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Focusing field transverse energy flow simulation
of azimuthally polarized Lorentz—Gaussian beam
modulated by power order space-variant phase
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On the basis of the vector diffraction theory, this article investigates the transverse energy flow dis-
tributions of azimuthally polarized Lorentz—Gaussian beams modulated by power order space-var-
iant phase modulation. The findings of the study show that the distribution of transverse energy
flow is significantly affected by variations in the power order of the space-variant phase n. We ob-
tained circular distribution, two zone distribution, bullet-shaped distribution, and reverse Z-distri-
bution. Furthermore, it can be observed that the variation of phase change parameter C will affect
the transverse energy flow distributions, while the variation of topological charge m will lead to
the diffusion of energy. These phenomena may assist in capturing specific particles.
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1. Introduction

The Lorentz beam, which was first presented by EL GAWHARY ef al. [1-3] has garnered
a lot of interest from scientists lately [4-10]. M1ao successfully achieved ideal beam
shaping by adjusting the beam parameters of diagonally polarized Lorentz—Gaussian
beams. In addition, MiAo also generated the required beam with specific parameters
through holographic methods [11]. SHAMSODINI ef al. investigated how the focusing
properties of four-petal Lorentz—Gaussian beams were affected by beam parameters
and severely nonlinear nonlocal medium factors [12]. SUN ef al. investigated how the
concentrated optical field distribution of Airy—Lorentz—Gaussian beams was affected
by triangle phase and beam characteristics [13]. In a paraxial optical ABCD system,
EBRAHIM et al. investigated how various beam parameters affected the transmission
properties of circular Lorentz—Bessel-Gaussian beams [14].

Azimuthally polarized beams belong to a type of cylindrical vector beam and have
always been a focus of research for many researchers [15-19]. CHI et al. compared
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the focusing characteristics of azimuthally polarized beams and radially polarized
beams, and ultimately obtained ultra long super-resolution optical needles using azi-
muthally polarized beams and ideal binary phase elements [20]. After azimuthally
polarized Laguerre—Gaussian vortex beams passed through various optical elements,
ALKELLY et al. investigated the focusing properties of these beams. By adjusting certain
parameters, these distinctive focal forms can be produced [21]. In a 4% focusing sys-
tem, YANG et al. investigated the focusing properties of azimuthally polarized Laguerre
—Gaussian beams and, by varying the parameters, were able to get three focusing
modes [22]. At the same time, the energy flow distribution of light beams has also re-
ceived a lot of attention from researchers [23-26]. KHONINA et al. attempted to generate
reverse energy flow using cylindrical vector beams [27]. By modifying the pertinent ra-
dially polarized vortex beam parameters and meeting a certain relationship, CHEN et al.
can achieve negative energy flow in the focal region [28]. KOTLYAR et al. studied the
influence of optical vortices on the energy flow of cylindrical vector beams, and three
types of energy flows can be achieved by changing the conditions [29]. The transverse
energy flow distributions of azimuthally polarized Lorentz—Gaussian beams modulat-
ed by power order space-variant phase modulation have not yet been investigated.

Precise control of transverse energy flow is of great significance for applications
like optical trapping and optical communication. Specifically, by modulating spatial
parameters such as the polarization distribution and topological charge of vector vortex
beams, transverse energy flow can be achieved in a tightly-focused system, thus pro-
moting the development of the field of optical field control. This paper will discuss
the transverse energy flow distributions in the focusing field of an azimuthally polar-
ized Lorentz—Gaussian beam modulated by power order space-variant phase under
various conditions, such as altering the topological charge, power order of the space
-variant phase, and phase change parameter.

2. Theory

A high numerical aperture objective lens focuses an azimuthally polarized Lorentz
—Gaussian beam that has been filtered by a phase plate to create a tightly focused light
field, as shown as Fig. 1.

The Lorentz—Gaussian incident beam in the focusing optical system is expressed
as follows:
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where ¢ is the azimuthal angle, 0 is the convergence angle, and 6 e [0, arcsin(NA)].
The numerical aperture of this focusing mechanism is denoted by NA and m denotes
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Fig. 1. System structure diagram.

the topological charge of the vortex. w, is relative Gaussian parameter and y,, is relative
Lorentzian parameter.
The phase on the phase plate can be represented as
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where C is a phase change parameter, 7 is the power order of the space-variant phase,
and 6, is the maximum convergence angle. It is worth mentioning that » = f'sin& and
ro = fsin6,,,,, where f is the focal length, so the ratio of sinf to sin6,,,, in the phase
can be evolved from r/r(, and this makes the phase related to both radial and angular
components; thus, the power order phase gets a space-variant distribution.

The azimuthally polarized Lorentz—Gaussian beam modulated by power order
space-variant phase in the focusing optical system can be expressed as follows using

Egs. (1) and (2):
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According to the vectorial diffraction theory [30,31], the intensity of the electric
field in the focal region can be represented as
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Substituting Eq. (3) into Eq. (4), the electric field in the direction of x is
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The electric field in the direction of y is
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The electric field in the direction of z is
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where k£ = 2n/1 is the wavenumber, 4 is the wavelength of the incident beam, and f'is
the focal length of the focusing objective.

The intensity of the magnetic field in the focal region can be represented as

H = kyxE
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where the unit vector of the wave vector is denoted as & and it can be written as
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Substituting Eq. (9) and Eq. (3) into Eq. (8), the magnetic field in the direction of x is
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The magnetic field in the direction of y is
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The Poynting vector can be represented as [32,33]
S = < Re[E x H*] (13)
8n

3. Numerical results

The aforementioned formulas are used to simulate the distributions of the transverse
energy flow on the focal plane under different values of #, m and C. In this article, the
parameters are selected as follows: the numerical aperture of the focusing optical system
NA = 0.95, the wavelength 4 = 632.8 nm, the relative Gaussian parameter w, = 1.2,
and the relative Lorentzian parameter y,, = 1.6.

Firstly, we set the power order variable phase to 0 and only discuss the influence
of topological charges on the transverse energy flow distribution. Figure 2 shows the
energy flow distribution of an azimuthally polarized Lorentz—Gaussian beam when
n =0, C =0, and different values of m. When m = 0, the beam is not subjected to any
phase modulation, and the distribution range of transverse energy flow is small and
solid, as shown in Fig. 2(a). When m = 1, the distribution range of transverse energy
flow becomes larger and exhibits a circular distribution, as shown in Fig. 2(b). When
m = 2, the size of the hollow area increases along with the transverse energy flow ring’s
radius, as shown in Fig. 2(c). When m = 3, the radius of the flow ring continues to in-
crease, as shown in Fig. 2(d). It is evident that as m increases, the transverse energy
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Fig. 2. Normalized transverse (S, , ,) energy flow distributions whenn =0, C = 0and(a)m = 0, (b)m = 1,
(c) m =2, and (d) m = 3. The directional orientation of energy flow is represented by the black arrows.

flow ring’s radius progressively grows. In Fig. 2(a)—(d), the energy flow is in a coun-
terclockwise direction.

Figure 3 shows the transverse energy flow distributions of an azimuthally polarized
Lorentz—Gaussian beam when n =1, m = 3, and different C. When C = 0, the trans-
verse energy flow exhibits a circular distribution, as shown in Fig. 3(a). When C =-1,
the transverse energy flow ring exhibits a tendency to shift in the direction of the neg-
ative x-axis, as shown in Fig. 3(b). When C = -2, the transverse energy flow ring keeps
moving in the negative direction of x-axis, as shown in Fig. 3(c). When comparing the
transverse energy flow ring when C = 1 with that when C = 0, the transverse energy
flow ring tends to shift in the positive direction of the x-axis, as shown in Fig. 3(d).
When C increases from 1 to 3, the transverse energy flow ring continues to move in
the positive direction of x-axis, as shown in Fig. 3(e) and (f), respectively. It can be
observed that as C increases in the positive direction, the transverse energy flow ring
gradually moves towards the positive x-axis direction. When C is negative, as C grad-
ually decreases, the transverse energy flow ring gradually moves towards the negative
direction of x-axis. This provides assistance in capturing particles at different locations.
In Fig. 3(a)—(e), the energy flow is in a counterclockwise direction.
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Fig. 3. Normalized transverse (S, ) energy flow distributions when n=1, m =3, and (a) C=0,
b)) C=-1,(c)C=-2,(d) C=1, (e) C=2, and (f) C = 3. The directional orientation of energy flow
is represented by the black arrows.

Figure 4 shows the transverse energy flow distributions of an azimuthally polarized
Lorentz—Gaussian beam when n = 2, m = 3, and different C. When C = —1, the trans-
verse energy flow consists of two parts that are mutually opposed, as shown in Fig. 4(a).
When C = -2, the energy flow distribution on the left moves in the x-axis’s negative
direction, whereas the energy flow distribution on the right moves in the x-axis’s pos-
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Fig. 4. Normalized transverse (S, ) energy flow distributions when n =2, m=3 and (a) C=-1,
(b) C=-2,(c) C=1,and (d) C = 2. The directional orientation of energy flow is represented by the black
arrows.

itive direction, as shown in Fig. 4(b). By comparing the transverse energy flow distribu-
tionat C = 1 with that at C = —1, we can find that the transverse energy flow distribution
in both cases is centrally symmetrical, as shown in Fig. 4(c) and Fig. 4(a), respectively.
When C = 2, the energy flow distribution on the left moves in the negative direction
of x-axis, whereas the energy flow distribution on the right moves in the positive di-
rection of x-axis, as shown in Fig. 4(d). From the above, it can be seen that when C is
a positive number, the gradual increase of C will cause the two parts of the energy flow
distribution to gradually move away. When C is a negative number, the gradual de-
crease of C will cause the two parts of the energy flow distribution to gradually move
away, and the energy flow distribution in both cases shows different directions of
movement. In Fig. 4(a)—(d), the energy flow of both parts is in a counterclockwise di-
rection.

Figure 5 shows the transverse energy flow distributions of an azimuthally polarized
Lorentz—Gaussian beam when n = 3, C = 3, and different m. When m = 1, the trans-
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Fig. 5. Normalized transverse (S, , ,,) energy flow distributions whenn = 3,C=3and(a)ym = 1, (b) m = 2,
(¢) m =3, and (d) m = 4. The directional orientation of energy flow is represented by the black arrows.

verse energy flow is distributed like bullets and the energy is mainly concentrated at
the head of the bullet, as shown in Fig. 5(a). When m = 2, there is a trend of energy
diffusion, as shown in Fig. 5(b). When m increases from 3 to 4, there is a tendency for
multiple parts of energy to gradually separate while diffusing, as shown in Fig. 5(c)
and Fig. 5(d), respectively. This indicates that the energy shows a gradually dispersing
trend as m grows. In Fig. 5(a)—(d), the energy flow is in a counterclockwise direction.

Figure 6 shows the transverse energy flow distributions of an azimuthally polarized
Lorentz—Gaussian beam when n =4, C = 3, and different m. When m = 1, the trans-
verse energy is mainly concentrated in two regions and exhibits a reverse Z-shaped
distribution, as shown in Fig. 6(a). When m = 2, the transverse energy is mainly con-
centrated in four regions, but the energy density of the regions near the two new focal
points is lower than that of the previous two regions, as shown in Fig. 6(b). When
m increases from 3 to 4, the energy density of the two regions near the focal point
shows a gradually increasing trend, while the energy density of the other two regions
shows a gradually decreasing trend, as shown in Fig. 6(c) and (d), respectively. This
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Fig. 6. Normalized transverse (S,  ,) energy flow distributions whenn =4,C=3and(a)m = 1,(bym = 2,
(¢) m =3, and (d) m = 4. The directional orientation of energy flow is represented by the black arrows.

indicates that energy progressively accumulates in the vicinity of the focal point as
m grows. In Fig. 6(a)—(d), the energy flow is in a counterclockwise direction.

4. Conclusions

In the focusing field of an azimuthally polarized Lorentz—Gaussian beam modulated
by power order space-variant phase modulation, the transverse energy flow patterns
are examined in this study. The research results indicate that when power order phase
is not added, the transverse energy flow shows a circular distribution. Additionally, as
the topological charge m increases, the energy flow loop’s radius progressively grow.
When n =1 and m = 3, the transverse energy flow still follows a circular distribution.
When C is negative, the transverse energy flow ring gradually moves towards the neg-
ative x-axis direction as C decreases. While C is a positive number, the transverse en-
ergy flow loop gradually moves towards the negative x-axis direction as C decreases.
When n =2 and m = 3, the transverse energy flow is mainly divided into two parts;
When C is negative, the transverse energy in the left half gradually moves towards the
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negative x-axis direction as C decreases, while the transverse energy in the right half
gradually moves towards the positive x-axis direction as C decreases; When C'is a pos-
itive number, the transverse energy of the left half gradually moves towards the neg-
ative x-axis direction as C increases, while the transverse energy of the right half
gradually moves towards the positive x-axis direction as C increases; When n = 3 and
C = 3, the transverse energy flow exhibits a bullet-shaped distribution at m = 1, and as
m increases, the energy flow gradually spreads; When n = 4 and C = 3, the transverse
energy flow exhibits a reverse Z-shaped distribution, and as m gradually increases, the
energy gradually concentrates near the focal point. Additionally, changes in n will have
an impact on the overall energy flow distribution. Overall, these unique distributions
may contribute to particle capture and transport in different situations.
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