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To obtain the state information of multiple targets in a fiber optic sensing network, we improve
the target state recognition probability. A target state recognition algorithm based on data mining
is proposed. An orthogonally distributed FBG sensing network is designed based on the charac-
teristics of fiber optic sensing. The clustering weights and clustering degree for multi-target state
classification are derived. A target state recognition model based on data mining is constructed.
The time interval between peak-to-peak tip positions in an aliased signal containing a faster-moving
target is narrower. The more targets are aliased, the greater the time width of the overall echo re-
sponse. The average test speeds for target A, target B, and target C are 0.99 m/s, 2.86 m/s, and
4.87 m/s, with relative errors of 1.3%, 4.7%, and 2.5%, respectively. The experimental comparison
of target recognition probabilities before and after data mining shows that the recognition rate is
significantly improved after applying this algorithm. It is especially effective for overlapping sig-
nals of state-similar targets. Moreover, this algorithm also suppresses the system’s false judgment
rate to a certain extent.
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1. Introduction

Fiber optic sensing technology is widely used in fields such as large-scale security, re-
gional target localization, and identification due to its characteristics of broad testing
range and high sensitivity [1-3]. With the increase in the testing area and the number
of targets within the testing range, signal aliasing leads to a higher false detection rate.
It becomes a major challenge in target recognition and state analysis. Improving data
recognition rates has become a research focus in the state recognition of  targets in fiber
optic sensing networks.

TEJEDOR et al. [4] laid out a fiber optic sensing network along a pipeline to capture
surrounding vibration signals, thereby determining whether there is engineering activ-
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ity that may harm the pipeline, enabling classification of different interference signals.
SIDELNIKOV et al. [5] tested several abnormal interference sources and analyzed them
based on the frequency comparison results. The detection rate could reach 87.4%, but
could not analyze the motion state of the targets. LI et al. [6] used neural networks to
analyze construction vibration data. The test position of the target can be inverted with
an accuracy of ±5 m. LIU et al. [7] combined deep learning and genetic algorithms to
enhance the signal-to-noise ratio of target signals in fiber optic sensing data. Com-
pared to the amplitude recognition method, its recognition rate was improved by 45%.
GENG et al. [8] designed an information entropy-based feature separation algorithm. It
was used to test the anomalous nodes in fiber optic sensing networks, achieving an ac-
curacy superior to 93.4%. However, it could only recognize the characteristic anomalies.
CHE et al. [9] applied an algorithm combining sliding window and confidence. It com-
pares two types of noise for interference target recognition, improving the fault toler-
ance of target identification. LIANG et al. [10] designed an adaptive algorithm for fiber
optic sensing networks. The correlation coefficient is better than 0.92 for the 2 kinds
of anomalous signals to be recognized. PAN et al. [11] used multiple fiber grating sen-
sors to acquire target vibration signals. The classification accuracy can reach 93.3%.
When the number of  FBGs exceeds 30, the signal differentiation will decrease signif-
icantly. SHANG et al. [12] integrated variational mode decomposition with support vec-
tor machines to identify four types of abnormal signals, achieving an accuracy greater
than 98.4%. The existing literature mainly judges whether the target exists and its type,
while there is relatively little analysis on the motion state of multiple targets. This ar-
ticle focuses on the design of FBG sensor distribution to achieve simultaneous recog-
nition of multiple targets and states.

Artificial neural networks [5], genetic algorithms [7], data mining [8], etc., have
their own scope of application. Although artificial neural networks have better learning
ability, they are prone to falling into local optima when the data volume is large [9].
Genetic algorithms can achieve multi-target type comparison, which is conducive to
multi-parameter optimization. However, it requires a large amount of data to complete
the a priori parameter setting and is prone to large deviations when unknown targets
enter the network. The advantage of data mining is that it can be used for fast processing
of large amounts of data with low dependence on a priori parameters. In contrast, due
to the orthogonal setting of FBG positions in this system, there is a certain correspond-
ence between test data and test positions, which reduces the requirements for data pro-
cessing. This algorithm constructs an input layer set that conforms to the data type
based on data features, and then uses data mining algorithms to complete classification,
thereby improving the probability and speed of target state recognition.

2. FBG distribution design and target state recognition

In the testing range of the fiber optic sensing network, the echo signals from the targets
exhibit different characteristics under various states. Classifying the features of the
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original data based on signal characteristics is of great significance for target state in-
version [13]. The state parameters of the target mainly include: position and velocity.
Let the position of the target be (xi , yi), and the velocity be v. The FBG closest to the
target produces the strongest echo response, and the coordinate position of the target
can be calculated based on the degree of response of the FBG. We have designed an
orthogonal arrangement where one horizontal FBG sensor is followed by one vertical
FBG sensor, arranged alternately. The location of the numbering of these FBG sensors
is known. This design aims to have universality of test results within a larger testing
scope. The velocity of the target can be calculated based on the time between different
FBG positions of the target. Let the initial wavelength of the FBG sensor be λB. When
the target affects the FBG, the relationship between the wavelength change and the
initial wavelength is as follows:

(1)

Among them, ΔλB is the wavelength variation of FBG, α is the thermal expansion co-
efficient of FBG, ξ  is the thermo-optical coefficient of FBG. ΔT is the temperature
variation. Pe is the elastic optical coefficient of FBG. Δε is the axial strain of FBG.
Since the target motion speed is much larger than the ambient temperature change
speed, Eq. (1) can be simplified as

(2)

where ct is the temperature compensation coefficient. In the test area, the FBG sensors
are laid out as shown in Fig. 1.

From time t1 to time t2, the target moves from P1 to P2. When the sampling interval
is Δ t, the response signal of FBGi is 

(3)
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sition changes of target in the testing area. 
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The target velocity v can be expressed as 

(4)

The target position (x2, y2) can be represented as 

(5)

The state of the target can be obtained by Eqs. (4) and (5). The time can be calculated
from the clock of the test system. Parameters can be calculated from the calibration
when the state is known. The coordinate position can be calculated from Eq. (3) by
testing the wavelength variation. The placement depth of FBG will have an impact on
the test results, so in order to obtain better response, the FBG sensor is placed at a depth
of about 2 mm. This depth is sufficient to protect the integrity of the FBG sensor while
still maintaining good sensitivity.

3. Design of target state recognition model

3.1. Data mining and classification

For a single target, its correct rate is high. But when there are multiple targets, especially
when the motion areas of the targets are close to each other. The response signals of
FBG will have the problem of aliasing. This phenomenon will significantly reduce the
target recognition probability. To improve the recognition probability of target states,
multi-target echo signals are classified and recognized by data mining. For the data
classification problem, cluster analysis is a commonly used data mining tool. The es-
sence of cluster analysis is to categorize similar data together and build a similarity
matrix about the data types based on the data features. Thus, the mapping relationship
between the original data and the data to be processed is accomplished.

Let the weight of the target be tested and the set of all wavelength responses be cm(ti ),
ti  is the time, m is the serial number of the FBG at the test point, and m = 1, 2, ..., M.
The clustering weights are calculated by categorizing the sampled data from t1 to ti :

(6)

where μm is the fuzzy affiliation degree, 1 ≤ m ≤ M. Let the information set A =
= (a1, a2, ..., an) of the target to be measured contain the density metrics that charac-
terize its state:
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(7)

When the density in the region reaches a maximum value of cmax, the density metric
of the target state information is Dmax. The ratio of the density metric Di to the maxi-
mum value of Dmax ( fi = Di /Dmax) is applied to determine whether the test point is the
same class of target data. The ratio is affected by the target state information weights
and the radius of the neighborhood at the corresponding location. The smaller its ratio,
the more effective the clustering algorithm is in clustering the initial data. The higher
the relevance of its data, the easier it is to improve the target recognition probability.
Then the clustering degree K of target state information is 

(8)

From the above equation, the weights of target state classification are controlled
by the weight parameter cm (ti ) and the clustering degree K. The model enables the data
with the same features to complete the clustering, thus realizing the target state recog-
nition. After substituting the clustering degree parameter in formula (8) into the algo-
rithm, the inversion result of formula (5) can be corrected, resulting in more accurate
position and angle information, and thus more precise calculation of velocity.

3.2. Target recognition model design

The model constitutes the echo wavelengths with similar attributes into a new input
layer by clustering analysis and calculates their corresponding weight parameters. Data
mining of the initial wavelength response values is accomplished by clustering anal-
ysis, so that the wavelength response information of different types of targets is divided
into different data intervals at the input layer. In the data processing layer, the clustering
degree is used to filter the wavelength response data containing the state information
of the target to be measured, to realize the purpose of improving the accuracy of target
recognition. The target recognition model is shown in Fig. 2.

As shown in Fig. 2, the wavelength response signal of  FBG is the raw data, in which
different FBG positions carry the responsive wavelength information according to dif-
ferent states of the target in the actual test environment. The meaning expressed here
by different colors is the difference in wavelength response caused by different types of
targets. In (1), the raw wavelength response data are clustered and analyzed. The basis
for cluster weights is the duration and amplitude intensity of the response wavelength,
as different target states correspond to different durations and intensities. The cluster-
ing weights are set concerning Eq. (6). A new collection of separated wavelength re-
sponse data can be obtained after clustering analysis. This data collection contains
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several sub-collections with consistent target state attributes, such as A1 and A2. At
the same time, the density metrics containing their state features and their ratio param-
eters are calculated according to the data features. Finally, the clustering degree of the
target state information is obtained. Take the subsets in the new collection as the input
data for data classification processing, and take the weight parameter cm (t) and the
clustering degree K as the boundary conditions for data classification. Complete the
classification of multi-target state information. 

4. Experiments

The target state recognition system based on fiber optic sensing network is shown in
Fig. 3. The experiments were carried out using an M1014 broadband light source with
a wavelength range of 1525–1565 nm. The demodulator was the THEC-12 fiber optic
demodulator with a wavelength resolution of  ±1 pm. To simulate the minimum test
area in the fiber optic sensing network, nine FBG sensors are selected. The minimum
value of the center wavelength is 1526.547 nm, and each bandwidth interval is 3 nm.
The test area is an open field of 6.0 m×6.0 m, and the FBG sensors are laid in a way
that is consistent with Fig. 1(a). During the experiment, the system tests three targets
simultaneously. Target A: a 75 kg person walking with a mean velocity of 1.0 m/s;
target B: a person riding a bicycle (total mass of 85 kg) with a mean velocity of
3.0 m/s; target C: a 65 kg person running with a mean velocity of 4.0 m/s. Because the
distribution structure of the whole FBG sensing network is the same, the inversion of
the different test results can be performed by discussing only the 2 typical directions
of motion calculation. Case 1 is the motion along the x-axis, and case 2 is the diagonal
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Fig. 2. Target state recognition model based on data mining. 
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motion along y = x. As shown in Fig. 1, the x-axis FBG distribution is equivalent to
the y-axis FBG distribution rotated by 90°. 

The system mainly consists of three parts: sensing module, acquisition module, and
processing module. The sensing module is composed of a fiber optic sensing network,
which obtains the vibration signal of the target to be measured in the test area. The test-
ing scope in the testing module is for a minimum unit, and in fact, increasing the testing
scope only requires completing the replication of the same testing unit. The acquisition
module consists of two parts: output and input. The output is composed of the modu-
lation module, laser, and amplifier to produce the original optical signal. The collection
of multiple modules is achieved through time-division multiplexing, and the speed of
the time-division multiplexing module is on the order of milliseconds, which can be
ignored relative to the test target. The reflected light enters the optical channel to be
measured through the coupler and the optical switch, and is transmitted back to the
photodetector through the coupler, thereby achieving photoelectric conversion. The elec-
trical signal enters the processing module. Calculate the position and time of the target
based on the wavelength response to complete the target state recognition.

4.1. Fiber optic sensing signal acquisition

For a single test target, the intensity of the wavelength response of the FBG can well
accomplish the inversion of the target state parameters. When more than one target ex-
ists, if two or more targets are in the same FBG sensor in a similar position, it will
cause signal overlapping. So it is very important to analyze the recognition probability
in the case of overlapping different target motion states. Taking the (1, 1) test position
as an example, several signal aliasing waveforms of three targets are tested separately,
as shown in Fig. 4.

As shown in Fig. 4(a), the wavelength response quantities are the red curve and blue
curve when target A and target B appear separately at the FBG1 position. By the speed
difference of their targets, they are highly distinguishable. When the signals are mixed,
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it is not possible to directly calculate the wavelength response value of each target.
However, the system can combine the wavelength response amount of the next FBG sen-
sor that the target passes through to calculate the potential target state information in
the overlapped signal. Comparing Figs. 4(a)–(d), the responses of the aliased signals
of different targets at the same position have significant differences. When faster-mov-
ing targets are present (target C), the narrower the time interval between the locations
of the tips of the peaks in the aliased signals. The more targets are aliased, the greater
the time width of the overall echo response. According to this pattern of change, the
state information of each target in a multi-target system can be calculated more accu-
rately after analyzing the echo signals of different FBGs for data mining. By comparing
the width of the echo peak with the amplitude, the type of target can be obtained, so
the ratio of half width to amplitude can be used as a distinguishing parameter.

4.2. Multi-target signal recognition analysis

The system sampling frequency is set to 100 Hz to perform smoothing filtering on the
echo data, reducing the impact of noise on the test data. This frequency is much higher
than the frequency of the test target, thus from the perspective of sampling quantifi-

Fig. 4. Wavelength response trend of FBG1 under different target mixing conditions. (a) Target A and
target B, (b) target A and target C, (c) target B and target C, and (d) target A, target B and target C.

(a) (b)

(c) (d)

0

-5

-10

-15

-20

-25

-30

-35

-45

-50

-55
1520 1525 1530 1535

R
et

ur
n 

lo
ss

 [
dB

m
]

Wavelength [nm]

-40

0

-5

-10

-15

-20

-25

-30

-35

-45

-50

-55
1520 1525 1530 1535

R
et

ur
n 

lo
ss

 [
dB

m
]

Wavelength [nm]

-40

0

-5

-10

-15

-20

-25

-30

-35

-45

-50

-55
1520 1525 1530 1535

R
et

ur
n 

lo
ss

 [
dB

m
]

Wavelength [nm]

-40

0

-5

-10

-15

-20

-25

-30

-35

-45

-50

-55
1520 1525 1530 1535

R
et

ur
n 

lo
ss

 [
dB

m
]

Wavelength [nm]

-40



Research on target state recognition algorithm... 445
cation this frequency can complete target velocity inversion. Meanwhile, it cannot be
too large, otherwise it will increase the difficulty of data processing. Under the condi-
tions of case 1, target A moves from (0, 1) to (6, 1), target B moves from (0, 2) to (6, 2),
and C moves from (0, 3) to (6, 3). The test results are shown in Fig. 5(a). Under the
condition of case 2, target A moves from (0, 1) to (6, 5), target B moves from (1, 0) to
(5, 6), and C moves from (0, 0) to (6, 6). The test results are shown in Fig. 5(b). 

As shown in Fig. 5(a), the response times of different FBGs have obvious differ-
ences. The response intensity of different FBGs corresponds to the axial distance re-
lationship between the target and FBG. One can calculate the location of the target
based on the response intensity of FBG. In the area enclosed by four FBGs in Fig. 1(a),
each square area of 1×1 is the minimum position recognition area.

The wavelength shift caused by target A to FBG1, FBG2, and FBG3 is about 550 pm.
Its average value of time interval is 2015 ms. The average test speed is 1.99 m/s, with
a relative error of 1.3% compared to the true value of 1.0 m/s. Target B shows a super-
position state in its response wavelength because it is between FBG1 and FBG3 and
between FBG4 and FBG6. The mean value of the wavelength response is 78 pm, and
the mean value of the time interval between peaks is 1403 ms. The average test speed
is 2.86 m/s, with a relative error of 4.7% compared to the true value of 3.0 m/s. As shown
in Fig. 5(b), the wavelength response intensities of FBG2, FBG4, FBG6, and FBG8
are similar because the target C will be directly pressed over FBG1, FBG5, and FBG9.

(a)

(b)

Fig. 5. Response results of  FBG sensing network under two motion states. Changes in wavelength re-
sponse of 9 FBGs over 6 s in (a) case 1, and (b) case 2. 
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Therefore, there are peaks and peaks at 315, 925, and 1924 ms. The average test speed
is 4.87 m/s, with a relative error of 2.5% compared to the true value of 5.0 m/s. This
is determined by the testing of the 2 targets. And the velocity of the three targets can
be calculated by the moment of their wavelength response maxima.

4.3. Comparison of recognition probability

After classifying the test data of 9 FBG sensors using data mining under 2 different
test conditions, the recognition of three test targets was accomplished. And they were
compared with the test data that were not classified and directly subjected to inverse
computation, and the probability of target recognition P is shown in Table 1.

The true speed is calculated by moving from a fixed test position to a designated
position through a stopwatch. According to the data in Table 1, the recognition prob-
abilities of target A, target B, and target C are all improved to some extent after clas-
sification using data mining. When the three targets are mixed, the recognition
probability of target A improves from 75.3% to 93.4% at state 1, and it improves from
71.5% to 91.2% at situation 2. The recognition probability of target B improves from
65.4% to 92.7% at state 1. In situation 2, it improves from 51.6% to 85.7%. Its im-
provement is significant. The recognition probability of target C improves from 86.1%
to 95.8% at state 1, and it improves from 82.5% to 94.7% at state 2. For target A, when
there are only target B and target C, both test methods are misjudged. However, for
targets B and C, there is a certain misjudgment rate, and this algorithm can reduce the
target misjudgment rate. Analyzing the distribution of the target recognition rate, it is
found that the recognition rate of the aliased signal is lower when the target mass and
speed are similar. The closer the test position is to the real position of the FBG sensor,
the better its recognition effect is.

5. Conclusions

In response to the signal aliasing problem caused by multiple targets in fiber optic sens-
ing networks, this paper proposes a target state recognition algorithm based on data
mining. Based on designing the distribution structure of FBG sensing arrays, a classi-

T a b l e 1. Comparison of recognition probabilities of targets before and after data mining. 

Data mining
Situation 1 Situation 2

A, B A, C B, C A, B, C A, B A, C B, C A, B, C

PA [%] Before 94.3 96.7 0 75.3 91.2 93.7 0 71.5

After 98.6 99.2 0 93.4 96.3 98.4 0 91.2

PB [%] Before 97.1 8.7 65.4 56.2 97.8 13.4 58.4 51.6

After 99.3 1.9 92.7 90.3 99.1 3.8 88.7 85.7

PC [%] Before 0 98.5 74.3 86.1 4.5 97.4 71.2 82.5

After 0 99.8 94.6 95.8 0.8 99.4 93.1 94.7
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fication algorithm for targets multi-states recognition based on clustering weights and
clustering degree is constructed. Recognition experiments were conducted on two
typical target motion states and three types of similar targets. The results demonstrate
that after performing data mining on the sensing aliasing signals, the target recog-
nition probability can be effectively improved, and the misjudgment rate can be re-
duced. The main contribution of this paper is to build a multi-target state inversion
model based on fiber optic sensing network data mining. It has certain application value
in the field of multi-target state recognition of a fiber optic sensing network.
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