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Alleluja.

Chwalcie Pana z niebios,

chwalcie Go na wysokosciach!

Chwalcie Go, wszyscy Jego aniotowie,
chwalcie Go, wszystkie Jego zastepy!
Chwalcie Go, stonce i ksiezycu,

chwalcie Go, wszystkie gwiazdy Swiecace.
Chwalcie Go, nieba najwyzsze

i wody, co sa ponad niebem:

niech imie Pana wychwalaja,

On bowiem nakazal i zostaly stworzone,
utwierdzil je na zawsze, na wieki;

nadal im prawo, ktére nie przeminie.
Chwalcie Pana z ziemi,

potwory i wszystkie morskie glebiny,
ogniu i gradzie, $niegu i mglo,

gwaltowny huraganie, co pelnisz Jego stowo,
gory i wszelkie pagorki,

drzewa rodzace owoc i wszystkie cedry,
dzikie zwierzeta i bydto wszelakie,

to, co sie roi na ziemi, i ptactwo skrzydlate,
krolowie ziemscy i wszystkie narody,
wladcy 1 wszyscy sedziowie na ziemi,
mlodziency, a takze dziewice,

starcy wraz z mtodzieza

niech imie Pana wychwalaja,

bo tylko Jego imie jest wznioste,

majestat Jego goruje nad ziemia i niebem
i pomnaza moc swojego ludu.

Piesn pochwalana dla wszystkich Jego swietych,
synow Izraela - ludu, ktory Mu jest bliski.
Alleluja.

Psalm 148

Mojej ukochanej zonie i dzieciom
oraz moim rodzicom
w podziekowaniu za wszystko co mi dali
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mojego pobytu na stazu doktoranckim w CERNie, ktore zaowocowaly pomystem
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dane.
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ze zderzaczem czastek elementarnych LHC. '
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Thompsonowi, panu Doktorowi Grzegorzowi Puszowi oraz mojemu bezposredniemu
szefowi Doktorowi Piotrowi Kozaczewskiemu z grupy Aptitude/IO za tworzenie
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firmy, w ktorej ze wzgledu na bardzo dobra atmosfere oraz na elastycznosé czasu
pracy mam mozliwo$¢ pracy dydaktycznej na Politechnice Wroclawskie;j.

Najwieksze podziekowania chciatbym ztozy¢ Panu Bogu i mojej rodzinie. Panu
Bogu dziekuje za wiare i za to, ze dal mi wspaniala rodzine oraz za to, ze postawit
na mojej drodze takich nauczycieli i wychowawcow jak rowniez za to, ze pozwolit
mi odkry¢ Regule Sw. Benedykta w najtrudniejszym momencie pracy naukowe;j.

Moim Rodzicom dziekuje za dar zycia oraz za dobre wychowanie. Mojej Zonie
dziekuje za nasza miltos¢é i malzenstwo, ktérego owocem sa wspaniale dzieci, jak
rowniez, za motywowanie mnie do pracy naukowe;j.
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wymiar przestrzeni danych,

liczba danych w zbiorze treningowym,

zbiér danych w przestrzeni parametrow,

funkcja celu,

zbior danych w przestrzeni parametrow i przestrzseni funkeji celu,
doktadnos¢ aproksymaciji,

liczba danych w fazie poczatkowej metody SPELROA,

punkt w przestrzeni danych w k-tej iteracji metody SPELROA,
przeksztaltcenie algorytmiczne,

przeksztaltcenie dla danych zaburzonych w punkcie [ w algorytmie
aproksymacji parabolicznej,

przestrzen parametréow optymalizacji w teorii Zangwilla,

i-ty lewy wektor szczegdlny macierzy A,

i-ta warto$¢ szczeg6lna macierzy A,

Operator rozniczkowania kierunkowego,

przeksztalcenie wyboru i-tego kierunku z bazy kierunkow
ortogonalnych (sprzezonych),

przeksztatcenia minimalizacji wzdtuz kierunku,

zbibr osiagalnych tréjek w kolejnym kroku algorytmu optymalizacji
parabolicznej,

zbiér osiagalnych trojek w kolejnym kroku algorytmu optymalizacji
parabolicznej zaburzonego w punkcie [ = {1, 2, 3},

trojka punktow z ktorych konstruowana jest parabola

w kolejnych krokach algorytmu aproksymacji parabolicznej,
minimum paraboli skonstruowanej dla tréojki ¢,

minimum paraboli skonstruowanej dla tréjki ¢ zaburzonej

w punkcie [ = {1, 2,3} bledem wzglednym na poziomie &
odleglo$¢ minimum paraboli zaburzonej od minimum paraboli
dla danych niezaburzonych w algorytmie aproksymacji parabolicznej
trojka w nastepnym kroku algorytmu aproksymacji parabolicznej,
funkcja celu w algorytmie aproksymacji parabolicznej,
transformacja rodziny parabol w jedng parabole,

wyrazenia w definicji transformacji ¢,

zbior punktow krytycznych pierwszego rzedu funkceji f,

norma siatki,

wskaznik mierzacy jako$¢ otoczenia punktu x przez punkty

ze zbioru X,

blad reprezentacji zmiennopozycyjnej,

operator rozniczkowania stopnia «,

przestrzen natywna generowania przez funkcjie ¢.



Rozdzial 1

Wstep

Wprowadzenie

Zadanie optymalizacji, w ktorym obliczenie funkcji celu jest bardzo czasochlonne
pojawia sie w wielu zagadnieniach projektowania oraz optymalizacji réznego rodzaju
procesow w roznych dziedzinach techniki. Obliczanie wartosci funkcji w takim
zadaniu wigze sie z zazwyczaj z przeprowadzeniem ztozonej i czasochtonnej operacji
w zalezno$ci od zmiennych projektowych.

W dziedzinie automatyki i robotyki metody optymalizacji stanowia jedno z
podstawowych narzedzi projektowania uktadoéw regulacji i konstrukeji algorytmow
sterowania. Z optymalizacjg ukladoéw regulacji mamy do czynienia w zadaniach

e sterowania optymalnego [16], [47],
e sterowania ekstremalnego [45],
e sterowania predykcyjnego [37].

W sterowaniu procesami wytworczymi z przyktadami funkeji, ktorych obliczenie
jest czasochlonne spotykamy sie np. w sterowaniu run-to-run. Procesy sterowane
run-to-run odgrywaja istotna role w produkcji zwigzkéw chemicznych czy w
produkeji potprzewodnikow [36]. Typowym przykladem procesu sterowanego
run-to-run jest modyfikacja czasu reakcji stechiometria produkowanego zwiazku
lub temperatura reaktora chemicznego. Podejécie run-to-run motywowane jest
brakiem bezposredniego dostepu do sygnalow wplywajacych na jakosé produktu
w trakcie wykonywania danego podprocesu. Produkt moze by¢ zanalizowany
pod wzgledem jakosci dopiero po wykonaniu calego dilugotrwalego podprocesu.
Zadaniem sterownika run-to-run jest wiec zmodyfikowanie parametréw schematu
produkcji tak, aby minimalizowa¢ odchylenie produktu od wstepnej specyfikacji w
kolejnych wykonaniach podprocesu.

Z optymalizacja parametrow sterowania proceséw wytworczych spotykamy
sie rowniez w praktyce systemow proceséw multiskalowych. Systemy procesow
multiskalowych sg to systemy, ktore taczg kilka silnie powiazanych ze soba procesow
sterowania w przestrzeniach stanéw o roznych skalach. Przykladem z przemystu

13
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chemicznego moze by¢ nakladanie warstw zwiazkéw chemicznych na powierzchnie
metalu. Modelowanie takiego systemu wymaga sterowania faza gazowa w skali makro
jak i rozpatrzenie fazy mikro jaka sa zjawiska zachodzace na powierzchni metalu.
W skali mikro nie jest zazwyczaj mozliwe okreslenie modelu ciggtego, analogicznego
do modelu ciaglego, jaki wystepuje w skali makro. Optymalizacja w skali micro
wymaga przyblizonego rozwigzania réwnania rézniczkowego za pomoca metody
Monte-Carlo. Typowym problemem sterowania w tym zagadnieniu jest regulacja
szybkosci wzrostu warstwy zwiazku na powierzchni metalu za pomoca sktadu
gazu oraz temperatury substratow [10]. Rozne metody optymalizacji parametrow
sterowania procesami chemicznymi w skali catej fabryki produkecyjnej na przyktadzie
procesow destylacji jest omawiana w monografii [35].

Motywacja do podjecia badan

Z przykladami funkcji celu, ktorych obliczenie wymaga rozwigzania réwnan
Maxwella metoda elementéow skoriczonych lub rozwiazania duzego zagadnienia
wlasnego [8] dla obiektow dyskretyzowanych metoda roznic skonczonych dla
bardzo gestych siatek, autor zetknal sie w Europejskim Laboratorium Fizyki
Czastek CERN w procesie projektowania gléownego magnesu zakrzywiajacego
dla zderzacza czastek elementarnych LHC (Large Hadron Collider) [4] oraz
w procesie projektowania wnek przyspieszajacych dla akceleratora SPS (Super
Proton Synchrotron) [6], [7] odpowiednio. Gléwng motywacja do podjecia proby
skonstruowania metody eksploracji funkeji celu wielu zmiennych byl czas obliczania
funkcji celu w procesie projektowania gléownego magnesu zakrzywiajacego dla
zderzacza czastek elementarnych LHC (patrz rozdzial 4.2). Obliczenie funkcji
celu dla procesu projektowania elektromagneséw nadprzewodzacych umozliwia
program ROXIE (Routine for the Optimization of magent X-section, Inverse
field calculation and coil End design) stworzony w CERNie przez profesora
S. Russenschucka [28]. Funkcja celu w procesie projektowania elektromagnesow
dla akceleratorow opisuje jako$¢ pola magnetycznego w aperturze, w ktorej
poruszaja sie wigzka czastek elementarnych, podczas procesu pobudzania magnesu
poczawszy od poziomu natezenia pola przy wstrzyknieciu wiazki do akceleratora
do natezenia nominalnego. Funkcja celu zawiera rowniez skladowa opisujaca
tzw. prady persystentne powstale w jarzmie magnesu na skutek pobudzania-
pradem [4]. Obliczenie wartodci funkcji celu w procesie projektowania elektor-
magnesow nadprzewodzacych moze trwaé¢ nawet do 2h na komputerze DEC
Alpha XP 1000. Majac na uwadze to, ze proces optymalizacji elektro-magnesu
nadprzewodzacego moze wymagac obliczenia wartosci funkcji celu dla nawet kilkuset
zestawOw wartos$ci parametrow projektowych, wartoSciowe wydaty sie poszukiwania
metody na skrocenie pelnego czasu procesu optymalizacji. Od poczatku tych
poszukiwan autor rozwazal tylko podejscie ogoblne - tzn. poszukiwal takiej metody,
ktora nie bedzie wykorzystywala zadnych specyficznych wlasciwosci problemu lecz
pozwoli przyspieszy¢ dowolny proces optymalizacyjny wykorzystujacy jakis algorytm
optymalizacji lokalnej przy mozliwie malych dodatkowych zatozeniach o funkcji
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celu. Na gruncie automatyki i robotyki, metoda taka pozwolitaby przyspieszyc
zaawansowane warstwowe algorytmy sterowania procesami produkcyjnymi w skali
calej linii technologicznej czy sterujacych procesami zarzadzania produkcja w skali
fabryki. Algorytmy sterowania o strukturze warstwowej, w ktorych wystepuje faza
optymalizacji, ktora zalezy nie tylko od sygnaléw wejsciowych i sterujacych ale
moze zaleze¢ rowniez od innych parametrow procesu omawiane sa szczegélowo np.
.w monografii+[37].. '

Do optymalizacji funkcji celu, ktorych obliczenie jest czasochtonne zazwyczaj
stosuje sie algorytmy bezgradientowe ze wzgledu na to, ze gradient nie jest dostepny
a aproksymacja gradientu jest zbyt czasochtonna lub niemozliwa.

Reasumujac mozna powiedzie¢, ze kazda zbiezna metoda, ktore pozwoli
przyspieszy¢ proces optymalizacji jest pozadana. Przyspieszenie procesu
optymalizacji rozumiemy tutaj jako skrocenie czasu dzialania algorytmu
optymalizacyjnego, tzn. zmniejszenie liczby obliczen bezposrednich wartosci
funkc;ji.

Najpowszechniejszymi metodami przyspieszania algorytmoéw bezgradientowych
dla funkcji, dla ktérych obliczenie wartodci jest czasochlonne, sa metody regionu
wiarygodnosci [11]. Metoda regionu wiarygodnosci polegaja na konstrukeji modelu
aproksymujacego funkcje korzystajac z wartoéci funkcji w punktach, w ktoérych
funkcja zostala obliczona w sposéb bezposredni, w trakcie optymalizacji funkcji
przez algorytm podstawowy. Zaklada sie, ze skonstruowany model dostatecznie
wiarygodnie aproksymuje funkcje celu w najblizszym otoczeniu punktu ostatniego
bezposredniego wartosciowania funkcji celu. Skonstruowany model jest nastepnie
optymalizowany jedng z metod gradientowych w regionie wiarygodnosci. Jesli po
zakonczeniu tej optymalizacji spelniony jest warunek dostatecznego zmniejszenia
wartosci funkcji to znalezione minimum jest punktem startowym do dalszej
optymalizacji algorytmem podstawowym. W tym wypadku moze nastapi¢ rowniez
zwiekszenie promienia regionu wiarygodno$ci. Jesli natomiast nie jest speliony
warunek dostatecznego zmniejszenia wartosci funkcji to nastepuje zmniejszenie
promienia regionu wiarygodno$ci i optymalizacja modelu algorytmem gradientowym
jest powtarzana. ‘

W niniejszej rozprawie prezentujemy metode stuzaca do przyspieszania procesow
optymalizacji funkcji ciaglych, ktéra moze by¢ alternatywa dla metod regionu
wiarygodnosci [11]. Prezentowana metoda, ogélnie rzecz biorac, polega na
konstrukcji modelu aproksymujacego korzystajac z wartoéci funkecji w czesci
punktow Sciezki optymalizacyjnej algorytmu podstawowego w otoczeniu punktu, w
ktorym warto$é funkeji celu ma by¢ obliczona w nastepnym kroku i na nieobliczaniu
warto$ci funkcji w sposoéb bezposredni lecz, jesli to mozliwie, zastapieniu jej
skonstruowanym modelem. Aproksymacja funkcji celu jest wiec wiarygodna w
swoistym oknie, ktére przesuwa si¢ w kierunku minimum funkcji celu wraz z
kolejnymi krokami algorytmu podstawowego. W zaproponowanej metodzie modelem
aproksymujacym jest sie¢ z radialnymi funkcjami aktywacji trenowana za pomoca
metody regularyzacji Tikhonova, stad nazwana zostata Search Procedure Exploiting
Locally Regularized Objective Approximation (SPELROA). Istotnym zalozeniem
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zaproponowanej metody jest, ze czas konstrukcji aproksymacji oraz obliczenia jej
wartoSci w danym punkcie jest zaniedbywalnie maly w poréwnaniu z czasem
potrzebnym na obliczenie funkcji celu w sposob bezposredni. Omawiana metoda
po raz pierwszy zostala zaprezentowana w pracy [2|, natomiast w takiej formie w
jakiej jest rozwazana w niniejszej rozprawie zostala ona opisana w pracy [3| oraz [5]
a dowod jej zbieznosci zostal podany w pracy [1].

Charakterystyka problemu
Podsumowujac stwierdzi¢ mozemy, ze

e w wielu praktycznych interesujacych zadaniach optymalizacyjnych obliczenie
funkeji celu jest bardzo czasochtonne,

e do optymalizacji takich funkcji zazwyczaj stosuje sie algorytmy
bezgradientowe, chociaz dla matej liczby zmiennych mozliwe jest stosowanie
algorytmow gradientowych aproksymujacych gradient metodami réznicowymi,

e procesy optymalizacji w takich zadaniach sa bardzo dlugotrwate.

Sformulowanie zadania

Dla tak scharakteryzowanego problemu dlugotrwalej optymalizacji w niniejszej
rozprawie postawiliémy sobie nastepujace zadanie: opracowaé¢ zbiezna metode
przyspieszenie procesu optymalizacji.

Przyjete zalozenia
W rozwigzaniu wyzej postawionego zadania przyjeliémy nastepujace zalozenia:
e funkcja celu jest funkcja ciggla, dla dowodu zaproponowanej metody potrzebna
jest rézniczkowalnoé¢ funke;ji,

e warto$¢ funkcji celu nie powinna zawiera¢ zakldceni chociaz metoda powinna
by¢ odporna na mate zaktécenia, = .

- e obliczanie _wartogci funkcji “na tyle czasochlonne, Ze czas konstrukeji -
aproksymacji jest zaniedbywalnie maly, '

e w przyspieszanym algorytmie krok poszukiwania minimum wzdtuz kierunku
powinien by¢ realizowany przez sekwencyjna interpolacje paraboliczng
(zalozenie wykorzystwane w dowodzie zbieznosci),

e zaproponowana metoda powinna wspoélpracowa¢ z roéznymi algorytmami
optymalizacji lokalnej.
Elementy oryginalne w pracy

Nowymi elementami w pracy sa:



e Metoda Search Procedure Exploiting Regularized Objective Approximation
(SPELROA) przyspieszania proceséw optymalizacji dlugotrwalej,

e dowdd zbieznosci metody SPELROA dla algorytmow bezgrédientowych,

e wskaznik okre$lajacy czy dany punkt znajduje sie w regionie dziedziny
zawierajacym dane dobrze go otaczajace, :

e metoda wyboru parametru regularyzacji w konstrukcji aproksymacji
radialnymi funkcjami bazowymi.

e Testy metody SPELROA

— w polaczeniu z algorytmem Gaussa-Seidela dla dziewieciu problemow
testowych,

— w potlaczeniu z algorytmem Gaussa-Seidela dla probleméw optymalizacji
glownego magnesu zakrzywiajacego zderzacza czastek elementarnych
LHC,

— w polaczeniu z algorytmem BFGS quasi-Newton dla procesu strojenia
regulatora PID.

Uktad pracy
Rozprawa, oprocz niniejszego wstepu, zawiera piec czesci.

e Rozdzial drugi
W rozdziale tym wprowadzamy metode SPELROA oraz podajemy twierdzenie
o jej zbieznosci. Do dowodu twierdzenia o zbiezno$ci metody wykorzystujemy
Twierdzenie Zangwilla o zbieznosci algorytmoéw optymalizacji lokalnej oparte
na teorii przeksztatcen domknietych.

e Rozdzial trzeci

W rozdziale trzecim omawiamy zagadnienie konstrukcji sieci neuronowej
ze Scisle dodatnio okreSlonymi radialnymi funkcjami aktywacji (RBF),
ktora jest modelem aproksymujacym funkcje celu w pewnym otoczeniu
punktu, w ktorym ma by¢ obliczana funkcja celu. Wprowadzamy wskaznik,
ktory skutecznie pozwala okresli¢ czy polozenie punktu obliczania wartoéci
funkcji wzgledem punktow z poprzednich iteracji zapewni wystarczajaca
jako$¢ aproksymacji. Sie¢ aproksymujaca trenujemy za pomoca metody
regularyzacji Tikhonova z pojedynczym parametrem regularyzacji = A.
Omawiamy dwie istniejace metody wyboru warto$ci tego parametru,
mianowicie metode Uogolnionej Walidacji Krzyzowej [40] oraz metode L-
krzywej [17]. Proponujemy réowniez nowa metode, ktora lepiej nadaje sie
do lokalnej aproksymacji niz dwie wczesniej wymienione. Jej przewage
pokazujemy na przykladzie trzech funkcji testowych z pracy [1].
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e Rozdzial czwarty

W czwarty rozdziale przedstawiamy zastosowanie metody do rozwigzania
oémiu probleméw testowym z pracy [23]. Te osiem wybranych funkcji
jest podzbiorem zbioru funkcji zaproponowanych do testowania algorytmoéw
optymalizacji lokalnej w [23]. Ponadto w rozdziale tym prezentujemy
zastosowanie metody SPELROA do przyspieszenia procesu optymalizacji
gtownego magnesu dipolowego dla zderzacza czastek elementarnych LHC
zaimplementowanego w programie ROXIE [4].

Rozdzial piaty
Pigty rozdzial pracy zawiera podsumowanie oraz okresla kierunki dalszych
badan.

Dodatek

Ostatni rozdzial stanowi dodatek, do ktorego przeniesiona zostata wiekszosé
zmudnych wyprowadzen wzoréw potrzebnych w dowodzie zbieznosci metody
SPELROA omoéwionych w rozdziale drugim.



Rozdzial 2
Optymalizacja

Niech dana bedzie funkcja celu f : R4 — R oraz algorytm A minimalizujacy funkcje
f. Metoda SPELROA (Search Procedure exploiting Locally Regularized Objective
Approximation) polaczona z algorytmem A zapisuje si¢ w formie algorytmicznej w
spos6b nastepujacy (patrz [2]):

Algorytm 1.
Metoda SPELROA

|

Wejscie :  f:R? — R funkcja celu,

X € R? —  punkt startowy,

e>0 ~ doktadnosé aproksymacy,

f (+) ~ aproksymacja funkcji f(-) za pomocqg radialnych funk-
cji bazowych,

I ~ liczba bezposrednich obliczen wartosci funkcji w fazie
poczgtkowej w algorytmie A,

N < I ~ rozmiar zbioru danych uzywanych do konstrukcji apro-
ksymacji funkegi f(-),

e-check —  procedura sprawdzajgea warunki zbieznosci wymagane

w twierdzeniu o zbieznosci.

0. Wykonaé I, obliczenri wartosci funkcji celu f(-) w poczgtkowych puﬁktach
wygenerowanych przez algorytmem A..

1. W k-tym kroku wygenerowaé za pomocq algorytmu A punkt xi, w ktorym ma
byé obliczana funkcja celu.

2. Wygenerowaé zbior X z N nagblizszych punktowi x; punktow, w ktorych
funkcja f(-) byta obliczona bezposrednio.
3. Ocenié czy dla punktu X, mozna skonstruowaé wiarygodng aproksymacje

f(xx)-

(a) Jesli punkt x; lezy we wiarygodnym regionie dziedziny to skonstruowaé
aproksymacje f oraz obliczyé f(xy).

19
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(b) Jesli aproksymacja f(xk) byta poprawnie skonstruowana to wykonaé
procedure e-check (patrz paragraf 2.5).

(c) Jesli wynik procedury e-check jest pozytywny to podstaw
f(xk) f (xx)

do algorytmu A.

(d) W przeciwnym razie oblicz f(Xy) w sposdb bezposredni.

4. Jesli spetnione jest kryterium stopu algorytmu A to koniec.
W przeciwnym razie podstaw k =k + 1 @ przejdz do kroku 1.

Podczas tworzenia zbioru X nalezy zadba¢ o to, aby punkty do niego wlaczone
byly dostatecznie od siebie oddalone. Jesli dwa punkty leza zbyt blisko siebie — gdzie
minimalna dopuszczalna odlegtosé jest kontrolowana przez parametr wprowadzany
przez uzytkownika, ktérego warto$é¢ jest proporcjonalna do $rednicy zbioru X —
jeden z punktow powinien zosta¢ zamieniony na inny punkt do te pory nie wlaczony
do konstruowanego zbioru. Taka procedura konstrukcji zbioru X gwarantuje, ze
odleglosci separujaca (ang. separation distance — patrz [31]) jest wieksza od
wartosci parametru wprowadzanego przez uzytkownika, co zas zapewnia, ze macierz
interpolacyjna nie jest osobliwa (patrz [22]). Kluczowym krokiem powyzszego
schematu jest punkt 3. zawierajacy trojetapowe sprawdzenie czy aproksymacja f (xx)
moze by¢ uzyta w algorytmie A zamiast wartosci obliczonej bezposrednio. Warunki
sprawdzane w krokach 3.a) i 3.b) sa zwigzane z konstrukcja aproksymacji radialnymi
funkcjami bazowymi i beda oméwione w rozdziale 3, natomiast procedura e-check
wystepujaca w kroku 3.c) jest zwiazana z zalozeniami twierdzenia o zbieznosci i
zostanie omowiona w paragrafie 2.2 niniejszego rozdziatu.

2.1 Metoda Zangwilla dowodzenia zbieznosci algo-
rytmow optymalizacji
Algorytmy optymalizacji nieliniowej kierunkéw dopuszczalnych maja postac
xFt! = x* + . d*

gdzie d* jest kierunkiem poszukiwania a 7 jest krokiem w k-tej iteracji. Jedna -
iteracja w algorytmach kierunkéw dopuszczalnych jest ztozeniem przeksztalcen
algorytmicznych A = M'D gdzie D : R? — R? x RY jest przeksztalceniem
generujacym kierunek

D(x) = (x,d)

gdzie d € R? jest wektorem kierunku, natomiast M!' : R? x R? — RY jest
przeksztalceniem minimalizujacym funkeje celu f(-) wzdtuz kierunku d tzn.

M'(x,d) = {y : f(y) = min f(x + rd)}
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gdzie (x,d) € R? x R? a J jest przedzialem zmiennoéci parametru 7.

W swojej monografii [46] Zangwill zaproponowal metode dowodzenia zbieznosci
algorytmow optymalizacyjnych kierunkéw dopuszczalnych bazujaca na wlasnosciach
przeksztalcenia algorytmicznego A. W paragrafie tym omawiamy glowne elementy
teorii Zangwilla, za pomoca ktorych bedziemy mogli sformutowaé i udowodnié
twierdzenie o zbieznosci metody SPELROA polaczonej z algorytmami poszukiwan
bezposrednich takimi jak metoda Gaussa-Seidela. Po drobnych modyfikacjach
zaprezentowana metoda dowodu moze by¢ réwniez zastosowana dla algorytmow
kierunkéw sprzezonych.

Definicja 1. ([46], str. 92)

Przez przeksztatcenie A © 'V — 'V punktu w zbior rozumiemy przyporzgdkowanie
kazdemu punktowi x € V zbioru A(x) C V. Dziatanie algorytmu A(-) bedgcego
odwzorowaniem punktu w 2bior polega na przyporzqdkowaniu punktow:i X zbioru

A(x*) i wybraniu dowolnego
xFt e A(x*).

Przeksztatcenie A = M'D okreslajace algorytm optymalizacji kierunkow
dopuszczalnych jest przeksztalceniem punktu w zbior.

Definicja 2. (|46], str. 96)
Mowimy, ze przeksztatcenie A :V — V jest domkniete w punkcie X*°, jesli zachodzi
nastepujgca implikacja:

1. xkF - x*® kek,
2. y* € A(xY), keKk,
3. y* -y,

implikuje
4. y© € A(x™),

gdzie K jest ciggiem liczb naturalnych.
Mowimy, zZe przeksztatcenie A jest domkniete na zbiorze X C 'V, jesli jest
domkniete w dowolnym punkcie x € X.

Wtasno$é domknietosci przeksztatcenia algorytmicznego jest analogia wlasnosci
ciaglosci dla ,zwyktych” funkcji.

Twierdzenie 1. (patrz [46], str. 99)

Niech przeksztatcenie A © V. — 'V punktu w zbior wyznacza algorytm, ktory dla

danego punktu X,, generuje cigg {x*}2 . Niech bedzie dany zbidr rozwigzan S C V.
Zatozmy, ze

1. Wszystkie punkty x* nalezq do zbioru zwartego X C V.
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2. Istnieje funkcja Z :'V — R taka, ze
(a) jesli punkt x nie jest rozwigzaniem, to dla dowolnego y € A(x) zachodzi

Z(y) < Z(x)

(b) jesli punkt x jest rozwigzaniem, to albo algorytm koriczy dziatanie, albo
dla dowolnego y € A(x) zachodzi

Z(y) < Z(x).

3. Przeksztatcenie A jest domkniete w punkcie x, jesli punkt ten nie jest
TOZWIQGZANIEM. .

Wowczas, albo algorytm koriczy dziatanie w punkcie bedgcym rozwigzaniem, albo
kazdy zbieiny podciqg ciggu generowanego przez algorytm ma granice w zbiorze
rozwigzan S.

Dodatkowo potrzebujemy jeszcze dwoch lematéow z [46] mowiacych o domk-
nietosci ztozenia przeksztalcern domknietych oraz o domknietosci przeksztalcenia
minimalizacji wzdiuz kierunku M?.

Lemat 1. (patrz [46], str. 104)

Niech C : W — X C R? bedzie dang funkcjg oraz B : X — Y bedze
przeksztatceniem punktu w zbior. Zatozmy, ze funkcja C jest ciggtq w punkcie w™
a B jest domkniete w C(w™). Wowczas odwzorowanie ztozone A = BC : W — Y
jest domkniete w w™.

Lemat 2. (patrz [46], str. 112)
Niech f bedzie funkcjq ciggtq. Wowcezas przeksztatcenie M*, jest domkniete jesli
zbior J jest przedziatem domknietym i ograniczonym.

2.2 Glowne twierdzenie

W praktyce stosuje si¢ inny operator poszukiwania minimum wzdtuz kierunku niz
przeksztalcenie M!'. Wiele réznych implementacji operatora M' mozna znalezé
w [46]. Niezaleznie od implementacji wykonanie przeksztalcenia M?'(-,-) jest
kosztowne.

Rozwazmy operator poszukiwania minimum wzdluz kierunku zdefiniowany
nastepujaco

M*(x,d) = M'(x,d)U{y =x+7d: f(y) < f(x) — A, 7€ J}. (2.1)

Jest to przeksztalcenie punktu w zbior, ktorego wartoscia jest zbior punktow dla
ktorych funkcja f zmniejsza wartos¢ o A € R, wzdluz kierunku d poczawszy od
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punktu x lub gdy ten zbior jest pusty przyjmuje on warto$¢ minimalna funkcji f
wzdtuz tego kierunku.

Sugestie praktycznego wykorzystania operatora M* znalez¢ mozna w jednym z
¢wiczen w [46]. Ponizej prezentujemy dow6d domknigtosci operatora M* co pokazuje,
ze moze on by¢ uzyty w algorytmach optymalizacyjnych kierunkéw dopuszczalnych
zamiast operatora M'. Zastosowanie operatora M*, ktory w koncowych fazach
optymalizacji przechodzi w operator M! jest praktyczniejsze od zastosowania tylko
operatora M'. Wynika to stad, ze w poczatkowej czesci poszukiwania minimum
wzdluz kierunku niezaleznie od implementacji, wystepuja najbardziej znaczace
zmniejszenie wartosci funkeji, natomiast kolejne kroki powoduja znacznie wolniejsze
zmniejszanie wartosci funkcji.

W niniejszym paragrafie oméwimy implementacje operatora M* za pomoca
zaburzonej interpolacji parabolicznej. Przez zaburzona interpolacje paraboliczna
rozumiemy, algorytm Luenbergera [25], w ktorym przy pewnych warunkach
wprowadzamy zaburzenie wartosci funkcji z zadanym btedem . Te wyniki pozwola
nam dowie$¢ prawdziwosci nastepujacego twierdzenia:

Twierdzenie 2.

Zatozmy, ze f: Q — R;Q C R? jest funkcjq celu w zagadnieniu optymalizacyjnym.
Zatozimy, zZe mamy dang metode aproksymacyi funkcji celu f w pewnych punktach
dziedziny 0 z bledem wzglednym ¢ > 0. Jesli funkcja f jest Scisle wypukta to metoda
SPELROA w potgczeniu z algorytmem Gaussa-Seidela z obrotem bazy kierunkow
poszukiwan, zbiega do punktu krytycznego pierwszego rzedu xo € S, tzn. V f(xo) = 0.

Dowd6d Twierdzenia 2 bedzie polegal na sprawdzeniu zalozenn Twierdzenia 1, gdzie
przeksztalcenie A jest postaci

A = RM*DeM*D* 1 ..  M*D2M*D?

gdzie D' wybiera i-ty kierunek z bazy kierunkéw ortogonalnych w k-tej iteracji a R
jest przeksztalceniem ortogonalizujacym wektory bazowe wzdtuz kierunku x’g"le;"l

z (k — 1)-szej iteracji.

2.3 Domknietosé przeksztalcenia algorytmicznego
M*

Aby wykazaé¢, ze zalozenie 3. z twierdzenia 1 jest spelnione musimy najpierw
pokaza¢, ze transformacja M* zdefiniowana przez (2.1) jest domknieta. Dowiedziemy
nastepujacego lematu:

Lemat 3.
Niech f bedzie funkcjq ciggta. Wowczas przeksztatcenie M* jest domkniete, jesli J
jest przedziatem domknietym i ograniczonym.
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Ponizej prezentujemy dowod, ktory jest modyfikacja dowodu Lematu 2 podanego
w [46].

Dowod
Zgodnie z definicja 2 rozwazmy ciag {(x*, d*)}2, oraz {y*}$°,. Przy zalozeniu, ze

L (x*,d") - (x*,d%), keK,
2. y* e M*(x*,d*), keKk,
3.y—y>®, kek,

nalezy pokazad, ze

y> € A(x™).
Z definicji operatora M* mamy
y* = xF 4 7Rk
gdzie 1, € J jest takie, ze
fx*+ 7R < f(xF) — A, (2.2)

gdy mozliwe jest zmnijeszenie wartoéci funkeji o A lub
T = arg min{xy, + 7d; } (2.3)
T€J

W przeciwnym razie.
Poniewaz J jest domkniety i ograniczony jest réwniez zwarty. Poniewaz 7% € J
dla k € K a J jest zwarty, to istnieje zbiezny podciag

™ 5 ke K,

gdzie K!' C K oraz 7*° € J.

Dla ustalonego 7 € J z monotonicznosci ciagu y* wynika, ze istnieje takie ko,
ze dla k > ko nie moze byé¢ uzyta juz sktadowa zminiejszajaca wartos¢ funkeji o A,
lecz tylko sktadowa odpowiadajaca operatorowi M*', mamy wowczas

f&") < fxF+7d¥)  dla k:?ko. ‘ (2.4)

Sytuacja taka wystepuje dostatecznie blisko minimum lokalnego funkeji f.
Poniewaz funkcja f jest ciagla, to w granicy otrzymujemy
(y*°) = lim f(y*) < li F47d") = f(x* +7d™). 255
F(y*) = lim f(y°) < lim f(x* +7d") = f(x* +7d) (2.5)
Poniewaz (2.5) zachodzi dla dowolnego 7 dla k > ko, wiec i dla dowolnego punktu
y* € M*(x*>,d*), mamy
fy™) < 7). (2.6)
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Z drugiej strony w punkcie y* € M*(x*,d>*) funkcja f dla 7 € J osiaga
najmniejsza wartosc
y* =x*+7°d*, 1€l
wiec
fy") < f(y™). (2.7)

Porownujac (2.7) z (2.6) otrzymujemy wynik

y® € M* (x>, d>).

Zauwazmy, ze dowodd bedzie réwniez prawdziwy, jesli funkcja f zawiera¢ bedzie
pewna skoriczong liczbe izolowanych punktow nieciagloSci pierwszego rzedu
znajdujacych sie w dostatecznie duzej odleglosci od minimum lokalnego.

Aby pokaza¢ domknietos¢ przeksztalcenia A robiac uzytek z Lematu 1

musimy réowniez zauwazy¢, ze przeksztalcenia D'(x) = (x,d;) (i = 1,...,d) sa
funkcjami ciggltymi. Przeksztalcenie R, ktore generuje baze kierunkéw ortogonal-
nych [d5, ..., d5] dla kroku o indeksie k jest okreslone jako

R(xE?, [ds, - o . s dga]) = (&, [@F,...., d52]);

gdzie ciag nowych wektoréw ortogonalnych jest okreslony jednoznacznie przez proces

ortogonalizacji wektorow wo, wi, ..., Wg_;

Wo = sodo + sidi + ... 4+ sg-1dg

W = + sdy + ... + 85.1dg

Wg-1 = + sg-1dg1
gdzie skalary sg,s1,...,S84-1 odpowiadaja rozmiarom krokéw we wszystkich
kierunkach z kroku k£ — 1. Przeksztalcenie R jest jednoznacznie okreslone bez
zadnych dodatkowych warunkéw spelnianych przez skalary sg,s;,...,sq1 jesli

proces ortogonalizacji jest wykonany za pomoca algorytmu zaprezentowanego
w [26]. W tym wypadku przeksztalcenie R jest réowniez funkcja ciagta.
Poniewaz przeksztalcenie A jest ztozeniem przeksztalcen M* z funkcjami cigglymi
D; (i = 0,...,d — 1) oraz R, spelione sa zalozenia Lematu 1 i stad
otrzymujemy, ze przeksztalcenie A jest domkniete. To dowodzi, Ze spelnione jest
zalozenie 3. Twierdzenia 1 dla przeksztalcenia M* bez zaburzei. W nastepnym
paragrafie wykazemy, ze przeksztalcenie M* moze zostaé zrealizowane za pomoca
przeksztalcenia M, do ktorego w kazdym kroku moze zosta¢ wprowadzone
zaburzenie.

2.4 Zaburzenie w  algorytmie  poszukiwania
minimum wzdluz kierunku

Dla algorytmoéw bezgradientowych z baza wektoréow ortogonalnych jako zbiorem
kierunkow poszukiwan przeksztalcenie M* jest jedynym miejscem w algorytmie
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gdzie wprowadzane jest zaburzenie powstale z aproksymacji funkcji celu w metodzie
SPELROA. Tak wiec aby pokazaé¢, ze zalozenie 2. Twierdzenia 1 sa spelnione
wystarczy, ze implementacja M™* z zaburzeniem wartosci funkeji na poziomie £ > 0
minimalizuje funkcje f wzdhluz kierunku d. '

Dowdd zbieznosci algorytmu poszukiwania minimum wzdtuz kierunku za pomoca
interpolacji parabolicznej mozna znalez¢ w pracach [21] lub [25]. W paragrafie tym
podamy warunki jakie musi spetlnia¢ zaburzenie wartosci funkcji wprowadzane do
algorytmu, aby dowod podany w [25] pozostawal w mocy. W paragrafie tym staramy
sie aby notacja byla mozliwie najbardziej zblizona do notacji dowodu w [25].

Niech funkcja f : R — R bedzie unimodalna. Dla trojka ¢; = (¢}, ¢2, ¢}) zachodzi
F(¢?) < min{f(¢}), F(¢3)} tzn. przedzial [¢}, (] zawiera unikalne minimum funkcji
f. Parabola interpolujaca funkje w punktach (¢, £(¢1), (¢2 £(C2), (¢, F(C)) w
formie Lagrange’a zapisuje sie

_ i (=) —E) z— )z —§)
gt} = f“”(cl - 43)”(“(42 OG-+

(C* C)(Cz- C?)'

Dla niezaburzonej funkcji celu definiujemy zbiér osiggalnych trojek T C R?
definiujacych przedzial [¢?, (?], ktory zawiera minimum \*(¢) jako

T = {¢eR*: (' << (¢ <min{f(¢"), F(¢*)}
U{(eR3: (! = <<< F(¢H <0,7(¢%) = £(¢H)}
V{CeR®: ¢' < ®=¢f(¢%) =0, F(¢Y) = f(¢%)}
UCeR: (' =¢*= < A}

Dla ¢ € T z ¢! < ¢? < ¢3 minimum paraboli (2.8) zapisuje sie
_ (82 = (@A) + (692 = (D) () + (€27 = (<)) £(S%)
2 (3= + (B =) + (2= ¢Hf(¢?) '

Zbior osiggalnych trojek A(¢) dla nastepnego kroku jest zbiorem trojek kandydatow,
ktore moga zamieni¢ ¢ € T okreslajac mniejszy przedzial zawierajacy A w nastepnej
iteracji algorytmu. Zdefiniujmy A° jake-

A°(C) := T N {ua(€), ua(€), ua(€), ua(€)} (2.9)
gdzie
wi (€)= (% X0 C);
us(¢) = < g (5 Mg
us(¢) = (X <<>< ¢,

ug(€) = (¢4, ¢, A"(€))-
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Zalozmy, ze wartosé funkeji jest zaburzona tylko w jednym z trzech punktow w
trojee ¢ = (¢1, 2, ¢?) uzytej do konstrukeji paraboli interpolujacej. Dla zaburzenia
wartosci funkcji f na poziomie € # 0 definiujemy trzy zbiory trojek:

T'e) = {C e B : ¢! < ¢ < % A(¢C) < minf{f (YA~ N F(C)} ) (210)
Z minimum

ooy = LIEP = (@RI + 1) + (€ = (CPI(E) + (€ =~ VIS
2 (=P + )+ (3= )f(C )+ (2= ¢Hf () |
dla zaburzenia fankcji f w punkcie (3, .
T2e) = {C € RO (1 < (< (A1 + o) < minf£(C), F(C)}} (211)
Z minimum '
Ao () = 1[(¢%)° - (§2)2]f'(61) i [(CS):2 — (£ A+ [e]) + [(€2)° - (C'l)QJf(C:‘)‘
2 (€= )F(CH) + (¢ =) A + [e]) + (€2 = ¢ F(C?)
dla zaburzenia funkcji f w punkcie (5 oraz
THe) = {C € B®: (1 < (2 < (3, £(¢D) < min{f(C), F(C)(A— e} }  (212)
z minimum
Ao 0) = 1[(¢*)? - (§2)2]f'(41) +[(€%)? = (€)21£(¢%) + (€ ) (DA (A + [e])
2 (¢ = A f(CH) + (¢ = N FC) + (¢ = ¢ F(E)(L +[e])
dla zaburzenia funkcji f w punkcie (3. Takie definicje zbiorow T'(¢) (I € {1,2,3})

zapewniaja, ze zaburzone minima znajduja sie w przedziale [¢!, ¢?]. Dla l € {1, 2,3}
odpowiadajacy zbior trojek osiagalnych definiujemy jako

b

Al(e;¢) == T'(e) N {al(g;¢), wh(e; €), s (e; ), B (e; ) } (2.13)
gdzie
@ (e:€) = (¢1 A (65,67,
ICIOR N (SPHCION !
i3(e;¢) = (N (5:¢), ¢

W kornicu zdefiniujmy zbiér punktéw stacjonarnych S jako
S:={CeT: f(¢")=00r f(¢*) =00r f(¢*) = 0}.

Jest to zbior punktow krytycznych pierwszego rzedu funkeji f.

Kluczowym elementem dowodu zbieznosci algorytmu poszukiwania mini-
mum jednej zmiennej podanym w [25] jest lemat (Lemat 1.7.9, str. 153) o
domknieto$ci niezaburzonego przeksztalcenia A°(-). Podamy teraz analogiczny lemat
dla przeksztalcenia, ktore moze zawiera¢ zaburzenie wartosci funkcji na poziomie
bledu £ w punktach, na ktérych skonstruowana jest parabola. W dowodzie podamy
jakie warunki musi spelniaé¢ €, aby zachowana byla zbieznos$¢ algorytmu.
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Lemat 4.
1. Dla kazdego ¢ € T, zbior A(C) = A%(C) U Al(g;¢) U A%(e;¢) U A3(£;¢) jest
niepusty.
2. Przeksztatcenie punktu w zbior A(-) jest domkniete.
3. Dla kazdego ¢ € T\S := {¢ € T : { ¢ S} takiego, ze (! < (% < (3 zachodzi

c(y) < ¢(C) dla kazdego y € A(C) gdzie

c(¢) :f1<§1)+fz(C2)+f3(C3) (2.15)

gdzie fy = f b fi = f(-)(1 + |e|) w zaleznosci od tego, czy wartosé w punkcie
¢! jest ,doktadna” czy zaburzona.

Zauwazmy, ze ,doktadna” znaczy tutaj zaburzona co najwyzej na poziomie btedu
reprezentacji zmiennoprzecinkowej € << £, tzn. obliczona w sposéb bezposredni nie
za$ aproksymowana.

Dowoéd i

Wprowadzmy nastepujaca notacje fi(-) = f(+), gdy funkcja f jest warto$ciowana w
punktach ¢ # ¢ lub f;(-) = f(-)(1+¢), gdy funkcja f wartosciowana jest w punkcie
¢ =" (1 €{1,2,3}). Na wstepie zauwazmy, ze T!(c) C T (I € {1,2,3}) dla € > 0.

1.

Niech ¢ = (¢%,¢%¢?),€ T bedzie ustalone. Jesli f((1), f(¢) i f(G3) sa
obliczone bezposrednio tzn., bez zaburzenia, to A(() jest niepusty na mocy
dowodu z [25]. Rozpatrzmy przypadek, gdy jedna z wartosci funkcji jest
zaburzona bledem wzglednym ¢ > 0. Minimum paraboli skonstruowane w
tym wypadku dane jest wyrazeniem 5\7(5; () gdzie | € {1,2,3} w zaleznosci od
tego, w ktorym punkcie wartos¢ byta aproksymowana. Rozpatrzmy wypadek,
gdy X (e,¢) € [¢*,¢? zakladajac ponadto, ze minimum A\*(¢) gdyby zadna
z wartodci nie byla zaburzona réowniez nalezy do [¢!, ¢?]. Wowcezas A(() jest
pusty wtedy i tylko wtedy, gdy zaréwno ,(c; () jak i u3(e; () nie naleza do
A((), tzn. wtedy i tylko wtedy, gdy

F(Xi(&;:0) > min{ f(¢N(A + [el), F(¢D)} = £(¢) (2.16)
£(¢) > min{ F(X(:0), £} > min{F(N(5 0), A(CD}), (217)

edy wartos¢ funkeji byta zaburzona w punkcie ¢, albo
F(35(5:0) > min{f(¢Y), FCIA+ e} = FC)A+el)  (218)

FI) A+ [e]) > min{ fF(N3(e50), £(¢*)} = min{ f(A5(e; ), F(C) (1 + I?D}, )
2.19
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gdy warto$¢ funkcji byta zaburzona w punkcie (2, albo
FA3(&¢)) > min{f(¢"), £(¢*)} = £(¢?) (2.20)
oraz

£(¢%) > min{f(A3(5:€)), F(C) A + e} = min{f(Xi(s; ), £}, (2:21)

gdy wartoéé¢ funkcji byla zaburzona w punkcie (3. Poniewaz nieréwnosci (2.17)
implikuja, ze f(C2?) > f(N(:¢)) otrzymujemy sprzecznosé z nieréwnosciami
(2.16) co dowodzi tezy, gdy wartos¢ funkcji byla aproksymowana w punkcie ¢'.
W podobny sposob otrzymujemy sprzecznosci dla nieréwnosci (2.19) i (2.18)
dla aproksymacji w punkcie ¢? oraz (2.21) i (2.20) dla aproksymacji w punkcie
(3. Zauwazmy, ze warunek, ze odpowiadajace A*(¢) nalezy do [(3, (2] zapewnia,
7e jesli porownamy 7 = (§',5%,3°) € AYC) (1€ {1,2,3)) zy = (y" 4% 9°) €

A°(¢) to otrzymamy, ze §' > y' oraz 73 < y°.
Przypadek kiedy A\*(¢) nalezy do [(s, (3] jest symetryczny.

Powyzsze warunki beda wyrazone wzgledem ¢ w nastepnym punkcie dowodu
i zostang uzyte w dowodzie gltéwnego twierdzenia.

2. Zalozmy, ze {(;}°, oraz (; — (. € T i niech istnieje (x € T (zwr6¢my uwage
na fakt, ze (, i (* oznaczaja réozne punkty) oraz nieskoriczony podciag K C N
taki, ze (41 € A((;) dla kazdego i € K takiego, ze (i1 —% (* przy i — oo.
Wowcezas musi istnie¢ k € {1,2,3,4} oraz nieskoniczony podciag K' C K
taki, ze (iy1 = ur(§) lub (i = aﬁ;‘(:-:;g,-) (gdzie [; € {1,2,3}) dla kazdego
i € K'. Jak zostalo dowiedzione w [25] funkcje u(-) sa ciagle a wiec jesli ciag
{¢i}32, nie zawiera zaburzonego (; to wowczas z ciaglosci ug(-) wzgledem ( i
domkniegtosci zbioru T wynika, ze ux(() — ur((.) = (x € A((,). To dowodzi
domknietosci przeksztalcenia A.

Wprowadzenie trojki (;.1 zawierajacej punkt, w ktéorym warto$¢ byla
zaburzona, tzn. (;11 € /1’(5;() wprowadza nieciggltos¢ pierwszego rzedu do
funkeji u(¢) 1 powyzsza argumentacja nie moze zosta¢ zastosowana jesli nie
zauwazymy, ze uzycie algorytmu A(-) wprowadza jedynie skoniczona liczbe
izolowanych punktéw nieciagtodci.

Nalezy rozpatrzy¢ dwa przypadki w zaleznosci od liczby wystapien trojek
zawierajacych elementy zaburzone w ciagu {(;}°,

e Kiedy liczba wystapien ﬂi‘ w ciagu jest {(;}2, jest skonczona to
dowod domknietosci przeksztalcenia A(-) podany w [25] moze zostac
zastosowany po usunieciu {(;}°, wszystkich poczatkowych elementow
zawierajacy podciag wartosci zaburzonych.

e Zalozmy teraz, ze ﬁﬁc" wystepuje nieskonczona liczbe razy w ciagu {¢; }5°,.
Poniewaz zakladamy, ze {(;}°, jest zbiezny to dla dowolnego § € R
istnieje i, takie ze dla kazdego 7 > 7o mamy

l|<z - Ci+1||2 = !( ilv 3,@3) - ( i1+1>ci2+lﬁcg+1)| <9 (2'22)
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Wybierzmy wiec 4y, dla ktérego zachodzi nieréwnosé¢ (2.22). Poniewaz
aproksymacja w kolejnych iteracjach wystepuje nieskonczenie wiele razy
to istnieje podciag K = {i : i > i1} C N taki, ze jesli i € K to

Gir1 € Ale; G)

dla pewnego [ € {1,2,3}. Bez straty ogolnosci mozemy zalozy¢, ze
€ [¢}, ¢3. Przypadek, gdy A € [C2, ¢?] jest symetryczny. Udowodnimy
nastQpUJadcy, lemat

Lemat 5.
Niech iy € N bedzie takie, zZe zachodzi dla niego nieréwnos$é (2.22). Dla
dostatecznie matego 6 mozliwy jest wybor takiego €, Ze '

16 = Giaall2 > 20. (2.23)

Poniewaz zalozylismy, ze \f(s;¢,) € | 1, ¢2], musimy rozpatrzy¢ dwa
przypadki wyrazenia ||(;, — Ciyx1l2

(a)
162 = Giaralle = 11(CH5 6B G1) = (G M (&5 G), G2 e

(b) ' i
Gy — Catallz = 1I(G, G G) — (N (&5.G)s G20 G2 o

Rozwazmy przypadek (a). Wyprowa.dzimy warunki na £ zapewniajace, ze
zachodza nieréwnosci

I(Ch, G2 G — (G A (&5 6), CRIIE =
(@ = N(E6))+(E -G > (202 (1e{1,2,3}).  (2.24)

Rozwiazemy powyzsze nieréwnosci wzgledem e uzywajac transformacji ¢
calej rodziny parabol z tym samym w7gl¢dnvm polozeniem minimum
wzgledem koncow przedzialu ¢} i ¢}. Transformacja ta zdefiniowana
jest w Dodatku A. Zastosowanie transformacji ¢ pozwala uproscié
powyzsze nierownosci. Przeksztalémy wiec parabole skonstruowana na
punktach (¢}, f(G)), (G, f(¢3)) i (G, F(E)) uzywajac transformacji
¢. Transformacja ¢ jest dobrze okreslona, gdy f(¢}) # f(¢) 2

zastrzezeniem, ze ponadto a’ # b’ (patrz Dodatek A).
Rozpatrzvmy p17ypadok kiedy f(¢}) > f(¢}) poniewaz przypadek, gdy

zachodzi f((l) > f((}) jest symetryczny. Transformacja ¢ przeksztalca
nier6wnosci (2 24) do

N 2
Gy = M (En G + (L= () > (—33_0—]> le{1,2,3}, (2.25)

i1 i1
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gdzie () = —37, iy = (0,¢(), 1) oraz X (€1, G) dane sa wzorami (6.8)

gdzie
B = {(¢m)),
C = —(w),

i sa wyrazeniami na minimum parabol skonstuowanych na punktach
(0, —2), (¢try), 4(Cry)) oraz (1,—1) zaburzonych w I-tym punkcie (I €
{1,2,3}) odpowiednio. Blad wzgledny aproksymacji € w [-tym punkcie
jest zwigzany z przeksztalconym bledem wzglednym zalezno$cia

25 D - e . 1
HGAE dla zaburzenia w ;|
Eti(C(r)) 5

EAl . dla zaburzenia.w (7,

e dla zaburzenia w (} .
HGAl

M
~

Rozwiaganie nier()wnoéci (2.25) musi by¢ podzielone na dwa regiony.

(a) Jesli < (1 = ¢py)? to (2.25) sy zawsze spelnione.

—0—)7 =
(b) Jesli (—53—_—41? > (1 = ()? to (2.25) zapisuja sie jako
+l¢r — Aen )l > K,
442
Kau = \/’——‘“- — (1 —=¢m)3
1 (¢ —¢h)?
I € {1,2,3}

a poniewaz transformacja ¢ skaluje przedzial liniowo i mamy
)‘z (g1, Cl) < (), poniewaz /\*(%Cz) € (0,¢(), to otrzymujemy

AEnt) < Cw— K, (2%g)
462
K@i = \/ (G (1=Cm)
1 11
I € {1,2,3}.
Rozpatrzymy ostatnie nier6wnosci dla | = 11 [ = 2 poniewaz dla

| = 3 sytuacja jest symetryczna do [ = 1. Stosujac metode rozwiazania
powyzszych nieréwno$ci przedstawiona w Dodatku B otrzymujemy, ze
jesli

(B = C) (¢ — Ka) = (B = (nC) — A(K, — 1)

a1 (2.27)

g1 >

i ponadto

( +€1) -C >0
{ A( R (2.28)
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lub

{AU+M+B—C < 0 (2.29)

AK,-1) > 0

zachodza dla zaburzen w (! spelniona jest nierownos$¢ (2.25) dla [ = 1.
Dla [ = 2 nieréwnos¢ (2.25) jest spelniona jesli

- A(l+ () + B —(nC - (A+ B - C) () — Ka)

- B((r) — Ka—1) (2:30)
i ponadto
(i e e
b A+B(l+4e)—-C < 0
{ B(Cpy—Ka—1 < 0 282

zachodzi dla zaburzenia w punkcie (2. Powyzsze warunki implikujg
réwniez, ze spelnione sg nierownosci (2.24). Oznacza to, ze jesli zaburzenie
wartosci f(¢1) 1 f(¢?) spelniaja (2.27) i (2.28) lub (2.29) i (2.30) i (2.31)
lub (2.32) odpowiednia to dla dowolnego ¢ otrzymujemy nieskoriczenie
wiele 2 > i1 > 4o takich, ze zachodzi nieréwnos¢ (2.23). W analogiczny
sposOb rozwiazujemy przypadke (b), tzn.

1C, €2, C0) = (R Gy L R = (€L = RiesGi)Y?
> (20)% (2.33)

Uzywajac transformacji okreslonej w Dodatku A otrzymujemy

* P - - 20 .
N(EsG) > Ky Ky = a_a (¢={1,2,3}) (2.34)
Stosujac w analogiczny sposob metode opisana w Dodatku B dla [ = 1
otrzymujemy

A[Ky — (1 + ()] + B(Ky — 1) — C(Kp — ()

€ — 2.35
' A[Ky — (1 + ()] (2:39)
i
A(1+€1)+B—C.> 0
. h 2.36
lub A V4 B_C
1+¢e)+ —C < 0
. 2.37
{ AL+ o) — K] < 0 (237)
Dla [ = 2 w ten sam sposéb otrzymujemy
AlK, — (1 . B(Ky, — 1) - C(Kp — ((»
. (K — (1 + ¢)] + B(K, — 1) — C (K, — () (2.38)

B(1 — Kb)
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A+B(1+v1) cC > 0,
{ T o o (2.39)
b A+B(+e)-C < 0,
+ <
{ Bl-K,) < 0. (2.40)

Oznacza to, ze roéwniez i w tym przypadku dla dowolnego 6 mozemy
wybra¢ takie e, ze zachodzi nier6wnosé (2.23). Jest to sprzecznosé z
zalozeniem, ze ciag {(}$2, jest ciagiem zbieznym poniewaz mozemy
wybra¢ dwa podciagi, ktoxe sa zbiezne do dwoch réznych punktow
skupienia. Pierwszy podciag jest zlozony z (;, a drugi z (;,+1. Obydwa sa
ciggami nieskoriczonymi. Z tego wynika, ze od pewnego i ciag {¢;}5°, nie
zawiera punktow z zaburzonymi warto$ciami funkeji tak wiec poczawszy
od pewnego ig dowdd z [25] pozostaje w mocy.

3. Zalozmy, ze ¢ € T\S. Wowczas A\ (¢) € (¢',¢?). Poniewaz sytuacja jest
symetryczna dla (! oraz (3 rozwazymy przypadek, w ktorym A*(() €
(¢4, ¢? oraz A(¢Q) € (¢',¢¥ (I € {1,2,3}). Skorzystamy tu rowniez
z paraboli otrzymanej przez zastosowanie transformaci ¢ z Dodatku A.
Transformacja ¢ zachowuje wszystkie wlasno$ci konieczne w dowodzie. W
rozwazaniach skorzystamy z wyrazenia na A;(s;() bedacego odlegloscia
pomiedzy zaburzonym i niezaburzonym minimum, tzn. A;(e;() = I;\;‘(C) —

A(Q)]. Wzor na A(g;() zostal wyprowadzony w Dodatku C. W przypadku
tym mamy

(a) F(C?) < f(¢®), jesli zachodzitoby f(C2) = f(¢3), to A*(¢) = 1/2(¢% + ¢%)
poniewaz albo zadna z wartosci nie jest zaburzona albo tylko wartos¢
w punkcie (; jest zaburzona i zaburzenie to nie ma zadnego wplywu na
polozenie minimum. Obydwa przypadki sa sprzeczne.

(b) tylko ui(C) i @3 (e;¢) (I € {1,2,3}) oraz us(C) i @5(¢) (I € {1,2,3}) moga
byé¢ w A(¢). Dla nlezabur7onych wartosci funkeji otrzymujemy A\*(¢) < ¢?
natomiast dla zaburzonych wartosci funkcji mamy

N(esQ) +Ai(e50) < ¢ (1€{1,2,3}). (2.41)

W Dodatku C rozwigzujemy (2.41) wzgledem ¢ wyprowadzajac warunki,
dla ktorych A (e; () < ¢? co zapewnia, ze dowdd z [25] pozostaje w mocy.
Otrzymujemy trzy nietrywialne przypadki

i AQ) = {w(¢),11(¢),43(¢), @i(C)}. Poniewaz uz(¢) ¢ A(() oraz
a5(e;¢) ¢ A(C) (1€ {1,2,3}) 1 F(A*(C)) < f(¢?) oraz f(N(e;()) <
f(&) (1=1,3) .

FA3(5;€)) < f(G) (1 + [e]) (2.42)
musi zachodzié¢

cui(€)) = f(CY)+ FN(C) + f(¢?)
< fCY+ F(E) + £(¢3) =¢(0),
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dla niezaburzonych wartosci funkeji

A@(¢)) = Fle")+FK(O) + (¢
< flCY) + () + AEP) = e(0), (2.43)

gdzie fi(:) = f(-) or fi(-) = f(-)(1+&) w zaleznosci od tego w ktérym
punkcie warto$¢ jest aproksymowana.

ii. A(Q) = {us(0),u3(¢),u3(¢),u3(¢)}. Poniewaz u,(¢) ¢ A(() oraz
i(5Q) ¢ A(Q) (I € {1,2,3}) musi zachodzic £(C?) < F(N'(C)
oraz f(C?) < f(A () (I € {1,2,3}) zaleznie od tego, w ktorym
punkcie wartos¢ funkci byla aproksymowana. Réwniez zachodzi
Q) < f(Gr) oraz fi(A7(€)) < fi(Gr) (I € {1,2,3}) poniewaz w
przeciwnym razie istnialoby lokalne maksimum w przedziale [(!, (?]
co jest sprzeczne z unimodalno$cig. Tak wiec w tym przypadku musi
zachodzié¢

c(us(€)) = Q)+ £(C*) + £(C7)
< FE) +F(E) + F(EP) = ¢(0),

dla niezaburzonych wartosci funkci oraz

e(@y(Q)) = Q)+ faC?) + Fa(C?)
< AEH+AE)+AE) =0, (249)

dla zaburzenia w punkcie (.

iii. W konicu moze zachodzi¢ A(() = {ui(¢),us(()}. W tym przypad-
ku nie jesteSmy w stanie wlaczy¢ do A(() zadnej trojki z punktem
z wartoScia aproksymowana #(e;¢) (¢ = 1,2,3). Wynika to z
nastepujacych wtasnosci
A. f(&) < f(¢1) z zalozenia,

B. X*(¢) < ¢

C. f(A*(Q)) = £(¢?), co implikuje \*(¢) = ¢*.

Powyzsze zalezno$ci zachodza poniewaz w przeciwnym wypadku,
mieliby$my sprzeczno$¢ z unimodalnoscia funkcji f(-). Uzycie
_aproksymacji wartosci funkcji, w ktérymkolwiek z punktéw ozna-
czaloby, ze nie jesteSmy w stanie zagwarantowa¢ wtasnisci C. Wobec
tego poniewaz f(¢*) < min{f(¢'), £(¢3)} mamy c(u;(¢)) < ¢(¢) i
c(us(C)) < ¢(¢) 1. Z praktycznego punktu widzenia dla danego ¢;, w
ktorym jednej ze wspotrzednych odpowiada warto$é¢ aproksymowana,
mozemy okredli¢, czy mozemy uzy¢ wartosci aproksymowanej
sprawdzajac warunek

N (50 = Cl> A ) (Le{1,2,3}). (2.45)

1Zauwazmy, ze w [25] wlasnosci B. i C. wygladaja nieco inaczej, mianowicie: B. A*(¢) < ¢? i C.
FA*(Q)) = f(¢?). W szczegblnosci wlasnosé B. w [25] zawiera blad zawierajac znak ”<” zamiast
b2 S”'
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To wyczerpuje wszystkie mozliwosci i koriczy dowod trzeciego punktu.

O

Mozemy teraz juz sformutowaé algorytm Sekwencyjnej Interpolacji Parabolicznej
z zaburzaniami (patrz |1] oraz |25] dla wersji bez zaburzen).

Algorytm 2.
Algorytm Sekwencyjnej Interpolacji Parabolicznej z zaburzeniem
wartos$ci funkcji

Wejscie : (o € T — punkt startowy,
e>0 - blgd wzgledny aproksymacji funkcji celu.

0. Ustaw 1 = 0.

1. Oblicz X\* = X*(G) lub \* = X (£:¢;) w zaleznodci od tego czy wartosé funkeji
jest obliczona bezposrednio we wszystkich punktach ', (2, ¢ lub czy jest
aproksymowana w punkcie ¢! (I € {1,2,3}) odpowiednio.

2. Jesli \* = ¢} or \* = (3 to koniec
W przeciwnym razie skonstruuj A((;).

(a) Jesli aproksymacja wartosci funkcji w zZadnym punkcie trojki (; nie jest
dostepna to A((;) = A° zgodnie ze wzorem (2.9).

(b) Jedli aproksymacja wartosci funkcji w punkcie ¢! (I € {1,2,3}) jest
dostepna to

i. Oblicz transformacje q okreslong w Dodatku A.
ii. Oblicz A(e;(;) zgodnie ze wzorem (6.9).
i, Jesl
N (&5¢) = Pl < Al €).
to A(¢;) = A° to przejdz do kroku 3.

.. Jesl .
N(EQ+ M) <G b N(e0) — Miles¢) > ¢ (2.46)
to A= A°U A

3. Oblicz
Cip1 € argmin{c(C) : ¢ € A(G)}-

4. Podstaw i := 1+ 1 i przejdz do kroku 1.

Glowny warunek okreslajacy czy mozna uzyé¢ dostepnej aproksymacji funkeji w
jednym z punktow jest wlasnosé separacyi, tzn. dla aproksymacji w {-tym punkcie [ €
{1,2,3} trojka ¢; nalezy do T' okreslonego przez (2.10), (2.11) lub (2.12) odpowienio.
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Rozwazmy i-tg iteracje, w ktorej uzyta jest aproksymacja funkcji w jednym z
punktow ¢}, (2 or (P trojki ¢;. Bez straty ogélnosci zalozmy, ze f(¢2) < f((1) <
f(¢s) oraz wartosci funkcji w tych punktach sg dostatecznie odseparowane tzn. w
kazdym z tych punktow moze by¢ uzyta aproksymacja wartosci funkeji zamiast jest
dokladnej wartosci i.e. \(¢) € T! zaleznie od tego, w ktorym punkcie wartosé jest
aproksymowana. Zal6zmy ponadto, ze aproksymacja jest uzyta w jednym z punktow.
Mamy trzy mozliwosci:

1. Jesli aproksymacja wartosci funkceji jest uzyta dla ¢? to w iteracji i + 1 ¢? nie
wystapi w trojee (41 1 aproksymacja w A\*((;) moze zostaé uzyta.

2. Jesli aproksymacja wartosci funkcji jest uzyta dla ¢? to w iteracji i + 1 warto$é
f(¢Y) bedzie najwieksza poniewaz ¢} wystapi roéwniez w (i+1 zachowujac
rowniez wlasnos$é separacji. W (;,; nie wystapi natomiast ?.

3. Bardziej skomplikowana sytuacje mamy w wypadku aproksymacji w punkcjie
¢?. W tej sytuacji nie mamy gwarancji, ze wlasnos¢ separacji wartosci funkcji
w nastepnych dwoch iteracjach bedzie zachowana. W tym wypadku f(A;(())
musi by¢ obliczona bezposrednio. Wowczas jesli wlasno$¢ separacji wartosci
funkcji dla trojki ;1 nie jest zachowana to nie mozemy uzy¢ aproksymacji
w punkcie (. Poniewaz f(A;((;)) jest obliczane bezposrednio nowa trojka ma
postac

G = (G (G), 6. (2.47)

Odpowiadajgce wartosci funkcji sa doktadne. Zauwazmy, ze w ten sposob
zachowujemy wlasno$¢ 3. z Lematu 4. Poprawa wartosci funkcji kosztu jest
na poziomie £f(¢?) a poniewaz w ¢((;—1) wlasnosé¢ separacji bylta zachowana

lub nie uzyto aproksymacji wartosci funkcji to otrzymujemy

eli-1) = e((™")

Zalozmy wiec, ze uzywamy aproksymacji wartosci funkeji f(¢?) w ¢ 1 (41 a
nastepnie okazuje sie, ze dla (; o nie jest zachowana wlasnos¢ separacji. Wtedy
nie bierzemy ani minimum z kroku i-tego ani ¢ + 1-szego do skonstruowania
¢rev. W takiej sytuacji definiujemy

pew = (G AN(G),CR)  desli fFOAF(G)) < F(OAF(Girn)), (2.48)
o= (G A (G), ) desli FN(G)) > FN (Girn))- '

Sterujac uzyciem aproksymacji funkeji zgodnie z powyzszymi punktami zachodza
tezy Lematu 4 i ponadto ¢* € [¢}, (] oraz aproksymacja w jednym punkcie moze
by¢ uzyta do wygenerowania nawet trzech trojek.

Zbieznosci powyzszego algorytmu dowodzimy przez dowod twierdzenia (patrz [1])
analogicznego do twierdzenia dla algorytmu bez zaburzenia wartosci funkcji (patrz
[25] p. 155).
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Twierdzenie 3.

Zatozmy, ze {(;}2, jest ciggiem skonstruowanym za pomocg Algorytmu 2 dla
rézniczkowalnej w sposob ciggly unimodalnej funkcji celu f : R — R ze sterowaniem
uzycia aproksymacji funkcji celu za pomocq strategii (2.47) i (2.48). Wowczas ¢; — ¢
przy i — oo gdzie ( € S. :

Dow6d jaki prezentujemy w tej pracy polega na pokazaniu przy jakich
zalozeniach o bledzie aproksymacji funkeji celu oraz o miejscach jej uzycia mozna
zastosowa¢ dowod z [25].

Dowoéd

Podstawowa trudnoscia w zastosowaniu metody dowodu z [25] jest fakt, ze uzycie
aproksymacji w pewnych punktach dziedziny powoduje nieciaglosci w funkcji celu
c jak rowniez w funkcjonale obliczania minimum paraboli skonstruowanej dla trojki
Gi-

Zauwazmy najpierw, ze teza z punktu 3. w Lemacie 4 pokazuje, ze dopuszczenie
zaburzenia wartodci funkcji zgodnie z (2.46) zapewnia, ze {(}}3°, jest monotonocznie
rosnacy jak rowniez {¢2}2°, jest monotonicznie malejacy. Poniewaz, obydwa te ciagi
sa ograniczone sa wiec zbiezne. Ponadto zapewniajac, ze A;(e;(;) jest takie, ze
powyzsze wlasnosci bylyby zachowane gdyby$my nie uzyli aproksymacji, zapewnia
nam, ze A (g, ¢) € [¢}, ¢?] dla dowolnego i € N. Musimy rozpatrzyé¢ dwa przypadki

1. Gdy {¢;}2, — (i ¢ =(C"¢? () jest takim punktem skupienia, ze (! < (% <
53. Otrzymujemy tu sprzecznos$¢ uzywajacé ciagtoscei funkeji celu ¢ jesli uzyty
jest algorytm bez aproksymacji funkcji. Argument cigglosci moze by¢ uzyty
tutaj na podstawie dowodu Lematu 4, ktory pokazuje, ze aproksymacja funkeji
moze by¢ uzyta tylko w skoriczonej liczbie iteracji. Po usunieciu pewnej liczby
iteracji poczatkowych dowod z [25] pozostaje w mocy.

2. Nie zachodzi pierwszy przypadek, tzn., ciag skonstruowany przez 2 moze

mie¢ dwa punkty skupienia. W [25] pokazano, ze jest to ten sam punkt
skupienia. Lemma 4 zapewnia, ze argument zawarty w [25] jest w mocy jesli
algorytm konczy dziatanie w kryterium stopu w tréjce bez punktow, w ktorych
warto$ci funkci sg aproksymowane. Poniewaz taki ciag nie jest nieskonczony
musimy rozpatrzy¢ jeszcze jeden dodatkowy przypadek, tzn. gdy algorytm
zatrzymuje sie w trojce dla ktorej w jednym z punktéw warto$é¢ funkeji jest
aproksymowana. )
Dwoma punktami skupienia sa ¢ = ((1CLE3) 1 G = (C1,C3,C3). Aby
zapewni¢ wlasnos¢ separacji wartosci funkeji wartos¢ funkcji moze by¢
aproksymowana tylko w punkcie (3. W drugim przypadku wartosé¢ funkcji
moze by¢ aproksymowana tylko w punkcie ( 1. W powyzszych ciggach mamy
wiec (2 — ¢} or ¢? — (2. Z drugiej strony, separacja miedzy A\*(; ;) i ¢? musi
by¢ wieksza niz Az(e;¢;) i Aq(e;¢;) dla odpowiednich przypadkéw. To daje
sprzeczno$¢ ze zbieznoscia.

g
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2.5 Procedura s-check

Po wyprowadzeniu warunkoéw okre$lajacych dopuszczalne zaburzenie wartosci
funkcji w transformacji minimalizujacej funkcje wzdluz kierunku zrealizowane
za pomoca zaburzonej sekwencyjenj interpolacji kwadratowej mozemy w formie
algorytmicznej przedstawi¢ procedure e-check z kroku 3.c) Algorytmu 1.

Algorytm 3.
Procedura :s-check — procedura sprawdzenia czy zaburzenie ¢ wartosci
funkcji zachowuje warunki zbieznos$ci metody SPELROA
Wejscie : € —  blgd wzgledny aproksymacyi,
Xp_0, Xp_1, Xk - trzy ostatnie punkty wygenero-
wane przez metode SPELROA
potgczong z algorytmem opty-
malizacyi bezposredniej A,
f(xk_Q), f(xk_l), f(xk) ~ odpowiadajgce wartosci funkcyi,
aproksymacja funkcji moze wy-
stqpicé conajwyzej w jednym z

punktow.
Wyjscie : true —  gesli warunki zbieznosci sq za-
chowane,
false — W przeciwnym razie.

0. Jesli punkty nie sq wspotliniowe 1 w procesie optymalizacyjnym nie sq punktam:
iteracji wejsciowymi do Algorytmu Sekwencyjnej Interpolacji Parabolicznej to
zwroc false.

1. Oznaczmy (, = (0,t1,ts) oraz t; = %, to=1.

2. Zatézmy, ze f(Xp—2) < f(xx) (przypadek, gdy f(xi—2) > [f(xx) jest
symetryczny wzgledem (° = 1/2 i wowczas rozpatrujemy (. = (0,1 — t,1)
2 odpowiadajgcg trojkg wartosci (f(xg), f(Xp—1), f(Xp—2))).

Obliczmy  transformacje q okreslong przez (6.1) aby otrzymaé punkt
(¢, f(Cry))- Przeskalujmy € zaleznie od tego, w-ktorym punkcie jest uzyta
aproksymacja wg

e gdy aproksymacja jest uzyta w Xi_o,

[f(xp—2)]”
g:= |f??((kti)1)l’ gdy .aproksymacja jest uzyta w X _1,
m, gdy aproksymacja jest uzyta w Xy.

3. (a) Gdy aproksymacja wartosci funkcji wystepuje w punkcie Xy_o, to jesli ¢
spetnia (6.11) to zwrdéé true w przeciwnym razie false.

(b) Gdy aproksymacja wartosci funkcji wystepuje w punkcie xy_1, to jesli e
spetnia (6.14) to zwrdé true w przeciwnym razie false.



2.5. PROCEDURA e-CHECK 39

(¢c) Gdy aproksymacja wartosci funkcji wystepuje w punkcie Xy, to jesli e
spetnia (6.15) to zwrdé true w przeciwnym razie false.

Zauwazmy, ze transformacja ¢ jest tak skonstruowana, ze ¢(z) < —1 dla z €
(0,1). To gwarantuje, ze zaburzenie wzgledne wartosci funkcji jest interpretowalne,
poniewaz nigdy nie wystapi osobliwos¢, ktora bysSmy mieli gdyby ¢(z) = 0 dla
pewnego z € (0,1).
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Rozdziatl 3

Przyblizanie funkcji cigglych
f:R? - R sieciami RBF

W rozdziale tym zajmiemy sie dwoma zagadnieniami - interpolacja oraz
aproksymacja funkcji ciagtych d zmiennych. W obydwu zagadnieniach idzie o
przyblizenie funkcji ciaglej f : RY — R, ktora zadana jest za pomocy zbioru
dyskret Z = {xi, yi } 1Y

yskretnego Z = {x;, i}

3.1 Interpolacja oraz aproksymacja za pomoca re-
gularyzacji Tikhonova

W zagadnieniu interpolacji zbior Z jest taki, ze
f(Xz):l/L, 1—_——1,,]\[ (31)

Natomiast w wypadku aproksymacji dopuszczamy zaburzenie wartosci funkcji f na
poziomie g, tzn.:

fx)=vi+06, 1 |&<e i=1,...,N. (3.2)

Rozwigzania powyzszych zagadnien poszukujemy w zbiorze funkceji postaci

N

Q
srz(x) =Y wis(|lx —x|) + ) bip;(x) (3.3)

i=1 j=1

. - I . 1t .. ) Q _ (m+d-1\ : "
gdzie ¢ jest bazow_q funkcja %‘admlnq natomiast {pi}i=, @ = (") jest baza
przestrzeni wielomianéw d zmiennych stopnia nie wyzszdo niz m.

Warunki istnienia oraz jednoznaczno$ci rozwigzania zagadnienie interpolacji

sprowadzaja sie do odpowiedzi na pytanie o odwracalno$¢ macierzy uktadu

[ 0)(3)=(3) 54

41
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gdzie A = (¢j(x;))ij=1,..n 1 P = (pj(X;))i=1,...Nj=o0,..0. Warunki jakie musi speinia¢
zbior X = {x;}¥,, funkcja ¢ oraz stopiei m przestrzeni wielomianéw 7, (R?) po
raz pierwszy zostaly podane w [22].

Metoda rozwigzania zagadnienia aproksymacyjnego, jaka zajmiemy sie¢ w ninie-
jszym rozdziale, jest metoda regularyzacji Tikhonova a jej korzenie siegaja prac nad
problemami Zle postawionymi (patrz [38] oraz referencje tamze). Zregularyzowane
rozwigzanie zagadnienia aproksymacyjnego jest poszukiwane w przestrzeni Hilberta
‘H. Operator ograniczen jest definiowany za pomoca innej przestrzeni unormowanej
G, dla ktorej okreslony jest liniowy operator L : ‘H — §G. Operator ograniczen
J : H — R okreslony jest wowczas jako J(s) = ||Ls||3. Zagadnienie regularyzacji
polega na znalezieniu dla ustalonej wartosci parametru A > 0, funkeji s* € H postaci
(3.3), ktora jest rozwiazaniem zagadnienia minimalizacyjnego

seH

min {Z{f(xj) — ()] + )\J(S)} : (3.5)

g=1

Jesli przyjmiemy, ze J(s) = ||s]|g to zagadnienie to sprowadza si¢ do rozwiagzania

uktadu
(B E)-(G) e

dla ustalonej wartosci parametru A > 0. Warunki istnienia i jednoznacznosci
rozwigzania tego zagadnienia podata Wahba [40]. Oczywiscie kluczowym zagadnie-
niem jest tu wybor wartoéci parametru A. Dalej oméwimy trzy metody wyboru
wartosci tego parametru — dwie znane z literatury oraz jedna wprowadzong przez
nas.

3.2 Radialne funkcje bazowe

Niech 7,,(R?) oznacza przestrzen wielomianéw d zmiennych stopnia nie wigkszego
niz m. Rozrézniamy radialne funkcje bazowe dodatnio okreslone oraz warunkowo
dodatnio okreslone. Podajemy za [9] definicje obu klas.

Definicja 3.
Mowimy, ze funkcja ¢ : R — R jest catkowicie monotoniczna, jesli

(=1)" ™ >0 r=1,2,.. (3.7)

Twierdzenie 4. (patrz [9])

Przy zatozeniu, ze punkty w zbiorze X sq rdzne, macierz A jest dodatnio okreslona,
jesli funkeja ¢ z centrum w ¢ € R? jest taka, ze dlar = ||x — c||, funkcja ¢(\/T) jest
catkowicie monotoniczna i nie stata.
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Definicja 4.
Mdéwimy, ze funkcja ¢ : R — R jest warunkowo dodatnio okreslona stopnia k, jesli
dla kazdego zbioru punktéw X C R? forma kwadratowa

N N

Z Z w;wrP(X; — Xi) (3-8)

i=1 k=1

jest niewjemna dla wszystkich niezerowych {w;}i—1.. N, ktdre spetniajg

.....

N
Z w;p(x;) = 0, (3.9)
i=1

gdzie p(x) jest dowolnym wielomianem d zmiennych stopnia nie wickszego niz m.
Mowimy, zZe funkcja ¢ jest Scisle warunkowo dodatnio okreslona stopnia m, jesh
powyzsza forma kwadratowa jest zawsze dodatnia.

Twierdzenie 5. (patrz [9])
Dla funkcji ¢, ktore sq warunkowo dodatnio okreslona stopnia m mamy, zZe funkcja

(=1)*® (V1) (3.10)
jest catkowicie monotoniczna.

Najczesciej uzywanymi w praktyce funkcjami radialnymi w rozwiazaniu
zagadnien zagadnien interpolacji i aproksymacji funkcji sa: sposrod funkeji Scisle
dodatnio okreslonych tzn. takie, ze m = 0 (patrz [43], [32])

o(r) = (r*+)°, B<0,
o(r) = e_""rz, a >0,
p(r) = (1—r)i(4r+1),

oraz sposrod warunkowo dodatnio okre§lonych stopnia m funkcje

o(r) = (=1)°2rPlogr, B€2N, gdzie m=p/2+1,

o(r) = r’ B eRs/2N, gdzie m=[3/2]+1,
o(r) = (—1)“3](7’2-‘- 02)’6, £ >0 gdzie m = [f3].

Cecha charakterystyczna funkcji- $cisle dodatnio okreslonych jest ich wykres w
ksztalcie ,dzwonu” (ang. bell-shaped) oraz lim, . ¢(r) = 0. Dla funkcji warunko-
wo dodatnio okreslonych czyli takich, ze m > 0 mamy natomiast lim, ., ¢(r) — oc.

Dla funkcji warunkowo dodatnio okreslonych aby macierz ukladu (3.6) byta
macierzg nieosobliwa wymagane jest, aby zbiér X spelniat warunek unisolwentnosci
wzgledem przestrzeni 7, (RY).
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Definicja 5. (unisolwentnosé zbioru X)

Mowimy, ze zbior punktéow X = {xi,...,xy} C R%, gdzie N > Q = dimm,,(R%)
jest unisolwentny wzgledem przestrzeni m,(R?) jesli wielomian zerowy jest jedynym
wielomianem z przestrzeni m,(R?), ktory znika na wszystkich punktach X jednocze-
snie.

Warunek ten moéwi, ze zbiér punktéow X na tyle dobrze probkuje przestrzen RY,
w kazdym wymiarze, ze mozliwe jest skonstruowanie wielomianu interpolacyjnego
d zmiennych pelnego stopnia m. Przykladem zbioru, ktory nie jest unisolwenty
wzgledem my(RY) jest zbior 6 punktéw polozonych na okregu. Na takim zbiorze
nie mozna zbudowaé¢ kwadratowego wielomianu interpolacyjnego.

3.3 Przestrzen natywna

Przestrzen funkcji, ktére mozna aproksymowaé za pomoca rozwiniecia (3.3) dla
ustalonej (warunkowo) dodatnio okreslonej funkeji radialnej ®(x,y) = é(||x — y||2)
jest przestrzenig Hilberta H z ustalonym iloczynem skalarnym (-,-)y zawierajaca
samoreprodukujaca funkcja jadrowa. Ograniczenia btedu aproksymacji jakimi sie
zajmiemy w nastepnym paragrafie sg postaci

|f = sp2l < CF(h(@))||fln

gdzie norma || - || jest norma generowang przez iloczyn skalarny (-, )z, C' > 0 jest
stala , h(x) jest miara gestosci danych a F' jest funkcja ciagla.
Niniejszy paragraf zostal przygotowany na podstawie [32] i [33].

3.3.1 Przestrzen Hilberta z samoreprodukujaca funkcja
jadrowa,
Niech © C R? bedzie dziedzing funkcji rzeczywistych, tworzacych przestrzen Hilberta

H z iloczynem skalarnym (-, - ). Zalozmy ponadto, ze dla kazdego x € ) funkcjonat
wartosciowania w punkcie dx : f — f(x) jest ciagly w H i.e.

Ox € H” dla kazdego x € ,

gdzie H* jest przestrzenia dualng do H, tzn. przestrzenia operatoréw liniowych z 'H
w R.

Twierdzenie 6. (patrz [32])

Jesli przestrzen Hilberta funkcji okreslonych na zbiorze Q0 zawiera ciggly funkcjonat
warto$ciowania w punkcie to zawiera symetryczng funkcje nazywang reprodukujgcg
funkcjq jodrowg ® : Q2 x Q — R o wlasnosciach

d(x,:) € H

fx) = (f,®(x,)n
d(x,y) = (®(x,),2(y, ))n = @(y,x)
q)(X’Y) = (5?(*6)')7{* - <I>(y,x)
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dla wszystkich x,y € ), f € H.

3.3.2 Przestrzen natywna

Definicja 6.

Jesli symetryczna (warunkowo) dodatnio okreslona funkcja ® : Q x Q@ — R
jest reprodukujgcqg funkcjg jadrowq w przestrzeni Hilberta H funkcji o wartoscich
rzeczywistych okreslonych na zbiorze §2, to przestrzenn H nazywamy przestrzenig
natywna generowana przez funkcje jadrowq ® i oznaczamy jg Ng(R?).

Jednoznaczno$¢ przestrzeni natywnej generowanej przez funkcje ® opisywana jest
nastepujacym twierdzeniem.

Twierdzenie 7. (patrz [32])

Przestrzen natywna H = Ng(R?Y) generowana przez dang (warunkowo) dodatnio
okreslong funkcje @, o ile istnieje, jest okreslona jednoznacznie. Ponadto pokrywa sie
2 domknieciem przestrzeni skoriczonych kombinacgi liniowych funkeji ®(x,-) wzgle-
dem iloczynu skalarnego

(®(x,-),2(y, ) = 2(x,y) dla kazdego x,y € .

v d

Twierdzenie 7 mowi, ze przestrzen natywna generowana przez radialng funkcje
bazowg ® jest domknieciem przestrzeni sktadajacej sie z funkcji postaci

N
=ij<1>(-—xj), w;€R j=1,...,N.

Iloczyn skalarny w tej przestrzeni zdefiniowany jest jako

N

e )'H"(fw(l)’ w(®)e = ZZ“’ UCI) ;= X;) ~ (3.11)

Jj=1 i=1

gdzie f o) jest funkcja interpolujaca funkcje f na zbiorze X = {xi,...,xpy}
natomiast f jest funkcja interpolujaca funkcje f na zbiorze Y = {y1,...,yum}
Do udowodnienia ograniczen bledéw, ktore przytaczamu w nastepnym paragrafie
potrzebre jest ponadto zalozenie o funkcji f, ze jej transformacja Fouriera f jest
zdominowana przez transformacje Fouriera ® funkcji ®(r) = ¢(||r||2) w sensie

/|f12ci>—ldf, < 0. (3.12)
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Zalozenie to oznacza, ze iloczyn skalarny (3.11) mozna zapisa¢ w postaci calki
Lebesgue’a

N M

(5 )n = (fww, fam)e = Zzw;n'wz@@(}’i - X;)

j=1 i=1
N M
~ . T )
o] j=1 k=1

Majac dana dodatnio okreslona funkcje @ interesuje nas wiec pytanie, jakie
funkcje nalezg do przestrzeni natywnej generowanej przez funkcje ®. Odpowiedz
w ogblno$ci mozna znalezé w [32]. My ograniczymy sie do przestrzeni, ktore
zawieraja funkcje, ktore moga by¢ funkcjami celu w procesie optymalizacyjnym. Aby
mozna bylo uzyé¢ algorytmu bezgradientowego funkcja celu musi by¢ co najmniej
ciaglta. Algorytmy gradientowe lub drugiego rzedu wymagaja ciaglosci pochodnych
kierunkowych oraz czastkowych drugiego rzedu odpowiednio.

Dalej oméwimy wiec przestrzen natywna, ktora zawiera funkcje catkowalne
7z pewna potega, przestrzenig taka, jest przestrzen Sobolewa. Pokazemy jakie
dodatnio okreslone funkcje generujg przestrzenie natywne izomorficzne z przestrze-
niami Sobolewa odpowiedniego rzedu. Przestrzenie Sobolewa odpowiednich rzedow
zawieraja przestrzenie C'(RY), C'(R?) i C?(R%). Na koniec zajmiemy si¢ przestrze-
nia natywna generowana prze funkcje Gaussa. Jest to przestrzen czesto uzywana w
zastosowaniach praktycznych. Rowniez w naszym zastosowaniu aproksymacja jest
konstruowana przy uzyciu funkcji Gaussa.

3.3.3 Przestrzenie Sobolewa

Przestrzen Sobolewa definiujemy za pomoca opratora rézniczkowania kierunkowego
DC!
7
(051 0%} X
pe |00 O 9%
- Q10 g o LAY
Oz’ 0z3? Oy

gdziea=a; +ay+---+agia; €N

Definicja 7. (Przestrzen Sobolewa catkowitego rzedu)

Przestrzer Sobolewa LV;'(Q) okreslamy jako przestrzen funkcji u : Q0 — R, dla
ktorych D*u € L,(Q),|a| < k. Jest to (semi-)przestrzeri Hilberta z (semi-)normq
okreslong odpowiednio

1/p 1/p

|Ulw,§~(9) = Z ||Da“||1£p(n) oraz ”uHW,é’(Q) = Z HDQUHIEP(Q)

|a|=k |a| <k



3.4. REGULARYZACJA TIKHONOVA 47

Definicja 8. (Przestrzen Sobolewa utamkowego rzedu)
Przestrzen Sobolewa W’p’““(ﬂ),l < p < oo,k € No,0 < s < 1 okreSlamy jako
przestrzen funkcji u : Q — R, dla ktorych ponizsze normy sq skoriczone

| o\
D “u(y)P
[ulyyrtsgy = / / iy , (3.13)
e W o rx yn“’
o - 1/p

lullysrqy = (el + |u|w§+s(m) . (3.14)

Zalozmy, ze ® € Li(R%) N C(R?) spelnia
a(l+]|wl})7 <@ <l +|wlp)™, weR? (3.15)

dla 7 € Ri7 > d/2 oraz dwoch statych dodatnich ¢; < ¢o. Wowczas przestrzen
natywna Ng(R?) odpowiadajaca funkcji ® pokrywa sie z przestrzenia Sobolewa
W3 (), i norma w przestrzeni natywnej i norma w przestrzeni Sobolewa sa
rOwnowazne.

Funkcjami @, ktore spelniaja powyzszy warunek sa SciSle dodatnio okreslone
funkcje Wendlanda (patrz [43]) oraz np. funkcje typu thin plate splines ®(r) =
(=1)5+Y|r||*P log||r||, B € 2N, dla ktorych

Ci)((,u) = 2d+2;3*17rd/2[w(d/2 + ,3)/3!”(.0”_[1_2‘3

(patrz [33]).

3.3.4 Przestrzen natywna dla funkcji Gaussa

Dla funkeji Gaussa ®(r) = e~"l” mamy
d(w) = (E)d/ze—nu}n?/uay
o

Wydaje sie, ze taka postac¢ transformacji Fouriera funkcji ® moze by¢ argumentem
przeciw aproksymacji za pomoca funkeji Gaussa, gdyz kazda funkcja z przestrzeni
natywnej Np(RY) funkcji musi by¢ zdominowana przez transformacje Fouriera dw
sensie (3.12). Warunek ten spelniaja np. wszystkie funkcje o ograniczonym widmie,
a przestrzen tych funkcji odgrywa istotna role w teorii probkowania, w szczego6lnosci
w twierdzeniu Shannona o probkowaniu (patrz [42]).

3.4 Regularyzacja Tikhonova

Zagadnienie treningu sieci z radialnymi funkcjami bazowymi jest zagadnieniem Zle
postawionym (ang. ill-posed) w sensie Hadamarda [17]. Zadanie jest zadaniem Zle
postawionym jesli nie jest zadaniem dobrze postawionym, czyli gdy nie jest spetniony
co najmniej jeden z warunkoéw nastepujacej definicji.
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Definicja 9.
Zadanie nazywamy dobrze postawionym jesli zachodzq nastepujgce warunki:

1. rozwigzanie zadania istnieje,
2. rozwigzanie zadania jest jednoznaczne,

3. rozwigzanie zadania zalezy w sposob ciggty od danych.

Zadanie treningu sieci z radialnymi funkcjami bazowymi przez rozwigzanie
zagadnienia interpolacyjnego nie spelnia zazwyczaj warunku 3. Wynika to z
faktu, ze macierz interpolacyjna A jest macierza bardzo 7le uwarunkowana. Zte
uwarunkowanie jest wieksze dla funkcji dodatnio okreslonych i nieskoniczenie
wiele razy rozniczkowalnych tzn. np. dla funkcji Gaussa czy odwrotnej funkcji
multikwadratowej.

Dla sieci trenowanych przez rozwigzanie zagadnienia aproksymacyjnego nie jest
spetniony ponadto warunek 2.

Rozwazmy metode regularyzacji Tikhonova z operatorem ograniczen L €
R™¥N (n < N). Polega ona na rozwiazaniu zagadnienia minimalizacyjnego

min {||Aw — y||* + \?||Lw]||3}, (3.16)
weRN

gdzie n jest numerycznym rzedem macierzy A a A € R jest nazywane parametrem
regularyzacji. Stabilna metoda wyznaczania wektora w omoéwiona jest w paragrafie
3.5.

Metoda regularyzacji Tikhonova jest metoda rozwigzywania zadan zle postawio-
nych i zostala zaproponowana jako metoda rozwiazywania zagadnien odwrotnych
sformutowanych w postaci catki Fredholma

b
= / K(s,0)f(t)dt.

Szukanym rozwigzaniem zagadnienia odwrotnego jest funkcja f(¢) dla danej fun-
keji g(s) i funkeji jadrowej K (s, t). Dyskretyzacja rownania Fredholma daje zawsze
macierz zle uwarunkowana.

Warunkiem wystarczajacym na to, aby metoda regularyzacji Tikhonova dawata
interpretowalne rozwigzanie dla zagadnienia odwrotnego zadanego catka Fredholma
jest spelnienie dyskretnego warunku Picarda. Warunek ten okreslamy uzywajac tu
z wyprzedzeniem oznaczen z wyprowadzenia rowigzania zadania (3.16) podanego
w paragrafie 3.5. Dyskretny warunek Picarda mowi, ze ciag wielkosci |[ul'y|, i =
1,2,...,r musi male¢ szybciej niz ciag o;, ¢ = 1,..., N, gdzie u; oraz o; sa
i-tym wektorem szczegbélnym i odpowiadajaca wartoscia szczeg6lna odpowiednio
macierzy A. Jest to warunek, ktory laczy macierz réwnania z wektorem prawej
strony. Dzieki temu, ze uly < o; dla wszystkich i > p dla pewnego p to wspotezyn-
niki filtrujagce zmniejszaja w rozwigzaniu wktad wektorow wlasnych odpowiadaja-
cych malym wartosciom wtasnym dla i > p. Dla zadania aproksymacji funkcjami
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Fredholm equation Gauss RBF approximation
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Rysunek 3.1: (a) Warunek Picarda dla réownania catkowego Fredholma [17],
(b) Warunek Picarda dla aproksymacji bazowymi funkcjami radialnymi funkcji
Rosenbrocka dwoch zmiennych.

radialnymi warunek ten nie jest spelniony (patrz rysunek 3.1). Dla zagadnienia
aproksymacyjnego rzeczywiste zmniejszenie wktadu wektoréw wltasnych zachodzi dla
op < A < 0p—1 1 wektoréw wlasnych o indeksach i > p + k, gdzie k jest najmniejsza
liczba naturalng taka, ze ul, ,y > .

Kluczowym elementem metody regularyzacji Tikhonova jest wybor wartosci
parametru A. Celem jest taki wybor, ktory zapewni wlasciwg rownowage pomiedzy
sktadnikiem aproksymacyjnym i regularyzacyjnym w wyrazeniu (3.16). Omowymy
tutaj dwie metody wyboru wartosci parametru A z literatury oraz zaproponujemy
nowa metode.

3.4.1 Metoda uogdélnionej walidacji krzyzowej

Najpopularniejsza metoda wyboru parametru regularyzacji A jest metoda uogélnio-
nej walidacji krzyzowej (ang. Generalized Cross Validation (GCV)) (patrz [40]).
Jest to metoda nie wymagajaca znajomosci a priori zaburzenia danych ani definicji
dodatkowych parametrow.

Kryterium GCV jest wskaznikiem okreslajacym przyblizenie minimum predykcy-
jnego bledu srednio-kwadratowego (Predictive Mean Square Error) zdefiniowanego
jako

T\ = %Z(SA(Xi) — F(xa))%

ktory zalezy od estymowanej funkcji f.

Niech A(\)#* = (ATA + M )7'AT oznacza zregularyzowana macierz odwrotna,
gdzie A jest macierzg interpolacyjna. Wartos¢ oczekiwana bledu predykcyjnego 7'(\)
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mozna zapisa¢ jako sume obciazenia i wariancji
1
ET(N) = FE (IAN(f +¢) - fIP)

1 g . OF
= - AN+ S
= V’(\) + o?uz(N)

2

Tr [A(N)#]

gdzie b()\) jest obcigzeniem modelu a o? wariancja natomiast p(\) jest pewn
!

funkcja wartosci szczegolnych macierzy A (patrz [40], [17]).
Dla zagadnienia (3.5) kryterium GCV zdefiniowane jest jako

gdzie

a a;; jest elementem diagonalnym macierzy A(\)%.
W postaci macierzowej V' (\) mozemy zapisac

2

VO = = A/ | T - A (3.17)

~Stabe twierdzenie” o zbieznosci kryterium GCV (patrz [40]) mowi, ze dla N —

oo istnieje ciag Ay, wartosci A minimalizujacy warto$¢ oczekiwang kryterium GCV
b*(A) + 0%(1 — 2m(A) + pa(N))
(1+pa(A))? ’

ktore przyblizaja warto$¢ A dajaca minimum predykcyjnego btedu $rednio-kwadra-
towego

EV()\) =

A = argminy ET(A).

Dla danych nieregularnych i wolnych od biedow pomlaru metoda ta zawsze daje
mate ), ktore stab1hzuje obliczanie odwrotnosci macierzy interpolacyjnej. A mniejsze -
powodujg powstanie bledu wynikajacego z btedéw zaokraglen.

Rysunek 3.2 pokazuje przykladowy wykres wartosci wskaznika GCV wzgledem
A

3.4.2 Metoda L-krzywej

Druga metoda wyboru parametru regularyzacji jest metoda L-krzywej zapropono-
wana przez Hansena [17] jako narzedzie w rozwiazaniu zagadnien 7le postawionych
metoda regularyzacji Tikhonova.
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Rysunek 3.2: Wykres wskaznika GCV'(\) dla przykladowego zbioru 30 punktow
danych z dwuwymiarowego procesu optymalizacyjnego.

Metoda ta polega na lokalizacji optymalnego parametru regularyzacji A na
wykresie normy ||Lw,|[; wzgledem normy residuum |[[Aw, — y||o. Krzywa ta
zdefiniowana jest na skali logarytmicznej jako

(C(A),n(A)) = (log ||Awx — yl|2,log || Lwy|[2).

i okresla wklad tych wielkosci w rozwiazaniu w) w zaleznosci od .

Rozwigzanie zagadnienia (3.16) dla dowolnego A lezy na tej krzywej. Rozwig-
zania dla matego A znajduja sie w gornej czeSci wykresu ponad "naroznikiem”
wykresu. Jesli A jest duze to rozwiazanie znajduje sie w prawej dolnej czesci wykresu.
Optymalny wybor parametru A okresla rozwiazanie znajdujace sie w narozniku
wykresu. Naroznik wykresu zdefiniowany jest jako punkt o maksymalnej krzywiznie

_ ") = "' (V)
()2 + (' (A))2)*2

Maksymalizacja funkcji x(A) prowadzi do algorytmu wyboru warto$ci parametru
regularyzacji A, dla ktorego zachowany jest balans pomiedzy ||Aw) —y/||2 1 || Lwy]|o.

Obliczenie L-krzywej wymaga przeskanowania spektrum wartosci szczegélnych
macierzy A co jest operacja czasochlonna. Algorytmy lokalizacji naroznika na
wykresie opieraja sie na nastepujacym schemacie.

k()

1. Rozpoczaé z kilkoma punktami ((;,7;) po obu stronach naroznika, tzn. dla
duzego i dla maltego .

2. Obliczy¢ trojparametryczng krzywa sklejang trzeciego stopnia S dla punktow
(Gis M Xs)-

3. Niech & oznacza pierwsze dwie wspoOlrzedne na krzywej S takie, ze S,
przybliza L-krzywa. Obliczy¢ punkt na S; o maksymalnej krzywiznie i
odczyta¢ odpowiadajaca wartosé .
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Rysunek 3.3: L-krzywa dla macierzy interpolacyjnej dla funkcji Gaussa
dla przyktadowego zbioru 30 punktéw danych z dwuwymiarowego procesu
optymalizacyjnego.

4. Rozwigza¢ problem regularyzacyjny dla A = Ao i dodaj nowy punkt do
(C(Xo),n(Xo), Ao) od zbioru weztow krzywej S.

5. Przej$¢ od punktu 2 jesli nie uzyskaliSmy zbieznosci.

Dla zagadnien 7le postawionych w postaci catki Fredholma dla ktorych spelniony
jest warunek Picarda metoda L-krzywej daje wyniki zblizone do metody GCV.
Dla zagadnien interpolacyjnych oraz aproksymacyjnych dla malych zbioréw danych,
ktore nie sa zaburzone, takich jakie otrzymujemy z algorytmu optymalizacyjnego,
metoda L-krzywej okazuje sie dawa¢ wyniki gorsze niz metoda GCV. Wynika to stad,
ze L-krzywa moze zawiera¢ co najmniej kilka punktow o duzej krzywiznie. Pokazuje
to rysunek 3.3.

3.4.3 Metoda wazonej wariancji gradientu

Wiadomo, ze w wyrazeniu ||[Aw — y||> + A?||[Lw||}3 dla w = w, w zaleznosci
od wartosci parametru regularyzacji A w roézny sposob zachowuja sie sktadniki
||[Awy — y||* (sktadowa rezydualna) i ||Lw,|[3 (skladowa regularyzacyjna). Gdy
A — 0 to maleje cze$¢ rezydualna natomiast.czes¢ regularyzacyjna rosnie i odwrotnie
wraz ze wzrostem wartosci parametru A, rosnie cze$¢ residualna i maleje czesé
regularyzacyjna.

Metoda dyskrepancyjna wyboru parametru A polega na wybraniu najwiekszego
A, dla ktoérego

||Awy — y||* < 6

gdzie J. jest ustalonym przez uzytkownika poziomem odtwarzania calego zbioru
danych. Oczywiscie, gdy dane w zbiorze zawieraja blad to warto$¢ J. powinna
odzwierciedla¢ wiedze o poziomie btedu danych. W metodzie tej pod uwage brane
sa jednakowo wszystkie punkty danych zawarte w zbiorze X.



3.4. REGULARYZACJA TIKHONOVA 33

Rozpatrzmy proces treningu sieci neuronowej s)(x) dla kolejnych malejacych
wartoSci parametru A za pomoca rozwigzania zagadnienia regularyzacyjnego dla
nieregularnego zbioru danych. Okazuje sie, ze w pewnych regionach otoczki wy-
puklej zbioru danych, gdy A maleje, to odtwarzanie zbioru danych w otoczeniu
punktu wartosciowania maleje szybciej niz w innych regionach otoczki wypuklej
zbioru danych.

W zastosowaniu sieci neuronowej do aproksymacji funkcji celu w procesach
optymalizacyjnych praktycznie interesuje nas aproksymacja tylko w bliskim oto-
czeniu punktu wartoSciowania. Tak wiec parametr A mozemy wybra¢ w zaleznosci
od lokalnego odtwarzania warto$ci funkcji na zbiorze danych X

W takim duchu zaproponowana zostala metoda WGV, ktoéra jest lokalna
odmianag metody dyskrepancyjnej. W metodzie tej rozwiazuje sie ciag zagadnien
regularyzacyjnych dla malejacej wartoci parametru A. Wyboru param&ru \
dokonujemy sposrod tych wartosci, dla ktorych lokalnie jest uzyskane odtwarzanie
zbioru danych na okre§lonym przez uzytkownika poziomie. Lokalne odtwarzanie
zbioru danych X (Normalized Local Mean Square Error) definiujemy jako wskaznik

NLMSE) z(x (i S\(Xk) = Y / Z ) (3.18)
Tk'

k=1 YiTk

gdzie r, = ||xx — x||. Wyboér A\ ograniczamy do takiego zbioru A(x) wartosci
parametru A, dla ktéorych NLMSE)z < .. Fakt, ze zbiér A(x) rzeczywiscie
zalezy od punktu wartoSciowania x pokazujemy na przykladzie zbioru danych
otrzymanym podczas konstrukeji sieci aproksymujacej w algorytmie optymalizacji
bezgradientowej dwuwymiarowej funkcji Rosenbrocka — patrz rysunek 3.4. Rysunek
3.4a) przedstawia zbior danych. Rysunek 3.4b) przedstawia wykresy wskaznika
NLMSE dla punktéw z otoczenia punktu A oraz dla punktu B w zaleznosci od
warto$ci parametru A. Jak wida¢ odtwarzanie zbioru danych na poziomie bledu
wzglednego 107° dla otoczenia punktu A otrzymujemy na zbiorze A(A) =~ (0,1078).
Dla punktu B mamy natomiast przedzial A(B) = (0,107!).

Ze zbioru A(x) wybieramy takie A, ktore minimalizuje funkcjonal wazonej
wariancji gradientu zdefiniowanej jako

WGV 2(x Z”VS* X) G* HZ/Z (3.19)

gdzie G A(x) jest usrednionym gradientem w punkcie x, okreslonym jako

- iv: / Z (3.20)

k=1

oraz 1, = ||xp — X||o. GA(x) oraz WGV, z(x) zaleza od x jedynie przez skalowanie,
ktore wzmacnia wktad punktéw x; najblizej polozonych od punktu x. Minimum
funkcjonatu WGV, z(x) wzgledem parametru A € A(x) okresla ten model, dla
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Rysunek 3.4: (a) Zbioér 30 punktéw otrzymanych ze Sciezki optymalizacyjnej dla
funkcji Rosenbrocka dwoch zmiennych, (b) Lokalne odtwarzanie zbioru treningowego
w otoczeniu punktu A oraz punktu B.

ktorego s)(x) ma najmniejsze oscylacje w otoczeniu punktu x, gdyz odchylenie
gradientu od usrednionego gradientu G A(x) na punktach x; najblizej potozonych
od punktu x jest najmniejsze. Na rysunku 3.5 pokazane s wykresy funkcjonatu
WGV, z(x) odpowiadajac wykresom NLM SE) z(x) na rysunku 3.4 b) dla punktow
potozonych w otoczeniu dwoch réznych punktoéw ze zbioru Z.

Iogm(WGVk z( x))

11 1
B g

-118 -1‘5 '1‘4 —1‘2 -1‘0 —é -é -‘; -2

log, (%)
Rysunek 3.5: WGV, z(x) dla punktu A oraz punktu B z rysunku 3.4a). Symbolem x
na wykresie oznaczona jest wartos¢ A wskazane przez metode, dla NLMSE) z(x) <

1074,

Jak wida¢ lokalnosé tych wskaznikow jest uzyskiwana dzieki skalowaniu sktadnika
sumy dla i-tego punktu przez kwadrat jego odleglosci od punktu wartosciowania.
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approximation error off thﬁ f’aproximagignsconstuced with WGV ) for approximation constructed with WGV
or = -1

Rysunek 3.6: a) Blad aproksymacji dla A\ wybranego przez wskaznik WGV dla
NLMSE = 5.0-1075 b) Wybrana wartos¢ A — jak wida¢ w regionie ubozszym
w dane wskaznik sugeruje wieksza warto$¢ parametru .

approximation error of the approximation construced with GCV approximation error of the approximation constructed with L-curve

x10°
15

X107

Rysunek 3.7: a) Blad aproksymacji dla A ~ 10~'* wybranego przez wskaznik GCV,
b) Blad aproksymacji dla A ~ 10~%° wybranego za pomoca L-krzywej.

3.5 Stabilna metoda wyznaczania przyblizenia

Uktad (3.4) rozwiazujemy przez rozwiazanie dwoch uktadow, mianowicie

Aw + Pb = y,
{ P, 0 (3.21)
Podobnie uktad (3.6) rozwiazujemy przez rozwiazanie
A+ LAN)w+Pb = y,
{ EDTb ) -y (3.22)

Z réwnania PTb = 0 wyznaczamy sktadowe wektora b a nastepnie wstawiajac je do

rownania pierwszego otrzymujemy uklad o macierzy A lub A + LA odpowiednio.
Gdy macierz A nie jest zbyt duza, tak jak np. w aproksymacji funkcji celu, gdy

ilo$¢ danych jest ograniczona, jako narzedzie stabilnego rozwiazywania powyzszych
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uktadow moze zosta¢ uzyty rozklad macierzy A wzgledem wartosci szczegdlnych
(SVD - singular value decomposition). Rozklad ten istnieje dla dowolnej nieosobliwe;
macierzy A i jest okreslony jako

A=USVT

gdzie U,V € RV*N s3 macierzami ortogonalnymi a S = diag(oy,...,on) oraz
mamy porzadek o, > gy > --- > on macierzy szczegdlnych macierzy A. Rozklad
SVD jest jednoznaczny do znaku kolumn macierzy U i V. Gdy zdefiniujemy
y' := y — Pb, to wektor w dla zagadnienia interpolacyjnego obliczamy za pomoca

rozwiniecia wzgledem wektorow szczeg6lnych macierzy A

N
1
w=VSUly = Z —(uly)v;

O’.
i=1 ¢

Gdy macierz A jest bardzo Zle uwarunkowana, tak jak jest to np. dla funkcji
Gaussa czesto mamy o; < € dla pewnego ¢ < N, gdzie € jest dokladnoscia
reprezentacji zmiennopozycyjnej. Wowczas zamiast calego rozwiniecia, ktérego
koncowe wyrazy zawieraja zaburzona informacje pochodzaca z btedu reprezentacji
zmiennopozycyjnej wartosci szczegélnych. W takiej sytuacji ograniczamy sie do
obciecia do r wyrazow, dla ktorych o; > € (i =1,...,7).

Rozwigzanie zagadnienia aproksymacyjnego mozna natomiast zapisa¢ za pomoca
uogoblnionego rozkltadu SVD (GSVD) macierzy A i L. Rozklad GSVD dla macierzy
A i L definiujemy (patrz [17]) jako

o Z O —]l _ -1
A—U(O IN—'I’)X , L=VX~ .

Kolumny macierzy U € RV*¥ oraz U € R™ " sa ortonormalne, natomiast kolumny
macierzy X € RV*V s3 ortogonalne wzgledem macierzy AT A

2 0
TAT Ay —
XAAX—(O IN—r)7

oraz spelniaja

M? 0
TrT _
XLLX—(O 0),

gdzie macierze ¥ = diag(oy,...,0,) oraz M = diag(yu1, ..., /t,) maja na przekatnej
nieujemne elementy uporzadkowane tak, ze

01 £--- <0, L1, 1>2m=2---2pu =0.

znormalizowane tak, ze
2 2 .
o; +u;=1, +1=1,...,r

Wowczas
’yizai/,u,' b= 1y . sT
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nazywamy uogoélnionymi wartosciami szczegélnymi. Jesli macierz A jest pelnego
rzedu to rozwigzanie w) powyzszego problemu zapisa¢ mozna za pomoca rozktadu

SVD "
e R 0 T
W)y = XF < 0 IN_T ) U Yy,

gdzie macierz F = diag(f;). Elementy diagonalne f; nazywaja si¢ wspotczynnikami
filtrujacymi.

Rozwiazanie zregularyzowane w) oraz odpowiadajacy mu wektor residuéw y —
Aw), mozna zapisa¢ wiec jako

.
Wy = Z fi
i=1

ul'y ad
; z; + Z ul'yz; (3.23)

i k=r+1

d T
U;
Lwy = Z Ji _y V;
i1 Yi

oraz
T

y— Aw)y = Z(l — fi)u;ryui + (Iy — UUT)y.

i=1

Wspotcezynniki filtrujace zapisuja sie
2
Vi

= izl....,T.
= |

Wspotezynniki filtrujace redukuja w wy wplyw skladowych odpowiadajacych
wartosciom szczegélnym o; < o, takim, ze 0, < A < 0,_; poniewaz f;/o; << 1/0;
dla kazdego p < i < N. Tak wiec skladowe odpowiadajace malym wartoSciom
szczegblnym, czyli te ktore wzmacniaja zaburzenie danych, sa odfiltrowywane.
Zauwazmy ze i tutaj mozemy zastosowaé obciecie gdy v; < € lub poprostu p; < e.

3.6 Ograniczenia bledu przyblizenia

W niniejszym paragrafie zajmiemy si¢ dwoma rodzajami ograniczen bledow

przyblizen sieciami o radialnych funkcjach aktywacji dostepnych w literaturze.

Pierwsza grupa ograniczen to ograniczenia wymagajace zalozen o gestosci zbioru

danych X natomiast druga grupa to ograniczenia nie wymagajace tego typu zalozen.
Glownymi elementami wyprowadzen ograniczen z obydwu grup sa:

1. wlasno$é odtwarzania wielomianéw przez proces aproksymacyjny,
2. funkcjonal potegowy,

3. funkcje Lebesque.
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W kolenych paragrafach oméwimy wiec najpierw po kolei te pojecia.

Ograniczenia bledu omawiane w tym rozdziale zaleza od gestosci zbioru X w
dziedzinie Q2 mierzonego za pomoca wskaznika wypelnienia (ang. fill distance). Zanim
wiec przejdziemy do omowienia gtownych elementéw ograniczen podamy definicje
tego wskaznika w formie lokalnej i globalnej oraz podamy jego wtasnosci. W rozdziale
tym podamy rowniez definicje wskaznika wprowadzonego przez nas i mierzacego
jako$¢ otaczania punktu wartosciowania przez punkty ze zbioru danych. Pokazemy
rowniez jak jako$¢ aproksymacji radialnymi funkcjami bazowymi zalezy od tego
wskaznika.

3.6.1 Wskazniki gestosci danych

W rozdziale tym omoéwimy dwa wskazniki mierzace lokalna jako$¢ wypelnienia
dziedziny € przez punkty zbioru danych X = {x;}¥,.

Norma siatki

Norma siatki (ang. mesh norm) jest wielkoscia okreslajaca jak dobrze zbior
danych X C Q wypelnia dziedzine ). Jest definiowana w dwbch wersjach

1. lokalnej [29] — dla parametru p > 0 dla kazdego punktu x € €

hoxa(x) = max min|ly -, (3.24)

gdzie B(x, p) oznacza kule o srodku x i promieniu p,

2. globalnej [43]

hx o = max )Icljlér)lc lly — %512 (8.25)

W wersji lokalnej wskaznik ten okresla promieni najwiekszej kuli nie zawierajacej
punktéw danych ze zbioru X i zawartej w kuli o Srodku x i1 promieniu p. W wersji
globalnej okresla promien najwiekszej kuli nie zawierajacej danych ze zbioru X
zawartej w dziedzinie ().

Majac dany zbior X oraz promien p od obliczenia lokalnej normy siatki
mozna wykorzystujac algorytm triangulacji Delaunaya [14]. Niestety konstrukcja
triangulacji Delaunaya jest mozliwa w przestrzeni R tylko, gdy zbior danych ztozony
jest z punktow w pozycji ogolnej tzn., nie zawiera d+ 1 punktéw wspotliniowych ani
d + 2 punktow polozonych na okregu. Ten warunek nie bedzie zazwyczaj spelniony,
gdy zbiér danych pochodzi ze $ciezki algorytmu optymalizacyjnego.

Rysunek 3.8 pokazuje przykladowy wykres wskaznika h,x o dla 30 punktéw
przykltadowego zbioru danych dwuwymiarowych.
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Rysunek 3.8: h, x o(x) dla p = 10 dla przykladowego zbioru 30 punktow danych z
dwuwymiarowego procesu optymalizacyjnego.

Wskaznik otoczenia vx(x)

Drugim rozwazanym przez nas wskaznikiem mierzacym lokalna jakos$¢ rozktadu
punktow zbioru X = {x;}¥, w otoczeniu punktu x jest wskaznik mierzacy dlugosci
odcinkow xx; (1 = 1,...,N) i katy Zx;xx; (4,7 = 1,...,N; ¢ < j) miedzy
punktami zbioru X. Lokalno$¢ takiego wskaznika moze by¢ uzyskana w ten sposob,
ze nadaje sie wieksza wage krotszym odcinkom Xx; oraz wiekszym katom Zx;xx;.
Wskaznik o takich wlasnosciach definiujemy nastepujaco [3] :

N N
'YX(X) = Z a’ijVVU/ Z Wz]v (326)
]i,<ji jl’<]z
gdzie
dy; .
aijz " —:—JTJ-’ dla dij: HXi—XjHQ, 1 1= ||X—XiH27
oraz wagi W;; sa zdefiniowane jako
1
Wij = .
T + T

W przeciwienstwie do wskaznikow zdefiniowanych w paragrafie 3.6.1, ktore zaleza
od gestosci wypelnienia kuli B(x, p) (w wypadku h,x o) oraz gestosci wypelnienia
calej dziedziny Q przez punkty zbioru X (w wypadku hx q), wskaznik vx(x) mierzy
jak dobrze punkty danych otaczaja punkt x. Warto$¢ vx(x) jest tym wieksza, im
wiecej punktow znajduje sie w bliskim otoczeniu punktu x i sa ulozone tak, ze
wystepuje duzo katow rozwartych Zx;,x,x; (i,7 = 1,...,N; i < j) w bliskim
otoczeniu punktu x.

Wiasnosci takie wskaznik vx(x) zawdziecza wlasnosciom funkeji a;; i Wi
Funkcje a;; najwieksza warto$¢ rowna 1 przyjmuja dla punktéw x potozonych na
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odcinku x;x;. Maksimum jest wiec osiggane, gdy kat £x;,x,x; = 7. Wzmocnienie
wplywu par punktéow blizej polozonych punktu x jest uzyskiwane przez funkcje
wagowa W;;, ktora maksymalng wartos¢ rowna 1/d;; przyjmuje rowniez na odcinku
x;X;. Im blizej wiec odcinka x;X; i im mniejsze d;; tym wiekszy wplyw pary punktow
X;, Xj na warto$¢ wskaznika dla punktu x.

Rysunek 3.9 pokazuje wykres funkcji a;; oraz W;; natomiast rysunek 3.10
pokazuje wykres wskaznika yx(x) dla 30 punktéow przykladowego zbioru danych
z procesu optymalizacyjnego dwoch zmiennych.
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Rysunek 3.9: Wykres funkcji a;;. Maksymalna warto$¢ przyjmowana jest na odcinku
X;, X;. Wykres funkcji wagowej W;; jest analogiczny. Maksymalna wartos¢ funkcji
wagowe]j rowniez jest przyjmowana na odcinku x;, x; i wynosi 1/d,;.
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Rysunek 3.10: Wykres wskaznika ~x(x) dla przykladowego zbioru 30 punktow
danych z dwuwymiarowego procesu optymalizacyjnego. ' '

3.6.2 Odtwarzanie wielomianéw

Podstawowym narzedziem uzywanym w dowodach ograniczen bledéw interpolacji

oraz aproksymacji

jest

wlasnosé

odtwarzanie

wielomianéw.

Odtwarzanie
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wielomianéw przez proces interpolacyjny/aproksymacyjny definiuje sie naste-
pujaco:

Definicja 10.

Proces, ktory okresla dla kazdego zbioru X = {x1,...,xy} C Q rodzine funkcji
uj = u;( Q= R, 1 <7< N zapewnia lokalne odtwarzanie wielomianow stopnia [
na zbiorze 1, jesli istniejg state hg, C1,Cy > 0 takie, Ze spetnione sq warunki

1. Z;v:lp(xj)uj =p dla kazdego p € m(R?)|Q),

2 Z]’Vzl luj| < Cy  dla kazdego x € (,

3. u;(x) =0, jesli ||x — x||2 > Cohx o i X €,
dla kazdego X dla ktorego hx o < hy.

Jesli proces gwarantuje lokalne odtwarzanie wielomianéw to ograniczenie btedu
aproksymacji funkcji tym procesem opisuje nastepujace twierdzenie.

Twierdzenie 8. (patrz [43])
Niech Q < R? jest ograniczony. Niech Q* bedzie domknieciem zbioru

UxeaB(z, Cohg). Zdefiniujmy
N
srx =Y f(x;)u,
j=1

gdzie {u]}j\:1 jest lokalnym odtwarzaniem wielomianow stopnia m na zbiorze €.
Wowczas jesli f € C™H(Q*) to istnieje stata ¢ > 0 zalezna tylko od statych z
definicji lokalnego odtwarzania wielomiandw, taka ze

|f(X) - Sf,x(X)| S Ch;g}zl Iflcv‘yn 0~1(Q*) (3.27)

dla kazdego zbioru X o gestoSci hx g < hg. Seminorma po prawej stronie powyzszej
nierdwnosci jest okreslona

|flem+1ry = _max [[Df|| Loo (2)

|a|l=m+1

gdzie operator D jest zdefiniowany w paragrafie 3.3.3.

Na poczatku zadajmy sobie pytanie, jakie warunki musza spelniaé¢ zbiory X i €2, aby
mozliwe byto lokalne odtwarzanie wielomian6éw stopnia nie wiekszego niz m.

Warunkiem jaki musi spelniac¢ zbiér X jest unisolwentnos$é¢ wzgledem przestrzeni
T (R?). Natomiast dziedzina 2 musi spelnia¢ warunek stozka wewnetrznego.
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Definicja 11.

Mowimy, ze zbior Q C RY spetnia warunek stozka, jesli istnieje kqt 6 € (0,7/2) i
promien v > 0, taki, ze dla kazdego x € Q) istnieje wektor jednostkowy £(x) taki, Ze
stozek

C(x,£(x),0,r) == {x+ny:y €R%|lylla=1,y"&(x) > cosf,n € [0,r]} (3.28)

zawiera sie w €.

Twierdzenie 9. (patrz [43])

Zatozimy, ze Q C RY jest zwarty i spetnia warunek stozka wewnetrznego z promieniem
r > 01 kgtem 6 € (0,7/2). Niech m € N bedzie ustalone. Zatézmy, ze h > 0 i zbidry
X spetnia

1.
7 sin 6
h < , 3.3
~ 4(1 + sin O)m? (8.30)

2. dla kazdej kuli B(x,h) C ) istnieje punkt x; € X N B(x, h),
to dla kazdego x € Q) istniejq liczby rzeczywiste uj(x) takie, Ze

N

p(x) =D u;(x)p(x;) (3.31)
j=1
dla kazdego p € mm(RY). Ponadto

N
> lu() <2 (3.32)

Dowdd tego twierdzenia wykorzystujacy pojecie zbioru normujacego oraz twierdze-
nie Hanha-Banacha o ograniczonosci normy operatora liniowego podal Jetter et al
w pracy [19]. Twierdzenie to okresla stale w definicji lokalnego odtwarzania wielo-
miandéw

16(1 + sin 0)%m?
L = 2, G =
! . 3sin? 6
1

he = 52 (3.33)

Zaleznos¢ wielkosci h i hy od stopnia wymaganego odtwarzania wielomianow jest
pokazana na rysunku 3.11.
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-05

v |C;Q(h)
-1F x— log(hy)

log( h), log( h,)

Rysunek 3.11: Zalezno$¢ wskaznika h w (3.30) oraz ho w (3.33) od wymaganego
stopnia odtwarzanych wielomianéw w kuli jednostkowe;j.

3.6.3 Funkcjonal potegowy

Dowody wszystkich ograniczen bledéw interpolacji i aproksymacji, ktére wykorzy-
stuja funkcjonal potegowy wychodza od ogolnej postaci bledu interpolacji

f = sx.¢l < Pox(®)|fllne@e),
gdzie Ppx jest funkcjonalem potegowym, ktory zdefiniujemy w tym paragrafie.
Funkcjonal potegowy jest Scisle zwiazany z reprezentacja Lagrange’a funkcji inter-
polujacej dane ze zbioru Z. Zacznijmy wiec od twierdzenia o istnieniu reprezentacji
Lagrange’a

Twierdzenie 10. (patrz [30])

Zaloimy, ze @ jest warunkowo dodatnio okreslona wzgledem przestrzeni 7, (RY) na
zbiorze Q C R?. Zatoimy ze X = {x1,...,xXn} jest m,(R?)-unisolwentny. Wowczas
istniejq funkcje ui € Vx takie, Ze ui(xy) = djx, gdzie

Vi = B+ { D08, ,): 3 gplay) = 0.p € mn(®Y).

J=1

Ponadto istniejqg funkcje vi, 1 < j < @ takie, zZe wektory utle) =
[ui(x),...,un(x)]T € RN iv*(z) = [1(x),...,00(x)]T € R? tworzq rozwigzanie
uktadu A4 P x) R(x)
u*(x X

( PT g ) < v*(x) ) N ( S(x) ) (3.34)
gdzie

A = [®(x;,x;)] € RNV,

P = [pi(x))] € RV,

R(x) = [®(x,%1),...,8(x,xn))]" € RY,

~— ~—

= [p1(x),...,pex))]" € R¥.
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Na podstawie powyzszego twierdzenia funkcje interpolujaca mozemy zapisa¢ w
postaci

N
spx = D F0x)u5(%). (3:35)

Definicja 12.

Zatoimy, e Q C RY jest zbiorem otwartym natomiast ® € C?*(Q x Q) jest
warunkowo dodatnio okreslong funkcjq jadrowq na zbiorze Q wzgledem 7, (R?). Jesli
X = {x1,....,xn} C Q jest mn(R?)-unisolwentny, wowczas dla kazdego x € Q
funkcjonat potegowy jest zdefiniowany jako

[Ppx(x)]? := ®(x,x) — 2 Zuj(x)@(x, X;) + Z u; (x)u;(x)P(x;, X;)

1,7=1

Jesli zdefiniujemy dla x € () forme kwadratowa

Ou) := d(x,x) — 2Zujq)(x, x;) + Z u;u; D(x4, X;)

i,j=1
to
N
[Pox(x)]* = Q(u*(x)) = |G(-,x) = > _u;G(,x;) : (3.36)
7=l Ne ()
gdzie G(-,x) jest Scisle dodatnio okres$lona funkcja zdefiniowana nastepujaco

Q
G(-,x) 1= ®B(-x) — > _ p(¥)®(-, X).
k=1

Wyrazenie (3.36) jest wiec norma funkcjonalu wartosciowania bledu interpolacji
(3.3) w punkcie x € {2 w przestrzeni natywnej generowanej przez bazowa funkcje
radialng ®.

3.6.4 Funkcja Lebesgue’a

Gdy mamy reprezentacje Lagrange’a (3.35) lub odtwarzanie wielomian6w zgodnie z
twierdzeniem 9, to funkcja Lebesgue’a zdefiniowana jest jako

N

> lus(x)]- (3.37)

J=1

Funkcja ta jest istotna w analizie bledu interpolacji i aproksymacji funkcjami
radialnymi poniewaz za jej pomoca ogranicza sie funkcjonat potegowy. W wypadku
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interpolacji funkcjami Gaussa Schaback [34] oraz Larsson et al. [20] niezaleznie
dowodza, ze gdy szerokos$¢ funkeji Gaussa zdaza do nieskoriczonosci to funkcja
Lebesgue’a (3.37) zdaza do wielomianu.

W twierdzeniu 9 o odtwarzaniu wielomianéw z przestrzeni m,,(R?), mamy ze
funkcja Lebesgue jest ograniczona

Z lu; (x)] < Cy =2, (3.38)

przy czym stata C zalezy od gestosci zbioru X tzn. od hy. Natomiast hy zalezy od
m tak jak o(1/m?). Do dowodu tych zaleznosci (patrz [19], [43]) jak i jednorodnego
ograniczenia przez stata 2, uzywa si¢ nieréwnosci Markowa o wielomianach i ich
pochodnych, ktéra zachodzi dla dowolnego wielomianu p € 7, (R%)

') < m2|lpllorry, te€[-1,1]. (3.39)

7 dowodu wiemy, jak dobrze zbiér X musi wypelnia¢ dziedzine €2, aby zachowane
bylo jednorodne ograniczenie C = 2.

Jesli chcemy, aby hg zalezalo od m tak jak o(1/m) to niestety musimy poswieci¢
jednorodne ograniczenia funkcji Lebesgue’a stala 2. Méwi o tym nastepujacy lemat
i twierdzenie.

Lemat 6. (spektralna wersja nieréwnosci Markowa — patrz [43])

Niech v1 = 2 oraz vq = 2d(1 + v4-1) dla d = 2,3,.... Niech m i q bedg liczbami
naturalnymi takimi, ze ¢ > ~v¢(m + 1). Niech Q bedzie szescianem w RY. Niech
dziedzina Q bedzie podzielona na g réwnych szescianow roztqcznych. Jesli X C
jest zbiorem N > q% punktow takich, ze kazdy szeScian zawiera przynajmniej jeden
z nich to dla kazdego p € 7, (RY) mamy

1Pl L) < P4 |p] |1 (x)-

O odtwarzaniu wielomian6w moWi nastepujace twierdzenie:

Twierdzenie 11. (patrz [43])

Niech Q = W (X, R) bedzie szescianem w RY. Istniejq state co, co > 0 zalezqce tylko
od Q) takie, ze dla kazdego m € N i kazdego X = {x3,...,xn} C Q 2z hxa < ¢o/m
mozemy znaleZé funkcje uj : Q — R spetniajgce

1. Z;.V:l uj(x)p(x;) = p(x) dla kazdego x € Q i p € m,(RY),
A E;VZI |u;(x)] < 2D dlg kazdego x € €,
3. u;(x) = 0 jesli ||x — xj]|2 > camhx q,

gdzie stata g jest zdefiniowana jak w poprzednim lemacie.
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7 dowodu tego twierdzenia mamy

2R 2R Co (3.40)

et =
07 3¢ 3va(m + 1) m

Jak widac¢ z punktu 3. powyzszego twierdzenia przeskalowaniu ulega rowniez no$nik
funkcji u; w poréwnaniu z funkcjami u; z twierdzenia 9. Jak wida¢ z tego twierdzenia
ograniczenie to jest bardzo ,grube’ tzn. e2*a(m+1) jest wyrazeniem bardzo szybko
rosngcym w zaleznosci od m i od d.

Ograniczenia powyzsze pokazuja jakiego rzedu wielko$ciami sg funkcje Lebe-
sgue’a. Dalej zobaczymy, ze znajomos¢ wartodci tej funkcji w punkcie x wystarcza
do oszacowania btedu interpolacji bez koniecznosci zalozeni o gestosci danych w
otoczeniu punktu x.

3.6.5 Ograniczenia bledu z zalozeniem o gestosci zbioru
danych

W grupie tej wyr6znimy dwa typy ograniczen:
1. wykorzystujace funkcjonal potegowy,

2. ograniczenia bledu w przestrzeniach Sobolewa.

Ograniczenia bledu wykorzystujace funkcjonal potegowy

Ograniczenia bledu interpolacji i aproksymacji za pomoca radialnych funkcji
bazowych wykorzystujace funkcjonal potegowy wychodza od nastepujacego ogolne-
go twierdzenia.

Twierdzenie 12. (patrz [43])

Zatdzmy, ze Q C R? jest zbiorem otwartym natomiast ® € C?*(Q x Q) jest
warunkowo dodatnio okreslong funkcjq jedrowq na zbiorze Q wzgledem przestrzeni
Tm(RY). Zbior X = {x1,...,xn5} C Q jest mp(R?)-unisolwentny. Niech f € Ng(f)
a jej interpolant oznaczmy przez sgx. Wowczas dla kazdego x € Q) blgd interpolacji
funkcji f moze byé ograniczony przez

|f(x) = spx(x)] < Pox(X)]f|ne)- (3.41)

W niniejszym paragrafie przytaczamy za [43| twierdzenie i pewne lematy dowodu
najlepszego znanego, tzn. o najmniejszych znanych stalych, ograniczenia bledu
interpolacji funkcjami Gaussa.
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Twierdzenie 13. (patrz [43])
Funkcje kardynalne u} obliczone dla x € Q) z uktadu (3.34) spetniajq

Pox(x) = Q(u"(x)) < Q(u) (3.42)
dla kazdego v € RY, gdzie mamy odtwarzanie wielomiandw stopnia m, zgodnie z
definicjg 10, tzn.

N
Z u;p(z;) = p(z) dla kazdego p € ,,(RY). (3.43)

i=1

Majac lokalne odtwarzanie wielomianéw stopnia [ > m ograniczenie funkcjonaltu
potegowego wyznacza sie zauwazajac, ze dla dowolnego wielomianu p € m;(R?)

N N N

p(0) — 2 Z ui(z)p(x — x;) Z Z xX)ug(X)p(X; — X)

0~ 2 )+ 3 a5l — ¥

= p(0) — 2p(0) + p(0) = 0.

Korzystajac z wlasnosci zerowania sie funkeji kardynalnych z definicji 10 tatwo
pokazaé (patrz [42]), ze

Pix < F(u(x)) < (1+ C1)*||® = pllios(B0.2020x.0))- (3.44)

Dalej dla funkcji radialnej ® = ¢(|| - ||2) uzyjemy faktu, ze kazdy wielomian

p € m(R) mozna zastapi¢ wielomianem p(|| - ||2) € mox(R?), uzyskujac ograniczenie
Pix(x) < max [(vVt)—p(t)]

0<t<4C?h?

J(?Sh h = ]lxﬂ S }L0(2k)
Dla zbioru 2 bedacego kula o promieniu R twierdzenie o odtwarzanie wielomia-
now redukuje sie do

Lemat 7. (patrz [43])
Zatozmy, ze Q) = B(xo, R) jest kulg o promieniu R > 0. Niech |l € N Dla ustalonego

C takiego, ze

V3
Wowczas istnieje lokalne odtwarzanie wielomiandw stopnia | ze statymi hy =
R/C,Cy = 2,0y = 2C zgodnie z definicjg 10.

Ograniczenie bledu opisuje ponizsze twierdzenie z wielkoSciami ¢ i co takimi, ze
ho = co/1?, Cy = col? nastepujace twierdzenie



68 ROZDZIAL 3. PRZYBLIZANIE FUNKCJI CIAGLYCH

Twierdzenie 14. (patrz [43])

Zatozmy, zZe na zbiorze 2 mamy lokalne odtwarzanie wielomianow stopnia | dla

kazdego | € N ze statymi hy = co /1%, Cy niezaleznego od I, Cy = cyl?®. Niech ®(r) =
e~ 2 o > 0. Okreslmy ¢ := min{co, (320ec2)~2/3). Jesli X = {x,...,xn} C Q

spe{ma hx.a < min{l,é/4} to funkcjonat potegowy moze byé ograniczony przez

(1+Cy)?
Vor

P }2(,0()() < 7

dla kazdego x € Q. Tak wiec dla f € N3(Q) blad interpolacji moze byé ograniczony
wyrazeniem

1 I Cl

|f(x) = sgx(x)] < W

11l

Ograniczenia btedu dla funkcji z przestrzeni Sobolewa

Inne podejscie do konstrukeji ograniczenia btedu interpolacji lub aproksymacji za
pomoca bazowych funkcji radialnych mozna zastosowa¢ dla funkcji z przestrzeni
natywnej Ns(£2) pokrywajacej sie z przestrzenia Sobolewa (patrz [24]). Twierdzenie
o ograniczeniu bledu interpolacji funkcji z przestrzeni W3 (Q) cytujemy za [43]

Twierdzenie 15. (patrz [43])

Zatoimy, ze Q C RY jest ograniczony, i ma brzeg spetniajocy warunek Lipschitza, i
spetnia warunek stozka wewnetrznego z promieniem v i kgtem 6. Niech X C Q bedzie
zbiorem dyskretnym centrow a syx bedzie interpolantem. Zatozmy, ze ® jest funkcjg
jadrowq przestrzeni Sobolewa, tzn. spetnia (3.15) z 7 = k + s gdzie k jest dodatnia
liczbg naturalng a 0 < s < 1. Jesli m € Ny spetnia k > m + d/2, to bled pomiedzy
f e Wi (Q) a interpolantem sgx moze byé ograniczony

T— d(1/2—1
If = spxlwp < Chig™ 2705 | fllws o)
dla dostatecznie gestego zbioru X.

W dowodzie tego twierdzenia nie wykorzystuje sie funkcjonalu potegowego.
Korzysta sie natomiast z

1. postaci normy, ktéra zawiera operatory rézniczkowania D* k < ||,

2. twierdzenia o odtwarzaniu pochodnych wielomianéw, tzn. z uog6lnienia twier-
dzenia o odtwarzaniu wielomian6w

3. dla funkcji

u(x) = f(x) — spx(x) (3.45)
z aproksymacji usrednionym wielomianem Taylora
Q=Y 5 [ Du-y)lody (346
|a1<k B(0,0)

gdzie ¢, € C3°(R?) ma nosnik B(0, p) i w sensie catkowym przybliza jedynke.



3.6. OGRANICZENIA BLEDU PRZYBLIZENIA 69

Korzystajac z powyzszych wlasnosci dowodzi sie ze, dla u € W;*S(Q), ktora
znika na punktach ze zbioru X dla k > d/p — m, zachodzi kluczowe ograniczenie

’UIW';"(Q) < chkts=lal-d(1/p-1/9)+ IUIW;H(Q), (3.47)

gdzie h jest miarg gestosci siatki (3.25). Dow6d polega na podzieleniu dziedziny €2 na
zbiory gwiezdzisto-ksztaltne D o srednicy O(hx q). Na kazdym obszarze D korzysta
sie z aproksymacji usrednionym wielomianem Taylora.

Definicja 13.

Zbior D nazywamy gwieZdzisto-ksztattnym wzgledem kuli B(x.,p) = {x € R? :
l|x — x.|| < p} jesli dla kazdego x € D domknieta otoczka wypukta {x} U B jest
zawarta w D. Jesli D jest ograniczone to jego parametr kawatkowatosci v. (ang.
chunkiness parameter) jest zdefiniowany jako stosunek Srednicy dp to promienia
Pmax Najwiekszej kuli wzgledem, ktorej zbior D jest qwiezdzisto-ksztattny.

Zbior gwiezdzisto-ksztaltny spetnia warunek stozka o czym moéwi lemat.

Lemat 8. (patrz [43])

Jesli D jest ograniczony i jest qwieZdzisto-ksztattny wzgledem kuli B(x., p) i zawarty
w kuli B(x., R) to speinia warunek stozka wewnetrznego z promieniem p i kqtem
¥ = 2arcsin[p/(2R)].

Obszarami gwiezdzisto-ksztaltnymi pokrywamy dziedzine (2. Na kazdym takim
obszarze aproksymujemy funkcje w za pomoca wielomianu (3.46). Dowodzi sie
ograniczenia btedu takiej aproksymacji na kazdym obszarze D.

Lemat 9. (patrz [43])
Niech0<s<1limeN. Niechl<p<oocik>m+d/plubp=1ik>m+d.
Dia w € WFt5(D) mamy

l|lu — Qrrul|lwmpy < C(1+ ,.\/c)d(l%—l/P)d]IC:—s—-m-d/PlulWI’fH(,D)’

ze statq C > 0 zalezng tylko od k. d i p.

W dalszej czesci dowodu korzysta sie z faktu, ze funkcje u znikaja na zbiorze X.
Korzysta sie przy tym, z wlasnosci odtwarzania pochodnych wielomianu (uogélnienie
twierdzenia 9). Mamy wiec nastepujace lematy

Lemat 10. (patrz [43])

Niech k bedzie statq dodatnig, 1 < p < 00,0 < s < 1,1 < g < oo, @ ntech m € Ny,
spetniajg 1 < p<ooik>m+d/plubp=11ik>m+d. Niech rowniez X C D
bedzie zbiorem dyskretnym spetniajgcym warunek 1. 1 2. odtwarzania wielomianow z
twierdzenia 9 z h > 0. Jesli u € W)+*(D) spetnia ulx = 0, to

k+s—m+d(1/q—1/p)
[ulwmp) < Cdp, |ul i ts(py-

Przy czym stata C zalezy tylko od k,d,p,m i kata ¥ z warunku stoza dla D.
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Przejscie do jednorodnego ograniczenia na catej dziedzinie ) wymaga okreslenia
parametroéw pokrycia zbioru ) obszarami D.

Lemat 11. (patrz [43])
Wprowadimy wielkosci

¥ := 2arcsin (—EI}-H———>,

4(1 4+ sin6)
sin 6 sin v
5 ) = :
Q. 9) 8k2(1 + sin6)(1 + sinv)’
R = Q(k6),
sin ¢
p =

2(1+sin@)
Ponadto zdefiniugmy zbiory
T,:= {t € (2p/VA)Z¢ : B(t,p) C Q} ,

oraz

D,={xeQ:co{x} UB(t,p)) e QN B(t,R)}, dlateT,

gdzie co(A) jest otoczkq wypukta zbioru A.
Zatozmy, ze h = hx o spetnia h < Q(k,0)r. Nastepujgce stwierdzenia sq¢ prawdziwe

1. kazdy zbior Dy jest qwiezdzisto-ksztaltny wzgledem kuli B(t,p) € Dy € QN
Bit, R,

2. kazdy zbior Dy spetnia warunek stozka z kgtem v} z promieniem p,

3. Q=Uyer, De i dp, < 2R = 21/Q(k,0),

By

. ZteTp XDy S ]\/117

&

. ITpI < ]sz_d:

gdzie xp oznacza funkcje charakterystycznag zbioru B a state My, My zalezq tylko od
k.0 id.

Korzystajac z tej geometrycznej konstrukeji pokrycia zbiory Q dla X C ) z
gestoscig siatki h speliajaca h < Q(k,0)r otrzymujemy w wyniku ograniczenie
(3.47) na calym zbiorze €.

Korzystajac z (3.47) dla h < Q(k,0)r i p = ¢ = 2 otrzymujemy wynik z
twierdzenia 15.
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Ograniczenia bledu dla zagadnienia aproksymacji

Analogiczny mechanizm dowodzenia jak dla interpolacji mozna zastosowaé¢ do
wyznaczenia ograniczenia bledu zregularyzowanej aproksymacji Sredniokwadrato-
wej, tzn. rozwigzania zagadnienia (3.5)'z o € W i X takiego, ze | f(x;)—syx(x;)] < €
dla 1 < j < N. Wowczas mamy ograniczenie

1S = srxllei < Ch;(_,g/p|f|w’;(m + 2e.

Wrynika to z twierdzenia analogicznie dowodzonego co twierdzenie 15.

Twierdzenie 16. (patrz [41])

Zatozimy, ze ) jest ograniczony i spelnia warunek stozka. Niech k bedzie stalq
dodatnig, 0 < s < 1,1 < p <o0,1 < q < o0 iniechm € Ny spetnia k > m+d/p dla
p>11lub dlap=1k>m+d. Ponadto, niech X C Q bedzie zbiorem dyskretnym z
gestosciq siatki h spetniajgeq h < Q(k,0)r. Jesli u € Wi+*(Q) spetnia |u|x < € to
mamy ograniczenie

[ulwpey = C (R+-m= 401+ o B [ulX o) (3.48)

gdzie (z); = x jesli x > 0 lub 0 w przeciwnym wypadku. Stata C zalezy tylko od
k,d,p,q,m 6.

Rozwazajac wiec zagadnienie (3.5) mozemy sformutowaé nastepujace twierdzenie

Twierdzenie 17. (patrz [41])

Zatozmy, ze H C C(Q) jest unormowang przestrzenig liniowq funkcji ciggtych.
Zatozmy ponadto, ze L : H — G jest przeksztatceniem liniowym w przestrzen
unormowanqg G. Niech X = {x1,...,xx} € Q i {v1,...,yn} € R definiujg
funkcjonaty

N
Eis) = Z[yj —s(x;)%, . J(s):=||Ls||3, s€H.
j=1

Zatozmy, ze sy € H jest rozwigzaniem zagadnienia

min E(s) + AJ(s)

SEH

dla ustalonego \ > 0. Zatdzmy ponadto, Ze istnieje funkcja so € H z E(so) = 0 1
J(s0) < J(f). Przy powyzszych zatoZeniach prawdziwe sq ograniczenia

J(f)
M(f), 1<j<N.

=
V

=
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3.6.6 Ograniczenie bledu bez zalozenia o gestosci zbioru
danych

Ograniczenia btedu oparte na ogolnej postaci (3.41) bez zalozen o gestosci zbioru
danych rozwazane sa w [12]|. Opieraja sie one na pojeciu funkcji wzrostu wielomia-
néw zdefiniowanej '

Definicja 14.
Dia zbioru X = {x;}¥, C Q i Y C X definiujemy funkcje wzrostu dla przestrzeni
wielomiandw 7, (R?) na zbiorze Y w punkcie x jako

pa(x,Y) = max{|p(x)| : p € mo(R?), ||plyloc < 1}. (3.49)

Funkcja wzrostu p,(x,Y) ma skoniczong warto$é dla kazdego x, jesli Y jest
7,(R%)-unisolwentny. W przeciwnym wypadku p,(x,Y) = oo.

Twierdzenie 18.

Zatozmy, ze dany mamy zbior X = {x;}Y |, taki, ze X C Q oraz y; = f(x;), i =
1,...,N dla funkcji f € Ng(). Dla rozwigzania zadania interpolacyjnego (3.3) i
dowolnego niepustego podzbioru Y C X oraz dowolnego ¢ > max{m, 0} mamy

|f(z) = spx| < (1+pq(x, Y))\/E(q) Td)oB(o,diam(Yux) || flINe(), X € R? (3.50)
gdzie

1. py(x,Y) jest funkcig wzrostu wielomiandw dla przestrzeni m,(co(Y)), gdzie
co(A) oznacza otoczke wypuktq zbioru A,

2. B(0,7) oznacza kule w R? o $rodku w punkcie O i promieniu r,
3. E(@,W?)C(Bxy) zdefiniowane jest jako
E(F,S)c(e) = infges||[F' = gllo),
it oznacza btgd aproksymacji jednostajnej funkcji F' za pomocq funkcji z S

okreslonej na G C RY. W ograniczeniu (8.50) mamy G = B(0,co(Y U {x})),
S =73(G) oraz F = ®.

Zauwazmy, ze funkcja pg(x,Y) jest rowna funkcji Lebesgue’a (3.37), gdy |Y| =
dim(7,(R?)). Oszacowanie wartosci p,(x,X) dla dowolnego x € €2, gdy X znalez¢
mozna w [13].
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3.6.7 Ograniczenie bledu dla metody wariancji wazonej

W niniejszym paragrafie pokazujemy na przykladzie trzech probleméw
optymalizacyjnych omawianych w [1| oraz w nastepnym rozdziale numeryczny
argument na istnienie zwiazku pomiedzy wartoscia wskaznika vx(x) a bledem
aproksymacji konstruowanej za pomoca metody GCV [40] oraz metody WGV Dla
kazdej z trzech funkcji prezentujemy dwa rysunki. W obydwu z nich prezentujemy
wykresy btedu aproksymacji dla tysigca poczatkowych krokow algorytmu EXTREM
w obszarach okreslanych przez wartos¢ wskaznika yx zdefiniowanego w paragrafie
3.6.1. Blad aproksymacji w obszarze, dla ktorego wartos¢ wskaznika ~x jest
wieksza od wartosci progowych vx(x) > Y = 0.6, 7x(X) > % = 0.65 oraz
vx(x) > Y = 0.7, obliczony zostal w 25 losowo wybranych punktach z otoczki
wypuklej zbioru X z obszaru okreslonego przez warto$¢ parametru ythr. Losowanie
odbywalo sie z rozkladu normalnego wzgledem sktadowych gtéwnych zbioru danych
X.

Na rysunkach 3.12, 3.14 oraz 3.16 pokazana zostala zalezno$¢ btedu aproksymacji
od warto$ci progu . Jak wida¢ z wykreséw na tych rysunkach btad sie zmniejsza
zarowno dla metody GCV jak i dla metody WGV, gdy rosnie warto$¢ progu “in,-
Przy duzej warto$ci progu, takiej jak np. 0.7, punktéw w ktérych mozna uzyé
aproksymacji jest mato. Z do$wiadczenia wynika, i w miare uniwersalng wartoscia
parametru v, jest 0.65. Dla takiej wartosci wykonano obliczenia wiekszosci testow,
ktorych wyniki prezentujemy w nastepnym rozdziale. Na rysunkach 3.13, 3.15 oraz
3.17 zaprezentowane jest bezposrednie poréwnanie jakosci aproksymacji dla metod
GCV oraz WGV dla ustalonych wartosci progu vip,. Jak wida¢ blad w niektérych
punktach jest mniejszy dla metody WGV, Generalnie obydwie metody w dla tych
funkcji daty podobny btad aproksymacji na punktow ze Sciezki algorytmu EXTREM.
Niemniej jednak dla Algorytmu 1 lepsza zbiezno$¢ uzykiwalismy metoda WGV, co
prezentujemy w nastepnym rozdziale.

Okreslenie analitycznego zwiazku pomiedzy wskaznikiem ~x(x) a bledem
aproksymacji jedng z dwéch wymienionych metod wymaga jeszcze dalszej pracy
badawczej. Rysunki 3.12, 3.14 oraz 3.16 sugeruja, ze zwiazek taki istnieje. Zwigzek
taki jest innym zwiazkiem niz zaleznosci wymagajace duzej gestosci danych. Istnienie
takich zbiorow X oraz punkéw w ich otoczce wypuktlej, dla ktorych mimo duzej
wartosci wskaznika v blad wzgledny aproksymacji jest duzy (rzedu 10~1) sugeruje,
ze zwigzek taki zawiera¢ powinien sktadows, ktéra mierzy stopien unisolwentnosci
zbioru X. Funkcja wzrostu wielomianow (3.49) moze by¢ takim miernikiem.
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a) b)
Approximation using GCV Approximation using WGV
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Rysunek 3.12: Blad aproksymacji w poczatkowych tysiacu punktach $ciezki
optymalizacyjnej funkcji Rosenbrocka o$miu zmiennych za pomoca sieci sktadajacej
sie z 30 neuronéw z radialnymi funkcjami aktywacji trenowanymi metoda

regularyzacji z wyborem parametru A za pomoca a) metody uogélnionwej walidacji
krzyzowej (GCV), b) Weighted Gradient Variance z NLM S Eqp,, = 107°.
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Rysunek 3.13: Blad aproksymacji w poczatkowych tysigcu punktach $ciezki
optymalizacyjnej funkcji Rosenbrocka osmiu zmiennych za pomocy sieci sktadajacej
sie z 30 neuronéw z radialnymi funkcjami aktywacji trenowanymi metoda
regularyzacji z wyborem parametru A za pomoca metody uogodlnionej walidacji
krzyzowe]j oraz Weighted Gradient Variance z NLMSEy,, = 1075 dla a) 74, = 0.6,
b) Ythr = 065’ C) Ythr = 0.7.
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a) b)
Approximation using GCV Approximation using WGV
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Rysunek 3.14: Blad aproksymacji w poczatkowych tysiagcu punktach $Sciezki
optymalizacyjnej funkcji ,,Chebquad” o$miu zmiennych za pomoca sieci sktadajacej
sie z 30 neurondéw z radialnymi funkcjami aktywacji trenowanymi metoda
regularyzacji z wyborem parametru A za pomoca a) metody uogoélnionej walidacji
krzyzowej, b) Weighted Gradient Variance z NLMSFEy,, = 107°.
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Rysunek 3.15: Blad aproksymacji w poczatkowych tysigcu punktach $ciezki
optymalizacyjnej funkcji ,,Chebquad” o$miu zmiennych za pomocy sieci sktadajacej
sie z 30 neuronéw z radialnymi funkcjami aktywacji trenowanymi metoda
regularyzacji z wyborem parametru A za pomoca metody uogélnionej walidacji
krzyzowej oraz Weighted Gradient Variance z NLMSEy,, = 107° dla a) 4, = 0.6,
b) Ytnr = 0.65, ¢) Yeur = 0.7.
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a) b)
Approximation using GCV Approximation using WGV
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Rysunek 3.16: Blad aproksymacji w punktach w poczatkowych tysiacu punktow
Sciezki optymalizacyjnej funkcji Osborne 2 jedenastu zmiennych za pomoca sieci
sktadajacej sie z 30 neuronéw z radialnymi funkcjami aktywacji trenowanymi metoda
regularyzacji z wyborem parametru A za pomoca a) metody uogoélnionej walidacji
krzyzowej, b) Weighted Gradient Variance z NLMSEy,, = 107°.
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Rysunek 3.17: Blad aproksymacji w poczatkowych tysigcu punktach $ciezki
optymalizacyjnej funkcji Osborne 2 jedenastu zmiennych za pomoca sieci sktadajacej
sie z 30 neuronéw z radialnymi funkcjami aktywacji trenowanymi metoda
regularyzacji z wyborem parametru A za pomoca metody uogolnionej walidacji
krzyzowej oraz Weighted Gradient Variance z NLMSEy,, = 1075 dla a) vy, = 0.6,
b) Yenr = 0.65, ¢) Yenr = 0.7.
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Rozdzial 4
Zastosowania metody SPELROA

4.1 Optymalizacja funkcji testowych

Dzialania metody SPELROA prezentujemy na przyktadzie oSmiu funkeji testowych
ze zbioru probleméw uzywanych do testowania algorytméw optymalizacyjnych
zaprezentowanego w pracy [23]. Wszystkie funkcje w [23] sa postaci

gdzie m jest zalezne problemu. RozpatrzyliSmy nastepujace problemy o wzrastajacej
ztozonosci

1. Funkcja czterech zmiennych — funkcja kary II (problem 24 w [23])
Dla tej funkcji mamy m = 2d oraz

fl(X) == T1—02

fz(x) — a1/2 (eo.lmi s 60.1‘.1:1'_1 _ ,yl) ’ LG n,
fi(x) = al/? (eo‘l'“‘”“ -+ 6‘0‘1) , n<i<?2n,
fon(x) = (Z(n — 7+ 1)1?;’) -1,
=1
gdzie a = 107° oraz y; = €% 4 %101 Punktem startowym jest x, =

(0.5,...,0.5) a minumum dla d = 4 wynosi f* = 9.37629...- 10~

2. Funkcja szeSciu i oSmiu zmiennych - rozszerzona funkcja
Rosenbrocka (problem 21 w [23])
Dla tej funkcji m = d i jest ona okre$lona przez

foim1(x) = 10(zg; — 77_,),
f2i(X) =1—1my1,
Standardowym punktem startowym jest xo = (&), gdzie {31 = —1.21&; =1

a minimum wynosi f* = 0 w punkcie (1,...,1).

81
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. Funkcja o$miu zmiennych II - funkcja ,,Chebquad” (problem 35 w [23])

Jako druga funkcje o$miu zmiennych wybraliSmy tzw. funkcje ,,Chebquad”. Dla
m > d zdefiniowana jest ona przez f; okreslone wzorem

filx) = éZTi(iﬁj) —/0 Ti(z)dz,

gdzie T jest i-tym wielomianem Czebyszewa pierwszego rzedu przeskalowanym
do przedziatu [0, 1]. Standardowym punktem startowym jest xq = (§;), gdzie
& =7/(d+1). Minimum dla d = 8 i m = 8 wynosi f* = 3.51687...- 1073.

. Funkcja dziesieciu zmiennych I — pasmowa funkcja Broydena (problem

31 w [23])
Dla tej funkcji m = d oraz

fix) =zi(2+527) +1- > z;(1 +1),

J€J;

gdzie J; = {j : j # i, max(1,i—my) < j < min(d,i+m,)} oraz m; = 5,m, = 1.

Standardowym punktem startowym jest xo = (—1,..., —1). Minimum wynosi
fr=0.
Funkcja dziesieciu zmiennych II — dyskretna funkcja brzegowa

(problem 28 w [23])
Rowniez dla tej funkeji m = d. Funkcje f; dane sa natomiast wzorami

fl(X) = 2.132 — Tj—1 — Tj + }LZ(IEi + ti + 1)3/2, gdzxe
h = 1/(d+ 1), ti = Zh.’l’o = Tp+1 = 0.

Standardowym punktem startowym jest xo = (§;), gdzie & = t;(t; — 1).
Minimum natomiast wynosi f* = 0.

Funkcja dziesieciu zmiennych IIT - funkcja kary I (problem 23 w [23])
Dla tej funkcji mamy m = d + 1 oraz

f,j(X) = (1,1/2(.'1)1' — 1), dla 1 S 7 S d,
- 1
fan(x) = (Zﬁ) B
j=1
gdzie a = 107°. Punktem startowym jest xo = (¢;), gdzie & = j. Minimum
dla d = 10 wynosi f* = 7.08765... - 1075,

Funkcja jedenastu zmiennych — funkcja Osborne’a 2 (problem 19 w
23))

Jako funkcje jedenastu zmiennych wybraliSmy druga funkcje Osborne’a. Dla
tej funkcji mamy m = 65 a funkcje f; dane sy wzorami

e (s —2a )2 (s 2. (11 )2
fz(X) = y— (Iie tLI.;+IQe (ti—z9) %6 4 Tae (t;—z10) g0 (t;—z11) Is)7
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gdzie t; = (i — 1)/10 a y; dla i = 1,...,65 sa stalymi, ktorych wartosci
mozna znalez¢ w [23]. Standardowym punktem startowym jest xq =
[1.3,0.65,0.65,0.7,0.6, 3,5, 7,2,4.5,5.5] a minimum dla d = 10 wynosi f* =
4.01377...- 1072

8. Funkcja pietnastu zmiennych — funkcja dyskretnego réwnania

calkowego (problem 29 w [23])
Dla tej funkcji m = d a funkcje f; sa okreslone wzorem

filx) = I'i+}L[(1_ti)th($j+tj+1)3+

=1

4 2
t; Z (L — 1 ey - £ - 1)3] ,  gdzie
j=it1
h=1/(d+ 1},t = th, T = En41 =0.

Standardowym punktem startowym jest xo = (§;), gdzie & = t;(t; — 1).
Minimum natomiast wynosi f = 0.
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4.1.1 Wyniki numeryczne

Funkcja kary II czterech zmiennych

Tabela 4.1: Optymalizacja funkcji kary II czterech zmiennych za pomoca: a)
algorytmu EXTREM, b) Algorytm 1 bez regularyzacji z i, = 0.65. bez procedury
e-check, c¢) Algorytm 1 bez regularyzacji z yn = 0.65 i z procedura e-check z

e = 0.001.
a)
EXTREM
te % :
51161!’[11) HX —X ||2 f
50 0.0340864 | 0.002038
100 0.000009 | 0.000012
156 0.000000 | 0.000009
b) c)
Alg. 1 bez regularyzacji, Alg. 1 bez regularyzacji,
bez e-check, Y, = 0.65 e-check z € = 1073, v, = 0.65
ste * num. ste * .
nunll). lx—x*|* | f aApprox. num. | Ix=x*I | f agglrrrcl)x.
50 0.0340864 | 0.002038 | — 50 0.034086 | 0.002038 | —
100 0.001679 | 0.000115 | 9 100 0.000029 | 0.000045 | 6
136 0.0020170 | 0.000010 | 13 140 0.0000007 | 0.000010 | 15

Tabela 4.2: Optymalizacja funkcji kary II czterech zmiennych za pomoca Algorytmu
1 bez procedury e-check z regularyzacja z wyborem parametru A za pomoca: a)
metody GCV, b) metody WGV z NLMSEy, = 5-107% W obydwu wypadkach

f)/thl' = 065
a) b)
Alg. 1Tz GCV, Alg. T2z WGV,

bez e-check, Yy = 0.65 . bez e-check, vy = 0.65
e [he—xiP s [ o il [f [
50 0.034086 | 0.002038 | - 50 0.034086 | 0.002038 | —
100 0.006357 | 0.002574 | 9 100 0.002248 | 0.000102 | 7
147 0.007686 | 0.000013 | 17 130 0.001827 | 0.000012 | 11




4.1.

OPTYMALIZACJA FUNKCJI TESTOWYCH

Tabela 4.3: Optymalizacja funkcji kary II czterech zmiennych za pomoca Algorytmu
1 z procedura e-check z £ = 1072 oraz z regularyzacja z wyborem parametru \ za
pomoca: a) metody GCV, b) metody WGV z NLMSEy, = 5-1075. W obydwu

wypadkach i = 0.65.

a) b)
Alg. 1z GCV, Alg. 1z WGV,
e-check z € = 1073, 4, = 0.65 ' e-check z € = 1073, 4y = 0.65
t ; * |2 . * o

numn. | =11 | f agggl)x. num. | [X=x"I* | f a;r)li)l?(l)x.
50 0.034086 | 0.002038 | — 50 0.034086 0.002038 | —
100 0.002158 0.004708 | 5 100 0.002141 0.004675 | 4
140 0.000007 | 0.000010 | 15 140 0.000007 0.000010 | 15

Tabela 4.3a: Przyspieszenie dla funkcji kary II czterech zmiennych uzyskane
Algorytmem 1 mierzone wzgledem a) liczby bezposrednich wartosciowan funkcji
celu w $ciezce optymalizacyjnej Algorytmu 1, b) liczby wartosciowan funkcji celu w
$ciezce optymalizacyjnej algorytmu EXTREM.

a) b)
bez e-check ZZ Fa—:chle(.?g bez e-check sz_:Chlegk;a
bez reg. | 16.17% 15.00% bez reg. | 26.92% 23.71%
GCV 17.68% 14.28% GCV 22.43% 23.07%
WGV | 13.84% 13.57% WGV | 28.20% 22.43%

W przykiadzie tym w tabel 4.2 i 4.3 wida¢, ze zbiezno$¢ Algorytmu 1 do
wlasciwego minimum jest znacznie gorsza dla bez uzycia metody e-check.
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Rozszerzona funkcja Rosenbrocka sze$ciu zmiennych

Tabela 4.4: Optymalizacja rozszerzonej funkcji Rosenbrocka szeSciu zmiennych za
pomocy: a) algorytmu EXTREM, b) Algorytm 1 bez regularyzacji z ypn, = 0.65 i
bez procedury e-check, ¢) Algorytm 1 bez regularyzacji z vy, = 0.65 1 z procedury
e-check z £ = 0.001.

a)
EXTREM
t *

I?uenll) “X o H2 f

1 14.52000 | 72.60000
250 5.143157 | 2.885768
500 0.423567 | 0.109817
750 0.174880 | 0.031570
1000 | 0.060773 | 0.012666
1250 | 0.000899 | 0.001228
1523 | 0.000004 | 0.000001

b) c)
Alg. 1 bez regularyzacji, Alg. T bez regularyzacji,

- bez e-check, Y = 0.65 e-check z € = 1073, vy = 0.65
ste Y num. ste || num.
nunrl). I —x*|]* | f approx. nunl?. Ix —x*|]* | f apggl)x.
1 14.52000 | 72.60000 | — 1 14.52000 | 72.60000 | -

250 6.047256 | 3.711824 | 22 250 6.034894 | 3.698337 | 5

500 1.738173 | 0.559350 | 45 500 1.733664 | 0.558246 | 15
750 0.455954 | 0.089372 | 35 750 0.433131 | 0.091551 | 40
933 0.017111 | 0.005606 | 10 1034 | 0.011905 | 0.002555 | 44
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Tabela 4.5: Optymalizacja rozszerzonej funkcji Rosenbrocka sze$ciu zmiennych za
pomocyg Algorytmu 1 z regularyzacja z wyborem parametru A za pomocg GCV: a)
bez procedury e-check, b) z procedury e-check z ¢ = 1073, W obydwu wypadkach
“Ythr = 0.65.

a) b)
i Alg Tz CCV,
Alg. 17 GC\/’ . e-check z € = 1073, yy = 0.65
bez e-check, i = 0.65 step 1 T
step | x — x*|2 | f num. || pum. | X=X | f ApProx.
S SPROR [T [14.52000 | 72.60000 | —
1 14.52000 | 72.60000 | — . - .
. " - 251 0.636797 | 3.738582 | 16
250 5.328796 | 4.275823 | 9 ;
"’ 500 1.198926 | 0.334819 | 28
200 1.242564 | 0.340772 | 24 -
- o1 750 0.606274 | 0.162569 | 48
750 0.332196 | 0.077669 | 48 ~ -
908 0038978 | 0.009351 | 30 1000 | 0.047958 | 0.009666 | 47
: ' 1288 | 0.000652 | 0.000131 | 54

Tabela 4.6: Optymalizacja rozszerzonej funkcji Rosenbrocka sze$ciu zmiennych za
pomoca Algorytmu 1 z regularyzacja z wyborem parametru A za pomoca WGV z
NLMSE = 5-107%: a) bez procedury e-check, b) z procedura e-check z £ = 1073,
W obydwu wypadkach 7, = 0.65.

a) b)
Alg. 1z WGV,
Alg. TWGYV, - e-check z € = 1073, 3, = 0.65
WA 2 e ep T num.
step IIx _biz* ﬁzChG}Ck, . Oggm num. | [IX — X7l f approx.
num. approx. || 1 14.52000 72.60000 | —
1 14.52000 72.60000 | — 250 4.507976 2.973086 | 7
250 5.148554 2.890378 | 9 500 1.501108 0.556824 | 22
500 0.576409 | 0.145387 | 14 750 0.297285 | 0.448120 | 31
750 0.092298 | 0.017537 | 23 1000 | 0.047480 | 0.010023 | 19
1000 | 0.004710 | 0.001764 | 21 1250 | 0.005590 | 0.001135 | 22
1298 | 0.000012 | 0.000002 | 26 1500 | 0.000046 | 0.002945 | 26
1712 | 0.000005 | 0.000001 | 12

Tabela 4.6a: Przyspieszenie dla funkcji Rosenbrocka szesciu zmiennych uzyskane
Algorytmem 1 mierzone wzgledem a) liczby bezposrednich wartosciowan funkceji
celu w $ciezce optymalizacyjnej Algorytmu 1, b) liczby wartosciowan funkcji celu w

Sciezce optymalizacyjnej algorytmu EXTREM.

a) b)
bez e-check ZZ Ee:_:hle(?lcg bez e-check Zzge-:chle(gzg
bez reg. | niezbiezny | niezbiezny || bez reg. | niezbiezny | niezbiezny
GCV niezbiezny | 14.98% GCV niezbiezny | 28.10%
WGV 7.16% - WGV 20.87% ==
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Jak widac¢ z tabel 4.4, 4.5, 4.6 nie uzyskano zbieznosci z uzyciem aproksymacji
RBF bez regularyzacji zar6wno bez procedury e-check jak i z tg procedura oraz z
regularyzacja z metoda GCV bez procedury e-check. Dla aproksymacji z metoda
WGV z NLMSE = 5-107° z procedurg e-check z ¢ = 1073 mozemy moéwi¢ tylko o
przyspieszeniu wzgledem $ciezki z algorytmu EXTREM. W tym wypadku algorytm
z aproksymacja potrzebowat wiecej iteracji niz algorytm EXTREM. Mozemy jednak
mowic o przyspieszeniu dla tej samej liczby krokéw. Wyniosto ono 8.33%.

Rozszerzona funkcja Rosenbrocka o§miu zmiennych

Table 4.7: Optymalizacja rozszerzonej funkcji Rosenbrocka o$émiu zmiennych za
pomoca: a) algorytmu EXTREM, b) Algorytm 1 bez regularyzacji i bez procedury
e-check, ¢) Algorytm 1 bez regularyzacji i z procedura e-check z ¢ = 1073, W
obydwu wypadkach i, = 0.65.

a)
EXTREM

't. 4

o | lx—x*I12] £

1 19.36000 96.80000

250 15.39404 | 10.438226
200 7.462217 | 5.606541
750 3.136710 | 1.032648
1000 | 1.009230 | 0.251387
1250 | 1.018545 | 0.050215
1500 | 0.075592 | 0.015386
1750 | 0.068872 | 0.012950
2000 | 0.043427 | 0.007465
3471 | 0.000000 | 0.000000

b) c)
Alg. 1 bez regularyzacji,
Alg. T bez regularyzacii, o e-check de= 1072, ey ;191?5
S e e i1 S IR VA
num. approx. || 1 19.36000 | 96.80000 | —
1 19.36000 | 96.80000 | — 250 9.181984 | 6.376938 | 22
250 11.59690 10.18228 | 13 500 4.639539 1.855113 | 23
500 5.753235 | 3.502973 | 15 750 1.904974 | 0.471618 | 30
750 2.594045 | 0.795321 | 30 1000 | 0.829651 0.215283 | 46
1039 | 0.732554 | 0.189228 | 69 1250 | 0.130581 | 0.028169 | 43
1537 | 0.034711 0.006926 | 62
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Tabela 4.8: Optymalizacja rozszerzonej funkcji Rosenbrocka o$miu zmiennych za
pomoca Algorytmu 1 z regularyzacja z wyborem parametru A za pomoca GCV: a)
bez procedury e-check, b) z procedura e-check z ¢ = 1073, W obydwu wypadkach
Ythr = 0.65.

a) b)
, Alg Tz GCV,
bez ﬁ({%e(llf 7(35‘2 065 e-check z £ = 1073, vy, = 0.65
step e e nuim. 1?{[1(;8 l|x —x*|]? | f e
num. | 1X=X° | f approx. PProxX.
- R 1 19.36000 | 96.80000 |
950 | 10.63705 | 9.590320 | 15 250 | 10.63705 | 9.590320 | 15
500 | 4.326620 | 1.770927 | 22 500 | 4.253577 | 1.718574 | 24
750 | 1.988725 | 0.564489 | 34 750 | 1.587166 | 5.075403 | 44
o |wruzoee | p1edsee s 1000 | 0.573237 | 3.105517 | 56
1225 | 0556057 | 0.121451 | 58

Tabela 4.9: Optymalizacja rozszerzonej funkcji Rosenbrocka o$miu zmiennych za
pomoca Algorytmu 1 z regularyzacja z wyborem parametru A za pomoca WGV z
NLMSE = 5-107%: a) bez procedury e-check, b) z procedura e-check z ¢ = 1072,
W obydwu wypadkach i, = 0.65.

a) b)
Alg Tz WGV,

e-check z € = 1073, vy = 0.65

Alg. T WGV, step |2 num.

bez e-check, v = 0.65 num, | X =" | f approx.
ST ey 19.36000 | 96.80000 | —
: R TS 250 | 10.64878 | 9.379780 | 10
250 || russsea | 10406 |5 500 | 5.235753 | 2.394219 | 16
500 | 7.176414 | 5.804069 | 11 750 | 1.619362 | 0.435302 | 35
~=0 | o=oason | ocredit | os 1000 | 0.589236 | 0.143009 | 78
1097 | 1.128712 | 0.306324 | 67 1250 | 0.255143 | 1.383665 | 42
1500 | 0.021409 | 0.004114 | 51
1861 | 0.000839 | 0.000169 | 48
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Tabela 4.9a: Przyspieszenie dla funkcji Rosenbrocka o$miu zmiennych uzyskane
Algorytmem 1 mierzone wzgledem liczby bezposrednich wartodciowan funkcji celu
w $ciezce optymalizacyjnej Algorytmu 1.

bez e-check 7/ FE':Chle(()%{g

bez reg. | niezbiezny | niezbiezny
GCV niezbiezny | niezbiezny
WGV niezbiezny | 15.04%

Jak wida¢ z tabel 4.7, 4.8, 4.9 zbieznos¢ procesu optymalizacji uzyskano
tylko dla aproksymacji RBF metoda WGV z NLMSE = 5 - 1075,
Poniewaz algorytm EXTREM wymagal znacznie wiecej warto$ciowan
funkcji niz algorytm z aproksymacja funkcji celu, o przypieszeniu jest
sens mowic¢ tylko wzgledem $ciezki z algorytmu z aproksymacja. Uzyskane
przyspieszenie wyniosto 15%.
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Tabela 4.10: Optymalizacja funkcji ,,Chebquad” o$miu zmiennych za pomoca: a)
algorytmu EXTREM, b) Algorytm 1 bez regularyzacji i bez procedury e-check,
¢) Algorytm 1 bez regularyzacji i z procedurg e-check z ¢
wypadkach v, = 0.65.

a)

1073. W obydwu

EXTREM
v, | lx—x|I” | f
1 0.026086 | 0.038617
250 0.009547 | 0.006187
500 0.003495 | 0.004681
750 0.000271 | 0.003698
1000 | 0.000000 | 0.003517
1237 | 0.000000 | 0.003517
b) c)
Alg. 1 bez regularyzacji,
bez e-check, vin = 0.65 Alg. T bez regularyzacji,
r?ltl%) l|x —x*||? | f agggcl)i(. - e-check z € = 1073, yyp, = 0.65
1 [0.026036 |0.038617 | — num. | [x=x"1" | f apDIOX.
250 0.009686 | 0.006216 | 4 1 0.026086 | 0.038617 | —
500 0.003531 | 0.004684 | 18 250 0.007716 | 0.006214 | 19
750 0.000098 | 0.003584 | 10 500 0.000538 | 0.003873 | 42
1000 | 0.000000 | 0.003517 | 48 805 0.000001 | 0.003518 | 80
1197 | 0.000000 | 0.003517 | 97

Tabela 4.11: Optymalizacja funkcji ,,Chebquad” o$miu zmiennych za pomoca
Algorytmu 1 z regularyzacja z wyborem parametru A za pomocg GCV: a) bez

procedury e-check, b) z procedura e-check z

c

1073. W obydwu wypadkach

Ythr = 0.65.
a) b)
> Alg. 1z GCV,
Alg. 1z GOV, " e-check z £ = 1073, v, = 0.65
bez e-check, Y = 0.65 step 1 T
Step I!X _ X*HQ f num. num. HX — X || f approx_
num. : approx. ; =
1 0.026086 | 0.038617 | —
1 0.026086 | 0.038617 | — H
_ ) 250 0.008672 | 0.006552 | 18
250 0.009686 | 0.006216 | 4 C
; 500 0.000459 | 0.003855 | 33
500 0.003537 | 0.004684 | 17 _
750 0.000000 | 0.003517 | 60
750 0.000076 | 0.003584 | 11
1095 | 0.000002 | 0.003518 | 188 1000 | 0.000000 | 0.003517 | 73
: : 1117 | 0.000000 | 0.003517 | 94
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Tabela 4.12: Optymalizacja funkcji ,Chebquad” o$miu zmiennych za pomoca
Algorytmu 1 z regularyzacja z wyborem parametru A za pomocg WGV z
NLMSE = 5-107%: a) bez procedury e-check, b) z procedura e-check z ¢ = 1073,
W obydwu wypadkach g, = 0.65.

a)
Alg. TWGV,

bez e-check, v, = 0.65
ste * num.
nun}:;. lx—x[]* | f approx.
1 0.026086 | 0.038617 | —
250 0.006810 | 0.005913 | 18
500 0.000084 | 0.003599 | 41
772 0.000000 | 0.003517 | 75

b)
Alg. 1z WGV,
e-check z € = 1073, yp = 0.65

an, | Ix—x"I* | f ApURG:
1 0.026086 | 0.038617 | —

250 0.007802 | 0.006399 | 13

500 0.000976 | 0.004250 | 12

750 0.000001 | 0.003517 | 20

808 0.000001 | 0.003517 | 6

Tabela 4.12a: Przyspieszenie dla funkeji ,Chebquad” uzyskane Algorytmem 1
mierzone wzgledem a) liczby bezposrednich wartosciowan funkeji celu w $ciezce
optymalizacyjnej Algorytmu 1, b) liczby wartosciowan funkcji celu w $ciezce
optymalizacyjnej algorytmu EXTREM.

a) b)
bez e-check szs—:c}lleggg bez e-check szi_fhlegg
bez reg. | 14.79% 17.52% bez reg. | 17.34% 47.24%
GCV 20.09% 24.89% GCV 29.26% 32.17%
WGV | 17.36% 6.31% WGV | 48.42% 38.80%
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Pasmowa funkcja Broydena dziesieciu zmiennych
Tabela 4.13: Optymalizacja pasmowej funkcji Broydena dziesieciu zmiennych za

pomoca: a) algorytmu EXTREM, b),c) Algorytm 1 bez regularyzacji bez e-check,
d),e) Algorytm 1 bez regularyzacji z e-check, £ = 1073.

a)
EXTREM
t X
. L lx=x112 | f
1 1.934202 | 360.0000
200 0.713609 | 3.079440
400 0.001211 | 0.060074
600 0.000000 | 0.000000
b) c)
Ablegz ;_glooiﬁe%ug ar;zéx %](1) Alg. 1 bez regularyzacji,
step = = lllEe e bez e-check, vi, = 0.65
num. HX —X H f approx. Step HX o X*HQ f num.
num. approx.
1 1.934202 | 360.0000 | — =
_ 1 1.934202 | 360.0000 | —
200 0.728666 | 3.175358 | 27
_ 200 0.989317 | 3.300021 | 20
400 0.000269 | 0.010127 | 37
400 0.000404 | 0.017227 | 26
600 0.000000 | 0.000002 | 59 563 0.000016 | 0.000867 | 36
880 0.000000 | 0.000001 | 55 - -
d) e)
Alg. T bez regularyzacji, Alg. 1 bez regularyzacji,
e-check z € = 1073, . = 0.60 e-check z € = 1073, 4y = 0.65
ste | num. step * .
num. | X=x"I* | f approx. num. | =% | f ag}:l){%x.
1 1.934202 | 360.0000 | — 1 1.934202 | 360.0000 | —
200 0.899728 | 3.236088 | 36 200 0.989317 | 3.300021 | 20
400 0.003082 | 0.150238 | 38 400 0.000369 | 0.005028 | 25
631 0.000011 | 0.000035 | 61 643 0.000000 | 0.000001 | 54

Tabela 4.14 Optymalizacja funkcji pasmowej Broydena dziesieciu zmiennych za
pomocg Algorytmu 1 bez procedury e-check z regularyzacja z wyborem parametru

A za pomocg: a) metody GCV, b) metody WGV z NLMSEy,, =

wypadkach 7, = 0.60.

1075, W obydwu

a) b)
Alg. 12 GOV Alg. 1z WGV

t *112 . L.t! v x| %
r?u%). lx—x*[]* | f agg{%x. 1?1161‘113. Ix —x*|] | f aggi'l(l)x.
1 1.934202 | 360.0000 | - 1 1.934202 | 360.0000 | -
200 0.819230 | 3.192419 | 30 200 1.026973 | 3.309025 | 21
400 0.000562 0.026622 | 33 400 0.018712 0.028031 | 12
649 0.000002 | 0.000001 | 65 584 0.000000 | 0.000000 | 42
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Tabela 4.15: Optymalizacja funkcji pasmowej Broydena dziesieciu zmiennych za
pomocg Algorytmu 1 z procedura e-check z £ = 1072 z regularyzacja z wyborem
parametru A za pomoca: a) metody GCV, b) metody WGV z NLMSE,, = 1075,

W obydwu wypadkach 7, = 0.60.

a) b)
Alg. 1z GCV -
55 — — Alg. 1z WGV
ma. | IE=x*?] f approx. || ST€D | |2 | num.
1 1.934202 | 360.0000 | — i : DL
‘ . 1 1.934202 | 360.0000 | -
200 | 0.894353 | 3.241784 | 34
A 200 | 1.026973 | 3.309025 | 21
400 | 0.013946 | 0.445524 | 29
- 400 | 0.000871 | 0.038417 | 19
600 | 0.000844 | 0.004472 | 55 603 | 0.000001 | 0.000005 | 30
751 | 0.000003 | 0.000001 | 52 : : 0

W tabelach (4.14) oraz (4.15) przedstawiliémy wyniki dla v, = 0.6 poniewaz

przy Y = 0.65 liczba iteracji aproksymowanych byla mniejsza niz 10% wzgledem
liczby wartos$ciowan funkcji na $ciezce optymalizacyjnej algorytmu EXTREM. Takie
ustawienie dla vy, moze by¢ wywnioskowane z tabel (4.13).

Tabela 4.15a: Przyspieszenie dla pasmowej funkecji Broydena dziesieciu zmiennych
uzyskane Algorytmem 1 mierzone wzgledem a) liczby bezposrednich wartosciowan
funkcji celu w Sciezce optymalizacyjnej Algorytmu 1, b) liczby wartosciowan funkc;ji
celu w $ciezce optymalizacyjnej algorytmu EXTREM.

a) b)
bez e-check ZZ 5-;?h1e(§§3 bez e-check ZZ f-:ChleOCl{
bez reg. | — 17.33% bez reg. | — 17.33%
GCV 13.17% = GCV 13.17% S
WGV 12.83% 12.67% WGV 15.17% 12.67%
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Dyskretna funkcja brzegowa dziesi¢ciu zmiennych

Tabela 4.16: Optymalizacja dyskretnej funkcji brzegowej dziesieciu zmiennych
za pomoca: a) algorytmu EXTREM, b),c) Algorytmu 1 bez regularyzacji bez
procedury e-check, d),e) Algorytm 1 bez regularyzacji z e-check, ¢ = 1073,

a)
EXTREM
. | llx = x*|I” |
1 0.041335 | 0.000789
500 0.013041 | 0.000223
1000 | 0.002631 | 0.000037
1500 | 0.000989 | 0.000012
2000 | 0.000062 | 0.000001
2500 | 0.000000 | 0.000000
2926 | 0.000000 | 0.000000
b) c)
Alg. 1 bez regularyzacji,
%lg. 1 l;lez liegula.ryzg%i(i), Ty bez e;checkz Ythr = O'I?{?m
7 E- e ot .
step ||x_§:*(vlzc (}C i .num._ Lot HX <17/ SPPIOR.
num. approx. || 1 0.041335 0.000789 | —
1 0.041335 | 0.000789 | — 500 0.013145 | 0.000154 | 42
500 0.012429 | 0.000148 | 77 1000 | 0.008812 | 0.000096 | 36
929 0.009100 | 0.000102 | 61 1500 | 0.000367 | 0.000013 | 56
2057 | 0.000000 | 0.000000 | 79
d) e)
Alg. 1 bez regularyzacji,
e-check z £ = 1073, vy = 0.60
Iffﬁg llx —x*||2 | f aBB;Ic])x Alg. T bez regularyzacji,
1 0.041335 [ 0.000789 [ — S 2. e = 1073, vy = 0.65
500 | 0.023221 | 0.000253 | 71 num. | X=x"I* | ADDIOX.
1000 | 0.006286 | 0.000072 | 92 1 0.041335 | 0.000789 | —
1500 | 0.001413 | 0.000018 | 93 500 0.013145 | 0.000154 | 42
2000 | 0.000447 | 0.000007 | 88 1000 | 0.006799 | 0.000081 | 36
2500 | 0.000172 | 0.000002 | 87 1259 | 0.000078 | 0.000003 | 44
3000 | 0.000046 | 0.000001 | 89
3325 | 0.000033 | 0.000000 | 59
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Tabela 4.17: Optymalizacja dyskretnej funkcji brzegowej dziesieciu zmiennych za
pomoca Algorytmu 1 bez procedury e-check z regularyzacja z wyborem wartosci
parametru \ za pomoca: a) metody GCV, b) metody WGV z NLMSEy,, = 107°.
W obydwu wypadkach 7, = 0.60.

a) b)
o Alg. 1z WGV,
7 ) r — Y. : T2 -
I?ltl%) llx —x*||> | f agi)llr"rcl)k num. | [X=%" | f APPIOX.
T Too0iass Toooa— L 0.041335 | 0.000789 | —
00 | 0.014178 | 0.000156 | 66 500 | 0.008977 | 0.000113 | 57
903 | 0.008044 | 0.000099 | 72 1000 | 0.001176 | 0.000021 | 68
: : : 1168 | 0.000628 | 0.000008 | 32

Tabela 4.18: Optymalizacja dyskretnej funkcji brzegowej dziesieciu zmiennych za
pomocg Algorytmu 1 z procedurg e-check z ¢ = 1073 z regularyzacja z wyborem
parametru \ za pomoca: a) metody GCV, b) metody WGV z NLMSEy,, = 107°.
W obydwu wypadkach ~¢p,, = 0.60.

a) b)
Alg. 1z WGV,
e-check z € = 1073, v = 0.60
Alg. 1z GCV, step 112 i num.
e-check z € = 1073, ~vyy = 0.60 || Dum. llx—x*" | f approx.
S 1% |2 [ f num. [ 0.041335 ] 0.000789 | —
: —APPDIOR: | 500 | 0.008452 | 0.000092 | 63
1 0.041335 0.000789 | — e
_ ) 1000 | 0.004937 | 0.000054 | 75
500 0.021260 0.000246 | 68 _
600 0.021060 0.000237 | 33 1500 | 0.000877 | 0.000010 | 69
- - : 2000 | 0.000024 | 0.000000 | 92
2456 | 0.000002 | 0.000000 | 51

Poniewaz algorytm EXTREM wykonuje dla tej funkcji bardzo duzo wartosciowan
funkcji w okolicy minimum natomiast Algorytm 1 potrzebuje tych wartosciowan
znacznie mniej, to w ponizsze] tabeli podajemy przyspieszenie procesu tylko
wzgledem $ciezki Algorytmu 1.

Tabela 4.18a: Przyspieszenie dla pasmowej funkcji brzegowej dziesieciu zmiennych
uzyskane Algorytmem 1 mierzone wzgledem liczby bezposrednich wartosSciowan
funkeji celu w $ciezce optymalizacyjnej Algorytmu 1.

bez e-check 7? fih]eock;s
bez reg. | 14.85% e
GCV niezbiezny | niezbiezny
WGV 13.44% 14.25%
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Tabela 4.19: Optymalizacja funkcji kary I dziesieciu zmiennych za pomoca: a)
algorytmu EXTREM, b),c) Algorytmu 1 bez regularyzacji bez procedury e-check,
d),e) Algorytm 1 bez regularyzacji z e-check, ¢ = 107.

a)
EXTREM
t * :
o, | IIx—x|]* | f
1 369.48325 | 148033.565350
500 0.039733 | 0.000076
1000 | 0.030624 | 0.000074
1500 | 0.022666 | 0.000073
2000 | 0.014931 | 0.000073
2500 | 0.003847 | 0.000073
3135 | 0.000000 | 0.000072
b) ¢)
Alg. 1 bez regularyzacj, Alg. 1 bez regularyzacji,
bez e-check, v = 0.60 bez e-check, Y4, = 0.65
te *| . te *| ] .
num. | [xX=x"I* | f aggll%x. num, | Ix=x*I*| f agg?(l)x.
1 369.4832 | 1.48-10° | - 1 369.4832 | 1.48-10° | -
274 3.786860 | 28.611277 | 40 557 0.223471 | 0.000083 | 47
d) e)
Alg. T bez regularyzacji, Alg. 1 bez regularyzacji,
e-check z € = 1073, v = 0.60 e-check z € = 1073, 4, = 0.65
ste * num. ste * num.
nu£. lIx —x*|* | approx. nung. I —x*|1* | f approx.
1 369.4832 | 1.48-10° | — 0 369.4832 | 1.48-10° | —
337 0.171107 | 0.045111 | 43 429 0.111386 | 0.000346 | 36

Tabela 4.20: Optymalizacja dyskretnej funkcji brzegowej dziesieciu zmiennych za
pomoca Algorytmu 1 bez procedury e-check z regularyzacja z wyborem wartosci
parametru A za pomoca: a) metody GCV, b) metody WGV z NLMSEy, = 107°.

W obydwu wypadkach ¢, = 0.65.

a) b)
Alg. 1z GCV, Alg. 12z WGV,
bez e-check, i, = 0.65 . bez e-check, vy, = 0.65
s t * . j * .
num, | X=x11” | f approx. || num, | IX—xI? | f appIOX.
1 369.4832 | 1.48-10° | - 369.4832 | 1.48-10° | —
587 0.230362 | 0.000083 | 60 454 0.052095 | 0.000077 | 27
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Tabela 4.21: Optymalizacja dyskretnej funkcji brzegowej dziesieciu zmiennych za
pomoca Algorytmu 1 z procedura e-check z ¢ = 107 z regularyzacja z wyborem
parametru A za pomoca: a) metody GCV, b) metody WGV z NLMSE, = 1076,
W obydwu wypadkach v, = 0.65.

a) b)
7 = @AV
e Alg Tz WGV,
) -3 . e-check z € = 107°, v = 0.65
g-check z € = 1072, % = 0.65 step 1 ST,
step IIx —x*||2 | f num. num. | IX=x"P ] f approx.
num. approx. =
= 1 369.4832 1.48-10° | -
1 369.4832 1.48 - 10° | - .
165 0.136225 | 0.000084 | 55 200 0.044475 | 0.000076 | 19
' : 641 0.039146 | 0.000075 | 23

Tabela 4.21a: Przyspieszenie dla pasmowej funkcji Broydena dziesieciu zmiennych
uzyskane Algorytmem 1 mierzone wzgledem liczby bezposrednich wartosciowan
funkcji celu w $ciezce optymalizacyjnej Algorytmu 1.

bez e-check 7Z Fa—:shle(?l%

bez reg. | niezbiezny | niezbiezny
GCV niezbiezny | niezbiezny
WGV 5.95% 6.55%

Dla tego przyktadu tylko Algorytm 1 z procedura e-check z metodg WGV dal
odtworzenie rzedu zbieznodci algorytmu EXTREM
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Tabela 4.22: Optymalizacja funkcji Osborne II jedenastu zmiennych za pomoca:
a) algorytmu EXTREM, b) Algorytm 1 bez regularyzacji i bez procedury e-check,

¢) Algorytm 1 bez regularyzacji i z procedura e-check z ¢

wypadkach v, = 0.65.

~

= 1073, W obydwu

a)
EXTREM
st *
I?u%) HX —X ||2 f
1 22.61258 | 2.093420
250 1.008919 0.081672
500 0.009882 0.041034
750 0.005407 | 0.041772
1000 | 0.000060 0.040138
1250 | 0.000001 | 0.040138
1434 | 0.000000 0.040138
b) c)
Alg. 1 bez regularyzacji,
Alg. T bez regularyzacji, & bo_z e dr,waij z
i g-check z € = 1077, v, = 0.65
bez e-check, Yip, = 0.65 step - T
step |y — x*||2 | f num. || pum. | [X—X I* | f approx.
— e 22.61258 | 2.003420 | —
1 22.61258 2.093420 | — _ o ’
& 250 1.379902 0.977272 | 29
250 2.816426 0.416705 | 32 -
346 9 783954 0.349864 | 48 500 0.568322 0.059211 | 31
- : 710 0.335485 0.041512 | 43

Tabela 4.23: Optymalizacja funkcji Osborne Il jedenastu zmiennych za pomoca
Algorytmu 1 z regularyzacja z wyborem parametru A\ za pomoca GCV: a) bez
procedury e-check, b) z procedura e-check z 1073, W obydwu wypadkach

E =

Ythr = 0.65.
a) b)
Alg. Tz GCV, Alg. 12z GOV,
. bez e-check, Yy = 0.65 e-check z € = 1073, v, = 0.65
; oy . ste *|12 .

guﬁg. [Ix —x*|* | f aggféx. ITUEI‘III). Ix —x*|* | f aggi‘gx.
1 22.61258 2.093420 | — 1 22.61258 2.093420 | —
250 2.798756 0.365735 | 31 250 2.799374 0.365797 | 32
500 0.571149 0.046544 | 35 500 0.951048 0.045721 | 31
750 0.093092 0.041709 | 35 750 0.246694 0.041805 | 43
1000 | 0.005360 0.040364 | 36 1000 | 0.004632 0.040462 | 35
1228 | 0.004148 0.040266 | 34 1106 | 0.003884 0.040177 | 25
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Tabela 4.24: Optymalizacja funkcji Osborne II jedenastu zmiennych za pomoca
Algorytmu 1 z regularyzacja z wyborem parametru A za pomoca WGV z
NLMSE = 5-107% a) bez procedury e-check, b) z procedura s-check z ¢ = 1072,
W obydwu wypadkach 74y, = 0.65.

a) b)
v Alg. 12 WGV,
bez gﬁlllgéc%{,\:,g,\z’ 0.65 4 e-check z € = 1073, vy, = 0.65
Skep — x*||? num. || qum. | X = x| f UL,
num. | [X=x* | f ADPTOX. L approx.
1 St (i — 1 22.61258 | 2.093420 |
9250 | 1.009314 | 0.197551 | 11 250 | 0.909002 | 0.106864 | 14
=00 | 0.020002 | 0044174 | 24 500 | 0.111992 | 0.047136 | 38
o4 | 0026422 | 0041950 | 40 750 | 0.001946 | 0.040209 | 49
019 | 0.001441 | 0.040185 | 29

Tabela 4.24a: Przyspieszenie dla funkeji Osborne’a II jedenastu zmiennych uzyskane
Algorytmem 1 mierzone wzgledem a) liczby bezposrednich wartosciowan funkeji
celu w $ciezce optymalizacyjnej Algorytmu 1, b) liczby wartosciowan funkcji celu w

Sciezce optymalizacyjnej algorytmu EXTREM.

a) b)
bez e-check ZZ fzhlegkg bez e-check ZZ f:_?hlegks
bez reg. | niezbiezny | niezbiezny || bez reg. | niezbiezny | niezbiezny
GCV 13.93% 15.01% GCV 26.29% 34.45%
WGV | niezbiezny | 14.15% WGV | niezbiezny | 43.53%

Jak wida¢ z powyzszych tabel najlepsza zbieznoscia do wlasciwego minimum
uzyskaliSmy réwniez za pomoca Algorytmu 1 z procedura e-check oraz metodg WGV
do konstrukeji aproksymacji RBF funkcji celu.
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Tabela 4.25: Optymalizacja funkcji dyskretnego réwnania calkowego pietnastu
zmiennych za pomoca: a) algorytmu EXTREM, b),c) Algorytmu 1 bez regularyzacji
bez procedury e-check, d),e) Algorytm 1 bez regularyzacji z e-check, e = 107>,

a)
EXTREM
t x
r?u%frl), ||X —X H2 f
1 0.059923 | 0.091463
200 0.000158 | 0.000210
421 0.000000 | 0.000000
b) c)
Alg. T bez regularyzacji, Alg. 1 bez regularyzacji,
bez e-check, v, = 0.60 . bez e-check, i, = 0.65
st %2 . SU * .
I?U(I)III). |Ix —x*[]* | f agg‘%x. I?u%) |Ix —x*[|* | f agg?éx.
1 0.059923 | 0.091463 | — 1 0.059923 | 0.091463 | —
200 0.000182 | 0.000244 | 18 200 0.000171 | 0.000230 | 14
366 0.000115 | 0.000509 | 45 436 0.000009 | 0.000010 | 40
d) e)
Alg. T bez regularyzacji, Alg. 1 bez regularyzacji,
e-check z € = 1073, v, = 0.60 . e-check z € = 1073, vy, = 0.65
. t - * . oL * .
Su;ll). |Ix —x*[|* | f aggi%x. ;u(;III) |Ix —x*[|* | f aggigx.
1 0.059923 | 0.091463 | — 1 0.059923 | 0.091463 | —
200 0.000157 | 0.000213 | 20 200 0.000158 | 0.000210 | 16
400 0.000000 | 0.000000 | 56 400 0.000000 | 0.000000 | 46
537 0.000000 | 0.000000 | 18 547 0.000000 | 0.000000 | 20

Tabela 4.26: Optymalizacja funkcji dyskretnego réwnania catkowego pietnastu
zmiennych za pomoca Algorytmu 1 bez procedury e-check z regularyzacja z
wyborem wartoéci parametru A za pomoca: a) metody GCV, b) metody WGV z

NLMSEy, = 10~%. W obydwu wypadkach 7, = 0.60.
a) b)
Alg. Tz GOV, g, L2 WY,
bez e-check, i = 0.60
bez e-check, v, = 0.60 step T T
step IIx—x*||2 | f num. num. | X=xI° | f approx.
num. approx.
1 0.059923 0.091463 | —
1 0.059923 | 0.091463 | —
200 0.000157 | 0.000209 | 18
200 0.000217 | 0.000298 | 22 ,
366 0.000150 | 0.000183 | 63 427 0.000000 | 0.000000 | 47
: : 495 0.000000 | 0.000000 | 2
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Tabela 4.27: Optymalizacja funkcji dyskretnego rownania catkowego pietnastu
zmiennych za pomocg Algorytmu 1 z procedura e-check z £ = 1073 z regularyzacja
z wyborem parametru A za pomoca: a) metody GCV, b) metody WGV z
NLMSEy, = 107% W obydwu wypadkach v, = 0.60.

a) b)
Alg. Tz GCV, Alg. Tz WGV,

e-check z £ = 1073, vy = 0.60 . e-check z £ = 1073, v = 0.60
L1t & * P ¥ . L‘ e * .
num. | x=x*| f apngigx. I;u%). I —x*[]* | f aBBi%x.
1 0.059923 0.091463 | 0 1 0.059923 0.091463 | —
200 0.000738 0.000824 | 21 200 0.000867 0.000956 | 18
427 0.000000 0.000000 | 89 427 0.000000 0.000000 | 31
585 0.000000 | 0.000000 | 28 467 0.000000 0.000000 | 10

Tabela 4.27a: Przyspieszenie dla funkcji dyskretnego rownania catkowego pietnastu
zmiennych uzyskane Algorytmem 1 mierzone wzgledem a) liczby bezposrednich
wartoSciowan funkcji celu w $ciezce optymalizacyjnej Algorytmu 1, b) liczby
wartosciowan funkcji celu w $ciezce optymalizacyjnej algorytmu EXTREM.

a) b)
bez e-check ZZ ::hleocg bez e-check Zngihlegkzs
bez reg. | 17.21% — bez reg. | 28.03% —
GCV 23.22% 23.59% GCV 33.25% S
WGV | 13.54% 12.63% WGV | — 4.45%
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4.1.2 Synteza wynikéw numerycznych dla funkcji testowych

W paragrafie tym prezentujemy zestawienie wynikow uzyskanych przyspieszeii dla
optymalizacji algorytmem EXTREM oraz Algorytmem 1 potaczonym z algorytmem
EXTREM dla funkcji testowych z paragrafu 4.1.1. Tabele 4.28a i 4.28b zawieraja
wiec wszystkie wyniki z tabel z paragrafu 4.1.1. W tabelach tych znak ,,—”
oznacza, ze nie uzyskano przyspieszenia, gdyz potrzebnych bylo wiecej wartosciowan
bezposrednich funkcji celu niz w algorytmie EXTREM, zachowana zostala natomiast
zbieznosé algorytmu.

Oznaczmy przez NUMppzp liczbe bezposrednich obliczen wartosci funkeji celu
wykonanych przez algorytm bezposredniemu, przez NUMspgrroa liczbe bezposrednich
obliczen warto$ci funkcji celu wykonanych przez algorytm SPELROA oraz
przez NUM ALLspgrroa liczbe obliczenn bezposrednich funkeji celu przez alogrytm
SPELROA plus liczba aproksymacji funkcji celu wykonanych przez ten algorytmie.
Przyspieszenie podane w tabelach 4.28a) i 4.28b) obliczone jest wg wzorow

NUMspgLrOA
1 ) — 4.1
S0 NU Mpggzp )
natomiast w tabeli 4.28b) wzorem
NU Mg
100% — SPELROA (4.2)

NUM _ALLgsprrroa

Jak wida¢ zbieznos¢ dla wszystkich funkcji testowych uzyskaliémy tylko dla
metody SPELROA z aproksymacja z wyborem parametru regularyzacji za pomoca
metody Weighted Gradient Variance polaczonej z procedura e-check.
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Tabela 4.28a: Przyspieszenie procesu optymalizacji uzyskane metoda SPELROA
dla funkeji testowych. Przyspieszenie okre$lone wzgledem ilosci bezposrednich
wartosciowan funkcji celu w Algorytmie 1, tzn. obliczone ze wzoru (4.2).

bez regularyzacji GCV WGV
. liczba bez 2 bez Z bez 7
Funkcja param. | e-check | e-check | e-check | e-check | e-check | s-check
1 | kary II 4 16.17% | 15.00% | 17.68% | 14.28% | 13.84% | 13.57%
Rosenbrocka nie- nie- nie-
2 | “roszerzona 6 zbiezny | zbiezny | zbiezny 14.98% | 7.16%
3 Rosenbrocka 8 nie- nie- nie- nie- nie- 15.04%
rOSZerzona zbiezny | zbiezny | zbiezny | zbiezny | zbiezny i
4 | Chebquad 10 14.79% | 17.52% | 20.09% | 24.89% | 17.36% | 6.31%
5 | pasmpwva 0 | 17.35% | 13.17% | — 12.83% | 12.67%
Dyskretna = nie- nie-
6 brzegowa 10 14.85% | — zbiezny | zbiezny 13.44% | 14.25%
nie- nie- nie- nie-
7| kary I 10 zbiezny | zbiezny | zbiezny | zbiezny 5.95% | 6.55%
8 | Osborne’a 11| ,biesny | zblesny | 13-93% | 15.01% | ,pies. | 14.15%
g | Dyskretnego |45 [ 47979 | 23.22% | 23.59% | 13.54% | 12.63%

Tabela 4.28b: Przyspieszenie procesu optymalizacji uzyskane metoda SPELROA
dla funkcji testowych. Przyspieszenie okreslone wzgledem ilosci bezposrednich
warto§ciowan funkcji celu w Algorytmie EXTREM, tzn. obliczone ze wzoru (4.1).

bez regularyzacji GCV WGV
Fiaks: liczba bez 2 bez 7 bez Z
unkcja param. | e-check | e-check | e-check | e-check | e-check | e-check
1 | kary II 4 26.92% | 23.711% | 22.43% | 23.07% | 28.20% | 22.43%
Rosenbrocka nie- nie- nie- =
2 | roszerzona 6 zbiezny | zbiezny | zbiezny 28.10% | 20.87% | —
3 | Rosenbrocka 8 nie- nie- nie- nie- nie- 45.55%
roszerzona zbiezny | zbiezny | zbiezny | zbiezny | zbiezny SO
4 | Chebquad 10 17.34% | 47.24% | 29.26% | 32.17% | 48.42% | 38.80%
5| pasmowa 10 | — 17.33% | 13.17% | — 15.17% |.12.67%
Dyékretna nie- nie- &
6 i 10 36.98% | — zbiezny | zbieiny 65.45% | 28.02%
nie- nie- nie- nie-
7| kary I 10 zbiezny | zbiezny | zbiezny | zbiezny 86.41% | 80.89%
y nie- nie- p nie-
8 Osbzrnea 11 zbiezny | zbiesny 26.29% | 34.45% zbiezny 43.53%
g | Dystretnego [ 15 195039 | — 33.25% | — - 4.45%
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4.2 Projektowanie magneséw nadprzewodzacych

4.2.1 Zintegrowany proces projektowania magneséw dla
zderzacza czastek elementarnych LHC

4.2.2 Okreslenie funkcji celu

Celem optymalizacji magneséw nadprzewodzacych w zderzaczu LHC bylo
zapewnienie wymaganych wlasnosci generowanego przez nie pola magnetycznego —
zakrzywiajacego, skupiajacego lub korygujacego trajektorie wiazki przyspieszanych
czastek elementarnych. Wymagania te sa okreSlone przez geometri¢ tunelu oraz
fizyke akceleratora. Ogolnie rzecz biorac w procesie konstrukeji magnesu celem jest
czyste pole wielobiegunowe o okreslonym natezeniu. Cel ten formulowany jest w
kategoriach wspolczynnikéw rozwiniecia Fouriera statycznego pola magnetycznego
w aperturze magnesu. Statyczne pole magnetyczne w regionach niemagnetycznych
i wolnych od pradu jest opisywane przez uklad uproszczonych réwnan Maxwella

Il

V x B 0,

- 4.3
V.-B = 0. (43)

Rozwiniecie pola magnetycznego w szereg Fouriera w aperturze magnesu

Dla zagadnienn dwuwymiarowych uklad (4.3) we wspolrzednych kartezjanskich
redukuje si¢ do uktadu

OB, __ 0By

0 - Oz J
0B, _ 0B, (4.4)
9z dy

ktory jest rownowazny rownaniu Laplace’a
V- (VxA,)=0 (4.5)

spelnianego przez skladowa =z potencjalu wektorowego A zdefiniowanego
standardowo jako
B=VxA

w przestrzeni trojwymiarowe;j.
Pole magnetyczne jest obliczane z zaleznosci B, = % oraz By, = —%.
Przechodzac do wspolrzednych biegunowych (r, ) rownanie (4.5) przyjmuje postaé

PA, 104,  10%°4, g
o2 r or o r?opr

Ustalajac pole dla r = 0 otrzymujemy rozwiazanie

A(r, @) = Z ™ (G cos(ny) + H, sin(ngp)).

=1
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Radialna i katowa skladowa pola zapisuja sie wowczas jako szeregi

10

B,(r,¢) = ;—B_;A (T, ;r" Y(By, sin(ngp) + A, cos(ng)), (4.6)
d n—1
B,(r,p) = ——A Zr (B cos(ny) — Ay sin(ny)),
gdzie B, = —nG, i A, = nH,. Jakos¢ pola w aperturze jest formulowana

za pomocy wspolczynnikow rozwiniecia skladowej radialnej (4.6) na zadanym
promieniu referencyjnym r = r.. Dla magnesow zderzacza czastek elementarnych
LHC 7pes = 17mm.

Skladowa pola generowana przez cewke nadprzewodzgcg

Pole magnetyczne w aperturze magnesu moze zostaé¢ obliczone bez dyskretyzacji
cewki nadprzewodzacej korzvstajadc prawa Biota-Sevarta oraz Lredukowanego
potencjatu wektorowego A, ie.

B=B,+ B, = ugH, +V x A,, (4.7)

gdzie By jest polem generowanym przez cewke natomiast B, jest polem generowane
przez jarzmo. Pole magnetyczne B pobudzane przez cewka o zadanym rozkladzie
pradu moze zostaé¢ obliczone korzystajac z prawa Biota-Sevarta, ktore w trzech
wymiarach zapisuje sie
— o JXT
B, = — 5
A7 Jv T

v,

gdzie J jest gestoscia prad, 7 jest wektorem z punktu calkowania pradu do punktu
obliczania pola. Powyzsza calka redukuje sie na plaszczyznie prostopadlej do

kierunku pradu do
7 Jii
B =19 / "d (4.8)
1%

gdzie 71 jest wektorem jednostkowym prostopadlym do 7. Korzystajac z (4.8) mozna
analitycznie obliczy¢ wspoélczynniki rozwinigcia (4.6) (c.f. [28]).

Skladowa pola generowana przez jarzmo magnesu

Wstawiajac rownanie (4.7) do réownania Maxwella
VxH=J

otrzymujemy
1 — — 1 —
Vx-—-B,=J-V x —-B,. (4.9)
H H
Roéwnanie to rozwigzujemy w dwoch regionach materiatlowych, tzn. w Q,, ktory
jest czescia bez magnetyzacji (= po) czyli w aperturze oraz w regionie €;, ktora
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stanowi jarzmo gdzie z kolei prad jest rowny zero. Otrzymujemy wiec w kazdej czesci
materiatowej oddzielne rownanie

VxiB, = 0 w (g,
VxiB, = -VxiB, wQ,.
I b
Dodatkowymi warunkami sa warunki brzegowe Dirichleta
n-B,=—1-B,
lub Neumanna i
n X —B, =—n X By,

spelniane na elementach dyskretyzujacych brzeg miedzy regionami Q, i €2, gdzie
wektor 71 jest wektorem normalnym do brzegu. Ponadto konieczne sg jeszcze tzw.
zewnetrzne warunki brzegowe i.e. warunki w dostatecznej odlegloéci od centrum
apertury, gdzie pole jest zaniedbywalnie mate. Rownanie (4.9) wraz z warunkami
brzegowymi na styku dwoch regionéw materiatowych i z zewnetrznym warunkami
brzegowymi okresla pelne zagadnienie brzegowe.

Uzywajac dodatkowej funkcji wagowej w, ktora spetnia homogeniczne warunki
brzegowe Dirichleta, stabe sformutowanie problemu obliczenia pola magnetycznego
w aperturze magnesu zapisuje sie jako

/(v X ) - l(v xffr)dﬂz/ (1— fio) (V x &) - HydQ.
Ja H Q H

Zagadnienie to rozwiazywane jest metoda elementéw skonczonych. Szczegoly
powyzszego sformulowania oraz metody rozwiazania znalez¢ mozna w [28].
Optymalizacja wielocelowa — optymalnos$é w sensie Pareto

W rzeczywistych problemach optymalizacyjnych istnieje zazwyczaj kilka celow, ktore
sg ze soba w konflikcie, tzn. minima dla kazdej funkcji celu rézniag si¢ od siebie.
Zagadnienie optymalizacji K funkcji celu zapisuje sie jako

Jmin” F(X) = min” (f1(X), f2(X), ..., fx(X)),

gdzie F:RI - RK 3 ograniczenia definiowane sa przez funkcje g;, h; : R? — R oraz
state ¢;,d; € R

Qz(X) S C; 1= 1,2,...,771 (410)
hX) = dj §=1,2,...,p (4.11)

gdzie X = (z1,...,x4) jest takie, ze
T lower S Zy S :L'l,upper-, l = 1, 2, vy d (412)

Z optymalizacja wielocelowa zwigzane jest pojecie rozwiazania optymalnego w
sensie Pareto [28].
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Definicja 15. Zbior X+ jest zbiorem optymalriym w senste Pareto, gdy nie istnieje
rozwigzanie X w dziedzinie {X € R% : g;(X) < 0;hj(X) = 0;T1ower < 73 <
B s V8 = Lyoas 84 F = 10005051 =152, .5 d}; dla Kldrego

—

frX) < filX) Vke{l,..., K}
X

(X)) < f(X) dla przynajmniej jednego k € {1,...,K}.

Innymi stowy rozwiazanie X , dla ktorego poprawa jednego z celow powoduje
degradacje przynajmniej jednego z celow jest elementem zbioru rozwigzan
optymalnych w sensie Pareto.

Zadanie poszukiwania rozwigzan optymalnych w sensie Pareto jest
transformowane do zagadnienia optymalizacji bez ograniczen funkcji skalarnej
za pomocy :

1. wazenia celoéw oraz
2. funkcji odlegtosci.

Ograniczenia (4.11), (4.11) oraz (4.12) sa wlaczane do optymalizacji przez
modyfikacje funkcji celu za pomocy

1. funkeji kary dla ograniczen zakresow poszukiwania (4.12) oraz
2. funkcji kary dla ograniczen nieliniowych (4.11) i (4.11).

Metoda wazenia celow polega na polaczeniu sktadowych funkcji wektorowej
F(X) w jedng skalarna funkcje celu

K

f()'(’) = Zwkj}c(x—:),

k=1

gdzie wy, sa wagami okreslajacymi waznosé celu f, w zagadnieniu optymalizacyjnym.
Metoda funkcji odlegloéci polega potaczeniu sktadowych funkeji wektorowej

F(X) w jedna skalarng funkcje celu dla ustalonych rezyduow y, € R;k=1,.... K

K 1/r
f(X) = (Zwklfk()z) - yklr) .
k=1

Zazwyczaj ze wzgledu na cigglo$é pochodnych rozwaza sie r = 2. W praktyce
wagi wy s3 znane z rozwazan analitycznych natomiast rezydua v, sa znane ze
sformutowania problemu lub z zalozen o szukanym rozwigzaniu.

Metoda funkeji kary dla ograniczen zakreséw poszukiwan polega na modyfikacji
funkcji celu, gdy wystepuje przekroczenie zakresu

( (‘_(') _ f()? ) zadne ograniczenie nie jest przekroczone
P TUIE) + ()

jedno z ograniczen jest przekroczone
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gdzie X* = (z,%9,...,2],...,Z,) Oraz xf = 1z, jeSli z; > =z, (tzn. goérne
ograniczenie jest przekroczone) oraz x; = zy jesli z; < zy (tzn. dolne ogranicznie
jest przekroczone). Skladnik kary natomiast zapisuje sie¢ w postaci

2 odl o
B (21— z1,)*  jesli x; > zpy,
r(X) = _S_ S (xg—x)?  jesli y < ay,
! 0 W przeciwnym razie,

gdzie r; € R sa odpowiednimi wspolezynnikami kary.

Metoda funkcji kary dla ograniczen nieliniowych funkcji celu danych za pomoca
(4.11), (4.11) polega modyfikacji funkcji celu przez dodanie sktadnika zaleznego
od tego jak bardzo ograniczenie funkcji celu jest przekroczone. Cze$é¢ funkcji celu
odpowiadajaca minimalizacji celu fr modyfikowana jest przez dodanie sktadnika
kary

p(X ) fi(X +Zplma*< (0, ge(X +Z

gdzie p;, ¢; € R sa odpowiednimi wspotczynnikami wagowymi.

Funkcja celu w optymalizacji magneséw zakrzywiajacych zderzacza
czastek elementarnych LHC

W nastepnym paragrafie omoéwione sa wyniki optymalizacji nadprzewodzacych
zakrzywiajgcych magnesow dipolowych zderzacza czastek elementarnych LHC. Aby
zdefiniowa¢ funkcje celu przeksztalémy rozwiniecie (4.6) na okregu o promieniu
referencyjnym 7. do postaci

00

B, (Tret, ) = By (Tret) Z(bn(rref) SIN NP + ap (Tref) COSNYP). (4.13)

n=1

Ze wzgledu na symetrie budowy magnesoéw zderzacza czastek elementarnych
LHC znikaja z powyzszego rozwiniacia skladniki aq(rref), ao(7ref), - - - Celami
optymalizacji magnesu dipolowego sa
1. pole magnetyczne o zadanym natezeniu strumienia B, = 9.37
2. czystos$é pola magnetycznego, tzn.
min by (7ref),

min bs(rref),
min by(7ref),

na nominalnym poziomie natezenia pradu pobudzajacego,
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3. czysto$¢ pola magnetycznego

min by jnj (Trer ),
min b3 inj (Tref ),
min b4,inj (Tref) )

na poziomie pradu pobudzajacego podczas wstrzykniecia wigzki protonow do
zderzacza czastek elementarnch,

4. zmiana pola pomiedzy poziomem natezenia podczas wstrzykniecia wigzki
protonéw do zderzacza czastek elementarnch a poziomem nominalnym
natezenia, tzn.

min Aby(1ver) = min(binj(Tret) — ba(7ref)),
min Abs(rref) = min(bs inj(Tref) — b3(7ref)),
min Abg(7ver) = min(bainj(Trer) — ba(rref)),

Optymalizowana funkcja celu, skonstruowana za pomoca metody wazenia celow,
funkcji odleglosci, metod wlaczania ograniczen opisanych w poprzednim paragrafie,
powinna wiec zawiera¢ powyzsze cele dla poczatkowych n. Zmiennymi, od ktorych
zalezy optymalizowana funkcja celu sa parametry techniczne modelu magnesu.

4.2.3 Wyniki numeryczne

W paragrafie tym prezentujemy wyniki dzialania metody SPELROA potlaczonej z
algorytmem optymalizacji bezposredniej EXTREM [18]. Algorytm ten ze wzgledu
na swoja stabilnosé¢ i przyjaznoé¢ dla uzytkownika — nie wymaga od uzytkownika
podania zadnych parametréw — zostal uzyty do optymalizacji nadprzewodzacych
magnesoéw dipolowych dla zderzacza LHC w Europejskim Laboratorium Fizyki
Czastek CERN [28]. W testach zastosowanie metody SPELROA wymagalo podania
4 parametrow. Do konstrukeji aproksymatora (3.3) jako funkeji bazowej uzylismy
funkcji Gaussa ¢(r) = e=olIrl* Zebralismy je w tabeli 4.28. Dobér wartosci
tych parametrow oczywiscie zalezy od optymalizowanej funkcji celu oraz od
liczby zmiennych w funkcji celu. Z naszych testéw jednak mozna wywnioskowadé
uniwersalne wartosci tych parametrow. We wszystkich prezentowanych przyktadach
liczba uzytych funkcji radialnych wynosita N = 30 a liczba wykonanych krokow w
fazie wstepnej wynosita 40. Wartosci progowe natomiast wynosity v, = 0.65.

LHC coil test facility, przyklad optymalizacji funkcji dwoéch zmiennych

Glownym wysitkiem podczas budowy zderzacza czastek elementarnych LHC bylo
zapewnienie spelnienia specyfikacji pola magnetycznego w glownych magnesach
dipolowych.
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Tabela 4.28: Parametry metody SPELROA definiowane przez uzytkownika

y — liczba krokow w poczatkowej fazie optymalizacji, w ktorych fun-
kcja celu obliczana jest tylko w sposob bezposredni
N — rozmiar zbioru treningowego a tym samym liczba funkcji bazo-

wych uzytych do budowy aproksymatora RBF (3.3). Zauwazmy,
ze musi by¢ (N < ).

Yehr —  warto$¢ progowa dla wskaznika (3.26) wyznaczenia regionu wia-
rygodnosci
NLMSEy, - wartos¢ progowa dla wskaznika (3.18) do wyznaczenia parametru

regularyzacji A przez minimalizacje (3.19)

Aby zapewni¢ mozliwos¢ efektywnego testowania rozwigzan technicznych
wykorzystanych w glownym magnesie dipolowym LHC, skonstruowano krotki
magnes z jedng apertura, tzw. Coil Test Facility (CTF). Jest to jeden z trzech
testowych modeli prototypowych magneséw dipolowych oprécz krotkiego i dtugiego
modelu prototypowego koncowej specyfikacji.

CTF moze shuzy¢ jako prosty przyklad procesu optymalizacyjnego z dwoma
parametrami: dlugosciami osi (a,b) okreslajacymi wewnetrzny ksztalt jarzma
magnesu (patrz rys. 4.1).

Rysunek 4.1: Model Coil Test Facility. Optymalizowane sa rozmiary pétosi elipsy
okreslajacej ksztalt kolnierza magnesu.

Funkcja celu jakg optymalizowaliSmy zostata skonstruowana za pomoca metody
wlaczania ograniczen nieliniowych i jest postaci

fobi(a,b) = 50B; 4+ 5 max(0, Abs — 1)? + max(0, bs jn; — 10)?, 4.14
J ,111]
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gdzie bs ;,; jest wartoscig wspotczynnika sekstopolowego bs(7vef) W rozwinieciu (4.13)
dla natezenia pradu pobudzajacego magnes na poziomie natezenia pradu podczas
wstrzykniecia wiazki do zderzacza czastek elementarnch, natomiast Abs jest zmiang
wspolczynnika bs(7er) podczas tadowania magnesu od natezenia pradu pobudzenia
podczas wstrzykniecia wiazki do zderzacza do poziomu nominalnego.

Wykres funkeji celu fopj(a,b) wraz z wizualizacja punktow wygenerowanych
w kolejnych krokach dziatania metody SPELROA 7z algorytmem EXTREME
przedstawione sa na rysunku 4.2. W tabeli 4.29 przedstawione sa znalezione
minima za pomoca algorytmu EXTREM oraz metody SPELROA potaczonej z
algorytmem EXTREM, liczba bezposrednich obliczenn wartosci funkcji celu oraz
liczba aproksymacji funkcji celu. Uzyskane przyspieszenie obliczone jako stosunek
liczby bezposrednich wartosciowan funkcji celu przez metode SPELROA do liczby
wartosciowan funkcji celu przez algorytm EXTREM wyniosta 30%.

Rysunek 4.2: Sciezka optymalizacyjna dla metody SPELROA polaczonej z
algorytmem EXTREM dla modelu CTF (c.f. [2]). Proces wystartowany zostal z
punktu [130.0, 80.0]. Algorytm ,zbiegl” do minimum funkcji celu znajdujacego sie w
punkcie [68.55,75.87] po 111 bezposrednich wartosciowanach funkcji i konstrukeji
aproksymacji RBF w 31 punktach (koltka z krzyzykiem). Algorytm EXTREM
potrzebowal 167 wartoSciowan funkcji. Uzyskano wiec przyspieszenie rzedu 30%.

LHC Main Dipole, przyklad optymalizacji funkcji trzech i pieciu
zmiennych

Parametrami jakimi manipulujemy podczas optymalizacji sa parametry
geometryczne jarzma magnesu — patrz rysunek 4.3.
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Tabela 4.29: Poréwnanie dzialania algorytmu EXTREM oraz metody SPELROA
polaczonej z algorytmem EXTREM do optymalizacji krotkiego modelu testowego
coil-test facility dla zderzacza czastek elementarnych LHC. Optymalizacja
wystartowana zostala z punktu [130.0, 80.0]. Uzyskane przyspieszenie to okolto 30%.

| [ EXTREM | SPELROA |

a 68.53 68.57
b 75.87 75.86
Jobi -391.3003 | -391.2974
Liczba obliczen 167 111
wart. fob;
Liczba aproksy- —_— 31
macji RBE fop;

Funkcja celu jaka optymalizowali$émy skonstruowana zostata za pomoca metody
wazenia celow 1 jest postaci

4 4
fobi(X) =D talAby+ > buw;  dla (ta =t3 =5,t, = 50), (4.15)
n=2

gdzie by, bs i by sa wspoOlczynnikami kwadrupolowymi, sekstopolowymi oraz
oktopolowymi odpowiednio. Parametrami wzgledem, ktérych prowadzona jest
optymalizacja trzech zmiennych, sa X = (21, %9, x3), gdzie 1 = alell, x5 = blell
oraz r3 = alel2 s parametrami ksztaltu kolnierza niemagnetycznego wokét cewki —
patrz Rys. 4.3.

Do optymalizacji uzyliSmy algorytmu EXTREM [18] polaczonego z metoda
SPELROA. Proces zostal wystartowany z punktu [88.0,105.0,79.0]. W tabeli
4.30 przedstawiamy porOwnanie znalezionych miniméw funkcji celu oraz liczby
warto$ciowan funkcji dla obydwu metod. Uzyskane za pomoca metody SPELROA
przyspieszenie to okoto 30%.

W pracy [2| przedstawiliémy réwniez wyniki optymalizacji gléwnego magnesu
dipolowego zderzacza czastek elementarnych LHC dla funkcji (4.15) zaleznej od
pieciu parametréow projektu. Dodatkowo pod uwage wzieto zmienne z, = ryoke
oraz x5 = hy — patrz Rys. 4.3. Metoda zastosowana tam réznila od prezentowanej
w tej pracy jedynie sposobem okre§lenia regionu wiarygodnego oraz sposobu
wyboru parametru regularyzacji w konstrukeji aproksymatora funkeji celu. Réznica
polegata na uzyciu odleglosci Mahalanobisa zamiast wskaznika yx oraz arbitralnego
przedzialu poszukiwania warto$ci parametru regularyzacji A. Wynik przedstawiamy
w tabeli 4.31
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Rysunek 4.3: Parametryczna reprezentacja optymalizowanego jarzma magnesu LHC.

4.3 Strojenie regulatora PID — metoda SPELROA
potaczona z algorytmem quasi-Newtona

W niniejszej pracy formalnie dowiedlismy, ze metoda SPELROA jest zbiezna w
polaczeniu z algorytmami bezgradietnowymi. Nic nie stoi jednak na przeszkodzie,
zeby takie podejscie zastosowa¢ w algorytmamch gradientowych. Oczywiscie dowod
zbieznosci przedstawiony w pracy nie przenosi si¢ automatycznie na algorytmy
gradientowe. Dow6d zbieznosci metody SPELROA dla algorytmoéw gradientowych
wymagac¢ bedzie rozszerzenia, w ktéorym rozwazone bedzie réwniez zaburzenie
wprowadzane do kierunku poszukiwan a nie jedynie do wartosci funkcji w fazie
minimalizacji wzdtuz kierunku.

W paragrafie tym prezentujemy zastosowanie metody SPELROA potaczonej
z algorytmem quasi-Newtona do procesu strojenia regulatora PID. Macierz
aproksymujaca hesjan byla generowana za pomoca poprawki BFGS (patrz [15]).

Rozpatrzylismy regulator PID dla uktadu oscylujacego danego impedancja

1

K(s) = .
) = P T B 13+ 1

(4.16)

Do znalezienia parametrow K,, K, i K; regulatora uzyliSmy estymacji
standardowych funkcji celu Integral of time error squared (ITES) oraz Integral of
time absolute error (ITAE) danych wzorami

ITES = / te(t)]?dt  ITAE = / tle(t)|dt.
0 0
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Tabela 4.30: Poréwnanie dzialania algorytmu EXTREM oraz metody SPELROA
polaczonej z algorytmem EXTREM do optymalizacji gtéwnego magnesu dipolowego
zderzacza czastek elementarnych LHC. Optymalizacja wystartowana zostala z
punktu [88.0,105.0,79.0]. Uzyskane przyspieszenie to okoto 30%.

| [EXTREM [ SPELROA |

5] 80.92 80.70
Z9 99.64 99.40
z3 86.02 85.74
Job; -23.941 -24.179
Liczba obliczen 301 208
wart. fob
Liczba aproksy- — 45
macji RBE fop;

Minimum funkcji ITES daje rozwiazanie o przesterowaniu rzedu 4.5%. Natomiast
dla funkcji ITAE przesterowanie znalezionego regulatora jest rzedu 3%. Wyniki
optymalizacji przedstawiaja tabele
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Tabela 4.31: Poréwnanie dziatania algorytmu EXTREM oraz metody SPELROA
potaczonej z algorytmem EXTREM do optymalizacji gléwnego magnesu dipolowego
zderzacza czastek elementarnych LHC. Optymalizacja wystartowana zostala z
punktu [95.0,96.0, 85.0, 275.0, 8.0]. Uzyskane przyspieszenie to okoto 18.5%.

| [ EXTREM | SPELROA |

X 87.10 87.44
X 105.39 104.69
x3 92.90 93.55
i 280.97 280.99
x5 3.91 4.10
Fobj 15.51 15.66

Liczba obliczen 343 281

wart. fob;
Liczba aproksy- e 52
macji RBE fop;

Tabela 4.32: Metoda SPELROA w potgczeniu z algorytmem BFGS quasi-Newton
dla funkcji fop; = log(ITES). Proces wystartowany z punktu [0.2, 0.5, 5.5].

Algorytm BFGS g-N | SPELROA
K, 3.844896 3.826120
K; 0.172128 0.172104
Ky 18.430017 | 18.351408
fobi 1.910984 1.910988
Liczba obliczern | 68 63
wart. fop;
Liczba aproksy- | — 12
macji RBF fobj




4.3. STROJENIE REGULATORA PID - BFGS QUASI NEWTON

11

e

Tabela 4.33: Metoda SPELROA w polaczeniu z algorytmem BFGS quasi-Newton

dla funkcji fon; = log(IT AE). Proces wystartowany z punktu [0.2, 0.5, 6.5].

macji RBF fobj

Algorytm BFGS g-N | SPELROA
Ky 3.344571 3.291519
K; 0.162876 0.162836
Ky 16.990756 | 16.787918
Jfobj 1.489663 | 1.490390
Liczba obliczen | 78 64
wart. fob;
Liczba aproksy- | — 7
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Rozdzial 5

Zakonczenie

5.1 Podsumowanie

Tematem niniejszej pracy jest optymalizacja funkcji celu, ktoérych obliczenie
jest czasochlonne. Takie zadania optymalizacyjne pojawiaja sie w zagadnieniach
optymalizacji i konstrukeji systemow sterowania jak i zagadnieniach projektowania
roznego rodzaju urzadzen w licznych dziedzinach techniki. Obliczanie wartosci
funkcji w takim zadaniu wigze sie z zazwyczaj z przeprowadzeniem zlozonej i
czasochtonnej operacji w zaleznosci od zmiennych projektowych. Do optymalizacji
tego typu funkcji zazwyczaj stosuje sie algorytmy bezgradientowe ze wzgledu na to,
ze gradient nie jest dostepny a aproksymacja gradientu jest zbyt czasochtonna lub
niemozliwa.

W niniejszej rozprawie autor zaprezentowal nowe podejécie do przyspieszania
procesow optymalizacji funkcji ciaglych. Metoda, zaproponowana przez autora,
polega na konstrukcji modelu aproksymujacego w czeSci punktéw Sciezki
optymalizacyjnej algorytmu bezgradientowego i na nieobliczaniu wartosci funkcji
w sposob bezposredni lecz zastapienia jej skonstruowanym modelem. W
zaproponowanej metodzie modelem aproksymujacym jest sie¢ z radialnymi
funkcjami aktywacji trenowana za pomocg metody regularyzacji Tikhonova, stad
nazwana zostala Search Procedure Exploiting Locally Regularized Objective
Approximation. Zalozeniem metody jest, ze czas konstrukcji aproksymacji oraz
obliczenia jej warto$ci w danym punkcie jest zaniedbywalnie maly w poréwnaniu
z czasem potrzebnym na obliczenie funkcji celu w sposéb bezposredni. Przy takim
zalozeniu przyspieszenie algorytmu optymalizacji rozumiemy jako skrécenie czasu
jego dzialania, tzn. zmniejszenie liczby obliczen bezposrednich wartosci funkcji.
W pracy autor udowodnil zbiezno$¢ metody dla algorytméw bezgradientowy.
Zastosowanie zaprezentowanej metody w potaczeniu z algorytmem Gaussa-Seidela
z reortogonalizacja bazy kierunkéow poszukiwan, stosowanym do optymalizacji
magneséw umozliwito przyspieszenie procesu optymalizacji gléwnego magnesu
zakrzywiajacego zderzacza czastek elementarnych LHC nawet do 30% dla funkcji
celu, ktorej obliczenie moze trwa¢ do 2h na komputerze DEC Alpha XP 1000. Dla
trudnych funkcji testowych z literatury uzyskano od kilku do nawet kilkudziesieciu
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procent przyspieszenia. Na przykladzie procesu strojenia regulatora PID autor
pokazal, ze istnieja rowniez obiecujace perspektywy zastosowania nowej metody w
polaczeniu z algorytmami gradientowymi.

5.2 Proponowane dalsze kierunki badan

Mozliwe dalsze kierunki badan to przede wszystkim :

e Poszukiwanie analitycznego zwigzku pomiedzy wartodcia wskaznika ~yx(x)
okreslonego przez (3.26) mierzacego ,,jako$¢” otoczenia punktu x przez punkty
ze zbioru danych X a jako$cig zregularyzowanej aproksymacji radialnymi
funkcjami bazowymi. Gdyby taki zwiazek udalto sie znalez¢ mozliwe byloby
okreslenie metody ustalenia wartosci progowych =, okreslajacych obszary
otoczki wypuktlej zbioru danych, w ktorych blad aproksymacji mogltby by¢
precyzyjniej niz obecnie ograniczony.

e Zastosowanie aproksymacji radialnymi funkcjami bazowymi konstruowanej
metoda WGV do aproksymacji gradientu funkcji celu i wykorzystanie tej
aproksymacji w algorytmach gradientowych, dobre perspektywy rozwoju
badain w tym kierunku potwierdza zaprezentowany przyklad zastosowanie
metody w polaczeniu z efektywnym algorytmem optymalizacji gradientowej
quasi-Newtona z poprawka aproksymacji hesjanu metoda BFGS zostalo
przedstawione na przykladzie optymalizacji uktadu regulacji PID.

e Poréwnanie metody SPELROA z metodami regionu wiarygodnosci.



Rozdzial 6
Dodatki

6.1 Dodatek A
Minimum paraboli ¢(¢) interpolujace punkty (¢*, £(¢1)), (¢3 £(¢?)) oraz (¢%, £(¢?))
gdzie {(1, (s, (3} C R dane jest wzorem
y = LI = (@74 + [(€%)° = (€] F(¢%) + [(6)* — (¢€1)?1£(¢%)
2 (€3 =) f(CH) + (3= f(¢2) + (=N f(E) '

Przeksztalémy parabole g(z) = az® + bz + c;z = (' +t(¢* — ¢');t = (—o0,00) do
paraboli §(z) = ax? + bz + ¢ zakladajac co nastepuje

1. Transformacja bedzie postaci
q(z) = E(p(z)) + D, p(z) = La(2), (6.1)

gdzie L,(r) jest wielomianem interpolujacym punkty (0, f(¢Y)), ({i, £(C?))
oraz (1, f(¢?) gdzie (i = g:zi

2. Parabola przeksztatcona przyjmuje wartosci

{ZE(B Ty ey J(E) > (@)
{ZE(I); _ :? gdy f(¢") < £(¢%).

Z warunku 1. otrzymujemy

Ly(z) =d'z® + bz + ¢

gdzie
N () f(¢?) f(¢®)
@ = ¢ T Sy (G —1) + 1=Cry? ,
y = _[{ntD s f(c")cm]
, ) C(r) C(r)(g(r)"l) l_g(r)
¢ = f(¢H).

121
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Z warunkéw w punkcie 2. natomiast otrzymujemy

) ‘
a’'+b'? 1 3
_ gdy f(¢) > f(¢7),
{D = -1-Bd =% 1.
oraz
{E:‘Bb () < £(¢)
(Ll+/’ ~ »
J 3 gdyj(; < C .
D = _2_E6/_E3:—F_2

Zapisujac §(z) w formie kanonicznej §(z) = az? + bz + ¢ mamy

a = FEd,
b = EV,
¢ = FEd+D.

Interesujace dla nas wtasnosci przeksztalcenia ¢ sa nastepujace
§(¢ry) < —1dlaz € [0,1].

P (¢m) = £(C?).

3. ¢(¢(y) nie zalezy od f(¢?).

Lo

4. Dla minimum A* paraboli mepueksatalconej q taklej, ze N € [¢1, ¢
otrzymujemy minimum w punkcie \* = gdzie \* jest minimum paraboh

q.

.
¢3¢t

Ot

. Jedynym ograniczeniem jest osobliwo$¢ przeksztalcenia ¢, gdy o’ + 0 = 0.
Warunek ten nie jest spelniony dla parabol, ktérych minimum znajduje sie w
punkcie (¢3 —¢1)/2.

Przeksztalcenie to redukuje liczbe stopni swobody z 6 do 3 a wiec pozwala
yharysowac” czeSé naszych wynikow.

6.2 Dodatek B

Aby rozwiazaé¢ nierownosci (2.26), tzn.

\ * - - 462
Aen G) <Gy — Kyin Ky = \/(—53—12 = {1 =L@ (6.2)
I € {1,2,3}

zauwazmy, ze K(q); jest dobrze okreslone, gdy (; i d sa takie, ze

25 \?
(Z?"—?) > (1= Co)? (6.3)
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The region where K(a

)i is well defined

0 . -

n L " n =g
0.5 0.8 07 08 09 1

C(l')

Rysunek 6.1: Obszar w przestrzeni (A, {(,)), w ktérym dobrze okreslona est wielkos¢
K ()i zdefiniowany w (6.2).

gdzie () = %:;E% W wypadku, gdy zachodzi nieréwnos¢

<—2‘é—T>2 <(1-¢m)?

=g
nieréwnosci (2.25) sa zawsze spetnione. Zdefiniujmy
20
Ygeg

Zastanowmy sie w jakim obszarze przestrzeni (A',(;)) C R? wielkos¢ K4, jest
dobrze okreslona. W obszarze tym spelnione jest

A2 > (1-(m)?

Zauwazmy, ze nier6wno$¢ ta moze by¢ spelniona jedynie, gdy () > 1/2. Mamy
wtedy 1 — () < 1/2. Aby () — A} bylo wieksze od zera musi zachodzi¢ Al €
¢y — 1,—=C(y)). Powyzszy obszar przedstawiony jest na rysunku 6.1. Zauwazmy,
ze nie musimy rozpatrywa¢ wyrazenia () + A}, gdyz jest ono wieksze od 1, gdy
zachodzi (6.3).

Rozpatrzymy jedynie przypadek, gdy f(¢!) < f(¢?). Dla przeksztalcenia g
okreslonego wzorem (6.1) definiujemy wielkosci

A = =2(¢n—1),
B = §(wm),
C = —C(r)-

Wowczas (2.26) dla [ = 1 zapisuje sie

1A(Gn + (1 +&1)+B=(nC
2 A(l+e)+B-C

Rozpatrzymy dwa przypadki w zaleznosci od znaku mianownika lewej strony.

< ¢ — Ka)i-
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1. Jesli A(1 + &) + B —C > 0 to przez pomnozenie przez mianownik i po

uproszczeniu mamy
A(2Ka +1-— C(r))gl < C(r)(A +2B - C) - 2K(a),i(A + B - C) - (A + B)

Poniewaz A > 0, to rozwiazanie zapisuje sie

€1 > ¢-B _ ]_’
< C(T)(A-F?B—C)—QK(Q)J(A+B—C)—(A+B)
&1 A2Ka+1-Ci) -

2. Jesli A(1+¢e;)+ B —C <0, to otrzymujemy

A(2Ka +1— C(r))gl > C(r)(A + 2B — C) - 2K(a),i(A B —~ C) - (A+ B),

a poniewaz A > ( to rozwigzanie zapisuje sie

g1 < CZB -1,
s O (A42B-0)2K () ((A+B-C)~(A+B)
€1 AQRKa+1—C(ry) .

Dla | = 2 nieréwnos¢ (2.26) zapisuje sie

1A(n + 1)+ B(l+¢) = (nC
2 A+ B(l+e)-C

< C(T) == K(a),i- (6.4)

Zauwazmy, ze mamy B < 0. Musimy rozpatrzy¢ dwa przypadki w zaleznosci od
znaku mianownika

1. Jesli A4+ B(1+¢3) — C > 0 to mamy

B(2K(a)i +1—2(tn)e2 < () (A+2B - C) —2K()i(A+ B - C) - (A+ B).

Poniewaz rozpatrujemy tylko (), dla ktorych dobrze okreslone jest K(,);, tzn.
() € (1/2,1) to musimy rowniez rozpatrzy¢ dwa przypadki zleznie od znaku
wyrazenia

B(ZK(a)yi +1— 2((7«)). (65)

Poniewaz B = §((()) zalezy rowniez od polozenia minimum A\* konstruowanej
paraboli, to rozwiazania nier6wnosci

B(QK(a),i +1-— QC(T)) >0

poszukujemy w przestrzeni ((;),A\*,4;) C R®. Poniewaz rozpatrujemy tu
parabole, dla ktorych f(¢!) < f(¢?) to musimy zauwazy¢, ze z (6.13) wynika,
ze \* € (0,1/2). Regiony, w ktorych wyrazenie (6.5) jest dodatnie, ujemne
albo nieokreslone przedstawiliSmy na rysunku 6.2. Mamy wiec
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B(ZK(a),i+1 —ZC(r))

Rysunek 6.2: W regionie P; wyrazenie (6.5) jest wieksze od zera. W regionie
P, wyrazenie (6.5) jest mniejsze od zera. W regionie P3 wyrazenie (6.5) nie jest
okreslone.

a) Jesli B(2K(,); + 1 — 2(;) > 0, to rozwiagzanie zapisuje sie jako
(a), (r)

g9 < % -1,
o g C(r)(A+2B—C)—2K 4 ;(A+B~C)—(A+B)
c2 B(2Ko+1-2((,)) :

(b) Jesli B(2Kq); + 1 —2(;)) < 0, to rozwiazanie przyjmuje postac

Eo < C;A -1,
(i (A+2B—C)—2K () ;(A+B~C)—(A+B)
€2 > BaK -+~ ) ‘

2. Jesli A+ B(1+e5) — C < 0, to mamy rozwigzanie zapisuje sie natomiast

a) Jesli B(2K(4); +1 — 2()) > 0, to rozwigzanie zapisuje sie jako
(a), (r) €

Eo > % -1,
C(m (A+2B=C)—2K (4) ;(A+B—C)—(A+B)
£2 = B(@Ka+1-2¢,)) '

(b) Jesli B(2K(q); + 1 — 2{4)) < 0, to rozwiazanie przyjmuje postac¢

Eg > %—4 -1,
ey < Sn(A+2B-C)-2K( (A+B-C)~(A+B)

2 B(2Ka+1-2((,) g
Dla [ = 3 nieréwnos¢ (2.26) przyjmuje postaé

lA(C(T) +1)+ B — C(T)C(l +€3)
2 A+ B—C(1+e3)

< (r) — Ka),i-

Zauwazmy, ze C' < 0. Rozwigzanie dzielimy na dwa przypadki
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CCy 2K
0 .
-0
-02
-03
P
-04 1
< 05
-06 P2
07
-08
-09
s 06 07 08 09 1
C(f)

Rysunek 6.3: Wyrazenie (6.6) w obszarze P, jest ujemne, natomiast w obszarze Py
jest dodatnie.
1. Jesli A+ B — C(1 +€3) > 0, to mamy
C(lr) — 2K(a),i)e3 < (r)(A+2B - C) — 2K, i(A+B—-C) - (A+ B).
Posta¢ rozwiazania zalezy od znaku wyrazenia
C(Cr) = 2K (a)4)- (6.6)

Rysunek 6.3 przedstawia region, w ktorym wyrazenie (6.6) jest wieksze oraz
region, w ktorym jest mniejsze od zera w dziedzinie okreslonosci K, ;.

(a) W regionie, w ktorym C((() — 2K (q);) > 0 (patrz region Py rysunek 6.3)
rozwigzanie przyjmuje postac

€3 > AZ,B -1,
5 > C(T)(A+QB—C)—2K(G)J(A+B—C)—(A+B)
3 C(¢(r)y—2K(a),i) ’

b) W regionie, w ktorym C((,) — 2K ,);) < 0 (patrz region P rysunek 6.3
(r) (a),
rozwigzanie przyjmuje postac

g3 > AZ‘B -1,
o < S (A+2B—C)-2K(p)(A+B=C)~(A+B)
3 C(C(ry—2K (a),5) ’
2. Jesli A+ B — C(1+¢€3) <0, to mamy
C(C(r) — .’ZK(a)’i)Eg > C(T)(A +2B-C)— QK(Q),Z-(A + B — C) — (A+ B).

(a) W regionie, w ktorym C((,) — 2K (q),;) > 0 (patrz region P, rysunek 6.3)
rozwigzanie przyjmuje postac

By ok A+B 1’
< ((T)(A-FQB—C)—QK(G)YZ-(A+B—C)—(A+B)
€3 C(¢ry—2K(a),i) )
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(b) W regionie, w ktorym C((() — 2K(4),;) < 0 (patrz region P rysunek 6.3)
rozwigzanie przyjmuje postac

€3 < AgB —1,
@ > ((T)(A+2B—C)—2K(a),i(A—|—B—C)—(A+B)
3 C(Cr—2K (a),)) :

W jaki sposob pokazaé, ze dla | € {1, 2, 3} rozwiazanie powyzsze nie jest sprzeczne
zademonstrujemy na najbardziej skomplikowanym przypadku, tzn. dla [ = 2.
Pozostawiamy czytelnikowi przeprowadzenie analogicznego rozumowania dlal =11
=3

Pokazemy, ze dla kazdego A; mozna podac takie ¢, dla ktérego mozna wybrac
g9 takie, ze |g5] > go 1 dla ktorego spelnione bedzie (6.4). Mozliwosé takiego
wyboru oznacza, ze £ jest wieksze od 0 i dla dowolnego zaburzenia £ > |go| W
t + l-szym iteracji algorytmu iteracji parabolicznej mozemy wygenerowac, trojke
Git1 = (Chas CAas Clv)s ktora oddalona jest o 28 od ¢ = (¢}, ¢2,¢}) co dowodzi tezy
twierdzenia. Musimy wiec rozpatrzy¢ dwa przypadki

1. Gdy B(2K,+1—-2(y) > 0, to rozwiazanie opisywane jest ukladami
nieréwnosci (6.6) i (6.6). Dla (6.6) mamy

C-A , (m(A+2B—-C)—-2Kyi(A+B—-C)—(A+ B)
B ’ B(2K, + 1 —2(()) '

a<min{

Poniewaz % —1 < 0 to tak wybrane £ < 0. To rozwiazanie odrzucamy, gdyz

musi by¢ € > 0. Dla (6.6) wybieramy natomiast

(r(A+2B-C) —2K(,)i(A+B-C) - (A+ B)

CcC-A ] }
’ B(2K,+1—2(y)) '

B

5>max{(

Taki wyboér daje nam € > 0.

Ostatecznie wiec ¢ jest wartoscia bezwzgledna z € wybranych w powyzszych
dwoch sytuacjach. Praktycznie oznacza to tyle, ze albo dla e5 < g9 < 0 lub
g9 > £¢ > 0, ktore mozna wyliczy¢ w kazdym kroku, spelniona jest nieréwnosé
(2.23).

2. Gdy B(2K,+1—-2(,) < 0, to rozwiazanie opisywane jest ukladami
nierownosci (6.6) i (6.6). Wprowadzmy oznaczenie

D— Q(r)(A+2B— C) = 2K(a)7i(A+B— C) — (A+B)

BK, + 1200 eQ

Jesli chodzi o (6.6) to uktad ten jest sprzeczny, gdyz % — 1 < 0 natomiast
D > 0, dlatego mozemy go dorzuci¢ z rozwazan. Rozwazmy wiec (6.6), dla
ktorego znak wyrazenia D przedstawiliSmy na rysunku 6.4.

Na rysunku 6.4 wida¢, ze wyrazenie D jest mniejsze od 0 dla wieksze czesci
regionu okre$lonosci. Tylko w tym regionie mozemy okresli¢ przedzial  nie
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Rysunek 6.4: W regionie P; wyrazenie (6.7) jest mniejsze od zera. W regionie Py
wyrazenie (6.7) jest wieksze od zera. W regionie P3 wyrazenie (6.7) nie jest okreslone.

zawierajacy 0. Rysunek 6.4 pokazuje rowniez, ze A; nie moze byé¢ dowolne.
Latwo rowniez pokazaé, ze w regionie gdzie D < 0 zachodzi

C—4_| _Gn(A+2B-C)-2Kw(A+B-C)-(A+B)
B BRE, +1— 25 '

Z tego wynika, ze (6.6) nie jest sprzeczny, gdy A; jest zbyt duze co do wartosci
bezwzglednej, tzn. np. gdy A; < 1/2 w regionie okreslonosci K4) ;. Nie jest to
restrykcyjnym ograniczenie poniewaz, ciag (; z zalozenia jest zbiezny. Warunek
na A; odpowiada zalozeniu z Lematu 5, ze d powinna by¢ dostatecznie mala.

6.3 Dodatek C

6.3.1 Wyrazenie A(e; ()

Minimum A} (g; ¢) paraboli zaburzonej dla [ € {1,2,3} mozemy zapisaé¢ jako
N =20 Mi(e¢),  1e{1,2,3),

gdzie \*((¢) jest minimum paraboli niezaburzonej.

Zalozmy, ze zarowno \*(() jak i ;\;‘(5; () sa minimami parabol otrzymanych za
pomoca transformacji ¢(-) opisanej w Dodatku A przy zalozeniu, ze f(¢1) < f(¢3),
tzn. gdy zachodzi przeciwna nieréwnos$¢ to wykonujemy obrét paraboli wzgledem
(% = 1/2 tak jak w punkcie 3. Algorytmu 3. Dla paraboli niezaburzonej mamy

_ lA(C(T) + 1) + B — C(T)O
2 A+B-C

()
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natomiast dla paraboli zaburzonej

1 Ay +1)(1+€)+B—(()C L
2 A(l4e)+B—C dlal=1,

Volen Al + 1)+ BA+e)~ iy O
/\l (87 C) - %A( ( )A+B(}13+E)i?(( ) | dla !l = 2, (68)
1 C(r +1)+ _C(r) O(1+4+¢€ ) -
2 )A—!—B—C(H-s) dla [ = 3.

dla zaburzen w punktach 0, () oraz 1 odpowiednio, gdzie () = % a A B,C sy
zdefinowane w Dodatku B. )
Upraszczajac wyrazenie |\* — A/ (e; ()| otrzymujemy

Ot A .
zc(AELB(iAC)C:) AT B=C dla =1,
) — +or(A— B _
Ay(g;¢) = sGrE—0) | ATBuo—c dal=2, (6.9)
A gl dla ! = 3.

2(A+B—C) ~ A+B—C(1+e)

6.3.2 Glowne warunki
Aby spetione byly nieréwnosci (2.41) musimy zapewnié¢!', ze A\*(¢) < (% Jest tak,
poniewaz jesli 5\;‘ (g;C) jest przesuniety o Ai(s;¢) w lewo to wowczas przesuniecie
go ponownie w prawo nie spowoduje, ze bedzie ono wieksze niz (2. Jesli 5\2‘(5; ()
jest przesuniete w prawo to mamy margines szerokosci 2A(g; (). Rozpatrzmy wiec
(2.41) dla zaburzen kolejno dla [ =1, l = 2 oraz [ = 3.

Dla [ = 1 mamy

A(C(r) + 1)(1 + E) + B — C(r)C
A(l+e)+B-C

Musimy rozpatrzy¢ dwa przypadki w zaleznosci od znaku mianownika.

< 2 (6.10)

1. Jesli A(14+¢)+ B —C >0, tzn.

B
£ >

—1 gdy A>0 lub

C—-B
B £ e -1 gdy A<O,

otrzymujemy
(1+e)A(1— C(r)) < C(r)(zB ={)=5
Roéwniez rozwiazanie tej nierownosci dzielimy na dwa przypadki w zaleznosci
od znaku A
(n(2B-C)-B

€ -1, gdy A>0 lub
Al = ()
C(r)(ZB - C) - B -
£ —1, gdy A<DO.

1Zauwazmy, ze analogicznymi nieréwnosciami sa A (g;¢) — Ay(g;¢) > ¢ dla | € {1,2,3}. Aby
byly one spetione zapewniamy \*(¢) > ¢2.
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2. Jedli A(14+¢)+B—-C <0, tzn.

< ———1, gdy A>0 lub

™

B
Z 2 1, gdy A<,

(&)

otrzymujemy
(1+e)A(l - () > (n(2B - C) - B.

Analogicznie rozwigzanie tej nieréwnosci dzielimy na dwa przypadki w

zalezno$ci od znaku A.

¢(»n(2B-C)-B
Al =)

(n(2B - C) —
AL =)

-1, gdy A>0 lub

B
-1, gdy A<O.

Tak wiec rozwiazanie dla [ = 1 zapisujemy definiujac b; i by

T e85 _ 4
1 A ’
r . A(C(r)'—])+B(2g(r)_1)_c(2<(7‘)_])
2T A(=¢(r) (6.11)
bl = min (Tl, Tg) " bg = max (’f'l, T'g) y
e S (bl, bg)

Rozwigzanie (6.11) nieréwnosci (6.10) moze by¢ interpetowane jako ograniczenie
btedu wzglednego tylko, gdy b; < 01by > 0. Ostatecznie wiec ograniczenie przyjmuje
postac

le] < min(]by], |ba]). (6.12)

Zastosowanie transformacji ¢ pozwala nam ,narysowa¢” region okreslony przez
(6.12) w R®, opisanej zmiennosciami \}((; ), C 21 e. Aby wyznaczy¢ region musimy
rozpatrzy¢ wszystkie parabole postaci y = ax? + bz + ¢ przechodzace przez punkty
[0, K4] i [1, Ky przy zalozeniu Ky > K; z minimum w punkcie 0 < \* < (2
Otrzymujemy wyrazenia na a, b oraz ¢ postaci

a K—K;

1-2x*
b = —2xEk (6.13)
c = I(l-

Z tego otrzymujemy, ze nie istnieje parabola z A* > 1/2 poniewaz wowczas byloby
a < 0 iskonstruowana parabola posiada maksimum w punkcie \* zamiast minimum.
Tak wiec rozpatrujemy jedynie A* € (0,1/2). Po zastosowaniu transformacji ¢ ta
rodzina jest przeksztatcana do jednej paraboli z minimum w \* i przechodzi przez
punkty [0, —2], [¢?,G(¢?)] i [1, —1]. Jak mozna tatwo sprawdzi¢ w interesujacym nas
regionie, tzn. dla ({(), A*) € (0,1) x (0,1/2) mamy b; < 01 by > 0.
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W ten sam sposob otrzymujemy ograniczenie na €, gdy | = 2 oraz gdy [ = 3.
Rozwigzanie dla [ = 2 mozemy zapisa¢ definiujac r; i ro w postaci
1 = 1,

B
() (2A-C)=A(1+( ()
To9 = ( B-2C,,) — 17 (614)

le] < min(|ry], |re])-

Dla [ = 3 natomiast mamy

a2 1
ry = e, (6.15)
le] < min(|ry], |re]).

1

Aby zapewni¢, ze wprowadzenie zaburzenia £ nie zaburzy wlasnosci wypuktosci
konstruowanej paraboli ¢(-) potrzebujemy dodatkowych warunkow. Zapisuja sie one

le] < min (’—@—1',05) dlal =1, (6.16)
le] < ‘—Q(iz”l - 1‘ dla =2, (6.17)
e| < 1 dlal=3, (6.18)

Rysunek 6.5 pokazuje wykresy powyzszych ograniczen bledow.
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allowed perturbation for f(0) allowed perturbation for f(t;m)

allowed perturbation for f(1)

Rysunek 6.5: Ograniczenie na ¢ dla ((;), A*) € (0,1) x (0,0.5) (zauwazmy, ze () >
A*) a) dla [ = 1 okreslone przez warunki (6.12) i (6.16) b) dla [ = 2 okreslone przez
warunki (6.14) i (6.17) (zauwazmy, ze dla () = 1/2 mamy osobliwo$¢) c) dla [ = 3
okreslone przez warunki (6.15) i (6.18).
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