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In this study, we derived a theoretical formula to analyze the self-constructing properties of Hermite
non-uniformly correlated (HNUC) beams when encountering an obstacle, focusing on intensity and
coherence. Our results reveal that, despite an obstacle, the beam’s intensity distribution continues
to display a significant self-focusing phenomenon. Within the focal length range, the lateral inten-
sity distribution remains consistent with unobstructed propagation, regardless of the obstacle’s
size. However, outside the self-focusing range, increasing the obstacle size leads to a decrease in
the self-reconstructive capability of the intensity distribution, necessitating a longer propagation
distance for recovery. Additionally, the presence of obstacles considerably impacts the coherence
properties of the beams. When the obstacle is small, the degree of coherence (DOC) experiences
a significant reconstructing effect. Our results have potential applications in optical tweezers,
microscopy, and optical communication.
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1. Introduction

The spatial coherence of a laser beam, as its fundamental characteristic, directly affects
the propagation behaviour of the beam. When spatial coherence decreases, the par-
tially coherent beam formed often exhibits unique advantages over fully coherent
beams [1-3]. Specifically, beams with non-uniform spatial correlation functions (i.e.,
non-uniform correlation structured beams) exhibit novel characteristics such as self
-focusing, self-splitting, and self-shifting during propagation due to their non-tradi-
tional coherence distribution [4-6]. Since the Gori team established the theoretical
basis for designing spatial correlation functions [7,8], the researchers have success-
fully developed new light sources, including non-uniform Laguerre Gaussian correla-
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tion beams, pseudo-Bessel correlation beams, and radially polarized Hermitian beams
by constructing various non-Gaussian correlation functions [9-14], greatly expanding
the research dimension of non-uniform correlation beams.

The self-reconstructive property of a beam refers to its ability to reconstruct the
initial propagation characteristics after environmental interference, which has been
validated in various beam systems. Early research first observed self-reconstructing
phenomena in zero-order Bessel beams [15], followed by systematic studies in non-
diffractive beams such as Bessel Gaussian beams [16]. As our understanding deepens,
research has found that self-reconstructing properties are not exclusive to nondiffrac-
tive beams: vector Laguerre Gaussian beams [17], tightly focused Bessel Gaussian
beams [18], and partially coherent beams all exhibit this property [19,20]. Notably,
the radial polarized Schell model beam exhibits excellent self-reconstructing ability
regarding intensity distribution and polarization state when encountering obstacle scat-
tering [20]. Many studies have further revealed the influence of different parameters
on the self-reconstructing process, including the circular dislocation reconstruction
phenomenon of partially coherent LG beam coherence discovered by LIU et al. [21],
the regulatory effect of vortex phase distortion factor on self-healing confirmed by
Peng’s team [22], and the self-reconstructing in intensity distribution, polarization, and
coherence properties after disturbed propagation studied by ZHOU et al. [23]. However,
so far, research has only been limited to uniformly coherent structured beams, and there
have been no reports on whether there is a self-reconstructive phenomenon in the prop-
agation of non-uniform correlated structured beams.

Based on the above research background, we select a Hermitian non-uniform cor-
related (HNUC) beam as the model and, through systematic numerical simulation, re-
veal the evolution law of  the propagation characteristics after obstacle scattering. We
also quantitatively analyze the regulation mechanism of light source parameters and
obstacle size on the self-reconstructing behaviour of the beam. 

2. Theoretical evidence

The spatial coherence properties of a scalar HNUC beam are characterized by the cross
-spectral density (CSD) in the space-frequency domain and the mutual coherence func-
tion in the space-time domain. The CSD is the quantity of choice for studying quasi
-monochromatic fields, and it is defined as a two-point correlation function [24].

(1)

where r1 = (x1, y1) and r2 = (x2, y2) are two arbitrary position vectors transverse to the
direction of propagation, E(r) represents the field fluctuating in a direction perpendic-
ular to the z-axis, the asterisk denotes the complex conjugate, and the angular brackets
denote a monochromatic ensemble average. 

The CSD of scalar HNUC can be expressed in the following general form 

(2)

W r1 r2  E * r1 E r2  =

W r1 r2  p ν H * r1 ν H r2 ν dν=
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where p (v) is a non-negative weight function, H (r1, v) and H (r2, v) are two arbitrary
kernels. We take H (r, v) to be a kernel of the form

(3)

(4)

where the beam widths are denoted by σ. Substituting Eqs. (3) and (4) into Eq. (2), and
we derive the CSD of the beam as the following expression 

(5)

where rc = (2/ka)1/2 is the correlation width, A0 = 1/H2n(0) and H2n(ꞏ) denotes the
Hermite polynomials order 2n. 

The propagation of the HNUC beams obstructed by nontransparent obstacles is
shown in Fig. 1, and the CSD matrix of the beams can be obtained using the following
expression.

(6)

where ρi = (xi , yi) is the transverse position vector in the receiver plane, A, B, C, and
D are the optical system transfer matrix elements, and T(ri) is the transmittance func-
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Fig. 1. Illustration of a HNUC beam self-reconstructing process. 
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tion of the opaque obstacle. We assume this obstacle is circular and has Gaussian ab-
sorption efficiency for convenience. Therefore, T (r) could be written as [23]

(7)

in which r0 = (x0, y0) denotes the transverse position of the opaque obstacle in the
source plane, and ωd is the obstacle size. Substituting Eqs. (2) and (7) into Eq. (6), after
tedious integration and simplification, we obtain the semi-analytical expressions of
CSD matrix elements of the beam in the receiver plane.

(8)

where

(9)
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and

Based on these formulas, we can conduct numerical studies on the propagation char-
acteristics and self-reconstructing performance of the HNUC beams with obstacles. 

3. Numerical example and analysis 

In the following numerical examples, we explore the propagation characteristics of the
HNUC beams under various light source parameters in free space when encountering
opaque obstacles. The elements of the optical system transfer matrix are A = 1, B = z,
and D = 1. Meanwhile, for the other parameters, we assume the following values:
λ = 632.8 nm, σ = 2 mm, rc = 1 mm, n = 2, x0 = 0, y0 = 0, unless otherwise indicated
in figures. Firstly, we will investigate the self-reconstructive properties of the intensity
distribution. The beam described by the CSD matrix has an average intensity in the
observed plane from Eqs. (8) and (9) can be obtained as

(10)

Figure 2 illustrates the normalized intensity distribution of the HNUC beams at var-
ious distances in the presence of obstacles. It can be observed from Fig. 2 that when
the beam encounters an obstacle, it does not diverge monotonically during propagation;
instead, it maintains a notable self-focusing phenomenon. Additionally, within the fo-
cal length range, the lateral light intensity distribution remains consistent with unob-
structed propagation, regardless of the size of the obstacle (as shown in Fig. 2(a4)–(a5),
(b4)–(b5), (c4)–(c5), and (d4)–(d5)). This consistency is attributed to the diffraction
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and scattering effects caused by the obstacles, which lead to beam divergence. How-
ever, the intrinsic properties of the HNUC beam promote convergence. The interplay
between these factors results in complete self-restructuring of the HNUC beam within
the focal length range. Beyond this range, obstacles distort the transverse intensity dis-
tribution of the HNUC beam. The larger the obstacle, the more pronounced the distor-
tion of the intensity distribution becomes, requiring a greater propagation distance for
the self-reconstructing process.

Figure 3 shows the influence of obstacles on the self-reconstructing ability of the
HNUC beam intensity distribution at different propagation distances when obstacles
are located at different positions of the transverse section. For easy comparison, the first
row displays the result of obstacle position coordinates x0 = y0 = 0. From Fig. 3, it can
be seen that as the obstacle position gradually deviates from the coordinate origin (as
shown in Fig. 2(b1)–(b7), (c1)–(c7), and (d1)–(d7), the obstacle position coordinates
increase from x0 = y0 = 0.25 mm to x0 = y0 = 0.5 mm, and finally to x0 = y0 = 1 mm),
the scattering effect of the obstacle on the propagation of the beam gradually weakens,
the distortion of the lateral intensity distribution also decreases, and compared with
Fig. 3(a1)–(a7), the self-reconstructing ability of the HNUC beam significantly in-
creases.

We use similarity degree to characterize the self-reconstruction ability in order to
quantify the impact of obstacles and light source parameters on the beam. The detailed
expression is as follows [19,20]

(11)

the S ( ρ, z) and S' ( ρ, z) represent the spectral density of the HNUC beam under con-
ditions with and without an obstacle, respectively. According to the definition, the
γ (z) varies between 0 and 1. When γ (z) = 1, it indicates S ( ρ, z) = S' ( ρ, z), meaning that
obstacles do not affect the propagation of the beam. Therefore, we can assess the self
-reconstructive ability of the beam by observing the changes in γ (z).

Figure 4 shows how the similarity degree γ (z) of the HNUC beam varies along the
propagation distance z with different beam source parameters, particularly when the
obstacle size is ωd = 50 μm. 

The analysis in Fig. 4 illustrates that the similarity degree of the HNUC beam in-
creases rapidly, with significant fluctuations, until reaching a distance of 1 meter. Be-
yond this point, the increase slows and approaches a specific value closely related to
the parameters of the beam source. This trend highlights the self-reconstructing nature
of the HNUC beam. An obstacle in the source plane disrupts the HNUC beam, resulting
in substantial differences between the obstructed beam and the original HNUC beam
at shorter distances. However, as the beam propagates beyond 1 meter, the obstructed
beam increasingly resembles the HNUC beam due to the self-reconstructing effect.
Figure 4(a) shows how similarity degrees vary at different coherence lengths. When

γ z 
S ρ z  S' ρ z d2ρ

S ρ z  d2ρ S' ρ z d2ρ
----------------------------------------------------------------------------------------=
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the propagation distance is less than 1 meter, beams with longer coherence lengths
gradually achieve a similarity degree of 1 after experiencing notable fluctuations, es-
pecially when compared to those with shorter coherence lengths. Conversely, once the
distance exceeds 1 meter, the similarity degree of beams with shorter coherence lengths
tends to stabilize around a specific value after a decrease in fluctuations. These findings
suggest that beams with longer coherence lengths are more likely to self-heal and retain
the original beam’s propagation characteristics. Figures 4(b) and (c) further illustrate
the variation of the similarity degree with propagation distance for different beam
widths and orders, respectively. The similarity degree of the light beam gradually sta-
bilizes after experiencing fluctuations and an initial increase. In comparison, beams
with greater beam widths and higher orders exhibit a higher similarity degree, indicat-
ing a stronger self-healing ability.

Next, we investigate the coherence self-reconstructive ability of the HNUC beam
with an obstacle. According to the theory of coherence and polarization of light, the
degree of coherence (DOC) for the HNUC beam at a pair of field points ρ1 and ρ2 can
be written as

(12)

Fig. 4. The variation of similarity degree as a function of propagating distance with different beam source
parameters when encountering an obstacle. (a) rc = 0.1, 0.5, and 1 mm, ωd = 50 μm, (b) σ = 1, 2, and
4 mm, ωd = 50 μm, and (c) n = 1, 2, and 3, ωd = 50 μm. 

μ ρ1 ρ2 z  
Tr W ρ1 ρ2 z  

Tr W ρ1 ρ2 z   Tr W ρ1 ρ2 z  
------------------------------------------------------------------------------------------=
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Figure 5 shows that the beam’s transverse |η( ρ, –ρ) | distribution varies with different
obstacles at different propagation distances. For easier comparison, the first row pre-
sents the beam’s transverse |η ( ρ, –ρ) | distribution without obstacle. The first column
shows that on the source plane, the beam’s coherence displays a non-uniform distri-
bution. As the propagation distance increases, the beam coherence gradually approach-
es a uniform distribution, achieving coherence of 1 radially outward from the center.
This result indicates that non-uniform, partially coherent light evolves into fully co-
herent light. Notably, when the propagation distance exceeds 10 m, the non-uniform,
partially coherent light, even without obstacles, transforms fully coherent (as illustrat-
ed in Fig. 5(a5) and (a6)). Comparing the coherence distribution in the first row, it be-
comes evident that the obstacle sizes significantly affect the beam’s coherence
distribution. More considerable obstacles weaken the self-reconstructing ability of  the
beam’s coherence, requiring a longer propagation distance to restore a uniform distri-
bution, as shown in Fig. 5(a1)–(a6).

Figure 6 illustrates the influence of the transverse |η( ρ, –ρ) | of the HNUC beam
at various propagation distances when obstacles are located at different positions of
the transverse section. The results indicate that the presence of obstacles alters the co-
herence distribution of the beam due to scattering and diffraction effects compared to

Fig. 5. The transverse |η ( ρ, –ρ) | distribution of an HNUC beam with different obstacles at different
propagation distance distances. As a comparison, the first row shows the results without the obstacle.
(a1)–(a6) ωd = 0 μm, (b1)–(b6) ωd = 10 μm, (c1)–(c6) ωd = 25 μm, and (d1)–(d6) ωd = 50 μm. 
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a situation without obstacles. Furthermore, the position of these obstacles can impact
the symmetry of the coherence distribution, which interferes with the self-reconstruc-
tive process of the beam. Experimental results show a negative correlation between
obstacle size and beam self-healing ability, meaning that the larger the obstacle, the
weaker the self-reconstructive ability. However, as the propagation distance increases,
the DOC of the beam gradually improves. Ultimately, the DOC of the beam approaches
a fully coherent state, resembling the condition observed without obstacles.

Figure 7 illustrates how various beam source parameters influence the transverse
|η ( ρ, –ρ) | of the HNUC beam at different propagation distances in the presence of ob-
stacles. For comparison, the red curves represent the results obtained without any obsta-
cles. As shown in Fig. 7, when the propagation distance is short, the positions of the
obstacles and the beam source parameters, such as beam width, coherence length, and
beam order, significantly affect the beam’s coherence distribution. On the source plane,
this coherence distribution changes dramatically and markedly differs from that of the
HNUC beam when the propagation distance is less than 10 meters. Furthermore, as the
propagation distance increases, this difference gradually diminishes. When the prop-
agation distance exceeds 100 meters, the coherence distribution closely resembles that

Fig. 6. The transverse |η ( ρ, –ρ) | distribution of an HNUC beam with different transverse position co-
ordinates of the obstacle at different propagating distances. As a comparison, the first row shows the
results without the obstacle. (a1)–(a6) x0 = y0 = 0, ωd = 0, (b1)–(b6) x0 = y0 = 0, ωd = 25 μm, (c1)–(c6)
x0 = y0 = 0.25 mm, ωd = 25μm, and (d1)–(d6) x0 = y0 = 0.5mm, ωd = 25μm. 
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of an unobstructed light beam. The initially non-uniform coherent beam evolves into
a fully coherent beam, and by the time the propagation distance surpasses 1 kilometer,
the effects of obstacles and source parameters on the beam become negligible, leading
to a coherence distribution consistent with that of an unobstructed light beam. These
findings suggest that the beam’s coherence demonstrates a self-reconstructing capa-
bility. 

4. Conclusion 

This study focused on Hermitian non-uniform correlation beams as a typical example
of investigating the self-healing properties of vector beams with non-uniform correla-
tion structures. Even when the beam encounters obstacles, its intensity distribution still
shows a notable self-focusing phenomenon. The intrinsic characteristics of non-uni-
form light beams help offset the effects of obstacle scattering, allowing the beam to
self-reconstruct within the focal length range. Beyond this range, the self-reconstruc-
tive ability of the beam depends on the size of the obstacles and the source parameters
of the beam. Additionally, obstacles impact the coherence and polarization distribution
of the beam; as the propagation distance increases, the DOC distributions of the beam
return to their original states. 

Fig. 7. The transverse |η ( ρ, –ρ) | distribution of an HNUC beam with different beam source parameters
at different distances when encountering an obstacle. As a comparison, the red curves show the results
without the obstacle (a1)–(a4) σ = 1.5, 2, 2.5 mm, and ωd = 1 μm, (b1)–(b4) rc = 1.5, 2, 2.5 mm, and
ωd = 1 μm, and (c1)–(c4) n = 1, 2, 3, and ωd = 1 μm. 
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