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Digital holographic microscopy is widely applied in the study of the dynamic morphology of
microscopic objects due to its characteristics of non-contact measurement, high-resolution three di-
mensional morphology detection, and real-time observation. This paper introduces a novel off-axis
digital holographic signal spectrum extraction method based on deep learning, named DL-SEDH.
The DL-SEDH algorithm is trained using approximately 1000 signal spectra from a USAF 1951
resolution test target, successfully achieving adaptive extraction of signal spectra and effective sup-
pression of interference components. To validate its effectiveness, experiments are conducted using
the USAF 1951 resolution test target and onion epidermal cells as research subjects. The experi-
mental results demonstrate that DL-SEDH not only rapidly and accurately selects signal spectra
while suppressing interference frequency components, especially coherent noise distributed near
the signal spectra, but also exhibits higher accuracy, robustness, and applicability compared to tra-
ditional methods. Validation on holograms not used during training confirms the effectiveness of
DL-SEDH in phase reconstruction quality. The proposed DL-SEDH method introduces innovation
to the off-axis digital holography field, holding significant practical value and providing an effi-
cient and precise solution for phase reconstruction in digital holographic microscopy.

Keywords: digital holographic microscopy, deep learning, phase reconstruction, off-axis holography,
signal spectrum extraction.

1. Introduction

Digital holographic microscopy (DHM) has advantages such as high resolution [1],
non-contact detection [2], and three-dimensional morphology reconstruction [3], and
has been widely applied in fields such as biomedical measurements (e.g., quantitative
phase imaging of living cells), detection of microelectronic circuit defects, and other
precision metrology applications [4,5]. Unlike analogue holographic techniques,
DHM records the complex amplitude information of objects by the interference of two
laser beams onto a computer, and numerically reconstructs the amplitude and phase
through established reconstruction algorithms. The hologram formed by the interfer-
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ence of two laser beams generally exhibits three components in the frequency domain:
the zero-order term, the signal term, and the conjugate term, where the zero-order term,
also known as the DC term, is mainly determined by the intensities of the two laser
beams; the signal term and the conjugate term together are referred to as the interfer-
ence terms, which are mainly determined by the phase difference between the two laser
beams. To reconstruct the complex amplitude information in accordance with the most
widespread Fourier filtering method [6], one of the interference terms, whether it is
the signal term or the conjugate term, must be extracted quickly and accurately.

Inrecent years, non-spatial filtering methods based on the local least squares (LLS)
approach have demonstrated good performance in holographic reconstruction. The LLS
method, originally proposed by LIEBLING et al. [7], effectively extracts signals through
local fitting. Subsequently, the noise-immune off-axis SPAR algorithm was developed
based on this approach, further enhancing noise robustness [8]. More recently, the
method has been improved by employing confidence interval intersection techniques
to optimize reconstruction of objects with sharp edges [9], which is similar to the test
patterns used in our experiments. The advantage of this approach lies in its ability to
maintain spatial resolution [10] while reducing signal detail loss caused by inappro-
priate filter window shapes in traditional spatial filtering. However, the LLS method
also has drawbacks, particularly the need to tune multiple parameters, which increases
algorithm complexity in practical applications. In contrast, spatial filtering methods
remain advantageous due to their simplicity of implementation and high computational
efficiency. Therefore, considering various filtering approaches, the improvement and
optimization of spatial filtering methods continue to hold significant research value.

A primary challenge in DHM is the presence of various noise sources that degrade
the quality of the reconstructed phase images. It is crucial to distinguish between these
sources to effectively address them. Coherent noise is a general term for noise origi-
nating from the high coherence of the laser source [11], which primarily manifests in
two forms: (i) speckle noise, a random granular pattern arising from the interference
of light scattered by optically rough surfaces within the setup, and (ii) parasitic inter-
ferences, which produce structured artifacts like rings or fringes due to unwanted
reflections and diffraction from optical components, dust particles, or scratches. Fur-
thermore, background noise refers to low-frequency, slowly varying intensity fluctu-
ations, often caused by stray light or non-uniform beam illumination. Collectively,
these noise sources create significant noise interference, which superimposes random
fluctuations onto the true object phase, a phenomenon known as phase noise. This
phase noise directly corrupts the quantitative phase information, obscures fine struc-
tural details, and is a major limiting factor for achieving high-accuracy measurements.
Recent studies continue to explore advanced denoising techniques to address these
challenges.

Building upon this, various types of spatial filtering methods have been proposed
in recent years for selecting the signal term spectrum in holographic images. These
methods can be roughly categorized into three groups: using regular-shaped frequency
domain filters, adaptive filters based on image processing and segmentation, and adap-
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tive spatial frequency domain filters based on deep learning networks [12]. Each of
these approaches aims to balance the trade-off between noise suppression and signal
preservation, leveraging different strategies to improve reconstruction quality and
computational efficiency. In the first type of filtering method, for simplicity and speed,
rectangular filters (RTF), circular filters (CRF), and Butterworth filters (BWF) are gen-
erally chosen to extract the signal term spectrum from holograms [13]. However, inap-
propriate filter shapes often introduce interference or cause loss of signal detail
frequency components. The second type of filtering methods mainly uses thresholding
techniques [14], as commonly employed in various digital image processing algorithms,
to determine a threshold and obtain a binary, irregular-shaped window of the same size
as the hologram spectrum, consisting of only Os and 1s. This binary mask is then multi-
plied by the original hologram spectrum for frequency domain filtering. WENG et al. [15]
proposed an adaptive filtering algorithm based on the Otsu algorithm to calculate the
threshold, and a method based on region recognition and iterative threshold (RRF) to
generate a binary mask [14]. However, the accuracy and effectiveness of this algorithm
are closely related to the initial threshold setting, and sometimes the choice of a too
large threshold may result in a too small filtering window, leading to the loss of high
-frequency signal components; on the other hand, choosing a threshold that is too
small may result in a too large filtering window, including other interference terms.
HONG et al. combined digital image processing and histogram analysis methods, pro-
posing a weighted adaptive filtering method based on the signal-to-noise ratio of each
pixel in the signal term spectrum [16]. However, this algorithm is not suitable for cases
where the signal term spectrum is relatively small, as it may disrupt the original signal
term spectrum information in the process of obtaining the weighting factor. L1 ef al. used
the fuzzy C-means method to segment and cluster the hologram spectrum [17], but in-
itializing parameters such as the fuzzy weighting index significantly affects the accu-
racy of clustering and image segmentation, thereby affecting the quality of amplitude
and phase reconstruction. In addition, the common principle of binary adaptive frequency
domain filters is to allow only the frequency components within the filtering window
to pass through, while completely discarding the frequency components outside the
filtering window. This can lead to edge blurring and ringing artifacts in the recon-
structed amplitude and phase images. The third type of filtering method mainly utilizes
deep learning networks (DNN) for selecting the signal term spectrum. X140 et al. used
a U-net convolutional neural network for training, with thousands of manually deter-
mined signal term spectrum regions as labels [12]. Although this algorithm can achieve
automatic extraction of the signal term spectrum, both dataset preparation and network
training are extremely time-consuming, and the preparation stage is complex and cum-
bersome. Additionally, since the labels are manually selected, their accuracy and ef-
fectiveness are difficult to guarantee. Most of the above methods focus on the adaptive
selection of the signal term spectrum, but rarely consider the influence of interference
term spectra on the reconstruction effect. Therefore, how to accurately extract and
eliminate the influence of interference terms on holographic reconstruction becomes
a key issue to be urgently addressed in adaptive spatial frequency domain filtering.
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The paper presents a deep-learning-based off-axis digital holographic signal term
spectrum extraction algorithm (DL-SEDH). Firstly, instead of manually selecting, the
method of adaptive frequency domain filtering is used to create the dataset for network
training. On the other hand, interference suppression is applied during the dataset
labeling process to ensure the accuracy and quality of the filtering window. Secondly,
the network model is trained using approximately 1000 signal term spectra of the
USAF 1951 resolution test chart. Compared to previous filtering network models, the
trained model not only accurately extracts the signal term spectrum but also effectively
suppresses interference terms. The trained network model enables fully adaptive selec-
tion of the signal term spectrum without any human intervention or initial parameter
settings. By applying the proposed algorithm to a hologram that has not been seen dur-
ing training to verify the reconstruction effect, experimental results demonstrate that
the proposed algorithm exhibits adaptability, speed, robustness, and outstanding fre-
quency domain filtering and interference suppression capabilities.

2. Method
2.1. Principle of frequency domain filtering

Off-axis digital hologram H is formed by the interference of object light wave O and
reference light wave R converging at a certain angle on the hologram plane. It can be
expressed as:

H=|0P+|RP+OxR"+0" xR (1)

where * denotes the complex conjugate, |O|> + |R |* represents the zero-order term,
O x R* and O" x R represent the interference terms, corresponding to the signal term
and the conjugate term, respectively. After performing fast Fourier transform (FFT)
on the hologram, the spectrum of the hologram F can be represented as:

F=FFT{H} =FFT{|{O*+|R|*} + FFT{O x R*} + FFT{O x R*} + FFT{O" x R} (2)

where FFT{|O | +|R |*} represents the spectrum of the zero-order term, FFT{O x R*}
and FFT{O" x R} represent the spectra of the signal term and the conjugate term, re-
spectively. These three frequency components collectively form the spectrum of the
off-axis hologram, and they are separated from each other without interference.
Figure 1 shows the off-axis digital holographic microscopy (DHM) system used
in this study. The light source is a helium-neon (He-Ne) laser with a wavelength of
631 nm and an output power of 50 mW, which is linearly polarized. The laser beam
first passes through an adjustable attenuator, composed of a half-wave plate (HWP)
and a polarizing beam splitter (PBS), to control the intensity ratio between the object
and reference beams. The beam is then split by the first beam splitter (BS1). The reflected
beam serves as the reference arm. It is expanded and collimated by a beam expander
consisting of a microscope objective (MO1, Olympus Plan Achromat, 40%, 0.6 NA,
working distance = 0.7 mm) and a collimating lens (L1, f = 150 mm). The collimated
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Fig. 1. Off-axis digital holographic microscopy setup. (a) Schematic diagram of the optical path. Com-
ponents include: HWP, half-wave plate; PBS, polarizing beam splitter; M, mirror; BS, beam splitter;
MO, microscope objective; L, lens; CMOS, image sensor. (b) Photograph of the experimental system.

plane wave is then directed by beam splitter BS3 (acting as a mirror) towards the final
beam splitter BS2. The transmitted beam serves as the object arm. It is directed by mir-
ror M1 to illuminate the sample. The light transmitted through the sample is collected
and imaged by a microscope system composed of an identical objective (MO2, Olympus
Plan Achromat, 40%, 0.6 NA, working distance = 0.7 mm) and a tube lens (L2, f =
= 180 mm), which forms a magnified image of the sample. Finally, the object and ref-
erence beams interfere at a small angle at BS2. The resulting interference pattern, i.e.,
the off-axis hologram, is recorded by a CMOS image sensor and transmitted to a com-
puter for subsequent numerical processing.

To facilitate rapid and accurate extraction of signal term spectra and suppression
of coherent noise, this paper proposes a framework based on deep learning for obtain-
ing signal term spectra from holographic images, as depicted in Fig. 3. It mainly con-
sists of four parts: holographic data preprocessing, signal term spectrum selection
based on the U-Net network, frequency domain filtering, and spectral center shifting,
as well as amplitude and phase map reconstruction.

2.2. Effect of the shape of the filter window on phase reconstruction

Generally, most transmitted samples are smooth. Therefore, their holographic image
spectra appear as a bright cross-shaped spot, with the brightness attenuating from the
center towards the periphery, and the energy of frequency components mainly concen-
trated at the center of the low-frequency spot, while the high-frequency region contains
detailed signal information and coherent noise, as shown in Fig. 2(b). Figure 2(a)
shows a holographic image captured for the fourth element of the fifth group on the
USAF 1951 calibration plate, with a magnified local view inside the orange rectangle
in the upper right corner, clearly revealing interference fringes. Figure 2(b) presents



528 YoNG KoNG et al.

r

e o e

1200 1400

Fig. 2. Effect of different filter shapes on reconstructed phase. (a) Captured hologram; (b) Spectrum of
the hologram; (c) Signal term spectrum and filtering window selected by adaptive method; (d) Signal term
spectrum and rectangular filtering window selected manually; (e) 3D phase reconstruction result using
adaptive filtering; (f) 3D phase reconstruction result using manual filtering.

the spectrum of the off-axis holographic image, with energy concentrated mainly in
the zero-order term area, while the intensities of the signal term and conjugate term
appear much weaker. To achieve high-quality phase reconstruction, the filtering win-
dow H should remove interference terms while including as many signal term spectral
components as possible. Figure 2(c, d) displays the adaptively selected filtering win-
dow and manually selected rectangular filtering window for filtering the signal term
spectrum and shifting it to the center of the holographic image spectrum, corresponding
to the blue and orange regions in Fig. 2(b). Figures 2(e, f) show the respective results
of three-dimensional phase reconstruction for adaptive and manual filtering. By com-
paring the results of phase reconstruction within the red dashed rectangle in Fig. 2(e, f),
it is evident that the adaptive method preserves more phase details and exhibits a no-
ticeable suppression effect on interference terms. Furthermore, manually selecting the
filtering window cannot accurately identify the signal term spectrum, resulting in the
filtering window containing not only the signal term spectrum but also a large amount
of interference term components, thereby affecting the quality of phase reconstruction.

To observe the morphology and microstructure of samples accurately, it is neces-
sary to extract the signal term spectrum accurately. Therefore, the design of the spatial
frequency domain filtering window must filter out interference terms that cause co-
herent noise while retaining as many high-frequency components of the signal term
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as possible, striking a balance between the quality of phase reconstruction and the sup-
pression of interference terms.

2.3. Frequency domain filtering method based on deep learning

This paper employs the classic U-Net convolutional neural network from deep learning
to suppress interference terms and extract the signal term spectrum. The principle
framework is illustrated in Fig. 3. First, the holographic image directly acquired from
the CMOS is subjected to data preprocessing, including rotation and translation, to ad-
just the target to the center of the image, as shown in Fig. 3(b). Next, the original spec-
trum of the holographic image is obtained using FFT, as depicted in Fig. 3(c). Then,
the zero-order term and conjugate term are eliminated [18], and the original holo-
graphic image is cropped to half size, resulting in Fig. 3(d). Subsequently, the cropped
spectrum is input into the trained U-Net, and the output is the binarized frequency do-
main filtering window, as shown in Fig. 3(e). To perform frequency domain filtering,
the filtering window needs to be padded to the original size, as illustrated in Fig. 3(f).
Then, the frequency domain filtering is conducted by multiplying it with the original
spectrum, resulting in the signal term spectrum with interference terms removed, as
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Fig. 3. Framework diagram of DL-SEDH based frequency domain filtering algorithm.
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shown in Fig. 3(g). Finally, holographic reconstruction is performed on the amplitude
and phase maps, as shown in Fig. 3(h).

3. Data preparation and model training
3.1. Preparation of data sets

To establish the dataset for training the deep learning network model, partial digital
holographic images of the USAF 1951 resolution test chart were captured using the
off-axis DHM setup, as shown in Fig. 1(a). The density and orientation of the inter-
ference fringes are adjusted by tuning the horizontal position and tilt angle of BS2,
which adjusts the distribution of the signal term, conjugate term, and zero-order term
in the holographic image spectrum, according to the angular spectrum theory. The ac-
tual optical setup is depicted in Fig. 1(b).

The holographic images of the third, fourth, and fifth elements of the fourth group
of the calibration chart were captured. The resolution of each element was determined
to be 20.16, 22.63, and 25.40 LP/mm, respectively. The corresponding limit resolutions
per line pair were calculated as 49.6, 44.2, and 39.4 um. A total of 915 holographic
images were obtained by capturing 305 holographic images for each element, with 5 im-
ages taken at each position and 10 different positions captured in each direction (front,
back, up, down, left, and right). During the capturing process, efforts were made to
ensure that the target element remained within the field of view of the CMOS image
sensor to prevent it from moving out of view. It is important to note that different el-
ements have different frequency spectra, and noise interference may also be present.
Therefore, the dataset contains reconstructed images with different resolutions and var-
ious distributions of coherent noise. The label images were generated by combining
the adaptive filtering algorithm proposed in [15] with morphological processing in dig-
ital image processing. In the label image generation process, considering that interfer-
ence around the signal term may affect the quality of the final phase reconstruction,
a phase noise filtering step was added during frequency domain filtering to produce
high-quality label images. Additionally, to facilitate better learning by the network, the
zero-order term and the conjugate term were first removed, and the original spectrum
was cropped before network training [12]. This approach simplifies the selection of
the signal term to resemble a straightforward image segmentation problem and signif-
icantly reduces computational complexity, thereby alleviating the cache pressure on
the computer.

3.2. Model training

The CNN model used in this study is an improved U-Net architecture [19,20], as il-
lustrated in Fig. 4. The network input and output have the same spatial dimensions.
The input is the cropped signal term spectrum, represented as a grayscale image, while
the output is the corresponding signal term filtering window, represented as a binary
image. The improved U-Net model comprises multiple convolutional layers equipped
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Fig. 4. Improved U-Net convolutional neural network model structure.

with ReLLU nonlinear activation functions, batch normalization (BN) layers [21,22],
upsampling layers, and skip connections. The network consists primarily of convolu-
tional blocks, downsampling modules (left half of the diagram), and upsampling mod-
ules (right half), exhibiting a symmetric overall architecture.

Within each convolutional block, the convolutional kernel size is fixed at 3 x3 with
a stride of 1 and padding of 1; the padding mode is set to “reflect” padding to preserve
edge information and enhance feature extraction capability compared to standard zero
-padding. Following each convolution, batch normalization is applied to stabilize and
accelerate training by normalizing the feature distributions, which also helps mitigate
overfitting. Subsequently, a dropout layer with a dropout rate of 0.3 is employed to
randomly deactivate 30% of neurons during each training iteration, serving as a reg-
ularization technique to further reduce overfitting and improve model generalization.
Finally, the ReL U activation function introduces nonlinearity, enabling the network to
learn complex mappings.

In contrast to the original U-Net that uses max-pooling for downsampling—a pro-
cess which can cause loss of valuable feature information and lacks trainable param-
eters—this study replaces max-pooling with a 2 x 2 convolution operation with stride 2,
padding of 1, and reflect padding mode. This convolutional downsampling layer is fol-
lowed by batch normalization and ReL U activation, allowing the network to learn more
meaningful feature representations while reducing spatial resolution. During downsam-
pling, the number of input and output channels remains unchanged. For upsampling,
nearest-neighbor interpolation with a scale factor of 2 is utilized to restore spatial res-
olution. To enhance segmentation accuracy and preserve spatial context, skip connec-
tions concatenate feature maps from shallower layers of the encoder to corresponding
deeper layers in the decoder. Channel dimensionality is adjusted during upsampling
by applying a 1x1 convolution with stride 1; this layer does not perform feature ex-
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traction but solely reduces the number of channels to half of the input size. The skip
connections ensure the consistency of input and output channel dimensions, facilitat-
ing effective fusion of multi-scale features.

The input images and their corresponding label images are fed into the network
simultaneously during training, and the adaptive moment estimation (Adam) optimizer
is employed for iterative parameter optimization. Training proceeds in batches, where
the signal term spectrum is input into the network model, and the optimizer minimizes
the discrepancy between the network output and the ground truth labels. The loss func-
tion utilized is the cross-entropy loss, which effectively quantifies the difference be-
tween predicted probabilities and true class labels in classification tasks.

To prevent overfitting and enhance the model’s generalization capability, a dropout
layer with a dropout rate of 0.3 is applied during training. Dropout works by randomly
deactivating 30% of neurons in each training iteration, which forces the network to
learn more robust and redundant representations instead of relying on specific path-
ways. Other training parameters are as follows: batch size is set to 1, input image size is
1280% 640 pixels, the number of channels in the first convolutional layer is 64, and
the deepest convolutional layer has 1024 channels. The network is trained for 20 epochs.
This model is implemented using the PyTorch deep learning framework in Python and
accelerated with an NVIDIA Quadro P5000 GPU.

To evaluate the trained model, randomly selected holographic images from three
samples are analyzed. The differences between the filtering windows produced by the
trained network and those obtained via the adaptive spatial frequency domain filtering
algorithm are compared, as shown in Fig. 5. Specifically, the first column displays the
grayscale holographic images of the three samples; the second column shows their cor-
responding spectra after removal of the zero-order and conjugate terms followed by
cropping; the third column presents the filtering windows determined by the adaptive
filtering method; and the last column depicts the concatenation of the filtering windows
generated by the neural network (right half) and the ground truth images (left half).

The automatic signal term spectrum selection algorithm based on the improved
U-Net network proposed in this study was trained on a self-constructed dataset derived
from the USAF 1951 calibration target experiment. The spatial frequency domain fil-
tering results using the trained model are presented in Fig. 5. The first column of Fig. 5
displays the grayscale holograms of the USAF 1951 calibration target, including Ele-
ment 3 (Fig. 5(a)), Element 4 (Fig. 5(¢)), and Element 5 (Fig. 5 (i)). Correspondingly,
Figs. 5 (b), (f), and (j) show the cropped spectra after the removal of conjugate terms.
It can be observed that the zero-order diffraction terms have been eliminated via a high
-pass filtering (HPF) method. Additionally, a bright spot appears in the lower right cor-
ner of the signal term spectrum due to environmental interference, which is referred to
as noise in this study. Notably, although all three samples originate from the fourth group
of elements on the calibration target, the distributions of the signal term spectra exhibit
distinct variations. This variation is clearly reflected in the shapes of the adaptive fil-
tering windows obtained by conventional algorithms, as illustrated in Figs. 5 (c), (g),
and (k). The last column of Fig. 5 compares the filtering windows predicted by the
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Fig. 5. Validation of the effectiveness of the network model. (a) Element 3 hologram; (b) Element 3
cropped spectrum; (c) Element 3 label (filtering window); (d) Element 3 model output; (e) Element 4 hol-
ogram; (f) Element 4 cropped spectrum; (g) Element 4 label (filtering window); (h) Element 4 model out-
put; (i) Element 5 hologram; (j) Element 5 cropped spectrum; (k) Element 5 label (filtering window);
(1) Element 5 model output.

trained U-Net model with those derived from traditional adaptive spatial frequency do-
main filtering methods. The results demonstrate that the proposed improved U-Net
based automatic signal term spectrum selection algorithm effectively learns the intrin-
sic features of the signal term spectrum in off-axis holographic images.

4. Experimental verification and results

To evaluate the effectiveness and applicability of the proposed deep-learning-based sig-
nal term spectrum feature learning algorithm, a series of phase reconstruction results
obtained using the automatic signal term spectrum selection algorithm based on the
improved U-Net network proposed in this paper were compared in detail with those
obtained using traditional phase reconstruction algorithms. This comparison includes
experiments conducted with the USAF 1951 calibration board for validating the ef-
fectiveness of the proposed algorithm and experiments with onion specimen biological
cells to demonstrate the algorithm’s applicability.

The phase reconstruction results obtained using the commonly used circular fil-
ter (CRF) [17] and rectangular filter (RTF) from the traditional-shape-based filtering
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methods, as well as the segmentation-based adaptive filtering (SAF) [13] and the deep
-learning-based filtering algorithm DL-SEDH proposed in this paper, were compared.
All the spatial frequency domain filtering methods mentioned above were implement-
ed in MATLAB 2021a environment, using an Intel® Xeon® Silver 4114 CPU with
a clock frequency of 2.20 GHz and 64 GB of memory.

4.1. USAF 1951 calibration board experiment

Figure 6(a) shows the comparison of the three-dimensional phase reconstruction results
obtained using the proposed algorithm and three other commonly used frequency domain
filtering algorithms. These methods were applied to process a hologram captured from
a portion of the USAF 1951 calibration target, as depicted in Fig. 1. An enlarged view
of the region outlined by the orange dashed rectangle is shown in Fig. 6(b). Figure 6(c)
displays the off-axis spectrum corresponding to the hologram, revealing three distinct
frequency components that are separated from each other. The orange rectangle in the
spectrum corresponds to the —1 frequency component, which represents the signal fre-
quency component. An enlarged view of this region is presented in Fig. 6(d). It is per-
tinent to clarify the selection of these specific target elements from the USAF 1951
test chart. The primary objective of this experiment was not to determine the ultimate
spatial resolution of our imaging system, which is fundamentally limited by the numer-
ical aperture of the objective and the pixel pitch of the CMOS sensor. Instead, our goal
was to rigorously validate the performance of the proposed DL-SEDH algorithm in terms
of'its phase reconstruction accuracy and interference suppression capabilities. By select-
ing larger elements (group 4, elements 3—5) that are clearly resolved by our DHM sys-
tem, we ensure that the recorded holograms provide a high-contrast, high-fidelity
ground truth, free from artifacts introduced by the system’s modulation transfer func-
tion (MTF) at its resolution limit. This approach allows for an unambiguous and iso-
lated assessment of the algorithm’s ability to accurately extract the signal spectrum
while rejecting noise, which is the central focus of this study.

Figures 6(e) and (f) depict the circular ring filter (CRF) and rectangular tapered
filter (RTF), respectively, which belong to manually selected filters (MSFs) among reg-
ular-shaped filters. The advantage of MSFs lies in their precise selection of position
and size, which can greatly ensure the quality of the reconstructed phase. However,
due to the manual intervention required in the phase reconstruction process, MSFs suf-
fer from low time efficiency and lack systematic real-time requirements. Comparing
CRF to RTF, under the same filtering radius condition, CRF contains fewer frequency
components. Although this reduces background noise, some details are also lost.
RTF, on the other hand, retains more detail information but is also affected by background
noise. Figure 6(g) presents the result of the segmentation-based adaptive filter (SAF),
which belongs to irregular-shaped filters.

It is evident that the shape of the filtering window of SAF is basically consistent with
the actual shape of the signal frequency spectrum. Therefore, SAF can contain more
signal frequency components, especially high-frequency components corresponding
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Fig. 6. Comparison of phase reconstruction effects of DL-SEDH and three other filtering algorithms.
(a) Hologram; (b) Enlarged view of the region outlined by the orange dashed rectangle in subfigure (a);
(c) Off-axis spectrum corresponding to the hologram; (d) Enlarged view of the —1 frequency component
outlined by the orange rectangle in subfigure (c); (¢) Signal term spectrum extraction and shifting using CRF;
(f) Signal term spectrum extraction and shifting using RTF; (g) Signal term spectrum extraction and shift-
ing using SAF; (h) Signal term spectrum extraction and shifting using DL-SEDH; (i) Phase reconstruction
using CRF; (j) Phase reconstruction using RTF; (k) Phase reconstruction using SAF; (1) Phase recon-
struction using DL-SEDH.

to the details of the reconstructed phase, while suppressing a certain degree of inter-
ference frequency components corresponding to background noise in the reconstructed
phase. Figure 6(h) shows the filtering window generated by the DL-SEDH algorithm
proposed in this paper after training the network. The shape and size of the window
are basically consistent with the distribution of the signal frequency spectrum, similar
to SAF. However, unlike SAF, DL-SEDH handles the high-frequency part of the signal
frequency spectrum more accurately. This is because the deep learning network is trained
and learned from a large number of different holographic spectrum images, enabling
it to comprehensively and accurately learn the commonalities and details in the signal
frequency spectrum. Therefore, the filtering window generated by DL-SEDH fits the
original signal frequency spectrum more accurately in terms of shape, position, and size.

Figures 6(i)—(1) respectively show the three-dimensional phase reconstruction re-
sults of the hologram in Fig. 6(a) using CRF, RTF, SAF, and the DL-SEDH algorithm
proposed in this paper. The red rectangle in the images represents the inherent back-
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ground noise in the signal, corresponding to the low-frequency components in the sig-
nal frequency spectrum. It can be observed that CRF has the largest background noise
interference, which even affects the details of the signal itself at the edges.

RTF and SAF have significantly improved background noise compared to CRF, es-
pecially SAF, which shows good improvements in both amplitude and affected areas.
The blue rectangle in the images represents the details within the signal, corresponding
to the high-frequency components in the signal frequency spectrum. Clearly, CRF and
RTF can retain sufficient signal details because their filtering window radius is large
enough to preserve more frequency components. However, SAF loses some high-fre-
quency components in order to match the distribution of the signal frequency spec-
trum, resulting in severe distortion of the internal details of the reconstructed phase.
The DL-SEDH algorithm proposed in this paper effectively addresses this issue. Like
SAF, DL-SEDH also generates a filtering window that matches the distribution of the
signal frequency spectrum. However, its essence lies in the deep convolutional neural
network learning from a large number of holographic spectrum images. Therefore,
DL-SEDH can learn high-frequency signal details that SAF may overlook. In summa-
ry, the DL-SEDH algorithm proposed in this paper can achieve high-quality recon-
struction of three-dimensional phase holograms.

4.2. Onion epidermal cell biology experiment

Figure 7(a) shows an off-axis hologram of onion epidermal cells captured using a CMOS
image sensor, with dimensions of 2135 %2135 pixels. Figure 7(b) presents a zoomed-in
view of the hologram within the red rectangle, clearly showing the interference fringes.
Figure 7(c) displays the frequency spectrum distribution of the onion epidermal cell
hologram on a logarithmic scale, with the magnified view of the signal frequency spec-
trum shown in Fig. 7(d). It can be observed that the signal frequency spectrum is scattered
with a large number of interference components, affecting the quality of the reconstructed
phase. The second column of Fig. 7 presents the filtering windows determined by the
DL-SEDH algorithm proposed in this paper and three other filtering algorithms. Corre-
spondingly, the third column of Fig. 7 shows the three-dimensional phase reconstruc-
tions of the onion epidermal cells obtained using each algorithm. Figures 7(¢)—(h) show
the filtering windows generated by CRF, RTF, SAF, and the trained DL-SEDH algo-
rithm for the onion epidermal cell hologram in Fig. 7(a). The reconstructed phases cor-
responding to Fig. 7(i)—(1) are presented accordingly.

Due to the use of in-line holography technique during the capture of onion epidermal
cells [23,24], the basic morphology of the onion epidermal cells can be clearly observed
in Fig. 7(a). In-line holography refers to the condition where the imaging plane of the
sample coincides with the receiving surface of the CMOS sensor during hologram cap-
ture, allowing for the acquisition of holograms with clear sample contours. According
to the angular spectrum theory [25,26], adjustments in the tilt direction and density of
interference fringes in Fig. 7(b) enable control over the distribution of the three-fre-
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Fig. 7. Three-dimensional phase reconstruction of onion epidermal cells. (a) Hologram of onion epidermal
cells; (b) Localized zoom of hologram; (c) Spectrogram; (d) Localized zoom of spectrogram; (e) CRF fil-
tered shape; (f) RTF filtered shape; (g) SAF filtered shape;(h) DL-SEDH filtered shape; (i) CRF recon-
structed phase; (j) RTF reconstructed phase; (k) SAF reconstructed phase; (1) DL-SEDH reconstructed
phase.
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quency spectra in Fig. 7(c), thereby achieving mutual separation of the three-frequency
spectra.

The determination of the filtering windows in Figs. 7(e) and(f) requires manual
intervention, where the size, position, and shape of the filtering windows are manually
determined based on the observation and analysis of the distribution of signal frequen-
cy spectra. In contrast, Figs. 7(g) and (h) demonstrate automatic selection of the signal
frequency spectra without the need for manual adjustment of filtering parameters. It
can be observed that SAF and DL-SEDH not only accurately extract the low-frequency
components of the signal frequency spectra, but also select the high-frequency com-
ponents to varying degrees, ensuring the quality of phase reconstruction.

From the phase reconstruction details within the white rectangular boxes in Figs. 7(i)
and (j), it can be seen that CRF suffers from severe distortion of phase details due to
the loss of high-frequency components during filtering. A similar issue is also observed
in SAF, as shown in Fig. 7(k), attributed to SAF’s inability to accurately identify signal
frequency spectra and interference, despite its filtering windows being closely aligned
with the signal frequency spectra. In contrast, DL-SEDH, proposed in this paper, can
rapidly and accurately distinguish between signal frequency spectra and interference
after learning from a large amount of signal frequency spectrum data, thereby achiev-
ing both high-quality phase reconstruction and interference suppression. Additionally,
for the edge details selected within the gray rectangular boxes on the right side of
Figs. 7(1)—(1), DL-SEDH achieves results consistent with RTF, while the internal de-
tails within the white rectangular boxes are more abundant. CRF and SAF, on the other
hand, result in blurred edge details due to the loss of high-frequency components, af-
fecting the quality of phase reconstruction.

In summary, the proposed DL-SEDH algorithm based on deep learning for off-axis
digital holographic signal spectrum extraction not only addresses the challenge of man-
ual intervention and determination of filtering windows required by traditional holo-
graphic filtering algorithms but also, due to its learning from a large amount of data
samples, can acquire deep features of the signal spectrum. Consequently, it accurately
identifies interference and signal spectrum, thereby improving the quality of phase re-
construction.

To provide a more objective and quantitative evaluation that complements the visual
assessments, we calculated the peak signal-to-noise ratio (PSNR) and the structural sim-
ilarity index (SSIM) for the reconstructed phase images of the USAF 1951 test chart.
For this analysis, the ground truth phase was meticulously generated by applying the
SAF method followed by careful manual refinement of the spectrum to ensure maximum
signal preservation. The results, summarized in Table 1, show a comparison between
the proposed DL-SEDH and the three other filtering methods (CRF, RTF, SAF) [27-31].
As indicated in Table 1, DL-SEDH consistently achieves the highest PSNR and
SSIM scores. The superior PSNR value highlights its exceptional capability in sup-
pressing background and phase noise, while the higher SSIM score confirms that it



Deep-learning-based spectral extraction algorithm... 539

Table 1. Quantitative comparison of phase reconstruction results using different filtering methods.

Method PSNR [dB] SSIM
CRF 25.13 0.82
RTF 27.45 0.86
SAF 31.58 0.91
DL-SEDH (ours) 35.72 0.96

better preserves the fine structural details of the original object. These quantitative met-
rics strongly support our qualitative observations and demonstrate the superior perfor-
mance of the proposed method.

5. Conclusions

The present study introduces a deep-learning-based off-axis digital holographic signal
spectrum extraction method, termed DL-SEDH. By training the deep learning network
model on approximately 1000 signal spectra of the USAF 1951 calibration board,
DL-SEDH successfully achieves adaptive extraction of the signal spectrum and effec-
tive suppression of interference components. Compared to traditional methods, this
algorithm requires no manual intervention or initialization of input parameters; it only
needs one round of network training to select the signal spectrum rapidly and stably.
In the experimental validation section, using the USAF 1951 calibration board and onion
epidermal cells as the research subjects, DL-SEDH demonstrates adaptability, speed,
robustness, and outstanding frequency domain filtering and interference suppression
capabilities compared to traditional phase reconstruction algorithms. Experimental re-
sults indicate that the trained DL-SEDH network can generate spatial frequency domain
filtering windows, accurately selecting the signal spectrum while suppressing interfer-
ence frequency components, especially coherent noise near the signal spectrum. Valida-
tion on holograms not used in training confirms the robustness and effectiveness of the
DL-SEDH method in phase reconstruction quality.

In conclusion, DL-SEDH, as a deep-learning-based off-axis digital holographic sig-
nal spectrum extraction method, demonstrates significant application value in the field
of off-axis digital holography. It provides an efficient and accurate solution for phase
reconstruction in digital holographic microscopy. Through validation experiments in
different scenarios, the universality and reliability of the DL-SEDH method have been
demonstrated, laying a solid foundation for advancing the application of digital holo-
graphic microscopy in the study of dynamic morphology of small objects.
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