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To accurately predict the strain field distribution at the assembly position and achieve online cali-
bration of the assembly process, built on an online monitoring system for assembly status based
on FBGs network. The installation positions of various FBG sensors were designed through strain
field simulation analysis. A strain field prediction model based on support vector machine (SVM)
algorithm was designed. It uses FBGs data to predict the strain field distribution at the assembly
position for correcting the assembly position and posture. In the calibration experiment, the strain
response curves of six FBG sensors were tested, and their linearity was above 0.98. The maximum
sensitivity was 2.67 pm/N and the minimum sensitivity was 1.12 pm/N. Three typical assembly
anomalies were compared. For different types of assembly anomalies, the response wavelength val-
ues and distribution characteristics of each FBG sensor have significant differences. For the same
type of assembly anomaly, there is a good linear relationship between the response wavelength val-
ues and strain values. In the prediction experiment, the maximum error of strain prediction for the
validation set was 4.37 με, and the average error was 2.54 με. The predicted results are close to
the training set results.

Keywords: fiber optic sensing, strain field prediction, machine learning, support vector machine (SVM)
algorithm.

1. Introduction

The global manufacturing industry is moving from automation to intelligence [1]. In
traditional manufacturing, automatic control can complete the assembly task of prod-
ucts. But the product structure becomes increasingly complex, and the assembly pro-
cess is no longer simply repetitive work [2]. The prerequisite for achieving intelligent
assembly control is to accurately and comprehensively obtain the strain field distribu-
tion in the assembly area, so strain field prediction technology has become a new re-
search hotspot.

The Boeing Company was the first to introduce the iGPS 3D measurement system
in aircraft docking operations, which played an important role in precision docking of
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large structures [3,4]. The accuracy of iGPS is generally around 0.1 mm, and its testing
accuracy is high. The advantage of optical scanning is non-contact and high accuracy,
but it cannot obtain strain field distribution. MARGUET et al. [5] studied measurement
assisted assembly (MAA) applicable to the overall assembly of passenger aircraft,
which can calibrate the assembly process by obtaining strain and temperature data.
VICHARE et al. [6] analyzed the strain data of the assembly and derived the deformation
of the assembly under strain. Electric strain sensors can obtain strain information, but
they are susceptible to electromagnetic interference and pose a risk of electrostatic
damage when installed on metal robotic arms. This method requires high openness in
the assembly environment, but the actual working environment often does not have it.
Secondly, external interference such as vibration during the assembly process signif-
icantly interferes with laser measurement. The use of fiber optic sensing can avoid the
problem of environmental openness, and at the same time, environmental vibration in-
terference can be eliminated through differential processing of multiple FBG signals.

Compared to other methods, fiber optic sensing technology is not affected by
electromagnetic interference, and its small size can be installed in almost any assembly
position. Because it is passive, it has advantages such as moisture resistance and cor-
rosion resistance. NICOLAS et al. [7] installed a large number of FBG sensors on air-
craft wings to obtain strain field information of the wings. YI et al. [8] has developed
a multi-fingers robotic arm. It can control the magnitude of applied force based on FBGs,
with a strain control accuracy of  6.0 N. WANG et al. [9] achieved linear feedback con-
trol in the range of 0.2–3.4 N using FBG sensors network. HOU et al. [10] designed
a grasping structure through fiber optic sensing, with a feedback speed of only 0.8 s.
LIU et al. [11-13] proposed a strain distribution detection method for free-form surfaces
based on FBG arrays, and tested the strain distribution trends of free-form surfaces un-
der five different strain conditions. They achieved flexible assembly and docking of
earpiece structures through fiber optic sensing networks, with strain sensitivity better
than 24.5 pm/N. YU et al. [14] proposed an intelligent detection and correction system
based on fiber optic sensing network to achieve adaptive control of product installation.
The experiment showed that the relative error of the inversion accuracy of its position
was better than 10.0%. Fiber optic sensing networks can obtain strain information from
the testing location and fuse this information to form a strain field prediction model,
in order to complete feedback control for intelligent assembly. This article uses the sup-
port vector machine (SVM) algorithm in mechanical learning technology to predict
the changes in the strain field during the assembly process, providing quantitative guid-
ance for the assembly process.

2. System composition and working principle

The system includes a fiber optic sensing network, a data acquisition module, and a data
processing module. It controls the mechanical gripper to complete the operation pro-
cess of assembling the assembly to the assembly position, as shown in Fig. 1.
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The broadband light source emits broadband light, which enters the fiber coupler
after passing through the optical isolator. The fiber coupler adopts a 1-2 structure de-
sign. Broadband light enters the FBG sensing network on the assembly. It collects
wavelength changes at corresponding positions, and then the test data is returned to
the demodulator by the fiber coupler. The computer analyzes the test strain field based
on machine learning strain field prediction algorithms and preset standard data. It pre-
dicts its changing trend and completes online correction. The correction constant ad-
justs the pose of the assembly by manipulating the mechanical gripper through the
mechanical control module. Finally, the assembly error was corrected. As shown in
Fig. 1, the assembly on the left side is movable. The assembly position on the right is
fixed.

3. Strain field simulation and FBG layout design

The material used for simulating the assembly structure is structural steel, with
a Poisson’s ratio of  0.3 and a Young’s modulus of  2 × 1011 Pa. The dimensions of
the bottom structure are 200 mm×100 mm×10 mm. The angle of the assembly ear
hole is 75°, the height is 89.09 mm, and the thickness is 10 mm. The diameter of the
central ear hole is 25 mm, and the diameter of the four small ear holes around it is 6 mm.
The stress position is 100 N, and three positions are tested separately.

The placement of  FBG on the assembly is very important. FBG sensors can obtain
continuous strain information at the assembly position, thereby providing real-time
feedback on the assembly status. It can correct assembly errors and achieve online cali-
bration of the assembly process. In order to lay the FBG sensor at the most sensitive
position of the assembly structure, external strain simulation analysis was conducted
on the assembly structure in ANSYS, as shown in Fig. 2(a)–(c). 

When there is a displacement error in the vertical direction (referred to as situ-
ation A), additional strain will be generated at the compression position. When the ex-
ternal strain is set to 100 N in the simulation, the strain field distribution is shown in
Fig. 2(a), with the most sensitive position in the red area and the maximum deformation

Fig. 1. Assembly calibration system based on fiber optic strain field prediction algorithm. 
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of  7.3872×10–5 mm. The distribution of stress field gradually decreases along the ear
hole direction from the maximum position, and stress attenuation is significant in the
bottom structure. When there is a displacement error in the insertion direction (referred
to as situation B), the strain field distribution is shown in Fig. 2(b), with the most sensi-
tive position in the red area and the maximum deformation of  7.9739×10–4 mm. The
stress field is strongest on both sides of the bottom center position and gradually de-
creases as it extends towards both ends. The stress values in the ear canal are similar.
When there is an error in the assembly posture (referred to as situation C), the strain
field distribution is shown in Fig. 2(c), with the most sensitive position in the red area
and the maximum deformation of 4.33×10–4 mm. The distribution of stress field
spreads out from the position of the stress point, and the stress is more concentrated
in the direction biased towards the ear hole. The stress values on the bottom surface
increase on both sides of the center position, which is opposite to the stress field dis-
tribution characteristics of situation A. From Fig. 2(a)–(c), the abnormal form of strain
field varies for different assembly errors. It proves the feasibility of quantifying as-
sembly anomalies and guiding assembly correction using FBG sensing network test
data. Based on the simulation results of different positions, six FBG sensors were in-
stalled at several sensitive locations of the assembly, as shown in Fig. 2(d). In the test,

(a) (b)

(c)(d)

Fig. 2. Strain field distributions corresponding to different assembly abnormal states. (a) Vertical dis-
placement error. (b) Insertion direction displacement error. (c) Position error. (d) Distribution of  FBG on
the physical assembly. 
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image recognition is used to perform real value testing on the position of  the test struc-
ture, in order to calculate the error of the inverted position of the fiber optic sensor.

4. Strain field prediction model by SVM 

Firstly, the strain loading device is used to apply external strain to the assembly in the
process of predicting assembly strain. Each FBG sensor collects the wavelength response
at the corresponding position and inverts it into strain data. Then, we construct a solu-
tion model suitable for assembly error correction in the SVM model, and train the mod-
el to analyze the trend of strain field changes based on test data from FBG sensors. It
calculates its deviation from the standard position to complete the correction of as-
sembly position and posture. The test data of  FBG sensors is used as the input/output
set, and a nonlinear mapping relationship is set between load requirements and strain
data. If some of the test data is used as input and the other part is used as output, the
functional relationship is as follows:

(1)

Then it is transformed into the optimal problem corresponding to the variable input
value εi , and its support vector machine model [15] is 

(2)

Among them, ω is the slope of the optimal hyperplane in the support to the vector
machine, c is the penalty coefficient, n is the number of test points, μi is the weight
coefficient, ξi is the relaxation variable, and d  is the intercept of the optimal hyper-
plane. Simplifying Eq. (2), there are 
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Among them, α is the Lagrange multiplier, Q is a semi-positive definite matrix of n×n,
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Among them, K (εai , εaj ) is the kernel function equation. εai  and εaj  respectively rep-
resent the strain of the i-th and j-th in the x-axis and y-axis directions on the optimal
hyperplane. Since Eq. (4) is dual before and after, the optimal solution of ω needs to
satisfy

(5)

Among them, g (εai) is the nonlinear mapping of εai  from the input space Rn to the high
-dimensional feature space G ; εai  represents the strain at the initial state a.

(6)

Finally, the support vector machine model applied for predicting the strain field at
the assembly position is 

(7)

Among them, εai  and εaj  respectively represent the strain of i-th and j-th in the x-axis
and y-axis directions on the optimal hyperplane at the initial state a. This nonlinear
mapping function can be used for predicting the strain field of assemblies. The strain
information of the test is imported into the input end, and the prediction model is start-
ed. The output end outputs the predicted strain field result and provides the correction
parameters for the calibration fitting error.

5. Experiment

5.1. Calibration and testing of FBG sensors

The laser used in the experimental system is TLS1006F fiber laser, with a wavelength
scanning range of  1548 to 1568 nm and a wavelength resolution of  1 pm. The de-
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modulation equipment is FI-1511M fiber grating demodulator, with a test band of
1525–1556 nm and a resolution of  1 pm. The assembly control section has 6 degrees
of freedom, namely x-axis, y-axis, and z-axis rotation, xoy plane rotation, xoz plane ro-
tation, and yoz plane rotation. The minimum step distance of the robotic arm is 0.5 mm.
The minimum control accuracy of the control end is 0.5 mm and 1 deg.

Before assembly testing, all FBG sensors need to be calibrated. The testing range of
the strain is 0–200 N, and the center wavelength position of the FBG is tested every 10 N
within this range. The results are shown in Fig. 3.

From Fig. 3, the strain response curves of the six FBG sensors are all linear, with
linearity above 0.98. It proves that when external abnormal strain is applied to the as-
sembly, there is a good linear relationship between the wavelength shift of each FBG
and the magnitude of the strain. For different FBG sensors, their strain sensitivity is
also different. Although there are the same material and packaging structure for FBG
sensors, they are attached to different positions, resulting in varying amounts of wave-
length shift. The strain sensitivities of  FBG1, FBG2, FBG3, FBG4, FBG5, and FBG6
are 1.12, 2.43, 1.15, 2.26, 2.48, and 2.67 pm/N. Although their materials and packag-
ing are the same, due to the different positions where they are pasted, the degree of
deformation they can undergo varies, resulting in significant differences in their re-
sponse sensitivity. The linearity of the test curves for FBG1, FBG2, FBG3, FBG4,
FBG5, and FBG6 are 0.98, 0.98, 0.96, 0.97, 0.96, and 0.97, respectively. There are
significant differences in strain response effects at different positions, which indirectly
proves that strain field distribution can be used to invert assembly anomaly types and
guide correction.

5.2. Pattern analysis for different types of assembly errors

To quantify the effect of assembly errors on various FBG sensors, three common as-
sembly anomalies were measured. The test situation is divided into: in situation A,
there is a displacement error in the vertical direction. When the strain is 50 N, it is A1,

Fig. 3. Strain calibration test curves of  6 FBGs. 
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and when the strain is 100 N, it is A2. In situation B, there is a displacement error in
the insertion direction. When the strain is 50 N, it is B1, and when the strain is 100 N,
it is B2. In situation C, there is an angle error in the assembly posture. When the strain
is 50 N, it is C1, and when the strain is 100 N, it is C2. The deviation strain is set to
50 and 100 N, respectively, in order to compare the influence of strength changes on
system identification. The test results are shown in Fig. 4.

Compare the wavelength responses of 6 FBGs under different testing conditions. In
situation A1, the wavelength responses of all six FBGs are less than 100 pm. The wave-
length response value of FBG4 is the largest, and it is 67.8 pm. When the strain increases
from 50 to 100 N (A2), the wavelength response of  FBG4 is 137.4 pm. The wavelength
increase of other FBGs has also doubled. It proves that the testing process changes lin-
early. In situation B1, the wavelength response value of  FBG2 is the largest, and it is
659.3 pm. When the strain increases from 50 to 100 N (B2), the wavelength response
of FBG2 is 1228.4 pm, and it also follows a linear relationship. In situation C1, the
wavelength response value of FBG6 is the largest, and it is 643.5 pm. When the strain
increases from 50 to 100 N (C2), the wavelength response of  FBG6 is 1234.2 pm, and
it also follows a linear relationship. Comparing situation A, situation B, and situation C,
there are significant differences in the impact of different types of assembly anomalies
on FBG wavelength changes. When the same type of anomaly occurs, the effect of dif-
ferent strain intensities on the wavelength variation of FBG has a linear relationship.
So using test data from multiple FBGs can not only identify the types of assembly ab-
normalities, but also quantitatively analyze their status.

5.3. Strain field prediction experiment

On the basis of verifying the response relationship between different types of assembly
anomalies and FBG, the predictive performance of the algorithm was tested. Among
the 100 sets of data tested, 80 sets were selected as the input set for learning, and 20 sets
were used as the validation set. Then they are compared the measurement results with
the predicted results and the accuracy of the model prediction is calculated. The ex-

Fig. 4. Wavelength responses of different FBGs under 6 testing conditions.
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ternal strain on the assembly part is gradually increased in units of 10 N at the assembly
position. The loading strains are 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 N, respec-
tively. Train the prediction training set with 200 sample points and use 40 samples to
test the test set. The comparison results between the test set and the prediction set are
shown in Fig. 5.

As shown in Fig. 5(a), when the strain value inverted from the test data is the input
quantity, the predicted stress value is calibrated near the true value. The error threshold
is set to ±2 με, with a mean of 1.57 με. Using the model again for predictive analysis
of the validation set, the maximum absolute value of strain prediction error is 4.37 με,
the average error is 2.54 με, and the root mean square error is 0.814 με, and the relative
errors is 0.981. From the above three indicators to measure accuracy, the machine
learning prediction algorithms have high accuracy. As shown in Fig. 5(b), the test data
was validated using this algorithm, and the test results were in good agreement with

(a)

(b)

Fig. 5. Comparisons of strain prediction model test results. Prediction results of  (a) strain training set, and
(b) strain validation set. 
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the real results, with an average error of  less than 1.82 με, indicating that the prediction
model can effectively invert the real-time state of the target strain field.

6. Conclusions

Aiming at the intelligent correction problem of assembly abnormalities, an online de-
tection system for assembly strain field based on fiber optic sensing network was built.
We designed a strain field prediction model based on machine learning, based on the
simulation analysis of the strain field distribution of the assembly structure, and we
optimized the distribution design of FBG sensors. For different assembly anomalies,
the wavelength response of all FBG sensors was measured in the experiment. The quan-
titative identification of abnormal states was completed based on their response inten-
sity and distribution trend. The main contribution of the paper is to provide a strain
field prediction model. This model can be applied in the field of intelligent assembly,
providing quantitative data for identifying and correcting assembly anomalies, and re-
alizing online feedback control based on flexible perception intelligent assembly.
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