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Generation of spatial transverse optical vortices
via 4x tight focusing radially polarized light
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Spatial transverse optical vortices (STOVs), characterized by possessing transverse orbital angular
momentum, offer new degrees of freedom for optical manipulation. However, since the vortex
phase circulation of STOVs is the spatiotemporal plane (x-¢ plane), traditional phase modulation
methods based on the x-y transverse plane are no longer applicable. Therefore, exploring new meth-
ods for generating STOVs has become a significant challenge. Here, a 4 tight focusing system
with overlapped phase from two counter-propagating radially polarized beams is proposed to gen-
erate STOVs. First, by independently designing the phase wavefronts of counter-propagating
beams, uniform nano-scale spherical spots are generated in the focal region. Then, treating spher-
ical spots as spatial trajectory units and superimposing a time-dependent helical phase factor
exp(—ilpg,), precise control over the spot’s spatial position and motion trajectory is achieved. When
the temporal step is sufficiently small, i.e., under high temporal resolution, smooth STOVs emerge.
Through simultaneous modulation of temporal and spatial factor, STOVs with distinct radii » can
be generated. This approach ultimately enables precise customization of STOVs in size, smooth-
ness, and geometry, facilitating high-precision advancements in fields such as super-resolution
microscopy, quantum manipulation and subwavelength nonlinear optical effects.

Keywords: spatial transverse optical vortices, orbital angular momentum, 4=n tight focusing, spherical
spots.

1. Introduction

Optical vortices (OVs), as particular electromagnetic structures that carry a spatially
rotated flow of energy density around a phase singularity, have attracted significant
attention in the fields of optics and photonics in recent years. Typically, OVs with flow
of energy density along the propagation direction carry longitudinal orbital angular mo-
mentum (OAM). OAM is generated by applying a helically increasing (or decreasing)
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phase factor exp(—i/¢@) in the transverse plane, where ¢ is the azimuthal angle, and / is
an integer referred to as the topological charge. With such a degree of freedom, lon-
gitudinal OAM enables various advanced applications in optical imaging [1-3], optical
communication [4-6], quantum key distribution [7-10], and optical trapping [11-13].

In the tightly focused spatiotemporal domain, OVs with flow of energy density
perpendicular to the propagation direction, known as spatial transverse optical vor-
tices (STOVs), have been reported [14-19]. Since the transverse OAM of STOVs is
perpendicular to the axial direction, with the transverse plane being the x-z plane, con-
ventional methods for generating OVs through modulation in the x-y plane are no longer
applicable. Currently, researchers have demonstrated the generation of STOVs using
a4f pulse shaper, and combined it with a spatial light modulator to control the spectral
phase [20,21], successfully producing a series of STOVs with multiple OAM modes
and dozens of STOVs within a single pulse [14]. Additionally, some researchers have
proposed an optical spatial-temporal differentiator to generate STOVs, where the inter-
ference of the produced STOVs can be used to detect sudden changes in the envelope
of spatial and temporal pulse shapes [22]. Building upon these advancements, we present
anovel approach for generating STOVs. This method integrates the fundamental prin-
ciples of spectral phase modulation and spatial beam shaping, while featuring a sub-
stantially simplified optical architecture. Such improvements enhance the control
flexibility of STOVs field generation and manipulation, offering promising prospects
for further research.

In this paper, we theoretically demonstrate a novel method to generate spatially var-
ying uniform STOVs by 4n tight focusing system. By independently designing the
phase wavefronts of counter-propagating beams, we generate a uniform nano-scale
spherical spots in the focal region. Then, treating spherical spots as spatial trajectory
units and superimposing a time-dependent helical phase factor exp(—i/¢,) allows for
precise control over both the spatial position and movement trajectory of the light spots.
This enables the generation of arbitrary dispersion patterns and trajectory manipula-
tions in the spatio-temporal domain. When the temporal step is sufficiently small, i.e.,
under high temporal resolution, smooth STOVs emerge. Through simultaneous mod-
ulation of temporal and spatial factor, STOVs with distinct radii » can be generated.
This approach ultimately enables precise customization of STOVs in size, smoothness,
and geometry, facilitating high-precision advancements in fields such as super-resolu-
tion microscopy, quantum manipulation, and subwavelength nonlinear optical effects.

2. Methods

Figure 1 illustrates the 4 tight focusing system composed of two high numerical ap-
erture (NA) objectives positioned left and right, each illuminated by counter-propa-
gating RP beams. Short arrows denote the instantaneous electric field vectors. The two
counter-propagating RP beams are focused by the left and right objectives, resulting
in overlapping foci at the system’s focal plane.
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Fig. 1. Schematic of a 47 tight focusing system illuminated by two counterpropagating radially polar-
ized (RP) beams. The phase modulation patterns applied to the (a) left and (b) right objective lenses.

When the polarization directions of the incident light fields on either side of the
4 tight focusing system are opposite and a phase difference of m is introduced be-
tween them, the radial components of the electric field near the focus interfere de-
structively. Moreover, when the incident angle € is small, the longitudinal component
of the electric field near the focus is negligible. However, as 6 increases, the longitu-
dinal electric field component gradually strengthens. Consequently, when 6 becomes
sufficiently large, the light intensity near the focus no longer vanishes, leading to the
formation of a focused spot. According to Richards and Wolf’s classical vector dif-
fraction theory, after a light beam is focused by a single high numerical aperture lens,
the electric field distribution at the focal plane is [23,24]:

—ik
27

o 2n
E(r, 0,2) = j d@j E(6, ¢)sin0 exp(ilp,)exp(iks - r)dg (1)
0 o
where £ is the wave number in free space, given by k£ = 2w/4, where 1 is the correspond-
ing incident wavelength; o denotes the maximum value of the convergence angle, where
a = arcsin(NA/n,) and NA is the numerical aperture, and n, is the refractive index in
the image space; /¢, denotes the spatiotemporal spiral phase and ¢ = tan~!(x/1); s is
the direction of light propagation through the objective lens. The field strength factor
E(0, ¢) is:
sinf

E(6, ¢) = circ( - )P(H)I(Q)(cos¢0er+ sin¢0e¢) 2)

smao

For an observational point R in the vicinity of the focus, we have

s-r = zcosf +rsinfcos(¢p—09) 3)
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The three-dimensional electric field distribution in the focal area of the high-res-
olution aperture objective lens in the cylindrical coordinate system is:

E.(r,0,2) = AI sin20P(0)1(0)J,(krsin@)exp(ilpy)exp(ikzcosd)do 4)
0

o
E (r,0,z2) = 2z'AJ‘ sin®0P(0)1(0) Jy(krsinf)exp(ilp ) exp(ikzcos0)dd (5
0

where E (7, ¢, z) and E, (7, ¢, z) represent the longitudinal and radial electric field com-
ponents, respectively, at the observation point R near the focus. Here, P(0) is the pupil
function. For an equidistant lens, P(6) = cos/20, while for a Herschel lens, P(0) = 1.
In this case, we choose to use a Herschel lens. 4 represents the amplitude constant.
Ju(x) represents the Bessel function of the first kind of order . /(6) represents the elec-
tric field of the incident light beam. The Laguerre—Gaussian (LG) beam is a special
case of a vortex beam, and the expression for the LG beam used in the simulation is
as follows:

. m . 2
1,(0) = (fs:VnQJ exp _2( fsm@} )

w

where w is the beam waist, f is the focal length of the high numerical aperture lens,
and m is the topological charge, withm =1, w=0.01 m, and f =0.01 m.

By determining /(8) to correspond to the generation of the same spherical light
spot when translated along the optical axis to another position z = z,. /(0) can be ex-
pressed as follows:

1(0)=1,(0)A(9) (7
with,
A(0) = i ’; (-1)"(2n+ 1) j,(kzy) P, (cos0) )
n=0

Here, A(6) is determined by the spherical wave expansion of the plane wave factor
from the Richards—Wolf integral. P,(x) denotes the Legendre polynomial of order ».
We aim to generate the same spherical light spot when translating to another position
X = X, where x can be derived from the transformation between Cartesian and spherical
coordinates.

The selection of the NA of the objective ensures that the maximum convergence
angle from the edge of the lens is 89°, preventing /(8) from becoming infinite and fa-
cilitating the generation of the largest possible gradient force. In order to achieve per-
fect destructive interference of the transverse components in the focal plane while
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increasing the electric field strength, two counter-propagating RP beams must have op-
posite polarization directions. This minimizes the scattering force and maximizes the
gradient force. Based to the structure of the 4= tight focusing system, the electric field
expression near the focus is given by:

E(}", Q, Z):El(ra o, Z)+E2(—I", o, _Z) (9)

where E| and E, represent the electric fields generated by the left and right lenses, re-
spectively. The negative sign of » in £, indicates the opposite polarization direction of
the two incident beams, while the negative sign in z reflects the counter-propagating
direction of the beams.

By precisely controlling the amplitude, polarization, and phase distribution of spher-
ical light spots, subwavelength-scale super-diffraction-limited light field control can
be achieved in three-dimensional space. Within this framework, the highly localized
spherical light spots generated can be regarded as the basic spatial units in optical con-
trol, i.e., “optical pixels”. Each light pixel not only possesses nanoscale spatial posi-
tioning capability but can also be endowed with rich intrinsic structural features
through the introduction of specific spatio-temporal phase modulation.

By applying appropriate spiral phase modulation to two incident light fields, the
electric field distribution at the focal point can form a topological structure with phase
singularities and orbital angular momentum. At this point, the originally symmetric
spherical light spot evolves into a novel non-propagating localized light field—the
spatiotemporal optical vortex.

3. Results

This section investigates the spatially transverse OVs generated by tight focusing ra-
dially polarized light using a 4w system. Numerical integration of Eq. (7) is performed
with parameters 4 = 1 and NA = 0.95. For simplicity, we assume a refractive index n = 1
and an amplitude constant 4 = 1. Wavelength 4 is used as coordinate unit in all figures.

In a single-lens system, the longitudinal dimension of the radially polarized beam is
larger than its transverse dimension, primarily due to the greater extent of light prop-
agation along the optical axis, resulting in a relative increase in longitudinal size. In con-
trast, in a 4n tight focusing system, the two counter-propagating beams converge at the
same point, leading to interference of the wavefronts at the focus. This interference
effect significantly reduces the longitudinal size of the focus, creating a more compact
focusing region near the focal point. Figure 2 illustrates the total intensity distribution
in the z-x plane at a wavelength of 532 nm for both the 4w and the 2x focusing system.
Figure 2(a) shows the 3D iso-intensity (/ = [,,,,/2) surface distribution in the focus re-
gion after being focused by a 4 tight focusing system. Figures 2(b) and (d) show the
total intensity distribution and the radial and axial intensity profiles in the z-x plane
for the 4m system, while Figs. 2(c) and (e) display the corresponding distributions for
the 2m system. The peak intensity for each mode is normalized to 1. Comparing
Figs. 2(b) and (d) with (c) and (e) reveals that the radial dimensions are both 0.4 4, while
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Fig. 2. Comparison of single quasi-spherical focal point produced by 4x and 2= tight focusing systems.
(a) 3D iso-intensity (I = I,,/2) surface distribution in the focus region. (b) and (c) Total intensity dis-
tributions in the z-x plane at a wavelength of 532 nm for the 4x and 27 focusing systems. (d) and (e) Nor-
malized intensity distributions near the focal points of 4w and 2x systems.

the axial dimensions of the 4x tight focusing system are 0.4, and the axial dimen-
sions of the 27 focusing system are 1.2 4. The focal point with the full width half max-
imum (FWHM) of the focal spot which generated by 4= tight focusing system along
the x-, y-, and z-axis are Ax = 0.4, Ay = 0.4 4, and Az = 0.4, respectively. Their cen-
tral 2D spot area was calculated as S-xy = 0.164%, S-yz = 0.16% and S-zx = 0.16 42, re-
spectively. The volume of the sphere is 0.064 2. This shows that the light spot focused
by the 4 tight focusing system effectively reduces the axial size of the focal point,
resulting in a tighter and sharper spot. This is primarily due to the perfect destructive
interference between the two counter-propagating beams, which diminishes the total
radial component within the focal plane to zero, thereby significantly reducing the size
of the light spot.

In order to precisely control the position of the spherical spot to ensure that it moves
in three-dimensional space, our study changes the input field by changing the phase.
The input field /(€) can be obtained from the fundamental radially polarized mode
through dual-band phase modulation, which can be implemented using a spatial light
modulator. Figures 3(a)—(e) illustrate the intensity distribution near the focus for dif-
ferent values of x(, and show the evolution of the intensity of the spherical light spot
as the parameter x,, continuously varies from —24 to 24, specifically for x, = 24, -14,
0, 14, 24. As x,, changes, the central focus gradually moves along the x-axis. When
xo = 0, the spot is precisely located at x = 0, and as x increases, the central focus moves
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Fig. 3. Evolution of the intensity of spherical light spot near the focus. (a)—(e) Spherical light spots ob-
tained atx, = —24,—-14, 0, 14, 24, respectively. (f)—(j) Spherical light spots obtained at z, =21, —-14, 0,
12, 24, respectively. (k) and (1) The distribution of a spherical spot in the focal area along the z-axis and
along the x-axis of a 3D surface of equal intensity.

away from the center and gradually shifts upward, maintaining perfect spherical sym-
metry in the focused beam. Phase modulation only changes the position of the spherical
light spot and does not affect the intensity distribution and polarization distribution of
the light spot.

Figures 3(f)—(j) display the intensity distribution near the focus for different val-
ues of z,, and represent the evolution of the intensity of the spherical light spot as
the parameter z, continuously varies from —24 to 24, specifically for z, =-24,-14, 0,
14, 2. As anticipated, we obtain a series of spots centered around z,,, with the central
focus gradually moving along the z-axis. As z, increases, the central focus moves away
from the center and shifts gradually to the right. These spots closely approximate the
expected intensity of a spherical light spot, and the corresponding Figs. 3(a)—(j) demon-
strate that the intensity distribution remains approximately spherical throughout the
entire translation range.

Figures 3(a)—(j) demonstrate that by altering the phase of the input field, the spher-
ical light spots can move along the x-axis and z-axis. When the light spots need to move
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Fig. 4. Spherical focal spot movement along a circular path with radius » = 0.54 achieved via phase mod-
ulation. Subfigures (a)—(e) show spot position at coordinates (0, 0.51), (0.54, 0), (0, —0.51), (-0.54, 0),
and (0, 0.51) in the z-x plane.

along different paths, both parameters z, and x,, can be adjusted simultaneously. Sub-
figures (k) and (1) demonstrate the distribution of a spherical spot in the focal area along
the z-axis and along the x-axis of a 3D surface of equal intensity.

Figure 4 illustrates the movement of the spherical light spots near the focus along
a circular path at » = 0.54. As shown, the spots in subfigures (a)—(e) appear at the co-
ordinates (z, x) at (0, 0.54), (0.54, 0), (0,—0.54), (—=0.54, 0), and (0, 0.5 1), respectively.
This also shows that by using the corresponding phase modulation, the spherical focal
spot has been precisely transferred to the preconceived position.

To generate a transverse OV in space, we superimposed a phase factor exp(—i/ ¢, ).
lpg denotes the spatiotemporal spiral phase and ¢ = tan~!(x/¢). Take the first-order
STOVs as an example, i.e., when / = 1. By adjusting the phase, allowing the light spots
to repeat n times within 2z radians. By dividing 27 into n segments, we obtain a discrete
collection of light spots, as illustrated in Fig. 5 for n = 10, 20 and 30, respectively. In
Fig. 5(a) ten spherical spots discretely distributed in three-dimensional space are shown.
It shows the spiral vortex shape of light propagating forward in three-dimensional
space, and this intensity distribution characteristic is highly consistent with the spatio-
temporal optical vortex. These plots presented in the z-x plane are shown in Fig. 5(b).

Figure 6 depicts the square and circular ring formed when n = 100. Figures 6(a)—(c)
show the movement of the spherical light spot near the focus along square paths de-
fined by a = 2, 4 and 6 through phase modulation. As the selected value of n increases,
the gaps between the light spots diminish. By selecting 100 spherical foci generated
by the 4x tight focusing system and aligning them along a specified path to form a com-
plete square, we can observe that placing all spots along the square path on the same
plane results in a composite square of multiple spots. Additionally, the spots can be
positioned at specified locations to create different shapes. To create spatially trans-
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Fig. 5. Spherical focal spot movement along a circular path of » = 31, forming discretely distributed light
spots in the z-x plane. (a) Ten spherical spots discretely distributed in 3D space. (b)—(d) Circles composed
of 10, 20, and 30 discrete points in the z-x plane.
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Fig. 6. Multiple spherical focal points generated by the 4 tight system forming distinct patterns in the
z-x plane. (a)—(c) Square trajectories defined by parameters x, and z, (paths at @ = 2, 4 and 6) via phase
modulation. (d)—(f) Circular trajectories with radii » = 14, 21 and 31 achieved by jointly adjusting
discretization and radius.
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verse OVs, we defined a circular path with a radius of 4, 24, 31 by varying the phase.
When 7 is chosen to be sufficiently large, the light appears continuous, resulting in
a smooth circular ring observed in the z-x plane. In reality, this manifests as transverse
OVs in space. The hollow ring structure observed in the z-x plane, with zero intensity
atits center, directly proves the existence of phase singularities, indicating that the elec-
tric field undergoes complete destructive interference at that point. Figures 6(d)—(f)
show that by altering the phase, the spherical focal spots near the focus can traverse
circular paths at » = 4, 21 and 3. Thus, it can be observed that by adjusting the dis-
cretization and radius, an ideal synthetic circular light ring can be achieved, where
a sufficient number of light spots results in a circle with no abrupt phase changes. It
can also be adjusted to any shape, here two shapes, the square and the original shape,
are used as examples.

As shown in Fig. 6(d), the circular ring formed by the light spots exhibits some
scattered light in the center due to the small radius, as diffraction rings appear around
the focus, preventing a completely hollow center. However, this also validates our ap-
proach: by altering the phase of the light spots, transverse OVs can exist in space,
manifested as a circular ring in the z-x plane. As the radius of the circle increases, the
hollow state of the ring becomes clearer.

To achieve a perfect ring structure, we enlarge the radius, allowing the focused light
spots to form a seamless, ideal, and hollow ring in the z-x plane. As illustrated in
Figs. 6(e) and (f), we modify the phase to move the spherical focal spots along circular
paths at » =24 and » = 3 4. The circular ring is composed of 100 spherical light spots,
generated by a tight focusing radially polarized beam of 4.

4. Conclusions

In summary, we theoretically demonstrate a novel method to generate spatially varying
uniform STOVs by 4r tight focusing system. By independently designing the phase
wavefronts of counter-propagating beams, we generate a uniform nano-scale spherical
spots in the focal region. Then, treating spherical spots as spatial trajectory units and
superimposing a time-dependent helical phase factor exp(—i/gp) allows for precise
control over both the spatial position and movement trajectory of the light spots. This
enables the generation of arbitrary dispersion patterns and trajectory manipulations in
the spatio-temporal domain. When the temporal step is sufficiently small, i.e., under
high temporal resolution, smooth STOVs emerge. Through simultaneous modulation
of temporal and spatial factor, STOVs with distinct radii » can be generated. This ap-
proach ultimately enables precise customization of STOVs in size, smoothness, and
geometry, thereby offering substantial potential for advanced applications in optical
communication systems, high-precision optical detection, and multi-particle manipu-
lation using optical trapping technique.
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