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Free-space optical (FSO) communication is a promising key technology for large bandwidth, high
data rate and cost effective data transmission. However, FSO systems experiences crucial challenges
under atmospheric turbulence, pointing errors and eavesdropping threats. The proposed machine
learning framework uses generative adversarial networks (GANs) for eavesdropping threats and
malicious intrusions to improve the security. The GAN based framework influences a generative
model to simulate attacks, such as eavesdropping and jamming, whereas the adversarial model
learns to identify and mitigate these threats in real time. By continuously adapting these strategies,
the GAN framework enhances the robustness of the FSO communication link. Experimental results
show that the proposed framework minimizes interception threats. 
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1. Introduction

In the last two decades free-space optical (FSO) communication gains more attention
in telecommunication industry owing to its features like higher data rate, larger band-
width, quick deployment, small sized receiver, narrower beams and enhanced security
and also FSO is considered as key technology for solving the “last mile access” prob-
lem. In FSO point-to-point transmission of  information through the free space atmos-
phere is achieved using the visible/IR optical signals as the carrier frequencies. Optical
links typically operate between the 650 and 1600 nm wavelengths bands [1]. It can sig-
nificantly contribute to establish connectivity between high-rise buildings in cities,
remote areas and hill areas that are difficult to bridge. Further, a significant amount of
researches has been conducted for the deployment of  satellite-satellite, satellite-to
-earth station, and between the satellite-to-submarine. In FSO technology, modulated
optical beam propagates in free space atmospheric channel in which the properties are
random function of  space and time [2]. This makes FSO communication dependent
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on free space atmosphere and geographical location of  the system installed. Various
environmental factors such as rain, snow, fog, haze, etc., cause strong attenuation in
the signal propagation path and limit the link distance. The optical signal propagated
in atmospheric channel is impaired by various challenges such as link misalignment
errors, geometric losses and attenuation losses. Continuous monitoring of  the atmos-
pheric channel impairments and then optimizing the communication network perfor-
mance is the viable solution for the contemporary serious issue. It gives significant
information about the received signal quality and helps in system analysis [3,4]

More recently, machine learning (ML) is widely applied in the areas of  optical com-
munication since it avoids the need for developing complex mathematical models for
optical communication systems. ML is applied in a wide range of  applications, such
as classification, prediction and monitoring the performance of  the optical network.
This paper investigates recent advancements in enhancing the security and reliability
of  FSO communication systems. It provides a comprehensive review of  current tech-
niques for securing FSO links and strategies for performance optimization, and the role
of  machine learning in addressing these dual challenges. By analyzing state-of-the-art
solutions, this study aims to highlight key trends, research gaps, and opportunities for
future innovation in FSO networks.

2. Related works

The integration of  FSO communication into modern networks has gained significant
attention due to its high speed, secure, and low cost per bit data transmission. Research-
ers have investigated a range of  techniques/algorithms to address the eavesdropping
threats and focusing on enhancing the performance and reliability of the systems. In this
section the different key areas are examined: techniques for improving the security of
FSO communication networks, strategies for enhancing the performance of  the system,
and the role of  machine learning in optimizing and securing optical communication
systems. ABDELSALAM et al., highlighted the physical layer security (PLS) mecha-
nisms for protecting satellite and FSO links. This approach identifies threats vulnera-
bilities in satellite based FSO systems and outlines countermeasures for jamming and
eavesdropping using randomness in signal channels. Results show that narrow beams
in optical links intrinsically improve security but they require more advanced methods
against eavesdropping in non-terrestrial applications [5]. SHAKIR et al., discussed the
application of information theoretic PLS methods in FSO communication networks for
emphasizing the robustness against eavesdropping. Secrecy capacity and outage proba-
bility are utilized under line-of-sight FSO communication networks. This method exhib-
its better performance under simultaneous attacks on RF and FSO hybrid systems [6].
HICKS et al. proposed a cryptographic based method to safeguard FSO communication
links from interception by unmanned aerial vehicles (UAV) and drones in non-terres-
trial applications. Software defined radio platforms are used for achieving the en-
cryption of  data. It shows a 92% packet delivery rate (PDR) over short range
communication links with minimum computational overhead [7]. EGURI et al. reviewed
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alignment, tracking, and correction systems to mitigate the effects of  misalignment of
optical beam. Closed loop tracking of  signal reception and adaptive optics (AO) are
discussed to enhance the performance of  FSO communication system. He also high-
lighted that optical beam correction technique reduces the pointing error losses by up
to 40%, and enhances the signal stability significantly under adverse weather condi-
tions [8]. AKTER et al. investigated a hybrid radio over FSO (RoFSO) systems to mit-
igate the fading effects and improve transmission capability. Monte Carlo simulation
method is adopted to analyze the outage probability using α–μ fading model. It
achieved a 30% improvement in reliability performance [9]. LE et al. developed a mul-
ti-agent deep reinforcement learning (MADRL) technique for allocating power and
field-of-view (FoV) optimization to mitigate the multiple jamming attacks. Taylor ap-
proximation is used for optimizing power allocation and FoV angles. This MADRL
achieves near-optimal performance and enhancing the uplink sum rate by 25% [10].

MISHRA et al. discussed the integration of  ML in optical systems, covering the areas
of  adaptive resource allocation, network management, and signal optimization is re-
viewed. Supervised learning for signal optimization and reinforcement learning for re-
source allocation management are discussed. ML algorithms reduce the latency by
15% and improve reliability by dynamically adapting to atmospheric conditions [11].
NERY et al. developed an ML based adaptive optics technique to effectively mitigate
the turbulence for satellite based FSO models, Monte Carlo simulation and Zernike
coefficients based model are used for generating the training data to compensate the
phase distortions [12]. FURDEK et al. introduced ML based frameworks for detecting
the optical layer attacks. The combined approach of  supervised, semi-supervised, and
unsupervised learning for intrusion detection in network traffic are discussed. It pro-
vides better accuracy in identifying attack locations and minimizing the reducing re-
sponse times [13]. 

3. Security models for FSO communication systems

Free-space optical (FSO) communication is highly susceptible to security threats such
as eavesdropping, jamming, and interception due to its open-channel nature. In this
paper, various security models have been developed and compared with GAN based
technique to enhance the security of  FSO systems. The security models include phys-
ical layer security (PLS), cryptographic methods, beam correction techniques, hybrid
RF/FSO systems, and deep reinforcement learning (DRL) based security models.
These techniques are analyzed in a simulation environment by evaluating key param-
eters such as received power (dBm), bit error rate (BER), signal-to-noise ratio (SNR),
latency, packet loss to determine their effectiveness in different operational scenarios.

3.1. Physical layer security (PLS)

Physical layer security (PLS) exploits the physical characteristics such as signal intensity
(scintillation), beam directionality, narrow beam width, scattering and absorption, diver-
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gence, and path loss of  the FSO communication channel to provide secure data com-
munication [14]. Different techniques such as artificial noise generation, beam
forming, and channel based key generation are utilized to limit eavesdroppers [15]. It
aims to maximize the secrecy capacity by degrading the eavesdropper’s received signal
while maintaining the legitimate user’s data integrity. In a simulation environment, the
performance of  PLS is analyzed using received power (dBm) to assess the impact of
secure beamforming on signal distribution. A lower BER at the receiver and a higher
BER at an eavesdropper indicate effective security. The SNR is measured to determine
the degradation of  the eavesdropper’s channel while optimizing the legitimate user’s
transmission.

3.2. Cryptographic methods 

Cryptographic security in FSO communication employs encryption protocols, notably
quantum key distribution (QKD), to safeguard transmitted data [16]. While these tech-
niques offer robust end-to-end security, they often introduce additional computational
complexity and latency [17]. Simulating cryptographic methods involves assessing
how encryption impacts received power (dBm), ensuring that legitimate users can ef-
fectively decrypt signals. Monitoring the bit error rate (BER) is essential to verify that
encryption does not degrade the communication link. The signal-to-noise ratio (SNR)
plays a crucial role in determining the efficacy of  encrypted data transmission under
varying channel conditions. Given that cryptographic methods entail additional pro-
cessing, analyzing latency and packet loss is vital to measure the computational overhead
of  different encryption techniques. Furthermore, the impact of  weather conditions on
key exchange reliability is examined, especially in environments with high turbulence
or attenuation.

3.3. Beam correction techniques

Beam correction techniques are essential in FSO communication systems to address
challenges such as misalignment errors and optical turbulence, ensuring secure and sta-
ble data transmission. Methods like adaptive optics, spatial diversity, and aperture av-
eraging enhance signal, strengthen and reduce vulnerability to interception [18,19]. 

In adaptive optics, real-time adjustments to the optical wavefront are to correct dis-
tortions caused by atmospheric turbulence. For instance, the Shack–Hartmann wave-
front sensor is utilized to detect aberrations, which are then corrected to improve beam
quality and alignment [20]. Spatial diversity is implemented using multiple transmit-
ters and receivers can mitigate the effects of  atmospheric turbulence and misalignment.
By diversifying the spatial paths, the system becomes more robust against signal fading
and interruptions [21]. Aperture averaging method reduces signal fluctuations by aver-
aging the received optical power over a larger aperture. It effectively diminishes the
impact of  beam wander and scintillation, leading to improved BER performance [22].
In simulation environments, the performance of  the system is evaluated using the ef-
ficacy of  these beam correction techniques which involves monitoring several key per-
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formance indicators including received power (dBm), BER, and SNR [23]. A lower
BER and higher SNR signify effective beam correction, as these metrics reflect the
quality and reliability of  the communication link [24-25]. Additionally, simulating dif-
ferent weather conditions, such as fog, rain, and atmospheric scintillation, it is crucial
to assess the adaptability of  beam correction techniques. These simulations help in un-
derstanding how environmental factors affect FSO links and the effectiveness of  var-
ious mitigation strategies.

3.4. Hybrid systems (RF over FSO)

Hybrid RF/FSO systems integrate both radio frequency (RF) and free-space optical
(FSO) communication technologies to enhance security and reliability. By dynamical-
ly switching between RF and FSO links, hybrid systems mitigate the impact of  adverse
weather conditions and security threats such as jamming and interception [26]. For in-
stance, in scenarios where the FSO link is compromised due to fog or heavy rain, the
system can seamlessly transition to the RF link to maintain uninterrupted communi-
cation [27]. Evaluating the power levels received over both RF and optical channels
helps in understanding the system’s resilience and the effectiveness of  dynamic switch-
ing mechanisms.

3.5. Deep reinforcement learning (DRL) 

DRL is a data driven approach in which optimization in security is achieved by con-
tinuously learning and adapting to environmental conditions and threats. DRL based
models are used for realtime intrusion detection, adaptive beamforming, and intelligent
power allocation to counteract security risks dynamically. In a simulation framework,
DRL based security models utilize received power (dBm) as an input feature for learn-
ing based optimization strategies. BER and SNR are adjusted through reinforcement
learning policies to enhance security without compromising data integrity. The model
is trained and tested under various weather conditions to improve adaptability to tur-
bulence, fog, and other environmental factors that affect FSO link performance.

The implementation of these security techniques in FSO communication plays a crit-
ical role in ensuring secure and reliable data transmission. While PLS and cryptographic
methods secure communication at different layers, beam correction enhances alignment
against attacks, hybrid RF/FSO systems provide robustness under adverse conditions,
and deep reinforcement learning optimizes security dynamically. By incorporating re-
ceived power, BER, SNR and weather conditions in simulation models, researchers
can accurately evaluate and compare these techniques, leading to the development of
more secure and resilient FSO networks.

4. Proposed framework

The proposed framework leverages machine learning (ML) techniques to address the
dual challenges of security in FSO communication systems. The architecture shown in
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Fig. 1 outlines a generative adversarial network (GAN) framework to enhance the se-
curity of  FSO networks by identifying and mitigating anomalies or attacks in real time.
The GAN framework exploits a real time dataset containing the critical parameters for
FSO communication. The parameters include: received power in dBm, bit error rate
(BER), signal-to-noise ratio (SNR), latency, packet loss, and weather conditions. These
parameters are critical indicators of  the network’s performance. The real-time datasets
are sampled and normalized to ensure uniform scaling of input features. This transforms
the raw data into a form suitable for processing. The generator (G) receives a random
noise vector R  [0, 1] as input, which represents possible adversarial states, such as
eavesdropping or jamming. The generator generates a synthetic data that imitates the
behavior of  normal or anomalous FSO network conditions. The discriminator (D) dis-
tinguishes between real data (actual dataset) and synthetic data generated by the gen-
erator. Finally it evaluates the data to classify it as either normal or an anomaly. Where
normal represents the secure communication and anomaly indicates a potential security
threat.

The loss function estimator evaluates the loss for both the generator and discriminator
based on their performance. For the generator, the loss function shows how well it can
deceive the discriminator and for the discriminator, it represents the ability to correctly
classify real and synthetic data. The feedback from the loss function estimator is utilized
to update and optimize the GAN through iterative training.

5. Anomaly detection using generative adversarial networks (GANs)

Free-space optical (FSO) communication networks are extremely susceptible to secu-
rity threats as open air transmission medium is used for the propagation of  optical sig-
nal. The potential security threat includes: (i) the optical beam physically eavesdropped
by malicious entities. (ii) The communication link being disturbed by high power light
sources. (iii) The communication link becoming misaligned, either accidentally or in-
tentionally, leading to link degradation. (iv) Unauthorized data streams being inserted
into the communication data stream. Identifying these abnormalities in real-time com-
munication is more critical to maintain the security and reliability.

Fig. 1. Generative adversarial network (GAN) framework to enhance the security of  FSO networks.
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The proposed architecture of  GANs consists of  two major components the gener-
ator (G) and the discriminator (D), which is working in an effective manner to enhance
each other’s performance for anomaly detection in FSO communication networks.
The GAN learns the typical behavior of  the FSO network and detect security threats.
For this purpose, a dedicated real-time experimental setup is established with necessary
optoelectronic assembly and the received power, BER, SNR, latency, packet loss and at-
mospheric weather conditions are recorded for training and evaluation of the GAN mod-
el. The data are recorded during normal operating conditions as well as anomalies
introduced by turbulent atmosphere and security threats. The specifications of the dataset
parameters are listed in Table 1.

5.1. Model of  GAN: Generator 

The goal of  the generator is to transform a random noise vector into synthetic data that
resembles the real data distribution. This synthetic data is then evaluated by the discrim-
inator (D): generator (G) model maps a random noise vector R  z (0, 1) as input and
converts it into complex synthetic data samples (W), which can attempt to fool the dis-
criminator model (D). This is achieved by minimizing its loss function. The generator
loss is minimized when the log probability is maximized to some extent. The G  func-
tion is modeled as,  the ‘G’ model typically uses a convolutional neu-
ral network architecture which comprises an input layer with a random noise vector
R  z (0, 1), and R =[R1, R2, ..., Rn ]T, for every n-th hidden layer with weight W (n) and
bias b(n) is illustrated as 

(1)

where h(n) is output of  n-th layer, f (ꞏ) is ReLu activation function depicted as 

(2)

The synthetic data Wsynthetic is generated in final output layer, it is shown in Eq.(3),

(3)

where K is the total number of  layers.

T a b l e 1. Specifications of  the dataset parameters. 

Parameter Range

Received power −45 to 0 dBm

BER 10−9 to 10−4 

SNR 7 to 8 dB

Latency 1 to 100 ms

Packet loss 0 to 20%

Weather conditions Summer winter, monsoon, post monsoon

G: R Wsynthetic

h n  f W n h n 1–  b n + =

f x  max 0 x =

Wsynthetic W K h K 1–  bK+=
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The generator G improves its ability to generate more realistic data by minimizing
its loss function. 

5.2. Model of  GAN: Discriminator 

Discriminator D is typically a neural network which consists of  series of  fully con-
nected layers followed by an output layer that accurately classifies whether the given
input is generated from the FSO network (actual) or synthetic which is generated by
generator G. The discriminator is modeled as 

(4)

where D (x) = 1 (the input to the D is real), and D (x) = 0 (the input to the D is synthetic).
The input data received from generator G is W = [W1, W2, ..., Wn ]T. The hidden

layer function is modeled using the following equation: 

(5)

where f (ꞏ) is leaky ReLu activation function and it is given by 

(6)

Output layer gives a single scalar y  [0, 1], which represents the input data which
are real.

Discriminator is updated during the training phase to improve its ability to correctly
identify real and synthetic data by minimizing its loss function. During the training
phase, the GAN model is trained with data that represent the normal operating condi-
tion of  FSO network. The input data to the FSO network parameters include received
power (dBm), BER, SNR, latency, packet loss and weather conditions, that influence
the FSO network performance. These parameters are normalized before they are given
as an input to the GAN represented as 

(7)

Once GAN is trained with required dataset to model the normal behavior of  the
FSO network, it can easily classify anomalies in real-time. This is achieved by estimating
the anomaly score, discriminator score (D-score) and reconstruction error. The anom-
aly score is used as a quantitative metric to accurately classify how much the real-time
data deviates from the normal behavior. The output of  discriminator and reconstruction
error are used as metric to estimate the anomaly score. Discriminator outputs the prob-
ability score represented in the following equation, indicating whether the input data
are real or synthetic: 

(8)

D W 0 1 =

h n  f V n h n 1–  c n + =

f x 
x if x 0
0.01 if x 0




=

W Powernorm BER log SNRnorm Latencynorm Pocket_lossnorm   =

Dreal ScoreD=
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Lower values (<0.5) indicate potential abnormalities. Reconstruction error (RE)
measures the difference between the real and synthetic data and it is given as 

(9)

The combined anomaly score Sanomaly is a weighted combination of  Dscore and RE,
represented as 

(10)

where α and β are the weighting factors.
The system used a predefined threshold T to detect the data as normal or anomalous.

If Sanomaly < T the data is classified as normal, if  Sanomaly > T the data is classified as
anomalous. The specifications of  the GAN are summarized in Table 2.

6. Results and discussion

The performance of  the proposed GAN is compared with other techniques such as
physical layer security, cryptographic methods, beam correction techniques, hybrid
systems (RF/FSO) and deep reinforcement learning, under simulation environment for
the same specifications of  the free space communication experimental setup is illus-
trated in Table 3. 

GAN framework outperforms standard cryptographic methods in adaptability to
atmospheric turbulence and maintaining a lower computational complexity compared
to reinforcement learning based techniques. GAN-based security models outperform
all other techniques, offering the highest secrecy capacity (96 bps/Hz). DRL techniques
provide significant improvements over traditional security models, dynamically adapt-
ing to threats. Hybrid RF/FSO and beam correction techniques balance security and
reliability, making them suitable for real world deployment. PLS and cryptographic
methods remain effective but may require additional enhancements for high-threat en-
vironments. 

RE Wreal G z –
2

=

Sanomaly α 1 Dreal–  β Wreal G z –
2

+=

T a b l e 2. Specifications of  GAN.

Generator 3 fully connected layers

Discriminator 3 fully connected layers

Learning rate 0.001

Epochs 275

Evaluation metrics Detection accuracy

False positive rate (FPR)

False negative rate (FNR)

System overhead
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While conventional security techniques such as physical layer security (PLS), crypto-
graphic methods, beam correction techniques, hybrid RF/FSO systems, and deep
reinforcement learning (DRL) provide various levels of  protection in FSO communi-
cation, they are limited in terms of  adaptability, computational efficiency, and robust-
ness against evolving security threats. 

The generator in the GAN framework creates realistic eavesdropping and jamming
attempts, allowing the adversarial discriminator to continuously learn and improve de-
tection capabilities. This iterative learning process significantly enhances the accuracy
of  attack detection, resulting in a higher detection accuracy (96.83%), compared to
deep reinforcement learning (92.58%) and hybrid RF/FSO (91.33%). Other methods
rely on predefined models, making them less adaptable to novel or evolving threats.

GAN based security minimizes misclassification of threats, reducing the risk of false
alarms. The framework achieves a false positive rate (FPR) of  3.67% and a false neg-
ative rate (FNR) of  1%, significantly better than cryptographic methods (FPR: 5.22%,
FNR: 3%) and beam correction techniques (FPR: 6.53%, FNR: 5%). Lower FPR en-
sures that legitimate transmissions are not wrongly classified as attacks, reducing un-
necessary security interventions. Table 4 illustrates the performance comparison of  the
security techniques.

GAN based security maintains a balance between efficiency and accuracy, unlike
cryptographic methods that introduce high computational overhead. Traditional cryp-
tographic models require significant processing resources and introduce higher latency
(8.22 ms for AES/RSA methods). In contrast, the GAN-based system achieves real
-time response with a latency of  <50 ms, making it suitable for real-time optical com-
munication networks. Unlike deep reinforcement learning, which requires extensive
training and computational power, GANs achieve high security with moderate com-
putational complexity. Figure 2 shows the comparison of  various security models in
FSO communication based on latency and accuracy. 

Fig. 2. Comparison of  various security models in FSO communication.
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Fig. 3. Performance of  the GAN framework under low, moderate, and high turbulence conditions. (a) Ac-
curacy rates under different turbulence conditions. (b) False positive and negative rates across conditions.
(c) System overhead (CPU usage) under turbulence conditions.
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The performance of  the GAN framework under low, moderate, and high turbulence
conditions is illustrated in Fig. 3. 

Table 5 shows the real-time data input from an FSO network, Wsynthetic and deviated
value during a foggy condition. In this case, the estimated D-score and reconstruction
error are 0.3 and 10.5 which indicates significant deviation. The final Sanomaly is esti-
mated as 3.83 which is greater than 2.5 and the system classifies this data sample as
anomalous. The generator produces synthetic (Wsynthetic) data representing normal at-
mosphere conditions. The design estimates an anomaly score (Sanomaly) based on the
discriminator’s response and the reconstruction error (RE). Based on the anomalous
score and the threshold, the data is classified as normal or anomalous. 

The performance of  the GAN in FSO networks is evaluated based on the detection
accuracy. It is represented in the following equation as the amount of  correctly iden-
tified data samples over the entire number of  samples: 

(11)

where TP is true positive and indicates correctly detected anomalies, TN is true neg-
ative (correctly detected normal data), FP is false positive and indicates normal data
incorrectly classified as anomalies, FN is false negative and indicates anomalies
missed by the system. The experimental results obtained are illustrated in Table 6.

The different performance metric shows that the highest accuracy (95%) is obtained
in clear weather condition and decreases as atmospheric turbulence increases, especially
in high turbulence conditions (88%). FP and FN increase in undesirable weather con-

T a b l e 5. Real-time data input from an FSO network, Wsynthetic and deviated value.

Parameter Real time data Wsynthetic Deviated value

Received power −22 dBm −18.6 dBm 3.4 dBm

BER 2 × 10−5 5 × 10−5 1.5 × 10−5 

SNR 11dB 16.7 dB 5.7

Latency 53 ms 37ms 1 to 100 ms

Packet loss 15% 11% 0 to 20%

Accuracy TP TN+
TP TN FP FN+ + +

------------------------------------------------------=

T a b l e 6. Real-time data input from an FSO network, Wsynthetic and deviated value. 

Atmospheric condition Number of  samples TP TN FP FN Accuracy

Low turbulence 1500 690 720 34 56 95.00%

Moderate turbulence 1500 660 754 30 56 94.26%

High turbulence 1500 659 735 41 65 88.93%



286 T. PASUPATHI, A.V.S. JAMES
ditions, system overhead parameter increases in adverse environments, due to higher
processing demands, with CPU usage reaching 78% in high weather conditions.

7. Conclusion

In this work, a GAN framework is proposed for enhancing the security and reliability
of  FSO networks. The framework utilizes the learning capabilities of  GANs to detect
and mitigate anomalies and potential security threats in real time. By integrating key
FSO performance parameters, the system continuously monitors the network and dy-
namically adapts to evolving attack scenarios. The proposed framework achieved a de-
tection accuracy of  96.83%, significantly outperforming traditional threshold-based
anomaly detection systems, which typically range between 80 and 85%. The GAN frame-
work exhibited a response latency of  less than 50 ms for detecting and mitigating anom-
alies, making it suitable for real-time applications in dynamic FSO environments.
Overall, the GAN based security framework offers a robust, adaptive, and scalable
solution for safeguarding next-generation FSO networks. Future research could focus
on integrating the framework with hybrid optical-RF systems, optimizing the compu-
tational efficiency of  the GAN model, and testing its performance in large-scale real
-world deployments.
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