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In the era of modern technologies, developing effective crypt-coding systems is crucial when it
comes to transmitting huge amounts of protected data quickly. Most encrypted image transmission
systems do not sufficiently examine the effect of bit mistakes occurring during transmission. This
problem is regarded as one that should be addressed by a competent coding scheme. In this paper,
we have proposed an image encryption scheme based on generalized Reed–Muller (GRM) codes,
QZ synthesis method, and Laguerre–Gaussian vortex beams (LGVB). In the proposed algorithm,
GRM codes encode the image and add redundancy to it which increases its error-resistant quality.
An encoded image is decomposed into two square images and each image is phase-encoded and
modulated using random phase masks. The modulated image is then propagated through the Fourier
domain. Vortex Fresnel array and the QZ decomposition operations are used to add security to gen-
erate the private keys. The proposed cryptosystem is robust against basic cryptographic attacks.
The use of GRM codes adds on error correction capabilities in the cryptosystem. The correlation
coefficient of the original and encrypted images is dropped to 0.3%, demonstrating the effective-
ness of the encryption in randomizing the image data. System performance is tested by evaluating
the mean-squared error, peak signal-to-noise ratio, structural similarity index measure and corre-
lation coefficients. 

Keywords: generalized Reed–Muller (GRM) codes, Laguerre–Gaussian vortex beams (LGVB), QZ de-
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1. Introduction

Error-correcting codes (ECCs) are employed in a variety of fields such as information
and communication systems. Error-correcting code-based information encryption is
a compelling concept for covert communication. Similar to information encryption, er-
ror-correcting codes alter the algebra structure of the information sequence to provide
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parity bits. Therefore, converting an error correction code into an encryption system
is convenient [1,2]. A primary picture is encoded using two random phase masks as
part of a primary image encryption approach. The input plane and the spatial frequency
plane are where the two masks are positioned. A stationary white noise is created as
a result. During the decoding procedure, the encrypted image is first Fourier converted,
then multiplied by the random phase mask’s complex conjugate, and lastly, the Fourier
inverse transform is implemented to decrypt the image. This is proposed by REFREGIER

and JAVIDI [3]. 
To enhance the strength of  DRPE-based encryption algorithms [4-7], various trans-

forms have been implemented such as fractional Fourier transform [8], Fresnel trans-
form [9-13], and gyrator transform [14]. WANG et al. [15] proposed an algorithm based
on random modulus decomposition (RMD). In random modulus decomposition-based
algorithms, two complex parts with equal moduli are separated from a picture; one por-
tion is used as the cipher-text and the other as the private key. To increase the security
of encryption, researchers later devised number of  breakdown techniques, including
polar decomposition and the QZ synthesis algorithms [16]. SHEN et al. [17] developed
a new cryptosystem using DRPE and QZ modulation to enhance security against known
plain-text attack (KPA) and chosen plain-text attack (CPA). Further, SHEN et al. [18] also
suggested a QZ synthesis-based encryption that is practical and resistant to specialized
attacks. Further, SINGH and YADAV [19] published a scheme based on an asymmetric
multi-image wavelength multiplexing cryptosystem [20-22] using the QZ algorithm
and unequal modulus decomposition [23]. In most of these cryptosystems, the security
keys are the computationally generated RPMs. These methods are not robust enough
against brute force attacks if one has access to high-performance computing resources.
Due to the need for more secure picture data encryption methods, researchers devel-
oped the SPM to replace the RPM and improve security and key space. Fractional order
vortex speckle (FOVS) patterns are used by MANDAPATI et al. [24]. 

In 1984, “a combined encryption and error correction”, basically, encryption, de-
cryption, encoding, and decoding, is introduced by a mix of cryptographic methods and
error-correcting codes. After that number of researches has been done on error-correcting
encryption algorithms. RAO and NAM [25] proposed a private-key algebraic-coded
cryptosystem (PRAC) based on a public-key cryptosystem in 1986 incorporating basic
algebraic Bose–Chaudhuri–Hocquenghem codes (BCH codes). The system, which
concatenates error correction and encryption, is referred by them as joint encryption
and error correction (JEEC). They supplemented this scheme PRAC against the attack
with a syndrome-error table. In the same year, NIEDERREITER [26] developed a novel
public-key cryptosystem, which he designated the N public key. However, in the in-
terest of security, both of them forego the ability to remove errors. Research was going
on in this field and in 2006, MATHUR et al. [27] raised the high diffusion cipher which
is based on the substitution-permutation network (SPN) structure. Encryption and error
correction are combined in this method, which diffuses the muddled message using
high diffusion codes. In the event that one of the bytes is not rectified in the inter-
ference channel, the decryption will remain incorrect, resulting in an increased com-
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plexity. An approach utilizing interleaved and low-density parity-check (LDPC) code
was introduced in 2006 by XIAO et al. [28]. In 2010, ADAMO et al. [29] proposed a scheme
named error correction based cipher (ECBC) which combines encryption and error cor-
rection in one step. It effectively enhances the algorithm while preserving its complete
error correction capability. It significantly slows down the process, and if one block is
decoded incorrectly, consecutive blocks will be decoded incorrectly as well.

In 2013, CANKAYA et al. [30] applied the linear error correction (LEC) code, permu-
tation and compression to the cryptosystem. In 2014, LI et al. [31] presented a scheme
used in satellite communications that incorporates advance encryption standard (AES)
and LDPC. In 2015, YAO et al. [32] raised a JEEC scheme based on chaos and turbo
code. The majority of them achieved this through straightforward error correction and
cascading encryption. The level of efficiency was exceedingly low, and the security
was obtained at the expense of error correction capability. 

It is noticed that traditional encryption techniques like AES, RSA, and IDEA are
observed to be applied to binary or text data. The high correlation among pixels makes
the image encryption process highly difficult. Therefore, we proposed a novel secure
optical cryptosystem based on double random phase encryption (DRPE) and general-
ized Reed–Muller (GRM) codes for improved security and error correction capability.

GRM codes are the generalized form of Reed–Muller codes introduced by DASS

and WASAN [33] in 1983, named GRM codes of order r + (r + 1)m,s . In 2012, TYAGI

and RANI [34] further extended their research on GRM codes of order r + (r + 1)m,s
and established new construction using multiples of  GRM codes of order r + (r + 1)m,s .
They also presented recursive methods of GRM and DGRM codes [35]. It was ob-
served that researchers showed keen interest in GRM codes of order r + (r + 1)m,s  and
studied structural and algebraic properties such as weight distributions, duality, and
minimum weight codewords of these codes [36-38].

In this paper, we have focused on developing an image encryption technique based
on GRM codes and QZ synthesis using vortex array (VA) in the Fourier domain. To
the best of the author’s knowledge, no study has been reported that contains error-cor-
recting and detecting GRM codes, QZ decomposition, and vortex array based encryp-
tion scheme. GRM codes are used to encode the image so that it can correct the errors
that occurred in the encryption process. Further, the encoded image is decomposed into
two equal parts and each part is encrypted separately. The QZ synthesis method is ap-
plied in the encryption process to combine two encrypted images which provides a se-
curity key. Vortex arrays are used with random phase mask to add more security in the
system as it is generated from Laguerre–Gaussian beams and possess a unique pattern
and not possible to clone as one cannot identify the physical process. The rest of the
paper is organized as follows. In Section 2, the theoretical explanations, results of
GRM codes, QZ decomposition, the Fourier transform, Laguerre–Gaussian vortex
beams and mathematical formulation of  vortex array are presented. In Section 3, we
have provided a detailed explanation of the proposed cryptosystem. The numerical
simulations in support of the proposed scheme are discussed in Section 4. Lastly, the
conclusion is given in Section 5.
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2. Theoretical background 

In this section, GRM codes, QZ decomposition, generation of  vortex array from
Gaussian beams are discussed in detail.

2.1. Reed–Muller (RM) codes 

In RM codes, a block of k bits of data is encoded into n bits of data (codeword) where
n > k for data transmission (see Fig. 1). 

Definition: Let m and r be the integers with 0 ≤ r ≤ m, RM(r, m) codes of order r
have the following parameters:

Block length: n = 2m

Dimension:  

Minimum distance: dmin = 2m – r 
Here, n is the size of the codeword; k is the size of the message; dmin is the hamming
distance which defines the error-correcting capability of the RM codes.

2.2. Generalized Reed–Muller codes of order r + (r + 1)m,s 

In 1983, DASS and WASAN, obtained a new class of generalized Reed–Muller codes,
now known as GRM codes of order r + (r + 1)m,s  by extending/shortening a r-th order
of RM codes [33].

Definition: A GRM code of order r + (r + 1)m,s is generated by basis vectors
{v0 , v1, v2, ..., vm} and vectors product of {v0 , v1, v2, ..., vm} taken r or fewer at a time

along with some s vector products (1 ≤ s < ) of these vectors taken (r + 1) at

a time.
Parameters of  GRM codes are as follows:
Code length: n = 2m; 

Dimension:  where 1 ≤ s < ;

Minimum distance: dmin = 2m – r – 1. 

Data Parity

k bits

n bits

n – k

Fig. 1. RM codeword of length n and k is the number of input symbols. 
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Let x = (x0 , x1, ..., xn – 1) and y = ( y0 , y1, ..., yn – 1) be two binary tuples. We define
the following logic (Boolean product) of x and y: 

x ꞏ y = (x0 ꞏ y0, x1 ꞏ y1, ..., xn – 1 ꞏ yn – 1) (1)

where ‘∙’ denotes the logic product, i.e., 

(2)

2.3. GRM encoder/generator matrix

G(r, m) denotes the generator matrix of an RM(r, m) code, then the generator matrix
G(r, m, s) of a GRM code of order r + (r + 1)m,s is written as, 

(3)

where G(r, m) is generator of an RM(r, m) code and X is a matrix containing some s
vector products of v0, v1, v2, ..., vm taken (r + 1) at a time.

Example: Let m = 4 and r = 1 and s = 1, the generator matrix of GRM code of order
1 + (2)4, 1 is given by 

(4)

2.4. Generation of vortex Fresnel array (VFA) 

The optical vortex phase mask is used in the suggested approach to expand the key
space and improve security. Given that they have their own centre masks, these masks
are useful for positioning during decoding. Their security is enhanced by the fact that
they are diffractive optical elements (DOEs), which are extremely difficult to replicate.
Furthermore, these masks have several essential characteristics in one, which adds to
the security criteria. In spiral waves with angular momentum, optical vortices (OV)
are especially important. They are used in astronomy, bio-photonics, quantum com-
puting, encryption, and the creation of vortex lens or phase mask systems, among other
fields. The azimuthal phase dependence of optical vortices is exp(i lθ ). The wave’s
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phase change over one full rotation around the vortex point is represented by the topo-
logical charge (TC), represented by l. This charge can be either an integer or a fraction. 

2.5. Laguerre–Gaussian (LG) beam

Light beams with Laguerre–Gaussian (LG) intensity distributions and helical phase
profiles are categorized as structured light beams. The beam profile is defined using
a quantized parameter known as the mode number, which can take values extending
to infinity. LG modes are also linked to optical vortices; when light with a helical wave-
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Fig. 2. Generation of the optical vortex arrays. (a1, a2) 3D, (b1, b2) 2D and (c1, c2) phase maps of the
optical vortex array generated by the vortex beams with l n = l1+Δ l, l1 = 1, Δ l = 4 and 5. 
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front propagates in a corkscrew-like manner, an optical vortex is formed. The electric
field amplitude of an LG mode, which propagates along the z-direction, can be repre-
sented as a coherent superposition of vortex beams [39]. For the LG beam in cylindrical
coordinates, the light field is expressed as [40] 

(5)

where p is the radial index, ln is the topological charge, ω (z) is the spot size at a dis-
tance z, φ is the azimuth angle, k = 2π/λ is wave number. 

If p = 0, the coherent superposition of vortex beams can be expressed as

(6)

where N  denotes the number of  OAM nodes and the value of  topological charge l n

arithmetic sequence,

(7)

(8)

Figure 2 shows the example of the optical vortex array with sub-beams N = 4 and
N = 5, and l n = l1+Δ l. Figure 2(a1)–(c1) shows the 3D, 2D maps and the phase dia-
gram of the optical vortex array, which consists of four sub-beams, where l1 = 1 and
Δ l = 4. Figure 2(a2)–(c2) shows the 3D, 2D maps and the phase diagram of the optical
vortex array, which consists of five sub-beams, where l1 = 1 and Δ l = 5. 

2.6. Fresnel zone plate (FZP)

A Fresnel zone plate (FZP) function is mathematically written as, 

FZP = (9)

where λ and f  are respectively the wavelength and focal length, and x and y are the
coordinates on X  and Y  axis of the Fresnel zone plate.

2.7. VFA phase key

A VFA phase key is obtained by combining Eq. (6) and (8) as follows,
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(10)

(11)

Figure 3 shows the construction of  VFA key using Fresnel zone plate (a) and phase
value of optical vortex array (b) [41,42] for N = 4. A new VFA phase key is produced
as shown in Fig. 3(c).

2.8. QZ decomposition

In this decomposition method, two square matrices say, A and B are decomposed in
two upper quasi triangular matrices (AA, BB) and two unitary matrices (Q, Z). Math-
ematically, [AA, BB, Q, Z] = QZ(A, B). Taking the transpose of BB and extracting
the diagonal elements from it, which act as private in proposed system. The result is
stored as BB1 which is lower triangular matrix: 

BB1 = transpose(BB) – diag(BB) (12)

Then, both upper triangular matrix AA and lower triangular matrix BB1 are combined
to get the synthesis matrix, say M. The synthesis method is shown in Fig. 4.

In the inverse QZ synthesis method, AA can be extracted as a upper triangular ma-
trix from M 

AA = triau(M) (13)

Then, BB can be calculated using the following mathematical operations:

BB = transpose(M – AA) + diag(BB) (14)
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Fig. 3. Generation of the VFA key using (a) + (b) = (c), using FZP with values λ = 632.8 nm, f = 500 mm
and phase maps of the optical vortex array generated by the vortex beams with N = 4.

(a) (b) (c)

+ =

50

100

150

200

250

50

100

150

200

250

50

100

150

200

250
50 100 150 200 25050 100 150 200 250 50 100 150 200 250



Secure cryptographic scheme based on GRM codes and LGVB... 481
To retrieve A and B, we use private keys Q and Q with the following calculations

A = Q–1 * AA * Z –1 (15)

B = Q–1 * BB * Z –1 (16)

3. Proposed cryptosystem

3.1. Encryption process

The following steps are performed for the encryption (see Fig. 5).
Step 1. A binary image I (x, y) is encoded using GRM codes, mathematically,

I (x, y) is multiplied with GRM codes matrix. Without loss generality, image I  is con-
sidered of 256×256 pixels. GRM code matrix 256×512 is used for encoding. Output
encoded image is decomposed in two equal size image of size 256×256 and named
as E1 and  Mathematically,  

Step 2. Create two different random phase masks 

 (17)

 (18)

where (mi , ni), i = 1, 2 are random matrix of size 256×256 pixels. The random phase
masks RPM1 and RPM2 are mapped on E1 and  respectively. Both outputs are sub-

Fig. 4. Flowchart of QZ synthesis method. 
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jected to Fourier transform and stored as E2 and  respectively. Mathematically, the
output is shown as 

 (19)

 (20)

Step 3. The outputs of Step 2 are processed through vortex array (VA) and both
outputs are subjected to Fourier transform and results are stored in E3 and  Math-
ematically, this step is described as 

 (21)

 (22)

Step 4. QZ synthesis method is applied on E3 and  to obtain a combined cipher-
text E0. Mathematically, it is described as 

 (23)

3.2. Decryption process

Step 1. The inverse QZ synthesis method is applied on ciphertext E0, and the output
is propagated through the inverse Fourier lens. Mathematically, it can be written as,

 (24)

Step 2. The output of  Step 1 is propagated through the Fourier domain and phase
key of vortex array is applied, the result is stored as  and  

 (25)

 (26)

E'2,

Fig. 5. Flowchart of encryption process.
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Step 3. The output of Step 2 is bonded with the conjugate of RPM1 and RPM2 and
stored as  and  

 (27)

 (28)

Step 4. In the last step,  and  are concatenated and error is extracted using
decoding algorithm of  GRM codes and the original image is retrieved.

 (29)

The schematic representation of the decryption process is presented in Fig. 6.

4. Results and discussion

The proposed cryptosystem performance was evaluated using a personal computer con-
figured with processor 11th Gen Intel(R) Core (TM) i3-1115G4 @ 3.00GHz 2.90GHz,
8GB RAM, operating Windows 11, operating system 64-bit and running MATLAB 2024.

In the proposed method, a binary image is used of size 256×256 pixels. Encryption
and decryption results are shown in Fig. 7. 

D1 D'1:
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D'1 conj RPM2  D'2=

D1 D'1

I x y  decode D1 D'1  =

Fig. 6. Flowchart of decryption process. 

Fig. 7. Validation results of the proposed encryption algorithm. (a) Input image, (b) GRM code image,
and (c) ciphertext. 
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4.1. Performance analysis

The suggested encrypted algorithm’s performance was thoroughly assessed using sev-
eral number of simulations. The evaluation concentrated on a number of important as-
pects to measure the algorithm’s performance and applicability in real-world situations.

4.1.1. Mean squared error (MSE)

A popular statistic for assessing performance and estimating the errors of  both encrypt-
ed and decrypted pictures is the MSE. A lower MSE value indicates higher image qual-
ity and data preservation since it denotes a high value of similarity between the original
and decrypted images. The following formula or equation is used to calculate MSE: 

(30)

The MSEs value in the proposed scheme is 1.8 × 10–2. 

4.1.2. Peak signal-to-noise ratio (PSNR)

The quality of encoded and decoded images is assessed using a performance metric called
the peak signal-to-noise ratio (PSNR). It determines how much noise or distortion is
introduced during the encryption, decryption, or transmission processes in relation to
the maximum possible power of the signal or input image. A higher PSNR value de-
notes less distortion. 

Using a logarithmic scale, the mean squared error (MSE) between the original and
reconstructed image is computed to determine PSNR. 

(31)

The maximum pixel intensity value, or MAX, in this case is 255 for an 8-bit image.
The standard unit of measurement for PSNR is decibels (dB). Interestingly, the rebuilt
images with the original binary image have 261.1 dB PSNR value.

4.1.3. Structural similarity index measure (SSIM)

SSIM is used to evaluate the picture quality by comparing a recovered image with the
input image. An SSIM value of 1 indicates the recovery of a high-quality image.
SSIM could have a value anywhere from –1 to 1. The similarity is calculated using the
following formula: 

(32)

where μI and μI'  denote the pixel sample mean of image I and I', respectively;  and
 are the variance of I and I', respectively; σI, I'  is cross-correlation of I and I'.

The variables c1 and c2 stabilize the division with weak denominator.
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4.2. Statistical analysis 

The 3D plot, entropy analysis and correlation between the input image and encryption
image is discussed in this section.

4.2.1. 3D plot analysis

3D plot of encrypted images reflects the security of the cryptosystem. In this scheme,
we have encrypted two different images and could not find the difference between the
encrypted images of  both input images. We can see the similarity between the encrypt-
ed images in Fig. 8, which suggest that we cannot predict the input images by just
checking the structure plot of encrypted images. Lena image and binary Logo image
are encrypted and their 3D plot are shown in Fig. 8.

4.2.2. Correlation distribution analysis

The CC value is predominantly found within the interval [–1, 1], with values approach-
ing 1 signifying a robust positive linear correlation and implying a considerable level
of resemblance between input and decrypted images. A value in proximity to –1, con-
versely, denotes a strong inverse correlation between pixel intensities, signifying a neg-
ative relationship. A value in the vicinity of zero indicates a tenuous or non-existent

Fig. 8. (a) 3D plot of Logo binary image, (b) Lena image plot, (c) 3D plot of encrypted Logo image, and
(d) 3D plot of encrypted Lena image.

(a) (b)

(c) (d)
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linear correlation, implying that the two sets of data points are dissimilar. The value
of CC between input and decoded images for the proposed scheme is shown in Table 1.

In contrast to decrypted images, which bear a striking resemblance to the original
input images, cipher images have an arbitrary pixel distribution and have no correlation
with the input images that were captured. The efficacy and resilience of  the suggested
methodology in safeguarding image integrity and ensuring confidential communica-
tions were further validated by these outcomes. 

4.3. Error correction analysis

We discuss about the error correction capabilities of GRM codes in the DRPE crypto-
system. 

4.3.1. GRM code error correcting capabilities 

We used GRM codes constructed by shortening the r-th Reed–Muller codes. The Ham-
ming weight of  the GRM code is dmin = 2m – r. In our scheme, we used m = 9, r = 4,
and s = 0 generates GRM encoder matrix of order 256×512. Weight of the code is

T a b l e 1. The correlation of adjacent pixels. 

Correlation of adjacent Before encryption After encryption

Horizontal pixels 0.9435 –0.0073

Vertical pixels 0.9438 0.0052

(a) (b) (c) (d)

(e) (f ) (g) (h)

Fig. 9. (a, e) Input binary image of Lena and Logo, (b, d) the corresponding cipher image, (c, e) the error
added vertically in some part of the encryption image, and (d, f ) error reflects in the decryption image.
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29 – 4 = 32 which can correct up to 15 errors. GRM codes is implemented along row-wise
over the input image matrix: 

– Input data: 256×256 binary matrix, 
– GRM code: 256×512 binary matrix, 
– Encoded data: 256×512 matrix, 
– Error added: 256×512 matrix contains maximum 15 ones in every row.
In DRPE encryption scheme, an error can be occurred either caused by attacks or

channel disturbance. Here, we compare the DRPE scheme of encryption with or with-
out using the GRM codes.

4.3.2. DRPE encryption without using GRM codes

The encryption process of two different input images (Lena and Logo) is shown in
Fig. 9.

4.3.3. Encryption using GRM codes 

In the proposed scheme error correcting GRM codes are used to correct error. Figure 10
represents the components in the encryption process. It can be seen that the errors are
removed using the codes and the decrypted image is retrieved as original image. 

4.4. Robustness analysis 

A system is secured and robust if  it is resistant to attacks. The proposed cryptosystem
is tested against contamination attacks and classical cryptographic attacks (CPA, QPA)
and found to be robust. 

4.4.1. Contamination attack analysis

The scheme is highly secured and has been tested against noise contamination attack.
To verify this, we have done the analysis on noise attack with Gaussian noise. The en-
crypted image after adding the noise is as follows:

(33)

(a) (b) (c) (d)

Fig. 10. (a) Input binary image of Logo, (b) the corresponding cipher image, (c) the error added vertically
in some part of the encryption image, and (d) error-free in decryption image. 

E'0 E0 1 kG+ =
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where  and E0 are contaminated encrypted image and encrypted image, respective-
ly, G denotes the Gaussian random noise with zero mean and 1 variance, and k denotes
the coefficient of strength of the noise. In our analysis, encrypted image is contami-
nated with values of k = 0.3 and 0.5, the corresponding decrypted image is shown in
Fig. 11.

4.4.2. Plaintext attacks

In the proposed cryptosystem, we have checked the robustness of our scheme against
plaintext attacks, i.e., known-plaintext attacks (KPA) and chosen plaintext attacks
(CPA). In KPA, if an attacker has information about a pair of plain-text and the corre-
sponding ciphertext, then they may try to obtain the secret key using this information.
In CPA, the attacker already has the information about the encryption process and he
tries to implement the encryption process to obtain the secret keys. In both the attacks,
the attacker can obtain the decryption keys and can apply these keys on other cipher-
text. It might happen that an attacker is able to get the original image. Due to the fact,

E'0

(a) (b)

Fig. 11. Decrypted image recovered from noise contaminated image with values of (a) k = 0.3, and
(b) k = 0.5. 

(b)(a)

Fig. 12. Decipher image of  (a) Lena and (b) Logo retrieved by their exchanged private keys. 
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that our scheme is asymmetric, which means the private keys will change with each
input image. As a result, CPA and KPA are ineffective. To check the robustness against
these attacks, encrypted image of Lena and Logo is deciphered with wrong (exchanged)
private keys. The results are shown in Fig. 12, which proves the robustness of the
scheme against the aforementioned attacks.

4.4.3. Comparison results

In Table 2, comparison is discussed with proposed and existing schemes. 

5. Conclusion

In this paper, we have introduced an image encryption and error correction algorithm
that utilizes the GRM codes and QZ synthesis method with a vortex array in the Fourier
domain. The original image is more difficult for unauthorized users to recover when
vortex array is used. We have improved the security encryption technique by using the
QZ synthesis approach. Binary pictures are used for the validation of the suggested
encryption technique. The scheme is tested against basic attacks chosen plain-text at-
tacks (CPA) and known plain-text attacks (KPA). The comparison of the scheme with
existing schemes showed that the proposed scheme is highly efficient and secure.
The suggested encryption algorithm’s performance is assessed using several numbers
of statistical metrics, such as the correlation coefficient and information entropy. To
retrieve the original image, all of the encryption keys are required. According to ex-
perimental results, our technology can fix big, corrupted blocks in photos, something
that other previously published methods have not been able to do.
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T a b l e 2. Comparison of proposed scheme with other existing schemes. 

Parameters KONYAR et al. [43] SINGH [10] Proposed scheme

Mathematical 
transformation

– LCT, GT FT, IFT

MSE 0.842 3.09×10–28 1.8×10–28 

Parameters RS code, data 
hiding algorithm

VFA, DRPE GRM code, 
DRPE, VFA

Strength Prone to KPA, CPA Prone to deep learning Prone to deep learning

Error correction code Reed–Solomon code – GRM code

PSNR 48 dB 296 dB 261 dB
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