CtAjfejOiC2), 
^O^.ArteO.i;3), 
«!!(E;C) = (a;(£;C),<;2,<;3),

(2.14)
W końcu zdefiniujmy zbiór punktów stacjonarnych S jako

S := {C G T : /'(C1) = 0 or = 0 or f«3) = 0}.

Jest to zbiór punktów krytycznych pierwszego rzędu funkcji f.
Kluczowym elementem dowodu zbieżności algorytmu poszukiwania mini­

mum jednej zmiennej podanym w [25] jest lemat (Lemat 1.7.9, str. 153) o 
domkniętości niezaburzonego przekształcenia A°(-). Podamy teraz analogiczny lemat 
dla przekształcenia, które może zawierać zaburzenie wartości funkcji na poziomie 
błędu e w punktach, na których skonstruowana jest parabola. W dowodzie podamy 
jakie warunki musi spełniać e, aby zachowana była zbieżność algorytmu.
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Lemat 4.

1. Dla każdego £ € T, zbiór A^) = A°(0 U A1(e;0 U yi2(e;0 U ^43(s;0 jest 
niepusty.

2. Przekształcenie punktu w zbiór A(-) jest domknięte.

3. Dla każdego ( G T\S := {( € T : ( S} takiego, że Cf < C? < £3 zachodzi 
c(y) < c(0 dla każdego y E A(ę) gdzie

c(0 = A(C*)+ A(C’) +AK3) (2.15)

gdzie fi = f lub fi = /(-)(1 + |e|) w zależności od tego, czy wartość w punkcie 
fl jest „dokładna” czy zaburzona.

Zauważmy, że „dokładna” znaczy tutaj zaburzona co najwyżej na poziomie błędu 
reprezentacji zmiennoprzecinkowej e << e, tzn. obliczona w sposób bezpośredni nie 
zaś aproksymowana.

Dowód
Wprowadźmy następującą notację ff-) = /(•), gdy funkcja f jest wartościowana w 
punktach (° lub fi^) = /(-)(l+£), gdy funkcja f wartościowana jest w punkcie 
C° = Ql G G {1, 2, 3}). Na wstępie zauważmy, że Tz(e) C T (7 E {1, 2,3}) dla £ > 0.

1. Niech £ = T będzie ustalone. Jeśli /(Ci), i /(G) są
obliczone bezpośrednio tzn., bez zaburzenia, to jest niepusty na mocy 
dowodu z [25]. Rozpatrzmy przypadek, gdy jedna z wartości funkcji jest 
zaburzona błędem względnym e > 0. Minimum paraboli skonstruowane w 
tym wypadku dane jest wyrażeniem Az*(s; gdzie l E {1, 2, 3} w zależności od 
tego, w którym punkcie wartość była aproksymowana. Rozpatrzmy wypadek, 
gdy Af(£,0 E [0, C2] zakładając ponadto, że minimum A*(0 gdyby żadna 
z wartości nie była zaburzona również należy do [0, 0]- Wówczas A(0 jest 
pusty wtedy i tylko wtedy, gdy zarówno Ui(er;0 jak i nie należą do
A(0, tzn. wtedy i tylko wtedy, gdy

f(AI(E;O) > )(1 + |e|),/O = /«2) . (2.16)

oraz

/K2) > min{,rtW; O),/O > O), M2)}, (2.17)

gdy wartość funkcji była zaburzona w punkcie 0, albo

/(A^; 0) > mm{/(0), f^I + H)} = + H) (2.18)

oraz

/Ol + kl) > min{/(A;(e;C)),/O > min{/(AJ(E;C)),/K2)(l + |£|)},
(2.19)
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gdy wartość funkcji była zaburzona w punkcie £2, albo 

/(A^O^minW1),/^ (2.20)

oraz

/«2) > min{/(A*(e; <)), /«3)(1 + H)} > min{/(^(£; <)),/O, (2.21)

gdy wartość funkcji była zaburzona w punkcie £3. Ponieważ nierówności (2.17) 
implikują, że /(ę2) > /(A^e;^)) otrzymujemy sprzeczność z nierównościami 
(2.16) co dowodzi tezy, gdy wartość funkcji była aproksymowana w punkcie 
W podobny sposób otrzymujemy sprzeczności dla nierówności (2.19) i (2.18) 
dla aproksymacji w punkcie £2 oraz (2.21) i (2.20) dla aproksymacji w punkcie 
£3. Zauważmy, że warunek, że odpowiadające A*(£) należy do [^, £2] zapewnia, 
że jeśli porównamy y = (y1, y2,y3) G A1^ (l G {1,2,3}) z y = (y\ y2, y3) G 
A°(^) to otrzymamy, że y1 > y1 oraz y3 < y3.
Przypadek kiedy A*(£) należy do [C2, Ca] jest symetryczny.
Powyższe warunki będą wyrażone względem £ w następnym punkcie dowodu 
i zostaną użyte w dowodzie głównego twierdzenia.

2. Załóżmy, że {Ci}“o oraz G —► C* € T i niech istnieje £* G T (zwróćmy uwagę 
na fakt, że G i C* oznaczają różne punkty) oraz nieskończony podciąg K C N 
taki, że Ci+i G Zl(^) dla każdego i G K takiego, że Ci+i ~*K C* przy i —> oo- 
Wówczas musi istnieć k G {1,2,3,4} oraz nieskończony podciąg K' C K 
taki, że Ci+i = Mfc(G) lub G+i = (gdzie li G {1,2,3}) dla każdego
i G K'. Jak zostało dowiedzione w [25] funkcje «*,(•) są ciągłe a więc jeśli ciąg 
{Ci}£o nie zawiera zaburzonego G to wówczas z ciągłości względem £ i 
domkniętości zbioru T wynika, że uGG) Uk(G) = C* >1(0- To dowodzi 
domkniętości przekształcenia A.
Wprowadzenie trójki Ci+i zawierającej punkt, w którym wartość była 
zaburzona, tzn. Ci+i £ ^(^5 0 wprowadza nieciągłość pierwszego rzędu do 
funkcji i powyższa argumentacja nie może zostać zastosowana jeśli nie 
zauważymy, że użycie algorytmu A(-) wprowadza jedynie skończoną liczbę 
izolowanych punktów nieciągłości.
Należy rozpatrzyć dwa przypadki w zależności od liczby wystąpień trójek 
zawierających elementy zaburzone w ciągu {^i}^0

• Kiedy liczba wystąpień u1̂ w ciągu jest {G}^0 jest skończona to 
dowód domkniętości przekształcenia 4(-) podany w [25] może zostać 
zastosowany po usunięciu {G}^o wszystkich początkowych elementów 
zawierający podciąg wartości zaburzonych.

• Załóżmy teraz, że u1̂ występuje nieskończoną liczbę razy w ciągu {^}^0. 
Ponieważ zakładamy, że {Ci}^i jest zbieżny to dla dowolnego 5 G R 
istnieje G, takie że dla każdego i > i0 mamy

IIG - G+1112 = 1(0, c?, C3) - dyi < (2-22)
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Wybierzmy więc L, dla którego zachodzi nierówność (2.22). Ponieważ 
aproksymacja w kolejnych iteracjach występuje nieskończenie wiele razy 
to istnieje podciąg = {« : i > ą} C N taki, że jeśli i E /C to

G+i € ^(e; Ci)

dla pewnego l E {1,2,3}. Bez straty ogólności możemy założyć, że 
A* G [CoCf]- Przypadek, gdy A* E [C^, C$] jest symetryczny. Udowodnimy 
następujący lemat

Lemat 5.
Niech ii E N będzie takie, że zachodzi dla niego nierówność (2.22). Dla 
dostatecznie małego 5 możliwy jest wybór takiego s, że

(2.23)

Ponieważ założyliśmy, że A^e;^) 
przypadki wyrażenia HCu - G1+1II2

G musimy rozpatrzyć dwa

w

(b)

II& - Wis = llCctc’) - C

Rozważmy przypadek (a). Wyprowadzimy warunki na e zapewniające, że 
zachodzą nierówmości

K?-W;CJ)2 + K2-<2)2>W Ge {1,2,3}). (2.24)

Rozwiążemy powyższe nierówności względem s używając transformacji q 
całej rodziny parabol z tym samym względnym położeniem minimum 
względem końców przedziału i Transformacja ta zdefiniowana 
jest w Dodatku A. Zastosowanie transformacji q pozwala uprościć 
powyższe nierówności. Przekształćmy więc parabolę skonstruowaną na 
punktach /(Ą)), i (Cfr,/«£)) używając transformacji
q. Transformacja q jest dobrze określona, gdy /(^) 7^ z
zastrzeżeniem, że ponadto a' / b' (patrz Dodatek A).
Rozpatrzymy przypadek kiedy ponieważ przypadek, gdy
zachodzi jest symetryczny. Transformacja q przekształca
nierówmości (2.24) do

(q r \ Z

73—W l E {1,2,3}, (2.25)
S>ii Mi /
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£2 _£1 _
gdzie C(r) = , Cii = (O,C(r),l) oraz A;^,^) dane są wzorami (6.8)
gdzie

A = -2(C(r)-l), 
B = ?(C(r))i 
C =

i są wyrażeniami na minimum parabol skonstuowanych na punktach 
(0, — 2), (£(r), g(p))) oraz (1,— 1) zaburzonych w Z-tym punkcie (l G 
{1,2,3}) odpowiednio. Błąd względny aproksymacji e w Z-tym punkcie 
jest związany z przekształconym błędem względnym zależnością

2e 
Wp’

Wp’
£

Wp’

dla zaburzenia w ,

. dla zaburzenia w ,
dla zaburzenia w Ć? • 

1

Rozwiązanie nierówności (2.25) musi być podzielone na dwa regiony, 
(a) Jeśli ,'2 < (1 — C(r))2 to (2.25) są zawsze spełnione.

(b) Jeśli (C3)2 > (1 - C(r))2 to (2.25) zapisują się jako

±IC(r) A^S/,^)] > K^, 
I 452

= 1/ ^3 _ £1 p ~ — C(r)) >

Z G {1,2,3}

a ponieważ transformacja q skaluje przedział liniowo i mamy 
X*(ei,&) < <(r), ponieważ X^£i,Q) G (0,<(r)), to otrzymujemy

A^pj < P)-Ap_____________ (2^)
I 452

= U (£3 _ £1 )2 ~ ~ C(r))2,

Z G {1,2,3}.

Rozpatrzymy ostatnie nierówności dla Z = 1 i Z = 2 ponieważ dla 
l = 3 sytuacja jest symetryczna do Z = 1. Stosując metodę rozwiązania 
powyższych nierówności przedstawioną w Dodatku B otrzymujemy, że 
jeśli

{B - C^r) - Ka) -{B- C(r)C) - A(Ka - 1)
£1 > - 1)

i ponadto
( A(l+£1) + B-C > o
t A(Ka-l) < 0

(2.27)

(2.28)
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lub
A(1 + d) + B - C < O

A(Ka-I) > O (2.29)

zachodzą dla zaburzeń w C1 spełniona jest nierówność (2.25) dla l = 1.
Dla l = 2 nierówność (2.25) jest spełniona jeśli

A(1 + C(r)) + B - (^C — (A + B — C)(C(r) - Kg) 
B^ ~ Ka - 1)

(2.30)

i ponadto

lub

( Aj B(1 + £2) — C > 0
l B^r}-Ka-I > 0

( A + B(1 + £2) ~ C < 0
( B^-Ka-1 < 0

(2.31)

(2.32)

zachodzi dla zaburzenia w punkcie £2. Powyższe warunki implikują 
również, że spełnione są nierówności (2.24). Oznacza to, że jeśli zaburzenie 
wartości i /(C2) spełniają (2.27) i (2.28) lub (2.29) i (2.30) i (2.31) 
lub (2.32) odpowiednia to dla dowolnego 5 otrzymujemy nieskończenie 
wiele i > R > io takich, że zachodzi nierówność (2.23). W analogiczny 
sposób rozwiązujemy przypadke (b), tzn.

> (2ó)2. (2.33)

Używając transformacji określonej w Dodatku A otrzymujemy

X^i-Q>Kb Kb = ^^ (Ż = {1,2,3}) (2.34)

Stosując w analogiczny sposób metodę opisaną w Dodatku B dla l = 1 
otrzymujemy

A[Kb - (1 + C(r))] + B(Kb - 1) - C(Kb - C(r)) 
A[Kb ~ (1 + C(r))] 

( A(1 + £1) J- B— C > .0
t + C(r)) — Ab] > 0 

lub
( A(1 + £1) + B — C < 0
t A[(l + C(r))-B6] < 0

Dla Z = 2 w ten sam sposób otrzymujemy

A[Kb - (1 + C(r))] + B{Kb - 1) - C(Kb - <(r)) 
B(1 - Kb)

(2.35)

(2.36)

(2.37)

(2.38)
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i
A + > O,

B(1 — Kb) > O, (2.39)

lub
A + B(l + ex) - C < O, 

B(l — Kb) < 0. (2.40)

Oznacza to, że również i w tym przypadku dla dowolnego 5 możemy 
wybrać takie s, że zachodzi nierówność (2.23). Jest to sprzeczność z 
założeniem, że ciąg {G}^ Jes^ ciągiem zbieżnym ponieważ możemy 
wybrać dwa podciągi, które są zbieżne do dwóch różnych punktów 
skupienia. Pierwszy podciąg jest złożony z a drugi z Gi+i- Obydwa są 
ciągami nieskończonymi. Z tego wynika, że od pewnego ż0 ciąg {^}^0 nie 
zawiera punktów z zaburzonymi wartościami funkcji tak więc począwszy 
od pewnego ż0 dowód z [25] pozostaje w mocy.

3. Załóżmy, że £ G T\S. Wówczas A*(0 G (CSC3)- Ponieważ sytuacja jest 
symetryczna dla C1 oraz ę3 rozważymy przypadek, w którym A*(£) G 
(C\C2] oraz \*(C) £ (CSC2] {1,2,3}). Skorzystamy tu również 
z paraboli otrzymanej przez zastosowanie transformaci q z Dodatku A. 
Transformacja q zachowuje wszystkie własności konieczne w dowodzie. W 
rozważaniach skorzystamy z wyrażenia na Ai(e;Q będącego odległością 
pomiędzy zaburzonym i niezaburzonym minimum, tzn. A;(s;0 = |A*(C) — 
A(£)|- Wzór na został wyprowadzony w Dodatku C. W przypadku
tym mamy

(a) /(C2) < /(C3), jeśli zachodziłoby /«2) = /«3), to A*«) = l/2«2 + (3) 
ponieważ albo żadna z wartości nie jest zaburzona albo tylko wartość 
w punkcie G jest zaburzona i zaburzenie to nie ma żadnego wpływu na 
położenie minimum. Obydwa przypadki są sprzeczne.

(b) tylko «!«) i u\(e;Q (l G {1,2,3}) oraz w3«) i (Z G {1,2,3}) mogą 
być w A^). Dla niezaburzonych wartości funkcji otrzymujemy A*(0 < £2 
natomiast dla zaburzonych wartości funkcji mamy

a;(e^)+ △<(*; O <C2 G 6 {1,2,3}). (2.41)

W Dodatku C rozwiązujemy (2.41) względem e wyprowadzając warunki, 
dla których Az*(e; C) < £2 co zapewnia, że dowód z [25] pozostaje w mocy. 
Otrzymujemy trzy nietrywialne przypadki

i- AK) = {«i(C).6iK).«iK). “?«)}• Ponieważ u3(C) £ X«) oraz 
£ M) (1 6 {1.2,3}) i /(>'«)) < /«2) oraz /W(e;<)) < 

/(&) (1=1,3)
/W^C)) </(&)(!+ H) (2.42)

musi zachodzić

e(ui(0) = /K1)+ /(>’«)) +/K3)
< Kl) + M2) + /(<3) = W,
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dla niezaburzonych wartości funkcji

= fiK^ + fW^ + Lc3)
< (2.43)

gdzie //(•) = /(•) or //(•) = /(-)(l + e) w zależności od tego w którym 
punkcie wartość jest aproksymowana.

ii- -4(0 = «3(0}- Ponieważ ux(0 A(0 oraz
i A^) G e {1,2,3}) musi zachodzić /(0) <

oraz 7(C2) < /(A*(0) (Z € {1,2,3}) zależnie od tego, w którym 
punkcie wartość funkci była aproksymowana. Również zachodzi 
/(A*(0) < /(Ci) oraz /Z(A*(0) < 7z(Ci) (Z e {1,2,3}) ponieważ w 
przeciwnym razie istniałoby lokalne maksimum w przedziale [0,0] 
co jest sprzeczne z unirnodalnością. Tak więc w tym przypadku musi 
zachodzić

= WWKWK’)
< /(dl + AdJ + ZK3) = <=«).

dla niezaburzonych wartości funkci oraz

c(«UO) = /(a;(0) + /2(0) + 73(0)
< 7z(0) + 7/(0) + 7(0) = O, (2.44)

dla zaburzenia w punkcie 0.
iii. W końcu może zachodzić A(0 = {«i(0, u3(C)}- W tym przypad­

ku nie jesteśmy w stanie włączyć do A(C) żadnej trójki z punktem 
z wartością aproksymowaną ui(c,0 (j = 1,2,3). Wynika to z 
następujących własności
A. /(C2) < /(Ci) z założenia,
B. A*(0 < 0,
C. /(A*(0) = /(0), co implikuje A*(0 = 0.
Powyższe zależności zachodzą ponieważ w przeciwnym wypadku, 
mielibyśmy sprzeczność z unirnodalnością funkcji /(•). Użycie 
aproksymacji wartości funkcji, w którymkolwiek z punktów ozna­
czałoby, że nie jesteśmy w stanie zagwarantować własniści C. Wobec 
tego ponieważ /(0) < mi^/^1), /(0)} mamy < c(0 i

1 Zauważmy, że w [25] własności B. i C. wyglądają nieco inaczej, mianowicie: B. A*(C) < 0 i C. 
= fR2). W szczególności własność B. w [25] zawiera błąd zawierając znak ”<” zamiast

c(u3(0) < c(0 U. Z praktycznego punktu.widzenia dla danego 0, w 
którym jednej ze współrzędnych odpowiada wartość aproksymowana, 
możemy określić, czy możemy użyć wartości aproksymowanej 
sprawdzając warunek

|A?(£; 0 - 0| > 0 (Z €{1,2, 3}). (2.45)
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To wyczerpuje wszystkie możliwości i kończy dowód trzeciego punktu.
□

Możemy teraz już sformułować algorytm Sekwencyjnej Interpolacji Parabolicznej 
z zaburzaniami (patrz [1] oraz [25] dla wersji bez zaburzeń).

Algorytm 2.
Algorytm Sekwencyjnej Interpolacji Parabolicznej z zaburzeniem 
wartości funkcji

Wejście : Co ET - punkt startowy, 
e > 0 - błąd względny aproksymacji funkcji celu.

0. Ustaw i = 0.

1. Oblicz X* — X*(Ci) lub A* = X*(E;Ci) u) zależności od tego czy wartość funkcji 
jest obliczona bezpośrednio we wszystkich punktach Ci, Ci, Ci lub CZV Jest 
aproksymowana w punkcie Ci (l E {1,2,3}) odpowiednio.

2. Jeśli A* = Ci or A* = Ci 1° koniec
W przeciwnym razie skonstruuj A(Cif

(a) Jeśli aproksymacja wartości funkcji w żadnym punkcie trójki Ci nie jest 
dostępna to A(0) = ,4° zgodnie ze wzorem (2.9).

(b) Jeśli aproksymacja wartości funkcji w punkcie Ci G £ {1,2,3}) jest 
dostępna to

i. Oblicz transformację q określoną w Dodatku A.
ii. Oblicz N^e-, Ci) zgodnie ze wzorem (6.9).

iii. Jeśli

to A(Ci) = A° to przejdź do kroku 3.
iy.. Jeśli.

X^E-C) + MGC)<Ci lub X^E-C)-M^C)>Ci (2.46)

to A = A° U A1

3. Oblicz
0+1 E argmin{c«) : C E A(0)}.

J. Podstaw i := i + 1 i przejdź do kroku 1.

Główny warunek określający czy można użyć dostępnej aproksymacji funkcji w 
jednym z punktów jest własność separacji, tzn. dla aproksymacji w Z-tym punkcie l E 
{1, 2, 3} trójka Ci należy do Tz określonego przez (2.10), (2.11) lub (2.12) odpowienio.
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Rozważmy i-tą iterację, w której użyta jest aproksymacja funkcji w jednym z 
punktów CłXi or Ci trójki Bez straty ogólności załóżmy, że /(C2) < /(Ci) < 
/(Cs) oraz wartości funkcji w tych punktach są dostatecznie odseparowane tzn. w 
każdym z tych punktów może być użyta aproksymacja wartości funkcji zamiast jest 
dokładnej wartości i.e. AKC) G Tz zależnie od tego, w którym punkcie wartość jest 
aproksymowana. Załóżmy ponadto, że aproksymacja jest użyta w jednym z punktów. 
Mamy trzy możliwości:

1. Jeśli aproksymacja wartości-funkcji jest użyta dla £? to w iteracji i + 1 nie 
wystąpi w trójce Ci+i i aproksymacja w M(Ci) może zostać użyta.

2. Jeśli aproksymacja wartości funkcji jest użyta dla to w iteracji i +1 wartość 
/(C1) będzie największa ponieważ wystąpi również w Ci+i zachowując 
również własność separacji. W ^+i nie wystąpi natomiast (f.

3. Bardziej skomplikowaną sytuację mamy w wypadku aproksymacji w punkcjie 
ę2. W tej sytuacji nie mamy gwarancji, że własność separacji wartości funkcji 
w następnych dwóch iteracjach będzie zachowana. W tym wypadku /(Az*(^)) 
musi być obliczona bezpośrednio. Wówczas jeśli własność separacji wartości 
funkcji dla trójki ^+1 nie jest zachowana to nie możemy użyć aproksymacji 
w punkcie C^. Ponieważ /(A*((i)) jest obliczane bezpośrednio nowa trójka ma 
postać

Cr-tó.W.C?)- (2-47)

Odpowiadające wartości funkcji są dokładne. Zauważmy, że w ten sposób 
zachowujemy własność 3. z Lematu 4. Poprawa wartości funkcji kosztu jest 
na poziomie a ponieważ w c(Ci-i) własność separacji była zachowana 
lub nie użyto aproksymacji wartości funkcji to otrzymujemy

cfó-i) >

Załóżmy więc, że używamy aproksymacji wartości funkcji f(£2) w Q i ^+i a 
następnie okazuje się, że dla 0+2 nie jest zachowana własność separacji. Wtedy 
nie bierzemy ani minimum z kroku ż-tego ani i + 1-szego do skonstruowania 
C“ew. W takiej sytuacji definiujemy

£new 

^new
K/.-WO.Cf) jeśli /o;(a)< /W(On)), 
KMrte+iW) jeśli /wo >/wte+i))- (2.48)

Sterując użyciem aproksymacji funkcji zgodnie z powyższymi punktami zachodzą 
tezy Lematu 4 i ponadto C e oraz aproksymacja w jednym punkcie może 
być użyta do wygenerowania nawet trzech trójek.

Zbieżności powyższego algorytmu dowodzimy przez dowód twierdzenia (patrz [1]) 
analogicznego do twierdzenia dla algorytmu bez zaburzenia wartości funkcji (patrz 
[25] p. 155).
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Twierdzenie 3.
Załóżmy, że {G}^0 Jes^ ciągiem skonstruowanym za pomocą Algorytmu 2 dla 
różniczkowalnej w sposób ciągły unimodalnej funkcji celu f : R —► R ze sterowaniem 
użycia aproksymacji funkcji celu za pomocą strategii (2.47) i (2.48). Wówczas Ci C 
przy i —> oc gdzie ( G S.

Dowód jaki prezentujemy w tej pracy polega na pokazaniu przy jakich 
założeniach o błędzie aproksymacji funkcji celu oraz o miejscach jej użycia można 
zastosować dowód z [25|.

Dowód
Podstawową trudnością w zastosowaniu metody dowodu z [25] jest fakt, że użycie 
aproksymacji w pewnych punktach dziedziny powoduje nieciągłości w funkcji celu 
c jak również w funkcjonale obliczania minimum paraboli skonstruowanej dla trójki 
Ci-

Zauważmy najpierw, że teza z punktu 3. w Lemacie 4 pokazuje, że dopuszczenie 
zaburzenia wartości funkcji zgodnie z (2.46) zapewnia, że {^}^0 jest monotonocznie 
rosnący jak również {^}So Jesf monofonicznie malejący. Ponieważ, obydwa te ciągi 
są ograniczone są więc zbieżne. Ponadto zapewniając, że A/(s;^) jest takie, że 
powyższe własności byłyby zachowane gdybyśmy nie użyli aproksymacji, zapewnia 
nam, że X*(e, 0 6 [0, C3] dla dowolnego i E N. Musimy rozpatrzyć dwa przypadki

1. Gdy {Cdoi “* C i C = (C1, C2,£3) jesf takim punktem skupienia, że C1 < Ć2 < 
0. Otrzymujemy tu sprzeczność używając ciągłości funkcji celu c jeśli użyty 
jest algorytm bez aproksymacji funkcji. Argument ciągłości może być użyty 
tutaj na podstawie dowodu Lematu 4, który pokazuje, że aproksymacja funkcji 
może być użyta tylko w skończonej liczbie iteracji. Po usunięciu pewnej liczby 
iteracji początkowych dowód z [25] pozostaje w mocy.

2. Nie zachodzi pierwszy przypadek, tzn., ciąg skonstruowany przez 2 może 
mieć dwa punkty skupienia. W [25] pokazano, że jest to ten sam punkt 
skupienia. Lemma 4 zapewnia, że argument zawarty w [25] jest w mocy jeśli 
algorytm kończy działanie w kryterium stopu w trójce bez punktów, w których 
wartości funkci są aproksymowane. Ponieważ taki ciąg nie jest nieskończony 
musimy rozpatrzyć jeszcze jeden dodatkowy przypadek, tzn. gdy algorytm 
zatrzymuje się w trójce dla której w jednym z punktów wartość funkcji jest 
aproksymowana.
Dwoma punktami skupienia są C* — (C^SC3) i C** = (CSĆ^C3)- Aby 
zapewnić własność separacji wartości funkcji wartość funkcji może być 
aproksymowana tylko w punkcie £3. W drugim przypadku wartość funkcji 
może być aproksymowana tylko w punkcie 0. W powyższych ciągach mamy 
więc Ci ~* Ci or Ci Ci ■ Z drugiej strony, separacja między A*(e; Ci) i £2 musi 
być większa niż K^s^Cż) i Ai(s;G) dla odpowiednich przypadków. To daje 
sprzeczność ze zbieżnością.

□
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2.5 Procedura e-check
Po wyprowadzeniu warunków określających dopuszczalne zaburzenie wartości 
funkcji w transformacji minimalizującej funkcję wrzdłuż kierunku zrealizowane 
za pomocą zaburzonej sekwencyjenj interpolacji kwadratowej możemy w formie 
algorytmicznej przedstawić procedurę £-check z kroku 3.c) Algorytmu 1.

Algorytm 3.
Procedura £-check — procedura sprawdzenia czy zaburzenie £ wartości 
funkcji zachowuje warunki zbieżności metody SPELROA

Wejście : £ - błąd względny aproksymacji,
Xfc_2,Xfc_i,Xfc - trzy ostatnie punkty wygenero­

wane przez metodę SPELROA 
połączoną z algorytmem opty­
malizacji bezpośredniej A, 

/(xfe_2),/(xk_i),/(xk) ” odpowiadające wartości funkcji,
aproksymacja funkcji może wy­
stąpić conajwyżej w jednym z 
punktów.

Wyjście : true - jeśli warunki zbieżności są za­
chowane, 

false - w przeciwnym razie.

0. Jeśli punkty nie są współliniowe i w procesie optymalizacyjnym nie są punktami 
iteracji wejściowymi do Algorytmu Sekwencyjnej Interpolacji Parabolicznej to 
zwróć false.

1. Oznaczmy fk = (0, ti, tA oraz ty = 2 1 t2 = 1.
^k—2 ^k

2. Załóżmy, że ffxk-2) < fM (przypadek, gdy f(xk-f) > fM jest 
symetryczny względem = 1/2 i wówczas rozpatrujemy Qk = (0,1 — ^,1) 
z odpowiadającą trójką wartości (f (xfe), f (x.k_f), f (xk-2)))-
Obliczmy transformację q określoną przez (6.1) aby otrzymać punkt 
(C(r); f (C(r)))• Przeskalujmy £ zależnie od tego, w którym punkcie jest użyta 
aproksymacja wg

gdy aproksymacja jest użyta w X/c„2;
gdy .'aproksymacja jest użyta, w Xfc-i, 
gdy aproksymacja jest użyta w xk.

2e

l/(*fc-l)l ’

l/Ofc)| ’

3. (a) Gdy aproksymacja wartości funkcji występuje w punkcie ^k-2, to jeśli £ 
spełnia (6.11) to zwróć true w przeciwnym razie false.

(b) Gdy aproksymacja, wartości funkcji występuje w punkcie xk-i, to jeśli £ 
spełnia, (6.14) to zwróć true w przeciwnym razie false.
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(c) Gdy aproksymacja wartości funkcji występuje w punkcie Xk, to jeśli e 
spełnia (6.15) to zwróć true w przeciwnym razie false.

Zauważmy, że transformacja q jest tak skonstruowana, że q(x) < — 1 dla x € 
(0,1). To gwarantuje, że zaburzenie względne wartości funkcji jest interpretowalne, 
ponieważ nigdy nie wystąpi osobliwość, którą byśmy mieli gdyby q(x) = 0 dla 
pewnego x G (0,1).



40 ROZDZIAŁ 2. OPTYMALIZACJA



Rozdział 3

Przybliżanie funkcji ciągłych 
f : R^ —> R sieciami RBF

W rozdziale tym zajmiemy się dwoma zagadnieniami - interpolacją oraz 
aproksymacją funkcji ciągłych d zmiennych. W obydwu zagadnieniach idzie o 
przybliżenie funkcji ciągłej f : Rd —> R, która zadana jest za pomocą zbioru 
dyskretnego Z =

3.1 Interpolacja oraz aproksymacja za pomocą re- 
gularyzacji Tikhonova

W zagadnieniu interpolacji zbiór Z jest taki, że

(3-1)

Natomiast w wypadku aproksymacji dopuszczamy zaburzenie wartości funkcji / na 
poziomie e, tzn.:

= yt + di, i |5j| < e i = 1,..., N. (3-2)

Rozwiązania powyższych zagadnień poszukujemy w zbiorze funkcji postaci

N Q
sf,z^ = । |x - Xi 11)+22W

i=l j=l
(3.3)

gdzie 0 jest bazową funkcją radialną natomiast jest bazą
przestrzeni wielomianów d zmiennych stopnia nie wyższ^o niż m.

Warunki istnienia oraz jednoznaczności rozwiązania zagadnienie interpolacji 
sprowadzają się do odpowiedzi na pytanie o odwracalność macierzy układu

pt oy^by^oy (3-4)

41
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gdzie A = i P = Warunki jakie musi spełniać
zbiór X = {xi}^15 funkcja oraz stopień m przestrzeni wielomianów 7FTO(Rd) po 
raz pierwszy zostały podane w [22],

Metodą rozwiązania zagadnienia aproksymacyjnego, jaką zajmiemy się w ninie­
jszym rozdziale, jest metoda regularyzacji Tikhonova a jej korzenie sięgają prac nad 
problemami źle postawionymi (patrz [38] oraz referencje tamże). Zregularyzowane 
rozwiązanie zagadnienia aproksymacyjnego jest poszukiwane w przestrzeni Hilberta 
H. Operator ograniczeń jest definiowany za pomocą innej przestrzeni unormowanej 
Q, dla której określony jest liniowy operator L : H —* Q. Operator ograniczeń 
J : H —* R określony jest wówczas jako J(s) = ||Ls||^. Zagadnienie regularyzacji 
polega na znalezieniu dla ustalonej wartości parametru A > 0, funkcji s* G H postaci 
(3.3), która jest rozwiązaniem zagadnienia minimalizacyjnego

min < 
sen

J2[/(xj)-s(xj)]2 + AJ(s) 
j=i

(3-5)

Jeśli przyj mierny, że J(s) = ||s||ę 
układu

( A +XI
\ pT

to zagadnienie to sprowadza się do rozwiązania

(3.6)

dla ustalonej wartości parametru A > 0. Warunki istnienia i jednoznaczności 
rozwiązania tego zagadnienia podała Wahba [40]. Oczywiście kluczowym zagadnie­
niem jest tu wybór wartości parametru A. Dalej omówimy trzy metody wyboru 
wartości tego parametru - dwie znane z literatury oraz jedną wprowadzoną przez 
nas.

3.2 Radialne funkcje bazowe
Niech 7rm(R^) oznacza przestrzeń wielomianów d zmiennych stopnia nie większego 
niż m. Rozróżniamy radialne funkcje bazowe dodatnio określone oraz warunkowo 
dodatnio określone. Podajemy za [9] definicję obu klas.

Definicja 3.
Mówimy, że funkcja 0 : R —> R jest całkowicie monotoniczna, jeśli

> o r = 1,2,... (3-7)

Twierdzenie 4. (patrz [9])
Przy założeniu, że punkty w zbiorze X są różne, macierz A jest dodatnio określona, 
jeśli funkcja f> z centrum w c G Rd jest taka, że dla r = ||x — c||, funkcja fĄ/r) jest 
całkowicie monotoniczna i nie stała.
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Definicja 4.
Mówimy, że funkcja 0 : Rd —> R jest warunkowo dodatnio określona stopnia k, jeśli 
dla każdego zbioru punktów X C Rd forma kwadratoiua

N N

22 22 WiWk^i - (3.8)
i=l k=l

jest nieujemna dla wszystkich niezerowych które spełniają

N22 w(xż) O, (3.9)
i=l

gdzie p(x) jest dowolnym wielomianem d zmiennych stopnia nie większego niż m. 
Mówimy, że funkcja $ jest ściśle warunkowo dodatnio określona stopnia m, jeśli 
powyższa, forma kwadratowa jest zawsze dodatnia.

Twierdzenie 5. (patrz [9])
Dla funkcji które są warunkowo dodatnio określona stopnia m mamy, że funkcja

(3.10)

jest całkowicie monotoniczna.

Najczęściej używanymi w praktyce funkcjami radialnymi w rozwiązaniu 
zagadnień zagadnień interpolacji i aproksymacji funkcji są: spośród funkcji ściśle 
dodatnio określonych tzn. takie, że m = 0 (patrz [43], [32])

0(r) (r2 + c2)^, 0 < 0, 
o

e~ar , a > 0,
(1 — r)^_(4r T 1),

oraz spośród warunkowo dodatnio określonych stopnia m funkcje

0(r)
0(r)

(—Ij^+^logr, 0 G 2N, gdzie m = /3/2 + 1, 
r^ (3 G R>0/2N, gdzie m = \0/2\ + 1,
( —l)^(r2+c2)^, /? > 0 gdzie

Cechą charakterystyczną funkcji ściśle dodatnio określonych jest ich wykres w 
kształcie „dzwonu” (ang. bell-shaped) oraz lim,.-^ 0(r) = 0. Dla funkcji warunko­
wo dodatnio określonych czyli takich, że m > 0 mamy natomiast lim,.-^ 0(r) —* oo.

Dla funkcji warunkowo dodatnio określonych aby macierz układu (3.6) była 
macierzą nieosobliwą wymagane jest, aby zbiór X spełniał warunek unisolwentności 
względem przestrzeni 7rm(Rrf).
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Definicja 5. (unisolwentność zbioru X)
Mówimy, że zbiór punktów X = {x15 C Rd; gdzie N > Q = dim7rm(Rd)
jest unisolwentny względem przestrzeni 7rm(Rd) jeśli wielomian zerowy jest jedynym 
wielomianem z przestrzeni 7rm(Rd), który znika na wszystkich punktach X jednocze­
śnie.

Warunek ten mówi, że zbiór punktów X na tyle dobrze próbkuje przestrzeń Rd, 
w każdym wymiarze, że możliwe jest skonstruowanie wielomianu interpolacyjnego 
d zmiennych pełnego stopnia m. Przykładem zbioru, który nie jest unisolwenty 
względem ^(R**) jest zbiór 6 punktów położonych na okręgu. Na takim zbiorze 
nie można zbudować kwadratowego wielomianu interpolacyjnego.

3.3 Przestrzeń natywna
Przestrzeń funkcji, które można aproksymować za pomocą rozwinięcia (3.3) dla 
ustalonej (warunkowo) dodatnio określonej funkcji radialnej $(x, y) = ^(||x — y|h) 
jest przestrzenią Hilberta H z ustalonym iloczynem skalarnym (•, zawierającą 
samoreprodukującą funkcją jądrową. Ograniczenia błędu aproksymacji jakimi się 
zajmiemy w następnym paragrafie są postaci

\f - < CF^x)mn

gdzie norma || • Uh jest normą generowaną przez iloczyn skalarny (•, C > 0 jest 
stałą , h(x) jest miarą gęstości danych a F jest funkcją ciągłą.

Niniejszy paragraf został przygotowany na podstawie [32] i [33].

3.3.1 Przestrzeń Hilberta z samoreprodukującą funkcją 
jądrową

Niech Q C Rd będzie dziedziną funkcji rzeczywistych, tworzących przestrzeń Hilberta 
H z iloczynem skalarnym (•, -)w. Załóżmy ponadto, że dla każdego x gQ funkcjonał 
wartościowania w punkcie óx : f —* /(x) jest ciągły w H i.e.

5X G H* dla każdego x G Q,

gdzie H* jest przestrzenią dualną do H, tzn. przestrzenią operatorów liniowych z H 
w R.

Twierdzenie 6. (patrz [32])
Jeśli przestrzeń Hilberta funkcji określonych na zbiorze Q zawiera ciągły funkcjonał 
wartościowania w punkcie to zawiera symetryczną funkcję nazywaną reprodukującą 
funkcją jądrową Q x Q —> R o własnościach

$(x, •) G H
/(x) = (/, £(x,-))w

^(x,y) = ($(x,-),$(y,-))w = £(y,x)
$(x,y) = = #(y,x)
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dla wszystkich x, y 6 fi, f E Ti.

3.3.2 Przestrzeń natywna

Definicja 6.
Jeśli symetryczna (warunkowo) dodatnio określona funkcja $ : fi x fi —> R 
jest reprodukującą funkcją jądrową w przestrzeni Hilberta Ti funkcji o wartościch 
rzeczywistych określonych na zbiorze fi, to przestrzeń Ti nazywamy przestrzenią 
natywna generowana przez funkcję jądrową $ i oznaczamy ją A/$(Rd).

Jednoznaczność przestrzeni natywnej generowanej przez funkcję $ opisywana jest 
następującym twierdzeniem.

Twierdzenie 7. (patrz [32])
Przestrzeń natywna Ti = A/<i>(Rd) generowana przez daną (warunkowo) dodatnio 
określoną funkcję $ , o ile istnieje, jest określona jednoznacznie. Ponadto pokrywa się 
z domknięciem przestrzeni skończonych kombinacji liniowych funkcji $(x, •) wzglę­
dem iloczynu skalarnego

($(x, •), #(y, -Ńn = $(x, y) dla każdego x, y E fi.

Twierdzenie 7 mówi, że przestrzeń natywna generowana przez radialną funkcję 
bazową jest domknięciem przestrzeni składającej sie z funkcji postaci

/w := -Xj) Wj E R j = 1,..., N.
7=1

Iloczyn skalarny w tej przestrzeni zdefiniowany jest jako

N M

(■, •)« = (/wtn, fwm^ := (3-11)
7=1 i=i

gdzie /w(i) jest funkcją interpolującą funkcję f na zbiorze X = {x!,...,X2v} 
natomiast f^ jest funkcją interpolującą funkcję f na zbiorze Y = {yb ... ,yw}- 
Do udowodnienia ograniczeń błędów, które przytaczamu w następnym paragrafie 
potrzebne jest ponadto założenie o funkcji f, że jej transformacja Fouriera f jest 
zdominowana przez transformację Fouriera $ funkcji $(r) = f>(\|r| |2) w sensie

ldt < oo. (3-12)
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Założenie to oznacza, że iloczyn skalarny (3.11) można zapisać w postaci całki 
Lebesgue’a

G, — (fwW, /wC2))*

Mając daną dodatnio określoną funkcję interesuje nas więc pytanie, jakie 
funkcje należą do przestrzeni natywnej generowanej przez funkcję 4>. Odpowiedź 
w ogólności można znaleźć w [32], My ograniczymy się do przestrzeni, które 
zawierają funkcje, które mogą być funkcjami celu w procesie optymalizacyjnym. Aby 
można było użyć algorytmu bezgradientowego funkcja celu musi być co najmniej 
ciągła. Algorytmy gradientowe lub drugiego rzędu wymagają ciągłości pochodnych 
kierunkowych oraz cząstkowych drugiego rzędu odpowiednio.

Dalej omówimy więc przestrzeń natywną, która zawiera funkcje całkowalne 
z pewną potęgą, przestrzenią taka, jest przestrzeń Sobolewa. Pokażemy jakie 
dodatnio określone funkcje generują przestrzenie natywne izomorficzne z przestrze­
niami Sobolewa odpowiedniego rzędu. Przestrzenie Sobolewa odpowiednich rzędów 
zawierają przestrzenie C(Rd), C'1(Rd) i C2^^. Na koniec zajmierny się przestrze­
nią natywną generowaną prze funkcje Gaussa. Jest to przestrzeń często używana w 
zastosowaniach praktycznych. Również w naszym zastosowaniu aproksymacja jest 
konstruowana przy użyciu funkcji Gaussa.

3.3.3 Przestrzenie Sobolewa
Przestrzeń Sobolewa definiujemy za pomocą opratora różniczkowania kierunkowego 
Da, 

gai da2 dad
D =

gdzie a = a-i + «2 + • • • + a,/ i Oj G N.

Definicja 7. (Przestrzeń Sobolewa całkowitego rzędu)
Przestrzeń Sobolewa W£(ĄŁ) określamy jako przestrzeń funkcji u : Q —> R, dla 
których Dau G LP(Q), |aj < k. Jest to (semi-)przestrzeń Hilberta z (semi-)normą 
określoną odpowiednio

■—

i/p

oraz ll^llw^(Q)
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Definicja 8. (Przestrzeń Sobolewa ułamkowego rzędu)
Przestrzeń Sobolewa +s(Q), 1 < p < oo,k G No,O < s < 1 określamy jako 
przestrzeń funkcji u : Q —» R, dla których poniższe normy są skończone

lMlw£+s(n)

Załóżmy, że G L1(Rd) A C(Rd) spełnia

q(1 + ||<r < $ < c2(l + oj G Rd (3.15)

dla r G R i t > d/2 oraz dwóch stałych dodatnich Ci < c2. Wówczas przestrzeń 
natywna A/$(Rd) odpowiadająca funkcji $ pokrywa się z przestrzenią Sobolewa 
Wf (Q), i norma w przestrzeni natywnej i norma w przestrzeni Sobolewa są 
równoważne.

Funkcjami 4>, które spełniają powyższy warunek są ściśle dodatnio określone 
funkcje Wendlanda (patrz [43]) oraz np. funkcje typu thin piąte splines $(r) = 
(—1)^+11|r112^log ||r||, Z? G 2N, dla których

ł>H = 2d+2p-^d/2V(d/2 + (3)(3\^

(patrz [33]).

3.3.4 Przestrzeń natywna dla funkcji Gaussa
Dla funkcji Gaussa $(r) = e "H^ll2 mamy

$(u;) = (-V/2 e~INI2/(M. 
\a/

Wydaje się, że taka postać transformacji Fouriera funkcji $ może być argumentem 
przeciw aproksymacji za pomocą funkcji Gaussa, gdyż każda funkcja z przestrzeni 
natywnej A/$(Rd) funkcji musi być zdominowana przez transformację Fouriera $ w 
sensie (3.12). Warunek ten spełniają np. wszystkie funkcje o ograniczonym widmie, 
a przestrzeń tych funkcji odgrywa istotną rolę w teorii próbkowania, w szczególności 
w twierdzeniu Shannona o próbkowaniu (patrz [42]).

3.4 Regularyzacja Tikhonova
Zagadnienie treningu sieci z radialnymi funkcjami bazowymi jest zagadnieniem źle 
postawionym (ang. ill-posedj w sensie Hadamarda [17]. Zadanie jest zadaniem źle 
postawionym jeśli nie jest zadaniem dobrze postawionym, czyli gdy nie jest spełniony 
co najmniej jeden z warunków następującej definicji.
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Definicja 9.
Zadanie nazywamy dobrze postawionym jeśli zachodzą następujące warunki:

1. rozwiązanie zadania istnieje,

2. rozwiązanie zadania jest jednoznaczne,

3. rozwiązanie zadania zależy w sposób ciągły od danych.

Zadanie treningu sieci z radialnymi funkcjami bazowymi przez rozwiązanie 
zagadnienia interpolacyjnego nie spełnia zazwyczaj warunku 3. Wynika to z 
faktu, że macierz interpolacyjna A jest macierzą bardzo źle uwarunkowaną. Złe 
uwarunkowanie jest większe dla funkcji dodatnio określonych i nieskończenie 
wiele razy różniczkowalnych tzn. np. dla funkcji Gaussa czy odwrotnej funkcji 
multikwadratowej.

Dla sieci trenowanych przez rozwiązanie zagadnienia aproksymacyjnego nie jest 
spełniony ponadto warunek 2.

Rozważmy metodę regularyzacji Tikhonova z operatorem ograniczeń L € 
JRnxA\ (n < N). Polega ona na rozwiązaniu zagadnienia minimalizacyjnego

min {pw - z/||2 + A2||Zzw||f}, (3.16)

gdzie n jest numerycznym rzędem macierzy A a A E R jest nazywane parametrem 
regularyzacji. Stabilna metoda wyznaczania wektora w omówiona jest w paragrafie 
3.5.

Metoda regularyzacji Tikhonova jest metodą rozwiązywania zadań źle postawio­
nych i została zaproponowana jako metoda rozwiązywania zagadnień odwrotnych 
sformułowanych w postaci całki Fredholma

= [ K(s,tjf(t)dt.
J a

Szukanym rozwiązaniem zagadnienia odwrotnego jest funkcja /(t) dla danej fun­
kcji g{s) i funkcji jądrowej Dyskretyzacja równania Fredholma daje zawsze
macierz źle uwarunkowaną.

Warunkiem wystarczającym na to, aby metoda regularyzacji Tikhonova dawała 
interpretowalne rozwiązanie dla zagadnienia odwrotnego zadanego całką Fredholma 
jest spełnienie dyskretnego warunku Picarda. Warunek ten określamy używając tu 
z wyprzedzeniem oznaczeń z wyprowadzenia rowiązania zadania (3.16) podanego 
w paragrafie 3.5. Dyskretny warunek Picarda mówi, ze ciąg wielkości |ufy|, i = 
1,2, ...,r musi maleć szybciej niż ciąg Uj, i = gdzie Ui oraz er, są
ż-tym wektorem szczególnym i odpowiadającą wartością szczególną odpowiednio 
macierzy A. Jest to warunek, który łączy macierz równania z wektorem prawej 
strony. Dzięki temu, że u[y < ai dla wszystkich i > p dla pewnego p to współczyn­
niki filtrujące zmniejszają w rozwiązaniu wkład wektorów własnych odpowiadają­
cych małym wartościom własnym dla i > p. Dla zadania aproksymacji funkcjami
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Rysunek 3.1: (a) Warunek Picarda dla równania całkowego Fredholma [17], 
(b) Warunek Picarda dla aproksymacji bazowymi funkcjami radialnymi funkcji 
Rosenbrocka dwóch zmiennych.

radialnymi warunek ten nie jest spełniony (patrz rysunek 3.1). Dla zagadnienia 
aproksymacyjnego rzeczywiste zmniejszenie wkładu wektorów własnych zachodzi dla 
ap < A < ap_i i wektorów własnych o indeksach i > p + k, gdzie k jest najmniejszą 
liczbą naturalną taką, że u?+ky > A.

Kluczowym elementem metody regularyzacji Tikhonova jest wybór wartości 
parametru A. Celem jest taki wybór, który zapewni właściwą równowagę pomiędzy 
składnikiem aproksymacyjnym i regularyzacyjnym w wyrażeniu (3.16). Omówymy 
tutaj dwie metody wyboru wartości parametru A z literatury oraz zaproponujemy 
nową metodę.

3.4.1 Metoda uogólnionej walidacji krzyżowej

Najpopularniejszą metodą wyboru parametru regularyzacji A jest metoda uogólnio­
nej walidacji krzyżowej (ang. Generalized Cross Yalidation (GCV)) (patrz [40]). 
Jest to metoda nie wymagająca znajomości a priori zaburzenia danych ani definicji 
dodatkowych parametrów.

Kryterium GCV jest wskaźnikiem określającym przybliżenie minimum predykcy- 
jnego błędu średnio-kwadratowego (Predictwe Mean Sąuare Error) zdefiniowanego 
jako

2=1

który zależy od estymowanej funkcji /.
Niech 4(A)# = (AT A + XI)~1AT oznacza zregularyzowaną macierz odwrotną, 

gdzie A jest macierzą interpolacyjną. Wartość oczekiwaną błędu predykcyjnego T(A) 
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można zapisać jako sumę obciążenia i wariancji

ETW = lB(||A(A)#(/ + e)-/||2)

= ^IKZ-^A^Klp + ^Tr^A)*]2

= 52(A) + CT2/12(A)

gdzie b(X) jest obciążeniem modelu a a2 wariancją natomiast i^ĄX) jest pewną 
funkcją wartości szczególnych macierzy A (patrz [40], [17]).

Dla zagadnienia (3.5) kryterium GCV zdefiniowane jest jako

Eta -
k=l

gdzie

’ 1=1

a aa jest elementem diagonalnym macierzy A(A)#. 
W postaci macierzowej V(A) możemy zapisać

V(A) = ^IIU - - ^(A)*) (3.17)

„Słabe twierdzenie” o zbieżności kryterium GCV (patrz [40]) mówi, że dla N —> 
oo istnieje ciąg A^r, wartości A minimalizujący wartość oczekiwaną kryterium GCV

W(A) =
62(A) + cr2(l — 2^i(A) + /i2(A)) 

(1 + ^i(A))2

które przybliżają wartość A dającą minimum predykcyjnego błędu średnio-kwadra- 
towego

A = argminAET(A).

Dla danych nieregularnych i wolnych od błędów pomiaru metoda ta zawsze daje 
małe A, które stabilizuje obliczanie odwrotności macierzy interpolacyjnej. A mniejsze 
powodują powstanie błędu wynikającego z błędów zaokrągleń.

Rysunek 3.2 pokazuje przykładowy wykres wartości wskaźnika GCV względem 
A.

3.4.2 Metoda L-krzywej
Drugą metodą wyboru parametru regularyzacji jest metoda L-krzywej zapropono­
wana przez Hansena [17] jako narzędzie w rozwiązaniu zagadnień źle postawionych 
metodą regularyzacji Tikhonova.
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Rysunek 3.2: Wykres wskaźnika GCV^X) dla przykładowego zbioru 30 punktów 
danych z dwuwymiarowego procesu optymalizacyjnego.

Metoda ta polega na lokalizacji optymalnego parametru regularyzacji A na 
wykresie normy ||Z/WA||2 względem normy residuum ||Awa — t/||2. Krzywa ta 
zdefiniowana jest na skali logarytmicznej jako

(C(A),?7(A)) = (log||AwA-3/||2,log||L^^

i określa wkład tych wielkości w rozwiązaniu wA w zależności od A.
Rozwiązanie zagadnienia (3.16) dla dowolnego A leży na tej krzywej. Rozwią­

zania dla małego A znajdują się w górnej części wykresu ponad "narożnikiem” 
wykresu. Jeśli A jest duże to rozwiązanie znajduje się w prawej dolnej części wykresu. 
Optymalny wybór parametru A określa rozwiązanie znajdujące się w narożniku 
wykresu. Narożnik wykresu zdefiniowany jest jako punkt o maksymalnej krzywiźnie

= aww-HA)^ 
} ((C(A))2 + (T7'(A))2)3/2 •

2. Obliczyć trój parametryczną krzywą sklejaną trzeciego stopnia <S dla punktów 
(Ci? Aj).

3. Niech 52 oznacza pierwsze dwie współrzędne na krzywej <S takie, że $2 
przybliża L-krzywą. Obliczyć punkt na S? o maksymalnej krzywiźnie i 
odczytać odpowiadającą wartość Aq.

Maksymalizacja funkcji «(A) prowadzi do algorytmu wyboru wartości parametru 
regularyzacji A, dla którego zachowany jest balans pomiędzy ||Awa — ?/||2 i ||LwA||2.

Obliczenie L-krzywej wymaga przeskanowania spektrum wartości szczególnych 
macierzy A co jest operacja czasochłonną. Algorytmy lokalizacji narożnika na 
wykresie opierają się na następującym schemacie.

1. Rozpocząć z kilkoma punktami (Ci,%) po obu stronach narożnika, tzn. dla 
dużego i dla małego A.
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Rysunek 3.3: L-krzywa dla macierzy 
dla przykładowego zbioru 30 punktów 
optymalizacyj nego.

interpolacyjnej dla funkcji Gaussa 
danych z dwuwymiarowego procesu

4. Rozwiązać problem regularyzacyjny dla A = Ao i dodaj nowy punkt do 
(C(A0), ^(Ao), Ao) od zbioru węzłów krzywej S.

5. Przejść od punktu 2 jeśli nie uzyskaliśmy zbieżności.

Dla zagadnień źle postawionych w postaci całki Fredholma dla których spełniony 
jest warunek Picarda metoda L-krzywej daje wyniki zbliżone do metody GCV. 
Dla zagadnień interpolacyjnych oraz aproksymacyjnych dla małych zbiorów danych, 
które nie są zaburzone, takich jakie otrzymujemy z algorytmu optymalizacyjnego, 
metoda L-krzywej okazuje się dawać wyniki gorsze niż metoda GCV. Wynika to stąd, 
że L-krzywa może zawierać co najmniej kilka punktów o dużej krzywiźnie. Pokazuje 
to rysunek 3.3.

3.4.3 Metoda ważonej wariancji gradientu
Wiadomo, że w wyrażeniu ||Aw — ?/||2 + A2||Lw| |2 dla w = wA w zależności 
od wartości parametru regularyzacji A w różny sposób zachowują się składniki 
| |j4wa — ?/||2 (składowa rezydualna) i ||LwA||2 (składowa regularyzacyjna). Gdy 
A —> 0 to maleje część rezydualna natomiast.część regularyzacyjna rośnie i odwrotnie 
wraz ze wzrostem wartości parametru A, rośnie część residualna i maleje część 
regularyzacyjna.

Metoda dyskrepancyjna wyboru parametru A polega na wybraniu największego 
A, dla którego

pwA - ?/||2 < 5e

gdzie 6e jest ustalonym przez użytkownika poziomem odtwarzania całego zbioru 
danych. Oczywiście, gdy dane w zbiorze zawierają błąd to wartość 5e powinna 
odzwierciedlać wiedzę o poziomie błędu danych. W metodzie tej pod uwagę brane 
są jednakowo wszystkie punkty danych zawarte w zbiorze X.
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Rozpatrzmy proces treningu sieci neuronowej s>(x) dla kolejnych malejących 
wartości parametru A za pomocą rozwiązania zagadnienia regularyzacyjnego dla 
nieregularnego zbioru danych. Okazuje się, że w pewnych regionach otoczki wy­
pukłej zbioru danych, gdy A maleje, to odtwarzanie zbioru danych w otoczeniu 
punktu wartościowania maleje szybciej niż w innych regionach otoczki wypukłej 
zbioru danych.

W zastosowaniu sieci neuronowej do aproksymacji funkcji celu w procesach 
optymalizacyjnych praktycznie interesuje nas aproksymacja tylko w bliskim oto­
czeniu punktu wartościowania. Tak więc parametr A możemy wybrać w zależności 
od lokalnego odtwarzania wartości funkcji na zbiorze danych X

W takim duchu zaproponowana została metoda WGV, która jest lokalną 
odmianą metody dyskrepancyjnej. W metodzie tej rozwiązuje się ciąg zagadnień 
regularyzacyjnych dla malejącej wartości parametru A. Wyboru parametru A 
dokonujemy spośród tych wartości, dla których lokalnie jest uzyskane odtwarzanie 
zbioru danych na określonym przez użytkownika poziomie. Lokalne odtwarzanie 
zbioru danych X {Normalized Local Mean Square Error) definiujemy jako wskaźnik

N

NLMSEX^ = 
fc=i

[gA(xfe) ~ yk]2 / 2
y2krk / (3.18)

gdzie rk = ||xfc — x||. Wybór A ograniczamy do takiego zbioru A(x) wartości 
parametru A, dla których NLMSEXz < 8e. Fakt, że zbiór A(x) rzeczywiście 
zależy od punktu wartościowania x pokazujemy na przykładzie zbioru danych 
otrzymanym podczas konstrukcji sieci aproksymującej w algorytmie optymalizacji 
bezgradientowej dwuwymiarowej funkcji Rosenbrocka - patrz rysunek 3.4. Rysunek 
3.4a) przedstawia zbiór danych. Rysunek 3.4b) przedstawia wykresy wskaźnika 
NLMSE dla punktów z otoczenia punktu A oraz dla punktu B w zależności od 
wartości parametru A. Jak widać odtwarzanie zbioru danych na poziomie błędu 
względnego 10~5 dla otoczenia punktu A otrzymujemy na zbiorze A(A) (0,10~8). 
Dla punktu B mamy natomiast przedział A(B) ~ (0,10-11).

Ze zbioru A(x) wybieramy takie A, które minimalizuje funkcjonał ważonej 
wariancji gradientu zdefiniowanej jako

N

WVA,z(x) = 
k=l

(3.19)

gdzie Gx(x) jest uśrednionym gradientem w punkcie x, określonym jako

= (3.20)
k=l k=l

oraz rk = ||xfc — x||2. Ga(x) oraz WGVXz(x) zależą od x jedynie przez skalowanie, 
które wzmacnia wkład punktów xfc najbliżej położonych od punktu x. Minimum 
funkcjonału WGVx,z(x) względem parametru A € A(x) określa ten model, dla
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Rysunek 3.4: (a) Zbiór 30 punktów otrzymanych ze ścieżki optymalizacyjnej dla 
funkcji Rosenbrocka dwóch zmiennych, (b) Lokalne odtwarzanie zbioru treningowego 
w otoczeniu punktu A oraz punktu B.

którego sA(x) ma najmniejsze oscylacje w otoczeniu punktu x, gdyż odchylenie 
gradientu od uśrednionego gradientu G>(x) na punktach x*. najbliżej położonych 
od punktu x jest najmniejsze. Na rysunku 3.5 pokazane są wykresy funkcjonału 
WGVx,z(x) odpowiadając wykresom NLMSEx^{^) na rysunku 3.4 b) dla punktów 
położonych w otoczeniu dwóch różnych punktów ze zbioru Z.

Rysunek 3.5: WGV\^^ dla punktu A oraz punktu B z rysunku 3.4a). Symbolem * 
na wykresie oznaczona jest wartość A wskazane przez metodę, dla NLMSEx,z(x) < 
10~4.

Jak widać lokalność tych wskaźników jest uzyskiwana dzięki skalowaniu składnika 
sumy dla ż-tego punktu przez kwadrat jego odległości od punktu wartościowania.
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X for approximation constructed with WGV

Rysunek 3.6: a) Błąd aproksymacji dla A wybranego przez wskaźnik WGV dla 
NLMSE = 5.0 • 10“6, b) Wybrana wartość A - jak widać w regionie uboższym 
w dane wskaźnik sugeruje większą wartość parametru A.

approximation error of the approximation construced with GCV approximation error of the approximation constructed with L-curve

Rysunek 3.7: a) Błąd aproksymacji dla A « 10 13 wybranego przez wskaźnik GCV, 
b) Błąd aproksymacji dla A « 10-8'5 wybranego za pomocą L-krzywej.

3.5 Stabilna metoda wyznaczania przybliżenia
Układ (3.4) rozwiązujemy przez rozwiązanie dwóch układów, mianowicie

Aw + Pb = y, 
PTb = 0.

Podobnie układ (3.6) rozwiązujemy przez rozwiązanie

( (A + LX)w + Pb = y, 
| PTb = 0.

(3.21)

(3.22)

Z równania PTb = 0 wyznaczamy składowe wektora b a następnie wstawiając je do 
równania pierwszego otrzymujemy układ o macierzy A lub A + LX odpowiednio.

Gdy macierz A nie jest zbyt duża, tak jak np. w aproksymacji funkcji celu, gdy 
ilość danych jest ograniczona, jako narzędzie stabilnego rozwiązywania powyższych 
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układów może zostać użyty rozkład macierzy A względem wartości szczególnych 
(SVD - singular value decomposition). Rozkład ten istnieje dla dowolnej nieosobliwej 
macierzy A i jest określony jako

A = USVT

gdzie U, V 6 są macierzami ortogonalnymi a S = diag(<Ti,..., oraz 
mamy porządek > • • • > macierzy szczególnych macierzy A. Rozkład
SVD jest jednoznaczny do znaku kolumn macierzy U i NT. Gdy zdefiniujemy 
y' ■= y — Pb, to wektor w dla zagadnienia interpolacyjnego obliczamy za pomocą 
rozwinięcia względem wektorów szczególnych macierzy A

w = vs 1uV = 22
(R

Gdy macierz A jest bardzo źle uwarunkowana, tak jak jest to np. dla funkcji 
Gaussa często mamy ai < e dla pewnego i < N, gdzie e jest dokładnością 
reprezentacji zmiennopozycyjnej. Wówczas zamiast całego rozwinięcia, którego 
końcowe wyrazy zawierają zaburzoną informację pochodzącą z błędu reprezentacji 
zmiennopozycyjnej wartości szczególnych. W takiej sytuacji ograniczamy się do 
obcięcia do r wyrazów, dla których > e (i = 1,..., r).

Rozwiązanie zagadnienia aproksymacyjnego można natomiast zapisać za pomocą 
uogólnionego rozkładu SVD (GSVD) macierzy A i L. Rozkład GSVD dla macierzy 
A i L definiujemy (patrz [17]) jako

A = U L = VX~1.

Kolumny macierzy U G oraz U G Rrxr są ortonormalne, natomiast kolumny 
macierzy X G R7'7'^ są ortogonalne względem macierzy ATA

oraz spełniają

xtatax = o
Jn-t

XtLtLX = M2 0
0 0

gdzie macierze S = diag(<7i,.. .,aĄ oraz M = diag(Mi,...,pĄ mają na przekątnej 
nieujemne elementy uporządkowane tak, że

0 < (Ti < ■ • • < ar < 1, 1 > Mi > ' • • > Lr > 0.

znormalizowane tak, że
<^ + ^ = 1, i = r-

Wówczas
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nazywamy uogólnionymi wartościami szczególnymi. Jeśli macierz A jest pełnego 
rzędu to rozwiązanie wA powyższego problemu zapisać można za pomocą rozkładu 
SVD

wA = XF ]U y,
\ o lN-r /

gdzie macierz F — diag(/j). Elementy diagonalne fi nazywają się współczynnikami 
filtrującymi.

Rozwiązanie zregularyzowane wA oraz odpowiadający mu wektor residuów y — 
rtwA można zapisać więc jako

T T N

uTy^i
A:=r+1

(3.23)

i

Lwa Vi

oraz

y - dwA = - f^uTym + (IN - UUT)y.
i=l

Współczynniki filtrujące zapisują się

Li , 1
2 । \ 2 $ 1,...,r.

Ti + A2

Współczynniki filtrujące redukują w wA wpływ składowych odpowiadających 
wartościom szczególnym Oi < ap takim, że < A < poniewraż fijoi << l/cr, 
dla każdego p < i < N. Tak więc składowe odpowiadające małym wartościom 
szczególnym, czyli te które wzmacniają zaburzenie danych, są odfiltrowywane. 
Zauważmy że i tutaj możemy zastosować obcięcie gdy 7ż < e lub poprostu < e.

3.6 Ograniczenia błędu przybliżenia
W niniejszym paragrafie zajmiemy się dwoma rodzajami ograniczeń błędów7 
przybliżeń sieciami o radialnych funkcjach aktywacji dostępnych w literaturze. 
Pierwsza grupa ograniczeń to ograniczenia wymagające założeń o gęstości zbioru 
danych X natomiast druga grupa to ograniczenia nie wymagające tego typu założeń.

Głównymi elementami wyprowadzeń ograniczeń z obydwu grup są:

1. własność odtwarzania wielomianów przez proces aproksymacyjny,

2. funkcjonał potęgowy,

3. funkcje Lebesąue.
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W kolenych paragrafach omówimy więc najpierw po kolei te pojęcia.
Ograniczenia błędu omawiane w tym rozdziale zależą od gęstości zbioru X w 

dziedzinie Q mierzonego za pomocą wskaźnika wypełnienia (ang. fili distance). Zanim 
więc przejdziemy do omówienia głównych elementów ograniczeń podamy definicję 
tego wskaźnika w formie lokalnej i globalnej oraz podamy jego własności. W rozdziale 
tym podamy również definicję wskaźnika wprowadzonego przez nas i mierzącego 
jakość otaczania punktu wartościowania przez punkty ze zbioru danych. Pokażemy 
również jak jakość aproksymacji radialnymi funkcjami bazowymi zależy od tego 
wskaźnika.

3.6.1 Wskaźniki gęstości danych
W rozdziale tym omówimy dwa wskaźniki mierzące lokalną jakość wypełnienia 
dziedziny Q przez punkty zbioru danych X = {xj}^i-

Norma siatki

Norma siatki (ang. mesh norm) jest wielkością określającą jak dobrze zbiór 
danych X C fi wypełnia dziedzinę Q. Jest definiowana w dwóch wersjach

1. lokalnej [29] - dla parametru p > 0 dla każdego punktu x 6 Q

'.= max min ||y - Xi||2, (3.24)
y£B(x,p)nQ xj€X

gdzie B(x, p) oznacza kulę o środku x i promieniu p,

2. globalnej [43]
hx,Q := max min | |y - x,]]2. (3.25)

y€Q xj€X

W wersji lokalnej wskaźnik ten określa promień największej kuli nie zawierającej 
punktów danych ze zbioru X i zawartej w kuli o środku x i promieniu p. W wersji 
globalnej określa promień największej kuli nie zawierającej danych ze zbioru X 
zawartej w dziedzinie fi.

Mając dany zbiór X oraz promień p od obliczenia lokalnej normy siatki 
można wykorzystując algorytm triangulacji Delaunaya [14], Niestety konstrukcja 
triangulacji Delaunaya jest możliwa w przestrzeni tylko, gdy zbiór danych złożony 
jest z punktów w pozycji ogólnej tzn., nie zawiera d + 1 punktów współliniowych ani 
d + 2 punktów położonych na okręgu. Ten warunek nie będzie zazwyczaj spełniony, 
gdy zbiór danych pochodzi ze ścieżki algorytmu optymalizacyjnego.

Rysunek 3.8 pokazuje przykładowy wykres wskaźnika hPix,Q dla 30 punktów 
przykładowego zbioru danych dwuwymiarowych.
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Rysunek 3.8: dla p = 10 dla przykładowego zbioru 30 punktów danych z
dwuwymiarowego procesu optymalizacyjnego.

Wskaźnik otoczenia 7x(x)

Drugim rozważanym przez nas wskaźnikiem mierzącym lokalną jakość rozkładu 
punktów zbioru X = w otoczeniu punktu x jest wskaźnik mierzący długości 
odcinków xx, (ż = 1,...,X) i kąty ZxjXXj (i,j = 1,..., N; i < j) między 
punktami zbioru X. Lokalność takiego wskaźnika może być uzyskana w ten sposób, 
że nadaje się większą wagę krótszym odcinkom xx, oraz większym kątom Zx,xx7. 
Wskaźnik o takich własnościach definiujemy następująco [3] :

N N
7x(x) = a,,W„/£ (326)

i,3 i,3
j<i j<i

gdzie

aij = ’ dla = ||x.; - xj||2, i = ||x-Xi||2,

oraz wagi są zdefiniowane jako

1
B + D ’

W przeciwieństwie do wskaźników zdefiniowanych w paragrafie 3.6.1, które zależą 
od gęstości wypełnienia kuli B(x, p) (w wypadku hpp^Q) oraz gęstości wypełnienia 
całej dziedziny Q przez punkty zbioru X (w wypadku hx,o)5 wskaźnik 7x(x) mierzy 
jak dobrze punkty danych otaczają punkt x. Wartość 7x(x) jest tym większa, im 
więcej punktów znajduje się w bliskim otoczeniu punktu x i są ułożone tak, że 
występuje dużo kątów rozwartych Zxj,x, Xj (i,j = i < j) w bliskim
otoczeniu punktu x.

Własności takie wskaźnik 7x(x) zawdzięcza własnościom funkcji i Wij. 
Funkcje największą wartość równą 1 przyjmują dla punktów x położonych na 
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odcinku xjxj. Maksimum jest więc osiągane, gdy kąt Zx,,x, x7- = 7r. Wzmocnienie 
wpływu par punktów bliżej położonych punktu x jest uzyskiwane przez funkcję 
wagową która maksymalną wartość równą 1/dij przyjmuje również na odcinku 
xjxj. Im bliżej więc odcinka x?rXj i im mniejsze dij tym większy wpływ pary punktów 
xi?Xj na wartość wskaźnika dla punktu x.

Rysunek 3.9 pokazuje wykres funkcji oraz natomiast rysunek 3.10 
pokazuje wykres wskaźnika 7x(x) dla 30 punktów przykładowego zbioru danych 
z procesu optymalizacyjnego dwóch zmiennych.

Rysunek 3.9: Wykres funkcji aij. Maksymalna wartość przyjmowana jest na odcinku 
Xj,Xj. Wykres funkcji wagowej jest analogiczny. Maksymalna wartość funkcji 
wagowej również jest przyjmowana na odcinku Xj,xj i wynosi I/dij.

70 80 90 100 110 120 130

Rysunek 3.10: Wykres wskaźnika 7x(x) dla przykładowego zbioru 30 punktów 
danych z dwuwymiarowego procesu optymalizacyjnego.

3.6.2 Odtwarzanie wielomianów
Podstawowym narzędziem używanym w dowodach ograniczeń błędów interpolacji 
oraz aproksymacji jest własność odtwarzanie wielomianów. Odtwarzanie 
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wielomianów przez proces interpolacyjny/aproksymacyjny definiuje się nastę­
pująco:

Definicja 10.
Proces, który określa dla każdego zbioru X = {xi,...,Xat} Q fi rodzinę funkcji 
Uj = u* : fi —* R, 1 < j < N zapewnia lokalne odtwarzanie wielomianów stopnia l 
na zbiorze fi, jeśli istnieją stałe ho, Ci, > 0 takie, że spełnione są warunki

1. Y^=iP(.xj)uj = P każdego p E 7p(Rd)|fi, 

lwjl — dla każdego x E D,

3. Ujfx) = 0, jeśli ||x - xJ||2 > C2hx,n ixE O, 

dla każdego X dla którego h^.n < ho.

Jeśli proces gwarantuje lokalne odtwarzanie wielomianów to ograniczenie błędu 
aproksymacji funkcji tym procesem opisuje następujące twierdzenie.

Twierdzenie 8. (patrz [43])
Niech fi C Rd jest ograniczony. Niech fi* będzie domknięciem zbioru 
Oy_e^B{x,C2ho). Zdefiniujmy

N

Sf.x =
j=l

gdzie {uj}^ jest lokalnym, odtwarzaniem wielomianów stopnia m na zbiorze fi. 
Wówczas jeśli f E to istnieje stała c > 0 zależna tylko od stałych z
definicji lokalnego odtwarzania wielomianów, taka że

l/W - S/,x(x)l < CT^I/lc^n.) (3.27)

dla każdego zbioru X o gęstości hx,n < ho. Seminorma po prawej stronie powyższej 
nierówności jest określona

\f\c™+W := , \\Daf\\Loo(n.),
|a|=m+l

gdzie operator D jest zdefiniowany w paragrafie 3.3.3.

Na początku zadajmy sobie pytanie, jakie warunki muszą spełniać zbiory X i fi, aby 
możliwe było lokalne odtwarzanie wielomianów stopnia nie większego niż m.

Warunkiem jaki musi spełniać zbiór X jest unisolwentność względem przestrzeni 
7rm(R^). Natomiast dziedzina fi musi spełniać warunek stożka wewnętrznego.
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Definicja 11.
Mówimy, że zbiór Q C Rd spełnia warunek stożka, jeśli istnieje kąt 9 E (0,tf/2) i 
promień r > O, taki, że dla każdego x G Q istnieje wektor jednostkowy £(x) taki, że 
stożek

C'(x,£(x),0,r) := {x + 7?y : y G ||y||2 = l,yr£(x) > cos9,p G [O, r]} (3.28) 

zawiera się w Q.

Twierdzenie 9. (patrz [43])
Załóżmy, że Q C Rd jest zwarty i spełnia warunek stożka wewnętrznego z promieniem 
r > O i kątem O E (O, 7t/2). Niech m E N będzie ustalone. Załóżmy, że h > O i zbiory 
X spełnia

h 5 ^””1 r (3-30)
4(1 + sm O^rn2

2. dla każdej kuli B(x, h) C Q istnieje punkt Xj G X A B(x, h),

to dla każdego xG Q istnieją liczby rzeczywiste takie, że

N
P^ = ^2uj^P^ (3-31)

J=i

dla każdego p E 7rm(Rd). Ponadto

N

£|“>WI<2 (3-32)
1=1

Dowód tego twierdzenia wykorzystujący pojęcie zbioru normującego oraz twierdze­
nie Hanha-Banacha o ograniczoności normy operatora liniowego podał Jetter et al 
w pracy [19]. Twierdzenie to określa stałe w definicji lokalnego odtwarzania wielo­
mianów

16(1 + sin
3 sin2 9

(3.33)

C1 = 2, C2 =

ho C2

Zależność wielkości h i h0 od stopnia wymaganego odtwarzania wielomianów jest 
pokazana na rysunku 3.11.
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Rysunek 3.11: Zależność wskaźnika h w (3.30) oraz h0 w (3.33) od wymaganego 
stopnia odtwarzanych wielomianów w kuli jednostkowej.

3.6.3 Funkcjonał potęgowy
Dowody wszystkich ograniczeń błędów interpolacji i aproksymacji, które wykorzy­
stują funkcjonał potęgowy wychodzą od ogólnej postaci błędu interpolacji

1/ - s^j\ < Ą>,x(x)11/| ,
gdzie P^x jest funkcjonałem potęgowym, który zdefiniujemy w tym paragrafie. 
Funkcjonał potęgowy jest ściśle związany z reprezentacją Lagrange’a funkcji inter­
polującej dane ze zbioru Z. Zacznijmy więc od twierdzenia o istnieniu reprezentacji 
Lagrange’a

Twierdzenie 10. (patrz [30])
Załóżmy, że $ jest warunkowo dodatnio określona względem przestrzeni 7rm(Rd) na 
zbiorze Q C Rd. Załóżmy że X = {xi,..., x^} jest 7rm(RdĘunisolwentny. Wówczas 
istnieją funkcje u* G Vx takie, że u*(x.k) = djk, gdzie

N N
Vx := 7rm(Rd) + { = 0,p G 7rm(Rd)}.

j=i j=i

Ponadto istnieją funkcje v*, 1 < j < Q takie, że wektory u*(x) =
[?ii(x),... ,uN(x)]T G Rw i v*(x) = [vi(x),..., uq(x)]7’ G Rq tworzą rozwiązanie 
układu

(A P \ f u*(x) \ ( R(x) \ ( .
y PT 0 y G v*(x) ) \ S'(x) J \ ■ )

gdzie

A =
p =

R^) = [$(x,x1),...,<b(x,x7V))]r G R^, 
S(x) = [pi(x),...,pQ(x))]T G Rq.
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Na podstawie powyższego twierdzenia funkcję interpolującą możemy zapisać w 
postaci

N
Sf,x = (3-35)

j=l

Definicja 12.
Załóżmy, że Q C Rd jest zbiorem otwartym natomiast $ 6 C^^D x Q) jest 
warunkowo dodatnio określoną funkcją jądrową na zbiorze D względem 7rm(Rd). Jeśli 
X = {xi,...,xjv} C Q jest -Kmf^d)-unisolwentny, wówczas dla każdego x G Q 
funkcjonał potęgowy jest zdefiniowany jako

N N
[Ą,x(x)]2 := $(x,x) - 2 J2«*(x)$(x,xj) + «*(x)u*(x)$(xi,xJ)

j=l i,j=l

Jeśli zdefiniujemy dla x G Q formę kwadratową
N N

Q{u) := £(x,x) - 2y^uj0(x, x^) + Xj)

J = 1 i,3=1

to

[^,X(x)]2 = Q(u*(x)) =
N

G(-’x) -
3=1

(3.36)

gdzie G(-,x) jest ściśle dodatnio określoną funkcja zdefiniowaną następująco

Q
G(-,x) := #(.,x) - ^2pfc(x)0(-,xfe). 

k=l

Wyrażenie (3.36) jest więc normą funkcjonału wartościowania błędu interpolacji 
(3.3) w punkcie x G Q w przestrzeni natywnej generowanej przez bazową funkcję 
radialną $.

3.6.4 Funkcja Lebesgue’a
Gdy mamy reprezentację Lagrange’a (3.35) lub odtwarzanie wielomianów zgodnie z 
twierdzeniem 9, to funkcja Lebesgue’a zdefiniowana jest jako

Mx)l
3=1

(3.37)

Funkcja ta jest istotna w analizie błędu interpolacji i aproksymacji funkcjami 
radialnymi ponieważ za jej pomocą ogranicza się funkcjonał potęgowy. W wypadku 
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interpolacji funkcjami Gaussa Schaback [34] oraz Larsson et al. [20] niezależnie 
dowodzą, że gdy szerokość funkcji Gaussa zdąża do nieskończoności to funkcja 
Lebesgue’a (3.37) zdąża do wielomianu.

W twierdzeniu 9 o odtwarzaniu wielomianów z przestrzeni 7rm(Rd), mamy że 
funkcja Lebesgue jest ograniczona • ■ .

N
^Mx)l<C,=2, (3.38)
j=l

przy czym stała Ci zależy od gęstości zbioru X tzn. od ho. Natomiast ho zależy od 
m tak jak o(l/m2). Do dowodu tych zależności (patrz [19], [43]) jak i jednorodnego 
ograniczenia przez stałą 2, używa się nierówności Markowa o wielomianach i ich 
pochodnych, która zachodzi dla dowolnego wielomianu p € 7rm(Rd)

\p\t)\ < ^HpIM-U], t E [-1,1]. (3.39)

Z dowodu wiemy, jak dobrze zbiór X musi wypełniać dziedzinę fi, aby zachowane 
było jednorodne ograniczenie Ci = 2.

Jeśli chcemy, aby ho zależało od m tak jak o(l/m) to niestety musimy poświęcić 
jednorodne ograniczenia funkcji Lebesgue’a stałą 2. Mówi o tym następujący lemat 
i twierdzenie.

Lemat 6. (spektralna wersja nierówności Markowa - patrz [43])
Niech 71 = 2 oraz ^d = 2d(l + 7d-i) dla d = 2, 3,.... Niech m i q będą liczbami 
naturalnymi takimi, że q > yd(m + 1)- Niech fi będzie sześcianem w Rd. Niech 
dziedzina fi będzie podzielona na qd równych sześcianów rozłącznych. Jeśli X C fi 
jest zbiorem N > qd punktów takich, że każdy sześcian zawiera przynajmniej jeden 
z nich to dla każdego p E 7rm(Rd) mamy

O odtwarzaniu wielomianów mó^i następujące twierdzenie:

Twierdzenie 11. (patrz [43])
Niech fi = IV(xo; R) będzie sześcianem w Rd. Istnieją stałe Cq, c2 > 0 zależące tylko 
od fi takie, że dla każdego m E N i każdego X = {xi,... ,X;v} C fi z hx,n < Co/m 
możemy znaleźć funkcje Uj : fi —> R spełniające

1. = p(x) dla każdego x G fi i p E 7rm(Rd),

2. 52^,1 |wj(x)| < e2</7d(m+1) dla każdego x E fi,

3. ufi*) = 0 jeśli ||x - xj||2 > c^mh^, 

gdzie stała % jest zdefiniowana jak w poprzednim lemacie.
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Z dowodu tego twierdzenia mamy

h ~2R _ 2R _. c°
3q +1) ' m' (3.40)

Jak widać z punktu 3. powyższego twierdzenia przeskalowaniu ulega również nośnik 
funkcji Uj w porównaniu z funkcjami Uj z twierdzenia 9. Jak widać z tego twierdzenia 
ograniczenie to jest bardzo „grube” tzn. jest Wyrażeniem bardzo szybko
rosnącym w zależności od m i od d.

Ograniczenia powyższe pokazują jakiego rzędu wielkościami są funkcje Lebe- 
sgue’a. Dalej zobaczymy, że znajomość wartości tej funkcji w punkcie x wystarcza 
do oszacowania błędu interpolacji bez konieczności założeń o gęstości danych w 
otoczeniu punktu x.

3.6.5 Ograniczenia błędu z założeniem o gęstości zbioru 
danych

W grupie tej wyróżnimy dwa typy ograniczeń:

1. wykorzystujące funkcjonał potęgowy,

2. ograniczenia błędu w przestrzeniach Sobolewa.

Ograniczenia błędu wykorzystujące funkcjonał potęgowy

Ograniczenia błędu interpolacji i aproksymacji za pomocą radialnych funkcji 
bazowych wykorzystujące funkcjonał potęgowy wychodzą od następującego ogólne­
go twierdzenia.

Twierdzenie 12. (patrz [43])
Załóżmy, ze Q C Rd jest zbiorem otwartym natomiast $ G C2fc(Q x ty jest 
warunkowo dodatnio określoną funkcją jądrową na zbiorze Q względem przestrzeni 
7rm(Rd). Zbiór X = {xx,..., Xyv} C Q jest TvmęRdĄunisolwentny. Niech f G A/^O) 
a jej interpolant oznaczmy przez Sf^. Wówczas dla każdego x G Q błąd interpolacji 
funkcji f może być ograniczony przez

|/(x) - s/)X(x)| < F$,x(x) 1/^(0)- (3.41)

W niniejszym paragrafie przytaczamy za [43] twierdzenie i pewne lematy dowodu 
najlepszego znanego, tzn. o najmniejszych znanych stałych, ograniczenia błędu 
interpolacji funkcjami Gaussa.
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Twierdzenie 13. (patrz [43])
Funkcje kardynalne u* obliczone dla x G Q z układu (3.34) spełniają

P^) = < Q(u) (3.42)

dla każdego u G RjV, gdzie mamy odtwarzanie wielomianów stopnia m, zgodnie z 
definicją 10, tzn.

N

Ujp(xj) = p(x) dla każdego p E 7rm(Rd). (3.43)
j=i

Mając lokalne odtwarzanie wielomianów stopnia l > m ograniczenie funkcjonału 
potęgowego wyznacza się zauważając, że dla dowolnego wielomianu p G 7p(Rd)

N N N
p(o) - uAxMx - + 5252- xP 

j=i j=i k=i
N

= P(0) - 2p(x - x) + - x)
J=i

= p(0)-2p(0)+p(0) = 0.

Korzystając z własności zerowania się funkcji kardynalnych z definicji 10 łatwo 
pokazać (patrz [42]), że

Pl^ < P{u(xĘ < (1 + Ci)2^-plli^fsfo^CahK.n))- (3-44)

Dalej dla funkcji radialnej $ = 0(|| • H2) użyjemy faktu, że każdy wielomian 
p G 7Ffc(R) można zastąpić wielomianem p(|| • ||2) G 7r2fc(Rd), uzyskując ograniczenie

P^ x(x) — max J^^) -p(t)| 
’ 0<t<4C2h2

jeśli h = h^n < h0(2k\
Dla zbioru Q będącego kulą o promieniu R twierdzenie o odtwarzanie wielomia­

nów redukuje się do

Lemat 7. (patrz [43])
Załóżmy, że Q = B(x0, R) jest kulą o promieniu R> 0. Niech l G N Dla ustalonego 
C takiego, że

8(2 +V3) 2 
Cz !— I

Wówczas istnieje lokalne odtwarzanie wielomianów stopnia l ze stałymi ho = 
R/C, Ci = 2, C*2 = 2C zgodnie z definicją 10.

Ograniczenie błędu opisuje poniższe twierdzenie z wielkościami cq i c2 takimi, że
hQ = Co/P, C2 = c2Z2 następujące twierdzenie
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Twierdzenie 14. (patrz [43])
Załóżmy, że na zbiorze Q mamy lokalne odtwarzanie wielomianów stopnia l dla 
każdego l G N ze stałymi ho = Co/P, Cy niezależnego od l, C^ = c^P. Niech $(r) = 
e-alklli z a > 0. Określmy cq := min{co, {32aec^)~‘2^). Jeśli X = {xi,..., x,v} C Q 
spełnia hx,a < min{l,Co/4} to funkcjonał potęgowy może być ograniczony przez

dla każdego x G Q. Tak więc dla f G J\/$(Q) błąd interpolacji może być ograniczony 
wyrażeniem

|/(x) - s/,x(x)| <

Ograniczenia błędu dla funkcji z przestrzeni Sobolewa

Inne podejście do konstrukcji ograniczenia błędu interpolacji lub aproksymacji za 
pomocą bazowych funkcji radialnych można zastosować dla funkcji z przestrzeni 
natywnej JV$(Q) pokrywającej się z przestrzenią Sobolewa (patrz [24]). Twierdzenie 
o ograniczeniu błędu interpolacji funkcji z przestrzeni Wf (Q) cytujemy za [43]

Twierdzenie 15. (patrz [43])
Załóżmy, że Q C jest ograniczony, i ma, brzeg spełniający warunek Lipschitza, i 
spełnia warunek stożka, wewnętrznego z promieniem r i kątem, 0. Niech X C Q będzie 
zbiorem dyskretnym centrów a Sf^ będzie interpolantem. Załóżmy, że T jest funkcją 
jądrową przestrzeni Sobolewa, tzn. spełnia (3.15) z r = k + s gdzie k jest dodatnia 
liczbą naturalną aO < s <1. Jeśli m G No spełnia k > m + d/2, to błąd pomiędzy 
f G Wf (Q) a interpolantem smoże być ograniczony

\f „ i \\ f\\\J ~ Sf^\w^ S ||/lmg(Q)

dla, dostatecznie gęstego zbioru X.

W dowodzie tego twierdzenia nie wykorzystuje się funkcjonału potęgowego. 
Korzysta się natomiast z

1. postaci normy, która zawiera operatory różniczkowania Dk k < |a|,

2. twierdzenia o odtwarzaniu pochodnych wielomianów, tzn. z uogólnienia twier­
dzenia o odtwarzaniu wielomianów

3. dla funkcji
u(x) = /(x) - S/,x(x) (3.45)

z aproksymacji uśrednionym wielomianem Taylora

D“«(y)(x-y)“0,(y)dy (3.46)

gdzie j)p G Co°(Rd) ma nośnik B(0, p) i w sensie całkowym przybliża jedynkę.
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Korzystając z powyższych własności dowodzi się że, dla u E Wp+s(Dfi która 
znika na punktach ze zbioru X dla k > d/p — m, zachodzi kluczowe ograniczenie

PI~ CU \U\wk+s^, (3.47)

gdzie h jest miarą gęstości siatki (3.25). Dowód polega na podzieleniu dziedziny Q na 
zbiory gwieździsto-kształtne D o średnicy O^hx,nY Na każdym obszarze D korzysta 
się z aproksymacji uśrednionym wielomianem Taylora.

Definicja 13.
Zbiór D nazywamy gwieździsto-kształtnym względem kuli B(xc,p) := {x G : 
||x — xc|| < p} jeśli dla każdego x E D domknięta otoczka wypukła {x} U B jest 
zawarta w D. Jeśli D jest ograniczone to jego parametr kawałkowatości (ang. 
chunkiness parameter) jest zdefiniowany jako stosunek średnicy dp to promienia 
Pmax największej kuli względem, której zbiór V jest gwieździsto-kształtny.

Zbiór gwieździsto-kształtny spełnia warunek stożka o czym mówi lemat.

Lemat 8. (patrz [43])
Jeśli D jest ograniczony i jest gwieździsto-kształtny względem kuli B(pcc, p) i zawarty 
w kuli B(xc, R) to spełnia, warunek stożka wewnętrznego z promieniem p i kątem 
d = 2arcsin[p/(2J?)].

Obszarami gwieździsto-kształtnymi pokrywamy dziedzinę Q. Na każdym takim 
obszarze aproksymujemy funkcje u za pomocą wielomianu (3.46). Dowodzi się 
ograniczenia błędu takiej aproksymacji na każdym obszarze D.

Lemat 9. (patrz [43])
Niech, 0 < s < 1 i m E N. Niech 1 < p < oo i k > m + d/p lub p = 1 i k > m + d.
Dla u E W./+s(D) mamy

Ih. - &+r«l lnem < C(i + 7p1+1/p)4+'"m"d/pM%«w

ze stałą C > 0 zależną tylko od k,d i p.

W dalszej części dowodu korzysta się z faktu, że funkcje u znikają na zbiorze X. 
Korzysta się przy tym, z własności odtwarzania pochodnych wielomianu (uogólnienie 
twierdzenia 9). Mamy więc następujące lematy

Lemat 10. (patrz [43])
Niech k będzie stałą dodatnią, l<p<oo,0<s<l,l<q<oo, i niech m E No, 
spełniają 1 < p < oo i k > m + d/p lub p = 1 i k > m + d. Niech również X C D 
będzie zbiorem dyskretnym spełniającym, warunek 1. i 2. odtwarzania wielomianów z 
twierdzenia 9 z h > 0. Jeśli u E Wp+sfiD') spełnia w|x = 0, to

I I <7 N+s—m+d(l/q—l/p) i i

Przy czym stała C zależy tylko od k, d,p, m i kąta d z warunku stoża dla D.
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Przejście do jednorodnego ograniczenia na całej dziedzinie Q wymaga określenia 
parametrów pokrycia zbioru Q obszarami D.

Lemat 11. (patrz [43])
Wprowadźmy wielkości

. _ . / sin 0 \w := 2arcsm —--------- — , \4(l + sin0)) ’
= sin # sin d

’ 8fc2(l + sin#)(l + sin<
R := Q^k,ey\

sin 0 „
p := --------- ^R-2(1 + sin#)

Ponadto zdefiniujmy zbiory

Tp := |t G (2p/v/d)Zd : B{t,p) C , 

oraz
Dt = {x G Q : co({x} U B(t, p)) G Q A B(t, R)}, dla t E Tp

gdzie co(A) jest otoczką wypukła zbioru A.
Załóżmy, że h = h^si spełnia h < Q(k, 6)r. Następujące stwierdzenia są prawdziwe

1. każdy zbiór jest gwieździsto-kształtny względem kuli B^p) C Pt C Q A 
B(t,7?),

2. każdy zbiór Dt spełnia warunek stożka z kątem, id z promieniem p,

3. Q = UtGTp A i dVt < 2R = 2h/Q{k, 6 fi

4- < M\,

5. \TP\ < M2p-d,

gdzie xb oznacza funkcję charakterystyczną zbioru B a stałe AR, M2 zależą tylko od 
k, 0 i d.

Korzystając z tej geometrycznej konstrukcji pokrycia zbiory fł dla X C Q z 
gęstością siatki h spełniającą h < Qfik, 0)r otrzymujemy w wyniku ograniczenie 
(3.47) na całym zbiorze Q.

Korzystając z (3.47) dla h < Q(k, Ojr i p — q = 2 otrzymujemy wynik z 
twierdzenia 15.
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Ograniczenia błędu dla zagadnienia aproksymacji

Analogiczny mechanizm dowodzenia jak dla interpolacji można zastosować do 
wyznaczenia ograniczenia błędu zregularyzowanej aproksymacji średniokwadrato- 
wej, tzn. rozwiązania zagadnienia (3.5) z $ G Wf i A takiego, że |/(xJ)—syix(x;)| < 6 
dla 1 < j < N. Wówczas mamy ograniczenie

11/ - < ChTx^/p\f\WrW + 2e.

Wynika to z twierdzenia analogicznie dowodzonego co twierdzenie 15.

Twierdzenie 16. (patrz [41])
Załóżmy, że Q jest ograniczony i spełnia warunek stożka. Niech k będzie stałą 
dodatnią, 0 < s < 1,1 < p < oo, 1 < q < oo i niech m E No spełnia k > m + d/p dla 
p > 1 lub dla p = l,k > m + d. Ponadto, niech X C Q będzie zbiorem dyskretnym z 
gęstością siatki h spełniającą h < Q(k, 9)r. Jeśli u E Wp+s(D) spełnia |zz|x < e to 
mamy ograniczenie

l«kr(n) = C + h-m ||«|X| |„) (3.48)

gdzie (rr)+ = x jeśli x > 0 lub 0 w przeciwnym wypadku. Stała C zależy tylko od
k, d,p, q, m i 0.

Rozważając więc zagadnienie (3.5) możemy sformułować następujące twierdzenie

Twierdzenie 17. (patrz [41])
Załóżmy, że H E C(D) jest unormowaną przestrzenią liniową funkcji ciągłych. 
Załóżmy ponadto, że L : H —> Q jest przekształceniem liniowym w przestrzeń 
unormowaną Q. Niech X = {xx,...,x^} C Q i {yi,... ,Pn} € R definiują 
funkcjonały

N
E(s) -=^yI ~ ■ J(s) — S^E-

3=1

Załóżmy, że S\ E H jest rozwiązaniem zagadnienia

minB(s) + AJ(s)

dla ustalonego A > 0. Załóżmy ponadto, że istnieje funkcja s0 E R z E(s0) = 0 i 
J(so) < J(f)- Przy powyższych założeniach prawdziwe są ograniczenia

A«a)
l/(^) -w(^)|

< A/)
< vW), ^<j<N.
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3.6.6 Ograniczenie błędu bez założenia o gęstości zbioru
danych

Ograniczenia błędu oparte na ogólnej postaci (3.41) bez założeń o gęstości zbioru 
danych rozważane są w [12], Opierają się one na pojęciu funkcji wzrostu wielomia­
nów zdefiniowanej

Definicja 14.
Dla zbioru X — {xj}Y i ę fi i Y C X definiujemy funkcję wzrostu dla przestrzeni 
wielomianów 7rQ(Rd) na zbiorze Y w punkcie x jako

pę(x, Y) = max{|p(x)| : p G 7Tq(WĄ, j|p|Y|L < 1}. (3.49)

Funkcja wzrostu pQ(x, Y) ma skończoną wartość dla każdego x, jeśli Y jest 
7r9(Rd)-unisolwentny. W przeciwnym wypadku pą(x,Y) = oo.

Twierdzenie 18.
Załóżmy, że dany mamy zbiór X = {xj}^i, taki, że X C Q oraz yi = f(xĄ, i = 
1,..., N dla funkcji f G A/$(Q). Dla rozwiązania zadania interpolacyjnego (3.3) i 
dowolnego niepustego podzbioru Y C X oraz dowolnego q > max{m, 0} mamy

|/(X)-S/,x| < (1+Pg(x, X G (3.50)

gdzie

1. pg(x, Y) jest funkcją wzrostu wielomianów dla przestrzeni 7r9(co(Y)); gdzie 
co(A) oznacza otoczkę wypukłą zbioru A,

2. B(0, r) oznacza kulę w Rd o środku w punkcie 0 i promieniu r,

3. E^,7Vg)c(Bxy) zdefiniowane jest jako

E(F,S)C\g) inf9&s|\F - gllcfGh

i oznacza błąd aproksymacji jednostajnej funkcji F za pomocą funkcji z S 
określonej na G C Rd. W ograniczeniu (3.50) mamy G = B(0, co(Y U {x})), 
S = 7Tg(G) oraz F = $.

Zauważmy, że funkcja pq(x,Y) jest równa funkcji Lebesgue’a (3.37), gdy |Y| = 
dim(7rQ(Rd)). Oszacowanie wartości pg(x, X) dla dowolnego x G Q, gdy X znaleźć 
można w [13].
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3.6.7 Ograniczenie błędu dla metody wariancji ważonej
W niniejszym paragrafie pokazujemy na przykładzie trzech problemów 
optymalizacyjnych omawianych w [1] oraz w następnym rozdziale numeryczny 
argument na istnienie związku pomiędzy wartością wskaźnika 7x(x) a błędem 
aproksymacji konstruowanej za pomocą metody GCV [40] oraz metody WGV. Dla 
każdej z trzech funkcji prezentujemy dwa rysunki. W obydwu z nich prezentujemy 
wykresy błędu aproksymacji dla tysiąca początkowych kroków algorytmu EXTREM 
w obszarach określanych przez wartość wskaźnika 7x zdefiniowanego w paragrafie 
3.6.1. Błąd aproksymacji w obszarze, dla którego wartość wskaźnika 7x jest 
większa od wartości progowych 7x(x) > 7thr = 0.6, 7x(x) > 7thr = 0.65 oraz 
7x(x) > 7thr — 0.7, obliczony został w 25 losowo wybranych punktach z otoczki 
wypukłej zbioru X z obszaru określonego przez wartość parametru 7thr. Losowanie 
odbywało się z rozkładu normalnego względem składowych głównych zbioru danych

Na rysunkach 3.12, 3.14 oraz 3.16 pokazana została zależność błędu aproksymacji 
od wartości progu 7thr- Jak widać z wykresów na tych rysunkach błąd się zmniejsza 
zarówno dla metody GCV jak i dla metody WGV, gdy rośnie wartość progu 7thr- 
Przy dużej wartości progu, takiej jak np. 0.7, punktów w których można użyć 
aproksymacji jest mało. Z doświadczenia wynika, i w miarę uniwersalną wartością 
parametru 7thr jest 0.65. Dla takiej wartości wykonano obliczenia większości testów, 
których wyniki prezentujemy w następnym rozdziale. Na rysunkach 3.13, 3.15 oraz 
3.17 zaprezentowane jest bezpośrednie porównanie jakości aproksymacji dla metod 
GCV oraz WGV dla ustalonych wartości progu 7thr- Jak widać błąd w niektórych 
punktach jest mniejszy dla metody WGV. Generalnie obydwie metody w dla tych 
funkcji dały podobny błąd aproksymacji na punktów ze ścieżki algorytmu EXTREM. 
Niemniej jednak dla Algorytmu 1 lepszą zbieżność uzykiwaliśmy metodą WGV, co 
prezentujemy w następnym rozdziale.

Określenie analitycznego związku pomiędzy wskaźnikiem 7x(x) a błędem 
aproksymacji jedną z dwóch wymienionych metod wymaga jeszcze dalszej pracy 
badawczej. Rysunki 3.12, 3.14 oraz 3.16 sugerują, że związek taki istnieje. Związek 
taki jest innym związkiem niż zależności wymagające dużej gęstości danych. Istnienie 
takich zbiorów X oraz punków w ich otoczce wypukłej, dla których mimo dużej 
wartości wskaźnika 7 błąd względny aproksymacji jest duży (rzędu 10-1) sugeruje, 
że związek taki zawierać powinien składową, która mierzy stopień unisolwentności 
zbioru X. Funkcja wzrostu wielomianów (3.49) może być takim miernikiem.
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Rysunek 3.12: Błąd aproksymacji w początkowych tysiącu punktach ścieżki 
optymalizacyjnej funkcji Rosenbrocka ośmiu zmiennych za pomocą sieci składającej 
się z 30 neuronów z radialnymi funkcjami aktywacji trenowanymi metodą 
regularyzacji z wyborem parametru A za pomocą a) metody uogólnionwej walidacji 
krzyżowej (GCV), b) Weighted Gradient Yariance z NLMSE^ = 10~5.
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Rysunek 3.13: Błąd aproksymacji w początkowych tysiącu punktach ścieżki 
optymalizacyjnej funkcji Rosenbrocka ośmiu zmiennych za pomocą sieci składającej 
się z 30 neuronów z radialnymi funkcjami aktywacji trenowanymi metodą 
regularyzacji z wyborem parametru A za pomocą metody uogólnionej walidacji 
krzyżowej oraz Weighted Gradient Variance z NLMSEthr = 10-5 dla a) 7thr = 0.6, 
b) 7thr = 0.65, c) 7thr = 0.7.
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Rysunek 3.14: Błąd aproksymacji w początkowych tysiącu punktach ścieżki 
optymalizacyjnej funkcji „Chebąuad” ośmiu zmiennych za pomocą sieci składającej 
się z 30 neuronów z radialnymi funkcjami aktywacji trenowanymi metodą 
regularyzacji z wyborem parametru A za pomocą a) metody uogólnionej walidacji 
krzyżowej, b) Weighted Gradient Yariance z NLMSEthr = RY5.
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b)

Rysunek 3.15: Błąd aproksymacji w początkowych tysiącu punktach ścieżki 
optymalizacyjnej funkcji „Chebąuad” ośmiu zmiennych za pomocą sieci składającej 
się z 30 neuronów z radialnymi funkcjami aktywacji trenowanymi metodą 
regularyzacji z wyborem parametru A za pomocą metody uogólnionej walidacji 
krzyżowej oraz Weighted Gradient Variance z NLALSEthr = 10-5 dla a) 7thr = 0.6, 
b) 7thr = 0.65, c) 7thr = 0.7.
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Rysunek 3.16: Błąd aproksymacji w punktach w początkowych tysiącu punktów 
ścieżki optymalizacyjnej funkcji Osborne 2 jedenastu zmiennych za pomocą sieci 
składającej się z 30 neuronów z radialnymi funkcjami aktywacji trenowanymi metodą 
regularyzacji z wyborem parametru A za pomocą a) metody uogólnionej walidacji 
krzyżowej, b) Weighted Gradient Yariance z NLMSEthr = 10~5.
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Rysunek 3.17: Błąd aproksymacji w początkowych tysiącu punktach ścieżki 
optymalizacyjnej funkcji Osborne 2 jedenastu zmiennych za pomocą sieci składającej 
się z 30 neuronów z radialnymi funkcjami aktywacji trenowanymi metodą 
regularyzacji z wyborem parametru A za pomocą metody uogólnionej walidacji 
krzyżowej oraz Weighted Gradient Variance z NLMSEthl = 10-5 dla a) 7thr = 0.6, 
b) 7thr = 0.65, c) 7thr = 0.7.
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Rozdział 4

Zastosowania metody SPELROA

4.1 Optymalizacja funkcji testowych
Działania metody SPELROA prezentujemy na przykładzie ośmiu funkcji testowych 
ze zbioru problemów używanych do testowania algorytmów optymalizacyjnych 
zaprezentowanego w pracy [23]. Wszystkie funkcje w [23] są postaci

m
f (x) = /([xi,..., xd]) = 22 fi(x)2,

2. Funkcja sześciu i ośmiu zmiennych — rozszerzona funkcja
Rosenbrocka (problem 21 w [23])
Dla tej funkcji m = d i jest ona określona przez

f2i-i(x) = 10(z2i -
/2i(x) = 1 - Z2i-1,

Standardowym punktem startowym jest x0 = (^), gdzie £2j-i = —1-2 i — 1
a minimum wynosi f* — 0 w punkcie (1,..., 1).

1=1

gdzie m jest zależne problemu. Rozpatrzyliśmy następujące problemy o wzrastającej 
złożoności

1. Funkcja czterech zmiennych — funkcja kary II (problem 24 w [23]) 
Dla tej funkcji mamy m = 2d oraz

/i(x) = Ti - 0.2
/i(x) = a1/2 (e01a:< + e01'^"1 - , 2 < i < n,
/i(x) — a1/2 (e01Ii-n+i e-01), n < i < 2n,

(
n \

+ 1)t2 I - 1, 
J=i /

gdzie a = 10~5 oraz yź = e°11 + e01!1-1). Punktem startowym jest x0 = 
(0.5,.... 0.5) a minumum dla d = 4 wynosi f* = 9.37629... • 10~4.

81
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3. Funkcja ośmiu zmiennych II - funkcja „Chebąuad” (problem 35 w [23]) 
Jako drugą funkcję ośmiu zmiennych wybraliśmy tzw. funkcję „Chebąuad”. Dla 
m > d zdefiniowana jest ona przez fi określone wzorem

gdzie Ti jest ź-tym wielomianem Czebyszewa pierwszego rzędu przeskalowanym 
do przedziału [0,1]. Standardowym punktem startowym jest x0 = (&), gdzie 

— j/(d + 1). Minimum dla d = 8 i m = 8 wynosi f* = 3.51687... • 10-3.

4. Funkcja dziesięciu zmiennych I — pasmowa funkcja Broydena (problem 
31 w [23])
Dla tej funkcji m = d oraz

/ź(x) = xź(2 + 5^) + 1 - y\(l + zj),
jeJ;

gdzie Ji = {j : j i, max(l, ż—< j < min(d, ż+mu)} oraz mi = 5, mu = 1. 
Standardowym punktem startowym jest x0 = (—1,..., —1). Minimum wynosi 
r = o.

5. Funkcja dziesięciu zmiennych II - dyskretna funkcja brzegowa 
(problem 28 w [23])
Również dla tej funkcji m = d. Funkcje fi dane są natomiast wzorami

fi(x) = 2xi - Xi-! - zi+i + + ti + l)3/2, gdzie
h = l/^d+lfŁ = ih, x0 = xn+1 = 0.

Standardowym punktem startowym jest x0 = (^), gdzie fj = tj(tj — 1). 
Minimum natomiast wynosi f* = 0.

6. Funkcja dziesięciu zmiennych III - funkcja kary I (problem 23 w [23]) 
Dla tej funkcji mamy m = d + 1 oraz

/i(x) = — 1), dla 1 < i < d.
fd \ i

/d+iW =
\j=i /

gdzie a = 10-5. Punktem startowym jest x0 = gdzie = j. Minimum 
dla d - 10 wynosi /* = 7.08765... • lO”5.

7. Funkcja jedenastu zmiennych - funkcja Osborne’a 2 (problem 19 w 
|23])
Jako funkcję jedenastu zmiennych wybraliśmy drugą funkcję Osborne’a. Dla 
tej funkcji mamy m = 65 a funkcje fi dane są wzorami

fi^ = yi- + x2e-^-x^2x6 + x^e-{ti-x^2-X1 + x4 • e^™^8),
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gdzie L = (ż — l)/10 a yi dla i = 1,...,65 są stałymi, których wartości 
można znaleźć w [23]. Standardowym punktem startowym jest Xq = 
[1.3,0.65,0.65,0.7,0.6,3,5,7,2,4.5,5.5] a minimum dla d = 10 wynosi f* = 
4.01377... • 10"2.

8. Funkcja piętnastu zmiennych — funkcja dyskretnego równania 
całkowego (problem 29 w [23])
Dla tej funkcji m = d a funkcje fi są określone wzorem

/i(x) = Xj-Lh (1 - tj) tj(xj + tj + l)3 +
j=i

ti 22 gdzie
j=i+l

h — l/(d + 1), Ą = ih, x0 = xn+i = 0.

Standardowym punktem startowym jest x0 = (^), gdzie fj — tj(tj — 1). 
Minimum natomiast wynosi f = 0.
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4.1.1 Wyniki numeryczne
Funkcja kary II czterech zmiennych

Tabela 4.1: Optymalizacja funkcji kary II czterech zmiennych za pomocą: a) 
algorytmu EXTREM, b) Algorytm 1 bez regularyzacji z 7thr = 0.65. bez procedury 
e-check, c) Algorytm 1 bez regularyzacji z 7thr = 0.65 i z procedurą e-check z 
e = 0.001.

EXTREM
step 
mim. l|x-x*||2 /
50 0.0340864 0.002038
100 0.000009 0.000012
156 0.000000 0.000009

b)

Alg. 1 bez regularyzacji, 
bez £-check, 7thr = 0.65

Alg. 1 bez regularyzacji. 
s-check z e = 10“3, 7thr = 0.65

step 
mim. ||x - x*||2 f num.

approx.
step 
num. x - x* 2 / num. 

approx.
50 0.0340864 0.002038 - 50 0.034086 0.002038 —
100 0.001679 0.000115 9 100 0.000029 0.000045 6
136 0.0020170 0.000010 13 140 0.0000007 0.000010 15

Tabela 4.2: Optymalizacja funkcji kary II czterech zmiennych za pomocą Algorytmu 
1 bez procedury e-check z regularyzacją z wyborem parametru A za pomocą: a) 
metody GCV, b) metody WGV z NLAdSE^ = 5 • 10“6. W obydwu wypadkach 
7thr = 0.65.

b)
Alg. 1 z GCV, Alg. 1 z WGV,

bez e-c heck, 7thr = 0.65 bez e-c reck, 7thr = 0.65
step 
num. l|x-x*||2 / num. 

approx.
step 
num. x - x*| 2 f num. 

approx.
50 0.034086 0.002038 — 50 0.034086 0.002038 —
100 0.006357 0.002574 9 100 0.002248 0.000102 7
147 0.007686 0.000013 17 130 0.001827 0.000012 11
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Tabela 4.3: Optymalizacja funkcji kary II czterech zmiennych za pomocą Algorytmu 
1 z procedurą e-check z £ = 10~3 oraz z regularyzacją z wyborem parametru A za 
pomocą: a) metody GCV, b) metody WGV z NLMSEthr = 5 ■ 10-6. W obydwu 
wypadkach 7thr = 0.65.

b)
Alg. 1 z GCV, Alg. 1 z WGV,

£-check z e = 10 3, 7thr = 0.65 £-check z e = 10 3, 7thr = 0.65
step 
num. ||x — X*H2 f num. 

approx.
step 
num. ||x-x*||2 f num. 

approx.
50 0.034086 0.002038 — 50 0.034086 0.002038 —
100 0.002158 0.004708 5 100 0.002141 0.004675 4
140 0.000007 0.000010 15 140 0.000007 0.000010 15

Tabela 4.3a: Przyspieszenie dla funkcji kary II czterech zmiennych uzyskane 
Algorytmem 1 mierzone względem a) liczby bezpośrednich wartościowań funkcji 
celu w ścieżce optymalizacyjnej Algorytmu 1, b) liczby wartościowań funkcji celu w 
ścieżce optymalizacyjnej algorytmu EXTREM.

a) b)

bez £-check z £-check 
Z £ = 1 O-3 bez £-check z £-check 

z £ = 1(T3
bez reg. 16.17% 15.00% bez reg. 26.92% 23.71%
GCV 17.68% 14.28% GCV 22.43% 23.07%
WGV 13.84% 13.57% WGV 28.20% 22.43%

W przykładzie tym w tabel 4.2 i 4.3 widać, że zbieżność Algorytmu 1 do 
właściwego minimum jest znacznie gorsza dla bez użycia metody £-ch.eck.
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Rozszerzona funkcja Rosenbrocka sześciu zmiennych

Tabela 4.4: Optymalizacja rozszerzonej funkcji Rosenbrocka sześciu zmiennych za 
pomocą: a) algorytmu EXTREM, b) Algorytm 1 bez regularyzacji z 7thr = 0.65 i 
bez procedury £-check, c) Algorytm 1 bez regularyzacji z 7thr = 0.65 i z procedurą 
£-check z £ = 0.001.

EXTREM
step 
num. ||x ~ x* 112 /
1 14.52000 72.60000
250 5.143157 2.885768
500 0.423567 0.109817
750 0.174880 0.031570
1000 0.060773 0.012666
1250 0.000899 0.001228
1523 0.000004 0.000001

b)

Alg. 1 bez regularyzacji, Alg. 1 bez regularyzacji, 
£-check z £ = 10 3, 7thr = 0.65bez £-c reck, 7thr = 0.65

step 
num. llx-x*l|2 f num. 

approx.
step 
num. llx-x*ll2 f num. 

approx.
1 14.52000 72.60000 — 1 14.52000 72.60000 —
250 6.047256 3.711824 22 250 6.034894 3.698337 5
500 1.738173 0.559350 45 500 1.733664 0.558246 15
750 0.455954 0.089372 35 750 0.433131 0.091551 40
933 0.017111 0.005606 10 1034 0.011905 0.002555 44
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Tabela 4.5: Optymalizacja rozszerzonej funkcji Rosenbrocka sześciu zmiennych za 
pomocą Algorytmu 1 z regularyzacją z wyborem parametru A za pomocą GCV: a) 
bez procedury E-check, b) z procedurą E-check z e = 10-3. W obydwu wypadkach 
Tthr = 0.65.

Alg. 1 z GCV,
bez e-c reck, 7thr = 0.65

step 
num. ||x-x*||2 / num. 

approx.
1 14.52000 72.60000 —
250 5.328796 4.275823 9
500 1.242564 0.340772 24
750 0.332196 0.077669 48
908 0.038978 0.009351 30

Alg. 1 z GCV, 
E-check z s = 10“3, 7thr = 0.65

step 
mim. ||x — x* 112 / num. 

approx.
1 14.52000 72.60000 —
251 5.636797 3.738582 16
500 1.198926 0.334819 28
750 0.606274 0.162569 48
1000 0.047958 0.009666 47
1288 0.000652 0.000131 54

Tabela 4.6: Optymalizacja rozszerzonej funkcji Rosenbrocka sześciu zmiennych za 
pomocą Algorytmu 1 z regularyzacją z wyborem parametru A za pomocą WGV z 
NLMSE = 5 • 10~6: a) bez procedury s-check, b) z procedurą E-check z e = 10-3. 
W obydwu wypadkach 7thr = 0.65.

Alg. 1 WGV, ..............
bez e-c beck, 7thr = 0.65

step 
num. l|x-x*||2 f num. 

approx.
1 14.52000 72.60000 —
250 5.148554 2.890378 9
500 0.576409 0.145387 14
750 0.092298 0.017537 23
1000 0.004710 0.001764 21
1298 0.000012 0.000002 26

Alg. 1 z WGv, 
E-check z e = 10-3, 7thr = 0.65

step 
num. ||x-x*||2 f num. 

approx.
1 14.52000 72.60000 —
250 4.507976 2.973086 7
500 1.501108 0.556824 22
750 0.297285 0.448120 31
1000 0.047480 0.010023 19
1250 0.005590 0.001135 22
1500 0.000046 0.002945 26
1712 0.000005 0.000001 12

Tabela 4.6a: Przyspieszenie dla funkcji Rosenbrocka sześciu zmiennych uzyskane 
Algorytmem 1 mierzone względem a) liczby bezpośrednich wartościowań funkcji 
celu w ścieżce optymalizacyjnej Algorytmu 1, b) liczby wartościowań funkcji celu w 
ścieżce optymalizacyjnej algorytmu EXTREM.

a) b)

bez E-check z s-check
Z E = 10-3 bez E-check z E-check

Z E = 10-3
bez reg. 
GCV 
WGV

niezbieżny 
niezbieżny 
7.16%

niezbieżny 
14.98%

bez reg. 
GCV 
WGV

niezbieżny 
niezbieżny 
20.87%

niezbieżny 
28.10%
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Jak widać z tabel 4.4, 4.5, 4.6 nie uzyskano zbieżności z użyciem aproksymacji 
RBF bez regularyzacji zarówno bez procedury e-check jak i z tą procedurą oraz z 
regularyzacją z metodą GCV bez procedury e-check. Dla aproksymacji z metodą 
WGV z NLMSE = 5 • 10-6 z procedurą e-check z c = 10~3 możemy mówić tylko o 
przyspieszeniu względem ścieżki z algorytmu EXTREM. W tym wypadku algorytm 
z aproksymacją potrzebował wiecej iteracji niż algorytm EXTREM. Możemy jednak 
mówić o przyspieszeniu dla tej samej liczby kroków. Wyniosło ono 8.33%.

Rozszerzona funkcja Rosenbrocka ośmiu zmiennych

Table 4.7: Optymalizacja rozszerzonej funkcji Rosenbrocka ośmiu zmiennych za 
pomocą: a) algorytmu EXTREM, b) Algorytm 1 bez regularyzacji i bez procedury 
t-check, c) Algorytm 1 bez regularyzacji i z procedurą e-check z £ = 10-3. W 
obydwu wypadkach ythr = 0.65.

EXTREM
step 
num. ||x — x*||2 /
1 19.36000 96.80000
250 15.39404 10.438226
500 7.462217 5.606541
750 3.136710 1.032648
1000 1.009230 0.251387
1250 1.018545 0.050215
1500 0.075592 0.015386
1750 0.068872 0.012950
2000 0.043427 0.007465
3471 0.000000 0.000000

Alg. 1 bez regularyzacji,
bez e-c leck, 7t,hr = 0.65

step 
num. ||x ~ x*l|2 / num. 

approx.
1 19.36000 96.80000 —
250 11.59690 10.18228 13
500 5.753235 3.502973 15
750 2.594045 0.795321 30
1039 0.732554 0.189228 69

Alg. 1 bez regularyzacji,
e-check z £ = 10 3, 7thr = 0.65

step 
num. ||x-x*H2 / num. 

approx.
1 19.36000 96.80000 —
250 9.181984 6.376938 22
500 4.639539 1.855113 23
750 1.904974 0.471618 30
1000 0.829651 0.215283 46
1250 0.130581 0.028169 43
1537 0.034711 0.006926 62
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Tabela 4.8: Optymalizacja rozszerzonej funkcji Rosenbrocka ośmiu zmiennych za 
pomocą Algorytmu 1 z regularyzacją z wyborem parametru A za pomocą GCV: a) 
bez procedury s-check, b) z procedurą e-check z s = 10~3. W obydwu wypadkach 
7thr = 0.65.
a)

Alg. 1 z GCV, 
bez e-check, 7thr = 0.65

step 
num. ||x — x*||2 / num. 

approx.
1 19.36000 96.80000 —
250 10.63705 9.590320 15
500 4.326629 1.770927 22
750 1.988725 0.564489 34
982 0.748296 0.184506 46

b)
Alg. 1 z GCV, 

e-check z £ = 10-3, 7thr = 0.65
step 
num. ||x — x*||2 f num. 

approx.
1 19.36000 96.80000 — ■
250 10.63705 9.590320 15
500 4.253577 1.718574 24
750 1.587166 5.075403 44
1000 0.573237 3.105517 56
1225 0.556057 0.121451 58

Tabela 4.9: Optymalizacja rozszerzonej funkcji Rosenbrocka ośmiu zmiennych za 
pomocą Algorytmu 1 z regularyzacją z wyborem parametru A za pomocą WGV z 
NLMSE = 5 ■ 10-6: a) bez procedury e-check, b) z procedurą e-check z s = 10-3. 
W obydwu wypadkach 7thr = 0.65.

a)

Alg. 1 WGV,
bez e-c reck, 7t.hr = 0.65

step 
num. ||x — x* 2 f num. 

approx.
1 19.36000 96.80000 —
250 11.84563 10.45062 9
500 7.176414 5.804069 11
750 2.509801 0.766705 25
1097 1.128712 0.306324 67

b)
Alg. 1 z WGv, 

t-check z e = 10-3, 7thr = 0.65
step 
num. l|x-x*||2 f num. 

approx.
1 19.36000 96.80000 —
250 10.64878 9.379780 10
500 5.235753 2.394219 16
750 1.619362 0.435302 35
1000 0.589236 0.143009 78
1250 0.255143 1.383665 42
1500 0.021409 0.004114 51
1861 0.000839 0.000169 48
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Tabela 4.9a: Przyspieszenie dla funkcji Rosenbrocka ośmiu zmiennych uzyskane 
Algorytmem 1 mierzone względem liczby bezpośrednich wartościowań funkcji celu 
w ścieżce optymalizacyjnej Algorytmu 1.

bez e-check z £-check 
z £ = 1 o-3

bez reg. niezbieżny niezbieżny
GCV niezbieżny niezbieżny
WGV niezbieżny 15.04%

Jak widać z tabel 4.7, 4.8, 4.9 zbieżność procesu optymalizacji uzyskano 
tylko dla aproksymacji RBF metodą WGV z NLMSE = 5 ■ 10“6. 
Ponieważ algorytm EXTREM wymagał znacznie więcej wartościowań 
funkcji niż algorytm z aproksymacją funkcji celu, o przypieszeniu jest 
sens mówić tylko względem ścieżki z algorytmu z aproksymacją. Uzyskane 
przyspieszenie wyniosło 15%.
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Funkcja „Chebąuad” ośmiu zmiennych

Tabela 4.10: Optymalizacja funkcji „Chebąuad” ośmiu zmiennych za pomocą: a) 
algorytmu EXTREM, b) Algorytm 1 bez regularyzacji i bez procedury t-check, 
c) Algorytm 1 bez regularyzacji i z procedurą s-check z £ = 10'3. W obydwu 
wypadkach 7thr = 0.65.

a)
EXTREM

step 
num. ||x — x*ll2 /
1 0.026086 0.038617
250 0.009547 0.006187
500 0.003495 0.004681
750 0.000271 0.003698
1000 0.000000 0.003517
1237 0.000000 0.003517

c)b)

Alg. 1 bez regularyzacji,
bez e-c reck, 7t.hr = 0.65

step 
num. ||X-X*||2 / num. 

approx.
1 0.026086 0.038617 —
250 0.009686 0.006216 4
500 0.003531 0.004684 18
750 0.000098 0.003584 10
1000 0.000000 0.003517 48
1197 0.000000 0.003517 97

Alg. 1 bez regularyzacji,
e-check z e = 10 3, 7thr = 0.65

step 
num. | x “ x* 2 / num. 

approx.
1 0.026086 0.038617 —
250 0.007716 0.006214 19
500 0.000538 0.003873 42
805 0.000001 0.003518 80

Tabela 4.11: Optymalizacja funkcji „Chebąuad” ośmiu zmiennych za pomocą 
Algorytmu 1 z regularyzacją z wyborem parametru A za pomocą GCV: a) bez 
procedury E-check, b) z procedurą s-check z e = 10-3. W obydwu wypadkach 
7thr = 0.65.

a) b)

Alg. 1 z GCV, 
bez e-check, 7thr = 0.65

step 
num. ||X-X*||2 f num. 

approx.
1 0.026086 0.038617 —
250 0.009686 0.006216 4
500 0.003537 0.004684 17
750 0.000076 0.003584 11
1095 0.000002 0.003518 188

Alg. 1 z GCV, 
e-check z e = 10-3, 7thr = 0.65

step 
num. ||x ~ X*H2 / num. 

approx.
1 0.026086 0.038617 —
250 0.008672 0.006552 18
500 0.000459 0.003855 33
750 0.000000 0.003517 60
1000 0.000000 0.003517 73
1117 0.000000 0.003517 94
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Tabela 4.12: Optymalizacja funkcji „Chebąuad” ośmiu zmiennych za pomocą 
Algorytmu 1 z regularyzacją z wyborem parametru A za pomocą WGV z 
NLMSE = 5 • 10-6: a) bez procedury e-check, b) z procedurą e-check z e = 10~3. 
W obydwu wypadkach 7thr = 0.65.

a) b)

Alg. 1 WGV,
bez e-c leck, 7tbr = 0.65

step 
num. l|x-x*||2 / num. 

approx.
1 0.026086 0.038617 —
250 0.006810 0.005913 18
500 0.000084 0.003599 41
772 0.000000 0.003517 75

Alg. 1 z WGV, 
e-check z e = 10-3, 7t.hr = 0.65

step 
num. l|x-x*||2 / num. 

approx.
1 0.026086 0.038617 —
250 0.007802 0.006399 13
500 0.000976 0.004250 12
750 0.000001 0.003517 20
808 0.000001 0.003517 6

Tabela 4.12a: Przyspieszenie dla funkcji „Chebąuad” uzyskane Algorytmem 1 
mierzone względem a) liczby bezpośrednich wartościowań funkcji celu w ścieżce 
optymalizacyjnej Algorytmu 1, b) liczby wartościowań funkcji celu w ścieżce 
optymalizacyjnej algorytmu EXTREM.

b)

bez e-check z e-check 
Z E = 1 O"3 bez e-check z e-check 

z e = 10~3
bez reg. 14.79% 17.52% bez reg. 17.34% 47.24%
GCV 20.09% 24.89% GCV 29.26% 32.17%
WGV 17.36% 6.31% WGV 48.42% 38.80%
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Pasmowa funkcja Broydena dziesięciu zmiennych

Tabela 4.13: Optymalizacja pasmowej funkcji Broydena dziesięciu zmiennych za 
pomocą: a) algorytmu EXTREM, b),c) Algorytm 1 bez regularyzacji bez e-check, 
d),e) Algorytm 1 bez regularyzacji z e-check, e = 10-3.

EXTREM
step 
num. ||x - x*||2 f
1 1.934202 360.0000
200 0.713609 3.079440
400 0.001211 0.060074
600 0.000000 0.000000

b) c)
Alg. 1 1 
bez e-c

>ez regularyzacji, 
reck, 7thr = 0.60

step 
num. 1 X - x* |2 f num. 

approx.
1 1.934202 360.0000 —
200 0.728666 3.175358 27
400 0.000269 0.010127 37
600 0.000000 0.000002 59
880 0.000000 0.000001 55

Alg. 1 bez regularyzacji,
bez e-c heck, 7t.hr = 0.65

step 
num. ||x-x*||2 f num. 

approx.
1 1.934202 360.0000 —
200 0.989317 3.300021 20
400 0.000404 0.017227 26
563 0.000016 0.000867 36

d) e)
Alg. 1 bez regularyzacji, 

e-check z e = 10“3, 7thr = 0.60
Alg. 1 bez regularyzacji,

e-check z e = 10 , 7thr = 0.65
step 
num. ||x - x*||2 f num. 

approx.
step 
num. ||x-x*||2 / num. 

approx.
1 1.934202 360.0000 — 1 1.934202 360.0000 —
200 0.899728 3.236088 36 200 0.989317 3.300021 20
400 0.003082 0.150238 38 400 0.000369 0.005028 25
631 0.000011 0.000035 61 643 0.000000 0.000001 54

Tabela 4.14 Optymalizacja funkcji pasmowej Broydena dziesięciu zmiennych za 
pomocą Algorytmu 1 bez procedury e-check z regularyzacją z wyborem parametru 
A za pomocą: a) metody GCV, b) metody WGV z NLMSEthr = 10-6. W obydwu 
wypadkach 7thr — 0.60.

b)

Alg. 1 z GCV Alg. 1 z WGV
step 
num. ||x-x*||2 / num. 

approx.
step 
num. ||x - X*112 / num. 

approx.
1 1.934202 360.0000 — 1 1.934202 360.0000 —
200 0.819230 3.192419 30 200 1.026973 3.309025 21
400 0.000562 0.026622 33 400 0.018712 0.028031 12
649 0.000002 0.000001 65 584 0.000000 0.000000 42
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Tabela 4.15: Optymalizacja funkcji pasmowej Broydena dziesięciu zmiennych za 
pomocą Algorytmu 1 z procedurą e-check z e = 10"3 z regularyzacją z wyborem 
parametru A za pomocą: a) metody GCV, b) metody WGV z NLMSEt^ = 10-6. 
W obydwu wypadkach ythr = 0.60.
a) b)

Alg. 1 z GCV
step 
num. ||x — x*ll2 / num. 

approx.
1 1.934202 360.0000 —
200 0.894353 3.241784 34
400 0.013946 0.445524 29
600 0.000844 0.004472 55
751 0.000003 0.000001 52

Alg. 1 z WGV
step 
num. llx — x*l |2 / num. 

approx.
1
200
400
603

1.934202
1.026973
0.000871
0.000001

360.0000
3.309025
0.038417
0.000005

21
19
39

W tabelach (4.14) oraz (4.15) przedstawiliśmy wyniki dla 7thr = 0.6 ponieważ 
przy 7thr = 0.65 liczba iteracji aproksymowanych była mniejsza niż 10% względem 
liczby wartościowań funkcji na ścieżce optymalizacyjnej algorytmu EXTREM. Takie 
ustawienie dla 7thr może być wywnioskowane z tabel (4.13).

Tabela 4.15a: Przyspieszenie dla pasmowej funkcji Broydena dziesięciu zmiennych 
uzyskane Algorytmem 1 mierzone względem a) liczby bezpośrednich wartościowań 
funkcji celu w ścieżce optymalizacyjnej Algorytmu 1, b) liczby wartościowań funkcji 
celu w ścieżce optymalizacyjnej algorytmu EXTREM.

b)

bez e-check z e-check 
z f = 10-3 bez s-check z e-check 

z r = 10"3
bez reg. — 17.33% bez reg. — 17.33%
GCV 13.17% — GCV 13.17% —
WGV 12.83% 12.67% WGV 15.17% 12.67%



4.1. OPTYMALIZACJA FUNKCJI TESTOWYCH 95

Dyskretna funkcja brzegowa dziesięciu zmiennych

Tabela 4.16: Optymalizacja dyskretnej funkcji brzegowej dziesięciu zmiennych 
za pomocą: a) algorytmu EXTREM, b),c) Algorytmu 1 bez regularyzacji bez 
procedury £-check, d),e) Algorytm 1 bez regularyzacji z £-check, £ = 10-3.

EXTREM
step 
num. ||x - x*||2 f
1 0.041335 0.000789
500 0.013041 0.000223
1000 0.002631 0.000037
1500 0.000989 0.000012
2000 0.000062 0.000001
2500 0.000000 0.000000
2926 0.000000 0.000000

b) c)

Alg. 1 bez regularyzacji,
bez £-c beck, 7thr = 0.60

step 
num. l|x-x*||2 f num. 

approx.
1 0.041335 0.000789 —
500 0.012429 0.000148 77
929 0.009100 0.000102 61

Alg. 1 bez regularyzacji,
bez £-c heck, 7t,hr = 0.65

step 
num. l|x-x*||2 f num. 

approx.
1 0.041335 0.000789 —
500 0.013145 0.000154 42
1000 0.008812 0.000096 36
1500 0.000367 0.000013 56
2057 0.000000 0.000000 79

d) e)
Alg. 1 bez regularyzacji, 

e-check z £ = 10~3, 7thr = 0.60
step 
num. l|x-x*||2 f num. 

approx.
1 0.041335 0.000789 —
500 0.023221 0.000253 71
1000 0.006286 0.000072 92
1500 0.001413 0.000018 93
2000 0.000447 0.000007 88
2500 0.000172 0.000002 87
3000 0.000046 0.000001 89
3325 0.000033 0.000000 59

Alg. 1 bez regularyzacji,
£-check z £ = 10 3, 7thr = 0.65

step 
num. X — X* 2 f num. 

approx.
1 0.041335 0.000789 —
500 0.013145 0.000154 42
1000 0.006799 0.000081 36
1259 0.000078 0.000003 44
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Tabela 4.17: Optymalizacja dyskretnej funkcji brzegowej dziesięciu zmiennych za 
pomocą Algorytmu 1 bez procedury s-check z regularyzacją z wyborem wartości 
parametru A za pomocą: a) metody GCV, b) metody WGV z NLMSE^ = 10~6. 
W obydwu wypadkach 7thr = 0.60.

a) b)

Alg. 1 z GUv, 
bez £-check, 7thr = 0.60

step 
num. l|x-x*||2 f num. 

approx.
1 0.041335 0.000789 —
500 0.014178 0.000156 66
903 0.008044 0.000099 72

Alg. 1 z WGV,
bez e-c leck, 7t,łir = 0.60

step 
num. ||x “ x*ll2 f num. 

approx.
1 0.041335 0.000789 —
500 0.008977 0.000113 57
1000 0.001176 0.000021 68
1168 0.000628 0.000008 32

Tabela 4.18: Optymalizacja dyskretnej funkcji brzegowej dziesięciu zmiennych za 
pomocą Algorytmu 1 z procedurą e-check z £ = 10-3 z regularyzacją z wyborem 
parametru A za pomocą: a) metody GCV, b) metody WGV z NLMSE^ = 10 6. 
W obydwu wypadkach 7thr = 0.60.
a) b)

Alg. 1 z GGv,
£-check z £ = 10 3, 7thr = 0.60

step 
num. x - x*||2 f num. 

approx.
1 0.041335 0.000789 —
500 0.021260 0.000246 68
600 0.021060 0.000237 33

Alg. 1 z WGv, 
e-check z e = 10-3, 7thr = 0.60

step 
num. llx — x*l|2 f num. 

approx.
1 0.041335 0.000789 —
500 0.008452 0.000092 63
1000 0.004937 0.000054 75
1500 0.000877 0.000010 69
2000 0.000024 0.000000 92
2456 0.000002 0.000000 51

Ponieważ algorytm EXTREM wykonuje dla tej funkcji bardzo dużo wartościowań 
funkcji w okolicy minimum natomiast Algorytm 1 potrzebuje tych wartościowań 
znacznie mniej, to w poniższej tabeli podajemy przyspieszenie procesu tylko 
względem ścieżki Algorytmu 1.

Tabela 4.18a: Przyspieszenie dla pasmowej funkcji brzegowej dziesięciu zmiennych 
uzyskane Algorytmem 1 mierzone względem liczby bezpośrednich wartościowań 
funkcji celu w ścieżce optymalizacyjnej Algorytmu 1.

bez £-check z e-check 
Z £ = 1 O”3

bez reg.
GCV
WGV

14.85% 
niezbieżny 
13.44%

niezbieżny 
14.25%
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Funkcja kary I dziesięciu zmiennych

Tabela 4.19: Optymalizacja funkcji kary I dziesięciu zmiennych za pomocą: a) 
algorytmu EXTREM, b),c) Algorytmu 1 bez regularyzacji bez procedury e-check, 
d),e) Algorytm 1 bez regularyzacji z s-check, e = 10-3.

EXTREM
step 
mim. ||x-x*||2 /
1 369.48325 148033.565350
500 0.039733 0.000076
1000 0.030624 0.000074
1500 0.022666 0.000073
2000 0.014931 0.000073
2500 0.003847 0.000073
3135 0.000000 0.000072

b) c)
Alg. 1 bez regularyzacji, 
bez e-check, 7thr = 0.60

Alg. 1 bez regularyzacji, 
bez e-check, 7thr = 0.65

step 
num. l|x-x*||2 num. 

approx.
step 
num. ||x-x*||2 / num. 

approx.
1 369.4832 1.48 • 105 — 1 369.4832 1.48 • 105 —
274 3.786860 28.611277 40 557 0.223471 0.000083 47

d) e)
Alg. 1 bez regularyzacji, 

e-check z e = 10-3, 7thr — 0.60
Alg. 1 bez regularyzacji, 

e-check z e = 10“3, 7thr = 0.65
step 
num. l|x-x*||2 num. 

approx.
step 
num. l|x-x*||2 f num. 

approx.
1 369.4832 1.48 • 105 — 0 369.4832 1.48 • 105 —
337 0.171107 0.045111 43 429 0.111386 0.000346 36

Tabela 4.20: Optymalizacja dyskretnej funkcji brzegowej dziesięciu zmiennych za 
pomocą Algorytmu 1 bez procedury e-check z regularyzacją z wyborem wartości 
parametru A za pomocą: a) metody GCV, b) metody WGV z NLAISE^ — 10-6. 
W obydwu wypadkach 7thr = 0.65.

b)
Alg. 1 z GCV,....... . " Alg. 1 z WGV,

bez s-c reck, 7t.hr = 0.65 bez e-c leck, 7thr = 0.65
step 
num. l|x-x*||2 f num. 

approx.
step 
num. l|x-x*||2 f num. 

approx.
1 369.4832 1.48- 105 — 1 369.4832 1.48 • 105 —
587 0.230362 0.000083 60 454 0.052095 0.000077 27
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Tabela 4.21: Optymalizacja dyskretnej funkcji brzegowej dziesięciu zmiennych za 
pomocą Algorytmu 1 z procedurą £-check z e = 10-3 z regularyzacją z wyborem 
parametru A za pomocą: a) metody GCV, b) metody WGV z N LM S = 10-6.
W obydwu wypadkach 7thr = 0.65.

a) b)

Alg. 1 z GUV,
£-check z £ = 10 3, 7t br = 0.65

step 
num. ||x-x*||2 / num. 

approx.
1 369.4832 1.48 • 105 —
465 0.136225 0.000084 55

Alg. 1 z WGV, 
£-check z e = 10-3, 7thr = 0.65

step 
num. l|x-x*||2 / num. 

approx.
1 369.4832 1.48 ■ 105 —
500 0.044475 0.000076 19
641 0.039146 0.000075 23

Tabela 4.21a: Przyspieszenie dla pasmowej funkcji Broydena dziesięciu zmiennych 
uzyskane Algorytmem 1 mierzone względem liczby bezpośrednich wartościowań 
funkcji celu w ścieżce optymalizacyjnej Algorytmu 1.

bez £-check z £-check 
Z £ = 1 0“3

bez reg. niezbieżny niezbieżny
GCV niezbieżny niezbieżny
WGV 5.95% 6.55%

Dla tego przykładu tylko Algorytm 1 z procedurą £-check z metodą WGV dał 
odtworzenie rzędu zbieżności algorytmu EXTREM
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Funkcja Osborne’a II jedenastu zmiennych

Tabela 4.22: Optymalizacja funkcji Osborne II jedenastu zmiennych za pomocą: 
a) algorytmu EXTREM, b) Algorytm 1 bez regularyzacji i bez procedury £-check, 
c) Algorytm 1 bez regularyzacji i z procedurą £-check z £ = 10~3. W obydwu 
wypadkach 7thr = 0.65.

a)
EXTREM

step 
num. ||x-x*||2 f
1 22.61258 2.093420
250 1.008919 0.081672
500 0.009882 0.041034
750 0.005407 0.041772
1000 0.000060 0.040138
1250 0.000001 0.040138
1434 0.000000 0.040138

b)

Alg. 1 1 
bez £-c

>ez regularyzacji, 
reck, 7thr = 0.65

step 
num. ||x-x*||2 / num. 

approx.
1
250
346

22.61258
2.816426
2.783954

2.093420
0.416705
0.342864

32
48

c)

Alg. 1 bez regularyzacji, 
£-check z £ = 10~3, 7thr = 0.65

step 
num. ||x-x*||2 f num. 

approx.
1 22.61258 2.093420 —
250 1.379902 0.977272 29
500 0.568322 0.059211 31
710 0.335485 0.041512 43

Tabela 4.23: Optymalizacja funkcji Osborne II jedenastu zmiennych za pomocą 
Algorytmu 1 z regularyzacją z wyborem parametru A za pomocą GCV: a) bez 
procedury £-check, b) z procedurą £-check z £ = HG3. W obydwu wypadkach 
Tthr = 0.65.

b)

Alg. 1 z GGV, Alg. 1 z GUV, 
£-check z £ = 10“3, 7thr = 0.65bez £-c reck, 7thr = 0.65

step 
num. ||x — x*||2 f num. 

approx.
step 
num. ||x - x*||2 f num. 

approx.
1 22.61258 2.093420 — 1 22.61258 2.093420 —
250 2.798756 0.365735 31 250 2.799374 0.365797 32
500 0.571149 0.046544 35 500 0.951048 0.045721 31
750 0.093092 0.041709 35 750 0.246694 0.041805 43
1000 0.005360 0.040364 36 1000 0.004632 0.040462 35
1228 0.004148 0.040266 34 1106 0.003884 0.040177 25
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Tabela 4.24: Optymalizacja funkcji Osborne II jedenastu zmiennych za pomocą 
Algorytmu 1 z regularyzacją z wyborem parametru A za pomocą WGV z 
NLMSE = 5 • 10-6: a) bez procedury e-check, b) z procedurą e-check z t = 10~3. 
W obydwu wypadkach ythr = 0.65.

a) b)

Alg. 1 WGv,
bez e-c leck, 7thr = 0.65

step 
num. ||x-x*||2 / num. 

approx.
1 22.61258 2.093420 —
250 1.009314 0.197551 11
500 0.029002 0.044174 24
604 0.026482 0.041259 40

Alg. 1 z WGV, 
e-check z e = 10-3, ythr = 0.65

step 
num. ||x-x*||2 num. 

approx.
1 22.61258 2.093420 —
250 0.909002 0.106864 14
500 0.111992 0.047136 38
750 0.001946 0.040209 49
919 0.001441 0.040185 29

Tabela 4.24a: Przyspieszenie dla funkcji Osborne’a II jedenastu zmiennych uzyskane 
Algorytmem 1 mierzone względem a) liczby bezpośrednich wartościowań funkcji 
celu w ścieżce optymalizacyjnej Algorytmu 1, b) liczby wartościowań funkcji celu w 
ścieżce optymalizacyjnej algorytmu EXTREM.

b)a)

bez t-check z e-check 
Z F — 1 O-3 bez e-check z e-check 

Z F — 1 O-3
bez reg. niezbieżny niezbieżny bez reg. niezbieżny niezbieżny
GCV 13.93% 15.01% GCV 26.29% 34.45%
WGV niezbieżny 14.15% WGV niezbieżny 43.53%

Jak widać z powyższych tabel najlepszą zbieżnością do właściwego minimum 
uzyskaliśmy również za pomocą Algorytmu 1 z procedurą e-check oraz metodą WGV 
do konstrukcji aproksymacji RBF funkcji celu.
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Funkcja dyskretnego równania całkowego piętnastu zmiennych

Tabela 4.25: Optymalizacja funkcji dyskretnego równania całkowego piętnastu 
zmiennych za pomocą: a) algorytmu EXTREM, b),c) Algorytmu 1 bez regularyzacji 
bez procedury e-check, d),e) Algorytm 1 bez regularyzacji z s-check, e = 10-3.

EXTREM
step 
num. ||x-x*||2 f
1 0.059923 0.091463
200 0.000158 0.000210
421 0.000000 0.000000

b) c)
Alg. 1 bez regularyzacji, Alg. 1 bez regularyzacji,
bez e-c beck, 7thr = 0.60 bez e-check, 7thr = 0.65

step 
num. l|x-x*||2 f num. 

approx.
step 
num. l|x-x*||2 f num. 

approx.
1 0.059923 0.091463 — 1 0.059923 0.091463
200 0.000182 0.000244 18 200 0.000171 0.000230 14
366 0.000115 0.000509 45 436 0.000009 0.000010 40

d) e)
Alg. 1 bez regularyzacji, 

e-check z e — 10-3, 7t,hr = 0.60
Alg. 1 bez regularyzacji, 

t-check z e = 10-3, 7thr = 0.65
step 
num. l|x-x*||2 f num. 

approx.
step 
num. l|x-x*||2 f num. 

approx.
1 0.059923 0.091463 — 1 0.059923 0.091463 —
200 0.000157 0.000213 20 200 0.000158 0.000210 16
400 0.000000 0.000000 56 400 0.000000 0.000000 46
537 0.000000 0.000000 18 547 0.000000 0.000000 20

Tabela 4.26: Optymalizacja funkcji dyskretnego równania całkowego piętnastu 
zmiennych za pomocą Algorytmu 1 bez procedury s-check z regularyzacją z 
wyborem wartości parametru A za pomocą: a) metody GCV, b) metody WGV z 
NLMSEthr = 10~4. W obydwu wypadkach 7thr = 0.60.

a)

Al| 
bez e-c

?. 1 z GCV, 
leck, 7thr = 0.60

step 
num. ||x — x*||2 f num. 

approx.
1
200
366

0.059923
0.000217
0.000150

0.091463
0.000298
0.000183

22
63

b)
Alg. 1 z WGv,

bez e-c leck, 7thr = 0.60
step 
num. l|x-x*||2 f num. 

approx.
1 0.059923 0.091463 —
200 0.000157 0.000209 18
427 0.000000 0.000000 47
495 0.000000 0.000000 2
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Tabela 4.27: Optymalizacja funkcji dyskretnego równania całkowego piętnastu 
zmiennych za pomocą Algorytmu 1 z procedurą e-check z e = 10-3 z regularyzacją 
z wyborem parametru A za pomocą: a) metody GCV, b) metody WGV z 
NLMSE^ = 10-4. W obydwu wypadkach 7thr = 0.60.

b)a)
Alg. 1 z GCV, 

e-check z e = 10-3, 7thr = 0.60
Alg. 1 z WGV, 

e-check z £ = 10“3, 7thr = 0.60
step 
num. 1 X — X* 2 / num. 

approx.
step 
num. ||x-x*||2 f num. 

approx.
1 0.059923 0.091463 0 1 0.059923 0.091463 —
200 0.000738 0.000824 21 200 0.000867 0.000956 18
427 0.000000 0.000000 89 427 0.000000 0.000000 31
585 0.000000 0.000000 28 467 0.000000 0.000000 10

Tabela 4.27a: Przyspieszenie dla funkcji dyskretnego równania całkowego piętnastu 
zmiennych uzyskane Algorytmem 1 mierzone względem a) liczby bezpośrednich 
wartościowań funkcji celu w ścieżce optymalizacyjnej Algorytmu 1, b) liczby 
wartościowań funkcji celu w ścieżce optymalizacyjnej algorytmu EXTREM.

b)

bez e-check z e-check 
z e = 10-3 bez e-check z e-check 

z e = 10“3
bez reg. 17.21% bez reg. 28.03%
GCV 23.22% 23.59% GCV 33.25% —
WGV 13.54% 12.63% WGV — 4.45%
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4.1.2 Synteza wyników numerycznych dla funkcji testowych

W paragrafie tym prezentujemy zestawienie wyników uzyskanych przyspieszeń dla 
optymalizacji algorytmem EXTREM oraz Algorytmem 1 połączonym z algorytmem 
EXTREM dla funkcji testowych z paragrafu 4.1.1. Tabele 4.28a i 4.28b zawierają 
więc wszystkie wyniki z tabel z paragrafu 4.1.1. W tabelach tych znak „—” 
oznacza, że nie uzyskano przyspieszenia, gdyż potrzebnych było więcej wartościowań 
bezpośrednich funkcji celu niż w algorytmie EXTREM, zachowana została natomiast 
zbieżność algorytmu.

Oznaczmy przez NUMBezp liczbę bezpośrednich obliczeń wartości funkcji celu 
wykonanych przez algorytm bezpośredniemu, przez NUMspelroa liczbę bezpośrednich 
obliczeń wartości funkcji celu wykonanych przez algorytm SPELROA oraz 
przez NUM_ALLspelroa liczbę obliczeń bezpośrednich funkcji celu przez alogrytm 
SPELROA plus liczba aproksymacji funkcji celu wykonanych przez ten algorytmie. 
Przyspieszenie podane w tabelach 4.28a) i 4.28b) obliczone jest wg wzorów

100% - NU AApelroa

NU A/bezp
(4-1)

natomiast w tabeli 4.28b) wzorem

100% - NU AĄpelroa

NU M _ALLspelroa
(4-2)

Jak widać zbieżność dla wszystkich funkcji testowych uzyskaliśmy tylko dla 
metody SPELROA z aproksymacją z wyborem parametru regularyzacji za pomocą 
metody Weighted Gradient Yariance połączonej z procedurą e-check.
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Tabela 4.28a: Przyspieszenie procesu optymalizacji uzyskane metodą SPELROA 
dla funkcji testowych. Przyspieszenie określone względem ilości bezpośrednich 
wartościowań funkcji celu w Algorytmie 1, tzn. obliczone ze wzoru (4.2).

bez regularyzacji GCV WGV
Funkcja liczba 

param.
bez 

e-check
z 

e-check
bez 

e-check
z 

e-check
bez 

e-check
z 

e-check
1 kary II 4 16.17% 15.00% 17.68% 14.28% 13.84% 13.57%
2 Rosenbrocka 

roszerzona 6 nie- 
zbieżny

nie- 
zbieżny

nie- 
zbieżny 14.98% 7.16% —

3 Rosenbrocka 
roszerzona 8 nie- 

zbieżny
nie- 

zbieżny
nie- 

zbieżny
nie- 

zbieżny
nie- 

zbieżny 15.04%
4 Chebąuad 10 14.79% 17.52% 20.09% 24.89% 17.36% 6.31%
5 Pasmowa 

Broydena 10 — 17.35% 13.17% — 12.83% 12.67%

6 Dyskretna 
brzegowa 10 14.85% — nie- 

zbieżny
nie- 

zbieżny 13.44% 14.25%

7 kary I 10 nie- 
zbieżny

nię- 
zbieżny

nie- 
zbieżny

nie- 
zbieżny 5.95% 6.55%

8 Osborne’a 11 nie- 
zbieżny

nie- 
zbieżny 13.93% 15.01% nie- 

zbieżny 14.15%

9 Dyskretnego 
równ. całk. 15 17.21% — 23.22% 23.59% 13.54% 12.63%

Tabela 4.28b: Przyspieszenie procesu optymalizacji uzyskane metodą SPELROA 
dla funkcji testowych. Przyspieszenie określone względem ilości bezpośrednich 
wartościowań funkcji celu w Algorytmie EXTREM, tzn. obliczone ze wzoru (4.1).

bez regularyzacji GCV WGV
Funkcja liczba 

param.
bez 

e-check
z 

e-check
bez 

e-check
z 

e-check
bez 

e-check
z 

e-check
1 kary II 4 26.92% 23.71% 22.43% 23.07% 28.20% 22.43%
2 Rosenbrocka 

roszerzona 6 nie- 
zbieżny

nie- 
zbieżny

nie- 
zbieżny 28.10% 20.87% —

3 Rosenbrocka 
roszerzona 8 nie- 

zbieżny
nie- 

zbieżny
nie- 

zbieżny
nie- 

zbieżny
nie- 

zbieżny 45.55%
4 Chebąuad 10 17.34% 47.24% 29.26% 32.17% 48.42% 38.80%
5 Pasmowa 

Broydena 10 — 17.33% 13.17% — 15.17% 12.67%

6 Dyskretna 
brzegowa 10 36.98% — nie- 

zbieżny
nie- 

zbieżny 65.45% 28.02%

7 kary I 10 nie- 
zbieżny

nie- 
zbieżny

nie- 
zbieżny

nie- 
zbieżny 86.41% 80.89%

8 Osborne’a 11 nie- 
zbieżny

nię- 
zbieżny 26.29% 34.45% nie- 

zbieżny 43.53%

9 Dyskretnego 
równ. całk. 15 28.03% — 33.25% — — 4.45%
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4.2 Projektowanie magnesów nadprzewodzących

4.2.1 Zintegrowany proces projektowania magnesów dla 
zderzacza cząstek elementarnych LHC

4.2.2 Określenie funkcji celu
Celem optymalizacji magnesów nadprzewodzących w zderzaczu LHC było 
zapewnienie wymaganych własności generowanego przez nie pola magnetycznego - 
zakrzywiającego, skupiającego lub korygującego trajektorię wiązki przyspieszanych 
cząstek elementarnych. Wymagania te są określone przez geometrię tunelu oraz 
fizykę akceleratora. Ogólnie rzecz biorąc w procesie konstrukcji magnesu celem jest 
czyste pole wielobiegunowe o określonym natężeniu. Cel ten formułowany jest w 
kategoriach współczynników rozwinięcia Fouriera statycznego pola magnetycznego 
w aperturze magnesu. Statyczne pole magnetyczne w regionach niemagnetycznych 
i wolnych od prądu jest opisywane przez układ uproszczonych równań Maxwella

V x B
NB

0, 
0.

(4-3)

Rozwinięcie pola magnetycznego w szereg Fouriera w aperturze magnesu

Dla zagadnień dwuwymiarowych układ 
redukuje się do układu

dBx _

dBx _ 
dz ~

(4.3) we współrzędnych kartezjańskich

dBy

(4.4)
dy '

który jest równoważny równaniu Laplace’a

V • (V x AĄ = 0 (4-5)

spełnianego przez składową z potencjału wektorowego A zdefiniowanego 
standardowo jako

B — V x A

w przestrzeni trójwymiarowej.
Pole magnetyczne jest obliczane z zależności Bx = oraz By = — 

Przechodząc do współrzędnych biegunowych (r, <p) równanie (4.5) przyjmuje postać

d2Az IdAz 1 d2Az 
dr2 r dr r2 dtp2

Ustalając pole dla r = 0 otrzymujemy rozwiązanie

oo

AĄr, p) = c08^) + Hn sin(nę?)).
n=l
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Br(r, 99) = 
r dtp

Radialna i kątowa składowa pola zapisują się wówczas jako szeregi
oo

^(d^) = ^r^BnSin^) + An cos(nę>)),
n=l

oo

= ~—Az{r,ip} = y^rn~1(Bracos(7?.^) - An sin(n^)), 
n=l

(4.6)

gdzie Bn = —nGn i An = nHn. Jakość pola w aperturze jest formułowana 
za pomocą współczynników rozwinięcia składowej radialnej (4.6) na zadanym 
promieniu referencyjnym r = rref. Dla magnesów zderzacza cząstek elementarnych 
LHC rref = 17mm.

Składowa pola generowana przez cewkę nadprzewodzącą

Pole magnetyczne w aperturze magnesu może zostać obliczone bez dyskretyzacji 
cewki nadprzewodzącej korzystając prawa Biota-Sevarta oraz zredukowanego 
potencjału wektorowego Ar, i.e.

B = Bs + Br = + V x Ar, (4-7)

gdzie Bs jest polem generowanym przez cewkę natomiast Br jest polem generowane 
przez jarzmo. Pole magnetyczne Bs pobudzane przez cewką o zadanym rozkładzie 
prądu może zostać obliczone korzystając z prawa Biota-Sevarta, które w trzech 
wymiarach zapisuje się

gdzie J jest gęstością prąd, r jest wektorem z punktu całkowania prądu do punktu 
obliczania pola. Powyższa całka redukuje się na płaszczyźnie prostopadłej do 
kierunku prądu do

Lin f Jn , . . .Bs = ^ —dA, 4.8
47F Jv r

gdzie n jest wektorem jednostkowym prostopadłym do r. Korzystając z (4.8) można 
analitycznie obliczyć współczynniki rozwinięcia (4.6) (c.f. [28]).

Składowa pola generowana przez jarzmo magnesu

Wstawiając równanie (4.7) do równania Maxwella

V x H = J

otrzymujemy

(4-9)

Równanie to rozwiązujemy w dwóch regionach materiałowych, tzn. w Da, który 
jest częścią bez magnetyzacji (/z — /z0) czyli w aperturze oraz w regionie Di, która
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stanowi jarzmo gdzie z kolei prąd jest równy zero. Otrzymujemy więc w każdej części 
materiałowej oddzielne równanie

0 w Qa,
—V x lBs w Qj.

Dodatkowymi warunkami są warunki brzegowe Dirichleta 

n ■ Br = —n ■ Bs

lub Neumanna
n x — Br = — n x Bs, 

P
spełniane na elementach dyskretyzujących brzeg między regionami Da i Qj, gdzie 
wektor n jest wektorem normalnym do brzegu. Ponadto konieczne są jeszcze tzw. 
zewnętrzne warunki brzegowe i.e. warunki w dostatecznej odległości od centrum 
apertury, gdzie pole jest zaniedbywalnie małe. Równanie (4.9) wraz z warunkami 
brzegowymi na styku dwóch regionów materiałowych i z zewnętrznym warunkami 
brzegowymi określa pełne zagadnienie brzegowe;.

Używając dodatkowej funkcji wagowej w, która spełnia homogeniczne warunki 
brzegowe Dirichleta, słabe sformułow-anie problemu obliczenia pola magnetycznego 
w aperturze magnesu zapisuje się jako

[ (V x w) • -(V x AĄdO = [ fl - — 
a P Jn\Pj

(V x w) • HS(KI

Zagadnienie to rozwiązywane jest metodą elementów skończonych. Szczegóły 
powyższego sformułowania oraz metody rozwiązania znaleźć można w’ [28].

Optymalizacja wielocelowa - optymalność w sensie Pareto

W rzeczywistych problemach optymalizacyjnych istnieje zazwyczaj kilka celówr, które 
są ze sobą w konflikcie, tzn. minima dla każdej funkcji celu różnią się od siebie. 
Zagadnienie optymalizacji K funkcji celu zapisuje się jako

,,min^F(X) = „min\fĄX\ fĄX),..., fK(XĄ,

gdzie F : Rd —> RK a ograniczenia definiowane są przez funkcję hj : Rd —> R oraz 
stałe Ci, dj e R

gĄXĄ < G i = l,2,...,m 
hĄX) = dj j =

gdzie X — (zi,..., Xd) jest takie, że

^ZJower S S -U.upper;

(4.10)
(4.11)

(4.12)l = l,2,...,d.

Z optymalizacją wielocelową związane jest pojęcie rozwiązania optymalnego w 
sensie Pareto [28]
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Definicja 15. Zbiór X* jest zbiorem optymalnym w sensie Pareto, gdy nie istnieje 
rozwiązanie X w dziedzinie {X G : gi(X) < 0-hj^X) = 0;a;yower < xi < 
^z,upper> = 1,..., j = 1,... ,p;l = 1,2,..., d}. dla którego

fk{X) < fk[X) Ut{R..,K}
fk(X) < fk{X) dla przynajmniej jednego kE {1,..., K}.

Innymi słowy rozwiązanie X, dla którego poprawa jednego z celów powoduje 
degradację przynajmniej jednego z celów jest elementem zbioru rozwiązań 
optymalnych w sensie Pareto.

Zadanie poszukiwania rozwiązań optymalnych w sensie Pareto jest 
transformowane do zagadnienia optymalizacji bez ograniczeń funkcji skalarnej 
za pomocą :

1. ważenia celów oraz

2. funkcji odległości.

Ograniczenia (4.11), (4.11) oraz (4.12) są włączane do optymalizacji przez 
modyfikację funkcji celu za pomocą

1. funkcji kary dla ograniczeń zakresów poszukiwania (4.12) oraz

2. funkcji kary dla ograniczeń nieliniowych (4.11) i (4.11).

Metoda ważenia celów polega na połączeniu składowych funkcji wektorowej 
F(X) w jedną skalarną funkcję celu

K 
fX) =

fc=l

gdzie wk są wagami określającymi ważność celu fk w zagadnieniu optymalizacyjnym. 
Metoda funkcji odległości polega połączeniu składowych funkcji wektorowej

F(X) w jedną skalarną funkcję celu dla ustalonych rezyduów yk E R; k = 1,..., K

/ K \

\fe=l /

Zazwyczaj ze względu na ciągłość pochodnych rozważa się r = 2. W praktyce 
wagi wk są znane z rozważań analitycznych natomiast rezydua yp są znane ze 
sformułowania problemu lub z założeń o szukanym rozwiązaniu.

Metoda funkcji kary dla ograniczeń zakresów poszukiwań polega na modyfikacji 
funkcji celu, gdy występuje przekroczenie zakresu

_ f /(-^) żadne ograniczenie nie jest przekroczone
( /(X*) + r(X) jedno z ograniczeń jest przekroczone
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gdzie X* = ... ,Xi,... ,xn) oraz x^ = Xiu jeśli xt > xtu (tzn. górne
ograniczenie jest przekroczone) oraz xj = Xu jeśli xi < xu (tzn. dolne ogranicznie 
jest przekroczone). Składnik kary natomiast zapisuje się w postaci

Ói - xtuy
ÓJi - Xi)2 

0l

jeśli xi > xłu, 
jeśli xi < xa, 
w przeciwnym razie, 

gdzie Ti E R są odpowiednimi współczynnikami kary.
Metoda funkcji kary dla ograniczeń nieliniowych funkcji celu danych za pomocą 

(4.11), (4.11) polega modyfikacji funkcji celu przez dodanie składnika zależnego 
od tego jak bardzo ograniczenie funkcji celu jest przekroczone. Część funkcji celu 
odpowiadająca minimalizacji celu fk modyfikowana jest przez dodanie składnika 
kary

p(X) = fĄX) + ^Pimajc2^,^^) - ck) + ^(hĄX) - dĄ2
i 3

gdzie pi, qj E R są odpowiednimi współczynnikami wagowymi.

Funkcja celu w optymalizacji magnesów zakrzywiających zderzacza 
cząstek elementarnych LHC

W następnym paragrafie omówione są wyniki optymalizacji nadprzewodzących 
zakrzywiających magnesów dipolowych zderzacza cząstek elementarnych LHC. Aby 
zdefiniować funkcję celu przekształćmy rozwinięcie (4.6) na okręgu o promieniu 
referencyjnym rref do postaci

'DO

Br(rref, 9?) = BĄrreĄ ^{bn{rieĄ s'mn<p + anóreó cosnę?). (4.13) 
n=l

Ze względu na symetrię budowy magnesów zderzacza cząstek elementarnych 
LHC znikają z powyższego rozwiniącia składniki ai(rref), da^ref), • • • • Celami 
optymalizacji magnesu dipolowego są

1. pole magnetyczne o zadanym natężeniu strumienia B[ = 9.3T

2. czystość pola magnetycznego, tzn.

minb2(rref), 
min b3(rref), 
minb4(rref),

na nominalnym poziomie natężenia prądu pobudzającego,
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3. czystość pola magnetycznego

min62,mj(rref), 

minb3iinj(rref), 

mili &4,inj ref ),

na poziomie prądu pobudzającego podczas wstrzyknięcia wiązki protonów do 
zderzacza cząstek elementarnch,

4. zmiana pola pomiędzy poziomem natężenia podczas wstrzyknięcia wiązki 
protonów do zderzacza cząstek elementarnch a poziomem nominalnym 
natężenia, tzn.

minA62(rref) = min(&2(inj(rref) - M^ef)), 
min A63 (rref) = min (fe3jW(rref) - b3 (rref)), 
min A64 (rref) = min (b4;inj (rref) - b4 (rref)),

Optymalizowana funkcja celu, skonstruowana za pomocą metody ważenia celów, 
funkcji odległości, metod włączania ograniczeń opisanych w poprzednim paragrafie, 
powinna więc zawierać powyższe cele dla początkowych n. Zmiennymi, od których 
zależy optymalizowana funkcja celu są parametry techniczne modelu magnesu.

4.2.3 Wyniki numeryczne
W paragrafie tym prezentujemy wyniki działania metody SPELROA połączonej z 
algorytmem optymalizacji bezpośredniej EXTREM [18]. Algorytm ten ze względu 
na swoją stabilność i przyjazność dla użytkownika - nie wymaga od użytkownika 
podania żadnych parametrów - został użyty do optymalizacji nadprzewodzących 
magnesów dipolowych dla zderzacza LHC w Europejskim Laboratorium Fizyki 
Cząstek CERN [28]. W testach zastosowanie metody SPELROA wymagało podania 
4 parametrów. Do konstrukcji aproksymatora (3.3) jako funkcji bazowej użyliśmy 
funkcji Gaussa 0(r) = e—“IRII . Zebraliśmy je w tabeli 4.28. Dobór wartości 
tych parametrów oczywiście zależy od optymalizowanej funkcji celu oraz od 
liczby zmiennych w funkcji celu. Z naszych testów jednak można wywnioskować 
uniwersalne wartości tych parametrów. We wszystkich prezentowanych przykładach 
liczba użytych funkcji radialnych wynosiła N = 30 a liczba wykonanych kroków w 
fazie wstępnej wynosiła 40. Wartości progowe natomiast wynosiły 7thr = 0.65.

LHC coil test facility, przykład optymalizacji funkcji dwóch zmiennych

Głównym wysiłkiem podczas budowy zderzacza cząstek elementarnych LHC było 
zapewnienie spełnienia specyfikacji poła magnetycznego w głównych magnesach 
dipolowych.
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Tabela 4.28: Parametry metody SPELROA definiowane przez użytkownika

Is - liczba kroków w początkowej fazie optymalizacji, w których fun­
kcja celu obliczana jest tylko w sposób bezpośredni

N - rozmiar zbioru treningowego a tym samym liczba funkcji bazo­
wych użytych do budowy aproksymatora RBF (3.3). Zauważmy, 
że musi być (A < IĄ.

Tthr - wartość progowa dla wskaźnika (3.26) wyznaczenia regionu wia­
rygodności

NLMSEthr wartość progowa dla wskaźnika (3.18) do wyznaczenia parametru 
regularyzacji A przez minimalizację (3.19)

Aby zapewnić możliwość efektywnego testowania rozwiązań technicznych 
wykorzystanych w głównym magnesie dipolowym LHC, skonstruowano krótki 
magnes z jedną aperturą, tzw. Coil Test Facility (CTF). Jest to jeden z trzech 
testowych modeli prototypowych magnesów dipolowych oprócz krótkiego i długiego 
modelu prototypowego końcowej specyfikacji.

CTF może służyć jako prosty przykład procesu optymalizacyjnego z dwoma 
parametrami: długościami osi (a, 6) określającymi wewnętrzny kształt jarzma 
magnesu (patrz rys. 4.1).

Rysunek 4.1: Model Coil Test Facility. Optymalizowane są rozmiary półosi elipsy 
określającej kształt kołnierza magnesu.

Funkcja celu jaką optymalizowaliśmy została skonstruowana za pomocą metody 
włączania ograniczeń nieliniowych i jest postaci

fobĄa, 6) = 50Bi + 5max(0, N.b3 — l)2 + max(0, 63iinj — 10)2, (4.14)
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gdzie 63)inj jest wartością współczynnika sekstopolowego Mrref) w rozwinięciu (4.13) 
dla natężenia prądu pobudzającego magnes na poziomie natężenia prądu podczas 
wstrzyknięcia wiązki do zderzacza cząstek elementarnch, natomiast A63 jest zmianą 
współczynnika b3(rTei) podczas ładowania magnesu od natężenia prądu pobudzenia 
podczas wstrzyknięcia wiązki do zderzacza do poziomu nominalnego.

Wykres funkcji celu fo^(a,b) wraz z wizualizacją punktów wygenerowanych 
w kolejnych krokach działania metody SPELROA z algorytmem EXTREME 
przedstawione są na rysunku 4.2. W tabeli 4.29 przedstawione są znalezione 
minima za pomocą algorytmu EXTREM oraz metody SPELROA połączonej z 
algorytmem EXTREM, liczba bezpośrednich obliczeń wartości funkcji celu oraz 
liczba aproksymacji funkcji celu. Uzyskane przyspieszenie obliczone jako stosunek 
liczby bezpośrednich wartościowań funkcji celu przez metodę SPELROA do liczby 
wartościowań funkcji celu przez algorytm EXTREM wyniosła 30%.

Rysunek 4.2: Ścieżka optymalizacyjna dla metody SPELROA połączonej z 
algorytmem EXTREM dla modelu CTF (c.f. [2]). Proces wystartowany został z 
punktu [130.0, 80.0]. Algorytm „zbiegł” do minimum funkcji celu znajdującego się w 
punkcie [68.55,75.87] po 111 bezpośrednich wartościowanach funkcji i konstrukcji 
aproksymacji RBF w 31 punktach (kółka z krzyżykiem). Algorytm EXTREM 
potrzebował 167 wartościowań funkcji. Uzyskano więc przyspieszenie rzędu 30%.

LHC Main Dipole, przykład optymalizacji funkcji trzech i pięciu 
zmiennych

Parametrami jakimi manipulujemy podczas optymalizacji są parametry 
geometryczne jarzma magnesu - patrz rysunek 4.3.
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Tabela 4.29: Porównanie działania algorytmu EXTREM oraz metody SPELROA 
połączonej z algorytmem EXTREM do optymalizacji krótkiego modelu testowego 
coil-test facility dla zderzacza cząstek elementarnych LHC. Optymalizacja 
wystartowana została z punktu [130.0,80.0]. Uzyskane przyspieszenie to około 30%.

EXTREM SPELROA
a 
b

68.53
75.87

68.57
75.86

/obj -391.3003 -391.2974
Liczba obliczeń 

wart. /obj 
Liczba aproksy­
macji RBF /obj

167 111

31

Funkcja celu jaką optymalizowaliśmy skonstruowana została za pomocą metody 
ważenia celów i jest postaci

4 4
/obj(X) = ^tnNbn + J2bn,mj dla (t2 = i3 = 5,t4 = 50), (4.15)

n—2 n=2

gdzie b2, b3 i b^ są współczynnikami kwadrupolowymi, sekstopolowymi oraz 
oktopolowymi odpowiednio. Parametrami względem, których prowadzona jest 
optymalizacja trzech zmiennych, są X = (xi, x2, xó, gdzie xi = alell, x2 = bieli 
oraz X3 = alel2 są parametrami kształtu kołnierza niemagnetycznego wokół cewki - 
patrz Rys. 4.3.

Do optymalizacji użyliśmy algorytmu EXTREM [18] połączonego z metodą 
SPELROA. Proces został wystartowany z punktu [88.0,105.0,79.0]. W tabeli 
4.30 przedstawiamy porównanie znalezionych minimów funkcji celu oraz liczby 
wartościowań funkcji dla obydwu metod. Uzyskane za pomocą metody SPELROA 
przyspieszenie to około 30%.

W pracy [2] przedstawiliśmy również wyniki optymalizacji głównego magnesu 
dipolowego zderzacza cząstek elementarnych LHC dla funkcji (4.15) zależnej od 
pięciu parametrów projektu. Dodatkowo pod uwagę wzięto zmienne X\ = ryoke 
oraz z5 = hy - patrz Rys. 4.3. Metoda zastosowana tam różniła od prezentowanej 
w tej pracy jedynie sposobem określenia regionu wiarygodnego oraz sposobu 
wyboru parametru regularyzacji w konstrukcji aproksymatora funkcji celu. Różnica 
polegała na użyciu odległości Mahalanobisa zamiast wskaźnika yx oraz arbitralnego 
przedziału poszukiwania wartości parametru regularyzacji A. Wynik przedstawiamy 
w tabeli 4.31
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Rysunek 4.3: Parametryczna reprezentacja optymalizowanego jarzma magnesu LHC.

4.3 Strojenie regulatora PID - metoda SPELROA 
połączona z algorytmem quasi-Newtona

W niniejszej pracy formalnie dowiedliśmy, że metoda SPELROA jest zbieżna w 
połączeniu z algorytmami bezgradietnowymi. Nic nie stoi jednak na przeszkodzie, 
żeby takie podejście zastosować w algorytmamch gradientowych. Oczywiście dowód 
zbieżności przedstawiony w pracy nie przenosi się automatycznie na algorytmy 
gradientowe. Dowód zbieżności metody SPELROA dla algorytmów gradientowych 
wymagać będzie rozszerzenia, w którym rozważone będzie również zaburzenie 
wprowadzane do kierunku poszukiwań a nie jedynie do wartości funkcji w fazie 
minimalizacji wzdłuż kierunku.

W paragrafie tym prezentujemy zastosowanie metody SPELROA połączonej 
z algorytmem ąuasi-Newtona do procesu strojenia regulatora PID. Macierz 
aproksymująca hesjan była generowana za pomocą poprawki BFGS (patrz [15]).

Rozpatrzyliśmy regulator PID dla układu oscylującego danego impedancją

50s3 + 43s2 + 3s + 1' (4.16)

Do znalezienia parametrów Kp, Kd i Ki regulatora użyliśmy estymacji 
standardowych funkcji celu Integral of time error squared (ITES) oraz Integral of 
time absolute error (ITAE) danych wzorami

ITES = [te^t^dt ITAE = t|e(t)\dt.
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Tabela 4.30: Porównanie działania algorytmu EXTREM oraz metody SPELROA 
połączonej z algorytmem EXTREM do optymalizacji głównego magnesu dipolowego 
zderzacza cząstek elementarnych LHC. Optymalizacja wystartowana została z 
punktu [88.0,105.0,79.0]. Uzyskane przyspieszenie to około 30%.

EXTREM SPELROA
80.92 80.70

^2 99.64 99.40
^3 86.02 85.74

/obj -23.941 -24.179
Liczba obliczeń 

wart, /obj
301 208

Liczba aproksy­
macji RBF /obj

— 45

Minimum funkcji ITES daje rozwiązanie o przesterowaniu rzędu 4.5%. Natomiast 
dla funkcji ITAE przesterowanie znalezionego regulatora jest rzędu 3%. Wyniki 
optymalizacji przedstawiają tabele
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Tabela 4.31: Porównanie działania algorytmu EXTREM oraz metody SPELROA 
połączonej z algorytmem EXTREM do optymalizacji głównego magnesu dipolowego 
zderzacza cząstek elementarnych LHC. Optymalizacja wystartowana została z 
punktu [95.0,96.0,85.0,275.0,8.0]. Uzyskane przyspieszenie to około 18.5%.

EXTREM SPELROA
87.10 87.44

^2 105.39 104.69
^3 92.90 93.55
X4 280.97 280.99
x5 3.91 4.10

/obj 15.51 15.66
Liczba obliczeń 343 281

wart. /obj
Liczba aproksy- — 52
macji RBF /obj

Tabela 4.32: Metoda SPELROA w połączeniu z algorytmem BFGS quasi-Newton 
dla funkcji /obj — log(ITES). Proces wystartowany z punktu [0.2, 0.5, 5.5].

Algorytm BFGS q-N SPELROA
KP

Kd

3.844896
0.172128
18.430017

3.826120
0.172104
18.351408

/obj 1.910984 1.910988
Liczba obliczeń 

wart. /obj 
Liczba aproksy­
macji RBF /obj

68 63

12
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Tabela 4.33: Metoda SPELROA w połączeniu z algorytmem BFGS quasi-Newton 
dla funkcji /obj = log(ZTAE^). Proces wystartowany z punktu [0.2, 0.5, 6.5].

Algorytm BFGS q-N SPELROA
Kp 
Ki 
Kd

3.344571
0.162876
16.990756

3.291519
0.162836
16.787918

/obj 1.489663 1.490390
Liczba obliczeń 

wart, /obj 
Liczba aproksy­
macji RBF /obj

78 64

7
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Rozdział 5

Zakończenie

5.1 Podsumowanie

Tematem niniejszej pracy jest optymalizacja funkcji celu, których obliczenie 
jest czasochłonne. Takie zadania optymalizacyjne pojawiają się w zagadnieniach 
optymalizacji i konstrukcji systemów sterowania jak i zagadnieniach projektowania 
różnego rodzaju urządzeń w licznych dziedzinach techniki. Obliczanie wartości 
funkcji w takim zadaniu wiąże się z zazwyczaj z przeprowadzeniem złożonej i 
czasochłonnej operacji w zależności od zmiennych projektowych. Do optymalizacji 
tego typu funkcji zazwyczaj stosuje się algorytmy bezgradientowe ze względu na to, 
że gradient nie jest dostępny a aproksymacja gradientu jest zbyt czasochłonna lub 
niemożliwa.

W niniejszej rozprawie autor zaprezentował nowe podejście do przyspieszania 
procesów optymalizacji funkcji ciągłych. Metoda, zaproponowana przez autora, 
polega na konstrukcji modelu aproksymującego w części punktów ścieżki 
optymalizacyjnej algorytmu bezgradientowego i na nieobliczaniu wartości funkcji 
w sposób bezpośredni lecz zastąpienia jej skonstruowanym modelem. W 
zaproponowanej metodzie modelem aproksymującym jest sieć z radialnymi 
funkcjami aktywacji trenowana za pomocą metody regularyzacji Tikhonova, stąd 
nazwana została Search Procedurę Exploiting Locally Regularized Objective 
Approximation. Założeniem metody jest, że czas konstrukcji aproksymacji oraz 
obliczenia jej wartości w danym punkcie jest zaniedbywalnie mały w porównaniu 
z czasem potrzebnym na obliczenie funkcji celu w sposób bezpośredni. Przy takim 
założeniu przyspieszenie algorytmu optymalizacji rozumiemy jako skrócenie czasu 
jego działania, tzn. zmniejszenie liczby obliczeń bezpośrednich wartości funkcji. 
W pracy autor udowodnił zbieżność metody dla algorytmów bezgradientowTy. 
Zastosowanie zaprezentowanej metody w połączeniu z algorytmem Gaussa-Seidela 
z reortogonalizacją bazy kierunków poszukiwań, stosowanym do optymalizacji 
magnesów umożliwiło przyspieszenie procesu optymalizacji głównego magnesu 
zakrzywiającego zderzacza cząstek elementarnych LHC nawet do 30% dla funkcji 
celu, której obliczenie może trwać do 2h na komputerze DEC Alpha XP 1000. Dla 
trudnych funkcji testowych z literatury uzyskano od kilku do nawet kilkudziesięciu 
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procent przyspieszenia. Na przykładzie procesu strojenia regulatora PID autor 
pokazał, że istnieją również obiecujące perspektywy zastosowania nowej metody w 
połączeniu z algorytmami gradientowymi.

5.2 Proponowane dalsze kierunki badań
Możliwe dalsze kierunki badań to przede wszystkim :

• Poszukiwanie analitycznego związku pomiędzy wartością wskaźnika 7x(x) 
określonego przez (3.26) mierzącego „jakość” otoczenia punktu x przez punkty 
ze zbioru danych X a jakością zregularyzowanej aproksymacji radialnymi 
funkcjami bazowymi. Gdyby taki związek udało się znaleźć możliwe byłoby 
określenie metody ustalenia wartości progowych 7thr określających obszary 
otoczki wypukłej zbioru danych, w których błąd aproksymacji mógłby być 
precyzyjniej niż obecnie ograniczony.

• Zastosowanie aproksymacji radialnymi funkcjami bazowymi konstruowanej 
metodą WGV do aproksymacji gradientu funkcji celu i wykorzystanie tej 
aproksymacji w algorytmach gradientowych, dobre perspektywy rozwoju 
badań w tym kierunku potwierdza zaprezentowany przykład zastosowanie 
metody w połączeniu z efektywnym algorytmem optymalizacji gradientowej 
quasi-Newtona z poprawką aproksymacji hesjanu metodą BFGS zostało 
przedstawione na przykładzie optymalizacji układu regulacji PID.

• Porównanie metody SPELROA z metodami regionu wiarygodności.



Rozdział 6

Dodatki

6.1 Dodatek A
Minimum paraboli g«) interpolujące punkty (C,/(C))> (C2, f(C2)) oraz (C3,/(C3)) 
gdzie {Ci? Gi G} C R dane jest wzorem

v _ I [(C3)2 - + [(c3)2 - (MW2) + [(C2)2 - (M2]M3)
2 (C3 - OKC1) + (C3 - C1 W2) + (C2 - C)/(C3)

Przekształćmy parabole q(x) — ax2 + bx + c; x = C1 + t(C3 — C1); t = (—00, 00) do 
paraboli q(x) — ax2 + bx + c zakładając co następuje

1. Transformacja będzie postaci

q{x) = E(p(x^ + D, p(x) = L2(x), (6.1)

gdzie L2(E) jest wielomianem interpolującym punkty (0,/(C))> (C(r):/(C2)) 
oraz (1,/(C3) gdzie <(r) = ^r-

2. Parabola przekształcona przyjmuje wartości

{m = -2, gdy 

oraz
{Hm:

Z warunku 1. otrzymujemy

= a'x2 + b'x + d 

gdzie
( n' - । 1

J 1/ _ IfKWj+i) , /«2) ,
I 0 “ L <(r) 1 <(r)«(r)-l)

d =

) > /(C3)

< /(C3)

f(C3K(r)‘
■ 1-<M

121
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Z warunków w punkcie 2. natomiast otrzymujemy

l D = -1-^ = ^-!. gdy /(C1):> /(C3)

oraz
f E =J a'+b'1
[ D = —2 - Ec1 = - 2.< a'4-o'

gdy /(C1) < /(C3)

Zapisując q(x) w formie kanonicznej q{x) = ax2 + bx T c mamy

a = Ea', 
b = Eb', 
c — Ec' + D.

Interesujące dla nas własności przekształcenia q są następujące

1- ?(C(r)) < — 1 dla £ [0,1]-

2. p (Cw) = /K2).

3. 9«(r)) nie zależy od /«2).

4. Dla minimum A* paraboli nieprzekształconej q takiej, że A* e [C1, C3] 
otrzymujemy minimum w punkcie A* = gdzie A* jest minimum paraboli 
Q-

5. Jedynym ograniczeniem jest osobliwość przekształcenia q, gdy a’ + b' = 0. 
Warunek ten nie jest spełniony dla parabol, których minimum znajduje się w 
punkcie «3 -

Przekształcenie to redukuje liczbę stopni swobody z 6 do 3 a więc pozwala 
„narysować” część naszych wyników.

6.2 Dodatek B
Aby rozwiązać nierówności (2.26), tzn.

\ (£b Ci) < C(r) K(a),i — U (£3 _ £1)2 C(r))2 (6-2)

Z € {1,2,3}

zauważmy, że K^i jest dobrze określone, gdy Q i £ są takie, że

(6-3)
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Rysunek 6.1: Obszar w przestrzeni (△', (p)), w którym dobrze określona est wielkość 
K^ i zdefiniowany w (6.2).

C2—Ć1gdzie C(r) = H J. W wypadku, gdy zachodzi nierówność

nierówności (2.25) są zawsze spełnione. Zdefiniujmy

Zastanówmy się w jakim obszarze przestrzeni (△', C(r)) C R2 wielkość K^i jest 
dobrze określona. W obszarze tym spełnione jest

Zauważmy, że nierówność ta może być spełniona jedynie, gdy > 1/2. Mamy 
wtedy 1 — ^(r) < 1/2. Aby £(r) — △' było większe od zera musi zachodzić △' 6 
(^(r) — 1, — C(r))- Powyższy obszar przedstawiony jest na rysunku 6.1. Zauważmy, 
że nie musimy rozpatrywać wyrażenia gdyż jest ono wieksze od 1, gdy
zachodzi (6.3).

Rozpatrzymy jedynie przypadek, gdy < /(C3)- Dla przekształcenia q 
określonego wzorem (6.1) definiujemy wielkości

A = -2(CW-1),
5 = ?(C(r)), 
C = -C(r).

Wówczas (2.26) dla l = 1 zapisuje się

1 ćl(C(r) + 1)(1 + £1) + B — ^r)C
2 4(1+ ^ + £-£7

Rozpatrzymy dwa przypadki w zależności od znaku mianownika lewej strony.
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1. Jeśli >1(1 + £i) + B — C > O to przez pomnożenie przez mianownik i po 
uproszczeniu mamy

A(2Ka + 1 - < C(r)(A + 2B - C) - 2K^A + B - C) - (A +B\

Ponieważ A > 0, to rozwiązanie zapisuje się

c-b _ i
C(^(A+2B-O)-2K(a)ii(A+B-O)-(A+B)

A(2Ka+l-((r))

2. Jeśli >1(1 4- £i) + B — C < 0, to otrzymujemy

A(2Ka + 1 - <(,.))£! > C(r)(A + 2B - C) - 2KW^A + B - C) - (A + B\

a ponieważ A > 0 to rozwiązanie zapisuje się

C-B _ i

<M(A+2B-C)-2/<(a),i(A+B-C)-(J4+B) 
A(2A-o+l-<(r))

Dla l = 2 nierówność (2.26) zapisuje się

1 ^(Cfr) + 1) + -8(1 + ^2) “
2 A + 5(1 + £2) —- O (6-4)< C(r) R/a),!-

Zauważmy, że mamy B < 0. Musimy rozpatrzyć dwa przypadki w zależności od 
znaku mianownika

1. Jeśli >1 + B(1 + £2) — C > 0 to mamy

B^2K^ + 1 - 2<(r))£2 < ^A + 2B - C) - 2KM^A + B - C) - (A + B).

Ponieważ rozpatrujemy tylko ^r), dla których dobrze określone jest K^y^, tzn. 
C(r) € (1/2,1) to musimy również rozpatrzyć dwa przypadki zleżnie od znaku 
wyrażenia

B(2K(a),i + l-2C(r)). (6.5)

Ponieważ B = zależy również od położenia minimum A* konstruowanej 
paraboli, to rozwiązania nierówności

B(2K{aU + 1 - 2<(r)) > 0

poszukujemy w przestrzeni (£(r), A*, △/) C R3. Ponieważ rozpatrujemy tu 
parabole, dla których < /(C3) to musimy zauważyć, że z (6.13) wynika, 
że A* G (0,1/2). Regiony, w których wyrażenie (6.5) jest dodatnie, ujemne 
albo nieokreślone przedstawiliśmy na rysunku 6.2. Mamy więc
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B(2K +1-2L.)(a),i ^(r)'

Rysunek 6.2: W regionie Pi wyrażenie (6.5) jest większe od zera. W regionie 
P2 wyrażenie (6.5) jest mniejsze od zera. W regionie P3 wyrażenie (6.5) nie jest 
określone.

(a) Jeśli + 1 — 2£(r)) > 0, to rozwiązanie zapisuje się jako

f C~A _ iI -2 < B 1,
< C(r)(7ł+2B-C)-2K(a)ii(X+B-C)-(^+B)
[~2 < B(2Ka + l-2C(r))

(b) Jeśli + 1 — 2(p.)) < 0, to rozwiązanie przyjmuje postać

( c C—A _ i£2 < B 1,
< <(r)(A+2B-C)-2K(a)il(A+B-C)-(4+B)
[ 2 B(27fa+l-2C(r))

2. Jeśli A + B(1 + s2) — C < 0, to mamy rozwiązanie zapisuje się natomiast

(a) Jeśli B(2K(a)^ + 1 — 2£(r)) > 0, to rozwiązanie zapisuje się jako

{
c KD. _ 1^2 > B 1,

<(r)(^+2B-C)-2K(o)ii(A+B-C)-(4+B)
“2 B(2/fa+l-2<(r))

(b) Jeśli B{2K^a^i + 1 — 2^) < 0, to rozwiązanie przyjmuje postać
f _ C-A !
I ^2 > ~b----

< <(r)(A+2B-C)-2K(a)ii(A+B-C)-(^+B)
[ “2 < B(2J<a + l-2C(r))

Dla l = 3 nierówność (2.26) przyjmuje postać

1 A(C(r) + 1) + B — C(r)C(l + S3)

2 A + B-C^ + £3) (

Zauważmy, że C < 0. Rozwiązanie dzielimy na dwa przypadki



126 ROZDZIAŁ 6. DODATKI

Rysunek 6.3: Wyrażenie (6.6) w obszarze Pi jest ujemne, natomiast w obszarze P2 
jest dodatnie.

1. Jeśli A + B — C(1 + s3) > 0, to mamy

CM - 2Ah>3 < MA + 2B-C}- 2KMA + B-C)-(A + B).

Postać rozwiązania zależy od znaku wyrażenia

CKM - 2^). (6.6)

Rysunek 6.3 przedstawia region, w którym wyrażenie (6.6) jest większe oraz 
region, w którym jest mniejsze od zera w dziedzinie określoności K^i-

(a) W regionie, w którym C^^ — 2K^^ > 0 (patrz region P2 rysunek 6.3) 
rozwiązanie przyjmuje postać

A+B _ t
^A+IB-CKIK^^A+B-C^A+B)

C(C(r)-2^(a),i)

(b) W regionie, w którym CM) — 2K^^ < 0 (patrz region Pi rysunek 6.3) 
rozwiązanie przyjmuje postać

A+B 
C

C«(r)-27C(a)ii)

2. Jeśli A + B — <7(1 + £3) < 0, to mamy

CM - 2K{aM > + 2B - C) - 2KMA + B-C)-(A + B).

(a) W regionie, w którym C(M — 2K(aM > 0 (patrz region P2 rysunek 6.3) 
rozwiązanie przyjmuje postać

A+B 
c,

C,(r^A+2B-C)-2K(a^A+B-C)+^
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(b) W regionie, w którym — 2K^ayi) < 0 (patrz region Px rysunek 6.3) 
rozwiązanie przyjmuje postać

£3 <

£3 >

a+b _ 2
<(^(A+2B-C')-2A-(a).i(A+B-C)-(J4+B)

C«(r)-2K(o),i)

W jaki sposób pokazać, że dla l 6 {1,2,3} rozwiązanie powyższe nie jest sprzeczne 
zademonstrujemy na najbardziej skomplikowanym przypadku, tzn. dla l = 2. 
Pozostawiamy czytelnikowi przeprowadzenie analogicznego rozumowania dla Z = 1 i 
l = 3.

Pokażemy, że dla każdego Aj można podać takie £o, dla którego można wybrać 
e2 takie, że |s2| > £0 i dla którego spełnione będzie (6.4). Możliwość takiego 
wyboru oznacza, że e2 jest większe od 0 i dla dowolnego zaburzenia s > |e2| w 
i + 1-szym iteracji algorytmu iteracji parabolicznej możemy wygenerować, trójkę 
C+i = (<«.<«• która oddalona jest o 25 od Q = ((/, (T) co dowodzi tezy
twierdzenia. Musimy więc rozpatrzyć dwa przypadki

1. Gdy B(2Ka + 1 - 2<(r)) > 0, to rozwiązanie opisywane jest układami
nierówności (6.6) i (6.6). Dla (6.6) mamy

. (C-A 1 MA + 2B-C)-2K^A + B-C)-(A + B)
s < mm < ——------ 1, —----------------- —————---------------------------------

l B B(2Ka + 1 — 2^(r))

Ponieważ — 1 < 0 to tak wybrane £ < 0. To rozwiązanie odrzucamy, gdyż 
musi być £ > 0. Dla (6.6) wybieramy natomiast

E > max
^A + 2B — C} — 2KW^A + B-C)-(A + B} 

B{2Ka + 1 - 2CW)

Taki wybór daje nam e > 0.
Ostatecznie więc eq jest wartością bezwzględną z e wybranych w powyższych 
dwóch sytuacjach. Praktycznie oznacza to tyle, że albo dla £2 < £0 < 0 lub 
£2 > £0 > 0, które można wyliczyć w każdym kroku, spełniona jest nierówność 
(2.23).

2. Gdy B(2Ka +1 — 2^r)) < 0, to rozwiązanie opisywane jest układami 
nierówności (6.6) i (6.6). Wprowadźmy oznaczenie

+ 2B C) - 2A-w,i(A + B - C) - (A + B)
Bp/f, + 1 - 2<w) ' ' 1

Jeśli chodzi o (6.6) to układ ten jest sprzeczny, gdyż — 1 < 0 natomiast 
D > 0, dlatego możemy go dorzucić z rozważań. Rozważmy więc (6.6), dla 
którego znak wyrażenia D przedstawiliśmy na rysunku 6.4.
Na rysunku 6.4 widać, że wyrażenie D jest mniejsze od 0 dla większe części 
regionu określoności. Tylko w tym regionie możemy określić przedział e nie
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Rysunek 6.4: W regionie Pi wyrażenie (6.7) jest mniejsze od zera. W regionie P2 
wyrażenie (6.7) jest większe od zera. W regionie P3 wyrażenie (6.7) nie jest określone.

zawierający 0. Rysunek 6.4 pokazuje również, że Aj nie może być dowolne. 
Łatwo również pokazać, że w regionie gdzie D < 0 zachodzi

C-A <^A + 2B-C)-2K(a^A + B-C}^
B < B(2A^ + l-2C(r))

Z tego wynika, że (6.6) nie jest sprzeczny, gdy A, jest zbyt duże co do wartości 
bezwzględnej, tzn. np. gdy A, < 1/2 w regionie określoności K^i- Nie jest to 
restrykcyjnym ograniczenie ponieważ, ciąg Q z założenia jest zbieżny. Warunek 
na odpowiada założeniu z Lematu 5, że 6 powinna być dostatecznie mała.

6.3 Dodatek C

6.3.1 Wyrażenie A/(s; £)

Minimum A*(e; C) paraboli zaburzonej dla l E {1, 2, 3} możemy zapisać jako

\*(s;C) = A*(C)±A(£;C), lE {1,2,3},

gdzie A*(^) jest minimum paraboli niezaburzonej.
Załóżmy, że zarówno A*(C) jak i Az*(s;£) są minimami parabol otrzymanych za 

pomocą transformacji §(•) opisanej w Dodatku A przy założeniu, że /(C1) < /(C3), 
tzn. gdy zachodzi przeciwna nierówność to wykonujemy obrót paraboli względem 
C° = 1/2 tak jak w punkcie 3. Algorytmu 3. Dla paraboli niezaburzonej mamy

= 1 ^(Cp) + 1) + B - ^r)C
2 A + B-C
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natomiast dla paraboli zaburzonej

az*(^C) =

i A«(r) + l)(l+e)+B-<(r)C
2 A(l+e)+B-C
1 ^(C(r) + l)+-Ś(l+£)—C(r)C
2 A+B(l+e)-C
1 A«(r)+l)+B-<(r)C(l+e)
2 A+B-Cp+s)

dla l = 1, 
dla l = 2, 
dla l = 3.

(6.8)

dla zaburzeń w punktach 0, C(r) oraz 1 odpowiednio, gdzie a A, B, C są
zdefinowane w Dodatku B.

Upraszczając wyrażenie |A* — Af (e; £)| otrzymujemy
C Q(r)B  Ąę_____  

i^AĄ-B—C} ' A(e+1)+B-C 
C+^A-C)_______ Be
2{A+B-C) ’ A+B(l+e)-C

Ce 
2(A+B-C) ' A+B-C(l+e)

dla l = 1, 
dla l = 2, 
dla l = 3.

(6.9)

6.3.2 Główne warunki
Aby spełnione były nierówności (2.41) musimy zapewnić1, że A*(C) < C2- Jest tak, 
ponieważ jeśli Af(s;£) jest przesunięty o △/(£;£) w lewo to wówczas przesunięcie 
go ponownie w prawo nie spowoduje, że będzie ono większe niż £2. Jeśli Az*(s;C) 
jest przesunięte w prawo to mamy margines szerokości 2Az(e;£). Rozpatrzmy więc 
(2.41) dla zaburzeń kolejno dla l = 1, l = 2 oraz l = 3.

1 Zauważmy, że analogicznymi nierównościami są ~ AOA) > £2 dla l G {1,2,3}. Aby
były one spełnione zapewniamy A*(Ć) > Ć2-

Dla l = 1 mamy

ćl(C(r) + 1)(1 + e) + B — C,^r)C 
.4(1 + e) + B - C

(6.10)

Musimy rozpatrzyć dwa przypadki w zależności od znaku mianownika.

1. Jeśli A(1 + s) + B — C > 0, tzn.
0-  p 

£ > ---- -____ 1 gdy A > 0 lub
A

C — B , „
e < —------- 1 gdy A < 0,

Ti
otrzymujemy

(l + E)A(l-Cw)<C(r)(2B-C')-B
Również rozwiązanie tej nierówności dzielimy 
od znaku A

C,^B~C)-B

M2B - C) - BF > _2---------------------- — 1
^4(1-C(r))

na awa przypadki w

gdy A > 0 lub

gdy A < 0.
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2. Jeśli A(1 + e) + B — C < 0, tzn.

s < ---- ------- 1, gdy A > 0 lub A
C — B ,

e > —------- 1, gdy A < 0,

otrzymujemy
(1 + e)A(l - C(r)) > <(r)(2B - C) - B.

Analogicznie rozwiązanie tej nierówności 
zależności od znaku A.

C(r)(2B-C)-B 
' >i(i-<(r))

C(r)(2B-C)-B
^4(1 - M

dzielimy na dwa przypadki w

gdy A > 0 lub

0.

Tak więc rozwiązanie dla l = 1 zapisujemy definiując bi i b2

— C-B 1A 1’
A<(r)-l)+B(2C(r)-l)-C(2<(r)-l)

= min (n, r2), b2 = max(ri,r2), 
€ (61, 62).

(6.11)

Rozwiązanie (6.11) nierówności (6.10) może być interpelowane jako ograniczenie 
błędu względnego tylko, gdy br < 0 i b2 > 0. Ostatecznie więc ograniczenie przyjmuje 
postać

|s| < mind^l, |b2|). (6.12)

Zastosowanie transformacji q pozwala nam „narysować” region określony przez 
(6.12) w R3, opisanej zmiennościami AJ(£;e), £2 i £■ Aby wyznaczyć region musimy 
rozpatrzyć wszystkie parabole postaci y = ax2 + bx + c przechodzące przez punkty 
[0, A"i] i [1, K2] przy założeniu K2 > z minimum w punkcie 0 < A* < £2. 
Otrzymujemy wyrażenia na a, b oraz c postaci

KłzAi 
1—2A* ’

9 \ * K2—K1 
1—2A* ’ (6.13)

Z tego otrzymujemy, że nie istnieje parabola z A* > 1/2 ponieważ wówczas byłoby 
a < 0 i skonstruowana parabola posiada maksimum w punkcie A* zamiast minimum. 
Tak więc rozpatrujemy jedynie A* € (0,1/2). Po zastosowaniu transformacji q ta 
rodzina jest przekształcana do jednej paraboli z minimum w A* i przechodzi przez 
punkty [0, —2], [£2, q(£2)] i [1, —1]. Jak można łatwo sprawdzić w interesującym nas 
regionie, tzn. dla (£(r), A*) G (0,1) x (0,1/2) mamy b] < 0 i b2 > 0.
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W ten sam sposób otrzymujemy ograniczenie na e, gdy l = 2 oraz gdy l = 3. 
Rozwiązanie dla l = 2 możemy zapisać definiując n i r2 w postaci

^2

kl

C—A _ ।

B(l-2<(r)) 
min(|ri|, |r2|).

(6-14)

Dla l = 3 natomiast mamy

D

kl

A+B _ i
<{^(2A+2B-C')-(71(l+<(r))+B)

<^C 
min(|ri|, |r2|).

(6.15)

Aby zapewnić, że wprowadzenie zaburzenia £ nie zaburzy własności wypukłości 
konstruowanej paraboli g(-) potrzebujemy dodatkowych warunków. Zapisują się one

• / 1mm------------- 1
\ 2

2

dla l = 1, (6.16)

dla l = 2, (6.17)

dla l = 3. (6.18)

Rysunek 6.5 pokazuje wykresy powyższych ograniczeń błędów.
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allowed perturbation for f(1)

Rysunek 6.5: Ograniczenie na £ dla ((p), A*) G (0,1) x (0, 0.5) (zauważmy, że > 
A*) a) dla l = 1 określone przez warunki (6.12) i (6.16) b) dla l = 2 określone przez 
warunki (6.14) i (6.17) (zauważmy, że dla = 1/2 mamy osobliwość) c) dla l = 3 
określone przez warunki (6.15) i (6.18).
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