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Cyfrowe zabezpieczenia elektro­
energetyczne, szybkie pomiary 

cyfrowe, identyfikacja i estymacja, 
filtracja cyfrowa

Janusz SZAFRAN*

ROZPOZNAWANIE SYGNAŁÓW 
W CYFROWEJ AUTOMATYCE ZABEZPIECZENIOWEJ

Przedstawiono cyfrową identyfikację wielkości kryterialnych zabez­
pieczeń elektroenergetycznych,takich jak: amplitudy napięć i prądów, 
moce i składowe impedancji, mierzonych na podstawie sygnałów często­
tliwości podstawowej. Rozważono trzy modele sygnałowe: determinis­
tyczny, częściowo oraz całkowicie probabilistyczny. Dokonano syntezy 
algorytmów pomiarowych i wydzielono dwie podstawowe ich rodziny. Zba­
dano metody optymalizacji algorytmów oraz minimalizacji błędów powo­
dowanych zakłóceniami. Zastosowano do tego metody fourierowskie o 
stałym i zmiennym oknie pomiarowym oraz filtrację Kalmana.

1. WSTęP

Stosowane obecnie analogowe zabezpieczenia elektroenergetyczne są 
oparte na teoretycznych podstawach opracowanych dość dawno i następnie 
udoskonalonych. Ich istotą jest komparacja liniowych kombinacji napięć i 
prądów oraz określanie na tej podstawie obszaru, w którym znajduje się 
wyznaczana wielkość kryterialna. Układy cyfrowe pozwalają na rozdziele­
nie tego procesu na dwa etapy: pomiar poszukiwanych wielkości kryterial­
nych oraz stwierdzenie, w których obszarach ta zmierzona wielkość się 
znajduje. Jest bardzo wiele zalet wynikających z tego podziału funkcji, 
z których bodaj najważniejsze to ogromna dowolność w kształtowaniu obsza­
rów działania oraz możliwości ściślejszej i efektywniejszej optymaliza­
cji każdego z tych dwu procesów.

Kryteria decydujące o działaniu zabezpieczeń elektroenergetycznych 
najczęściej opierają się na informacji zawartej w napięciach i prądach o 



częstotliwości podstawowej. W pracy zajęto się tylko tymi metodami, to 
jest pomiarem wielkości kryterialnych związanych ze składowymi podstawo­
wymi napięć i prądów. Ten proces pomiaru jest zazwyczaj realizowany w 
dwu etapach. Pierwszy z nich to wydobycie z sygnału składowych podstawo­
wych napięcia j(lub) prądu w postaci fazorów, a drugi to właściwy po­
miar wartości danej wielkości kryterialnej. Szczególnie ważna jest reali­
zacja zadań w ramach pierwszego etapu, ponieważ należy tutaj efektywnie 
stłumić szumy towarzyszące sygnałowi użytecznemu oraz wytworzyć jego 
składowe ortogonalne, stanowiące podstawowe wielkości w stosowanych algo­
rytmach pomiarowych. Procesy filtracji i ortogonalizacji mogą być reali­
zowane rozdzielnie lub łącznie, a rezultatem tego mogą być podobne lub 
różne właściwości oraz szczegółowe parametry pomiaru.

Najczęściej stosowanymi wielkościami kryterialnymi zabezpieczeń są: 
amplituda lub wartość skuteczna składowej podstawowej napięcia i prądu, 
moce czynna i bierna oraz rezystancja i reaktancja. Pomiary tych właśnie 
wielkości kryterialnych są przedmiotem pracy. Można tu zauważyć, że wie­
le spośród metod pomiaru amplitud lub mocy powstało jakby na marginesie 
metod pomiaru rezystancji i reaktancji. Tymczasem optymalizacja pomiaru 
tych pierwszych może czasem wymagać, aby traktować je odrębnie.

Technika cyfrowa zaoferowała takie możliwości w przetwarzaniu sygna­
łów, że w rezultacie opracowano ogromną liczbę algorytmów szczegółowych. 
Opublikowano bardzo dużo prac na ten temat, a liczba fundamentalnych po­
zycji bibliograficznych sięga kilkudziesięciu. Wiele spośród tych algo­
rytmów różni się często tylko pozornie, gdyż wszystkie one wynikają z 
niewielu podstawowych metod. W pracy skoncentrowano się na syntezie tych 
metod i przedstawieniu ogólnych zależności, z których można wyznaczać 
mnogość szczegółowych postaci algorytmów pomiarowych różnych wielkości 
kryterialnych.

Mierzone wielkości kryterialne odznaczają się takimi cechami,jak 
własności dynamiczne oraz błędy w stanie ustalonym. Na własności dyna­
miczne składają się czas trwania i charakter stanu przejściowego po sko­
kowej zmianie sygnałów oraz wynikające z niego błędy dynamiczne. Błędy 
ustalone są określone jako maksymalne wartości względnych błędów chwilo­
wych zmierzonych wielkości kryterialnych w stanie ustalonym. Te cechy 
pomiaru są w pracy ujmowane łącznie dla obu etapów przetwarzania, to zna­
czy ortogonalizacji wraz z filtracją sygnałów oraz zastosowania właściwe­
go algorytmu pomiarowego. Miary błędów mogą się różnić w poszczególnych 
przypadkach, co jest uzależnione od przyjętego modelu sygnałowego.

Omawiane rozważania były prowadzone z uwzględnieniem rzeczywistego 
układu pomiarowego i w związku z tym przyjęto dwa założenia. Jednym z 
nich jest założenie liniowości przekładników napięciowych i prądowych, a 
drugim stałość częstotliwości składowych podstawowych sygnałów.



2. STRUKTURA POMIARÓW CYFROWYCH ZABEZPIECZEŃ ELEKTROENERGETYCZNYCH

Zabezpieczenia elektroenergetyczne są skomplikowanymi układami pomia- 
rowo-decyzyjnymi, dokonującymi złożonego przetwarzania napięć i prądów 
systemu. W ich długiej już historii rozwój technologii był wyznaczni­
kiem konstrukcji, poczynając od tych wykorzystujących elementy stykowe 
- przekaźniki - co dało zabezpieczeniom nazwę do dzisiaj używaną w lite­
raturze anglosaskiej, poprzez zastosowanie elementów analogowych, elek­
tronicznych w układach konstruowanych i używanych do dzisiaj, aż po ukła­
dy, które w coraz większym stopniu stosują i będą korzystać z techniki 
cyfrowej.

Pierwsze prace dotyczące algorytmów cyfrowych zabezpieczeń pojawiły 
się na przełomie lat sześćdziesiątych i siedemdziesiątych, a ich tempo i 
zakres wyraźnie zwiększał się w miarę rozwoju technologii. Dotyczy to po­
jawienia się scalonego procesora najpierw 8- a potem 16-bitowego, scalo­
nych pamięci odpowiedniej pojemności oraz odpowiednio szybkich przetwor­
ników analogowo-cyfrowych. Tak więc współczesne zabezpieczenia cyfrowe 
mogą być realizowane za pomocą aktualnej technologii, chociaż pewną ba­
rierą jest jeszcze ekonomia; nie ulega jednak wątpliwości, że bezsprzecz­
ne zalety techniki cyfrowej spowodują, iż przyszłość będzie należeć do 
tych układów.

Stosownie do rozwoju technologii zmieniała się również struktura 
układów zabezpieczeń. Część elementów, chociaż udoskonalona, pozostała 
trwałym elementem całego układu, część ulegała całkowitej zmianie. Wraz 
z tym coraz wyraźniej można wyodrębniać pewne człony funkcjonalne, które 
uprzednio stanowiły jedną całość. Człon filtrująco-pomiarowo-decyzyjny, 
stanowiący początkowo jedną całość, zaczyna się stopniowo rozdzielać na 
osobne człony, które mogą być optymalizowane ze względu na pełnione funk­
cje. W zabezpieczeniach cyfrowych funkcje te są już wyraźnie rozdzielone, 
a wydzielony człon pomiarowy jest jednym z najważniejszych bloków,gdyż 
od jakości pomiaru zależą funkcje całego układu."/ cyfrowym pomiarze róż­
nych wielkości,wykorzystującym analogowe sygnały systemu,pojawia się 
wiele nowych niezbędnych elementów, które muszą spełniać określone wy­
magania, jeśli cały układ ma działać poprawnie.

2.1. Schemat blokowy zabezpieczeń cyfrowych

Funkcjonalny schemat blokowy zabezpieczenia przedstawiono na rys. 
2.1 a. Napięcia i prądy z obiektu zabezpieczanego są przetwarzane z zasto­
sowaniem zabezpieczeniowych przekładników napięciowych i prądowych na



b)

Rys. 2.1. Funkcjonalny schemat blokowy układu zabezpieczenia elektro­
energetycznego (a), interface między częścią analogową cyfrową '.b) 

oraz schemat blokowy części cyfrowej (c)
Fig. 2.1. Functional block scheme of power system protection (a), 
interface between its analog and digital part (b) and block scheme of the 

digital part (c)

standardowe wielkości wtórne. Wielkości te są następnie transformowane do 
odpowiedniego poziomu napięcia lub prądu za pomocą przekładników pośred­
niczących, których dodatkową funkcją jest separacja galwaniczna. Te pier­
wsze trzy elementy, przedstawione na schemacie blokowym, mają za zadanie 



sprowadzenie sygnałów pierwotnych do odpowiedniego poziomu oraz standa­
ryzację używanej wielkości fizycznej - najczęściej jest nią napięcie. 
Dalsze elementy tego schematu stanowią właściwy układ zabezpieczenia. Mo­
że ono być w sensie ogólnym realizowane dwoma sposobami. Pierwszy z nich, 
w którym nie dokonuje się bezpośredniego pomiaru wielkości kryterialnych, 
polega na zastosowaniu liniowej kombinacji napięć i prądów i jej kompara- 
cji z pewnym skalarem czy wektorem odniesienia. Pozwala to na ukształto­
wanie wymaganej charakterystyki, czy też obszaru działania i podejmowania 
decyzji stosownie do rzeczywistych wielkości napięć i prądów. Drugi spo­
sób polega na tym, że dokonuje się bezpośredniego pomiaru wielkości kry- 
terialnych, które następnie są porównywane z wielkościami odniesienia, 
co pozwala na ukształtowanie charakterystyki czy też obszaru działania. 
Decyzja jest podejmowana stosownie do spełniania dodatkowych warunków,co 
jest realizowane za pomocą układów logicznych.

Pierwszy ze sposobów jest charakterystyczny dla układów zabezpieczeń 
analogowych, natomiast drugi z nich - dla układów zabezpieczeń cyfrowych. 
Wynika to przede wszystkim z tego, że analogowe operacje mnożenia i dzie­
lenia z odpowiednią dokładnością są trudne w realizacji dla dużych zakre­
sów zmian wartości napięć i prądów. Tymczasem komparatory potrafią dużo 
łatwiej sprostać zadaniu ukształtowania odpowiedniej charakterystyki w 
tych warunkach. W układach cyfrowych ta sytuacja zmienia się; mnożenie i 
dzielenie, chociaż są operacjami czasochłonnymi w porównaniu z innymi,to 
jednak są dość łatwe w realizacji. W sumie więc drugi ze sposobów w zabez­
pieczeniach cyfrowych jest dominujący, choć właściwie oba sposoby mogą 
być tu stosowane, wzajemnie się uzupełniając.

W cyfrowych zabezpieczeniach, jak zresztą w każdym cyfrowym systemie 
pomiarowym, pojawia się wiele nowych elementów i układów, których nie by­
ło w elektronicznych układach analogowych. Przedstawiono to na rys. 2.Ib. 
Oprócz samego systemu mikroprocesorowego, są to układy niezbędne w dys- 
kretyzacji sygnału. Proces ten przebiega w dwu etapach. Pierwszy z nich 
to zastąpienie sygnału analogowego ciągiem próbek, których wartość, jesz­
cze analogowa, jest przekształcona z określoną rozdzielczością do postaci 
cyfrowej z zastosowaniem przetwornika analogowo-cyfrowego. Tak więc, 
oprócz systemu miKroprocesorowego, który między innymi steruje pracą po­
zostałych bloków, w układzie - zgodnie ze schematem blokowym na rys.2.Ib 
- pojawiają się następujące elementy:

- filtry analogowe
- pamięci analogowe (układy próbkująco-pamiętające) 
- multiplekser
- przetwornik analogowo-cyfrowy.
Najkosztowniejszym elementem tego zestawu jest przetwornik analogowo- 

-cyfrowy. Względy ekonomiczne powodują więc, że współpracuje on z multi- 



plekserem, umożliwiając stosowanie Jednego przetwornika A/C do przetwa­
rzania wielu napięć i prądów. Obecność multipleksera z kolei powoduje, 
że ważnym elementem układu stają się pamięci analogowe, chociaż nie są 
one niezbędne. Możliwe są tutaj dwa rozwiązania. Jedno, bez użycia pamię­
ci analogowych, polega na pobieraniu przez multiplekser próbek sygnałów 
w wyznaczonych, określonych odstępach czasu, a powstałe przesunięcie fa­
zowe Jest korygowane w systemie mikroprocesorowym podczas wyznaczania 
wielkości kryterialnych. W drugim rozwiązaniu pamięci analogowe, odrębne 
dla każdego sygnału, zapamiętują wartość wszystkich sygnałów w tej samej 
chwili, a następnie multiplekser dostarcza Je kolejno do przetwornika 
A/C, gdzie są przetwarzane do postaci cyfrowej i przesyłane do systemu 
mikroprocesorowego. Po pełnym cyklu multipleksera w pamięci analogowej 
zapamiętuje się kolejne próbki wszystkich sygnałów i przetwarzanie po­
wtarza się. Ważnym elementem całego układu są filtry analogowe, których 
niezbędność wynika z procesu przekształcania sygnału ciągłego do analo­
gowej postaci impulsowej. Proces ten, Jak wiadomo, wiąźe się z przeksz­
tałcaniem sygnału o widmie ograniczonym w sygnał o widmie nieograniczo­
nym. Chcąc zachować swobodę wyborni częstotliwości próbkowania,trzeba 
ograniczyć pasmo sygnałów tak, aby po próbkowaniu widma nie nakładały 
się. W przeciwnym przypadku mogą powstawać duże błędy oraz mogą być trud­
ności z odtwarzaniem sygnału pierwotnego. Tak więc zadaniem filtrów ana­
logowych Jest ograniczenie widma sygnałów, a ich parametry są uzależnio­
ne od przyjętej częstotliwości próbkowania.

System mikroprocesorowy, oprócz sterowania pracą omawianych układów, 
Jako główne zadanie realizuje funkcje przedstawione schematycznie na ry­
sunku 2.1c. Funkcje te to: filtracja cyfrowa, realizacja algorytmów po­
miarowych wielkości kryterialnych oraz ukształtowanie obszaru decyzyjne­
go i podjęcie decyzji opartych na nastawionych wektorach progowych. Spo­
śród wymienionych funkcji najbardziej złożone i czasochłonne operacje na 
sygnałach cyfrowych związane są z filtracją cyfrową, mającą najczęściej 
na celu wyfiltrowanie spośród zakłóceń napięć i prądów o częstotliwości 
podstawowej. Zastosowanie właściwych filtrów cyfrowych, zbliżonych do 
optymalnych, warunkuje dokładność i szybkość pomiaru wielkości kryterial­
nych i te same własności procesu decyzyjnego. Naturalnie system mikropro­
cesorowy może realizować wiele innych funkcji, ważnych,lecz mniej istot­
nych pod względem rozważań prowadzonych tutaj, jak na przykład: samotes- 
towanie, współpraca z innymi systemami itp.

Parametry poszczególnych bloków zabezpieczeń cyfrowych zostaną omó­
wione, zaś na zakończenie wart-o podkreślić, że oprócz ostatniego bloku 
realizującego podjęcie decyzji, cały układ jest złożonym, cyfrowym sys­
temem pomiarowym.



2.2. Podstawowe wymagania metrologiczne i funkcjonalne

Cyfrowe zabezpieczenia elektroenergetyczne mają, jak wynika to z rys. 
2.1, dwa wyraźnie wydzielone układy: analogowy oraz cyfrowy. Część ana­
logowa, złożona z przekładników prądowych i napięciowych oraz przekład- 
ników pośredniczących, jest podobna jak w zabezpieczeniach analogowych. 
Wymagania stawiane tym elementom, ich własności i parametry, są dobrze 
znane, były i są przedmiotem intensywnych badań, których wyniki publiku­
je się od wielu lat. Są one też ujęte w normach krajowych i zagranicz­
nych. Nieco więcej uwagi trzeba natomiast poświęcić części cyfrowej za­
bezpieczeń, a zwłaszcza układom, które są odpowiedzialne za przekształce­
nie sygnałów analogowych w ciąg próbek o wartościach danych w postaci cy­
frowej. Są to układy umieszczone między punktami 1 i 2 na rys. 2.1b, a 
więc: filtry analogowe, pamięci analogowe, multiplekser oraz przetwornik 
A/C.

Parametry i wymagania stawiane tym układom trzeba rozpatrywać w kon­
tekście stosowanej częstotliwości próbkowania której ograniczenie 
wynika z wykorzystywania do pomiaru wielkości kryterialnych napięć i prą­
dów o częstotliwości podstawowej w1 i jednocześnie jest.ona kompromi­
sem związanym z konieczną rozdzielczością przetwornika A/C, wymaganą 
szybkością przetwarzania, kosztami, dokładnością oraz wydajnością syste­
mu mikroprocesorowego. Ocenia się, że uzasadnione, wystarczające wartoś­
ci wynoszą od 600 do 1600 Hz, to jest między 12 a 32 próbkami w okresie 
składowej podstawowej, przy czym wartości 600 lub 800 Hz uważa się za 
najlepiej wyważony kompromis między wymienionymi, sprzecznymi wymagania­
mi. Znając tę częstotliwość lub przedział, w której się ona znajduje, 
można już scharakteryzować wymagania w stosunku do innych elementów ukła­
du cyfrowego.

Filtry analogowe
Niezbędność stosowania filtrów analogowych wynika z twierdzenia Shan­

nons o próbkowaniu, ograniczonej częstotliwości próbkowania oraz szero­
kiego pasma częstotliwości sygnałów - napięć i prądów systemu w stanie 
zaburzenia.

Niech sygnał f(t) ma widmo F(ja>), będące transformatą Fouriera tej 
funkcji, o paśmie ograniczonym do maksymalnej częstotliwości w$, tak 
jak to przedstawiono na rys. 2.2a. Jeśli sygnał ten jest próbkowany z 
częstotliwością to widmo tego sygnału jest widmem sygnału ciągłego, 
powtarzanym w przedziale w od -« do w odstępie równym tak jak 
przedstawiono to na rys. 2.2b (ш^ > 2 wg). Można to też zapisać równa­
niami:



F(jco)

a)

Rys. 2.2. Widma sygnału ciągłego (a) oraz dyskretnego (b) 
próbkowanego z częstotliwością

Fig. 2.2. Spectra of continuous (a) and discrete (b) 
signals sampled with frequency

F {f(t)} = F(jw)

f*(t) =2 Ht)6(t - кТ±) (2.1)
k»-=

T±F [f* (t) } =2 - k“i>]
k=—=°

gdzie
- okres próbkowania^,

o>i = 2u/T^,
F { | - transformata Fouriera.

Widać na rysunku 2.2b, że wraz ze wzrostem poszczególne odbicia 
widma sygnału ciągłego oddalają się od siebie, a wraz ze zmniejszaniem 

zbliżają się. Dalsze zmniejszanie poczynając od granicznej war­
tości w^ = 2 powoduje nakładanie się widm i oryginalnego sygnału 
f(t) nie można już odtworzyć, nawet po zastosowaniu idealnego filtru 
dolnoprzepustowego.

Przedstawiona sytuacja jest wyidealizowana, ponieważ widmo sygnału 
może być ograniczone do pewnego pasma tylko wtedy, gdy sygnał ten istnie­
je w nieskończonym przedziale czasu. Jednakże w rzeczywistości sygnał 
zawsze obserwuje się w przedziale skończonym i wobec tego jego widmo ist­
nieje w nieskończonym paśmie. Sygnał ten po próbkowaniu będzie zawsze 
miał nakładające się widma, jeśli nie ograniczy się ich stosownymi fil­
trami analogowymi przed poddaniem procesowi dyskretyzacji.

Z przedstawionych rozważań wynikają wymagania dotyczące parametrów 
dolnoprzepustowych filtrów analogowych napięć i prądów:



a) pasmo zaporowe filtru powinno rozpoczynać się przy częstotliwości 
mniejszej niż połowa częstotliwości próbkowania»

b) wzmocnienie w paśmie zaporowym zależy od przewidywanej amplitudy 
składowych o częstotliwości wyższej niż połowa częstotliwości próbkowa­
nia obecnych w sygnale; wzmocnienie to najkorzystniej jest dobrać tak, 
aby amplitudy tych składowych po przejściu przez filtr były mniejsze od 
rozdzielczości przetwornika A/C;

c) szczególną uwagę należy zwrócić na tłumienie składowych o często­
tliwości równej sumie częstotliwości identyfikowanej składowej podstawo­
wej i wielokrotności częstotliwości próbkowania .

Przetwornik A/C
Przetwornik A/C jest jednym z bardziej kosztownych i odpowiedzial­

nych układów całego systemu cyfrowego. Powinien więc być wybrany bardzo 
starannie ze względu na stawiane mu wymagania, szczególnie, że wraz z po­
prawą jego parametrów koszty szybko wzrastają. Przetworniki analogowo-cy­
frowe realizowane są przeważnie w wersji scalonej, a spośród wielu wiel­
kości charakteryzujących ten układ, najważniejszymi dla użytkownika para­
metrami są: rozdzielczość i czas przetwarzania. Ten drugi parametr nie 
jest krytyczny, gdyż w technologii scalonej powszechne są przetworniki o 
czasach przetwarzania równych pojedynczym mikrosekundom. Przy stosowa­
nych częstotliwościach próbkowania przetworzenie kilkunastu sygnałów z 
wykorzystaniem jednego przetwornika nie stanowi więc dużego problemu. 
Nieco inaczej jest z rozdzielczością. W wyniku przetwarzania sygnału ana­
logowego w sygnał cyfrowy, reprezentowany za pomocą skończonej liczby bi­
tów, następuje zaokrąglenie wartości sygnału do najbliższej wartości cy­
frowej. Jeśli zakres analogowy przetwornika wynosi Xz, a sygnał cyfrowy 
jest reprezentowany za pomocą N bitów, to najmniejszy kwant sygnału 
rozróżniany przez przetwornik 

X
q = -H— (2*2)

2 - 1
Przy założeniu zaokrąglania wartości przetwarzanej do najbliższej 

wartości cyfrowej (a większość scalonych przetworników to realizuje), 
błąd bezwzględny powodowany kwantyzacją wynosi połowę kwantu sygnału. 
Jednakże, podczas przetwarzania o mniejszej wartości niż zakres prze­
twornika, błąd bezwzględny jest równy także połowie kwantu, lecz rośnie 
błąd względny. Napięcia i prądy doprowadzane do zabezpieczeń cyfrowych 
podczas przetwarzania mogą zmieniać się w tak szerokim zakresie, że ko­
nieczne jest wyznaczenie dopuszczalnej wartości błędu przy minimalnej 
wartości przetwarzanej oraz dobór zakresu do wartości maksymalnej.



Kierunek zmian wartości jest w większości przypadków taki, że napię­
cie maleje od wartości nominalnej do kilku- lub kilkunastokrotnie mniej­
szej wartości minimalnej (w szczególnym przypadku, jest ona bliska zeru), 
a prąd rośnie od wartości nominalnej do kilkanaście lub nawet kilkadzie­
siąt razy większych wartości. Ustalając wartość błędu względnego na po­
ziomie e oraz zakładając, że błąd powodowany kwantyzacją ma być mniej­
szy od e dla minimalnego przetwarzanego sygnału otrzymuje się:

1 X, 1
--------- TJ------ -
2 2 - 1min

Przekształcenie zależności

(2.3)

(2.3) pozwala na obliczenie wymaganej 
z niej rozdzielczości (2.2) przetwornikaliczby bitów N i wynikającej

log 2
--------- a>

*(t)

P^W b)

_________ *n

Ч/2

№

< e

Rys. 2.3. Model procesu kwantyzacji (a), funkcja gęstości prawdopodobień­
stwa szumu kwantyzacji (b) oraz przebieg szumu w funkcji dyskretyzowanej 

wielkości x (c)
Fig. 2.3. A model of quantization process (a), probability density 

function of quantization noise (b) and the noise versus quantized 
value x (c)

Inna koncepcja obliczenia wymaganej rozdzielczości przetwornika A/C 
opiera się na modelu, w którym błąd kwantyzacji traktuje się jako zmien­
ną losową [4]. W koncepcji tej wielkość cyfrowa jest traktowana jako su­
ma odpowiadającej jej wielkości analogowej i szumu kwantyzacji (rys.
2.За). Ponieważ wszystkie wielkości błędu z przedziału i (2.2) są 
jednakowo prawdopodobne, więc funkcja gęstości rozkładu prawdopodobień­
stwa jest taka jak na rys. 2.3b. Z kolei przebieg szumu kwantyzacji 
x(t) w funkcji kwantowanej wielkości x przedstawiono na rys. (2.3c). 
Z obu rysunków widać, że wartość średnia szumu kwantyzacji jest zerowa, 
a jego wariancja jest wariancją rozkładu jednostajnego (2.3b):



Podstawiając do równania (2.5) zależność (2.2) otrzymuje się nastę­
pujące odchylenie standardowe szumu kwantyzacji:

° “ "7=ПГ-----7“ (2-6VT2(2W - 1)

Jest to wartość odchylenia standardowego dla zakresu przetwornika o 
N bitach. Jeśli takie odchylenie standardowe ma być osiągnięte dla mini­
malnej przetwarzanej wielkości i ponieważ rośnie ono proporcjonalnie do 
ilorazu zakresu i tej wielkości, to można napisać równanie:

0
Xz 

A2(2N - 1)
Xz

Xmin
(2.7)

gdzie

Po

aQ - odchylenie standardowe szumu kwantyzacji dla minimalnej prze­
twarzanej wielkości.

przekształceniach otrzymuje się wymaganą liczbę bitów przetworni­
ka A/C; jeżeli odchylenie standardowe szumu kwantyzacji ma być mniejsze 
niż aQ, to:

log
L- A- ♦ 1 

a0 ^in 
log 2

(2.8)

Zależności (2.4) i (2.8) są ekwiwalentnym sposobem obliczania roz­
dzielczości przetwornika A/C przy nieco innym traktowaniu błędów procesu 
dyskretyzacji sygnału.

Pamięci analogowe i multiplekser
Na rysunku 2.4 przedstawiono schematycznie jedną pamięć analogową 

oraz multiplekser. Działanie układu jest następujące: W pewnej chwili 
t - nT^ następuje zamknięcie na krótką chwilę T.^ kluczy - K1n i

Rys. 2.4. Schemat układu pamięci analogowej z multiplekserem
Fig. 2.4. A scheme of analog memory with multiplexer



naładowanie kondensatorów СЦ - CQ do wartości szczytowych napięć 
х^СйТ^) - xn(nTi). W ten sposób zapamiętuje się próbki napięć w tej sa­
mej chwili. Następnie, korzystając z multipleksera, dokonuje się kolejno 
wyboru określonego wejścia 1 - n z jednoczesnym zamknięciem odpowied­
niego z kluczy K21_n. Napięcie istniejące na wybranym kondensatorze pa­
mięci analogowej jest przetwarzane przez przetwornik A/C i zapamięty­
wane w postaci cyfrowej. Po przetworzeniu .ostatniego z napięć cykl pracy 
powtarza się. Narysowane tu schematycznie styki multipleksera oraz pamię­
ci analogowej są naturalnie realizowane elektronicznie z wykorzystaniem 
tranzystorów i scalonych multiplekserów w technologii CMOS. Zapewnia to 
małą impedancję w stanie zamknięcia i bardzo dużą w stanie otwarcia. 
Dzięki temu możliwe jest uzyskiwanie małych stałych czasowych podczas ła­
dowania kondensatora pamięci do wartości szczytowej oraz minimalne błędy 
powodowane jego rozładowaniem przed przetworzeniem do postaci cyfrowej. 
Cały problem zapewnienia odpowiednich własności pamięci analogowej i ste­
rowanie nią jest przede wszystkim konstrukcyjny, a przy obecnej technolo­
gii i stosowanych częstotliwościach próbkowania uzyskiwanie dużych do­
kładności nie stwarza większych trudności.

3. MODELE SYGNAŁÓW I UKŁADÓW

Sygnałami wejściowymi układów zabezpieczeń są napięcia i prądy z 
obiektu zabezpieczanego, transformowane w układzie pomiarowym, tak jak 
to opisano w poprzednim rozdziale. Właściwe zaprojektowanie czy też ba­
danie układu oraz algorytmów filtracyjnych i pomiarowych wymaga znajomoś­
ci spodziewanych przebiegów tych napięć i prądów. Mogą one być uzyskane 
analitycznie jedynie w najprostszych przypadkach, to jest wtedy, gdy mo­
del obwodu zwarciowego był bardzo prosty. Rezultaty tych obliczeń prowa­
dzą często do otrzymania przebiegów napięć i prądów, których postać od­
biega od rzeczywistych mierzonych sygnałów zwarciowych. Tak więc często 
taki prosty model powinien być rozbudowany. Wówczas jednakże rozwiązania 
analityczne wiążą się z tak dużym nakładem obliczeniowym, że bardziej 
racjonalne jest opracowanie odpowiedniego modelu cyfrowego i uzyskanie 
napięć oraz prądów zwarciowych symulacyjnie. Łatwość symulacji różnych 
zmiennych parametrów pozwala na wyodrębnienie istotnych i mniej istot­
nych czynników wpływających na kształt napięć i prądów w warunkach po­
wstałego zaburzenie systemu. Ponieważ ścisła analityczna postać tak uzy­
skanych napięć i prądów nie jest znana (i chyba byłaby mało użyteczna i 
przejrzysta), uzyskane symulacyjnie przebiegi odwzorowuje się pewnymi 
ich aproksymacjami, tworząc model sygnałowy. Liczne prace, których przy­
kładem mogą być [46] , [62] , [165] opisują różne modele sygnałowe, które po­



wstały w ten sposób. W tych modelach sygnałowych wyodrębnia się na ogół 
dwie składowe: składową użyteczną oraz zakłócenia. Składowe użyteczne 
stanowią najczęściej napięcia i prądy o częstotliwości podstawowej, nato­
miast pozostałe składowe stanowią zakłócenia, które powinny być w maksy­
malnym stopniu tłumione przed zastosowaniem właściwego algorytmu pomiaru 
wielkości kryterialnej. Filtrowanie zakłóceń jest między innymi swego ro­
dzaju redukcją rzędu modelu, w którym zostały one uzyskane. Ostatecznie 
więc przy skutecznym odfiltrowaniu zakłóceń można otrzymać prosty model, 
którego parametry mogą stanowić wykorzystywane wielkości kryterialne. Ten 
zredukowany model systemu, dla takich wielkości kryterialnych, jak warto­
ści skuteczne sygnałów, moce czynna i bierna, odgrywa nieco mniejszą ro­
lę. Jego postać ma jednak bardzo duże znaczenie wówczas, gdy obliczanie 
rezystancji i reaktancji jest oparte na rozwiązywaniu równania obwodu 
zwarciowego, "zasilanego" napięciami i prądami systemu.

Ponieważ napięcia i prądy przechodzą długą drogę, zanim jako wartości 
cyfrowe wejdą do realizowanego algorytmu cyfrowego, istotne jest rozważe­
nie, jak zmieniają się owe modele sygnałowe na tej drodze. Jest tu zwłasz­
cza istotne, jak zmienia się widmo sygnału, a konkretnie relacja między 
sygnałem użytecznym a zakłóceniami.

3,1, Model sygnałowy deterministyczny i sygnałowy model probabilistyczny

Stosowane modele sygnałowe można podzielić na trzy rodzaje:
- model sygnałowy całkowicie deterministyczny (np. [37] , [145] , [157] ) 
- model częściowo deterministyczny [164] 
- model probabilistyczny [47].
Najwcześniej stosowanym modelem był i nadal jest model całkowicie de­

terministyczny. W modelu tym zarówno sygnał użyteczny, jak też zakłóce­
nia, uważane są za ścisłe, zdeterminowane funkcje czasu, których parame­
try nie są znane. Zakres zmian niektórych z tych parametrów można prze­
widzieć, ocenić lub obliczyć (ewentualnie na drodze modelowej), inne z 
nich mogą być przewidziane w sensie znajomości wartości maksymalnych, a 
pewne na przykład fazy mogą być zupełnie dowolne. Tak określony model 
sygnałowy pozwala na zapisanie napięć i prądów obwodu zwarciowego nastę­
pującymi ogólnymi równaniami [86] , [116] , [145] , [182]:

n
utt) = U^cosCw^t + фц) + 2 uzk cos(o>kt + cpuk) + 

1 k=1
+ exp(-t/Taum) Uzm cos(mmt + ф^) (3.1)

m=1 n
i(t) = I1cos(w1t + <р±) + Ia exp(-t/Ta) + 2 Izk cos^kt + +

k=1



+ 2 expt-t/Tain? °°s(wmt + Ф±В1) 
m»1

gdzie:
ш , up I-p Фи» $i - częstotliwość, amplitudy i fazy składowych podsta­

wowych napięcia i prądu,
Ia, Ta - amplituda i stała czasowa zanikania składowej nieokresowej 

prądu,
Uzm’ ^zm* Taim’ Taum» ’urn’ ’im “ częstotliwości, amplitudy, stałe 

czasu zanikania oraz fazy zakłócających składowych 
oscylacyjnych napięć i prądów.

W powyższym modelu napięć 1 prądów oddzielono wyraźnie użyteczne 
składowe podstawowe oraz zakłócenia. W istocie liczba składowych zakłóca­
jących może być na ogół ograniczona do jednego dominującego w napięciu i 
dwu w prądzie (np. [145]), co pozwala na zapisanie zależności (3.1) w po­
staci uproszczonej:

u(t) ■ U. cos (w. t + Ф ) + exp(-t/T ) U cos(w t + <p ) | | U dl* Ла 1Л4»
i(t) - I.costw t * ф,) + I exp(-t/T ) + (3.2)

I I X d d

+ exp(-t/Tai) Iz cos(uzt + ф±2)

W tak uproszczonych równaniach napięć i prądów można już pokusić się 
o sformułowanie najbardziej niekorzystnych warunków identyfikacji skła­
dowych podstawowych napięć i prądów. Można więc przewidywać, że występu­
je to wtedy, gdy składowa nieokresowa prądu ma najwyższą amplitudę, skła­
dowe oscylacyjne zanikają wolno, mają znaczne amplitudy, a ich częstotli­
wość jest niezbyt odległa od częstotliwości podstawowej. Szczegółowe pa­
rametry nożna uzyskać z badań modelowych chronionego elementu systemu 
elektroenergetycznego, co stanowi podstawę do oceny błędów identyfikacji 
wielkości kryterialnej przy zadanym algorytmie cyfrowej filtracji i po­
miaru.

Drugi z omawianych modeli sygnałowych [164] zakłada, że identyfikowa­
ne składowe napięć i prądów mają charakter deterministyczny, a zakłócenie 
probabilistyczny. Napięcia i prądy zwarciowe są tu opisane równaniami:

u(t) ■ cos(u>1t + фц) + ev(t)

i(t) - I1 coslw^t + Фi) + 1д exp(-t/Ta) + e^t) (3.3)

gdzie ev(t), e^t) - zakłócenia napięcia i prądu o charakterze procesu 
losowego.



Znajomość charakterystyk zakłóceń pozwala na określenie optymalnej 
zasady pomiaru parametrów napięć i prądów, a zatem i wielkości kryterial- 
nych. Mierzone wielkości stają się teraz ich estymatami, gdyż stają się 
one, gdy zakłócenia są losowe, również zmiennymi losowymi. Szczególnie 
prostą zasadę estymacji optymalnej otrzymuje się, gdy zakłócenia są szu­
mem białym normalnym o znanej funkcji gęstości mocy. Wówczas wartość 
oczekiwana błędu estymacji jest zerowa, a wielkość wariancji błędu zale­
ży od widma gęstości mocy zakłóceń oraz czasu pomiaru. Funkcję gęstości 
mocy można określić na podstawie modelu cyfrowego chronionego fragmentu 
systemu, odpowiednio rozbudowanego, dla różnych zmiennych parametrów,ta­
kich jak na przykład: konfiguracja systemu, miejsce zwarcia, rezystancja 
przejścia w miejscu zwarcia, faza, przy której nastąpiło zaburzenie itp. 
Widmo gęstości mocy szumu białego jest widmem stałym w całym przedziale 
częstotliwości i jeśli uzyskane modelowo widmo nie odbiega znacznie od 
płaskiego, estymacja jest niemal dokładnie optymalna, a wartość warian­
cji błędów określi się dla maksymalnej wartości widma. Gdy widmo empi­
ryczne odbiega bardzo znacznie od widma szumu białego, można albo rozbu­
dować model sygnałowy (3.3) i otrzyma się stosownie rozbudowaną zasadę 
estymacji optymalnej, lub też można pozostać przy tym samym modelu, go­
dząc się na rozwiązania prostsze i zasadę suboptymalną, lecz wówczas ko­
nieczne jest określenie, jakie błędy wynikają z takiego postępowania.

Trzeci z omawianych modeli sygnałowych może być opisany równaniami:
u(t) = U.cos w.t + U sin w.t + e„(t) d 1 q 1 u (зл)
i(t) = I,cos w.t + I sin w.t + I exp(-t/T ) + e4(t) q i q i н a i
W modelu tym zakłada się, że Ud, U^, Id, 1^, Ia są niezależnymi 

zmiennymi losowymi normalnymi (o rozkładzie normalnym), a zakłócenia są 
niezależnymi szumami białymi normalnymi.

Równania (3.^) prowadzą do modelu zmiennych stanu i estymacji opty­
malnej, która jest realizowana za pomocą filtru Kalmana [2]. Filtr ten, 
jak i sam model sygnałowy, omówiono w rozdz. 6.

3.2. Współzależność modeli sygnałów i układów pierwotnych

Wspomniano już uprzednio, że filtrowanie zakłóceń napięć i prądów, 
stosowanych następnie do obliczania wielkości kryterialnych, ma między 
innymi znaczenie dla redukcji rozmiaru modelu układu, w którym te sygna­
ły powstały. Powiązanie modeli sygnałów i układu ma mniejsze znaczenie, 
gdy wielkościami mierzonymi są amplitudy, wartości skuteczne czy też mo­
ce. Nie ma to również istotnego wpływu wtedy, gdy zakłócenia są odpowied­
nio tłumione i korzysta się z obliczonych mocy oraz amplitud do określe­
nia rezystancji lub reaktancji. Jeśli jednak określenie tych wielkości 



jest oparte na rozwiązywaniu równania obwodu zwarciowego, to problem 
nabiera zasadniczego znaczenia. Aby to zilustrować załóżmy, że przyjęto 
najprostszy model tego obwodu dany równaniem:

u(t) =. L + R i(t) (3.5)

Nie wnikając tutaj w szczegóły uzyskiwania dwu równań potrzebnych do 
obliczenia poszukiwanych wartości R i L, można jedynie stwierdzić, 
że ich rozwiązywanie jest oparte na rzeczywistym napięciu u(t) i prą­
dzie i(t) systemu. Pochodna prądu jest co prawda niedostępna pomiarowo, 
lecz można ją obliczyć. Istotne są natomiast tutaj dwa czynniki: wier­
ności modelu obwodu zwarciowego oraz wierności sygnałów transformowanych 
w układzie pomiarowym. Po rozważeniu pierwszego czynnika można stwier­
dzić, że jeśliby model opisany równaniem (3.5) był dokładny, to obliczo­
ne z tego równania wielkości R i L na podstawie rzeczywistych u(t) 
i i(t) też byłyby dokładne. Jeśli jednak wyniki są obarczone błędem, 
to oznacza to nieadekwatność modelu układu, modelu sygnałowego i sygna­
łów rzeczywistych. Jest możliwe w tej sytuacji albo rozbudowanie równa­
nia (3.5) o czynnik błędu modelowania e(t) i poszukiwanie optymalnej 
metody jego rozwiązania, albo zwiększenie rzędu modelu i równania 
(uwzględniając równoległe pojemności), albo też filtracja sygnałów napię­
cia i prądu. Pierwsze dwa sposoby są skuteczne i prowadzą do dobrych wy­
ników, lecz niestety bardzo rozbudowują algorytmy pomiarowe. Sposób trze­
ci jest chyba najprostszy, lecz wymaga zwrócenia uwagi na pewien dodat­
kowy problem. W celu jego zilustrowania można posłużyć się bardzo uprosz­
czoną analizą. Załóżmy dla uproszczenia zerowe warunki początkowe równa­
nia (3.5). Obliczając jego transformatę Laplace'a otrzyma się

= R + sL (3.6)

gdzie U(s), l(s) - są transformatami Laplace'a napięcia i prądu z obiek­
tu zabezpieczonego.

Założywszy, że operatorowe transmitancje toru pomiarowego oraz stoso­
wanych filtrów napięcia i prądu są równe Gu(s) i Gj(s) można przy­
jąć, iż napięcie i prąd użyte w rozwiązywaniu równania (3.6) będą dane 
równaniami:

U'(s) - Gn(s) U(s)U (3.7)
I'(s) - Gx(s) I(s)
Podstawiając (3.7) do równania (3.6) otrzymuje się:

U'(s)
I'(s) ’ R + sL 

czyli



U(s) GT(s)
. e ....  ■" “
I(s) Gyts)

(R + sL) (3.8)

Tak więc równanie (3.8) oraz (3.6) są identyczne tylko wtedy, gdy 
łączne charakterystyki dynamiczne toru pomiarowego i filtrów napięcia 
oraz prądu są identyczne. Prowadzi to do wniosku, że metody pomiaru wiel­
kości kryterialnych z zastosowaniem równań obwodu zwarciowego wymagają 
dużej ostrożności.

5.3. Transformacja sygnałów w torze pomiarowym

Między systemem a układami pamięci analogowej, które zapoczątkowują 
dyskretną część układu pomiarowego, napięcia i prądy przechodzą przez 
szereg układów pośredniczących, które mogą przekształcać zarówno składo­
we użyteczne, jak i zakłócenia. Układy te to (rys. 2.1a,b): przekładniki 
napięciowe i prądowe, przekładniki pośredniczące oraz filtry analogowe. 
Bez wątpienia, przy stosowanych w praktyce częstotliwościach próbkowa­
nia, najbardziej ograniczone pasmo mają dolnoprzepustowe filtry analogo­
we. Z kolei przekładniki pośredniczące mają płaską, szerokopasmową cha­
rakterystykę i można przyjąć, że nie przekształcają one ani składowej 
podstawowej, ani zakłóceń. W tej sytuacji ewentualne odkształcenia czy 
przekształcenia sygnałów o modelach danych równaniami (3.2)-(3.^), zwią­
zane są z przekładnikami napięciowymi i prądowymi (oprócz ograniczenia 
pasma).

Przeważnie stosowane przekładniki to indukcyjne i pojemnościowe prze­
kładniki napięciowe oraz indukcyjne przekładniki prądowe. Największe za­
grożenie odkształceń sygnałów dotyczy prądów i związane jest z niebez­
pieczeństwem nasycenia rdzenia przekładnika prądowego, spowodowanego 
składową nieokresową o znacznej wartości. Skutkiem tego jest duże od­
kształcenie składowej podstawowej prądu, któremu można zapobiegać przez 
przeciwdziałanie nasyceniu. Może ono polegać na stosowaniu przekładników 
odpowiednich konstrukcji, wykorzystaniu stosownych układów zewnętrznych, 
lub też na skróceniu czasu pomiaru tak, aby został on zakończony zanim 
przekładnik się nasyci [185]. Inne czynniki odgrywają mniejszą rolę i 
przekładniki transformują poprawnie sygnały w dość szerokim paśmie. Za­
gadnienie związane z parametrami tej transformacji stanowią odrębny ob­
szerny problem i, aby nie rozważać zbyt dużej liczby szczegółów zaciem­
niających główny wątek pracy, zakłada się liniowość przekładników oraz 
stałość ich charakterystyki częstotliwościowej w paśmie przepuszczania 
filtru analogowego. Przy tych założeniach napięcia oraz prądy opisane mo­
delem sygnałowym (3.2) nie ulegają istotnym zmianom w wyniku transforma­
cji przez przekładniki napięciowe i prądowe. Natomiast szum biały wystę­



pujący w modelach (3»5) i (3,4) ma ograniczone pasmo albo wskutek stoso­
wania filtru analogowego, albo też transformacji przez przekładniki, i 
staje się szumem kolorowym. Projektowanie filtrów optymalnych z takim mo­
delem szumu jest bardzo złożone i częściej stosuje się model, szumu białe­
go otrzymując filtr suboptymalny. Zazwyczaj ten filtr nie różni się zna­
cznie od filtru ściśle optymalnego.

4. MIERZONE WIELKOŚCI KRYTERIALNE

4,1. Wprowadzenie

Systemy zabezpieczeń eletroenergetycznych w zależności od ich stop­
nia złożoności wykorzystują do podjęcia decyzji jedną, kilka lub wie­
le mierzonych wielkości. Określenie warunków kryterialnych i stwierdze­
nie, czy wielkości mierzone znajdują się odpowiednio w obszarze działania 
czy niedziałania zabezpieczeń może być realizowane dwoma sposobami. W 
pierwszym przypadku nie dokonuje się bezpośredniego pomiaru wielkości 
kryterialnych, a odpowiednia kombinacja sygnałów i warunków kryterial­
nych pozwala przez komparację na stwierdzenie, czy mierzone wielkości 
znajdują się w obszarze działania zabezpieczenia (por. rys. 2.la). Spo­
sób ten jest charakterystyczny dla zabezpieczeń analogowych i z dobrym 
skutkiem jest do dzisiaj stosowany. W drugim przypadku dokonuje się bez­
pośredniego pomiaru wielkości kryterialnych, które następnie są porówny­
wane z wartościami tych wielkości, odpowiadającymi warunkom działania 
zabezpieczenia. Ten sposób jest charakterystyczny dla zabezpieczeń cyf­
rowych, co ma obszerne odzwierciedlenie w literaturze [14],[17],[35] , 
[41] , [46] , [61] , [92] , [94], [120] , [132] , [142] . Taka linia podziału ma swoje 
uzasadnienie w możliwościach technicznych przetwarzania sygnałów analo­
gowych i cyfrowych. W technice analogowej mnożenie sygnałów przez stałą 
i komparacja są łatwe do zrealizowania, ale mnożenie, dzielenie, przesu­
wanie fazy czy też całkowanie w zadanym przedziale wiąże się z pewnymi 
trudnościami i ma swoje skutki dynamiczne. Z kolei te właśnie operacje 
są łatwo realizowane w technice cyfrowej, umożliwiając bezpośredni 
pomiar wielkości kryterialnych.

Bezpośredni pomiar ma duże zalety w precyzyjnym wyborze obszaru 
działania zabezpieczeń. Może on w tym przypadku być ukształtowany zupeł­
nie dowolnie, co jest tylko kwestią rozbudowy zależności logicznych pro­
wadzących do podjęcia decyzji.

Mierzonymi wielkościami kryterialnymi, które będą rozważane w tej 
pracy, są:

- wartości skuteczne lub amplitudy prądów i napięć
- moce czynna i(lub) bierna



- składowe impedancji: rezystancja i reaktancja lub składowe admitan- 
cji: konduktancja i susceptancja.

Cyfrowy pomiar wymienionych wielkości jest obszernie reprezentowany 
w literaturze np, [6], [41], [62] , [94] . Można tu zauważyć, że metody i al­
gorytmy pomiaru prostszych wielkości kryterialnych powstają jakby na mar­
ginesie metod pomiaru składowych impedancji, stanowiących wielkości kry- 
terialne najbardziej skomplikowanych zabezpieczeń, którymi są zabezpie­
czenia odległościowe linii. Na przykład rezystancja obwodu zwarciowego 
może być łatwo obliczona jako iloraz mocy czynnej i kwadratu amplitudy 
prądu. Sekwencja typu: sygnały (prądy i napięcia)-parametry sygnałów-pro- 
ste wielkości kryterialne-złożone wielkości kryterialne, jest więc w pew­
nym sensie charakterystyczna. Naturalną tego konsekwencją jest cała grupa 
metod, w których do obliczenia wszystkich wymienionych wielkości kryte­
rialnych wykorzystuje się ten sam zbiór składowych sygnałów, to jest 
składowych ortogonalnych. Cechą charakterystyczną tych metod jest to, że 
stanowią prosty, naturalny i bardzo spójny system pomiarowy.

Oprócz wymienionych tu metod stosuje się też inne, które są charakte­
rystyczne tylko dla pomiaru wybranych wielkości, a także często wywodzą 
się z metod analogowych. Zaliczyć do nich trzeba uśrednienie wartości 
bezwzględnych lub kwadratów napięć i prądów w celu pomiaru amplitudy,czy 
też uśrednienie iloczynów prądów i napięć w celu pomiaru mocy. Częstą 
metodą jest również bezpośrednie rozwiązywanie równań modelu obwodu zwar­
ciowego w celu obliczania rezystancji i reaktancji tego obwodu. Zarówno 
te pierwsze, jak i te ostatnie, mają swoją obszerną literaturę [61],[62], 
[63],[151], a ich zalety i wady są dobrze znane.

Jeszcze w jednej grupie metod stosuje się opóźnienia i liniowe prze­
kształcenia sygnałów [41],[94], Nie ma jednak potrzeby wydzielania tej 
grupy metod, ponieważ omawiane przekształcenia prowadzą do uzyskiwania 
składowych ortogonalnych, czego autorzy wyraźnie nie eksponują. Metody 
te należą więc do gi'upy pierwszej. Trzeba tu także dodać, że liniowa kom­
binacja sygnałów opóźnionych stanowi przecież filtr cyfrowy, którego cha­
rakterystyki są zależne od wartości opóźnienia i tej liniowej kombinacji. 
Tego faktu także w pracach [4l],[94] nie omawia się, a ma to istotny 
wpływ na charakterystyki częstotliwościowe stosowanego algorytmu pomiaru. 
Zagadnienie to będzie omówione w następnym podrozdziale, w którym zawar­
to analizę i syntezę różnych metod wyznaczania składowych ortogonalnych 
sygnałów. Przedtem konieczne jest jednak wyjaśnienie dwu pojęć, które bę­
dą używane w kolejnych podrozdziałach: składowe ortogonalne sygnału oraz 
sygnały ortogonalne. To drugie pojęcie ma prostą definicję, analogiczną 
do iloczynu skalarnego wektorów. Otóż dwa sygnały są ortogonalne w pew­
nym przedziale T, jeśli całka ich iloczynu w tym przedziale jest zerowa 
[79]. Pojęcie to jest wykorzystywane na przykład do poszukiwania ortogo­



nalnych funkcji wagi filtrów (rozdz. 5). Drugie z pojęć, pojęcie składo­
wych ortogonalnych jednego sygnału, dotyczy składowych zespolonego wek­
tora Хе^Ш^+ , nazywanego dalej fazorem. Jeśli przyjęto układ współ­
rzędnych prostokątnych taki, że na jednej z osi jest odkładana część rze­
czywista tego fazora, a na drugiej część urojona, to te dwie składowe 
fazora stanowią dwa ortogonalne wektory, będące funkcjami czasu. Na pod­
stawie znajomości jednej ze składowych, na przykład jak przyjęto dalej 
- składowej fazora według osi rzeczywistej (jego rzutu na tę oś) - można 
wyznaczyć drugą składową na podstawie liniowej kombinacji różnie opóźnio­
nej składowej rzeczywistej lub odpowiedniego filtru. Ten proces wyznacza­
nia składowej ortogonalnej do znanej składowej fazora nazwano dalej orto- 
gonalizacją. A więc, znając sygnał X cosCa^t + ф) należy wyznaczyć 
X sin(w^t +ф ), co pozwala, przy znanej częstotliwości , na pełną 
identyfikację fazora, to znaczy jego amplitudy X i fazy ф. Należy tu 
jeszcze dodać, że można przyjąć układ współrzędnych, który obraca się z 
taką samą prędkością kątową jak fazor i wówczas jego składowe nie będą 
jak poprzednio funkcjami czasu, lecz rzutami fazora na osie w chwili t 
równej zeru (X cosф, X sin ф). Takie składowe wyznacza się w metodach 
korelacji (rozdz. 5).

4,2. Metody otrzymywania składowych ortogonalnych sygnałów
i ich charakterystyki

Metody i algorytmy pomiaru wielkości kryterialnych wykorzystujące or­
togonalne składowe napięć i prądów są tak często stosowane, że w związku 
z nimi opracowano wiele sposobów ortogonalizacji sygnałów. Wszystkie one 
mogą być sprowadzone do metod przedstawionych schematami blokowymi na rys. 
4.1a-d. Te schematy blokowe odzwierciedlają dwie grupy metod różnych pod 
względem funkcjonalnym.

W pierwszym przypadku (rys.4.1a,b) procesy cyfrowej filtracji i orto- 
gonalizacji są rozdzielone. Wobec tego w tych przypadkach, gdy filtracja 
sygnału nie jest konieczna, możliwe jest dokonanie jedynie ortogonaliza- 
cji zgodnie z przedstawionymi schematami blokowymi. Jeśli jednak sygnał 
jest na tyle zakłócony, że jego filtracja cyfrowa jest konieczna, to 
układ ortogonalizacji jest poprzedzony odpowiednim filtrem (blok zazna­
czony linią przerywaną na rys. 4.la). Podobny filtr może poprzedzać 
układ ortogonalizacji przedstawiony na rys. 4.Ib. W drugim przypadku 
(rys. 4.1c,d) procesy filtracji i ortogonalizacji sygnałów są zespolone. 
Wymagane przetwarzanie sygnałów jest dokonywane z wykorzystaniem pary 
cyfrowych filtrów ortogonalnych (rys. 4.1c) lub filtru stanowego Kalma- 
na (rys. 4.Id). Szczegółowe własności tych filtrów cyfrowych zostaną 
omówione w rozdz. 5 i 6, natomiast poniżej rozważono cechy wydzielonych 
metod ortogonalizacji.



Filtry ortogonalne

Rys. 4.1. Metody uzyskiwania składowych ortogonalnych sygnałów: a - poje­
dyncze opóźnienie, b-podwójne opóźnienie,o - para filtrów ortogonalnych, 

d - filtr według modelu zmiennych stanu
Fig. 4.1. Methods of extraction of orthogonal signal components: a - single 

delay, b - double delay, c - a pair of orthogonal filters, 
d - a filter using state space model

Niech niezakłócony sygnał wejściowy x będzie w postaci ciągłej i 
dyskretnej opisany równaniami:

x(t) = X^ cos(w^t + <p )
x(n) = X^ cos(n + <p )

(4.1a)
(4.1b)



gdzie
- okres próbkowania,, (częstotliwość próbkowania = 2тг/Т^), 

riT^ - czas dyskretny; n = 0,1,2 ...
Załóżmy dalej, że sygnał opisany równaniem (4.1) stanowi jego składo­

wa bezpośrednia, wobec tego składowa ortogonalna jest opisana funkcją si­
nus tego samego argumentu:

x, (n) = x(n)d (4.2)
x (n) = X. sin(n ш Т. + Ф )

q 1 11

gdzie xd - składowa bezpośrednia, x^ 
Poszukiwaną składową ortogonalną 

niowej kombinacji sygnału x(n) oraz

- składowa kwadraturowa.
x^(n) należy otrzymać w wyniku li- 
sygnału opóźnionego x(n - k) (rys.

4.1a - opóźnienie jest tam reprezentowane operatorem opóźnienia z“k).
Określenie tej składowej ortogonalnej sprowadza się, jak łatwo zauważyć, 
do rozwiązania następującego układu równań:

x(n) = xd(n)

x(n - k) = X1cos(n w1Ti + ф) cos(k + X1sin(n +
+ ф) sin к «1Ti = х^(п) cos к + x^(n) sin к

(4.3) 
Rozwiązanie to jest opisane równaniami:

xrf(n) = x(n)
(4 4) x(n - k) - x(n) cos(k ш.Т, )X (n) = ------------------------ 1-i-

ą sin(k w-jlp

Równania (4.4) pozwalają na stwierdzenie, że po pierwsze: składowa 
ortogonalna x (n) może być obliczana łatwiej lub trudniej w zależności 
od opóźnienia dyskretnego к, a po drugie: ta ortogonalizacja jest fil­

trem cyfrowym sygnału x(n). Przykładowo, szczególnie prostą postać rów­
nań otrzymuje się, gdy sygnał jest opóźniony o jedną czwartą okresu i 
wówczas

х^(п) = x(n) 

xq(n) = x(n - k) 

gdzie к = T1/4Ti = N1/4.

(4.5)

Podobnie postępuje się podczas wyznaczania składowej ortogonalnej z 
zastosowaniem dwukrotnego opóźnienia sygnału (rys. 4.1b), to jest z uży­
ciem x(n), x(n - 2k). Przyjmuje się tutaj, że składową bezpośrednią sta­
nowi sygnał pojedynczo opóźniony, a stąd wynikają następujące równania:



x,(n) « x(n - к) = X.cos[(n - к) w.t + mld 1 1 J (4.6)
Xg(n) = X^sin [(n - k) w^t + <p]

oraz
x(n) « xA(n) cos(k w.T.) - x (n) sih(k ш.Т.) a 1 1 q 11
x(n - 2k) ж x. (n) cos(k w.T.) + x„(n) sin(k w.T. ) (4.7)

a 1 i • q 11
Rozwiązanie tego układu równań określa sposób wyznaczania składowych 

ortogonalnych z zastosowaniem podwójnego opóźnienia sygnału
x,(n) = x(n - k)d (4.8)
„ z-, x(n - 2k) - x(n)
xq - SslnCk k^J "

I w tym wypadku przekształcenie sygnałów odpowiada pewnemu filtrowi 
cyfrowemu, którego charakterystyki zależą od k, jak też dla pewnych к 
otrzymuje się szczególnie proste zależności. Na przykład, gdy opóźnienie 
sygnału jest równe it/6, równania (4.8) mają postać:

x, (n) = x(n - k)d (4.9)
Xq(n) ж x(n - 2k) - x(n)

gdzie к = T1/12T1 = N^/12.
Porównując równania (4.5) i (4.9) można dojść do wniosku, że w szcze­

gólnych przypadkach opóźnienie pojedyncze pozwala na prostsze uzyskanie 
składowych ortogonalnych. Ten jeden parametr jest jednak niewystarczają­
cy, by scharakteryzować i porównać obie metody ortogonalizacji. Decydują 
o tym przynajmniej trzy wielkości, zależne od wartości opóźnień sygnału; 
są to: sama wartość opóźnienia sygnału warunkująca dynamikę pomiaru 
określonych wielkości, prostota równań (4.4) i (4.8) oraz charakterys­
tyka częstotliwościowa ortogonalizacji, determinująca łączną charakte­
rystykę częstotliwościową algorytmu pomiaru. Wartości opóźnień oraz 
współczynników w równaniach (4.4) i (4.8) otrzymuje się natychmiast, na­
tomiast charakterystyki częstotliwościowe ortogonalizującego filtru cyf­
rowego w obu omawianych przypadkach uzyskuje się po prostych przekształ­
ceniach tych równań. Sposób postępowania zilustrowano na przykładzie or­
togonalizac ji z pojedynczym opóźnieniem sygnału.

Obliczmy najpierw transformatę Z obu stron drugiego z równań (4.4). 
Uzyskuje się wówczas następujące równanie:

, ч z“k - cos(k w.T.)
z]x (n)} = X (z) = ------ -------—— x(z) (4.10)
iq J q sin(k w.T. )

sT 1 1
gdzie z = e - operator opóźnienia.



Pierwszy człon równania (4.10) określa dyskretną transmitancję anali­
zowanego filtru cyfrowego. Po oznaczeniu jej przez G^z) oraz podsta­
wiając s « jw w operatorze opóźnienia, otrzymuje się widmo filtru

-JkwT. -
. e - cos(k w.T.)G (jm)---------- ------- —Li. (4.Ц)
1 sin(k ш^Т^)

Postępując identycznie z drugim z równań (4.8), otrzymuje się widmo 
filtru ortogonalizującego z zastosowaniem dwukrotnego opóźnienia sygnału

* sin(kwT.) -jkoff^
Gp(jw) = J -----------  e

sin(k
(4.12)
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Dwa ostatnie wzory wskazują, że gdy stosuje się podwójne opóźnienie 
sygnału,wzajemny argument Jest niezależny od częstotliwości (jedna skła­
dowa ma argument -k«Tp a druga n/2 - kwT^), czyli składowe przy od­
chyleniu częstotliwości pozostają ortogonalne, gdy tymczasem przy opóź­
nieniu pojedynczym tak nie jest. Tak więc przy niewielkich odchyłkach 
częstotliwości powstają błędy ortogonalizacJi związane ze zmianą modułu 
i argumentu, gdy opóźnienie jest pojedyncze oraz tylko zmianą modułu 
podczas ortogonalizacji z podwójnym opóźnieniem.

Moduły widm ((4.13a), (4.13b)), świadczące o zdolnościach filtracyj­
nych sygnału w procesie ortogonalizacji, przedstawiono na rys. 4.2 i 4.3 
przy przyjętej przykładowo częstotliwości próbkowania 600 Hz, odpowiada­
jącej dwunastu próbkom w okresie składowej podstawowej T1/Ti = I2» dla 
różnych opóźnień sygnału kT^ (k = 1,2,3). Jak widać z tych rysunków, 
zwiększenie wartości opóźnienia poprawia charakterystyki widmowe i zwięk­
sza skuteczność filtracji sygnału. Można też zauważyć, że charakterysty­
ka widmowa, gdy stosuje się podwójne opóźnienie sygnału Jest korzystniej­
sza niż przy opóźnieniu pojedynczym. Oba te spostrzeżenia są jeszcze jed-



Rys. 4.2. Widma filtru ortogonalizującego z zastosowaniem pojedynczego 
opóźnienia sygnału przy różnych wartościach opóźnienia (k » 1, 2, 3)

Fig. 4.2. Spectra of orthogonalizing filter using single delay 
for different delay values (k » 1, 2, 3)

Rys. 4.3. Widma filtru ortogonalizującego z zastosowaniem podwójnego 
opóźnienia sygnału przy różnych wartościach opóźnienia 

(k - liczba próbek opóźnienia)
Fig. 4.3. Spectra of orthogonalizing filter using double delay for 

different delay values (k - number of samples)

ną ilustracją znanego dylematu szybkość-dokładność. Najgorszy przypadek 
odpowiada pojedynczemu opóźnieniu sygnału o jeden okres impulsowania 
(rys. 4.2, к = 1). Wówczas w wyniku ortogonalizacji ewentualne wysoko- 
częstotliwościowe składowe zakłócające są wzmacniane i stają się istot­
nym źródłem błędów pomiaru wielkości kryterialnych. Optymalny natomiast 
wydaje się przypadek opóźnienia sygnału o kąt tc/2 (to znaczy к = 
= n /2 w1Ti 3 N1/4), dając proste równanie ortogonalizacji (4.5) i płas­
ką charakterystykę widmową (k = 3 na rys. 4.2), chociaż opóźnienie zwią-



Rys. 4.4. Przypadek szczególny widm filtrów ortogonalizujących z wyko­
rzystaniem: a - pojedynczego, b - podwójnego opóźnienia sygnału przy 

tej samej efektywnej wartości opóźnienia
Fig. 4.4. Particular case od orthogonalizing filters spectra using: a - 

single, b - double signal delay for the same effective delay value

Rys. 4.5. Widma wybranych metod ortogonalizacji: różniczkowanie ciągłe 
(N-j —); 1 - różniczkowanie dyskretne; 2 - opóźnienie sygnału (к = 1) 
Fig. 4.5. Spectra of chosen methods of orthogonalization: continuous 

differentiation (N-j —- ~ ); 1 - discrete differentiation;
2 - signal delay (k = 1)

zane z ortogonalizacją -iw konsekwencji opóźnienie pomiaru - jest zna­
czne.



Na rysunku 4.4 przedstawiono dodatkowo przykładowe charakterystyki 
widmowe G^(jw) i G*(jw) dla tego samego efektywnego opóźnienia - to 
znaczy gdy N^ = 16, к = 4 w ortogonalizacji z opóźnieniem pojedynczym 
oraz к ■ 2 z opóźnieniem podwójnym. Jak widać, charakterystyki widmowe 
są w zasadzie korzystniejsze, a i równania ortogonalizacji prostsze 
(4.5) w metodzie z pojedynczym opóźnieniem sygnału (dla tej szczególnej 
wartości opóźnienia).

Nie wspomniano dotychczas o jeszcze jednej metodzie ortogonalizacji, 
polegającej na wykorzystaniu pochodnej sygnału [94]. Metoda ta jest jed­
nak analogiczna do ortogonalizacji przez opóźnienie sygnału, a charakte­
rystyka widmowa niemal dokładnie zgodna z krzywymi przedstawionymi na 
rys. 4.2 i 4.3 gdy к = 1 (w tym drugim wypadku widma są identyczne).

Porównanie odpowiednich charakterystyk przedstawiono na rys. 4.5. 
Prosta na tym rysunku odzwierciedla widmo różniczkowania ciągłego, gdy z 
kolei krzywe 1 odpowiadają widmu różniczkowania dyskretnego, a krzywe 2 
widmu ortogonalizacji przez opóźnienie sygnału dla dwu różnych częstotli­
wości próbkowania,. Jak widać, krzywe 1 i 2 rzeczywiście różnią się nie­
znacznie, a także widmo pogarsza się (rośnie) wraz ze zwiększeniem częs­
totliwości próbkowania , zdążając do widma odpowiadającego różniczkowa­
niu sygnału ciągłego. Widmo tego sposobu ortogonalizacji jest więc 
ukształtowane tak niekorzystnie, że metoda może być stosowana tylko wte­
dy» gdy sygnał nie zawiera zakłóceń wysokoczęstotliwościowych, które są 
znacznie wzmacniane.

W zakończeniu omawiania własności tych metod ortogonalizacji warto 
jeszcze zauważyć, że możliwość realizacji pewnych szczególnie prostych 
przypadków jest uwarunkowana częstotliwością próbkowania. Otóż sygnał 
może być opóźniony tylko o całkowitą wielokrotność okresu próbkowania i 
wobec tego na przykład opóźnienie o n/2 może być zrealizowane tylko 
wtedy, gdy liczba próbek w okresie sygnału jest podzielna przez cztery 
(na przykład N^ = T-|/Ti = itp.).

W dotychczasowych rozważaniach omówiono własności metod mających tę 
wspólną cechę, że procesy filtracji i ortogonalizacji są rozdzielone. 
Znacznie większe znaczenie i zastosowanie mają jednakże te metody, w któ­
rych filtracja i ortogonalizacja są zespolone w jeden algorytm przetwa­
rzania próbek sygnału. Ilustracją tych metod są schematy blokowe przed­
stawione na rys. 4.1c i 4.Id. W pierwszym przypadku wykorzystuje się pa­
rę filtrów ortogonalnych, które na swym wyjściu mają odfiltrowane,orto­
gonalne sygnały yd, у . Warunkiem koniecznym takiej ortogonalizacji 
jest ortogonalność funkcji wagi filtrów wd(t), w^(t) wewnątrz zadanego 
okna pomiarowego T, zapisywana równaniem:

T
J wd(t) wq (t) dt = 0 (4.14)

o



Prostym przykładem może być taka para funkcji, z których jedna jest 
parzysta, a druga nieparzysta w odniesieniu do środka okna pomiarowego
T/2. Tak dobrane filtry, po doprowadzeniu do ich wejścia składowej pod­
stawowej sygnału x(n) (4.1), mają na wyjściu wzajemnie ortogonalne syg­
nały yd opisane równaniami:yd

yd = F1dx(n - 1),

yq ~ " 1 * N1/4)» lub yq “ Fiqx(n ~ 1 + P (4.15)

gdzie
x(n) - X1cos(n + ф),
F^ - moduł transmitancji filtru dla częstotliwości w^, 
1 - opóźnienie sygnału wprowadzane przez filtr (o kąt 1 w^T^).

Współczynniki F1d i F1q w równaniu (4.15) mogą być różne, lecz w 
większości typowych przypadków są jednakowe, co upraszcza równania po­
miaru różnych wielkości. Wskaźnik opóźnienia sygnałów 1 niekoniecznie 
musi być liczbą całkowitą. Zależy to od częstości próbkowania (parzys­
te lub nieparzyste N^ ) i samych funkcji wagi filtrów. Zazwyczaj ta war­
tość opóźnienia jest równa połowie długości okna pomiarowego. Innymi sło­
wy, faza sygnału wyjściowego filtru jest odniesiona do środka jego okna. 
Pozwala to na zapis równań (4.15) w uproszczonej postaci:

yd = F^ cosin ш^Т± -а + ф)
yq = -F^X^ sin(n w1Ti - a + ф)

gdzie F1q - F1d = F1 , a = 1 w^.
Równania te, określające przekształcenie składowej podstawowej przez 

filtr, pozwalają dalej na sformułowanie odpowiednich algorytmów pomiaro­
wych. Nie dostarczają one żadnej informacji o tłumieniu składowych o in­
nych częstotliwościach, a więc o charakterystyce widmowej filtru. Zagad­
nienia te są rozpatrywane oddzielnie w p. 5.2.

Składowe ortogonalne mogą być także uzyskane w wyniku stosowania ko­
relacji lub - inaczej mówiąc - odwzorowania przebiegu x(n) z zastoso­
waniem współczynników szeregu Fouriera. Takie przekształcenie sygnału 
nie jest już w ścisłym sensie równaniem filtru, a sygnał wyjściowy nie 
jest przemienny, lecz stały. Uzyskiwane składowe mogą być zapisane przy 
podobnych jak w (4.16) założeniach upraszczających w postaci:

у, » FX. cos(p - ę)d 1 (4.17)
yq = FX1 sin<P " 

gdzie p - położenie funkcji korelujących w chwili t = 0.



To przekształcenie sygnału ma jednak określone własności filtracyjne. 
Można tu dodać, że w przypadku, gdy funkcje wagi filtrów, funkcje korelu­
jące oraz okna pomiarowe są takie same, wówczas również charakterystyki 
filtracyjne są identyczne. Zagadnienia te są szczegółowo rozważane w 
p. 5.3.

Najprostszą postać składowych ortogonalnych uzyskuje się dzięki zas­
tosowaniu filtru Kalmana, lub ogólniej - modelu stanowego sygnału (rys. 
4.1d). Filtr ten wyestymowuje wartości składowych ortogonalnych sygnału 
wejściowego. Mogą to być, w zależności od przyjętego modelu, albo skła­
dowe ortogonalne fazora, albo też składowe ortogonalne w chwili rozpoczę­
cia filtracji. Wartości oczekiwane tych estymat są równe składowym orto­
gonalnym sygnału wejściowego, co pozwala na zapisanie następujących rów­
nań odpowiednio dla obu rozważanych modeli: 
- model estymacji składowych fazora

E {yd(n)} = yd(n) ’ E {*d<n)} - xd(n) (4<18a)

E (у (n) | - у (n) = E f x (n) } = x„(n)
l q ) q I q J q

- model estymacji początkowych składowych ortogonalnych

E {yd^n^ } “ yd^n^ = X1 cos ф 
E (yq(n) } = yq(n) = X1 sin <p

gdzie
у, x - estymaty wielkości y, x, 
E {x } - wartość oczekiwana x, 
x(n) = xd(n) = X1 cos(n + ф).

(4.18b)

Równania (4.18a) i (4.18b) są wystarczające do określania algorytmów 
pomiaru poszczególnych wielkości z zastosowaniem filtru Kalmana, a szcze­
gółowe rozważania jego własności i charakterystyk podano w rozdz. 6.

4.3. Podstawy algorytmów pomiarowych z zastosowaniem
składowych ortogonalnych

Dysponowanie składowymi ortogonalnymi umożliwia obliczenia w szcze­
gólnie spójny i prosty sposób omawianych wielkości kryterialnych. Postać 
końcowa równań jest różna w zależności od tego, jaki sposób ortogonali- 
zacji zastosowano, ale równania wiążące składowe ortogonalne napięć i 
prądów z mierzonymi wielkościami mają charakter ogólny.

Niech składowe ortogonalne prądu lub napięcia będą określone równa­
niami:

xd(n) = X^ cos(n + ф)
xq(n) » X^ sin(n “1Ti + ф) (4.19)



Algorytm pomiaru amplitudy wynika bezpośrednio z równań (4.19):

X1 (n) ■ -j/xj(n) + x^Cn)' (4.20)

To ogólne równanie daje po podstawieniu składowych x, określonych w 
p. 4.2, szczegółowy algorytm pomiaru amplitudy X^n).

Moce czynna i bierna odpowiednio są określone z definicji zależnoś­
ciami:

P - 1 cos(<pu - ф±) (4.21a)

Q = 2 U-)1-, з1п(фц - ф±) (4.21b)

gdzie , 1^ - amplitudy napięcia i prądu, Фц, - fazy tych sygnałów. 
Niech z kolei składowe ortogonalne napięć i prądów będą, analogicz­

nie do (4.19), dane równaniami:

ud(n) = U1 cos (n w1Ti + 'Pj
Uq(n) = U1 sin(n “lTi * ‘Pj
id(n) = I1 cos(n w T.1 1 + ф±)

ią(n) = T1 sin(n “1Ti + ф±)

(4.22)

Elementarne zależności trygonometryczne pozwalają na określenie mocy 
czynnej i biernej na podstawie tych składowych:

P(n) = [ud(n) id(n) + uq(n) iq(n)] 

Q(n) = [uq(n) id(n) - ud(n) ią(n)]

(4.23a)

(4.23b)

Równania (4.23a) i (4.23b) są ogólną postacią algorytmów wyznaczania 
mocy czynnej i biernej na podstawie składowych ortogonalnych napięć i 
prądów. Szczegółowe algorytmy dla różnych metod ortogonalizacji otrzyma 
się podstawiając jedną z zależności (4.4), (4.8) itp. do tych wzorów.

Rezystancja i reaktancja zaś mogą być z definicji określone zależnoś­
ciami:

U 2P
R = — cosfo - ф.) = —

T U 1 .ć11 ±1

X = -4 sin(<Pu - Фг)
X1

(4.24)

Wykorzystanie równań (4.23)"oraz (4.20) (dla prądu) pozwala na okreś­
lenie ogólnej postaci algorytmów pomiaru tych wielkości z zastosowaniem 
składowych ortogonalnych:



u, (n) id(n) + U-Ь) i-b)
R(n) = ---i^b) ♦ i^b)

u (n) iH(n) - ud(n) i_b) 
X(n) - -3----- k ч g."—3—i^n) * i*b)

(4.25а)

(4.25b)

Zupełnie analogicznie można otrzymać równania pomiaru konduktancji i 
susceptancji. Liczniki obu wyrażeń pozostają przy tym nie zmienione, na­
tomiast w mianowniku należy wstawić sumę kwadratów składowych ortogonal­
nych napięcia.

Rys. 4.6. Schemat blokowy pomiaru wielkości kryterialnych według 
pierwszej rodziny algorytmów ((4.20)44.25))

Fig. 4.6. Block scheme of measurement of criterion values according to 
the first family of algorithms ((4.20)-(4.25))



Wzory (4.20), (4.23) i (4.25) stanowią rodzinę algorytmów pomiaru 
wielkości kryterialnych, wykorzystującą składowe ortogonalne sygnału. 
Jest to chyba najpowszechniejszy sposób pomiaru, a metody ortogonaliza- 
cji mogą byó różneI W celu podkreślenia spójności tego systemu przedsta­
wiono na rys. 4.6. schemat blokowy pomiaru różnych wielkości.

Inną dużą rodzinę algorytmów pomiaru uzyskuje się przez zastosowanie 
składowych ortogonalnych prądów w różnych chwilach n oraz napięć w 
tych momentach. Podstawy metody opisano w pracy [41] , a tutaj przedsta­
wiono ją w ogólniejszej formie, która pozwoli wykazać, że jest ona równo­
ważna - przy pewnych sposobach ortogonalizacji - metodzie rozwiązywania 
równań obwodu zwarciowego.

Załóżmy, że napięcie oraz składowe ortogonalne prądu są dane równa­
niami (4.22) (bez składowej uQ(n)), a ponadto dysponuje się tymi wiel­
kościami w chwilach n - к (w szczególnym przypadku к = 1). Algorytmy 
pomiarowe wynikają z dwu podstawowych równań, których spełnienie można 
sprawdzić przez proste przekształcenia trygonometryczne:

ud(n - k1)i^(n) - u^nji^n - k1) » sinf^ w1Ti)U1I1cos(cpu - ) 

ud(n - k1 )id(n) - ud(n)id(n - ^) = sin(k1 w1Ti)U1I1sin(q>u - q^)

(4.26)
Po podstawieniu w pierwszym z tych równań x (4.19) zamiast u 

oraz i, otrzymuje się po prostych przekształceniach równanie pomiaru am­
plitudy prądu lub napięcia (<рц - <pi ■ 0):

/x.(n - k.)x (n) - xH(n)x (n - k.)
x (n) /_d------ 1—9-------- d---- 9------ 1_ (4.27)
1 у sinik.)

Równania pomiaru mocy czynnej i biernej wynikają natomiast z (4.26) 
bezpośrednio:

1 r- -1P(n) = -------------  |u.(n “ k. )i (n) “ * 11J (4.28a)2sin(k1 m^) L d 1 9 d Q 1 J

Q(n) « -------------  Ги. (n ~ h. )iH(n) - u. (n)ij(n - k. )] (4.28b)2sin(k o>.T.) L d 1 d d d 1
1 ii

Równania (4.27) i (4.28) oraz (4.24) pozwalają na określenie rezys- 
tacji i reaktancji.Stały współczynnik upraszcza się tutaj i uzyskuje się 
ostatecznie:

u. (n - k.) i (n) - u,(n) i (n - k.)R(n) - ------ 1--- 3—---- d----- 9------ 1_ (4.29а)
id(n - k.)) ią(n) - id(n) iq(n - )



u,(n - к) i,,(n) - ujn) ij(n - k) 
x(n) a d _____ S_______ g o

id(n - k.,) iq(n) - id(n) ią(n - )
(4.29b)

Podobnie jak poprzednio, te ogólne algorytmy (4.27), (4.28) i (4.29) 
przyjmują postać szczegółową w zależności od sposobu ortogonalizacji prą­
du oraz wartości opóźnienia kT^, które może być różne w algorytmach 
(4.29) oraz podczas ortogonalizacji. Zwłaszcza może być « 1 w obu 
przypadkach. Schemat blokowy pomiaru tymi metodami przedstawiono na rys. 
4.7.

Różne czynniki, takie jak na przykład inne opóźnienia sygnałów w ana­
logowej części przetwarzania napięć i prądów, niesynchroniczne próbkowa­
nie itp., mogą spowodować, że różnica przesunięć fazy napięcia i prądu

Rys. 4.7. Schemat blokowy pomiaru wielkości kryterialnych według 
drugiej rodziny algorytmów ((4.27)-(4.29))

Fig. 4.7. Block scheme of criterion values measurement according to 
the second family of alrgorithma ((4.27)-(4.29)) 



jest inna niż фи - ф±. Jeśli więc założy się, że ta różnica Jest inna, 
oraz że prąd wyprzedza napięcie o pewien kąt ф, to korekcja tego przesu 
nięcia może być dokonana przez opóźnienie sygnału cyfrowego o tę fazę. W 
istocie Jednak korekcja ta może być dokładna tylko wtedy, gdy kąt ten 
odpowiada całkowitej wielokrotności okresu próbkowania ( ф » 1 w^T^). 
Jeśli jednak tak nie jest, to oprócz opóźnienia sygnału, trzeba dokonać 
jeszcze dodatkowej korekcji. Korekcja ta dotyczy teraz przesunięcia syg­
nału o pewien kąt a mniejszy od (a = ф - 1 w^^). Niech więc na­
pięcia będą określone równaniami (4.22), a prądy będą takie jak tam, 
lecz przesunięte o kąt as

i„ (n) - I. cos(n ш.Т, + ф., + a)1 1 111 (4.30)
i2(n) - I1 sin(n m1Ti + ф1 + a)
Proste przekształcenie równań (4.30), po wyrażeniu ich przez składo­

we ortogonalne id(n) 1 1^(п) ^«22^, pozwala na obliczenie tych skła­
dowych na podstawie liniowej kombinacji i^ (n) i i2(n):

i,(n) - i. (n) cos a + io(n) sinad 1 2 (4.31)
i (n) « -i4(n) sin a + i„(n) cosaq i 2
Dla dużych częstotliwości próbkowania korekcja ta może nie być ko­

nieczna, gdyż wówczas sina jest bliski zeru, ale dla typowych częstotli 
wości próbkowania sygnał powinien być przekształcony według zależności 
(4.31). Jeśli natomiast napięcie wyprzedza prąd, to taką samą procedurę 
stosuje się do napięcia.

4.4. Pomiar amplitudy napięcia lub prądu

4.4.1. Zastosowanie składowych ortogonalnych

Algorytmy pomiaru amplitudy napięcia lub prądu otrzymuje się przez 
podstawienie do ogólnych równań (4.20) i (4.27) składowych ortogonalnych 
uzyskiwanych różnymi metodami, tj. (4.4), (4.8), (4.15), (4.16) i (4.17) 
Ewentualne przekształcenia takich równań mogą prowadzić do uproszczenia 
algorytmu lub też najprostsza może okazać się jego postać początkowa. 
Najpierw rozpatrzono algorytmy wykorzystujące składowe ortogonalne w tej 
samej dyskretnej chwili n (4.20) dla różnych metod ortogonalizacji.

1. Ortogonalizacja przez pojedyncze opóźnienie sygnału
Po wstawieniu zależności (4.4) do (4.20) otrzymuje się

/ o Гх(п - к) - cos(k ш.Т.) x(n)l2
X. (n) --./x2(n) + -------------------i-i------  (4.32)

' |/ sin(k w^T^)

gdzie x(n) = X^ cos(n + ф), a po przekształceniach



X. (n) = —---—--- т/х2(п) + x2(n - k) - 2cos(k w.T. ) x(n) x(n - k)
1 sin(k ш.Т.) * 11 1 (4.33)

Można tu zauważyć, że w postaci ogólnej algorytm (4.32) jest prostszy 
do zrealizowania niż (4.33). Wymaga on bowiem dwu mnożeń próbek sygnału 
przez stałą, dwu mnożeń próbek przez siebie oraz dwu operacji sumowania, 
gdy tymczasem drugi z nich wymaga jednego mnożenie więcej.

Uproszczone wersje tych algorytmów otrzymuje się przy pewnych szcze­
gólnych wartościach opóźnienia k:

N. / T. \
- gdy к = — , N. = ; к w.T. - --- , wówczas12 \ 1 Xi 6 /

r2 2/ M 7 N7
X1 (n) ж 2-i/x (n) + x In - - ^3 x(n) x(n - yj

N- gdy к ж ^k w1Ti “ 3) » wówczas

2 Гэ 7? 7 V
X. (n) = -^-.^(n) + X П---1 - x(n) X П--- -1 T \ s / \ 6 /

N1 / n\
- gdy к “ —- kw.T. ж — , wówczas4 \ 11 2/_______

I / N C
X. (n) ж т/х^п) + x2 (n---
1 У \ 4 /

(4.34a)

(4.34b)

(4.34c)

Ostatni algorytm jest najprostszy i najoszczędniejszy w obliczeniach, 
gdyż wymaga realizacji tylko jednej operacji mnożenia (x2(n)). Drugi z 
kwadratów w wyrażeniu (4.34c) został już obliczony N1/4 próbek wcześ­
niej. Jest to postać najczęściej używana w praktyce podczas stosowania 
tego sposobu ortogonalizacji.

2. Ortogonalizacja przez podwójne opóźnienie sygnału
Po wstawieniu zależności (4.8) do wzoru (4.20) otrzymuje się

X1 (n)
o Гx(n - 2k) - x(n)”l2

x2(n - k) + ----------------
2sin(k “^T^)

(4.35)

a po przekształceniach

1
X.(n) » ------------

2sin(k w.^)
(n) + x2(n - k) - 2x2(n - k) cos(2k w^^)

(4.36)
Podobnie jak poprzednio postać wyjściowa algorytmu pomiaru amplitudy 

(4.35) wymaga wykonania mniejszej liczby operacji arytmetycznych niż je­
go wersja przekształcona (4.36).

Analogicznie też dla pewnych szczególnych wartości opóźnienia к 
otrzymuje się uproszczone wersje tych algorytmów:



- gdy

Х1

- gdy

к o yj , (к “ Б ) ’ wówczas

(k

2 2 /X (n) + x n

, wówczas

Nl\ 
тг у (4.37a)

X^(n) = -|/x2(n) - x2^n -
(4.37b)

Ostatnie równanie Jest, Jak można było oczekiwać, identyczna z rów­
naniem (4.34c) (podwójne opóźnienie o n/4 Jest równoważne opóźnieniu o 
k/2). Oba równania (4.37) zapewniają znaczną oszczędność w obliczeniach 
i wymagają Jednego tylko podnoszenia do kwadratu, gdyż kwadraty opóźnio­
nych próbek sygnału były już obliczane wcześniej.

3. Zastosowanie filtrów ortogonalnych
Najprostszą postać algorytmów pomiaru amplitudy otrzymuje się przez 

stosowanie filtrów ortogonalnych lub korelacji ortogonalnej. Składowe 
napięcia lub prądu są opisane równaniami (4.15)-(4.17). Po wstawieniu 
wartości x z tych równań do ogólnej zależności (4.20) otrzymuje się 
kolejno:
- gdy współczynniki filtrów są różne, wówczas

//yd(n)\2 /у (n)\2'
X. —. -S  ) + -Я—- (4.38a)

1 H F1d / \ 1ą /
- gdy współczynniki filtrów są identyczne (F1d = F^ » F^), wówczas

X1 " 4; (4.38b)

- gdy F1 « 1, tak Jak w filtrze Kalmana, wówczas

xi - (4.38c)

gdzie yd(n), yq(n) - sygnały wyjściowe filtrów ortogonalnych.
Inny zestaw algorytmów pomiaru amplitudy otrzyma się przez zastoso­

wanie równań ogólnych (4.27) i różnych metod ortogonalizacji sygnału. 
Na wstępie trzeba jednak podać pewne ograniczenie. Otóż suma kwadratów 
we wzorze ogólnym (4.20) gwarantuje dodatnią wartość wyrażenia•podpier- 
wiastkowego. W zależności (4.27) tak już nie Jest i niewielkie nawet za­
kłócenie sygnału może spowodować ujemną wartość wyrażenia podpierwiast- 
kowego. Stosowanie tego algorytmu wyłącznie do pomiaru amplitudy wymaga 
pewnej ostrożności i ewentualnie specjalnych zabiegów w rodzaju pier­
wiastkowania wartości bezwzględnej itp.



Duże znaczenie natomiast mogą mieć te algorytmy do obliczeń kwadratów 
amplitud napięć lub prądów, które są stosowane w algorytmach pomiaru 
składowych impedancji lub admitancji. Aby nie wdawać się w szczegółową 
analizę ograniczeń związanych z zastosowaniem równania (4.27) do pomiaru 
amplitudy, dalej omówiono tę metodę zastosowaną do pomiaru kwadratu am­
plitud.

1. Ortogonalizacja przez pojedyncze opóźnienie sygnału
Po wstawieniu równania (4.4) do (4.27) otrzymuje się
~ 1 Г x(n - k) - x(n) cos(k ш.Т.)

X?(n) » ------ ------ x (n — k. ) ------------—----- ----  1 1
sint^ w1T1) sin(k <»1Ti)

x(n - к - k.) - x(n - k.) cos(k w.T.)- x(n) ----------- 3------------1--------- LA-
sin(k w^T^^)

(4.39)

a po uproszczeniach algebraicznych

X?(n)=------------ ------------- [x(n - k. ) x(n - k)-x(n) x(n-k-k.)]
1 sin(k. w.T^ sin(k w.T.)111 11 (4.40)

Ten algorytm obliczania kwadratu amplitudy wymaga dwu mnożeń sygna­
łów oraz mnożenia przez stały współczynnik. To ostatnie mnożenie nie ma 
znaczenia, gdyż po zastosowaniu podobnej metody podczas pomiaru mocy 
czynnej i biernej, ów stały współczynnik upraszcza się. Gdyby jednak po­
miar kwadratu amplitudy miał być także realizowany, można dobrać korzys­
tną wartość tego współczynnika. Przyjąwszy к - k1 otrzymuje się dwa 
szczególnie proste przypadki:

N1
-gdy к =

X^n) - 4

N 
- gdy к « g-i

X2(n) - 2

w1Ti ■ g), wówczas

x2

x2

(4.4la)

Ш1Т1 ш ♦ wówczas

(4.41b)

n x n

n

2. Ortogonalizacja przez podwójne opóźnienie sygnału
Po wstawieniu zaś równania (4.8) do (4.27) otrzymuje się
_ 1 Г x(n - 2k) - x(n)

Xr(n) = ------------  x(n - k. - k)-------------------
' sin(k1 “1T±) L ' 2sin(k

x(n - 2k - k„ ) - x(n - k.)- x(n - k) ------------ ------------ 1_
2sin(k w.Tp

(4.42)



Po przyjęciu k^ = к oraz wykorzystaniu tożsamości trygonometrycz­
nej

x2(n - k) - x(n) x(n - 2k) » x2(n - 2k) - x(n - k) x(n - 3k) (4.43) 

otrzymuje się
X?(n) = ---ж————- Гх2(п - к) - x(n) x(n - 2k)J (4.44)

' sin^(k w,,^)

a więc wzór identyczny jak (4.40) (gdy к = ^) oraz uproszczone przypad­
ki (4.41) też można tu zastosować.

Należy w tym miejscu podkreślić z całym naciskiem, że algorytmy opi­
sane równaniami (4.42) (gdy к = k^) oraz przekształcony algorytm (4.44) 
to w istocie różne algorytmy w sensie ich różnych charakterystyk. Zau­
ważmy bowiem, że tożsamość (4.43) jest prawdziwa tylko wtedy, gdy sygnał 
x nie zawiera żadnych zakłóceń. W przeciwnym przypadku tożsamość ta nie 
obowiązuje, a więc amplituda obliczana według jednego i drugiego wzoru 
będzie obarczona innym błędem. Wynikają stąd właśnie różne charakterysty­
ki obu algorytmów. Jest natomiast oczywiste, że oba algorytmy umożliwią 
dokładny pomiar kwadratu amplitudy sygnału niezakłóconego. Dla porówna­
nia, algorytmy (4.39) i \4.4o) są identyczne, to znaczy mają identyczne 
charakterystyki, gdyż drugi z nich powstał przez uproszczenie pierwsze­
go z zastosowaniem operacji jedynie algebraicznych.

Na podstawie tych spostrzeżeń można sformułować zasadę ogólną. Jej 
treść sprowadzałaby się do następującego stwierdzenia: Uproszczenia al­
gorytmów, które wykorzystują tożsamości trygonometryczne między funkcja­
mi próbek mierzonych sygnałów, zmieniają również charakterystykę algo­
rytmu. Zmiana ta nie następuje tylko wtedy, jeśli owe uproszczenia są do­
konywane przez operacje jedynie algebraiczne.

3. Zastosowanie filtrów ortogonalnych
Algorytmy pomiaru kwadratu amplitudy otrzymuje się bezpośrednio 

przez podstawienie przekształconych zależności (4.15) lub (4.16) do rów­
nania (4.27). Trzeba tu zauważyć, że w metodach opisanych zależnościami 
(4.27)-(4.29) (amplitudy, moce, składowe impedancji) nie mają zastosowa­
nia korelacje oraz odpowiadający jej model filtru Kalmana. W tych bowiem 
przypadkach uzyskuje się wartości stałe na wyjściach i wszystkie wymie­
nione wielkośći,oprócz stanu przejściowego, są zerowe. Omawiane równa­
nia są słuszne jedynie dla przemiennych składowych ortogonalnych. Algo­
rytm pomiaru jest więc opisany zależnością:

2 1X.(n) = —---------------- - [>d(n - к. ) у (n) - y,(n) у (n - k.)] 
sin(k.m.Tz) a 1 q a q 1 

1d 1q 11 i----------------------------- (4.45)
gdzie



yd’yq “ wyjściowe filtrów ortogonalnych, na wejściu których znaj­
duje się x(n), 

x(n) « X1 cos(n Wq?! + 4>).

4.4.2. Metody uśredniania

Pomiar amplitud napięcia czy prądu lub ich wartości skutecznych przez 
uśrednianie wartości bezwzględnej lub kwadratu sygnałów to najbardziej 
naturalna metoda, stosowana od dawna w miernictwie analogowym. Metoda po­
miarowa wynika bezpośrednio ze znanych relacji:

T T( x2(T)dT = - X2, jeśli T = m — (4.46a)
J 2 2t-T 4

oraz
2T T( |x(t)|dT = — X., jeśli T » m — (4.46b)

J m ir 1 2t-T
gdzie: x(t) = X1 cos( a^t + <p), m = 1,2,3 ... .

Z równań (4.46) można łatwo otrzymać postać cyfrową algorytmów pomia­
ru amplitudy, które dla całkowania metodą prostokątów są opisane zależ­
nościami:

/ nX1 (n) “-|/^ 2 X1^n “ (4.47a)

V k»0
N-1

X^n) = (4.47b)
k=0

gdzie N = iJ^/2, i = 1,2 ... m.
Szczególnie atrakcyjna wydaje się metoda obliczania amplitudy według 

zależności (4.47b). Można zauważyć dużą oszczędność w obliczeniach, gdyż 
konieczne jest jedynie sumowanie wartości bezwzględnych próbek sygnału. 
W wyniku sumowania algorytm wykazuje też pewne własności filtracyjne 
(rozdz. 5 - okno prostokątne), zależne od przyjętej długości okna N. 
Własności te poprawiają się wraz ze wzrostem N, ale tylko w zakresie wy­
sokich częstotliwości.Zakłócająca składowa stała jest natomiast źródłem 
dużych błędów, niezależnie od wartości N, i jeśli ta składowa jest za­
warta w sygnale, musi on być wstępnie filtrowany lub trzeba zastosować 
inny algorytm pomiaru amplitudy. Inne błędy tej metody są związane z fa­
zą sygnału w chwilach próbkowania. Ich wartości zależą od częstotliwoś­
ci próbkowania, parzystej lub nieparzystej liczby próbek oraz położenia 
między chwilami próbkowania momentu przejścia przez zero sygnału [131].



4.5, Złożone wielkości kryterialne

4.5.1. Pomiar mocy

Szczegółowe algorytmy pomiaru mocy czynnej lub biernej otrzyma się 
przez podstawienie uzyskiwanych w różny sposób składowych ortogonalnych 
do ogólnych zależności (4.23) lub (4.28).

Rozpatrzmy kolejno te algorytmy, najpierw mocy czynnej, a potem mocy 
biernej dla różnych metod ortogonalizacji pamiętając, że dyskretne orto­
gonalne napięcia i prądy opisano zależnościami (4.22):

Moc czynna według algorytmu (4,23a)
1. Ortogonalizacja przez pojedyncze opóźnienie
Wykorzystujemy metodę ortogonalizacji (4.4) do prądu i napięcia oraz 

podstawiamy otrzymane składowe do równania (4.23a) 
u(n - k) - cos(k w.T,)u(n) 

u(n)i(n) + ---- -------- x
sin(k “^T^)

P(n) =

i(n - k) - cos(k w1Ti) i(n)
sin(k ш)

(4.48)

Spośród możliwych przypadków szczególnych (analogicznie do (4.34), 
najprostszą postać ma wzór (4.48), gdy cos(k W-jT.^) ma wartość zero. 
Wówczas funkcja sinus ma wartość jeden, к = N^/4 i wzór (4.48) uprasz­
cza się do

P(n) = (1 \ / 1n--- - ) in----
4 / \ 4 ,

(4.49)

Równanie to można by zapisać w bardziej zwartej formie:

P(n) = - ui(n) + ui n (4,.49a)

Ostatnia forma zapisu ilustruje prostotę algorytmu i fakt, że do ob­
liczeń potrzebna jest realizacja tylko jednego iloczynu.

2. Ortogonalizacja przez podwójne opóźnienie
Po podstawieniu wzoru (4.8) zastosowanego odpowiednio dla napięcia i 

prądu do (4.23a) otrzymuje się

P(n) = |u(n - k) i(n - k) + 

x [i(n - 2k) - i(n)] }

---- ---------  [u(n - 2k) - u(n)]x
4sin (k w^T^)

(4.50)

Prosty przypadek szczególny występuje, gdy sin(k jest równy 
0,5. Argument funkcji sinus jest wówczas równy n/6, a stąd wynika war­
tość к = N^/12 i uproszczony algorytm (4.50) dany równaniem



pb) = J Цп - Цп - + [u(n - u(n)j[i(n - ęl)- ib)j j

(4.50a)
Świadomie nie dokonano tutaj uproszczeń równania (4.50) na podstawie 

tożsamości trygonometrycznych, gdyż - jak podkreślono to w rozdz. 4.4 - 
operacja taka zmienia charakterystyki algorytmu. Z drugiej też strony po­
stać wyjściowa jest właściwie prostsza w realizacji (równania (4.32) i 
(4.33)).

3. Zastosowanie filtrów ortogonalnych
Wyrażenie określające moc czynną w tym przypadku otrzyma się przez 

obliczenie składowych ortogonalnych prądu i napięcia z sygnałów wyjścio­
wych ortogonalnych filtrów tych wielkości i podstawieniu tych składowych 
do (4.23a). Przyjąwszy, że stałe współczynniki we wszystkich filtrach są 
w ogólności różne, oraz że:

- = u(n - 1) = U.cos [(n - 1) w T. + cp ] = u, (n)
Fud 1 1 i u d (4.51)

u,„(n) / N.\
—— = u n - 1 + — = -U. sin Г(п - 1) w.T . + <p I = -u (n)

f \ 4 7 1 11 uJ quq 4
gdzie
uyd(n), uyq(n) - sygnały wyjściowe filtrów ortogonalnych napięcia, 
Fud* Fuq " sta^e współczynniki tych filtrów,
i przyjąwsZy analogiczne relacje dla sygnałów prądowych, otrzymuje się 
wyrażenie określające moc czynną’:

p(n) " 2 tórz uyd(n) ^(п) + u™(n) (4-52)

Częsty jest w praktyce przypadek, gdy współczynniki te są identyczne, 
a wówc zas

Pb) = [uyd(n) iyd(n) + uyq(n) iyq(n)j (4.52a)

Równanie to, jak można było oczekiwać, jest przemnożonym przez stały 
współczynnik ogólnym równaniem (4.23a).

Moc czynna według algorytmu (4.28a)
1. Ortogonalizacja przez pojedyncze opóźnienie
Postępujemy podobnie jak poprzednio, to jest wstawiamy odpowiednie 

zależności (4.4) dla prądów i napięć do (4.28а) i otrzymujemy

P(n) = ---------------------------  {u(n - k. ) [i(n - k) -
2sin(k w1Ti) sin(k1 ш1Т±) 1 (4.53)
- cos(k w1Ti) i(n)] - u(n) [i(n-k -k1) ~cos(k ib -k^ )]}



Podobnie jak w (4.4g) uproszczoną postać wzoru (4.53) otrzymuje się, 
gdy cos(k w^T^) jest równy zeru:

1
P(n) --------*---- - u(n - k. ) i n - 

2sin(k. w.T. ) L 1 \
/ N. \- u(n) i(n - ---1 j

(4.54a)1 1 i 4 .

oraz gdy

P(n)

k1 
1

' 2

= к -1Ц/4:
U M 
u n - —-L \ 4 /

/ N1
in----
\ 4

/ Ni- u(n) in--- -
\ 2

(4.54b)

2. Ortogonalizacja przez podwójne opóźnienie
Po wstawieniu (4.8) dla napięć i prądów do (4.28a) otrzymuje się

1 (
P(n) = ---- -----------------------  <u(n - к - k. ) [i(n - 2k)- i(n)l -

2sin(k w^T^) sin(k1 w^^) L ‘
- u(n - k) [i(n - 2k - ^) - i(n - ^ )] } (4.55)

Gdy к = k1, wówczas

P(n) = ---- ---------  [u(n - 2k)[i(n - 2k) - i(n)J -
2sin (k w^^) 1
- u(n - k)[i(n - 3k) - i(n - к)]} (4.55a)

Nie skorzystano tutaj z możliwości uproszczeń algorytmu związanych z 
tożsamościami trygonometrycznymi aby - jak wyjaśniono to już poprzednio - 
nie zmieniać jego charakterystyk. W tym zresztą przypadku szczególne war­
tości к nie mają wpływu na złożoność obliczeniową, a tylko na szybkość 
oraz charakterystyki filtracyjne. Te ostatnie poprawiają się wraz ze 
wzrostem k, gdy tymczasem wynik uzyskuje się najszybciej dla к = 1.

3. Zastosowanie filtrów ortogonalnych
Uwzględniwszy zależność (4.51) oraz ogólne równanie (4.28a) otrzymu­

je się po prostych przekształceniach:

p(n) = ---- —!------- ----— [u .(n) i (n-k. )-u ,(n-k. ) i (n)]
2sin(k. w.T. ) F .F yq 1 yd 1 yq

111 ud (4.56)
Szczególne wartości k^ nie mają tutaj wpływu na ewentualne uprosz­

czenia równań, gdyż wartość podana w nawiasie zależy od k1 tylko w sen­
sie lepszej lub gorszej dynamiki pomiaru i lepszych lub gorszych charak­
terystyk filtracyjnych. Współczynnik stały może mieć taką czy inną war­
tość zależną od współczynników poszczególnych filtrów, a w większości 
praktycznych przypadków ulegnie on(w algorytmach pomiaru składowych impe- 
dancji) uproszczeniu. W sumie można stwierdzić, że wzór (4.56) jest w 
pełni analogiczny do ogólnego algorytmu (4.28a).



Moc bierna według algorytmu (4.23b)
1. Ortogonalizacja przez pojedyncze opóźnienie
Po podstawieniu, podobnie jak poprzednio, prądu i napięcia przekształ­

conych według tej metody ortogonalizacji do ogólnej zależności (4.23b), 
otrzymuje się po prostych algebraicznych przekształceniach:

Q(n) = ------------  [u(n - k) i(n)— u(n) i(n - k)] (4.57)
2sin(k w1Ti)

Algorytm (4.57) jest bardzo prosty, analogiczny do zależności ogól­
nej (4.23b), lecz tu dotyczy próbek sygnałów, a nie składowych ortogonal­
nych. Najlepszą dynamikę pomiaru otrzymuje się gdy к « 1, a z kolei 
charakterystyki filtracyjne poprawiają się wraz ze wzrostem k. Przykła­
dowo dla sin(k w.^) równego jedności otrzymuje się płaską charakterys­
tykę filtracyjną (rys. 4.2, к » 3) i algorytm

2. Ortogonalizacja przez podwójne opóźnienie
Po wstawieniu z kolei (4.8) do (4.23b) otrzymuje się

Q(n) = ----- ------- {[u(n “ 2k) - u(n)] i(n - k) - u(n-k) [i(n - 2k) - i(n)]l 
4sin(k-------------------------------------------- (4.58)

Można jednak wykazać, że zachodzi następująca tożsamość trygonome­
tryczna:

u(n - k)i(n) - u(n)i(n- k) = u(n - 2k)i(n - k) - u(n - k)i(n - 2k)
(4.58а)

Po pomnożeniu składników w (4.58) i wykorzystaniu tej tożsamości 
otrzymuje się

Q(n) = ----- -------  [u(n - k) i(n) - u(n) i(n - k)] (4.59)
2sin(k

Jest to wzór identyczny ze wzorem (4.57) dla pojedynczego opóźnienia 
sygnału i można uzyskać też identyczną wersję szczególną (4.57a). Trzeba 
tu jednak jeszcze raz podkreślić, że wzory (4.58) i (4.59) nie opisują 
algorytmów o tych samych charakterystykach. Po pierwsze więc w równaniu 
(4.59) czas pomiaru jest krótszy dwukrotnie, a po drugie - charakterys­
tyki filtracyjne będą inne, gdyż wykorzystana tożsamość obowiązuje tylko 
dla sygnałów u(n), i(n) pozbawionych zakłóceń.

3. Zastosowanie filtrów ortogonalnych
Po obliczeniu składowych ortogonalnych na podstawie sygnałów wyjścio­

wych filtrów zgodnie z (4.51) (rys. 4.1) i podstawieniu ich do (4.23b), 
uzyskuje się:



Q(n) = \ [-T— uyd(n) W*) - ГГ uyq(n) iyd(n)] (4'60a) 
udriq uq id

Bardzo częstym w praktyce przypadkiem jest równość wszystkich stałych 
współczynników filtrów i wówczas

= ~~2 Euyd(n) iyq(n) " uyq(n) Sd01^ (4.6Ob)

Zależność ta jest analogiczna do równania (4.23b).

Moc bierna według algorytmu (4.28b)
Zależność ta nie wymaga wykorzystania składowych ortogonalnych w ogó­

le, tak samo równanie (4.28b) po pominięciu indeksów stanowi algorytm po­
miaru identyczny jak algorytmy (4.57) i (4.59). Niepotrzebna jest tutaj 
także para filtrów ortogonalnych dla napięcia i prądu. Istotne jest jedy­
nie, aby stosowane filtry napięcia i prądu wprowadzały takie samo opóź­
nienie. Jeśli założyć, że korzysta się z przekształconych sygnałów po­
trzebnych do pomiaru innych wielkości, to można wykorzystać prądy i na­
pięcia albo z filtrów dostarczających składowych bezpośrednich albo kwad- 
raturowych. Przyjąwszy, że byłyby to sygnały z wyjść filtrów bezpośred­
nich, otrzymuje się

Qta)' 2si»<k. .kv;„ [v‘” -
1 1 i ud id (ą,6i)

Trzeba tu także zauważyć, że równie dobrze można by zastosować sygna­
ły z wyjść filtrów kwadraturowych, jeśli miałyby korzystniejsze charakte­
rystyki filtracyjne. Istotne jest także to, co podkreślano już uprzednio, 
że algorytmu (4.28b) nie można stosować dla napięć i prądów uzyskiwanych 
z korelacji lub równoważnego modelu sygnałowego filtru Kalmana, gdyż wów­
czas (4.61) jest tożsamościowe równe zeru.

Moc bierna i czynna obliczana przez uśrednianie
Ten sposób obliczania mocy wywodzi się od układów analogowych i jest 

tam od dawna z powodzeniem stosowany. Niech napięcie i prąd będą dane 
równaniami:

u(t) = U1 cos( + фц)
i(t) = 1^ cos( w1t + ) (4.62)

i^(t)=I1 sin( o^t + ср±)

Iloczyny pierwszego i drugiego z równań oraz pierwszego i trzeciego 
dają po przekształceniach:

u(t)i(t) = U.I. Гсоэ(ф - Ф- ) + cos(2 co t + q> + cp )]
1 1 u 1 1 ui (4.63)

u(t)i .(t) = U.I. Г-з1п(ф - Ф. ) + sin(2 w.t + <p + <p )] q i i u ui i u i j



Składowe stałe równań (4.63) są równe odpowiednio wartości mocy czyn­
nej i minus mocy biernej. Składowe przemienne to druga harmoniczna sygna­
łów, która może być odfiltrowana w wyniku stosowania dowolnego filtru 
dolnoprzepustowego, a zwłaszcza uśredniania w przedziale będącym wielo­
krotnością połowy okresu składowej podstawowej: 

t
J и(т)1(т)Ьт = U1I1 cos(<Pu - q^) 
t-T
t (4.64)
J u(T)lq(T)dT = - | sin(<₽u - ф±) 
t-T

gdzie T = mT.j/2, m = 1,2 ... .
Dyskretna realizacja całek (4.64) z zastosowaniem metody prostokątów 

pozwala na następujące określenie algorytmów pomiaru mocy czynnej i bier­
nej:

P(n) = ^u(n - k)i(n - k)

k=0 (4.65)
N-1 

o(n) = - ^ ^^(n ”k^ 
k=0

gdzie N = mN^/21; m = 1,2 ... .

Podczas obliczania mocy biernej przyjęto najprostszy sposób ortogona- 
lizacji przez opóźnienie sygnału o N^/4. Zwiększanie czasu uśredniania 
poprawia charakterystykę filtracyjną, lecz wydłuża czas pomiaru. Zazwy­
czaj stosuje się półokresowy lub pełnookresowy czas uśredniania (m = 1, 
m = 2). Istotną wadą tych algorytmów jest duża wrażliwość na odchylenie 
częstotliwości sygnału i znaczne błędy tym spowodowane (T^ k Zk/w^).

4.5.2. Pomiar składowych impedancji

4.5.2.1. Zastosowanie składowych ortogonalnych

Składowe impedancji - rezystancję R oraz reaktancję X - można ob­
liczyć z równań (4.25) i (4.29) lub też z obliczonych już wartości ampli­
tud, mocy czynnych i biernych. Ostatni sposób jest prostszy i wymaga je­
dynie zastosowania ogólnych równań (4.24). Naturalnie można by wygenero­
wać ogromną liczbę algorytmów pomiaru rezystancji i reaktancji, lecz jest 
uzasadnione, aby moce oraz amplitudy były obliczane podobną metodą. Nie­
celowe bowiem wydaje się obliczanie amplitudy algorytmem bardzo szybkim, 
ale o niezbyt korzystnych charakterystykach filtracyjnych, oraz z kolei 
obliczanie np. mocy czynnej algorytmem o lepszej filtracji lecz wolnym.



Tabela 4.1 ®
Zestawienie algorytmów pomiaru rezystancji i reaktancji, wynikających z równań (4.25)

Algorytm Numer 
wzoru

Wykorzystane 
równania Uwagi

u(n)i(n) + u 1(

(4.66)

(4.67)

(4.68)

(4.34c) 

(4.49) 

(4.57a) 

(4.24)

(4.35)

(4.50)

(4.58)
(4.24)

(4.38)

(4.52)

(4.60)

(4.24)

Opóźnienie 
pojedyncze

Założenia: 
к w1Ti - к/2

Opóźnienie 
podwójne

Założenia: 
к « 7t/6

Filtry 
ortogonalne

i2(n) + i2

/ Nd\u in - 7—) i(n) -
\ 4 /

Г?

u(n) i

u

i2(n) + i2

' N1 \ / N1^n-T2 Mkn-

n *

u u( n)
[i(r

i2(n-

/ N.\ -1
^n- ^-y-u(n)ji

N1)
Tl] 

n -

+

N1' 
vl

Ti (n NlШп ■

i M
I- ukn-i^

[i

i(n)
12

А к I* / ~ “

u 
R(n) = -i

U
x(n) = —5

i2(n - ^) + [ 

rd(n) ivd(n) + uvq(n) 

^(п) * ^(п) 

га^п) iyq^ - Uyq^n^

- 51) - 2



Tabela 4.2
Zestawienie algorytmów pomiaru rezystancji i reaktancji,wynikających z równań (4.29)

Algorytm Numer 
wzoru

Wykorzystane 
równania Uwagi

/ N.\ / N^
u(n-k) i ln - т-i 1 - u(n) iln-k-r1, 

R(n) » ----- *— --—i---------- i------—'
i^(n - k) - i(n) i(n - 2k)

u(n-k) i(n) - u(n) i(n-k)
X(n) ■ ..— —' sinCkm.l

i^n-k) - i(n) i(n-2k) 1

u(n-2k) (i(n-2k)-i(n)]- u(n-k)[i(r
R(n) • .......   -........ -—

i(n-2k) [i(n-2k) - i(n)]- i(n-k)[i(r 

, k v u(n-k) i(n) -
Y ( n ) - « < г» ( к m T ________________________

з!п(кш.Т^)

i^

i-3k) - i(n-k)]
i-3k) -i(n-k)]

u(n) i(n-k)

(4.69)

(4.70)

(4.40)

(4.54а)

(4.57)

(4.24)

(4.42)

(4.55a)

(4.57}

(4.24)

(4.45)
(4.56)

(4.61)
(4.24)

Opóźnienie po­
jedyncze
Założenia:
*l“lTi - n/2j 
Przypadki szcze­
gólne:
а) к • N./4b) к ■ 11

Opóźnienie po­
dwójne
Założenia:
к ж k1
Przypadki szcze­
gólne: 
а) к ж i

Filtry ortogo­
nalne
Przypadki szcze­
gólne:
а) к ж i

1 1 i(n-2k) [i(n-2k) -i(n)]-i(n-k) [i(n-3k)-i(n-k)

B(„) _ V») V» ■ » - U^tn - Ю lTOtn> 

iy^n - k) lyq(n) - i^Cn) iyq(n - k)

x(n) -
iy^Cn - k) iyq(n) - iy^n) iyq(n - k)

]

(4.71)



Ostatecznie otrzyma się algorytm pomiaru rezystancji powolny i o nieko­
rzystnych charakterystykach, co mija się z celem.

W tabelach przedstawiono zbiór algorytmów pomiaru rezystancji i re- 
aktancji, w których moce oraz amplitudy obliczono tymi samymi omawianymi 
metodami. Zaletą takiego postępowania jest także redukcja stałych współ­
czynników, a więc uproszczenie algorytmów.

Algorytmy te zestawiono w tab. 4.1 i 4.2, z których pierwsza grupuje 
te, które wynikają z równań (4.25) i należą do pierwszej rodziny algo­
rytmów pomiaru wielkości kryterialnych, a druga te, które wynikają z rów­
nań (4.29) i należą do drugiej rodziny. W tabelach tych równania odpowia­
dające kolejnym algorytmom zostały ponumerowane oraz podanos które z 
uprzednio uzyskanych wzorów zastosowano w danym przypadku. W uwagach za­
warto z kolei informacje o tym, która metoda ortogonalizacji była sto­
sowana, jakie założenia upraszczające przyjęto oraz jakie przypadki 
szczególne mogą mieć istotne znaczenie dla dalszych przekształceń algo­
rytmów (tab. 4.2). Te przypadki szczególne dotyczą parametru k, który 
- gdy przyjmuje wartość równą jedności - zapewnia najkrótszy dla danego 
algorytmu czas pomiaru przy niezbyt korzystnych charakterystykach filtra­
cyjnych, a gdy к jest równe N1/4, otrzymuje się lepsze niż poprzednio 
własności filtracyjne, lecz dłuższy czas pomiaru. Trzeba tu dodać, że 
dyskretne napięcia i prądy występujące w poszczególnych algorytmach są 
dane równaniami:

u(n) = U1 cos(n + cpu)
i(n) = I1 cos(n w1Tl + 

a z kolei indeksy у w tych wielkościach oznaczają sygnały wyjściowe 
filtrów ortogonalnych (równanie (4.51)); gdy składowa bezpośrednia ma do­
datkowy indeks d, a składowa kwadraturowa - dodatkowy indeks q.

Obliczenie R, X metodą uśredniania
W metodzie tej nie stosuje się składowych ortogonalnych, lecz dołą­

czono ją jako najbardziej naturalną i bezpośrednią metodę pomiaru R i 
X, Moce czynną i bierną uzyskuje się przez uśrednianie iloczynów napię­
cia i prądu lub odpowiednio przesuniętego prądu, a amplitudy przez uśred­
nianie kwadratu lub wartości bezwzględnych prądu. Odpowiednie z tych 
wielkości wstawia się do ogólnych równań (4.24) i otrzymuje dwie pary 
prostych algorytmów pomiaru R i X. Pierwsza z nich dana jest równania­
mi: N-1

2 u(n - k) i(n - k) 

R(n) ---------------
2 - k)
k=0 (4.72)



ил------------
2 i2(n - к) 
к=0

a drugi uzyskuje się przez wstawienie w mianowniku wzorów (4.72) sumy 
wartości bezwzględnych (4.47b) zamiast sumy kwadratów i pomnożenie pra­
wych stron obu równań (4.72) przez 8N/it2. Wszystkie z tych algorytmów wy­
magają przedziałów sumowania, będących całkowitą wielokrotnością półokre- 
su. Wzrost tego przedziału poprawia charakterystyki filtracyjne, ale 
przedłuża oczywiście czas pomiaru.

Nie porównywano w tym rozdziale własności algorytmów wykorzystujących 
różne metody ortogonalizacji. Jednakże, oprócz podania tych cech algoryt­
mów, które widoczne są na pierwszy rzut oka, bardziej szczegółowa analiza 
jest pozbawiona podstaw bez uwzględniania stosowanych filtrów. Zostaną 
one omówione w rozdz. 5 i 6, a następnie w rozdz. 7 dokona się szczegóło­
wej analizy błędów.

4.5.2.2. Pomiar rezystancji i reaktancji z równań obwodu zwarciowego

Najczęściej stosowany i równocześnie najprostszy schemat obwodu zwar­
ciowego przedstawiono na rys. 4.8. Obwód ten jest opisany równaniem:

u(t) = Ri(t) + L (4.73)
dt

i W R
o--------*--------[ 1-----------fY ▼ 1-------------Q

U,i\ >-7 Rys. 4.8. Uproszczony schemat obwodu( ' / zwarciowego
/ Fig. 4.8. Simplified scheme of fault 

о---------------------------- ° circuit

Zazwyczaj rozwiązanie tego równania różniczkowego sprowadza się do 
obliczenia prądu i(t) przy zadanym napięciu u(t) oraz parametrach ob­
wodu R,L. W rozważanym przypadku jest jednak inaczej. Tutaj chodzi o 
zmierzenie parametrów R i L na podstawie znanego napięcia u(t) i 
prądu i(t). Pochodna prądu nie występuje w sygnałach obwodu zwarciowego 
i musi być obliczona z i(t). Niestety, operacja ta ma bardzo niekorzyst­
nie ukształtowane widmo (rys. 4.5) i konieczne jest stosowanie różnych 
metod poprawy charakterystyki widmowej, głównie w celu zmniejszenia wpły­
wu zakłóceń wysokoczęstotliwościowych na dokładność pomiaru R i L. Me­
tody te mogą polegać na wstępnej filtracji napięcia i prądu (przede wszys­
tkim), całkowaniu równania (4.73) w różnych interwałach, odpowiednim prze­



kształceniu transformaty Fouriera obu stron równania (4.73) oraz minima­
lizacji całki kwadratu błędu [6], L631, Cl20]. W przypadku najprostszym 
oblicza się wartości R i L bezpośrednio z równania (4.73), bez wstęp­
nej filtracji. Obliczenie tych wartości wymaga jednak dwu równań i otrzy­
muje się je z (4.73) w dwu różnych chwilach t1 i t2, oddalonych o do­
wolny interwał, najczęściej okres próbkowania T^.

Rozwiązywanie równania (4.73) w różnych chwilach
Równanie (4.73) zapisane w postaci dyskretnej, dla różnych chwil 

(n - 1)Ti# (n - 2)Т^, daje następujący układ równań:

L Ai(n - 1) + R i(n - 1) - U(n - 1)
(4.74)

L Ai(n - 2) + R i(n - 2) - U(n - 2)

gdzie Ai(n - 1) » (i(n) - i(n - 2))/2Ti.

Rozwiązanie tego układu równań pozwala wyznaczyć nieznane wartości 
R i L na podstawie próbek napięcia i prądu, stosownie do następują­
cych równań:

u(n - 2) Ai(n - 1) - u(n - 1) Ai(n - 2)
R(n) » -------- ■ ........ —

i(n - 2) Ai(n - 1) - i(n - 1) Ai(n - 2) 
(4.75) 

u(n - 1) i(n - 2) - u(n - 2) i(n - 1)
L(n) = ------------------ ----------------------

i(n - 2) Ai(n - 1) - i(n - 1) Ai(n - 2)
Warto tu podkreślić, że równania te są identyczne z równaniem (4.70) 

z jedną tylko różnicą. Mianowicie tutaj przyjęto liniową aproksymację 
u(t) oraz i(t) między chwilami próbkowania, a tam dokładniejszą apro­
ksymację funkcją sinus (4.8). Spostrzeżenie to jest potwierdzeniem uni­
wersalności wyrażeń (4.29), będących ogólną formą obliczania R oraz X. 
Wadą algorytmów (4.75) jest duża wrażliwość na zakłócenia wysokoozęstotli- 
wościowe w związku z widmową charakterystyką Ai (rys. 4.5). Można tę 
wrażliwość znacznie ograniczyć przez stosowanie całkowania równań (4.73), 
a więc numerycznego całkowania układu równań (4.74).

Całkowanie równania pętli zwarciowej
Całkowanie numeryczne równań (4.74) daje:

X1 i(n) - i(n - 2) V1 V
L Z_j ------- --------  + R / ,i(n - 1) = z .u(n - i)

N 2Ti N N (4.76)

l 2 i^n ~~ ~ + R - 2) = 2u<n ~
N 2T± N N

Jednakże operacja sumowania oznacza zastosowanie uśredniającego fil­
tru cyfrowego



N-1
ж 2i(n) * 2 i(n" k)

N k-0
oraz, (uwzględniwszy (4.8)):

i(n) - i(n - 2) i (n) - i (n - 2) sin w.T-------------------- x------- X------ £ = i (n - 1) Wl----- 1-1
2^ 2Т± yq 1 w1Ti

Zależności te wynikają też z tego, że uśredniona różnica prądów jest 
równa różnicy wartości średnich i jest ortogonalna do wartości średniej 
prądów (w odpowiednich chwilach n), co wyraża równanie (4.8). Uwzględ­
nienie tego pozwala na przepisanie równań (4.76) w postaci (po przesunię­
ciu indeksu czasowego o jeden):

sinCw.T,)
--------- “i L i (n) + R i d(n) = u d(n)

1 1 (4.77)
sinCw.T.)ц T 1 ' “i L £уд(п “ + R iyd^ “ = uyd(n "

Rozwiązanie tego układu równań jest już trywialne i pozwala na wyzna­
czenie R oraz X (równe w^):

u ,(n - 1) i (n) - u л (n) i (n - 1)
R(n) = ----- 23-------

^(п - 1) 1yq(n) - iyd(n) £уд(п - 1)
(4.78)

x(n) =
sin(a)1Ti) iyd(n - 1) iyą(n) - iyd(n) iyq(n - 1)

Algorytmy (4.78) są opisane podobnymi równaniami jak algorytmy (4.71) 
dla к = 1 (z dokładnością do znaku i stałego współczynnika w reaktan- 
cji). Stały współczynnik wynika z różnej aproksymacji funkcji między 
chwilami próbkowania w ortogonalizacji (4.8) oraz podczas obliczania po­
chodnej (4.76). Piersza metoda jest dokładniejsza, a zresztą i tak przy 
praktycznie stosowanych częstotliwościach próbkowania współczynnik ten 
jest bardzo bliski jedności. Różnice w znaku wynikają z przyjętego w fil­
trach ortogonalnych jego odwrócenia podczas obliczania składowej kwadra- 
turowej. Zgodność wyrażeń (4.78) z ogólną postacią algorytmów (4.29) 
jest już całkowita. A więc znowu, rozwiązywanie równań obwodu zwarciowe­
go prowadzi do algorytmów (4.29), potwierdzając kolejny raz ich uniwer­
salność.

Obliczanie obustronnej transformaty Fouriera równania (4.73) prowadzi 
do identycznych analogii,z tym jednak, że zamiast uśredniania (funkcje 
wagi filtru są jednostkowe) stosuje się w tym przypadku filtry z funkcja­



mi wagi odpowiednio sinus i cosinus. Układ dwu równań wynika tutaj ze 
stosowania dwu różnych funkcji wagi, zamiast jednej, do równań przesunię­
tych w czasie.

Minimalizacja błędu średniokwadratowego [6]
Prosty model obwodu zwarciowego opisany równaniem (4.73) - rys.4.8 - 

może być rozbudowany w wyniku uwzględnienia pojemności równoległej (rys. 
4.8), co prowadzi do podwyższenia rzędu równania różniczkowego, opisują­
cego ten obwód. Można też założyć, że błędy modelowania powodują, iż wy­
generowany jest pewien sygnał zakłócający e(t) i należy go uwzględnić 
w tym równaniu (w istocie gdyby nawet nie było błędów modelowania, to na 
przykład próbkowanie generuje pewien szum kwantowania). Równaniu (4.73) 
odpowiada więc teraz następujące równanie: 

di(t)
u(t) = Ri(t) + L -----  + e(t) (4.79)

dt
Optymalne wyznaczenie poszukiwanych wartości R oraz L polega na

takim określeniu algorytmu pomiaru, aby średniokwadratowa wartość błędu 
była minimalna. Przy tym dokładne wartości 1 spełniają równania (4.73).
Tak więc 

t
I = j e2(r)dT 

t-T

* Г difrH
u(r) - Ri(r) - L   t-TL drJ

2
dr = min (4.80)

Całka kwadratu błędu powinna być minimalna ze względu na R oraz L, 
to znaczy

« = 0
3R

Э1 n — = 0.
3L

Wynikają stąd następujące algorytmy obliczania R oraz L:
t t 2 t t
f U(T) i(T)dT ( (^2\ dr - f u(t) ^2 dr [ i(r) ^2 dr 

o t-T______ t-т dT ______ t-T____ dT t-T________dT

M
(4.81)

t t t t
| u(r) Śł2-l2 dr J i2(r)dr - J u(r) i(r)dr J i(r) ------ dr 
t-T dT t-T t-T t-T dT

M

t t
gdzie M = J i2(r)dr J 

t-T t-T

o t^121 dr - f iU) ^2 d-c
_dr J dr

Można także zauważyć, że algorytmy (4.81) można otrzymać jako roz­
wiązanie układu równań, z których jedno powstaje przez przemnożenie obu 
stron przez i(t) i scałkowanie w przedziale T, a drugie przez prze-
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55 
mnożenie tego równania przez pochodną prądu i całkowanie. Błąd w wyzna­
czaniu rezystancji i indukcyjności zależy więc od dwóch całek:

t
e^ = [ e(r) i(-u)dr 

t-T
t 

е(т) ŚiW dT 
dr

Wynika stąd wniosek, że błąd ten będzie zerowy wó\fczas, gdy e1 i e2 
są zerowe, a więc gdy zakłócenie e(t) jest ortogonalne w przedziale T 
z prądem i jego pochodną.

Omawiana metoda daje bardzo dobre wyniki, lecz jest również bardzo 
złożona, przede wszystkim ze względu na konieczność obliczania wielu ilo­
czynów sygnałów. Wymaga to stosowania wyraźnie większych dokładności i 
długości słowa maszynowego niż mnożenie sygnałów przez stałą.

W zakończeniu rozdziału, w którym podjęto próbę analizy i unifikacji 
stosowanych algorytmów pomiarowych, warto może podać nasuwający się wnio­
sek ogólny. Mógłby on być sformułowany tak: Prawie wszystkie algorytmy 
pomiaru wielkości kryterialnych sprowadzają się do przetwarzania składo­
wych ortogonalnych według zależności (4.20), (4.23), (4.25) oraz (4.27)- 
(4.29) tworzących dwie duże rodziny algorytmów, przedstawio-ne blokowo 
na rys. (4.6) i (4.7). Badania własności tych algorytmów można więc ogra­
niczyć do tych dwu przypadków ze względu na sposób otrzymywania wchodzą­
cych w ich skład ortogonalnych składowych.

5. CYFROWA FILTRACJA I KORELACJA

5.1. Wprowadzenie

.^zyskiwanie potrzebnej informacji zawsze wymaga takiego przekształce­
nia całego dostępnego zbioru, aby wielkości pożądane uwypuklić, a zbędne 
stłumić. Układ, który realizuje to zadanie, można nazwać, w sensie ogól­
nym, filtrem. Nie inaczej jest w przypadku napięć i prądów systemu elek­
troenergetycznego, używanych w zabezpieczeniach elektroenergetycznych. 
Tutaj pożądaną informację zawierają napięcia i prądy o częstotliwości 
podstawowej, które stanowią tylko część całej zawartości sygnału,

Ogólnie, filtrem liniowym jest układ opisany równaniem

y(t) = x(r) w(t - t )dr (5.1)

gdzie
x, у - odpowiednio sygnał wejściowy i wyjściowy,



w - sygnał wyjściowy filtru, gdy х(т) « 6(t), zwany odpowiedzią impul­
sową lub funkcją wagi.

Transformacja Fouriera równania (5.1) z uwzględnieniem, że transfor­
mata całki splotu Jest iloczynem transformat, daje:

Y(J w ) - X(J w ) W(jw ) (5.2)

Para równań (5.1) 1 (5.2) charakteryzuje całkowicie filtr w dwu waż­
nych dziedzinach, w dziedzinie czasu i dziedzinie częstotliwości, a pod­
stawowe znaczenie mają funkcje wagi filtru w(r) oraz jej transformata 
Fouriera W (j w ) stanowiąca widmo filtru, a więc jego charakterystykę 
częstotliwościową. Znane twierdzenie o relacji między dziedzinami czasu 
i częstotliwości, wynikające z samych transformat Fouriera prostej i od­
wrotnej mówi, że jeśli funkcja wagi jest funkcją bramki w przedziale T 
(w(t) = l(t) - 1(t - T)), to jej widmo jest nieskończenie rozległe, a 
także jeśli W(ja) jest funkcją bramki, to funkcja wagi, czyli odpo­
wiedź filtru, Jest nieskończenie rozległa. Z twierdzenia tego wynika tak­
że dalej, że im węższy przedział T, tym wolniej zanika W(j ш), oraz im 
węższe pasmo Аш funkcji bramki w dziedzinie częstotliwości, tym wol­
niej zanika w(t). Wniosek nasuwa się sam i jest to znany dylemat szyb- 
kość-dokładność. Stan przejściowy filtru i zbliżanie się do wartości 
ustalonej trwa tym krócej, im gorsze są charakterystyki częstotliwościo­
we filtru, oraz im lepszy filtr, tym dłuższy czas ustalania. W praktyce 
osiąga się kompromis wynikający z postawionych wymagań, z tego czy waż­
niejsze jest osiągnięcie wymaganego czasu ustalania czy wysokiej Jakości 
filtracji. W układach stosowanych na przykład w telekomunikacji, które 
pracują w stanie ustalonym, najważniejsze Jest uzyskanie pożądanej cha­
rakterystyki filtracyjnej, a stan przejściowy filtru odgrywa mniejszą 
rolę. Klasyczna synteza filtru polega więc na skonstruowaniu filtru o 
zadanej charakterystyce częstotliowościowej.

Inaczej jest w filtrach stosowanych w zabezpieczeniach elektroenerge­
tycznych. Zaburzenie powstałe w systemie elektroenergetycznym powoduje 
skokowe zmiany napięć i prądów, a nowe wartości przebiegów ustalonych mu­
szą być zmierzone możliwie szybko, w wyraźnie określonym przedziale cza­
su. Tak więc w tym wypadku potrzebny jest filtr, którego funkcja wagi 
albo zanika bardzo szybko, albo jest określona w przedziale T, a poza 
nim jest zerowa, a jego charakterystyki częstotliwościowe są możliwie 
najkorzystniejsze. Drugi przypadek zilustrowano na rys. 5.1b. Jego syg­
nały wyjściowe po skokowej zmianie sygnału w stanie przejściowym i usta­
lonym są opisane równaniami: 

t
y(t) = f x(r) w(t - r)dr, gdy t >T (5.За)

t-T



t
y(t) = J x(t) w(t - т )dr, gdy t < T 

0
(5.3b)

Rys. 5.1. Ilustracja metod: a - korelacji, b - filtracji, c,d- filtracji 
ze zmiennym oknem pomiarowym

Fig. 5.1. Illustration of methods: a - correlation, b - filtration, c,d - 
filtration with variable data window 



lub inaczej, z jeszcze bardziej widocznym czasem trwania stanu przejścio­
wego filtru:

T
y(t) = J x(t - t ) w(r)d.T, gdy t > T (5.4а)

0 
t

y(t) = J x(t - t ) w(r)dr, gdy 0 < t < T (5.4b)

0
gdzie x(-t) = 0.

Pożądana informacja może być eksponowana z sygnału zawierającego za­
kłócenia nie tylko w wyniku filtracji, ale także przez inne przetwarza­
nie sygnału. Ważną metodę stanowi tak zwana metoda korelacji, w której 
określa się stopień skorelowania sygnału z funkcją w(t) taką, jak poszu­
kiwana w nim składowa (rys. 5.1a). Ta składowa jest więc najsilniej sko­
relowana z w(t), a inne składowe słabiej, co daje pożądany skutek fil­
tracji. Korelacja jest opisana równaniami: 

- t
y(t) = j x(t) w(t)dt, gdy t>T (5.5a)

t-T
t

y(t) = j x(r) w(T)dr, gdy 0 <t <T (5.5b)

0
Można tu zauważyć, że w wersji cyfrowej korelacja może być łatwiej 

realizowana niż splot w sensie prostszego uzyskania postaci rekursywnej, 
oraz że korelacja nie jest w sensie stosowanej klasyfikacji filtrem li­
niowym, gdyż sygnał wyjściowy y(t) dla przemiennego sygnału wejściowe­
go x(t), będzie miał inną częstotliwość, a w szczególnym przypadku bę­
dzie stały. Wynikają stąd także pewne konsekwencje dla pomiaru parame­
trów sygnałów i innych wielkości kryterialnych.

Otóż napięcia i prądy są sygnałami przemiennymi o ustalonej często­
tliwości i do ich identyfikacji potrzebne jest określenie dwu pozosta­
łych parametrów, to jest amplitudy i fazy. Sygnał wyjściowy pojedynczego 
filtru, jako sygnał przemienny, może być dalej zortogonalizowany, co da­
je dwa równania wystarczające do określenia tych dwu parametrów (rozdz. 
4). Pojedynczy sygnał wyjściowy korelacji nie pozwala już niestety na 
podobny zabieg, a konieczne jest stosowanie dwu funkcji korelujących 
w^t), w2(t), najlepiej ortogonalnych. Dwa sygnały wyjściowe korelacji 
pozwalają już na obliczenie poszukiwanych parametrów. Problem ortogonal- 
ności filtrów korelacyjnych omówiono w p. 5.3.2.1 oraz w pracy E6o].

W podsumowaniu można powiedzieć, że filtracja i ortogonalizacja mogą 
być rozdzielone lub połączone przez zastosowanie pary filtrów ortogonal­
nych, natomiast korelacja może być stosowana tylko w takiej wersji ze­
spolonej wraz z ortogonalizacją.



W zilustrowanych na rys. 5.la, 5.Ib i opisanych wzorami (5.4) i (5.5) 
filtracji i korelacji stan przejściowy po skokowej zmianie sygnału trwa 
czas t i dopiero po jego upływie uzyskuje się ustalony sygnał wyjścio­
wy. Jest to dla stałego okna pomiarowego T czas bezpowrotnie stracony. 
Jednakże przy pewnych założeniach i wykorzystaniu wartości w stanie 
przejściowym można tego uniknąć. Przykładowo można rozpatrzyć korelację 
wraz z najprostszym zestawem funkcji korelujących sinus i cosinus z zało­
żeniem, że badany sygnał jest opisany następującym równaniem:

x(t) = X1 cos(a>1t - <p ) (5.6)

W wyniku korelacji tego sygnału z wymienionymi funkcjami korelujący­
mi, w przedziale t mniejszym od T otrzymuje się:

t t
J x(t) cos i^rdT = [ X^ [coscp cos + sin<p sin w^rjcos w^rdT

0 0
t t
J x(r) sin a)1TdT = J X^ |cos<p cos + sin <psin sin w^rdr

0 0
i stąd

t t t
J х(т) cos w^Tdr = у^ у cos2 t dr + yq J sin т coś a)^TdT

0 0 0
t t t <5.7)
[ x(r) sin oo^TdT = у^ У sin cos w1 Tdr + y^ j sin2 w^dr

0 0 0
gdzie yd = X^ cos <p , y^ = X^ sin <p .

Wartości całek po prawej stronie równań (5.7) zmieniają się wraz ze 
zmianą czasu t, lecz są dla danego t ustalone. Umożliwia to oblicze­
nie, dla znanych całek po lewej stronie tych równań, wartości yd oraz 
у . Pozwala to na obliczenie amplitudy i fazy sygnału, a także na odwzo­
rowanie sygnału pierwotnego x(t) stosownie do równania

y(t) = yd cos w^t + y^ sin w^t (5.8)

Przedstawiono tutaj najprostszy przypadek metody odzorowania krzy­
wych w celu jej zilustrowania, a ma ona liczne warianty. Związane one są 
ze stosowaniem większej liczby aproksymujących funkcji trygonometrycz­
nych, aproksymacją wielomianami, warunkami optymalizacji według różnych 
kryteriów (najczęściej minimum całki kwadratu błędu) itd. Istotne uwarun­
kowania i szczegóły metody przedstawiono w p. 5.3.

Podobną metodę można też zastosować wykorzystując nie korelację,lecz 
splot. Wygodnie jest wówczas używać funkcji wagi, które są odpowiednio 
parzyste i nieparzyste w odniesieniu do środka okna pomiarowego (rys.



5.1 c,d). Szczegóły takiej filtracji dla zmiennego okna pomiarowego omó­
wiono w p. 5.5.

W podsumowaniu można stwierdzić, że stosowane1 metody przetwarzania 
napięć i prądów, które mają na celu wyeksponowanie pożądanej informacji 
spośród zakłóceń, można podzielić na trzy następujące grupy:

a) cyfrowa filtracja nieortogonalna lub ortogonalna,
b) korelacja,
c) metody odzorowania krzywych.
Przy tym korelacja jest szczególnym przypadkiem metody odwzorowania 

krzywych. Metody z punktu a oraz b są metodami stałego okna pomiarowego, 
a metody z punktu c mają zmienne narastające okno pomiarowe, które może 
być ograniczone do pewnej ustalonej wartości (najczęściej okres lub po­
łowa okresu składowej podstawowej sygnału).

Metody te są w stanie sprostać wymaganiom związanym z przetwarzaniem 
sygnałów szybkich zabezpieczeń, którymi są:

- szybkie ustalenie sygnałów wyjściowych po skokowej zmianie sygnału 
wejściowego w celu zapewnienia odpowiednio krótkiego czasu pomiaru,

- możliwie dobra skuteczność filtracji składowych zakłócających,
- niezbyt duże obciążenie obliczeniowe, zapewniające realizowalność 

w czasie rzeczywistym, to jest między chwilami próbkowania.

5.2. Filtracja cyfrowa

' Filtracja cyfrowa jest operacją na ciągu dyskretnych danych wejścio­
wych, w której ciąg wyjściowy zależy od ciągu wejściowego oraz charakte­
rystyki filtru.(Filtr cyfrowy, podobnie jak filtr analogowy, może być 
opisany za pomocą charakterystyk czasowych lub charakterystyk częstotli­
wościowych. Ze względu na uzyskiwane charakterystyki częstotliwościowe 
filtry cyfrowe mogą być podzielone na dolnoprzepustowe, górnoprzepustowe, 
środkowoprzepustowe i środkowozaporowe.j Największe znaczenie w omawia­
nych zastosowaniach mają filtry cyfrowe dolnoprzepustowe oraz środkowo­
przepustowe. Niekiedy także, w związku z realizacją pewnych przekształ­
ceń sygnałów mających na celu uzyskanie składowych ortogonalnych, otrzy­
muje się niepożądane charakterystyki filtrów górnoprzepustowych. Ze 
względu na uzyskiwane charakterystyki czasowe filtry cyfrowe można po­
dzielić na dwie grupy: filtry czasowe ze skończoną, ograniczoną odpowie­
dzią impulsową, a więc skończoną pamięcią, zwane też filtrami nierekur- 
sywnymi, oraz filtry z nieograniczoną odpowiedzią impulsową, a więc nie­
skończoną pamięcią, zwane też filtrami rekursywnymi.

Filtr cyfrowy nierekursywny jest opisany równaniem: 
N-1

y(n) = 2 ak x^n " (5.9)

k=0



gdzie 
х, у - próbki sygnału wejściowego i wyjściowego, 

= w(k),
w(k) - dyskretna funkcja wagi filtru.

Prawa strona równania (5.9) jest dyskretnym splotem funkcji wagi i 
sygnału wejściowego, równym sygnałowi wyjściowemu filtru. Równanie to 
jest analogiczne do równania (5.^). Filtr ma pamięć skończoną, ograniczo­
ną do N próbek sygnału x.

Filtr cyfrowy rekursywny jest opisany równaniem:
N-1 M

y(n) = ak x(n “ k) + b^ y(n - k) (5.10)

k=0 k=0
gdzie N - 1 > M.

Drugi wyraz prawej strony równania (5.10), tworzący sumę ważoną M+ 1 
poprzednich wartości sygnału wyjściowego powoduje, że jego pamięć jest 
nieskończona i stąd jego nazwa - filtr o nieskończonej odpowiedzi impul­
sowej. Filtr rekursywny jest ogólniejszym typem filtru cyfrowego, a gdy 
M jest równe zeru, otrzymuje się filtr nierekursywny.

Transmitancje filtrów opisanych równaniami (5.9) oraz (5.10) otrzyma 
się po obliczeniu transformat Z lewej i prawej strony tych równań. Pa­
miętając z własności tej transformaty, że opóźnienie sygnału o jeden _-1
okres próbkowania odpowiada pomnożeniu przez operator z , otrzymuje 
się odpowiednio dla filtru nierekursywnego i rekursywnego

Y(z)

X(z)

H(z)

(5.11a)

(5.11b)

Charakterystyki widmowe tych filtrów otrzyma się przez podstawienie 
w miejsce operatora z operatora jemu równoważnego, exp(jwT^):

N-1
W*(jw) = ak exp(-jwTi) (5.12a)

k=0
N-1
2 ak exp(-jw T.)

H* (j w ) = --l^---------------- (5.12b) 

gdzie gwiazdki przy transmitancji widmowej oznaczają, że jest to widmo 
układu dyskretnego.



Filtry nierekursywne, opisane równaniami (5.9), (5.11a) i (5.12b), 
mogą w zasadzie być zrealizowane tylko z zastosowaniem techniki cyfrowej, 
gdy z kolei filtry rekursywne opisane równaniami (5.10), (5.11b) i 
(5.12b), mogą być zrealizowane zarówno analogowo, jak i cyfrowo, jako że 
mają nieskończoną odpowiedź impulsową. Ta ostatnia cecha pozwala na za­
stosowanie całej bogatej teorii filtrów analogowych podczas projektowania 
cyfrowego filtru rekursywnego [4],[186].

Metody projektowania cyfrowych filtrów rekursywnych i nierekursywnych 
mają także bardzo bogatą bibliografię i niecelowe byłoby ich przytaczanie 
tutaj. Zastosowanie tych metod syntezy podczas projektowania filtrów cyf­
rowych do zabezpieczeń elektroenergetycznych jest niestety ograniczone 
ze względu na brak możliwości jednoczesnej optymalizacji charakterystyk 
widmowych i dynamiki filtru.

Cyfrowe filtry rekursywne znalazły niewielkie zastosowanie w zabez­
pieczeniach elektroenergetycznych. Składa się na to zapewne wiele czynni­
ków, z których,oprócz wymienionych, najważniejsze to: zazwyczaj długi 
czas zanikania procesu przejściowego, znaczna wrażliwość na niewielkie 
zmiany wartości współczynników a^, bR filtru oraz różniące się o kilka 
rzędów ich wielkości, co wymaga znacznych długości słowa maszynowego i 
ogranicza bardzo możliwości realizacji w czasie rzeczywistym.

Możliwości optymalizacji filtrów nierekursywnych są także w pewnym 
sensie ograniczone. Związane to jest między innymi z tym, że sformułowa­
nie dużych wymagań dotyczących pasma zaporowego i szybkości przejścia z 
pasma przepustowego do zaporowego może prowadzić do filtrów wysokich 
rzędów, trudnych do zrealizowania w czasie rzeczywistym [4], [186].

Przytoczone rozważania można tak podsumować: Ścisła synteza filtrów 
cyfrowych oraz ich optymalizacja ze względu na wymagane charakterystyki 
częstotliwościowe, pożądaną dynamikę oraz współczynniki filtru do zreali­
zowania w arytmetyce stałoprzecinkowej, jest trudna. Zagadnienie można 
próbować sformułować inaczej, a mianowicie, jakby syntetyzować filtr wy­
chodząc z dziedziny czasu. Polega to na wyborze dopuszczalnej długości 
okna pomiarowego i możliwie prostej postaci funkcji wagi w(k) (współ­
czynniki a^) i określeniu najlepszych lub satysfakcjonujących charakte­
rystyk widmowych. Spośród wielu takich filtrów największe znaczenie mają 
te z funkcjami wagi sinus, cosinus [1], [60], [62] , [165] , [181] , funkcją 
wagi stałą oraz funkcjami Walsha [35] , [53] , [60] , [147]. Dodatkowy wymóg 
realizacji pary filtrów ortogonalnych jest tutaj łatwy do spełnienia.

Badanie charakterystyk tych filtrów, gdy ich funkcje wagi mogą być 
określone w postaci analitycznej, można znacznie uprościć i przyspieszyć 
obliczając widma ciągłych funkcji wagi zamiast widm dyskretnych.



5.2.1. Widmo całkowania ciągłego i dyskretnego

Obliczanie widma (5.12a) filtru nierekursywnego (5.9) wymaga niezbyt 
wygodnego sumowania zespolonych funkcji eksponencjalnych. Widmo to można 
otrzymać w uproszczony sposób znacznie łatwiej. Można to wykazać porów­
nując widmo całkowania ciągłego i dyskretnego w skończonym przedziale

Rys. 5.2. Funkcja ciągła (a) oraz odpowiadające jej funkcje dyskretne w 
całkowaniu metodą prostokątów (bj i trapezów (c)

Fig. 5.2. Continuous function (a) and adequate discrete functions when 
rectangular (b) and trapezoidal (c) rules of integration are applied

Niech będzie dana krzywa ciągła х(т) oraz ta krzywa reprezentowana 
przez wartości próbek w chwilach mT^; х(пй\) - rys. 5.2a,b,c. Całka 
ciągła w przedziale t-T, t odpowiada polu pod krzywą ciągłą, a sumy w 
przedziale (n - N)Tif nT^ odpowiadają sumie pól prostokątnych na rys. 
5.2b - gdy stosuje się tę metodę oraz sumie pól trapezów na rys. 5.2c - 
gdy stosuje się drugą z tych metod. Rozpatrzmy przypadek ciągły oraz 
całkowania metodą prostokątów. Można zapisać następujące równania:

T
y(t) = J x(t - t )dT = J b(r) x(t - t)ót 

0 —
(5.13a)



N-1 ~
y(n) = 2 x^n ” ~ x^n “ (5.13b)

k=0 ‘“°

gdzie
b(r) = 1 (т) - 1(т - T)
b(k) = 1 0 < к < N
b(k) = О dla pozostałych к.

Z obliczenia transformat Fouriera równań (5.13) otrzymuje się:
Y(j w ) = B(j ш ) X(j w ) (5.14а)
Y* (j w ) = T^B* (j ш ) X* (j ш ) (5.14b)

Widma В (j w ) i B* (j ш ) są więc widmami operacji całkowania ciągłe­
go i dyskretnego odpowiednio i charakteryzuje przekształcanie widma syg­
nału wejściowego w widmo sygnału wyjściowego w rezultacie całkowania w 
skończonym przedziale. Widma te są określone równaniami:

” T
B(jw ) = J b(r) e-^ dr = J e"^WT dr (5.15a)

N-1
Т£В* (j“ ) = T± 2 b(k) e-^^! “ e^^i (5.15b)

0
W wyniku obliczeń tych wyrażeń, a także podobnych wyrażeń dla metody 

trapezów, otrzymuje się następujące równania określające widma całkowa­
nia ciągłego oraz dyskretnego metodą prostokątów i trapezów:

sin(wT/2) -j(wT/2)
B(j w ) = T ---------  e

wT/2
TB’(j.) = T —e-3(wT/2) ej«oT/2N)
1 P N sin(wT/2N)

sin(wT/2) cos(wT/2N)
T.B*(jw ) = T ---------------------  e
1 r N sin(wT/2N)

(5.16а)

(5.16b)

(5.16с)

Analiza wzorów (5,1ба-с) prowadzi do licznych wniosków. Po pierwsze 
więc, operacja całkowania w skończonym przedziale T = NT^ wprowadza 
przesunięcie fazy składowych o częstotliwości w o wartości minus wT/2. 
Jest to przesunięcie fazy wynikające tylko z operacji całkowania ciągłe­
go i dyskretnego. Zatem dla danej funkcji wagi filtru przesunięcie fazy 
sygnału wyjściowego jest sumą tego przesunięcia i przesunięcia widma 
funkcji wagi (w przedziale nieskończonym). Po drugie, widmo całkowania 
metodą prostokątów jest przesunięte o fazę wT^/2 = wT/2N, co w oczywis­
ty sposób wynika z aproksymacji linią przerywaną (rys. 5.2b, wzór(5.l6b)) 
prostokątów odpowiadających całce dyskretnej. Można temu łatwo przeciw­



działać przez przesunięcie dyskretnej funkcji wagi o pół okresu próbkowa­
nia w przeciwnym kierunku. Podczas używania filtrów ortogonalnych nie od­
grywa to w ogóle roli, gdyż wszystkie sygnały są tak samo przesunięte,

Rys. 5.3. Porównanie widm różnych metod całkowania (a) oraz przykładowe 
widma (b)

Fig. 5.3. Comparison of different rules of integration (a) and their 
spectra (b) 



jeśli wszędzie stosowana jest metoda prostokątów. Całkowanie metodą tra­
pezów nie wprowadza dodatkowego przesunięcia w ogóle, co wynika z rys.
5.2c i równania (5.16c). Po trzecie wreszcie, zbadanie ilorazów widm dy­
skretnych i ciągłego pozwala stwierdzić, że w zakresie niskich często­
tliwości nie różnią się one znacznie (rys. 5.За). W zakresie częstotli­
wości wyższych widmo podczas całkowania metodą prostokątów nieznacznie 
wzrasta, a widmo całkowania metodą trapezów spada do zera (5.16с). Aby 
zilustrować te wnioski, na rys. 5.3b przedstawiono przykładowe widma pod­
czas całkowania ciągłego oraz metodą prostokątów i trapezów.

Najważniejszy wniosek dotyczy możliwości zastąpienia żmudnego obli­
czania sum (5.12a) przez całki w tym przedziale podzielone przez wartość 

(gdyż w (5.12a) nie występuje). Podobnie też można posługiwać 
się całką splotu do obliczania splotu dyskretnego. Można więc napisać na­
stępujące równoważne postaci wyrażeń ciągłych i dyskretnych:

N-1 T
2 x(n - w(k) j x(t - t) w(t)ćt (5.17a)
k»0 1 0

X* (j w ) W* (j w ) <s==>-ж— X( j w ) W (j w ) (5.17b)
i

„ -jkwT . J
W (j w ) = 2 e 1 J e dT (5.17с)

k-0 1 0
Szczególnie wyrażenie (5.17c) jest bardzo przydatne do obliczania 

widm filtrów nierekursywnych, których funkcje wagi są dane w postaci ana­
litycznej.

5.2.2. Filtry nierekursywne o typowych funkcjach wagi i ich widma

5.2.2.1. Widma filtrów i unormowane charakterystyki często­
tliwościowe

Na podstawie uproszczonej relacji (5.17c) można łatwo obliczyć widma 
szeregu typowych funkcji wagi, które dane są w postaci analitycznej i 
które mają korzystne dolnoprzepustowe lub pasmowoprzepustowe charakterys­
tyki filtracyjne, szczególnie ważne i korzystne w omawianych zastosowa­
niach. Zaliczyć do nich trzeba przede wszystkim funkcje wagi, które są 
funkcjami Walsha zerowego (okno prostokątne), pierwszego i drugiego rzę­
du oraz szczególnie funkcjami sinus i cosinus.

Wszystkie omawiane funkcje wagi są albo parzyste albo nieparzyste w 
odniesieniu do środka okna pomiarowego. Jest więc wygodne dokonanie ich 
przesunięcia z przedziału (0,T) do przedziału (-Т/2-»T/2). Oznaczając taką 
przesuniętą wycentrowaną funkcję przez w^Ct) można napisać:



w (т) ж w(r + X) 
P 2

W(J w ) - Wp(j ш ) e'3®^2
(5.18)

Oznacza to, że rzeczywisty argument filtru Jest sumą argumentu widma 
przesuniętej funkcji wagi oraz -шТ/2.

Istotne Jest Już teraz podkreślenie łatwości, z Jaką uzyskuje się w 
przedstawiony sposób filtry ortogonalne, tak ważne dla wszystkich algo­
rytmów pomiaru wielkości kryterialnych omawianych w rozdz. 4.

1. Funkcja Walsha zerowego rzędu (okno prostokątne)
Widmo okna prostokątnego było Już obliczone poprzednio (5.1óa), a po 

uwzględnieniu (5.17c) i (5.18), może być opisane równaniem:

Rys. 5.4. Funkcja Walsha zerowego rzędu (a) i Jej widmo unormowane (b) 
Fig. 5.4. Walsh function of zero order (a) and its normalized 

spectrum (b)

Moduł tego widma w funkcji częstotliwości przedstawiono na rys. 5.4 
(dolna skala). Jest to typowa charakterystyka filtru dolnoprzepustowego, 
a właściwy wybór długości okna T(NT^) zapewnia wyfiltrowywanie pożąda­
nych składowych sygnałów. Łatwo można w tym przypadku uzyskać charakte­
rystykę unormowaną w funkcji zredukowanej częstotliwości. Przyjmijmy na



przykład, że okno T jest równe połowie okresu składowej podstawowej
sygnału Mamy wówczas:

G(m)

N1 (5.20a)

| ш i I / ш 11 \ I
_ „ sin I 1 (5.20b)

\ 1 / i

gdzie m = w.
Ta unormowana charakterystyka jest analogiczna do modułu widma (5,19), 

tyle tylko, że nieco bardziej czytelna. Sygnał o częstotliwości Jest 
wzmacniany ze wzmocnieniem jeden, składowa stała ze wzmocnieniem 1,57, 
a częstotliwości większe niż <d1 są tłumione. Parzyste harmoniczne syg­
nału są odrzucane (tłumione do zera).

1
W*. (J w ) =   pi T

e"^ dr (5.21)

2. Funkcja Walsha pierwszego rzędu
Funkcję wagi, będącą funkcją Walsha pierwszego rzędu, przedstawiono 

na rys. 5.5a. Jej widmo jest dane równaniem

e"^ dT . J_ 
Ti

po obliczeniu tych całek otrzymuje się 

sin2( шТ/4) 
W*.(J w ) = JN   P1 (wT/4)

Indeks p^ oznacza przesuniętą funkcję Walsha pierwszego rzędu. 
Przebieg modułu tego widma przedstawiono na rys. 5.5b. Jak widać, w tym 
przypadku otrzymuje się charakterystykę filtru pasmowo-przepustowego o 
słabym tłumieniu w paśmie zaporowym, chociaż składowe o niektórych częs­
totliwościach są odrzucane. Charakterystykę unormowaną otrzyma się przez 
podstawienie T = do (5.22) i wówczas

w^j Ш1) = j 4-^ (5.23a)

= — sin2 (5.23b)

Charakterystyka jest identyczna z poprzednią, lecz ma czytelniejszy 
opis (rys. 5.5b). Jeśli okno pomiarowe T skrócić o połowę do wartości 
7^2, to otrzymuje się funkcję wagi taką Jak na rys. 5.5c. Jej unormowa­
ne widmo wynika z podstawienia T = 7^2 do (5.22) i otrzymuje się wówczas



Rys. 5.5. Funkcja Walsha pierwszego rzędu (a) i jej widmo unormowane (b) 
Fig. 5.5. rfalsh function of first order (a) and its normalized 

spectrum (b)

Wp/j шр = j N = j A N1 (5.24a)

| W* (j ш ) I w. 9 / w к \G(m) = _------L = 2 — sin2----- ) (5.24b)
Hpl^M о, Ц 4/

Przebieg tego widma przedstawiono na rys. 5.5d. Jak widać, w wyniku 
dwukrotnego skrócenia okna T, nastąpiło "rozciągnięcie" osi częstotli­
wości i w rezultacie pogorszenie charakterystyk częstotliwościowych w 
stosunku do tych przedstawionych na rys. 5.5b.

Na marginesie dotychczasowych rozważań warto zauważyć pewną ogólną 
zależność, która jest związana z parzystością lub nieparzystością funk­
cji wagi w odniesieniu do środka okna. Transformatę Fouriera funkcji wa­
gi, będącą jej widmem, można zapisać nieco inaczej:



Т/2 Т/2
W*(jm)- J *(т)е~^шт dT - у- I w(t) cos штат - 

-Т/2 1 -Т/2
Т/2

- J Т“ / w(t) sin шт dT 
i-T/2

Jeśli teraz w(t) jest funkcją parzystą, to druga z całek jest ze­
rowa i otrzymuje się

T/2
W* (j ш ) = ijr- j w(t) cos(ш т)dT (5.25)

1 -T/2
Jeśli natomiast w(t) jest funkcją nieparzystą, to pierwsza z całek 

znika i otrzymuje się:
T/2

Wp(jm) - -j f w(r) з1п(шт)бт (5.26)
1 -T/2

Wynikają stąd dwa ważne wnioski: Po pierwsze więc widmo parzystej 
funkcji wagi jest rzeczywiste, a widmo nieparzystej funkcji wagi, w od­
niesieniu do środka okna, jest urojone. Po drugie, sygnały wyjściowe fil­
trów mających parzyste i nieparzyste funkcje wagi są ortogonalne, jeśli 
ich okna są jednakowej długości. Ostatni warunek wynika z przesunięcia 
fazy sygnału wyjściowego w stosunku do wejściowego o wartość - wT/2, 
niezależnie od przesunięcia fazy wynikającego z argumentów widm o funk­
cjach wagi przesuniętych (w$(t) = w(t + T/2)). Zależności (5.25) i 
(5.26) oraz wynikające z nich wnioski mogą być wykorzystane zarówno w 
syntezie filtrów ortogonalnych, jak też do uproszczonego obliczania widm 
filtrów. Należy też wyraźnie podkreślić ważną cechę takich filtrów, któ­
rą jest liniowa faza w paśmie przepustowym. Otóż faza sygnału wyjściowe­
go (w odniesieniu do wejściowego) jest sumą fazy równej zeru (funkcja wa­
gi parzysta) lub ir/2 (funkcja wagi nieparzysta) oraz wartości - шТ/2, 
co jest z wielu powodów istotne i pożądane.

3. Funkcja Walsha drugiego rzędu
Funkcję wagi, która jest funkcją Walsha drugiego rzędu, przedstawio­

no na rys. 5.6a. Jej widmo wynika z zależności
-T/4 T/4 T/2

W*2( j “ / cos ш1т dz - I cos ш^т dT + j cos т dT |

1 -T/2 -T/4 T/4 (5.27)

obliczenie wartości tych całek daje ostatecznie 
sin(o)T/4)

W*.,(j ш ) = -N-----------  [1 - cos(wT/4)j (5.28)P2 ( шТ/4) L



Rys. 5.6. Funkcja Walsha drugiego rzędu (a) i jej widmo unormowane (b) 
Fig. 5.6. Walsh function of second order (a) and its normalized 

spectrum (b)

Wykres modułu tego widma przedstawiono na rys. 5.6. Jak widać, pod 
wieloma względami przypomina ono widmo | W^ (j w ) [ funkcji Walsha pier­
wszego rzędu* Podobnie jak poprzednio, jest to widmo filtru pasmowoprze- 
pustowego o słabym tłumieniu w paśmie zaporowym. Również podobnie jak 
poprzednio, harmoniczne parzyste częstotliwości okna są odrzucane. Jed­
nakże między zdolnościami filtracyjnymi w zakresie niskich częstotliwoś­
ci występuje istotna, choć mało widoczna z przebiegu widm, różnica. Otóż 
w tym ostatnim przypadku zdolność do filtracji składowej aperiodycznej 
jest dużo większa. Omówiono to szczegółowo w rozdz. 7.

Unormowaną charakterystykę widmową G(m) otrzyma, się po podstawie­
niu T = T1 (w = w1) w (5.28):

W*2(j mp = - -J- Л (5.29a)

Wykres unormowanej charakterystyki przedstawiono na rys. 5.6.
W zakończeniu omawiania charakterystyk funkcji Walsha trzeba dodać, 

że funkcje wyższych rzędów mają nieco mniejsze zastosowanie. Wynika to z 
tego, że maksimum ich charakterystyki widmowej przesuwa się w kierunku 
wyższych częstotliwości wraz ze wzrostem ich rzędu i stosowanie filtru 
o takich charakterystykach byłoby niecelowe. Funkcje te są natomiast wy­
korzystywane wówczas, gdy stosuje się rozkład w szereg Walsha innych 
funkcji wagi filtrów, np. sinus czy cosinus [36].
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4. Filtry z sinusoidalnymi funkcjami wagi
Filtry z funkcjami wagi, będącymi fragmentem sinusoidy lub cosinusoi- 

dy, mają duże znaczenie ze względu na ich szczególną przydatność do od- 
filtrowywania sygnału o jednej ustalonej częstotliwości. Ich widma mogą 
być obliczone na podstawie następujących zależności:

T/2
) = ^ / cos^r) cosUr)dr (5.30a)

^т/г
T/2

W* (j <u ) = - ^- I sin(wQT) sin((UT)dT (5.30b)
1 -T/2

Proste obliczenia pozwalają na wyznaczenie tych widm w postaci

WpC(j“ ) - | [Sa(p - Po) + Sa(p + PQ)] (5.31a)

WpS(J w ) = -j [Sa(p - p0) - Sa(p + p0)] (5.31b)

gdzie Sa(x) = sin(x)/x, p «wT/2, pQ = o)qT/2.

Kształt widma tych filtrów zależy od dwóch parametrów - częstotliwoś­
ci Wq oraz długości okna T. W zależności od ich wyboru (Т często mo­
że być narzucone) można kształtować w pewnym zakresie pożądane cechy wid­
ma w wybranych przedziałach częstotliwości. Zilustrowano to kolejno dla 
funkcji wagi cosinus i sinus.

Funkcja wagi cosinus
Rozpatrzmy widmo funkcji wagi o kształcie jak na rys. 5.7a. Jej czę­

stotliwość wQ jest tak dobrana, że wQT = 2m oraz jest to funkcja 
-cos wobec czego jej widmo jest dane równaniem (5.31a) ze znakiem 
przeciwnym:

> - - ? {s.^ - i)] - sa[«(^ * i)]} <5.32)

Przyjąwszy, że częstotliwość tej funkcji wagi jest równa częstotliwo­
ści identyfikowanego sygnału (wQ = w^), łatwo otrzymuje się unormowaną 
charakterystykę widmową:

N N1^c^10? = - 7 = - T1 (5-33a)

I W* (j w ) I
G(m) = , Pc------ г = Sa pt (m - 1 Я + Sa [rc(m + 1)] (5.33b)

gdzie 
N - liczba próbek w oknie,

- liczba próbek w okresie składowej podstawowej, m =ш/«1.



Rys. 5.7. Różne cosinusoidalne funkcje wagi i ich widma unormowane 
podczas całkowania metodami: 1 - prostokątów, 2 - trapezów

Fig. 5.7. Different impulse responses of cosinusoidal type and their 
normalized spectra using: 1 - rectangular, 2 - trapezoidal rules of 

integration



Widmo tej funkcji wagi, przy stosowaniu metody całkowania prostoką­
tów (górna krzywa) i metody trapezów, przedstawiono na rys. 5.7a. Widmo 
(5.33b) niemal dokładnie pokrywa się z górną krzywą widmem całkowania 
metodą prostokątów. Filtr ma charakterystykę pasmowoprzepustową o dość 
dobrym tłumieniu w paśmie zaporowym oraz wszystkie harmoniczne identyfi­
kowanego sygnału są odrzucane. Są to wyraźnie lepsze charakterystyki niż 
ma, odpowiadająca tej funkcji, funkcja Walsha drugiego rzędu.

Zupełnie analogicznie otrzymuje się unormowane widma funkcji wagi 
przedstawione na rys. 5.7b i 5.7c, przy czym teraz okno pomiarowe zosta­
ło skrócone o połowę. Pomijając kolejne przekształcenia, końcowe wyraże­
nia określające widma są dane równaniami:

W ж оц, T ж T^/2 (rys. 5.7b)

WpC(j wp - N/2 » ^/4 (5.34a)

G(m) „ 2^=2221- . Sa FŁ (rn - 1)1 + Sa (m + 1 )1 (5.34b)

Wg = 2 w^, T » T1/2 (rys. 5.7c)
„ (5.35a)

G(m) = lWPc-^ “21.. = Ib (sa Г— (m - 2)1 + Sa Г— (m + 2)l|(5.35b) 
IWpc^M 2 I l2 J l2 JJ 

gdzie m = w / .
Unormowane widma, odpowiadające obu tym funkcjom wagi, przedstawiono 

odpowiednio na rys. 5.7b,c. Jak widać, w pierwszym z przypadków otrzymu­
je się bardzo dobry filtr pasmowoprzepustowy o silnym tłumieniu w paśmie 
zaporowym, a w drugim filtr pasmowoprzepustowy, lecz o niekorzystnie 
ukształtowanej charakterystyce i wzmacnianiu składowych zawartych między 
m = 1 a m = 4. Jest to rezultat wynikający z próby ukształtowania fil­
tru, który odrzucałby składową stałą. Cel ten osiągnięto, lecz poprawie­
nie charakterystyki w zakresie niskich częstotliwości spowodowało jej po­
gorszenie w zakresie częstotliwości wysokich. Warto tu zauważyć też róż­
nicę między widmem podczas całkowania metodą trapezów (dolna krzywa) a 
prostokątów (górna krzywa) - rys. 5.7c.

Funkcja wagi sinus
Różne funkcje wagi, będące sinusoidą lub jej fragmentem w odniesie­

niu do ośrodka pomiarowego, przedstawiono na rys. 5.8a-c. Obok nich 
przedstawiono ich unormowane widma, obliczone analogicznie jak dla funk­
cji cosinus, lecz z zastosowaniem wzoru (5.31b). Poniżej podano, już bez 
przytaczania obliczeń wartości, widma dla częstotliwości podstawowej,



Rys. 5.8. Różne sinusoidalne funkcje wagi i ich widma unormowane 
podczas całkowania metodami: 1 - prostokątów, 2 - trapezów 

Fig. 5.8. Different impulse responses of sinusoidal type and their 
normalized spectra using: 1 - rectangular, 2 - trapezoidal rules 

of integration 



potrzebne do określenia amplitudy sygnału wyjściowego filtru oraz zależ­
ności określające widma unormowane:

<oo - , T (rys. 5.Ba)
m Ni

* Q ■ J 7 * j 7 (5.36a)

G(m) « Sa [it(m - 1)] - Sa [n(m + 1)] (5.36b)
T

■e»0 ■ T - -7 (rys. 5.8b)

m N.» (J - Jj- j-f (5.37a)

G(m) . Sa [7 (m - 1)] - Sa [-7 (m + 1)] (5.37b)

T.
(i>0 - 2 оц, T - -7 (rys. 5.8c)

M*(J ».) « j — H » j — N. (5.38a)
1 Зх 3л 1

G(m) - (sa [7- (m - 2)] - Sa [-7 (m + 2)] 1 (5.38b)

gdzie m » Sa(x) ■ sin(x)/x.

Wszystkie przedstawione na rys. 5.8a-c widma to widma filtrów pasmo- 
woprzepustowych. Szczególnie korzystne własności filtracyjne ma pierwsze 
widmo (rys. 5.8a) z oknem pełnookresowym (T ж T^). Tłumienie w paśmie za­
porowym jest bardzo dobre, a wszystkie harmoniczne są odrzucone. Jeśli 
okno Jest i musi być krótsze, to przy stosowaniu funkcji wagi z rys. 
5.8b,o otrzymuje się widma o podobnej charakterystyce i podobnej tłumien- 
ności w paśmie zaporowym. Główna różnica dotyczy odrzucanych harmonicz­
nych. W pierwszym przypadku filtr odrzuca harmoniczne nieparzyste, a w 
drugim harmoniczne parzyste z wyjątkiem drugiej. W sumie funkcje wagi si­
nus mają widma o lepszych charakterystykach pasmowych, a w przypadku 
skróconych okien nie ma tu alternatywy, czy będą wzmacniane składowe wy­
soko-, czy niskoczęstotliwościowe.

5.2.2.2. Algorytmy i sygnały wyjściowe filtrów
Algorytmy filtrów wynikają bezpośrednio z funkcji wagi filtrów oraz 

ogólnego równania nierekursywnego filtru cyfrowego (5.9), przy czym 
współczynniki a^ są wartościami funkcji wagi w(k) w chwilach kT^. 
Należy jednak pamiętać, że zgodnie z przyjętym sposobem określania widm 
filtrów, wycentrowane okno pomiarowe trzeba przesunąć do początku układu 
współrzędnych (r » 0).



Sygnały wyjściowe filtrów natomiast będą miały amplitudę przemnożoną 
przez wartość modułu widma filtru dla danej częstotliwości oraz fazę, 
która jest sumą argumentu widma przy tej częstotliwości wycentrowanej 
funkcji wagi 1 -wT/2, które wynika z przesunięcia funkcji wagi (5.18). 
Jeśli więc sygnał wejściowy ma częstotliwość i jest dany równaniem:

x(n) ■ X1cos(n + Ф) (5.39a)

to sygnał wyjściowy Jest opisany zależnością:
. . , Г . w.T 1y(n) ■ X1 |w (j o>1 )|cosjn ш1Т1 + arg(W (j u>1))---1- + q>J (5.39b)

Korzystając z przedstawionych na rys. (5.5)-(5.8) funkcji wagi oraz 
obliczonych widm można teraz kolejno otrzymać algorytmy i sygnały wyjś­
ciowe filtrów. Zostaną one pogrupowane tak, żeby można było rozpatrzyć 
oddzielnie algorytmy pełno- i półokresowe, a także zestawić filtry pozwa­
lające uzyskać składowe ortogonalne.

1. Algorytmy i sygnały wyjściowe pełnookresowych filtrów 
ortogonalnych

Najprostsze algorytmy pełnookresowe otrzymuje się z zastosowaniem
funkcji Walsha pierwszego i drugiego rzędu (rys. 5.5a, 5.6). Algorytmy
tych filtrów są dane równaniami:

N14 -1 Nr1
y1(n) x(n - k) - 2 x^n “ (5.40a)

k-0 N1
T

N1 3-1-1 ^Nr1 Nr1
y2(n) “2 x^n -" 2 x^n _ k^ * 2 x(n - k) (5.40b)

k-0 ^/4 iNi

Sygnały wyjściowe tych filtrów dla składowej podstawowej (5.39) są 
opisane, z uwzględnieniem (5.23a) oraz (5.29a), równaniami:

/ i i / i it \y„ (n) ■ —- ) X. cos n ш.Т.------ !• + — + Ф ■
1 \ n / • \ * * 2 2 /

/2N„\
= X1 sin(n w1Ti + <p ) (5.41а)

/2N.\ / Ш.Т. \
^(n) “ \T / X1 cos(n “lTi + 11----—L + ф) “

/ 2N. \
« I—I X1 cos(n + ф ) (5.41b) 

gdzie w1T1 = 2л , N.^ - ТЦ.



Po zastosowaniu funkcji Walsha pierwszego i drugiego rzędu otrzymano 
parę filtrów ortogonalnych o niezłym widmie i bardzo prostych, pozbawio­
nych konieczności mnożenia algorytmach.Zapisane w nawiasach współczynniki 
odpowiadają oznaczonym poprzednio przez Fd i Fq wartościom, które by­
ły stosowane do określenia algorytmów wielkości kryterialnych (rozdz.4). 
Są one w tym przypadku identyczne, co umożliwia korzystanie z podanych 
uproszczonych wzorów dla tych wielkości.

Analogicznie otrzymuje się algorytmy i sygnały wyjściowe filtrów o 
funkcjach wagi sinus i cosinus (rys. 5.7а, 5.8a). Ich algorytmy dane są 
równaniami:

V1

I znowu otrzymano parę filtrów ortogonalnych o bardzo korzystnym wid­
mie. Współczynniki stałe obu filtrów są identyczne, co bardzo ułatwia 
dalsze przekształcenia i obliczenia złożonych wielkości kryterialnych. 
Odpowiadają one używanym w rozdz. 4 wartościom Fd i F . W porównaniu 
z poprzednim algorytmem pewną trudnością jest wykonywanie dużej liczby 
mnożeń, rosnącej z częstotliwością próbkowania. Co prawda mnożenie pró­
bek funkcji przez stałą nie wymaga dużej precyzji, ale w porównaniu z al­
gorytmami z funkcją Walsha jest to znaczne skomplikowanie, szczególnie, 
że operacje mnożenia są bardzo czasochłonne. Jednakże liczba mnożeń może 
byó znacznie zredukowana przez stosowanie rekursywnej postaci wzorów 
(5.42). Tę rekursywną postać najłatwiej otrzymać wykorzystując zespoloną 
postać obu tych algorytmów łącznie.

Rozważmy omawiane zagadnienie otrzymania postaci rekursywnej w spo­
sób ogólny, w dowolnym oknie pomiarowym N.

Niech więc zespolony sygnał wyjściowy filtrów ma postać 
N-1 jkwT.

y(n) = yp(n) + jy^(n) = 2x(n “ k^e 1 (5.44)
k=0

yc(n) = 2 x^n - cos к w^T^ (5.42a)
k=0
V1

ys(n) = 2 X(n “ k^ sin k “lTi (5.42b)
k=0

Z kolei ich sygnały wyjściowe opisują równania ((5.3ба), (5.33a)):

I N \yc(n) = ( I X1 cos(n + <p ) (5.43a)

/ N.\
yg(n) X1 sin(n + Ф) (5.43b)



N-1
yr(n) = x(n “ cos k Ш1Т1

k»0
N-1

у (n) = ^x(n - k) sin к w^T^. 
k=0

Te sygnały zespolone w chwilach n oraz n+1 można po rozpisaniu 
sum (5.44) przedstawić następująco:

jwT. j(N-2)uT.
y(n) = x(n) + x(n - 1 )e 1 + ... x(n + 2 - N)e 1 +

jCN-lJwT.
+ x(n + 1 - N)e 1

jwT, j2wT.
y(n + 1) = x(n + 1) + x(n)e + x(n - 1 )e + ... + 

j(N-2)wT. j(N-l)wT.
+ x(n + 3 - N)e + x(n + 2 - N)e 1

Z powyższych równań łatwo zauważyć, że zachodzi równość 
jwT. jNwT.

y(n)e 1 = y(n + 1) - x(n + 1 ) + x(n + 1 - N)e

która po przekształceniu ma postać 
jwT. jwTy(n + 1) = y(n)e 1 + x(n + 1) - x(n + 1 - N)e (5.45)

gdzie T » NT^.
Jest to zespolona postać algorytmu rekursywnego, w którym po podsta­

wieniu y(n) z (5.44) można obliczyć yr(n + 1) oraz y^(n +1) jako 
części rzeczywiste i urojone y(n +1). Otrzymuje się wtedy:

yr(n + i) = yr(n) cos(wT1) - у.^(п) sinCrnTj) +

+ x(n + 1) - x(n + 1 - N) cos(wT) 0 ^6}

y^(n + 1) = yr(n) sin( w T^) + yi(n) cos (w T^) - x(n +1 - N) sin(w T)

Tę rekursywną formułę można ewentualnie zapisać krócej z zastosowa­
niem macierzy

Qy(n + 1)] = [л][у(п)] + H [x] (5.47)

gdzie
Гу] = ГугУ1]т»
LX] = LX^ + 1 ) X^n + 1 ~ N)]T»

cos(wTj) -sin(wT.)
[A] =

sin(wTi) cos(wT^)



1 -cos( wT)
[В] - , ч

0 - sin( wT)J,

Przypadki szczególne występują wówczas, gdy ma się do czynienia z 
pełno- lub półokresowymi algorytmami. W pierwszym przypadku w- T ■ 
■ T1 ( - 2n) otrzyma się:

yp(n + 1) ■ yr(n) cos( “1Ti) - y±(n) sin( w1Ti) ♦

+ x(n + j) - x(n ♦ 1 - Np (5.48а)
y^n + 1) - yr(n) sin( «рр + УА(п) cos( «pp

a w drugim. Jeśli w - оц, T « T1/2 ( w1T1 - x), to:

yr(n + 1) - yr(n) cos( wpp - ypn) sin( opp +
/ N.\

+ x(n +1) + Xln+1- -^4
' 2 ' (5.48b)

У4(п + 1) « Уг(п) sin( upp + yi(n)cos((D1T1)

Rekursywne algorytmy (5.46) oraz (5.43a,b) są bardzo ważne i przydat- 
ne, gdyż redukują liczbę mnożeń z 2N do czterech, niezależnie od czę­
stotliwości próbkowania. Zwiększa to znacznie atrakcyjność algorytmów 
(5.42) z funkcjami wagi sinus i cosinus. Zapewniają one, że charakterys­
tyka widmowa Jest bardzo korzystna, ale teraz mają jeszcze oszczędny ob­
liczeniowo algorytm. Może on zresztą być jeszcze nieco uproszczony przez 
wybór odpówiedniej częstotliwości próbkowania. Relację rekursywną (5.48b) 
można wykorzystać w algorytmach półokresowych.

2. Algorytmy i sygnały wyjściowe półokresowych filtrów ortogonalnych 
. Najprostszy z takich algorytmów otrzyma się przez zastosowanie funk­

cji wagi Walsha zerowego rzędu (rys. 5.4), równanie (5.20a) oraz Walsha 
pierwszego rzędu dla okna skróconego do T1/2 (rys. 5.5c), równanie 
(5.24a). Otrzymuje się wówczas parę algorytmów:

(^/2)-1
yQ(n) “ 2 X^n ” (5.49а)

k»0
(Np4)-1 (Np2)-1

y^n) - 2 x^n “ k) - 2 x^n “ k) (5.49b)

k=0 k=N1/4
i sygnały wyjściowe dla składowej podstawowej (5.39a):

y0(n) - X1 sin(n ар* + ф) (5.50a)

ypn) - X1 costnoip + ф) (5.50b)



I znowu podobnie Jak poprzednio, w algorytmach pełnookresowych zasto­
sowanie funkcji Walsha daje najprostsze algorytmy, nie wymagające mnożeń, 
lecz jedynie dodawanie próbek sygnałów w określonych przedziałach. Współ­
czynniki w sygnałach wyjściowych obu filtrów są identyczne, chociaż te­
raz dwa razy mniejsze, co jest oczywiste, a same sygnały są ortogonalne. 
Warto tu zwrócić wagę na zaskakujący w pierwszej chwili fakt, że filtr 
o parzystej funkcji wagi w odniesieniu do środka okna daje na wyjściu 
sygnał ortogonalny w stosunku do sygnału wejściowego, a filtr o niepa­
rzystej funkcji - sygnał zgodny (5.50a) (5.50b). Jest to po prostu rezul­
tat występującego w obu filtrach (tak jak i we wszystkich rozpatrywanych) 
dodatkowego, oprócz argumentu wycentrowanej funkcji wagi, przesunięcia 
-wT/2. W tym przypadku dla składowej podstawowej wynosi ono -Й/2 i stąd 
owa "zmiana" składowych ortogonalnych. Widma obu filtrów nie są zbyt ko­
rzystnie ukształtowane, ale w pewnych zastosowaniach może to być wystar­
czające. Istotną wadą Jest niezdolność do filtracji składowej stałej i 
ta para filtrów nie może być zastosowana w obwodach prądowych bez dodat­
kowej filtracji.

Inny algorytm półokresowy otrzyma się przez zastosowanie funkcji wa­
gi sinus i cosinus, tak jak to pokazano na rys. 5.7b i 5.8b. Otrzymuje 
się wówczas:

(N1/2)-1
yc(n) = 2 x^n “ cos(k (5.51a)

k»Ó
(N.,/2)- 1

ys(n) = 2 x^n ” sin(k ш.^) (5.51b)

k=0
Ich sygnały wyjściowe, gdy sygnał wejściowy tak jak wszędzie poprzed­

nio jest dany równaniem (5.39a), mają postać:
yc(n) = (2^) x-] cos(n + <p ) (5.52a)

/N. \
ys(n) = Xl sin(n w1Ti + <p) (5.52b)

Widmo tego algorytmu jest korzystniejsze niż poprzedniego kosztem 
nieco większej złożoności obliczeniowej, chociaż po zastosowaniu rekur- 
sywnej postaci (5.48b) staje się ten algorytm obliczeniowo bardzo efek­
tywny. Niestety, podobnie jak poprzedni algorytm, wykazuje on duże błę­
dy gdy sygnał jest zakłócony składową stałą. Można to skorygować stośu- 
jąc funkcje wagi o zerowej wartości średniej w oknie pomiarowym (rys. 
5.7c, 5.8c).

Algorytm i sygnały wyjściowe filtrów dla składowej podstawowej są w 
tym przypadku dane równaniami:



У0(п) - 2 х^п ~ cos(2k ф^) (5.53а)
к-0

(^/2)-1
yg(n) ■ / , х(п - к) sin(2k w^T^) (5.53b)

к-0
/N \у (n) - I — 1 X. cos(n w1Ti + <р) (5.54а)
\6я /
/2N. \уо(п) - —- X, sin(n ш.Т. + ф) (5.54b)

8 \3я / 1 1 1

Uzyskano w tym przypadku odrzucanie składowej stałej w obu filtrach, 
lecz niestety, kosztem pogorszenia ich charakterystyk w zakresie wyso­
kich częstotliwości. Poza tym współczynniki stałe w sygnałach wyjścio­
wych są różne, co jest pewnym utrudnieniem w realizacji różnych algoryt­
mów pomiaru wielkości kryterialnych. Podobne do (5.54) i (5.55) algoryt­
my można uzyskać stosując funkcję Walsha pierwszego rzędu (rys. 5.5c) 
oraz funkcję Walsha drugiego rzędu o dwa razy większej częstotliwości.

Przytoczona algorytmy i charakterystyki filtracyjne mają, co warto 
tu jeszcze raz podkreślić, jedną wspólną cechę - ich sygnały wyjściowe 
są ortogonalne niezależnie od częstotliwości, a wypadkowy argument jest 
sumą argumentu widma oraz - wT/2. Cecha ta jest istotna w badaniach błę­
dów pomiaru wywołanych zakłóceniami oraz może być wykorzystana do różni­
cowania przesunięć sygnałów przez filtrację z różną długością okna.

Filtry cyfrowe przedstawione tutaj mogą całkiem efektywnie spełniać 
swoje zadania w układach automatyki elektroenergetycznej. Można by na­
zwać je quasi-optymalnymi, gdyż powstały jako rezultat kompromisu między 
sprzecznymi wymogami dobrej filtracji zakłóceń, odpowiedniej dynamiki 
oraz prostego algorytmu do implementacji w szybkich układach czasu rze­
czywistego. Te trzy czynniki jest trudno optymalizować jednocześnie, tym 
bardziej że możliwości poprawy ich wszystkich częściowo lub całkowicie 
się wykluczają.

5.3. Metoda korelacji i odwzorowania krzywych

5.3.1. Zasady i równania ogólne

Sygnały wyjściowe filtrów ortogonalnych o oknie T z takim właśnie 
opóźnieniem osiągają stan ustalony na wyjściu filtru po skokowej zmianie 
sygnału wejściowego. Jest to oczywiście czas stracony, a jeśli konieczne 
jest lepsze odfiltrowanie sygnału, to trzeba zastosować dłuższe okno po­
miarowe, ale nadal informacja dostarczana w przedziale 0-T po skokowej 



zmianie sygnału jest mało użyteczna. Kosztem pewnego skomplikowania algo­
rytmów można tego uniknąć stosując metody odwzorowania krzywych. Są one 
równoważne właściwie stosowaniu korelacji ze zmiennym oknem pomiarowym. 
W miarę pojawienia się nowej informacji w wyniku rozszerzania się okna 
pomiarowego t, korzysta się z obliczonych dla tej długości okna współ­
czynników i wtedy oblicza się składowe ortogonalne sygnału. Po dalszym 
rozszerzeniu się okna korzysta się z innych wartości współczynników i 
procedura powtarza się aż do osiągnięcia ustalonego okna pomiarowego T. 
Od tego momentu współczynniki są już stałe, a procedura typowa. Interesu­
jącą, opracowaną metodę wykorzystującą splot, a nie korelację,przedstawio­
no w p. 5.5 [185]. Obecnie omówione zostaną ogólne i szczególne przypadki 
metody odwzorowania krzywych ż zastosowaniem korelacji.

Spośród różnych funkcji aproksymujących, stosowanych w metodach od­
wzorowania krzywych, największe znaczenie, ze względu na kształt krzywych 
prądu i napięcia zwarciowego, ma zbiór ortogonalnych funkcji sin 1 
cos 1 wyr. Zakłada się dalej, że nieznany przebieg x(x) może być aprok- 
symowany skończonym zbiorem tych funkcji

m
x(t) = 2<ydl cos 1 ш1т + yql sin 1 “i (5.55)

1=1
Gdyby wiadomo było, że funkcja x(t) jest równa х^озСо^т + <p), wów­

czas
x(r) = X^cos( + <p) = X^coscp cos d)^ - X^sintp sin

i najlepsza aproksymacja jest określona tak:

yd1 = X1 cosc₽ ; yq1 = "X1 sint₽»

ydi = °’ yqi ° 0 dla 1 > 1 •

Niestety х(т) nie jest znane i przyjmując mniejszą lub większą 
liczbę wyrazów w równaniu (5.55) popełnia się większy lub mniejszy błąd 
aproksymacji. Różne mogą być miary i kryteria minimalizacji tego błędu 
prowadzące do optymalnej aproksymacji. Najefektywniejszy chyba jest śred­
ni błąd kwadratowy i wymaganie jego minimalizacji. Na podstawie (5.55) 
określa się go równaniem

t m
E(t) = I [x(t) - 2 (ydi cos 1 “1T + yqi sin 1 (5.56)

0 i=1
Funkcja x(t) powinna być aproksymowana tak, aby ten błąd miał war­

tość minimalną. Jest to równoważne wymaganiu, by pochodne błędu po wszys­
tkich parametrach ydi’ yqi były zerowe:



9E(t) ж 0 9E(t) _ 0 9E(t) ж 0 9E(t) ж q
3yd1 %1 3 УНт dyJqm

(5.57)

Wszystkie te pochodne mają ogólną postać następującą: 
* m

ж -2 I [х(т) cos j ацт - (yń^cos Z ш1т cos ш1т + 
9ydj £ i=1

+ yqlsin i w1t cos j ш1т)]йг - 0

aE<t)
ЭУ 4 yqJ

t
-2 |[x(t) sin j

0
+ y^sin i w^t sin

m
- 2(у^003 i sin 

i=1
j w1T)]dT = 0

j W1T +

Łatwo już teraz zauważyć, że 2m takich warunków tworzy układ rów­
nań, który można tak zapisać w postaci macierzowej:

acc *1 ^cs ,1 )aco *2)acs^ *2^ •••• асс(1'ш)асз^’ш) yd1 Zc1
asC^1»1^ass(1»1^a (l,2)a (1,2) •••• asc(1»m)ass(l>®)

SC ss SC ss SC ss yQl Zs1
ac_(2,l) yd2 Xc2
as_(2,1)

• •
• •
• •
• •
• •

•
•
•
•
•

s

Zs2
•
•
•
•
•

• •
• •
• •
• •
• •

a (m,l)CC

•
•
•
•
•
ydm

•
•
•
•
•
Zcm

a (m,1 )a (m,1) ..................... a (m,m)a (m,m)
SC SS SC ss yqm Zsm _

(5.58)
w [y] = m

gdzie 
t

acc(i,j) = | cos(i ш1т) cos(j m1T)dr, 

0
t

a (i,j) = a (j,i) = f sin(i w.t) cos(j шаИт
SC CS у I I

o



t
agg(i,j) * I sin(i шут) sin(j w^T)dr 

0
t

Ici = I x(t) cos(i w^Jdr

О
t

Igl - J x(t) sin(i w^rJdT

О
х(т) « O dla т < О

- macierz odwrotna macierzy [A],
- wyznacznik tej macierzy,
- transponowana macierz dopełnień algebraicznych Ea^] macierzy

W równaniach (5.58) macierz [A] jest dla danego t macierzą stałą, 
wektor [I] jest określony na podstawie x(t), a poszukiwany jest wektor 
[у]. Rozwiązaniem jest więc równanie macierzowe

Гу] = [а]_1М - —7- [Aj±] [I] (5.59)
det[A] J 

gdzie 
[A]"1 
det [A] 
[AjJ

Wzór (5.59) pozwala na obliczenie każdego z elementów wektora у we­
dług zależności 

2m
= Z^111 (5.60)

gdzie 
jeśli j jest nieparzyste, to y^ = yd((j+l)/2), 
jeśli j jest parzyste, to y^ = yq(j/2), 
jeśli i jest nieparzyste, to ж I0((j+ 1)/2) 
jeśli i jest parzyste, to Ii « Ig(j/2).

W aproksymacji (5.55) nie uwzględniono składowej stałej ani ewentual­
nej składowej aperiodycznej. Zrobiono tak dla większej przejrzystości za­
pisu równań, które obowiązują oczywiście także w tych przypadkach. Można 
też na podstawie przedstawionych równań zauważyć, że dodanie w tej apro­
ksymacji jednej składowej o danej częstotliwości zwiększa rząd macierzy 
[A] i rozmiary wektorów o dwa (wskaźnik 2m w równaniu (5.60)).

Ważne przypadki szczególne występują wtedy, gdy czas t jest wielo­
krotnością półokresu identyfikowanej składowej sygnału,oraz gdy reduku­
je się liczbę wyrazów wielomianu aproksymującego do jednego (m = 2), a 
także gdy zachodzą oba te warunki.



5.3.2. Przypadki szczególne korelacji i odwzorowania krzywych

5.3.2.1. Zastosowanie współczynników szeregu Fouriera. Charakterysty­
ki częstotliwościowe

Najprostszy przypadek szczególny otrzymuje się, gdy czas t jest 
całkowitą wielokrotnością półokresu identyfikowanej składowej, to znaczy 
t » T = 1(1^2), (gdzie 1 = 1,2 ...). W tym przypadku, ze względu na or- 
togonalnośó, wszystkie składniki leżące poza główną przekątną macierzy 
[A] zerują się i otrzymuje się macierz diagonalną. Trzeba tu podkreślić, 
że owa ortogonalność i wynikające z niej uproszczenia są właśnie rezul­
tatem przyjęcia szczególnej długości okna pomiarowego T. Wobec tego ob­
liczenie poszukiwanych wartości yd1 oraz уjest bardzo proste 
(5.58), stosownie do zależności:

T
] x(t) cos( w1T)dT

J cos2( o^zJdT

0T (5.61)
У х(т) sin( w^TjdT

J sin2( w1T)dT 
0 

gdzie obie całki w mianownikach są równe T/2 (T = l(T1/2)), x(t) = 0 
dla t < 0.

Nietrudno zauważyć, że tak obliczane wartości yd i yq są pier­
wszymi dwoma współczynnikami rozwinięcia w szereg Fouriera x(t). Równa­
nia (5.61) wykazują podobieństwo do tych stosowanych podczas filtracji z 
funkcjami wagi sinus i cosinus, a różnica sprowadza się do tego, że 
splot jest zastąpiony iloczynem. Ma to swoje konsekwencje w tym, że rów­
nania (5.61) nie opisując filtru, nie dostarczają na wyjściu składowej 
przemiennej, lecz składową stałą (5.55). Niemniej jednak algorytm według 
nich zrealizowany będzie niewątpliwie wykazywał określone własności fil­
tracji zakłóceń. Łatwo przecież zauważyć, że w pełnookresowej wersji za­
kłócenia harmoniczne będą odrzucane, podobnie jak w pełnookresowej fil­
tracji z funkcjami wagi sinus i cosinus.

Charakterystyki filtracyjne otrzyma się przez podstawienie w równa­
niach (5.61) za x(t) sygnału o dowolnej częstotliwości zamiast składo­
wej podstawowej



Т
ydl “ у J cos(l о>1т + фх) соз( m^dx 

О
т

yql “ Т / Х1 С03^ ш1т + sin( Ш1Т^0Т 

О

(5.62)

gdzie 1 - dowolna liczba rzeczywista (dodatnia), mnożnik częstotliwości
składowej podstawowej.

zależności:Obliczenie wartości całek (5.62) daje

gdzie Sa(x) = sin(x)/x.

(5.63)

Jeśli teraz przedział T jest wielokrotnością półokresu składowej 
podstawowej (to znaczy ш^Т = 2kit), to dla sygnału o szęstotliwości pod­
stawowej otrzymuje się:

y,. = X.cos(-<p) = X.cosq>d1 1 1 (5.64)
yq1 = -X^inq)

Jak widać to po sygnale wyjściowym o częstotliwości podstawowej, a 
również po zależności (5.63), w wyniku korelacji następuje przesunięcie 
częstotliwości i składowa o częstotliwości 1 wytwarza na wyjściu 
sygnały o częstotliwościach (1 + 1 )ш^ i (1 - 1)w. . Gdy 1=1, te 
pierwsze znikają, ponieważ funkcja Sa(kit) jest zerowa.

Tak więc określenie charakterystyki widmowej dla każdej ze składo­
wych byłoby raczej trudne. Można natomiast to uczynić dla obu składowych 
łącznie., w algorytmie pomiaru amplitudy. Przyjąwszy Identyczną jednostko­
wą amplitudę sygnałów o dowolnej częstotliwości otrzymuje się z (5.63) 
następującą wartość kwadratu amplitudy w funkcji częstotliwości zreduko­
wanej 1:

= (y^ + y2p (5.65а)

_ 2 г Ш.Т-] , г W.T-]

L 2 J L 2-1



Rys. 5.9. Widma pomiaru amplitudy metodami korelacji 
pełno- i półokresowej

Fig. 5.9. Spectra of magnitude measurement using half and full cycle 
correlation methods

W zależności od fazy tp^ sygnału otrzymuje się więc wartość G2(l) i 
jak widać, waha się ona między kwadratem sumy i różnicy funkcji próbkują­
cych Sa. Obwiednia maksymalnych wartości dla danej częstotliwości jest 
więc wyznaczona przez większą z wartości sumy lub różnicy tych funkcji. 
Charakterystykę tę przedstawiono na rys. (5.9) i jest ona taka sama jak 
częstotliwościowa charakterystyka pomiaru amplitudy z użyciem filtrów 
cyfrowych z funkcjami wagi sinus i cosinus. Na rys. 5.9 pokazano dwie ta­
kie charakterystyki: pół- i pełnookresową. Mają one te same zalety i wa­
dy jak opisane w p. 5.2.2.



Algorytmy cyfrowe realizujące korelację wynikają bezpośrednio z 
(5.62) i mają postać

N-1
Уа(п) = R 2 x(n - k) cos(n - k)

k=0 (5.66)
N-1

Yq(n) = 2 X^n " k) sin^n ~ w1Ti
k=0

gdzie x(n) = cos(n + ф), N = lub N = N^/2.

W tym przypadku jeszcze łatwiej niż podczas filtracji można otrzymać 
postać rekursywną algorytmu (5.66) i jest on jeszcze prostszy. Wystarczy 
zauważyć, że po zwiększeniu wskaźnika n o jeden do n + 1 jeden skład 
nik x(n + 1) pojawia się w oknie T oraz jeden składnik x(n + 1 - N) 
opuszcza okno. Wobec tego algorytm ten przyjmie postać rekursywną:

yd(n + 1) = yd(n) + ^[x(n + 1) - x(n + 1 - N-)]cos(n +1)
2 г- (5.67)

y^(n + 1) = yq(n) + ^[x(n + 1) - x(n + 1 - N)]sin(n + 1)

gdzie N = N1 lub N = N^/2; gdy zachodzi drugi przypadek,trzeba zmie­
nić znaki minus na plus.

Jest to niezwykle prosta postać algorytmu, wymagająca realizacji dla 
obu składowych tylko trzech dodawań i dwu mnożeń.

Rozważając łącznie charakterystyki widmowe, algorytm i dynamikę nale­
ży uważać pełno- i półokresową korelację za jedną z metod szczególnie ko­
rzystnych i dogodnych do realizacji w czasie rzeczywistym.

5.3.2.2. Optymalna estymacja i wariancje błędów

Drugi z uproszczonych przypadków szczególnych otrzymuje się, gdy fun­
kcje aproksymujące są ograniczone do dwóch, tj. sin( ш^) i cos( w^).

gdzie dla uproszczenia pominięto wskaźniki charakteryzujące częstotli­
wość w macierzy [Aj, gdyż wszędzie jest to częstotliwość podstawowa

Rozwiązanie tego układu równań jest następujące:

1
ass ~ acs Ic1

(5.69)

yq1
det[A]

’asc acc Is1



gdzie
t

Ic1 « J x(t) cos dt, 

0
t

I * ( x(t) sin w.t dt, 
s1 ; i

sinZw.jt' 

2w11 J

sinaw^'
2ш^ J’

a «a =1 sin ш.т cos w.t dt cs sc У 1 1
0

t2
det[A] - acc ass - acs asc - —

x(t) « 0 dla t < 0.

sin W „t 1t 
2 w^t

v 2 Я sin o^tX
1

W t

Parametr t jest teraz zmienny w przedziale od zera do i dla 
każdej wartości t otrzymuje się inne wartości współczynników a.

Ocena i sam sposób oceny błędu aproksymacji zależy od tego, w jakim
stopniu przyjęte funkcje aproksymujące odwzorowują rzeczywisty sygnał 
x(t). Jeśli więc x(t) przy przyjętej tu aproksymacji funkcjami cos 
sin będzie zawierał zakłócenia o innej częstotliwości, to będzie po­
pełniany pewien błąd. Jednak w przedziale t między zerem a mamy 
teraz do czynienia z filtrem niestacjonarnym, którego współczynniki są 
różne dla każdej kolejnej chwili t^, t2 ... T1. Racjonalne wydaje się 
przyjęcie modelu sygnału o postaci [1651:

x(t) = X1cos(w1t + <p ) + e(t) = Ydcos + Y^sin + e(t) (5.70) 

gdzie. e(t) - zakłócenie sygnału x.
Ponieważ (5.69) jest określone tak, że średniokwadratowy błąd apro­

ksymacji jest minimalny, to można by spróbować obliczyć tę wartość. Jed­
nakże przy dowolnej postaci e(t) jest to dość złożone. Najłatwiej ob­
liczyć ten błąd, gdy przyjmie się, że e(t) jest procesem losowym o sta­
łym widmie gęstości mocy [2],[41,[5],[3]. Rezultaty badań symulacyjnych 
wykazują, że ten model dość dobrze odwzorowuje pozwarciowe zakłócenia 
składowych podstawowych prądu i napięcia [1651. Jeśli zresztą nawet ist­
nieją pewne rozbieżności, to i tak jest to typ zakłócenia, które jest do 
odfiltrowania najtrudniejsze, gdyż ma stałe widmo w całym paśmie. Proces 



losowy o stałym widmie gęstości mocy jest nazywany szumem białym i może 
być scharakteryzowany tak:

E {e(t)} = 0

S (ш) = M (5.71)e e
R (т) = M 6(t) e e

gdzie
Se(w) - widmo gęstości mocy,
R^(t) - funkcja autokorelacji zakłócenia (szumu białego).

Obliczane z równań (5.69) wielkości y^, 
kościami deterministycznymi, lecz zmiennymi 
mi te wielkości. Równania te, które służyły 

yq nie są już teraz wiel- 
losowymi y^, yq estymujący- 
do obliczenia у z minimal­

nym błędem średniokwadratowym, minimalizują teraz wariancję estymacji.
Podstawiając sygnał (5.70) do równania (5.69) otrzymuje się po prze­

kształceniach:
t t

у, - у, = —-— ]ае= ( е(т) cos ш.т dT - а_с I е(т) sin ш.т dT [
Q Cl j д» л I S3 ł I CS F I Jdet A I J J у о \

0 0
t t

у - у = —-— J -a „ I е(т) cos ш.т dT + a„ ( е(т) sin ш. т dT f
q det A [ sc) 1 cc J 1 J

0 0
Jak widać, ze względu na wartości oczekiwane obu stron tych równań, 

wartość oczekiwana estymat jest równa wartościom rzeczywistym, jeśli war­
tość oczekiwana zakłócenia e(t) jest zerowa. Ponieważ szum biały ma tę 
cechę, więc

(5.73)
E { yq - yq } = 0

A więc estymaty wielkości у są nieobciążone i uśredniona wielkość 
mierzona zdąża do rzeczywistej.

Wariancje tych składowych są określone z kolei zależnościami:

■ yo’2 <5.74)

= E(y - у )2
q Jq Jq

gdzie E - oznacza wartość oczekiwaną.
Do obliczenia wariancji (5.7A) można by podstawić wartości z (5.72) 

i po dość złożonych przekształceniach otrzymać poszukiwane wartości. Ale 
wariancje takich funkcjonałów jak w (5.72) można znacznie łatwiej obli­
czyć, wykorzystując w tym przypadku fakt, że funkcja autokorelacji zakłó­
cenia e(t) ma postać (5.71). Jeśli więc należy określić wariancję funk-



cjonału procesu e(t), a proces ten jest szumem białym, to
t t t

еИ e^)^ (x)dr J e(T)f2(T)drl = Me j f1(T)f2(r)dT (5.75)

Lo о о
Wykorzystując tę tożsamość w pierwszej z wariancji (5.7^), po pod­

stawieniu (5.72) otrzymuje się:
"t 2 / 2

= -—-—5 ( a2E Г ( е(т) cos w.t dvl + a2 E Г | e(-c)sin ш r dr ] -
d (detA)2 L ss £ 1 es LJ 1 J

t
- 2agsacsE jj e(r) sin cos ш^т 

0
= ——l—w (a2 a M - 2a a2 M + a a2 M ) =

(detA)2 ss cc e ss cs e ss cs e 
M а о Ma= e ss (aa - a2 ) =
(detA)2 ss cc cs det A

a2 = (5.76)
$ det A

Podstawiając wartości z (5.69) można by otrzymać wariancję każdej z
estymat. Wygodniej jest

2 2об + d q

jednak określić wariancję estymacji amplitudy:
1------ 5—■  (5.77)

1 - Sa (u^t) 

gdzie Sa(x) = ( sin)/x.
Jak więc widać, czego można było oczekiwać, wariancja maleje wraz ze 

wzrostem t. Jeśli założyć, że aż do osiągnięcia czasu stosuje się 
metodę odwzorowania krzywych, a dalej korelację ze stałym oknem T^, to 
można obliczyć względną wariancję odniesioną do tej minimalnej wartości.
która daje pogląd,z jaką szybkością wariancja maleje wraz ze wzrostem t 
do T1(0 t/T1 C 1):

4^) 1
o^(T1) t 1 - Sa2(w^t) (5.78)

Wykres tego ilorazu wariancji przedstawiono na rys. 5.10. Rozpatru­
jąc ten wykres w kierunku malejących t widać, że wariancja w przedzia­
le t/T^ = 1-0,5 początkowo wzrasta bardzo pomału, by następnie wzrastać 
z ogromną szybkością (gdy t/T^ = 0,1 już jest równa 80). Tak więc sen­
sowne rezultaty pomiarów przy tak krótkich czasach otrzymuje się tylko 
wtedy, gdy widmo gęstości zakłócenia ma bardzo małą wartość (Mg). Za­
leżność (5.77) pozwala również na obliczenie wariancji w metodach stałe­
go okna, jeśli stosuje się model sygnałowy (5.70) i zakłócenie jest scha-



Rys. 5.10. Względna wariancja (a) i odchylenie standardowe (b) błędów 
estymacji amplitudy metodą korelacji w zależności od długości

okna pomiarowego
Fig. 5.10. Variance (a) and a standard deviation (b) of errors ratio 
of magnitude measurement versus data window, using correlation method 

rakteryzowane w (5.71). Aby to obliczyć wystarczy podstawić lub Т^/2 
w (5.77). Można też zauważyć, że jakościowo podobne zmiany występują w 
charakterystykach częstotliwościowych podczas skracania okna pomiarowego 
(rys. 5.9).

Gdy są tak krótkie okna pomiarowe, nie występuje już taka zgodność 
między widmem całkowania ciągłego i dyskretnego i wielkości występujące 
w równaniu (5.69) powinny być obliczone jako sumy dyskretne. Wprawdzie 
można zrobić elementarnie prosty program ich obliczania dla danego , 
ale tu przytoczy się odpowiednie wzory analogiczne do (5.69) (oczywiście 
ogólne równanie macierzowe pozostaje bez zmian):

N-1
= ^х(к)соз(кш1Т^) 

k=0
N-1

I . = V1 x(k)sin(ka>i.T,)
S ! / i I 1

k=0 (5.79)



2 0 Ы 1 9 -1 /cos^kCw.T ) = S + Z sinz(Nw.T.) + Z sin(2Nm.T.)   
1122 114 11 «..(„(u T )

~ N -t 9 i cos(m.T.)
ac = = > sin^(kw.T.) = 3 - Z sin (Nw.T. ) - 7- sin(2Nw..T ) ---------
ss 113 3 114 11 sin((OiTi)

1 г 1 sin(Nu.T. )
a^ = a=~ = / sin(km.T, ) cos(kw.T ) = - sin [(N - 1 )ш.Т .J ------ ----

кЙ 11г ii sin(MiTi)

gdzie N = t/T^.

Wzrost wariancji wraz ze skracaniem długości okna pomiarowego rodzi 
pytanie, jakie z kolei są skutki, gdy sygnał po skokowej zmianie tylko 
częściowo znajduje się wewnątrz okna pomiarowego, a więc jaki jest prze­
bieg stanu przejściowego w metodach stałego okna; stałookiennej filtra­
cji i korelacji.

5.4. Stany przejściowe filtracji i korelacji

Badanie stanów przejściowych algorytmów, które wykorzystują okno sta­
łe, ma znaczenie głównie ze względu na możliwość występowania przerostów 
mierzonych wielkości po skokowej zmianie sygnału, a przed pojawieniem się 
sygnału w całości wewnątrz tego okna. Konieczne jest określenie, czy sa­
ma składowa podstawowa nie będzie powodować takich przerostów, a również 
czy ich źródłem nie mogą być składowe zakłócające, nawe.t jeśli w stanie 
ustalonym są odrzucane; jak na przykład składowa stała i harmoniczne w 
algorytmach pełnookresowych. Na ten temat opublikowano kilka prac [60], 
[147], [149] tych samych autorów i dotyczyły one stanów przejściowych fil­
trów z funkcjami wagi sinus, cosinus oraz funkcjami Walsha. Tutaj przed­
stawiono dokładniejszą analizę dotyczącą filtracji i korelacji.

Niech sygnał o jednostkowej amplitudzie będzie korelowany z funkcjami 
sinus i cosinus zgodnie z równaniami (5.62). W stanie przejściowym współ­
czynniki stałe w tych równaniach są ustalone, natomiast przedział całko­
wania jest mniejszy od T i zmienia się w zakresie od zera do T, sto­
sownie do pojawiających się nowych wartości po skokowej zmianie sygnału 
(rys. 5.11):

t
yd(t) = у Jcos(w1t + <p) cos dm

O (5.80)
t

y^(t) “ T / COS^W-|T + Ф sin dT

0



Wyrażenia te łatwo przekształ­
cić do postaci wykorzystującej 
oznaczenia w zależności (5.69):

yd(t) = T (acccost₽ “ ^c51”^ 
(5.81 )

у (t) = ж (a coscp - a sin? )

gdzie współczynniki a są funkcją 
położenia okna t.

Ponieważ faza sygnału <p może 
być dowolna, to stosownie do tego 
jaka jest jej wartość, będą zmie­
niać się wartości Łatwoyd’ yq"
zauważyć, że mogą one się zmienia- 
między zerem a pierwiastkiem sumy 
kwadratów współczynników a, pomno­
żonym przez 2/T:

(5.81a)

0 ^^M^cs +

Rys. 5.11. Ilustracja zmiany długo­
ści okna pomiarowego po skokowej zmianie sygnału (x(t) = 0 dla r<0) 
Fig. 5.11. Illustration of data 
window variation after step change 
of the signal (х(т) = 0 for r<0)

Wartości fazy ср , przy których zerują się yd i у , są oczywiście 
różne. W tej sytuacji więcej informacji może dostarczyć stan przejściowy 
amplitudy, a nie składowych. Jest ona obliczana w stanie ustalonym jako 
pierwiastek sumy kwadratów składowych yd i у . Podstawiając wartości 
у z (5.81) otrzymuje się po przekształceniach:

X1 (t) = -j/yd(t) + Yq^)' =

= ^д/азс^азс + sin 2ф) + D + 8а2(2ш^) + 2Sa(2(u.)t)cos 2<p]

(5.82) 
gdzie

sin(2(D.t)
Sa(2w.t) = ------- !— ,

1 20)., t

... (c^t)
a = -^ ---------- .
su w t1

Ekstremalne wartości amplitudy (5.82) otrzyma się przez przyrównanie 
do zera pochodnej wyrażenia podpierwiastkowego. Otrzymuje się stąd 
warune к



dX?(t) 9
—----- = t Sa(m.t) sin(w.t - 2<p) = О

dq> 11
czyli

2ę = rn^t - kn.
Wstawiając wartość 2ф do równania (5.82) otrzymuje się po przeksz­

tałceniach
X1 (t) = £ д/Г + Sa2(w.jt) + 2Sa(w^t) cos(kit) (5.83)

skąd wynikają od razu maksymalne i minimalne wartości X^(t):

^Sa^t)]

V^min =T P - Sa^t)]

Wykresy tych krzywych przedstawiono na rys. 5.12 i 5.13, odpowiednio 
dla pełno- i półokresowej korelacji. Obszary zakreskowane na tych rysun­
kach to obszary, w których znajduje się mierzona amplituda X^ (5.82). 
Jak widać, w zależności od fazy różnice miedzy maksymalną i minimalną am­
plitudą w stanie przejściowym mogą być znaczne, szczególnie w korelacji

Rys. 5.12. Obszary, w których może znajdować się mierzona amplituda 
w stanie przejściowym z zastosowaniem pełnookresowej korelacji

Fig. 5.12. Regions of measured magnitude during signal transients 
using full cycle correlation
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Rys. 5.13. Obszar, w którym może znajdować się mierzona amplituda 
w stanie przejściowym z zastosowaniem półokresowej korelacji 

Fig. 5.13. Region of measured magnitude during signal transients 
using half cycle correlation

półokresowej. Można też zauważyć, że w środku przedziału, w korelacji 
pełnookresowej, krzywe te przecinają się, co wynika z tego, że dla t/T^= 
=0,5 składowe są ortogonalne. Z krzywych tych wynika także, że pełno- i 
półokresowa korelacje nie wykazują przerostów składowej podstawowej.

Stany przejściowe składowych i amplitudy, gdy stosuje się filtry or­
togonalne, można określić albo w dziedzinie czasu,albo w dziedzinie czę­
stotliwości na podstawie (5.33) i (5.36). Jest intuicyjnie wyczuwalne, 
że stan przejściowy amplitudy powinien być, dla filtracji i korelacji, 
identyczny z tymi samymi zakresami zmian amplitud. Można by przeprowa­
dzić podobne rozważania jak dla korelacji, lecz właśnie wystarczy zauwa­
żyć, że splot (5.^6) może być dla każdej z wyznaczonych na wyjściu fil­
tru składowych, przy funkcjach wagi sinus i cosinus, przedstawiony nastę­
pująco: 

t
J cos (t - t ) + <p ] cos w^d-c = [a^cos^t + cp) - a^sin^t + <₽ )] 

0 
t (5.85)
J cosfw^t -t) +<p]sin uycdz = iw[arscos(w1t + <p ) - a^sin^t + <p)] 
0 gdzie wsoółczynniki a są takie jak w (5.69) i (5.81).



Z porównania wyrażeń (5.85) i (5.81) widać, że są one identyczne, 
jeśli zastąpi się argumenty <p przez w^t + $. Wobec tego ekstremalne 
wartości amplitudy występują, gdy fazy są przesunięte o w1t, ale wyra­
żenia określające ekstremalne amplitudy (5.85) i (5.84) będą identyczne 
dla filtracji. Tak więc obszary ograniczone liniami ciągłymi na rys. 
(5.12) i (5.13) wyznaczają granice ekstremalnych amplitud podczas pełno- 
i półokresowej filtracji z funkcjami wagi sinus i cosinus.

Można wykazać [147], że gdy stosuje się funkcje wagi Walsha (rys.5.4- 
-5.6) obwiednie stanów przejściowych są takie jak zaznaczone liniami 
przerywanymi na rys. 5.12 i 5.13 (odpowiednio funkcje Walsha pierwszego 
i drugiego rzędu oraz obcięta pierwszego i zerowego rzędu). Pozornie za­
skakujący może wydawać się fakt, że minimalna amplituda może być zerowa, 
aż do jednej czwartej okresu składowej podstawowej. Jednakże przy stoso­
waniu funkcji Walsha w tym przedziale obie funkcje wagi są identyczne, 
a uzyskiwane składowe zgodne. Wobec tego, zależnie od fazy sygnału wejś­
ciowego, amplituda waha się między zerem a pewną wartością maksymalną.

Stan przejściowy wywołany składową podstawową jest modyfikowany, jeś­
li sygnał wejściowym zawiera składowe zakłócające, nawet jeśli są to skła­
dowe, które w stanie ustalonym są odrzucane. Rozpatrzmy przykładowo za­
kłócenie sygnałem stałym, a także drugą harmoniczną o amplitudzie jed­
nostkowej .

W tym pierwszym przypadku, zarówno w metodzie korelacji, jak i fil­
tracji ((5.80, 5.85)), po podstawieniu zamiast podstawowej składowej sta­
łą otrzyma się:

2 
yd(t) = Sin

2
у (t) = —w (1 - cos w.t) (5.86)Jq W.T 1

Jeśli do ostatniego z tych wzorów podstawi się T = lub T = T^/2, 
otrzyma się wykresy stanu przejściowego składowej stałej odpowiednio dla 
pełno- i półokresowej filtracji i korelacji. Przedstawiono je na rys. 
5.14 (linia przerywana algorytm półokresowy). Jak widać, składowa stała 
ma w stanie przejściowym dość dużą wartość maksymalną, która wynosi 0,64 
(na jednostkę).

Stan przejściowy powodowany składową o dowolnej częstotliwości można 
ocenić na podstawie zależności (5.62)-(5.65). Otóż jeśli w równaniu 
(5.62) zamienić przedział całkowania z ustalonej wartości T na zmienną 
t (0<t<T), to w składowych. (5.63) należy zastąpić T przez t oraz 
trzeba te składowe pomnożyć przez t/T (wynika to z (5.62)). Podobnie



Rys. 5.14. Stan przejściowy składowej stałej z zastosowaniem 
pełno- i półokresowej filtracji lub korelacji

Fig. 5.14. DC component transients using full and half cycle 
filtration or correlation

będzie też w (5.65), które jest równaniem kwadratu amplitudy i w naszym 
przypadku będzie mnożone przez (t/T)^. Ale z (5.65) wynika, że amplituda 
waha się między sumą a różnicą odpowiednich funkcji Sa(x) = (sin(x))/x.

Można więc napisać, że stan przejściowy powodowany składową o względ­
nej częstotliwości 1 jest zawarty w przedziale:

Rys. 5.15. Stan przejściowy drugiej harmonicznej z zastosowaniem: 
a - pełnookresowej, b - półokresowej filtracji lub korelacji 
Fig. 5.15. 2-nd harmonie transients using full (a) and half (b) 

cycle filtration or correlation
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gdzie 1 = w/w1.

Po podstawieniu przykładowo 1=2 otrzyma się obszar stanu przej­
ściowego drugiej harmonicznej. Przedstawiono to na rys. 5.15 dla algo­
rytmu pełno- i półokresowego (na jednostkę amplitudy). Jak widać, wartoś­
ci amplitudy mogą być znaczne w stanie przejściowym, i sięgają prawie 
pięćdziesięciu procent w algorytmie pełnookresowym,w którym przecież 
druga harmoniczna w stanie ustalonym jest odrzucona.

Podobne badanie stanów przejściowych można przeprowadzić korzystając 
z widm funkcji wagi [147], [149]. Oblicza się je dla tej części funkcji 
wagi, która w stanie przejściowym znajduje się wewnątrz okna pomiarowego, 
a w pozostałej części okna jest zerowa (rys. 5.16). Sposób ten daje wyni­
ki identyczne, lecz może być prostszy, gdy korzysta się w badaniach z sy­
mulacji komputerowej.

W podsumowaniu trzeba stwierdzić, że wykorzystywanie algorytmów po­
miarowych w warunkach skokowych zmian sygnałów powoduje konieczność bada­
nia ich stanów przejściowych w celu określenia trajektorii dochodzenia 
do stanu ustalonego, gdy sygnały w całości znajdują się wewnątrz okna po­
miarowego. Cechy tego stanu przejściowego to jeden z elementów charakte­
rystyki algorytmu.

5.5. Filtracja przy oknie pomiarowym zmiennej długości

5.5.1. Zasady i równania ogólne

Wyniki przedstawione w p. 5.4 wskazują, że stan przejściowy identyfi­
kowanej składowej podstawowej sygnału może zmieniać się w tak szerokich 
granicach, że przed upływem czasu równego długości okna pomiarowego T 
od chwili skokowej zmiany sygnału wejściowego niewiele można powiedzieć 
o mierzonej wielkości. Można tego uniknąć, jeśli jest znany moment w któ­
rym nastąpiła skokowa zmiana sygnału. Można teraz dobrać taką parę funk­
cji wagi filtrów, aby w miarę pojawienia się sygnału w oknie składowe 
wyjściowe filtrów były ortogonalne [185]. Osiąga się to przez takie usy­
tuowanie funkcji wagi sinus, cosinus, aby niezależnie od bieżącej dłu­
gości okna t były one odpowiednio parzyste i nieparzyste w odniesieniu 
do jego środka. Wówczas, jak wiadomo, argumenty widm filtrów wynoszą od­
powiednio zero oraz it/2, zapewniając ortogonalność sygnałów wyjściowych. 
Tak więc poczynając od t równego zeru aż do T^, funkcje wagi zmienia­
ją się tak, jak to opisano w p. 5.4 oraz przedstawiono na rys. 5.15. Dla 



czasów t większych od realizu­
je się normalną filtrację pełnookre- 
sową.

Sygnały wyjściowe 'filtrów są w 
rozpatrywanym przedziale opisane rów­
naniami :

t
yc(t) = / x(t) cos Ш1 dT

0
(5.88) 

t
ys (t) = J x( т) sin w1 - r) dr

o K
gdzie x(t) = X^ cos(wqT+<p).

Po uwzględnieniu ogólnych zależ­
ności dotyczących widma splotu, syg­
nały wyjściowe filtrów mogą być dane 
równaniami:

yc(t) = Re{Fc}x1 cos(w1 | + <₽ )

у (t) = -Im{F }x. sin(w. + <p )
о к 5z I I

(5.89)

Rys. 5.16. Ilustracja doboru funkcji 
wagi w metodzie filtracji o zmiennym 

oknie pomiarowym
Fig. 5.16. Selection of impulse res­
ponses in the filtration method with 

variable data window 

gdzie
Y2 -jw.r

Fc(t) = I cos e dr
-t/2
У 2 -jV

Fg(t) = I sin e dr
-t/2

sin(w.t)’
-t + ____  1

sin(w1t)

Tak więc widma dla składowej podstawowej, dane równaniami w opisie 
zależności (5.89), są odpowiednio rzeczywiste i urojone, a stąd otrzy­
mano ortogonalizowane sygnały (5.89). Warto tu zauważyć, że w rozpatry­



wanym przedziale czasu sygnały mają dwukrotnie mniejszą częstotliwość.To 
przekształcenie częstotliwości jest wynikiem wycentrowania funkcji wagi 
w oknie w każdym jego nowym położeniu.

Na podstawie ortogonalnych składowych sygnału łatwo można określić 
amplitudę sygnału:

X1
гус<*)12 rys(th2'

Fc(*) Fs(t)
(5.90)

Przebiegi amplitudy oraz składowych unormowanych.sygnału przedstawio­
no na rys. 5.17. Jak widać z badań symulacyjnych, rzeczywiście następuje 
przesunięcie częstotliwości w wyniku splotu z przesuwającym się w opisa­
ny sposób oknem. Na rysunku przedstawiono też przebieg pomiaru amplitudy 
według klasycznego algorytmu pełnookresowego, z którego wynika, że różni­
ce w czasie osiągania wartości ustalonej są ogromne, nieznacznie tylko 
mniejsze od okresu składowej podstawowej (symulacji dokonano, gdy N^ =12), 
bo już po pobraniu drugiej próbki sygnału otrzymuje się wartość ustaloną, 
gdy korzysta się z omawianej metody. Odbywa się to oczywiście pewnym 
kosztem, a jest nim pogorszenie charakterystyk widmowych, co zostanie 
omówione.

Obserwując rysunek 5.16 można zauważyć, że metoda jest wrażliwa na 
zakłócenie składową stałą, bowiem wartość średnia wycentrowanej funkcji 
cosinus jest zerowa dopiero wtedy, gdy przedział t jest równy . Aby 
składowa stała była odrzucana, jest konieczne, by wartości średnie wy- 
centrowanych funkcji były w każdym przedziale t zerowe. Wycentrowaną
funkcję cosinus należy więc przesunąć o 
równa wartości średniej funkcji cosinus 

t/2 sin
1 i Sin 2ct = t 1 cos W1T dr = —
-t/2 4“

Tak więc w tym przypadku składowa

odpowiednią wartość. Jest 
w przedziale t:

yg(t) jest obliczona tak
jak poprzednio (5.88), natomiast druga ze składowych yc(t) jest 
czana według równania

t
cos w1( - t) - c

0
Zmienia ślę też 

lany równaniem
odpowiednio współczynnik F (t) i jest teraz

ona

samo, 
obli-

(5.91 )

okreś-

Fc1(t) 4 sin w.t____  1 _ p

. 2_ m.t \ 
sin —\

“i1 / (5.92)



Rys. 5.17. Przebiegi składowych, amplitudy i fazy podczas symulacji pomiaru, metodą filtracji o zmiennym 
oknie pomiarowym (linia przerywana - przebieg amplitudy w stanie przejściowym przy standarowej 

filtracji pełnookresowej)
Fig. 5.17. Signal components, its magnitude and phase during simulation of measurements using filtration 
method with variable data window (dotted line - measured magnitude using standard full cycle filration) 103



Naturalnie sam algorytm obliczania amplitudy (5.90) pozostałe bez 
zmian.

Zależności (5.88)-(5.92) mają tę cechą, że minimalizowany jest błąd 
średniokwadratowy aproksymacji funkcji x(r) wycentrowanymi w stosunku 
do środka okna t funkcjami sinus i cosinus i składową stałą, stosownie 
do równania

x(t) = xccos w1(r - ^) + xgsin w1(t - ^) + c (5.93)

Błąd średniokwadratowy tej aproksymacji jest dany zależnością

E(t) = JJx(t) - xQcos w1 (T “ 7) ~ xssin “i (T “ 5 ) “ c] dT (5.94a) 

0
a jego minimalizacja wynika z jednoczesnego spełnienia warunków:

-э-ЕЩ = 0; -^2 = 0; = o (5.94b)
axc axs ac

Uwzględnienie zależności (5.94a) i (5.94b) prowadzi do następującego 
układu równań:

t t
J х(т) cos (т - ^jdr = xc У cos2w1 - ^)dx +

0 0
t t

+ xg ( sin - ^jcos (r - ^dT + c J cos ац [t - ^dr (5.95a)

0 0
t t

t t
+ xsj sin2w1 (r - ^jdr + c J sin (t - ^dT (5.95b) 

0 0
t t
J x(t)ót = xQ у cos u.] (r — ^)dt + ct (5.95c)

0 0
Po uwzględnieniu, że druga z całek prawej strony równania (5.95a), 

jak również pierwsza i trzecia całka równania (5.95b) są zerowe, oraz pa­
rzystości funkcji cosinus i nieparzystości funkcji sinus w stosunku do 
środka okna pomiarowego t, otrzymuje się:

t t t
У х(т) cos - rjdr = xc У cos2w.j - ^jdT + c ycos (t - ^)dr

0 00 (5.96a)
t t
-У x(t) sin - т jdm = xs у sin^w^ - ^jdT (5.96b)

0 0



t t
J x(m)dr = xc J cos (t - i^dr + ct (5.96c)

0 0
Przy założeniu, że sygnał х(т) nie zawiera składowej stałej (c =0), 

z pierwszych dwu równań (5.96) otrzymuje się bezpośrednio zależności 
(5.88)-(5.89), gdzie yc = ?cxc, yg = Fgxg.

Jeśli natomiast sygnał x(t) zawiera również składową stałą, to 
składowa xg sygnału jest obliczona tak samo jak poprzednio (5.96b), a 
xc określa się z pierwszego oraz trzeciego równania (5.96) i przekształ­
ca je tak, aby wyrugować c. Otrzymuje się teraz po prostych przekształ­
ceniach równanie (5.91) i (5.92), gdzie yc = Fc1xc.

Tak więc przedstawione uprzednio, niejako intuicyjne, zależności 
(5.88)-(5.92) mają jak widać cechę minimalizacji błędu średniokwadratowe- 
go aproksymacji identyfikowanego sygnału.

W podsumowaniu można stwierdzić, że stosując jako funkcje wagi fil­
trów ortogonalnych wycentrowane funkcje cosinus i sinus oraz zmieniając 
je tak, aby pozostawały wycentrowane dla każdej długości okna pomiarowe­
go, otrzymuje się wyjściowe sygnały ortogonalne, które umożliwiają po­
miar począwszy od chwili pojawienia się pierwszych próbek nowych wartoś­
ci sygnału w oknie pomiarowym. Pośród dwóch wariantów metody jeden jest 
dostosowany do sygnałów nie zawierających składowej stałej (lub aperio- 
dycznej), drugi do sygnałów, które ją zawierają. Oba warianty różnią się 
właściwościami, to znaczy widmem (a właściwie pseudowidmem) dla modelu 
sygnałowego deterministycznego oraz wariancjami dla modelu zakłóceń pro­
babilistycznych.

5.5.2. Własności metody - charakterystyki widmowe i wariancje

Omawiana metody nie ma w ścisłym sensie charakterystyki widmowej. Wy­
nika to całkiem bezpośrednio z faktu, że funkcje wagi filtrów ortogonal­
nych (5.88) zmieniają się z czasem t. Dlatego można tu raczej mówić o 
charakterystykach pseudowidmowych, które są funkcją dwu parametrów czę­
stotliwości to oraz czasu t, będącego długością okna zawierającego syg­
nał (same filtry są po prostu filtrami niestacjonarnymi,ale liniowymi). 
Obliczania widm filtrów dokonuje się na podstawie transformaty Fouriera 
funkcji wagi, przedstawionych na rys. 5.16: 

t/2
Wc(jw,t) = J cos w^e*^TdT = [san(m - 1) + Sau(m + 1)

“t/2 1 (5.97а)
t/2

- Sam(m + 1) ]

(5.97b)

Wg(jw,t) = J sinw^r e“^WTdT = [san:(m - 1 )
-t/2 1



Wc1(jw,t) = [saTt(m - 1) ^ + San(m + 1) — 2Sa2(7tm i^-)j (5.97c)

gdzie 
Sa(x) = sin(x)/x, 
m = ш/а^, 
Wq1 - widmo przesuniętej funkcji cosinus o wartości średniej równej ze­

ru (5.91).
Współczynniki F , Fg w (5.89) są więc, co jest oczywiste, widmami 

(5.97) dla o> równego . Dzieląc widma (5.97) przez te współczynniki 
otrzymuje się widma unormowane, odniesione do wartości pi’zy częstotliwoś­
ci podstawowej Gc(m,t), Gg(m,t) oraz G^. Przy tym Gc, Gg stanowią 
parę widm standardowej wersji metody, a Gc^, Gg metody odrzucającej 
składową stałą. Wykresy tych unormowanych widm w funkcji względnej częs­
totliwości = m przedstawiono na rys. 5.18 i 5.19. Parametrem jest 
dyskretny czas к i dla różnych wartości tego parametru, dla przyjętej 
częstotliwości próbkowania odpowiadającej 12 próbkom w okresie składowej 
podstawowej (N^) otrzymuje się różne widma. Jak widać na tych rysunkach, 
wraz z powiększaniem okna w wyniku wzrostu liczby próbek, charakterysty­
ki widmowe poprawiają się bardzo szybko. Oczywiście, gdy к = 6, otrzy­
muje się widmo standardowej filtracji półokresowej. Jest również widocz­
ne, że o błędach w zakresie niskich częstotliwości decyduje widmo Ge, co 
jest zrozumiałe (rys. 5.16), a w zakresie częstotliwości wysokich widmo 
Gg (rys. 5.18). Jeśli natomiast stosuje się metodę zmodyfikowaną (rys. 
5.19), to widmo w zakresie niskich częstotliwości poprawia się wydatnie, 
lecz kosztem pogorszenia w zakresie częstotliwości wysokich. Teraz o fil­
tracji składowych wysokoczęstotliwościowych decyduje widmo %j• Nieko­
rzystny charakter widma przy małej liczbie próbek jest oczywiście spowo­
dowany bardzo krótkim oknem pomiarowym i gdyby zastosować takie krótkie 
okno jako ustalone, otrzymałoby się algorytm mający ustaloną niekorzyst­
ną charakterystykę. Niewątpliwą zaletą omawianego w tym rozdziale algo­
rytmu jest więc poprawa tych charakterystyk widmowych wraz ze zwiększe­
niem okna i zdążanie do ustalonego widma pełnookresowego. Jeśli więc syg­
nał nie będzie zakłócony, to otrzyma się dokładne wartości amplitudy, po­
cząwszy od drugiej próbki sygnału, jeśli natomiast będzie on zakłócony, 
to z każdą kolejną próbką wynik będzie dokładniejszy.

Interesujące może być porównanie wariancji błędów omawianej metody i 
metody odwzorowania krzywych (p. 5.3.2.2). Założy się tutaj podobnie jak 
poprzednio, że zakłócenie jest szumem białym określonym tak jak w (5.71). 
Równanie (5.88) staje się teraz równaniem estymacji, a wielkości УС»У5 
stają się estymatami у , yg. Błędy wyznaczania składowych sygnału, z za­
łożeniem, że sygnał zawiera teraz składową podstawową i szum biały, są



Rys. 5.18. Pseudowidma filtrów ortogonalnych w metodzie zmiennego okna pomiarowego 
(k - liczba próbek odpowiadająca bieżącej długości okna)

Fig. 5.18. Quasispectra of orthogonal filters in the method of variable data window 
(k - number of samples related to current data window) о



о оэ

Rys. 5.19. Pseudowidma filtrów ortogonalnych w zmodyfikowanej metodzie zmiennego okna pomiarowego 
Fig. 5.19. Quasispectra of orthogonal filters in a modified method of variable data window



procesem losowym określonym równaniami wynikającymi z (5.88), (5.89) i 
(5.90):

~ _ 1
ed = “ = F— / cos W1 (1 - T; (5.98a)

t
У ~ У 1 ( /4. \

eq = -S- у — = -у- / e<T> sin (j - dT (5.98b)
s s 0

Jak widać, wartości oczekiwane błędów są zerowe. Natomiast wariancje 
błędów estymacji, wyznaczone tak samo Jak poprzednio, z uwzględnieniem 
upraszczającej tożsamości (5.75), dają identyczne wartości dla składo­
wych (5.76) i amplitudy (5.77).

Rys. 5.20. Względne odchylenia standardowe błędów estymacji amplitudy 
metodą zmniennego okna dla różnych funkcji wagi filtrów (a,b,c,d) 

Fig. 5.20. Ratio of standard deviation of errors of magnitude estimation 
using variable data window method for different impulse responses 

of filters (a,b,c,d)

Tak więc ze względu na błędy pomiaru omawiana metoda i metoda odwzo­
rowania krzywych (p. 5.3.2.2) są tożsame. Wykres odchylenia standardowe­
go błędu, odniesionego do wartości minimalnej (gdy t = ) przedstawiono
na rys. 5.20 - krzywa a. Podczas stosowania funkcji Walsha wariancje 
nie różnią się znacznie - krzywa b narysowana linią przerywaną. Jeśli 



natomiast wykorzystuje się funkcje wagi Walsha, tak jak to przedstawiono 
na rys. 5.20c,d, to znaczy w pierwszym przypadku funkcje Walsha zerowego 
i pierwszego rzędu w całym przedziale okna c, oraz funkcje Walsha pier­
wszego i drugiego rzędu, lecz ta ostatnia ma okres dostosowany do długoś­
ci okna (zerowa wartość średnia) d, to unormowane wariancje błędów am­
plitudy są dane równaniami:

1 ■ T p2
— —- --- e----- 5- (5.99a)
4 t sin p cos p

1 T p2
- = — —1 --- 5------------  (5.99b) 

аг(т.) 2 t sin р(1 - cos p) a i
gdzie p = (k/2) (t/T^).

Przebiegi odchyleń standardowych w tych dwu przypadkach przedstawio­
no na rys. 5.20 - krzywe c oraz d. Jak można zauważyć,w pierwszym 
przypadku otrzymuje się, dla krótkich okien (t < 0,6 T^), odchylenia 
standardowe podobne jak w poprzednich metodach. Jednak po przedłużeniu 
długości okna wariancja zaczyna narastać, co jest powodowane wzrostem wa­
riancji składowej rzeczywistej. Po prostu funkcja Walsha zerowego rzędu 
nie nadaje się do wydzielania składowych ortogonalnych dla okna pełno- 
okresowego (jej widmo jest zerowe dla w = w^). W drugim przypadku (krzy­
wa d) odchylenie standardowe dla dłuższych okien jest niewiele różne od 
tego uzyskiwanego metodami omawianymi poprzednio, lecz zaczyna bardzo 
szybko narastać, gdy względne okno jest mniejsze niż 0,5. Jest to skutek 
korygowania funkcji Walsha drugiego rzędu, tak aby jej wartość średnia 
była zerowa. Ten wykres odchylenia standardowego, uzyskany dla funkcji 
Walsha, jest niemal identyczny dla drugiego wariantu omawianej metody 
(5.91), (5.97c). Szybszy wzrost odchylenia standardowego jest zrozumiały 
i zgodny z obserwowanym już wyraźnym pogorszeniem widma (rys. 5.19).

Z przeprowadzonych rozważań wynika, że nawet tak prosty model zakłó­
cenia może dostarczyć wielu pożytecznych informacji o własnościach algo­
rytmów. Naturalnie, gdy są znane widma gęstości mocy zakłócenia (Mg - 
(5.71)), można obliczyć konkretne wartości wariancji i odchyleń standar­
dowych oraz ocenić,jaka jest minimalna długość okna pomiarowego, od któ­
rej wyniki są wiarygodne.

6. FILTRACJA KALMANA

Modele sygnału i zakłóceń rozpatrywane dotychczas były albo całkowi­
cie deterministyczne, albo też zakładano, że identyfikowane składowe pod­
stawowe napięć lub prądów są deterministyczne, a zakłócenie jest proce­



sem losowym. W istocie jeden i drugi model mogą dość dobrze odzwiercie­
dlać rzeczywistość w tym sensie, że po wystąpieniu konkretnego zaburze­
nia systemu, w określonych warunkach, identyfikowane składowe będą mia­
ły określone wartości. Sporo jednak argumentów przemawia za modelem cał­
kowicie probabilistycznym. Wynika on z tego, że wywołane przez zaburze­
nia napięcia i prądy są uwarunkowane tak dużą liczbą czynników, że ich 
wartości są zdeterminowane, lecz niemożliwe do przewidzenia, a mogą być 
scharakteryzowane z zastosowaniem modeli i parametrów probabilistycznych 
Problem optymalnego odtworzenia identyfikowanych napięć i prądów może 
być rozwiązany z wykorzystaniem filtru Kalmana [2],[8]. Filtr ten opiera 
się na modelu zmiennych stanu, a ich liczba zależy od konkretnego rozwa­
żanego procesu. W przypadku identyfikacji napięć i prądów systemu mini­
malny rozmiar filtru to filtr dwustanowy. Zastosowanie filtru Kalmana w 
zabezpieczeniach elektroenergetycznych było tematem wielu prac [26], [44] 
[45], [46],[89]. Wynika z nich, że dwustanowy filtr Kalmana nie może spro 
stać wymogom filtracyjnym, przede wszystkim prądu, ze względu na istnie­
nie w tym sygnale niestacjonarnej składowej aperiodycznej. Konieczne 
jest więc rozbudowanie modelu sygnałowego i zwiększenie liczby stanów, 
gdyż błędy powstałe w filtrze dwustanowym można uważać za błędy modelowa' 
nia., Z kolei w pewnych okolicznościach napięcie może zawierać składową 
zakłócającą o wyższej częstotliwości i wariancji dość dużej w odniesie­
niu do wariancji identyfikowanej składowej i wówczas łączne traktowanie 
zakłóceń jako szumu białego może być zbyt dużym przybliżeniem (a warun­
kuje to optymalność filtru). W tych warunkach może być konieczne zwięk­
szenie liczby stanów, a więc rzędu modelu sygnałowego i filtru. W do­
tychczas publikowanych pracach na ogół proponuje się stosowanie 2-stano- 
wego filtru w obwodach napięciowych i 3-stanowego w obwodach prądowych 
[45],[47]. Jednakże istnieją też propozycje stosowania nawet i1-stano- 
wego filtru do pomiaru prądu [66]. Ten rozmiar filtru wynika z założenia 
modelu sygnałowego, który zawiera (może zawierać), przy częstotliwości 
próbkowania 12 próbek w okresie składowej podstawowej, zakłócenia drugą 
do piątej harmonicznej o istotnie dużych wariancjach, i składową aperio- 
dyczną. Ponieważ każda harmoniczna zwiększa rząd filtru o dwa, a składo­
wa aperiodyczna o jeden, stąd otrzymuje się wymieniony rozmiar filtru. 
Wydaje się jednak, że te założenia są przesadzone (zresztą wysokoczęsto- 
tliwościowe zakłócenia wcale nie muszą być harmoniczne), a ponadto obec­
ny poziom techniki cyfrowej raczej uniemożliwia stosowanie takich fil­
trów w czasie rzeczywistym ze względu na ogromne nakłady obliczeniowe. 
Tak więc rozsądny kompromis odpowiada raczej małym rozmiarom filtrów i 
wydaje się, że filtry drugiego, trzeciego, a najwyżej czwartego rzędu, 
są wystarczające i realizowalne w czasie rzeczywistym.



Istotne podczas porównywania efektów filtracji lub estymacji z wyko­
rzystaniem różnego rodzaju filtrów jest dysponowanie tymi samymi miarami 
błędów w stanie przejściowym i ustalonym. Metody oparte na korelacji lub 
filtracji nierekursywnej są metodami stałego okna, a więc stan przejścio­
wy i ustalony są wyraźnie rozdzielone. Błędy w stanie ustalonym wynikają 
tu bezpośrednio z charakterystyk częstotliwościowych filtru oraz założo­
nego poziomu zakłóceń sygnału użytecznego. Filtr Kalmana jest z kolei 
filtrem rekursywnym, projektowanym w dziedzinie czasu, i liniowym lecz 
niestacjonarnym, ze względu na niestancjonarność macierzy wzmocnień [K]. 
Miarą jego błędu zarówno w stanie przejściowym, jak i zbliżonym do usta­
lonego (które trudno wyraźnie rozdzielić), jest macierz kowariancji błę­
du. Elementy tej macierzy nie dają na ogół czytelnej informacji o czasie 
trwania stanu przejściowego, jak też utrudniają porównywanie uzyskiwa­
nych dokładności w stanie ustalonym z innymi metodami. Aby te porównania 
ułatwić, opracowano metodę określania charakterystyk częstotliwościowych 
(pseudowidmo) filtru Kalmana oraz określono jego czasy ustalania po sko­
kowej zmianie sygnału wejściowego. Te miary są być może przybliżone,lecz 
uzyskane wyniki mają dwojakie znaczenie; umożliwiają łatwe porównanie 
różnych metod lub dostarczają bardziej czytelnych wskaźników charaktery­
zujących dynamikę oraz błędy w stanie ustalonym sygnałów stosowanych da­
lej do pomiaru wielkości kryterialnych.

6.1. Podstawowe równania i modele procesu oraz filtru

Zadaniem filtracji Kalmana jest wyestymowanie składowych wektora sta­
nu procesu X, który jest opisany następującym równaniem macierzowym:

[X(k+,1)] = [A][X(k)] + LB)LU(k)] (6.1)

Ponieważ nie wszystkie składowe wektora procesu mogą być mierzone, 
można to wyrazić za pomocą równania pomiaru w następującej postaci:

[Y(k)J = [C][X(k)] + [V(k)] (6.2)

gdzie
[A] — macierz stanu rozmiaru [n x nj,
[B] - macierz zakłóceń stanu rozmiaru [n x n],
[C] - macierz pomiaru rozmiaru [m x n], gdzie 1 < m < n,
[X(k)] = [х^к) ... Xn(k)]T - wektor stanu o rozmiarze [n x 1] (T ozna­

cza transpozycję macierzy),
[Y(k)] = [Y1(k) ... Ут(к)]х - wektor pomiaru o rozmiarze Em x 1],
Lu(k)] - wektor zakłóceń stanu,-
[V(k)l - wektor zakłóceń pomiaru.

Należy tu dodać, że macierze [A], [B] oraz [C] mogą być niestacjonar­
ne i wtedy również im trzeba przypisać indeks k. Jeśli Y(k) jest cią­



giem próbek jednego, skalarnego sygnału, tak jak to omówiono dalej, to w 
tym przypadku wektor pomiaru staje się skalarem, podobnie wektor zakłó­
ceń pomiaru, a macierz pomiaru [C] ma wymiar [1 x m].

Jeśli składowe wektora stanu oraz zakłócenia spełniają określone wa­
runki, to optymalny filtr, dostarczający najlepszych estymat wektora sta­
nu, jest dany równaniem znanym jako równanie filtru Kalmana:

[Жк + 1)] = [A][X(k)] + [K(k + 1)1 {[Y(k + 1)] - [C] [A] [X(k)]} (6.3) 

gdzie 
[X(k)] - estymaty wektora stanu [X(k)J,
[K(k + 1)3- macierz wzmocnienia filtru.

Uruchomienie procedury filtracji sygnału [Y(k + 1)] wymaga więc zna­
jomości chwili powstania zaburzenia (k = 0), określenia warunków począt­
kowych [x(o)J oraz obliczenia macierzy wzmocnienia [K(k)J. Pozostałe ma­
cierze są już określone w równaniach stanu (6.1) i pomiaru (6.2). Trzeba 
tu dodać, że w pewnych rozważanych dalej modelach procesu i pomiaru ma­
cierz pomiaru [C] zależy od dyskretnej chwili k.

Obliczenie macierzy wzmocnienia [K(k)] jest dokonywane na podstawie 
znanych dotychczas macierzy oraz macierzy kowariancji zakłóceń procesu 
i pomiaru, a także macierzy kowariancji procesu w chwili к = 0, która 
stanowi warunek początkowy rekursywnej procedury obliczeń, stosownie do 
następujących równań:

[K(k)J = [M(k)][C]T[[C][M(k)][C]T + [P(k)]]"1 (6.4a)

[W(k)J = [[J] - [K(k)][C]] [M(k)J (6.4b)
См(к + D] = LA]^(k)l[A]T + LB]T (6.4c)

gdzie
[P]»[Q] - macierze kowariancji zakłóceń odpowiednio pomiaru i procesu 

(uprzednio obliczone lub uzyskane na drodze pomiarowej lub mo­
delowej ),

[M(k)] - jednokrokowa macierz kowariancji błędów estymacji stanu (mię­
dzy к - 1 a k),

[W(k)J - macierz kowariancji błędów estymacji stanu, 
[J] - macierz jednostkowa.

Wszystkie z powyższych równań mają tę istotną cechę, że nie zawiera­
ją wielkości mierzonych [Y(k)]. Dzięki temu obliczenia macierzy [K(k)]mo- 
gą być przeprowadzone off-line zanim filtr zacznie pracować, przechowane 
w pamięci i zastosowane do konkretnej realizacji po uruchomieniu filtru. 
Zapewnia to ogromne zredukowanie nakładu obliczeniowego, szczególnie is­
totne dlatego, że filtr ma być stosowany w czasie rzeczywistym. Również 
przed uruchomieniem procedury filtracji znana jest macierz kowariancji 
błędu estymacji [W(k)], tak więc jego jakość jest znana z góry.



Równania (6.1)-(6.4) charakteryzują łącznie proces, pomiar, filtr 
oraz jego jakość. Filtr opisany równaniem (6.3) jest filtrem optymalnym 
minimalizującym wariancję (6.6b), jeśli wektor procesu oraz wektory za­
kłóceń procesu i pomiaru mają odpowiednie charakterystyki probabilistycz­
ne. Zakłada się więc w teorii filtru Kalmana, że wszystkie składowe pro­
cesu mają rozkład normalny o zerowej wartości średniej i są niezależne. 
Z niezależności składowych tego wektora wynika, że ma on rozkład łącznie 
normalny o gęstości będącej iloczynem indywidualnych gęstości rozkładu i 
jego scharakteryzowanie wymaga jedynie znajomości macierzy kowariancji 
(wartość średnia jest zerowa). Przy tych założeniach macierz kowariancji 
błędu stanu (4.6b) jednoznacznie charakteryzuje stan procesu.

Wymagania dotyczące zakłóceń są w teorii filtru Kalmana nieco ostrząj- 
sze (można od niektórych z nich odstąpić, lecz kosztem często znacznego 
zwiększenia rozmiaru macierzy procesu i filtru oraz zwiększenia obciąże­
nia obliczeniowego). Zakłada się więc, że wektory zakłóceń procesu (u(k)] 
i pomiaru [v(k)J są szumami białymi o rozkładzie normalnym, mającymi ze­
rowe wartości średnie, znane są ich kowariancje,oraz że ich składowe są 
procesami niezależnymi. Implikuje to tak jak poprzednio normalność łącz­
nego rozkładu prawdopodobieństwa i jednoznaczne scharakteryzowanie roz­
kładu za pomocą macierzy kowariancji tych zakłóceń, które muszą być zna­
ne. Ponadto jeszcze z właściwości szumu białego wynika, że macierze kowa­
riancji błędów są diagonalne, a elementy głównej przekątnej są po prostu 
wariancjami błędów poszczególnych składowych wektorów. Ponieważ dodatko­
wo zakłada się niezależność zakłóceń procesu i pomiaru, więc omawiane 
własności zakłóceń można opisać następującymi równaniami:

Q(k) dla i = к
E {[U(k)J [U(i)]T]

E{[V(k)J [V(i)]T)

E {[U(k)l [V(i)]T'

0
P(k)

0
h 0

dla i к 
(6.5)

dla i = к

dla i к
dla wszystkich k, i

gdzie E - oznacza wartość oczekiwaną.
Zastosowanie wymienionych procedur i uruchomienie rzeczywistego fil­

tru wymaga jeszcze określenia warunków początkowych. Wymaga to wyznacze­
nia kowariancji procesu w chwili к = 0, co pozwala na zainicjowanie re- 
kursywnych procedur (6.4) 1 obliczenia macierzy wzmocnień [K(k)J. Należy 
także określić warunki początkowe równania filtracji, to jest oczekiwane 
wartości wektora stanu И w chwili к = 0. W rozważanym przypadku mode­
li sygnałowych ma się do czynienia z procesami stacjonarnymi i wektor 



stanu ma ustaloną wartość oczekiwaną i znane kowariancje. Można by więc 
przyjąć warunki początkowe o tych wartościach. Jednakże rozważając bar­
dziej szczegółowo przechodzenie ze stanu normalnego do stanu zwarcia 
można by przyjąć na przykład wektor stanu w chwili początkowej o wartoś­
ciach równych odpowiednim składowym w chwili poprzedzającej zwarcie 
(k = 1), a kowariancje równe kowariancjom przejścia między tymi stanami. 
Założywszy pewną dowolność w przyjęciu warunków początkowych, można zapi­
sać następujące równania:

e{[x(o)]} = [x0]
E ^xo - xo] } =
[x(o)] = [x0]
[w (o)] = [Wo]

(6.6)

Opracowanie i uruchomienie filtru Kalmana przebiega w trzech etapach:
a) opracowanie modelu procesu i pomiaru,
b) określenie własności probabilistycznych procesu i zakłóceń oraz 

obliczenie macierzy wzmocnień [K], 
c) uruchomienie procedury filtracji.
Punkty a i b są ze sobą wzajemnie powiązane w tym sensie, że przyję­

ty minimalnego rozmiaru model procesu może mieć modele zakłóceń odbiega­
jące od szumu białego. Wówczas trzeba uwzględnić dodatkowe stany tak, 
aby otrzymać ten wymagany model zakłóceń. W przeciwnym przypadku filtr 
będzie suboptymalny, a nawet estymacja może być obarczona bardzo dużym 
błędem. Przykładem tu może być stosowanie dwustanowego filtru do estyma­
cji prądów, w których istnieje składowa aperiodyczna o znacznej wartości. 
Zakłócenia w tym przypadku nie są szumem białym, a błędy powodowane przez 
błędne modelowanie procesu są ogromne.

6.2. Modele i filtry o różnej liczbie stanów

Ma podstawie modeli zakłóceń, ich widm gęstości mocy i funkcji auto­
korelacji znanych z publikacji (np. [47]) można sądzić, że przy aktual­
nych możliwościach technicznych stosowane będą filtry 2-4-stanowe, za­
pewniając satysfakcjonującą optymalność filtracji. Wszystkie te filtry 
mogą być zrealizowane z użyciem dwu wariantów modeli procesu, analogicz­
nych do filtracji i korelacji. Różnią się one macierzami stanu i pomiaru, 
natomiast pozostałe wielkości są takie same. Obecnie określi się te ma­
cierze dla odpowiednich modeli sygnałowych napięć i prądów systemu elek­
troenergetycznego. Trzeba jednak od razu na wstępie podkreślić, że przy­
padek filtracji Kalmana jest inny od omawianych dotychczas filtrów. Nie 
ma bowiem tutaj bezpośredniego związku między pojedynczą realizacją pro­



cesu (na przykład przebiegi zakłóconego napięcia lub prądu generowane w 
wyniku danego zaburzenia) a parametrami filtru. Nie określa się również, 
odmiennie niż poprzednio, jakości filtracji dla takiej pojedynczej reali­
zacji sygnału. Wynika to z przyjętych w tej filtracji probabilistycznych 
modeli procesu i zakłóceń, a także nieergodyczności zakłóceń i procesu 
powodującej, że ich parametry muszą być określone po zbiorze realizacji, 
a nie po czasie. Naturalnie dla danego modelu sygnałowego macierze pro­
cesu i pomiaru są zdeterminowane i zostaną określone.

Niech wolny od zakłóceń fazor napięcia lub prądu będzie dany równa­
niem

X(t) = X1 ехр^(шр + q>1 )] (6.7)

Fazor ten będzie znany, jeśli będą znane dwie rzeczywiste funkcje 
czasu. Po przejściu na czas dyskretny można zauważyć, że wraz ze wzros­
tem czasu z chwili к do к + 1 składowe fazora zmieniają się stosow­
nie do równań:

X^cos [(к + 1 + cp^] = cos^Tp X^ cos(kt»1Ti + ф1) -

- sin(w Tt) X^ sin(kw1Ti + )
г п (6.8)

X1sin[(k + 1 = sin(w1Ti) Х1 costkmp^ + ф^ ) +
+ соа(ш^Т^) Х^ sin(kwpi + Ф^)

Zapisując te równania w postaci macierzowej otrzymuje się równanie i
macierz stanu w postaci 

xd1 (k + 1)

Xqi(k + 1)

cos w

sin

- sin шр.^

cos wpd

Х^к)

xql(k)
(6.9)

gdzie
Xdpk) = X1 cos(kwpi + фр,

xq1(k) = X1 sintkwp^ + ф.р,
[x(k)] = [xd1(k) Xq1(k)]T - wektor stanu, 

- macierz kwadratowa jest macierzą stanu [A].

Znając równanie stanu można określić równania i macierz pomiaru. Za­
leży ono od tego, jaki sygnał jest dostępny pomiarowo. Jeśli założyć, że 
dostępna pomiarowo jest składowa rzeczywista fazora (6.7), to macierz po­
miaru jest dana równaniem:

CC] = [1 0] (6.10)

Załóżmy obecnie, że fazor X(t) jest nieco bardziej złożony i może 
być opisany równaniem:



X(t) = X. exp[j(a>.t + ф )] + X exp [j (mo) t + <p )] + X exp(-t/T ) I i ! Ш I Ill сл cl
, (6.11)

Jeśli przyjąć, że Xm jest równe zeru, to do określenia fazora 
(6.11) potrzebna jest znajomość trzech rzeczywistych funkcji czasu i 
otrzymuje się odpowiednio model 3-stanowy. Gdy Xa jest równe zeru, 
trzeba znać cztery funkcje czasu i odpowiedni model jest wówczas 4-sta- 
nowy.

Macierze stanu i pomiaru w tych przypadkach są określone analogicz­
nie jak poprzednio i mają postać:
Model 3-stanowy:

[A] =

COS “1Ti - sin “1Ti
sin M1Ti cos ш1т1

0 0

[C] = [1 0 1]

(6.12a)

(6.12b)

Model 4-stanowy

[AJ

cos

sin ш^Т^
- sin w
cos m^T^

cos mw.T.0 1 1
sin mm^T^

- sin mw.jT^ 
cos mw^T^

(6.13a)

[C] = [1 0 1 0], (6.13b)

gdzie
- okres impulsowania,

m - mnożnik częstotliwości składowej innej niż podstawowa.
Ta - oczekiwana wartość stałej czasowej składowej aperiodycznej.

Na marginesie warto wspomnieć, że stosowane równania stanu i pomiaru 
powinny zapewniać obserwowalność [67]. Łatwo sprawdzić, że przedstawione 
równania i macierze warunek ten spełniają,

W podobny sposób można by tworzyć modele o dowolnym stopniu rozbudo­
wy, lecz Jest zrozumiałe, że powinien być stosowany model o możliwie ma­
łym rozmiarze. Jest istotne, jak ów rozmiar minimalny określić. Odpo­
wiedź tkwi w charakterystykach zakłóceń fazora X(t) (6.7), (6.11), a w 
konsekwencji zakłóceń procesu i pomiaru w modelu stanowym. Tymi istotny­
mi, najważniejszymi charakterystykami zakłóceń są widmo gęstości mocy i 
(lub) funkcja autokorelacji oraz ich wariancje [2],[5],[8]. Jeśli więc 
przy najmniejszym rozmiarze modelu, modelu 2-stanowym, widmo gęstości mo­
cy zakłóceń jest stałe lub prawie stałe, albo też ich funkcja autokorela- 



cji jest zbliżona do impulsu Diraca, to rozmiar modelu jest odpowiedni. 
Jeśli tak nie jest, to konieczna jest zmiana modelu. Określenie rozmiaru 
i parametrów tego rozbudowanego modelu może być dokonane z zastosowa­
niem złożonych, zaawansowanych metod,na przykład faktoryzacji widmowej 
[2], lub też analizy widma gęstości mocy. Załóżmy, że widmo to w otocze­
niu pewnej częstotliwości wm wykazuje wyraźnie większe wartości, a dla 
pozostałych częstotliwości jest stałe lub niemal stałe. Wówczas, zwięk­
szając rozmiar modelu procesu przez uwzględnienie w nim składowej o tej 
częstotliwości шш, uzyska się model procesu i filtru zbliżony do opty­
malnego. Aby się o tym przekonać, należy jeszcze zbadać widmo gęstości 
mocy lub funkcję autokorelacji tego "nowego" zakłócenia powstałego przez 
wydzielenie z sygnału modelowanych składowych procesu o częstotliwości 
w. i w_.1 m

Jeśli widmo jest płaskie, to znaczy, że taka uproszczona metoda przy­
niosła pożądane wyniki, a model procesu jest właściwy i odpowiedniego 
rozmiaru.

Mówiąc o zakłóceniach trzeba jeszcze wspomnieć o macierzy [B] modelu 
procesu ((6.1), (6.4c)). Otóż macierz ta odzwierciedla przypadkowe zmia­
ny wektora procesu między dwiema chwilami próbkowania, nie uwzględnione 
w macierzy stanu. Jest uzasadnione przyjęcie, że ów biały szum dodawany 
do wektora stanu będzie zmieniał się tak, jak sam wektor stanu, to zna­
czy, że macierz [B] (Lub [B'] ) jest równa macierzy stanu [A] . Trzeba tu­
taj także podkreślić, że zmiany wektora stanu między chwilami próbkowa­
nia są tak małe, że ich widmo gęstości mocy jest bardzo małe w porówna­
niu z widmem gęstości mocy błędów pomiaru i często przyjmuje się zerową 
macierz [Bj.

Obecnie można już podać brakujące w opisie modeli 2-, 3- i 4-stano- 
wych macierze kowariancji zakłóceń oraz warunków początkowych: 
Model 2-stanowy:

- kowariancje zakłóceń

{OJ =

[P] = aę

- warunki początkowe

(6.14а)

(6,l4b)

(6.14с)

(6.l4d) 



gdzie E - wartość oczekiwana, a - odchylenie standardowe.

Model 3-stanowy:
- kowariancje zakłóceń

[QJ = (6.15a)

o[PJ = <

- warunki początkowe
0<o] = [E^d1(0)J E^a(0)4T

О

2 °ха0_

Model 4-stanowy;
- kowariancje zakłóceń

LWJ = 2

0 

[P] = O2 
L V

- warunki początkowe
=[E{xd1(0)} E{xq1(o)} E{Xdm(0)} E{Xqm(O)}]T

(6.15b)

(6.15c)

(6.15d)

(6.16а)

(6.16b)

(6.16с)

(6.l6d)

Znając rozmiar filtru oraz konkretne wartości występujące w poszcze­
gólnych macierzach kowariancji błędów i warunków początkowych można obli­
cze macierz wzmocnienia [К] (6.4a), przechować ją w pamięci i uruchomić 
cyfrowy filtr Kalmana (6.3).

Jak wspomniano na początku tego paragrafu, filtr Kalmana w omawia­
nym przypadku może być zrealizowany według dwu modeli procesu analogicz- 



nych do splotu i korelacji. Omówiony dotychczas odpowiada realizacji we­
dług tego pierwszego modelu, to znaczy przy danym przemiennym sygnale 
wejściowym CY(k)] (wynik pomiaru (6.2)) filtr dokonuje estymacji dwu 
przemiennych ortogonalnych składowych sygnału (к), X (k).

Drugi wariant modelu analogiczny do korelacji otrzymuje się równie 
łatwo. Weźmy rzeczywistą składową fazora X(t) (6.7):

Re{x(t)} = X1 cosCw^t + ^ ) = X^ cos w^t - X'1 sin m^t (6.17)

Ponieważ częstotliwość' jest ustalona, więc do określenia dwu pozosta­
łych parametrów sygnału konieczna jest znajomość X^ 
Wiednie równanie stanu ma teraz postać:

oraz X'. Ql i odpo-

Jeśli przyjąć podobnie jak poprzednio, że dostępna pomiarowo jest 
składowa rzeczywista fazora (6.7), to macierz pomiaru w tym modelu jest 
dana równaniem:

[C'] = [cos kw^T^ -sin kw^Tj (6.19)

W analogiczny sposób otrzymuje się macierze stanu i pomiaru filtrów 
wyższych rozmiarów, realizowanych według tego wariantu. Są one opisane 
zależnościami:
Model 3-stanowy:

(6.20a)

[C'] = [cos кш^Т^ -sin ku^T^ 1] (6.20b)

Model 4-stanowy:

(6.21а)

[C'] = [cos kw1Ti -sin kw1Ti cos kmw.^ -sin kmw^J (6.21b)



Macierze kowariancji zakłóceń oraz warunków początkowych są natural­
nie w obu modelach identyczne. Podano je już poprzednio - równania 
(6.14)-(6.16).

Przedstawione tu modele są równoważnym sposobem opisu tego samego 
procesu. 0 wyborze jednego lub drugiego z nich mogą decydować dodatkowe 
czynniki, takie jak na przykład prostota interpretacji rezultatów, zło­
żoność obliczeniowa algorytmu realizacji filtru, czy też dalsze przewi­
dywane przetwarzanie jego sygnałów wyjściowych.

6.3. Parametry projektowe filtru i macierz [K]

W przedstawionych wyżej równaniach trzy macierze i ich elementy mają 
przede wszystkim wpływ na uzyskiwane charakterystyki filtru. Są to macie­
rze [Q], [P] oraz (równania (6.14)-(6.16)). Wartości elementów 
tych macierzy mogłyby być uzyskane na podstawie:

- pomiarów w systemie rzeczywistym w punkcie zainstalowania zabez­
pieczenia

- badań modelowych w układzie odpowiadającym rzeczywistej konfigura­
cji systemu i sygnałów z modelu cyfrowego w punkcie zainstalowania zabez­
pieczenia

- oszacowania wartości parametrów opartych na doświadczeniach eks­
ploatacyjnych.

Pierwszy sposób trzeba uznać za mało efektywny, gdyż niewiele jest 
sposobności do prowadzenia pomiarów podczas zwarć w systemie, a w punk­
cie zainstalowania zabezpieczenia obserwuje się je kilka razy do roku. 
Druga z metod jest bardziej efektywna, gdyż pozwala na dokładne określe­
nie wszystkich wymaganych wielkości,i to dość łatwo, przez symulowanie 
różnych konfiguracji systemu, różnych rodzajów zwarć, dowolnych warunków 
początkowych, różnego miejsca zwarcia itp. Ograniczenia tej metody wyni­
kają z konieczności opracowania złożonego modelu cyfrowego, co jest i 
czasochłonne i kosztowne. Niemniej jednak trzeba jeszcze raz podkreślić, 
że jest to metoda pozwalająca na najbardziej precyzyjne określenie para­
metrów projektowych filtru, a ponadto weryfikację poprawności jego mo­
delu.

Trzecia z metod jest obarczona znacznymi błędami, a uzyskany filtr 
może kumulować błędy modelowania i błędy wartości parametrów. Niemniej 
jednak, orientując się, że w zasadzie w obwodach napięciowych właściwy 
jest (może być) filtr 2-stanowy, a w obwodach prądowych 3-stanowy, moż­
na próbować taki suboptymalny filtr zaprojektować. Można więc przyjąć 
bardzo uproszczone założenie, że wartości warunków początkowych są rów­
ne wielkościom przedzwarciowym, a dalej, że wariancje początkowe są kwa­
dratami odchyleń standardowych równych jednej trzeciej względnych war­
tości maksymalnych napięcia i prądu (ax10v = 1/3, ax10I = (1/3) dmax/lnom).



Z kolei można przyjąć macierze [Q] oraz [B] zerowe. W tych bardzo uprosz­
czonych rozważaniach najtrudniejsze jest określenie av przede wszyst­
kim dlatego, że o może zmieniać się wraz z dyskretnym czasem k.

Z badań publikowanych w pracy [47], przeprowadzonych na modelu cyfro­
wym wynika, że wariancje zakłóceń napięcia i prądu maleją ze stałą czaso­
wą określoną równaniem:

1 L. 1
T =------ i----  (6.22)

2 R, 1 + R-. 1 г 
gdzie
Rp - średnia oczekiwana rezystancja w miejscu zwarcia,
1 - połowa długości linii,
RiLi - jednostkowa rezystancja i indukcyjność.

Po przyjęciu tej wartości stałej czasowej oraz szacunkowych wartości 
początkowych wariancji zakłócenia możliwe jest już obliczenie macierzy 
wzmocnień [K(k)J i uruchomienie filtru.- Naturalnie taki suboptymalny 
filtr może nie być najlepszy i należy raczej projektować go dokładniej 
na podstawie możliwie dobrego modelu cyfrowego fragmentu systemu, które­
go zabezpieczenie będzie oparte na filtracji Kalmana sygnałów.

6.4. Charakterystyki efektywności filtru

6.4.1. Macierz [K] i wariancje błędów estymacji

Wariancje błędów to naturalne miary jakości składowych wektora stanu 
w filtrze Kalmana. Jak już wspomniano, macierz kowariancji błędów jest 
obliczana w trakcie obliczeń macierzy wzmocnienia [K] filtru. Rozważmy 
najpierw elementy macierzy [K], gdyż również one dostarczają sporo poży­
tecznej informacji. Gdy wielkością zmierzoną jest skalar, a filtr jest 
2-stanowy, macierz [K] składa się z dwu elementów K^ i KgT Przykłado­
we wartości tych elementów w funkcji dyskretnego czasu к przedstawiono 
na rys. 6.1. Wybrano tutaj pewne szczególne wartości parametrów, jako że 
nawet bardzo pobieżna analiza pozwala ocenić, które z nich są istotne i 
które mają wpływ na charakter przebiegu elementów macierzy [K], a także 
wariancji błędów estymat [W]. Ważne są tutaj trzy przypadki:

a) początkowa kowariancja wektora stanu jest znacznie większa niż ko­
wariancje zakłóceń, przy czym kowariancja zakłóceń pomiaru jest większa 
niż zakłóceń procesu (ale obie są bardzo małe w odniesieniu do tej pier­
wszej),

b) początkowa kowariancja wektora stanu nieznacznie tylko przewyższa 
kowariancje zakłóceń pomiaru, kowariancja zakłóceń stanu pozostaje bar­
dzo mała.



c) początkowa kowariancja wektora stanu i zakłóceń pomiaru są zbliżo­
ne wartościami, lecz ta ostatnia maleje eksponencjalnie; sytuacja ta naj­
lepiej chyba odzwierciedla realia systemu.

Krzywe 1, 2 i 3 na rys. 6.1 odzwierciedlają przebieg elementów macie­
rzy [K] w tych przypadkach. W pierwszym z nich duże początkowo wartości 
(1 i -2,7 odpowiednio) szybko maleją do wartości ustalonych i dalej

Rys. 6.1. Elementy macierzy [K] 2-stanowego filtru Kalmana w funkcji 
dyskretnego czasu к dla różnych parametrów projektowych

Fig. 6.1. Elements of matrix [К] of 2-state Kalman filter versus 
discrete time к for different design parameters 



i Kg., pozostają stałe. Oznacza to dynamiczne dojście do wartości ustalo­
nej, a także stacjonarny dla większych wartości czasu к filtr o odpo­
wiednio silnym ujemnym sprzężeniu zwrotnym (znaczne wartości [K] w sta­
nie ustalonym). W przypadku drugim (krzywe 2) początkowe wartości [K] 
(szczególnie K21) są znacznie mniejsze, K2^ szybko, a pomału zmie­
rzają do zera. Po niezbyt długim czasie filtr nasyca się danymi i kolej­
ne próbki mierzonego sygnału mają znikomy wpływ na wyestymowane wartości. 
Widać, że i dynamika dochodzenia do wartości ustalonej będzie zła, a wa­
riancje błędów estymat duże. W przypadku trzecim uzyskuje się przebieg i 
właściwości pośrednie między dwoma pierwszymi przypadkami. Otóż duża po­
czątkowo wariancja zakłóceń powoduje, że dynamika dochodzenia do wartoś­
ci ustalonej początkowo nie jest duża, a wariancje błędów znaczne. Ale 
następnie, na skutek malenia wariancji błędów, uzyskuje się duże ustalo­
ne wartości i K21 i małe wariancje błędów estymacji jak w przypad­
ku pierwszym.

Obserwacje i wnioski z przebiegu elementów macierzy [K] mają natural­
nie charakter jakościowy, natomiast konkretne wartości otrzyma się przez 
obliczenie wariancji błędów estymacji (6.4b).

Wariancje błędów estymacji każdej ze składowych wektora stanu są to 
diagonalne elementy macierzy [W] - W^(k) = (6.4b). Niezależnie od
tego, jaki jest rozmiar wektora stanu, wielkości kryterialne są oblicza­
ne na podstawie składowej podstawowej sygnału. Tak więc błędy estymacji 
związane są z wariancjami dwu pierwszych składowych wektora stanu, to 
jest i Przedstawiono je na rys. 6.2-6.6 dla filtrów 2-, 3- i 4- 
stanowych i różnych parametrów projektowych filtru.

W przypadku pierwszym (rys. 6.2) przebieg filtracji będzie charakte­
ryzować doskonała dynamika. Po kilku pierwszych próbkach od rozpoczęcia 
pracy filtru wariancje W-^k) i W22(k) zmniejszają się od dużych wartoś­
ci początkowych Wx^q do wartości determinowanych przez i . Rela­
cja między tymi wielkościami wpływa na dalszy przebieg wariancji. Jeśli 

jest nieznacznie tylko większe od ou (obie te wartości są znacznie 
mniejsze od ax^Q), wariancde W^(k) i W22(k) ustalają się bardzo 
szybko i praktycznie nie maleją wraz z dalszym wzrostem dyskretnego cza­
su k. Ponieważ odchylenia standardowe maleją wolniej niż wariancje, 
więc dla zachowania większej dokładności właśnie te wielkości przedsta­
wiono na tym i dalszych wykresach. Dodatkowo unormowano je ze względu na 
początkową wartość odchylenia standardowego błędu estymacji .
Szczegółowe parametry tego wykresu (rys. 6.2) są następujące: ax^g = 10, 
0^=1, ou = 0,5, a liczba.próbek w okresie składowej podstawowej wynosi 

= 12 (przy tej samej wartości określa się odchylenia standardowe 
dla następnych wykresów). Jak już powiedziano, wartości ustalone odchy­
leń standardowych błędu są osiągane bardzo szybko, lecz szybkość ta jest
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Rys. 6.2. Względne odchylenia standardowe błędów estymacji w funkcji 
dyskretnego czasu k, składowej bezpośredniej (a) i kwadraturowej (b);

parametry filtru: ox1Q = 10, <\ = 1, a = 0,5
Fig. 6.2. Ratio of standard deviation of estimation errors versus discrete 

time к of direct (a) and quadrature (b) signal components;
filter parameters: a = 10, a = 1, a = 0,5



Rys. 6.3. Względne odchylenia standardowe błędów estymacji w funkcji 
dyskretnego czasu k, składowej bezpośredniej (a) i kwadraturowej (bj; 

parametry filtru: ox^0 = Ю, °v = 1 * °u = °
Fig. 6.3. Ratio of standard deviation of estimation errors versus discrete 

time к of direct (a) and quadrature (b) signal components ;
filter parameters: ox^0 = Ю, ov = 1, au = 0
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Rys. 6.4. Względne odchylenia standardowe błędów estymacji w funkcji 
dyskretnego czasu к składowej bezpośredniej (a) i kwadraturowej (b); 

parametry filtru: = 10, °v = Ю, °u = 0
Fig. 6.4. Ratio of standard deviation of estimation errors versus discrete 

time к of direct (a) and quadrature (b) signal components;
filter parameters: о = Ю, oy = 10, ou = 0



Rys. 6.5. Względne odchylenia standardowe błędów estymacji składowej bez­
pośredniej (a) i kwadraturowej (b) prądu; 3-stanowy filtr Kalmana; para­
metry: 1 -o ._ = 2, av = exp<-k/12), o„ = 0,001; 2- jak 1 lecz N. = 24; 

x1° 3- jak 1 lecz av = exp(-k/3)
Fig. 6.5. Ratio of standard deviation of estimation errors of direct (a) 
and quadrature (b) current components; 3-state Kalman filter^ parameters:

1 - a .„ = 2, л = exp(-k/12), a,, = 0,001; 2 - as in 1 but N. = 24» 
x1° 3 - as in 1 but av = exp(-k/3)



Rys. 6.6. Względne odchylenia standardowe błędów estymacji składowej bez­
pośredniej (a) i kwadraturowęj (b) napięcia; 2-stanowy filtr Kalmana; pa­
rametry: 1 - n = 0,1, o„ = 0,6 exp (-k/6); 2 - jak 1 lecz of =0,3x1° ехр(-к/6)У 3 - a2 = 0,3 exp(-k/1,5) v
Fig. 6.6. Ratio of standard deviation of estimation errors of direct (a) 
and quadrature (b) voltage components; 2-state Kalman filter;parameters: 
1 - о = 0,1, a2 = 0,6 exo(-k/6); 2 - as in 1 but o2 = 0,3 exp(-k/6);

3 -'a2 = 0,3 exp(-k/1,5) v 



uzależniona od rzędu filtru. I tak: najwolniej odbywa się to w filtrze 
2-stanowym i jak stwierdzono, jest to praktycznie niewiele zależne od 
przyjętej oczekiwanej stałej czasowej Ta aperiodycznej zmiennej stanu. 
Ten najwolniejszy spadek jest zapewne związany ze znanymi już z metod 
fourierowskich trudnościami w rozpoznawaniu sygnału w obecności, posia­
dającej szerokie widmo, składowej aperiodycznej. W każdym jednak przypad­
ku spadek do poziomu ustalonego odchylenia standardowego odbywa się bar­
dzo szybko: w filtrze 2-stanowym potrzeba na to 2 próbek, w filtrze 4- 
stanowym potrzeba na to 5 próbek, a w filtrze 3-stanowym 6 próbek. Tak 
więc odchylenia standardowe błędów maleją z doskonałą dynamiką i odpo­
wiednio dokładne estymaty sygnałów filtru również otrzyma się bardzo 
szybko.

Jak wykazały badania symulacyjne, wartości ustalone odchyleń stan­
dardowych są zależne jedynie od relacji między odchyleniami standardowy­
mi zakłóceń (jeśli ov i o «a 1Q). Na wykresach rys. 6.2 przyjęto ilo­
raz ау/ои = 2. Jeśli iloraz tych odchyleń standardowych jest identyczny, 
lecz ich wartości bezwzględne są na przykład sto razy mniejsze (o^. = 
= 10~2 o, = 10-2оц), to odpowiednio ustalone odchylenia standardowe
błędów estymacji będą także sto razy mniejsze (a^ = Ю"2^, =
= lO^Ogg). Tak więc wykresy z rys. 6.2 pozwalają na ocenę odchyleń stan­
dardowych (lub wariancji) błędów estymacji przy dowolnych wariancjach 
błędów (lecz tym samym ich ilorazie).

Powstaje teraz pytanie: jak będą się zmienić przebiegi tych odchyleń 
standardowych, gdy ten iloraz się zmienia. Jest to o tyle istotne, że - 
jak stwierdzono poprzednio - wartości ou będą w rzeczywistości bardzo ma­
łe lub zerowe.

Badania symulacyjne wykazały, że zmiany te wpływają przede wszystkim 
na charakter wykresu w stanie ustalonym. Przy niewielkich wartościach te­
go ilorazu (o^o ) odchylenia standardowe błędów estymat są ustalone po 
kilku próbkach i praktycznie dalej nie zmieniają się z czasem. Gdy ilo­
raz ten rośnie, wówczas obserwuje się powolny spadek tych odchyleń stan­
dardowych. Graniczny przypadek (o = 1, o = o) przedstawiono
na rys. 6.3. Aby poprawić dokładność tego wykresu, począwszy od к = 7 
zmieniono jego skalę. Jakościowo i ilościowo przebiegi odchyleń standar­
dowych błędów estymacji są niemal identyczne (rys. 6.2 i rys. 6.3) dla 
kilku początkowych próbek, gdyż decyduje tu relacja między początkową 
wariancją wektora stanu a wariancjami błędów. Wraz z dalszym wzrostem 
liczby próbek różnice stają się ilościowo znaczące. Na przykład po dwu­
nastu próbkach (a więc po okresie składowej podstawowej, gdy N^ = 12) 
odchylenia standardowe błędów są około 2,5 raza mniejsze niż poprzednio, 
a po dwudziestu czterech próbkach ponad 3 razy mniejsze. Odpowiada to 
wariancjom błędów 6 i prawie 10 razy mniejszym niż poprzednio.



Na rysunku 6.4 przedstawiono odchylenia standardowe błędów estymacji 
dla dużych zakłóceń pomiaru. Szczegółowe parametry tego wykresu są nastę­
pujące: = 1, ay = 1, ou = 0. Z podobnym przypadkiem można mieć do
czynienia podczas pomiaru napięcia, gdzie początkowa kowariancja stanu i 
kowariancje zakłóceń mogą być zbliżone wartościami. Charakter wykresów 
na tym rysunku jest zasadniczo różny od poprzednich. Odchylenia standar­
dowe błędów estymacji maleją od samego początku wolno i mają dość duże 
wartości także w pobliżu czasów odpowiadających podejmowaniu decyzji 
(k >12).

Ostatnie dwa wykresy wariancji błędów estymacji sporządzono dla mode­
li i parametrów zakłóceń wziętych z literatury [47]. Pierwszy z nich 
(rys. 6.5) przedstawia odchylenia standardowe błędów w wyniku stosowania 
3-stanowego filtru prądu o szczegółowych parametrach podanych na rysunku, 
a drugi z nich (rys. 6.6) - 2-stanowego filtru napięcia. Podstawowe róż­
nice dotyczące założonych parametrów projektowych dotyczą malejącej eks- 
ponencjalnie wariancji zakłóceń [47]. Fakt, że kowariancje te maleją, ma 
bardzo korzystny wpływ na wariancje błędów estymacji. Otóż filtr, które­
go parametry początkowe są podobne do tego z rys. 6.4, dzięki malejącej 
wariancji zakłóceń wykazuje lepszą dynamikę spadku wariancji (rys. 6.5) 
i mniejsze wartości ustalone (szczegółowe parametry podano na tym rysun­
ku). Wykresy te można by uznać za szczegółową ilustrację własności 3-sta- 
nowego filtru prądu. Z kolei rys. 6.6 odzwierciedla odchylenia standar­
dowe błędów estymacji filtru Kalmana napięcia. Błędy te maleją dość wol­
no, ale warto zwrócić uwagę na przyjęte parametry filtru, a szczególnie 
na dużą początkową wariancję zakłóceń. Otóż filtr napięcia, mimo że ma 
mniejszą liczbę stanów, będzie wykazywał gorsze charakterystyki ze wzglę­
du na spadek wartości skutecznej mierzonej składowej podstawowej. Stąd 
też trudności z dokładnym pomiarem napięcia niezależnie od tego, jaką me­
todę filtracji się stosuje.

W podsumowaniu można stwierdzić, że badania wariancji błędów estyma­
cji wykazały bardzo dobrą dynamikę zmian wartości tych wariancji oraz ma­
łe wartości ustalone i można sądzić, że znaczenie filtru Kalmana w esty­
macji wielkości kryterialnych zabezpieczeń elektroenergetycznych będzie 
wzrastało.

6.4.2. Czasy odpowiedzi i charakterystyki częstotliwościowe filtru

Wariancje lub odchylenia standardowe błędów estymacji dostarczają 
syntetycznej informacji o własnościach filtru. Jednakże w teorii filtrów 
deterministycznych dziedzina czasu i częstotliwości są rozdzielone i'ok­
no pomiarowe lub czasy ustalania (w filtrach rekursywnych) dostarczają 
informacji o dynamice filtru (i dalej dynamice pomiaru), a charakterysty­
ki częstotliwościowe o możliwej do uzyskania skuteczności filtracji. Po­



nieważ filtr Kalmana jest filtrem rekursywnym, wykonano badania jego cza­
sów ustalania.

Ponieważ, jak to stwierdzono w p. 6.4.1, dynamika filtru jest zależ­
na od relacji między wariancjami (odchyleniami standardowymi) zakłóceń 
pomiaru i początkową wariancją procesu, więc przeprowadzono badania dla 
różnego ilorazu tych wariancji. Były to; °v^axio = °»00^» °»°05; 0,01; 
0,02; 0,05; 0,1; 0,2; 0,5; 1.

Rys. 6.7. Przebiegi estymacji amplitudy sygnału w funkcji dyskretnego 
czasu к dla różnych parametrów projektowych filtru

Fig. 6.7. Signal magnitude estimation versus discrete time к for 
different design parameters of the filter

Na rysunku 6.7 przedstawiono przebiegi estymacji amplitudy dla tych 
relacji między wariancjami. Widać tam wyraźnie, że doskonała dynamika i 
niewielkie różnice w przebiegu tych krzywych występuje aż do dwu ostat­
nich wartości tych ilorazów. W dwu ostatnich przypadkach (o^o^q = 0,5; 
1) estymacja bardzo się wydłuża i nawet po trzech okresach składowej pod­
stawowej odchylenia od wartości ustalonej są wyraźne. Trzeba tu dodać, 
że w celu ujednolicenia warunków porównania przyjęto, że sygnał jest nie­
zakłóconą składową podstawową. Wykres z rys. 6.7 dostarcza w zasadzie ja­
kościowych informacji o czasach ustalania estymacji.

Przeprowadzono również bardziej szczegółowe badania czasów ustalania 
przyjmując trzy poziomy dokładności: 10; 5 i 1%. Wyniki przedstawiono 
dla 2-, 3- i 4-stanowych filtrów na rys. 6.8. Jak widać z tych rysunków, 
filtr Kalmana rzeczywiście charakteryzuje doskonała dynamika. Przy nie­
zbyt dużych wartościach dwie, trzy, lub co najwyżej cztery prób­
ki odpowiadają jednoprocentowemu czasowi ustalania. Mniejsze wymagania 
dokładnościowe (5 lub 10%) pozwalają na osiągnięcie tych samych czasów 
ustalania dla wyższych wartości ilorazu Oy/o^g. Jeśli iloraz ten wzras­
ta, zbliżając się do jedności, to 10-procentowy czas ustalania odpowiada 
17 próbkom, a więc 1,5 okresu składowej podstawowej, a do osiągnięcia 
wyższych dokładności nie wystarczają dwa okresy składowej podstawowej.
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Rys. 6.8. Czasy ustalania odpowiedzi 
podczas estymacji amplitudy sygnału 
z zastosowaniem filtrów KFlmana o 
różnej liczbie stanów w zależności 
od ilorazu odchyleń standardowych za­
kłóceń pomiaru i początkowego 
odchylenia standardowego procesu
Fig. 6.8. Settling time of signal 
magnitude estimation using different 
state Kalman filters versus ratio of 
standard deviation of measurement 
noises av and initial standard de­

viation of the process о



W podsumowaniu można stwierdzić, że przedstawione na rys. 6.8 wykre­
sy odzwierciedlające dynamikę 2-, 3- i 4-stanowych filtrów Kalmana prze­
konują o ich bardzo dobrych własnościach dynamicznych i mogą posłużyć 
jako diagramy do oceny dokładności dynamicznej filtru po zadanej liczbie 
próbek, lub oceny czasu odpowiadającego zadanej dokładności estymacji 
przy założonych lub znanych innych parametrach projektowych filtru.

Filtr Kalmana o przyjętych modelach procesu i pomiaru jest filtrem 
niestacjonarnym, a ta jego cecha wynika ze zmienności elementów macie­
rzy [K] wraz ze zmianą dyskretnej chwili próbkowania k. Elementy tej 
macierzy szybciej lub wolniej zdążają do wartości ustalonej wraz ze wzro­
stem к (rys. 6.1), ale można w pewnym przybliżeniu przyjąć, że w więk­
szości przypadków przedział niestacjonarności jest nie większy niż okres 
składowej podstawowej. Dla większych przedziałów czasu filtr jest stacjo­
narny i można mówić o jego widmie w normalnym sensie. Jeżeli jednak, ze 
względu na wymagane w zabezpieczeniach eleketroenergetycznych możliwie 
krótkie czasy estymacji, chce się ocenić widmo dla tych krótkich prze­
działów, to należy raczej mówić o pseudowidmie, które pomimo pewnych 
trudności interpretacyjnych też może dostarczyć pożytecznych informacji. 
Tak więc to pseudowidmo filtru jest w rozważanym przedziale czasu także 
niestacjonarne i jest funkcją trzech parametrów: względnej częstotliwoś­
ci m, dyskretnego czasu к oraz fazy sygnału.

Metoda postępowania podczas określania charakterystyk częstotliwoś­
ciowych sprowadza się do obliczenia (lub zmierzenia) w jakim stopniu moc, 
wartość skuteczna lub amplituda sygnału wyjściowego filtru (składowych 
wektora) jest zmniejszona w stosunku do wielkości sygnału wejściowego o 
danej częstotliwości. W tym wypadku sygnałem wejściowym w równaniu esty­
macji (6.3) jest

Y (k) = cos(kmw.T. + q> ) (6.23)m lim
gdzie m - względna częstotliwość.

Trzeba tu podkreślić, że niezależnie od tego czy stosuje się filtr 
2-, 3- czy 4-stanowy, wyestymowane składowe wektora stanu odpowiadające 
sygnałowi o częstotliwości podstawowej (Х^, Х^ w równaniu (6.9)) są 
ortogonalne, jeśli sygnał wejściowy ma tę częstotliwość. Jeśli natomiast 
sygnał wejściowy filtru ma inną częstotliwość, to już tak nie jest i je­
go amplituda nie może być obliczona bezpośrednio z pierwiastka z sumy 
kwadratów składowych wektora stanu. Można natomiast postąpić nieco ina­
czej. Metoda polega na zastosowaniu dwu identycznych filtrów pobudzanych 
ortogonalnymi sygnałami sinus, cosinus o danej częstotliwości i wykorzys­
taniu wyestymowanych wielkości do określania charakterystyki częstotli­
wościowej.



Niech więc przez analogię do równań (6.1) i (6.2), Ym(k) z równania
(6.23) będzie zapisane w postaci:

[zm(k + 1)] = [Am][zm(k)] 

[Vk)l =
(6.24)

gdzie

EM
cos(m<i'1Ti -з1п(тш^Т^) 

sin(mw1Ti) cos(mu).]Ti)

[cm]=D 0],

[Zm(k)J = [cos(kmw1Ti) sin(kmw^Ti)].

Dla uproszczenia przyjęto odpowiednie macierze dla filtru 2-stanowe- 
go, lecz mógłby to być rozmiar dowolny. Z pierwszego z równań (6.24) wy­
nika, że wartość sygnału wejściowego filtru (6.3) w chwili к może być 
wyrażona przez sygnał w chwili к = 1 rozpoczęcia pomiaru:

" [=..KAJk >J (6.25)

Ta forma przedstawienia sygnału wejściowego (6.23) pozwala na stwier­
dzenie, że wyestymowane przez filtr (6.3) wartości [X] przy zerowych wa­
runkach początkowych, mogą być zapisane w formie

[Xm(k)] = [Fm(k)][Zm(D] (6.26)

gdzie [Fm(k)] =
Można zauważyć z równań (6.24)-(6.26), że właśnie macierz [Fm(k)] 

charakteryzuje stopień tłumienia przez filtr sygnału o danej względnej 
częstotliwości m dla danej dyskretnej chwili k. Po uwzględnieniu dru­
giego z równań (6.24) oraz samego równania estymacji (6.3) widać, że mo­
duł charakterystyk częstotliwościowych, to jest widmo filtru dla każdej 
z wyestymowanych składowych wyjściowych,można opisać równaniami:

(6.27)
F (m,k) =-]/fT^ (k) +
Q * к m2i Fm <k> m22

gdzie CFmM =
Fm11

Fm21

Fm12

Fm22



Obliczenie elementów macierzy [Fm] w celu określenia tych charakte­
rystyk byłoby dość trudne, gdyż są one złożoną funkcją macierzy [A], [C], 
[к(к)], [A ], [c ], [k.] Zamiast tego można je obliczyć symulacyjnie, re­
alizując dyskretny filtr Kalmana. Trzeba tu zauważyć, że po doprowadze­
niu do tego filtru sygnału (6.23) otrzymuje się rezultaty zależne od fa­
zy sygnału (wzmiankowana nieortogonalność). Aby się od tego uniezależnić, 
można zastosować parę identycznych filtrów Kalmana i do jednego z nich 
doprowadzić sygnał wejściowy cos(kmw^T^ + Фт), a do drugiego соз(ктш.Т^+ 
+ ф + n/2). W tym wypadku otrzymuje się wyestymowane wartości, które na 
podstawie poprzednio wprowadzonych zmiennych mogą być opisane na­
stępująco:
- w pierwszym z filtrów:

Xdc(k) = Fm11(k) cos<mVi + ^m^ + Fm12 sinCma,^ + <₽m),

Xqc(k) = Fm21(k) со®КТ1 + Фт) + Fm22 si^Vi + Фт^ 

- w drugim z filtrów:
Xds(k) = -Fm11(k) sin^^Ti + Фщ) + Fm12 cos<m“1Ti + ФпЛ

Xqs(k) = -Fm21(k) sin<m“iTi + Фт> + Fm22 oos(ma>1Ti + <₽m).

Na podstawie tych składowych otrzymuje się już łatwo charakterystyki 
widmowe (6.27):

Fd(m,k) =^c(k) - X^Ck) (6^8)

Fq(m,k) =7x|c(k) + X|s(k)'

Tak więc wzory (6.28) umożliwiają obliczenie widma, a właściwie pseu- 
dowidma filtru Kalmana dla ustalonego parametru - dyskretnej chwili k 
od momentu rozpoczęcia pracy filtru. Gdy wartości k są niewielkie, a 
macierz [K(k)] zmienia się, wówczas filtr jest niestacjonarny i jego 
pseudowidmo może dostarczyć pewnych informacji pod warunkiem, że uzyska­
ne charakterystyki są odpowiednio ostrożnie interpretowane.

W. istocie jednak macierz [к (k)] dla reprezentatywnych wartości pa­
rametrów projektowych filtru osiąga wartości ustalone po czasie zawartym 
w przedziale między połową a okresem identyfikowanej składowej podstawo­
wej (rys. 6.1) i pseudowidma określone dla czasów kT^ > T1 są już wid- 
mamymi stacjonarnymi.

Oprócz widma określanego odrębnie dla każdej ze składowych ((6.28)) 
możliwe jest również określenie- widma amplitudy, dostarczającego informa­
cji o widmie obu składowych łącznie.

Niech więc sygnał wejściowy filtru zawiera identyfikowaną składową 
podstawową oraz zakłócenie o częstotliwości Ponieważ tylko składo-
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we sygnału użytecznego pozostają ortogonalne w sygnałach wyjściowych fil­
tru, więc sygnały te mogą na wyjściu filtru być określone równaniami:

Хя(к) = cos(kw.T. + <p) + a„ F,(m,k)
11 md» (6.29)

Xq(k) = sinCko).^ + <p) + am Fq(m,k)

gdzie am - iloraz amplitud zakłócenia i sygnału.
Obliczając amplitudę jako pierwiastek z sumy kwadratów składowych

(6.29) oraz poszukując wartości ekstremalnych ze względu na fazę q> otrzy­
muje się:

Vx^(k) + x2(k)ekstr = 1 i a^F^m.k) + F^(m,k) (6.30)

Gdy am jest równe jedności, drugi człon prawej strony równania
(6.30) odpowiada wartości skutecznej sygnału na wyjściu filtru, jeśli za­
kłócający sygnał wejściowy ma jednostkową amplitudę i częstotliwość mw^. 
Normując to wyrażenie przez podzielenie przez V2^ a więc wartość uzyski­
waną dla częstotliwości , otrzymuje się:

F(m,k) = — (6.31)
V21 u "

Wyrażenie to charakteryzuje łączne widmo filtru.
Na rysunku 6.9a-c przedstawiono tak określone widmo filtrów Kalma­

na 2-, 3- i 4-stanowych dla czasów większych od okresu składowej podsta­
wowej (N1 =12, к = 12 - 24)

Uzyskano je na drodze symulacji komputerowej i krzywe w przedziale 
dyskretnych czasów к od 12-24 właściwie nie różnią się, a więc filtry 
są już stacjonarne. Szczegółowe parametry projektowe filtru są takie jak 
te, których wariancje przedstawiono na rys. 6.2 i 6.5. Odpowiada to ma­
łym zakłóceniom procesu i pomiaru, lub też zakłóceniom początkowo dużym, 
lecz malejącym eksponencjalnie, co jest najbliższe rzeczywistości. Cha­
rakterystyki widmowe stacjonarne w obu wypadkach różnią się nieznacznie. 
W filtrze 4-stanowym założonymi dodatkowymi składowymi wektora procesu 
jest część rzeczywista i urojona fazora o częstotliwości 3 . Charakte­
rystyka widmowa dla tej częstotliwości zeruje się (rys. 6.9c).

Ogólnie filtry 2- i 4-stanowe mają widma odpowiadające filtrom dolno- 
przepustowym (rys. 6.9a,c), a widmo filtru 3-stanowego (rys. 6.9h) zbli­
ża się do charakterystyki filtru pasmowoprzepustowego. W paśmie zaporo­
wym tłumienie jest prawie czterokrotne, ale składowe harmoniczne nie są 
odrzucane jak w filtrach nierekursywnych pełnookresowych z funkcjami wa­
gi sinus, cosinus. Filtr Kalmana ma więc gorsze charakterystyki widmowe 
niż wybrane filtry nierekursywne, lecz jest to rekompensowane bardzo do­
brą jego dynamiką.
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Rys. 6.9. Widma 2-, 3- i 4- 
stanowego filtru Kalmana - 
odpowiednio a, b, c; m - 

względna częstotliwość
Fig. 6.9. Spectra cf 2-, 3- 
and 4-state Kalman filters 
- a,b,c - respectively; m - 

frequency ratio

Skoro nawiązano do porównań z filtracją Fouriera, to może warto Jesz­
cze na zakończenie ocenić obciążenie obliczeniowe w filtracji Kalmana. 
Macierzowe równanie filtru (6.3) sprawia wrażenie, że obciążenie oblicze­
niowe może być znaczne. Równanie to można jednak przepisać w następującej 
postaci:



LX(R +1)] - Г [J] - [К(к + 1)] Lcj] Га] [X(k)j + [К(к + l)][Y(k + 1)1 
(6.32)

W równaniu (6.32) wszystkie macierze pierwszego członu po prawej 
stronie są znane i jeśli dodatkowo [Y] jest skalarem, to liczba operacji 
do wykonania w kolejnych chwilach к jest mała. Otóż w filtrze 2-sta­
nowym należy dla każdej składowej zrealizować 3 mnożenia i jedno dodawa­
nie, w 3-stanowym o jedno mnożenie więcej, w 4-stanowym 5 mnożeń i jedno 
dodawanie. Tak więc obciążenie obliczeniowe związane z realizacją filtru 
również nie jest duże i porównywalne z rekursywną realizacją algorytmów 
omawianych w rozdz. 5.

7. DOKŁADNOŚĆ WIELKOŚCI KRYTERIALNYCH

Pomiar wielkości kryterialnych według algorytmów opisanych w rozdz. 
4 przy stosowaniu filtrów opisanych w rozdz. 5 i 6 jest obarczony różne­
go rodzaju błędami. Są one wywołane wieloma czynnikami związanymi z samą 
techniczną realizacją algorytmów w rzeczywistym układzie cyfrowym, jak 
też zakłóceniami sygnałów.

Podstawowymi przyczynami błędów są:
- zakłócenia napięć i prądów
- zmiany częstotliwości składowej podstawowej napięcia i prądu
- zbyt słabe tłumienie filtru analogowego w paśmie zaporowym
- szum kwantowania sygnałów
- szum ograniczonego słowa maszynowego.
Błędy wywołane trzema ostatnimi czynnikami w odpowiednio zaprojekto­

wanym i skonstruowanym układzie cyfrowym są mniej więcej o rząd mniejsze 
od błędów spowodowanych zakłóceniami sygnałów. Te ostatnie stanowią pod­
stawowe źródło błędów przy założeniu ustalonej częstotliwości składowych 
podstawowych napięć i prądów. Z omówionych w rozdz. 3 modeli sygnałowych 
wynika, że zakłócenia sygnałów mają charakter oscylacyjny i (lub) ape- 
riodyczny. Zakłócenie o charakterze oscylacyjnym, to najczęściej sygnał 
o jednej dominującej częstotliwości i na ogół niezbyt dużej względnej 
amplitudzie [1451. W tej sytuacji błędy pomiaru różnych wielkości kryte­
rialnych można otrzymać w zwartej postaci analitycznej. Będą one omówio­
ne w p. 7.2.

Źródłem trudnych do usunięcia i znacznych błędów jest zakłócenie ape- 
riodyczne. Szczególnie w sygnale prądowym przyjmuje ono znaczne wartości 
początkowe. Trudności związane z jego odfiltrowaniem powodowane są kilko­
ma czynnikami. Po pierwsze, wartość stałej czasowej tej składowej nie 
jest znana i może zmieniać się w szerokim zakresie. Można oszacować, 
uwzględniając stałe czasowe poszczególnych elementów systemu, że ta war-
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tość zawiera się w zakresie od ułamków aż do około dwudziestu pięciu 
okresów składowej podstawowej. W efekcie jest to przebieg niemal stały 
lub krótki impuls, a energia zakłócenia może być skoncentrowana w zakre­
sie niskich częstotliwości lub też rozłożona dość równomiernie w szero­
kim paśmie. Inna trudność związana jest ze znaczną wartością początkową 
tego zakłócenia, która może być równa amplitudzie identyfikowanej skła­
dowej podstawowej. Jeśli więc wartości błędów mają być niewielkie, to 
zakłócenie to musi być efektywnie tłumione. Istnieje wiele metod zmniej­
szania błędów przez nie powodowanych. Jedna z nich to wykorzystanie ukła­
du odwzorowującego impedancję chronionej linii, ale uwzględniając szero­
ki zakres stałej czasowej trzeba uznać, że metoda ta jest tylko częścio­
wo skuteczna.

Cyfrowa filtracja sygnałów stwarza jednak nowe możliwości opracowa­
nia metod skutecznej minimalizacji błędów powodowanych zakłóceniem ape- 
riodycznym. Łatwość opóźnienia sygnałów i wykorzystanie odpowiednio dopa­
sowanych funkcji wagi filtrów pozwalają na rzeczywiście efektywne jego 
tłumienie.

Za miary błędów omawianych dalej przyjęto ich względne chwilowe war­
tości zdefiniowane następująco:

Z1
26P(t) = ----  [P_ (t) - P]

II IU1 1
26Q(t) = ---- [cu(t) - QJ (7.1)

Vi
5R(t) S6P(t) -6A(t)

5X(t) SgQ(t) -5A(t)
gdzie
I , P, Q - wartości dokładne amplitudy prądu, mocy czynnej i biernej od­

powiednio (przy niezakłóconych sygnałach),
I (t). P (t), Q (t) - wartości mierzone danych wielkości w warunkach za- m ” m ж m

kłóceń sygnałów,
8A(t), 5P(t) ... - względne chwilowe wartości błędów amplitudy, mocy

czynnej itd.
W ocenie dokładności wielkości kryterialnych w warunkach zakłóceń 

sygnałów przyjmowano maksymalne wartości błędów chwilowych zdefiniowa­
nych wzorami (7.1).



7.1. Filtracja składowej aperiodycznej

7.1.1. Błędy wywołane składową aperiodyczną w metodach standardowych

Metody standardowe to pełno- i półokresowy splot oraz korelacja. Błę­
dy wywołane składową aperiodyczną określi się tutaj dla funkcji wagi 
oraz funkcji korelujących sinus i cosinus jako najbardziej reprezenta­
tywnych, a można zresztą wykazać, że gdy stosuje się funkcje Walsha, wów­
czas różnią się one nieznacznie. Rozważana składowa nieokresowa pojawia 
się w prądzie i niech będzie ona określona następującym równaniem:

i(t) = I1 [cosCw^t + ф) - созф exp(-at)J (7.2)
gdzie
a = 1/Ta,
Ta - stała czasowa zanikania składowej nieokresowej.

Jeśli sygnał ten zostanie poddany korelacji pełno- lub półokresowej 
(p. 5.3.2.1), to otrzymuje się następujące składowe prądu:

i^Ct) = [cos ф - cos ф Ad(t)]

iq(t) = I1 [-з!пф - cos <p A^(t)] 

gdzie
2 exp(-a(t - T)) , ,

A,(t) =---- ------------  cos [w. (t - T) -T] - exp(-aT) cos (w.t-T )?,U ГП /pnl II - I )
V a + u)^

2 exp(-a(t - T)) f 1
A^(t) ------—......,---  [sin^U - T) - T] - ехр(-аТ) sinU-jt-T )|,

T Va2 +

t > T,

tg? = w1Ta,
T - długość okna pomiarowego równa w tym przypadku okresowi lub pół- 

okresowi składowej podstawowej: T = T1 lub T = T^/2.

Składowe błędu są więc zanikającym aperiodycznie sygnałem harmonicz­
nym. Amplitudy błędu nie są duże w korelacji pełnookresowej (funkcje co­
sinus i sinus w nawiasach klamrowych są identyczne i funkcja wykładnicza 
jest odejmowana od jedności), lecz bardzo wzrastają i mogą przekraczać 
100% w korelacji półokresowej (wówczas funkcja wykładnicza jest dodawana 
do jedności).

W razie realizacji splotu sygnału (7.2) z parą funkcji ortogonalnych 
(p. 5.2.2.2) otrzymuje się następujące składowe prądu:

idn(t) = IiFd[cos(w1t + ф) - созф Adn(t)] 
iqn(t) = ^F^ [sin(o>1t + ф) - созф Aqn(t)] (7.4)



Jeśli funkcje wagi stosowanych filtrów są odpowiednio funkcjami si­
nus i cosinus, analogicznie do algorytmu korelacji, otrzymuje się nastę­
pujące składowe błędów pochodzących od zakłócenia aperiodycznego (Fd = 
= Fq = T/2):

A.^U) “ dn

A (t) = ąn

2 
T
2 
T

exp(-a(t + a [cos((i>.|T) - exp(-aT)]}
“ + Ш1 (7.5)

exp(-a(t - T)) 
2~ 2a +

^asinCw^T) - w^cosCw^T) - exp(-aT)]}

Obecnie można wykreślić błędy wywołane składową nieokresową w funk­
cji względnej stałej czasu (Ta/Tj). Są one największe w chwili, gdy roz­
poczyna się stan ustalony po skokowej zmianie sygnału (t = T). Te maksy­
malne wartości błędów w algorytmie filtracji pełnookresowej (T « T^) 
przedstawiono na rys. 7.1a. Jak widać, błędy podczas określania kwadra-
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Rys. 7.1. Maksymalne względne błędy chwilowe, powodowane składową ape- 
riodyczną, w zależności od jej stałej czasu: a -w wyznaczaniu składowych 

ortogonalnych sygnału, b - podczas pomiaru amplitudy
Fig. 7.1. Maximum values of instantaneous errors ratio due to decaying 
DC: a - for orthogonal signal components;, b - for magnitude measurement 

turowej składowej ortogonalnej są znacznie większe niż podczas określa­
nia drugiej ze składowych. Szczególnie duże różnice występują w pobliżu 
jednostkowej względnej stałej czasowej zakłócenia (T^T^ =1). Wówczas 
podczas określania jednej ze składowych błąd powodowany zakłóceniem jest 
3-procentowy, a drugiej prawie 25-procentowy. W ogóle błędy są znaczne i 
sięgają 30%. Nie oznacza to naturalnie, że podczas pomiaru amplitudy lub 
Innych wielkości kryterialnych błędy będą aż tak duże, gdyż trzeba 
uwzględnić uwarunkowania czasowe i fazowe, a więc pełne zależności (7.4) 



i (7.5). Obliczany w ten sposób kwadrat amplitudy prądu jest dany równa­
niem:

Tm “ ^tdn^ + iqn^l = T? E + ~

- 2cos<pB cos^a^t + ф + (7.6)

gdzie В - -2- - Ty)] 0 _ exp(_ aT Я
T1 У a2 + ш2

Trzeba tu podkreślić, że identyczne równanie jak (7.6) otrzyma się 
obliczając amplitudę z zastosowaniem składowych (7.3). A więc błędy powo­
dowane składową nieokresową są przy stosowaniu korelacji i filtracji peł- 
nookresowej identyczne.

Pierwsze oszacowanie od góry wartości błędów względnych pomiaru amp­
litudy (7.1) można otrzymać przyjmując zerową fazę początkową oraz zakła­
dając, że funkcja cosinus w ostatnim członie wyrażenia (7.6) ma wartość 
plus lub minus jeden. Takie ograniczenie wartości błędów od góry jest da­
ne równaniem:

2 [1 - ехр^атр]
(7.7)

Te wartości błędów przedstawiono linią przerywaną na rys. 7.1b. Jak 
widać, są to nadal duże wartości błędów, sięgające prawie 30%. Oszacowanie 
(7.7) jest jednak na szczęście znacznym zawyżeniem ich wartości, szcze­
gólnie w zakresie krótkich względnych stałych czasu, gdy uwarunkowania 
fazowe są bardzo istotne. W zasadzie tym przybliżeniem można się posługi­
wać dla względnych stałych czasowych składowej nieokresowej większych od 
jedności. Znacznie dokładniej można obliczyć błędy powodowane składową 
nieokresową uwzględniając argumenty funkcji cosinus w równaniu (7.6). I 
tutaj dokonuje się pewnego uproszczenia, lecz ma ono znikomy wpływ na wy­
niki. Otóż w wyrażeniu (7.6) pomija się składnik w kwadracie jako znacz­
nie mniejszy i znacznie szybciej zanikający składnik błędu. Możliwe jest 
teraz określenie w postaci analitycznej czasów występowania ekstremów 
błędu przez obliczenie pochodnej tego równania po czasie (założono jak 
poprzednio najtrudniejsze warunki, to znaczy <p = 0). Otrzymuje się stąd 
czasy, przy których występuje ekstremum i jego wartości:

(7.8)



Błąd ten w funkcji względnej stałej czasu zakłócenia przedstawiono 
linią ciągłą na rys. 7.1b. Jak widać, maksymalne wartości nie przekracza­
ją 16% w otoczeniu Ta/T-| = 0,5; 1. Maleją one dość szybko wraz ze wzros­
tem, jak i spadkiem wartości stałych czasu.

Po zmniejszeniu długości okna pomiarowego T do połowy okresu skła­
dowej podstawowej błąd A^n(t) może przekraczać 100%, a wykres błędu 
A^n(t) przedstawiono linią przerywaną na rys. 7.1. W prawie całym prze­
dziale stałych czasu składowej nieokresowej jest on zawarty między obu 
błędami dla algorytmu pełnookresowego. Naturalnie w tym przypadku stan­
dardowe metody korelacji lub filtracji nie mogą być stosowane, gdyż błę­
dy byłyby ogromne (ze względu na A^Ct) - (7.5)). Można natomiast w tym 
przypadku wykorzystać splot z tą samą funkcją (o zerowej wartości śred­
niej w oknie pomiarowym), a do uzyskania składowych ortogonalnych wyko­
rzystać przesunięcie sygnału o czas T^/4.

Błędy wynikające ze stosowania funkcji Walsha mają wartości, które 
znikomo różnią się od określonych dla funkcji wagi sinus i cosinus. Doty­
czy to zarówno składowych błędu przedstawionych na rys. 7.1 a, jak też 
błędów w określaniu amplitudy (rys. 7.1b) [60].

Interesujące może być zbadanie jak kształtują się te błędy podczas 
pomiaru mocy czynnej i biernej z zastosowaniem standardowej metody skła­
dowych ortogonalnych. Niech więc składowe ortogonalne napięcia będą dane 
równaniami:

ud^) = i U1 + 4>u)»

uq(t) = U1 slntw^ + <pu), 

a składowe prądu są określone zależnościami (7.4).
Moc czynna jest wobec tego dana równaniem:

2Pm = ^d(t) + \пи)] =

1 r= — U1I1 ^cos(q>u - - cos <p^ LAdnC0S^w1t + ^u^ + (7.9)

+ Aqn ^“l* +

gdzie A, , A są określone równaniami (7.5). ° dn’ qn n
Powyższe wyrażenie, przy założeniu T = T^, może być łatwo prze­

kształcone do postaci:

Pm = i U1I1[cos(<pu - <p±) - cos ф± В cos(w1t + <pu + <р±)] (7.10)

gdzie В jest określone w równaniu (7.6).
Można zauważyć, że równania (7.6) i (7.10) są analogiczne z pominię­

ciem w tym pierwszym członu w kwadracie. Obliczając ekstremalne wartości 



błędów otrzymuje się identyczne chwile występowania ekstremum i identycz­
ne wartości - wzór (7.8), rys. 7.1b (krzywa ciągła). Podobnie do (7.9) i 
(7.10) można obliczyć błędy wywołane składową nieokresową podczas pomia­
ru mocy biernej» Otrzymuje się podobną dc (7.10) zależność i identyczne 
ekstremalne wartości błędów jak podczas pomiaru amplitudy i mocy czynnej. 
Tak więc można napisać, że:

6A = 6Pq = 6Q (7.11 )e e e
gdzie A jest dane równaniem (7.8) (patrz też (7.1)), indeks e ozna­
cza ekstremalną wartość błędu.

W standardowych metodach filtracji i korelacji, przy założeniu naj­
gorszego przypadku zakłócenia nieokresowego, błędy maksymalne przyjmują 
dość duże wartości (około 15%). Istotne jest czy błędy te można zmniej­
szyć kosztem skomplikowania algorytmu pomiarowego lub też niezbyt dużego 
zwiększenia efektywnego okna pomiarowego. Pomocne przy tym może być okre­
ślenie rozkładu w szereg Fouriera składowej aperiodycznej w przedziale 
okna pomiarowego T.

7.1.2. Szereg Fouriera składowej aperiodycznej

Skutek filtracji lub odrzucenia składowych zakłócających o określo­
nych częstotliwościach może być odczytany z charakterystyk częstotliwoś­
ciowych. W razie zakłócenia aperiodycznego tak nie jest, gdyż zawiera 
ono składowe o różnych częstotliwościach, a ich wartości mogą być okreś­
lone na podstawie jego aproksymacji w przedziale okna pomiarowego T. 
Rozkład ten jest wyrażony równaniem:

gdzie
₽m = arc tg ^2 тс m j-],

Aq = 1 dla 0 < t T,
Ao = exp(-tQ/Ta) dla t > T, tQ = t - T.

Uważna obserwacja powyższego rozkładu pozwala na wyciągnięcie licz­
nych wniosków. Po pierwsze: gdy są duże względne stałe czasowe Ta/T, do­
minująca jest składowa stała o wartości zbliżającej się do jedności, a 
amplitudy harmonicznych częstotliwości okna pomiarowego są niewielkie. 
Gdy są krótkie stałe czasowe T , składowa stała maleje, a zwiększa się 
względny udział harmonicznych rozkładu (o częstotliwości 2irm/T}. Pro­
wadzi to do wniosku, że stosowanie rzeczywistych lub idealnych układów 



różniczkujących, które odrzucają składową stałą, jest skuteczne w minima­
lizacji błędów pochodzących od składowej aperiodycznej, jeśli ma ona 
dość dużą stałą czasową.

Rozkład (7.12) może także posłużyć do obliczania błędów powodowanych 
składową aperiodyczną podczas stosowania filtracji lub korelacji. Niech 
okno pomiarowe T będzie równe okresowi T1 identyfikowanej składowej. 
Z charakterystyk widmowych metody splotu z funkcjami wagi sinus i cosi­
nus wynika, że składowa stała oraz wszystkie harmoniczne są odrzucane 
(stłumione do zera). Tak więc z rozkładu (7.12) stłumione do zera są 
wszystkie składowe z wyjątkiem jednej: tej o częstotliwości składowej 
podstawowej. Ten jedyny czynnik błędu (jeśli sygnał ma postać (7.2)) jest 
dany równaniem:

T E1 “ exp(-T,./T ЛA(t) = 2 ---  ■ 1 cos(w.t - 0.) (7.13)
T1 / / T \2‘ 1 1

V1 + r71^/
/ Ta\ 

gdzie ₽1 = arctg ^2 л .

Warto tu zauważyć,.że amplituda sygnału (7.13) jest równa opisanej 
zależnością (7.7) wartości, określonej jako ograniczenie od góry wartoś­
ci błędu (linia przerywana - (rys. 7.1b)). W istocie, gdyby zakłócenie 
(7.13) i sygnał użyteczny były zgodne w fazie (oba mają częstotliwość wp, 
a ponadto wartość początkowa składowej aperiodycznej nie zależała od po­
czątkowej fazy sygnału, to rzeczywiście błąd byłby równy amplitudzie syg­
nału danego równaniem (7.13). Ze względu na wymienione ograniczenia fazo­
we, błąd jest w istocie mniejszy, tak jak to oceniono poprzednio (rys. 
7.1b - linia ciągła).

Zależność (7.13) pozwala także na wyjaśnienie źródeł różnicy wartoś­
ci błędów składowych Ad, A^ z zastosowaniem filtrów ortogonalnych. Oka­
zuje się, że decyduje tutaj argument 0^, który jest funkcją stałej czaso­
wej Ta. Jego wykres został przedstawiony na rys. 7.2. Jak widać, war­
tość tego argumentu dla dużych względnych stałych czasu jest bliska л/2, 
a następnie jego wartości zmniejszają się powoli wraz ze spadkiem Ta/T^

Rys. 7.2. Argument pierwszej har­
monicznej rozkładu w szereg Fou­
riera składowej aperiodycznej 
((7.12), (7.13)) w zależności od 

jej stałej czasu
Fig. 7.2. Argument of the first 
harmonie of the Fourier series 
of decaying DC ((7.12), (7.13)) 

versus time constant 



poniżej jedności. Owo przesunięcie fazy powoduje, że zakłócenie (7.13) 
przy dużych stałych czasu (powyżej jedności) jest niemal ortogonalne z 
funkcją cosinus i stąd bardzo małe wartości błędów А^п w tym zakresie 
(rys. 7.1, równanie (7.5)). Spostrzeżenie to może być wykorzystane do 
minimalizacji błędów wywołanych składową aperiodyczną.

7.1.3. Metody minimalizacji błędów

Istnieje wiele metod minimalizacji błędów pochodzących od zakłócenia 
aperiodycznego. Zaliczyć do nich można:

- stosowanie układów różniczkujących lub układów odwzorowujących im- 
pedancję linii,

- stosowanie metody pomiaru opartej na rozwiązywaniu równania obwodu 
zwarciowego (odnosi się to tylko do pomiaru składowych impedancji).

Wadą tych metod jest górnoprzepustowy charakter filtrów realizują­
cych wymagane operacje na sygnałach, co powoduje, że zmniejszanie błędów 
od zakłóceń niskoczęstotliwościowych jest "rekompensowane" zwiększeniem 
błędów od zakłóceń wysokoczęstotliwościowych. Opracowano metody, które 
są tych wad pozbawione [60], [127], [1531, [155], [181].

Pierwsza z tych metod opiera się na omawianym już zastosowaniu pra­
wie ortogonalności funkcji wagi cosinus oraz jedynej nie odrzucanej w al­
gorytmie pełnookresowym składowej rozkładu w szereg Fouriera omawianego 
zakłócenia (równanie (7.13)). Zamiast wytwarzać ortogonalne składowe syg­
nału na podstawie funkcji wagi sinus i cosinus, stosuje się jedynie funk­
cję wagi cosinus (lub odpowiednią funkcję Walsha drugiego rzędu), a do 
ortogonalizacji wykorzystuje się opóźnienie sygnału. Składowe ortogonal­
ne uzyskuje się więc stosownie do równań:

T1
i , (t) = i(t - t ) cos w.t dr dn / 1

0
T (7.14)
11 
( T1

iqn^) = J “ 7J---cos dr 
0

gdzie t >T1 + 1^4.
Po podstawieniu i(t) z równania (7.2) oraz uwzględnieniu (7.4) 

otrzymuje się składowe i^ oraz i w postaci:
TЧп^ = Т1 21 + <₽) - c°s<PAdnM (7И5)

T Г /аТ.\ "I
iqn(t) = I1 |_sin(w^t + ср) - cos<pexp^-J Adn('t)J

gdzie A^^t) jest określone w równaniu (7.2).



Rys. 7.3. Błędy powodowane skła­
dową aperiodyczną podczas pomia­
ru amplitudy; funkcja wagi fil­
tru - cosinus, ortogonalizacja 

przez opóźnienie sygnału 
((7.14), (7.15))

Fig. 7.3. Errors of magnitude 
measurement due to decaying DC; 
impulse response of the filter - 
cosinus; orthogonalization using 
signal delay ((7.14), (7.15))

Rys. 7.4. Symulacja pomiaru amplitudy prądu przy standardowej filtracji 
pełnookresowej z funkcjami wagi sinus i cosinus (linia ciągła) oraz 

metodą zmodyfikowaną (7.14) (linia przerywana); T&/T^ = 1
Fig. 7.4. Simulation of current magnitude measurement using standard full 
cycle filters with impulse responses sinus and cosinus - solid line and modified method (7.14), dashed line; T /Т. = 1 a i

Tak więc teraz błędy zależą jedynie od Adn(t), które jest znacznie 
mniejsze niż Aqn(t) (rys. 7.1), a dla dużych stałych czasu bliskie zeru. 
Błędy w określaniu amplitudy sygnału są w istocie jeszcze mniejsze niż 
Adn(t) ze względu na występujące, podobnie jak poprzednio, uwarunkowania 
fazowe. Podobnie jak poprzednio można też obliczyć ekstremum wartości 
błędów amplitudy powodowanych zakłóceniem aperiodycznym. Przedstawiono 
je na rys. 7.3 w zależności od względnej stałej czasowej Ta/T^. Są one 
wielokrotnie mniejsze niż dla metod standardowych i nie przekraczają 5%.

Błąd jest więc co najmniej trzykrotnie mniejszy, a przy niektórych 
stałych czasu jeszcze mniejszy (dla Ta/T^ = 1 wynosi 3%, a w metodzie 
standardowej 15%). Na rysunku 7.4 przedstawiono rezultaty symulacji po­
miaru amplitudy prądu metodą standardową oraz opisaną powyżej dla zero­
wej fazy początkowej prądu oraz Ta = . Pomiar metodą standardową 



przedstawiono linią ciągłą. Jak: widać, zwiększenie dokładności w stanie 
ustalonym (k$’(5/4)N1> jest bardzo wyraźne. Jedyną wadą omawianej meto­
dy jest zwiększenie efektywnego okna pomiarowego o jedną czwartą okresu 
składowej podstawowej.

Po skróceniu okna pomiarowego do połowy okresu składowej podstawowej 
składowa błędu A może przekraczać 100% ze względu na nieodrzucanle 
składowej stałej Zwartość średnia odpowiedniej funkcji wagi jest różna 

od zera i znaczna). Składowa błędu Adn jest natomiast tego samego rzę­
du co odpowiednie składowe dla okna pełnookresowego. Tak więc, ponieważ 
standardowy algorytm półokresowy z ortogonalnymi funkcjami wagi nie może 
być stosowany, należy zastosować ortogonalizację przez wykorzystanie 
opóźnionego sygnału, podobnie jak poprzednio. Wystarczy w tym celu zasto­
sować równania (7.14) i zmniejszyć przedział całkowania do T^/2. Błędy 
pochodzące od składowej aperiodycznej mają w tym przypadku wartości nie­
znacznie przewyższające te otrzymywane metodą standardową (rys. 7.1b - 
linia ciągła).

Algorytmy cyfrowe stosujące ortogonalizację przez opóźnienie sygnału 
były już omawiane w rozdz. 4, ale tu przytoczy się je jeszcze raz. Otóż 
postać równań (7.14) jest następująca:

^-1
idn(n) = 2 i^n ~ k^ cosk w1Ti

k=0 (7.16)
N.-1

{ N. \
\п(п) = / . " T “ kJ

k=0
gdzie
i(n) = I1 [cos(nw1Ti +cp ) - cos <₽exp(- naT.)], 

- okres próbkowania.
Istnieje także możliwość redukcji błędu powodowanego składową aperio- 

dyczną do zera, jeśli znana jest stała czasowa tej składowej. Otóż, aby 
składowa aperiodyczna mogła być odfiltrowana całkowicie, nie powinna ona 
zawierać składowych o częstotliwości równej częstotliwości identyfikowa­
nego przebiegu, gdyż wtedy składowa podstawowa i składowa rozwinięcia 
aperiodycznego są odstrojone. Jedną z możliwości jest periodyzacja tej 
składowej zakłócającej wewnątrz okna pomiarowego (rys.7.5b) [6o]. Naj­
prościej można to uzyskać przez pomnożenie funkcji wagi filtru w połowie 
okna pomiarowego przez funkcję exp (aT/2). Zilustrowano to na przykła­
dzie funkcji wagi, które są funkcjami Walsha (rys. 5b). V/ rezultacie 
sploty zakłócenia i funkcji wagi mają przebieg jak na rys. 7.5c, a ich 
całki w przedziale okna pomiarowego są zerowe. Tak więc błąd powodowany



Rys. 7.5. Ilustracja w dziedzinie czasu metody odfiltrowania składowej 
aperiodycznej o znanej stałej czasu: a - składowa aperiodyczna periody- 
zowana wewnątrz okna pomiarowego; b - zmodyfikowane funkcje wagi umożli­
wiające uzyskanie splotów z zakłóceniem; c - o zerowej wartości średniej 
Fig. 7.5. Presentation of the method of rejection of decaying DC with 
known time constant: a - decaying DC periodized inside data window, b - 
modified impulse responses which make it possible to obtain convolution 

with the noise, c - having zero mean value



tym zakłóceniem jest zerowy. Jest istotne, że funkcje wagi przekształco­
ne tak jak na rys. 7.5b pozostają ortogonalne i można stosować standar­
dowe algorytmy identyfikacji. Również widma tych skorygowanych funkcji 
wagi nie różnią się bardzo od widm oryginalnych funkcji wagi. Na rysun­
ku 7.6 przedstawiono przykładowo takie widma dla funkcji Walsha z rys.
7.5b, gdy korekcji dokonano dla Ta/T^ = 2 ( aT^ = 1/2). Porównując je 
z widmami standardowych funkcji Walsha z rozdz. 5 widać, że istotnie 
różnice nie są duże w zakresie wysokich częstotliwości. Jedyna ważna 
różnica to niezerowe widmo W^(o), co jest zrozumiałe, gdyż funkcja wagi 
w ma niezerową wartość średnią. Tak więc skompensowanie błędu pocho­
dzącego od składowej aperiodycznej o względnej stałej czasowej T /T^“ 2 
powoduje, że może wystąpić błąd powodowany składową stałą. W istocie kom­
pensowanie błędu jest celowe wtedy, gdy stała czasowa zakłócenia zmienia 
się w niewielkim zakresie. W przeciwnym przypadku błąd maksymalny może 
być nawet większy niż w metodach standardowych.

7.1.4. Ocena błędów podczas stosowania filtru Kalmana

Ocena błędów wywołanych składową aperiodyczną w przypadku stosowania 
filtracji Kalmana dotyczy naturalnie filtru 3-stanowego. Filtr 2-stanowy 
zupełnie nie jest w stanie sprostać filtracji nawet składowej stałej, 
zresztą jeśli model sygnałowy ją zawiera, to stosowanie filtru 2-stanowe- 
go jest błędem modelowania. Tak więc dla filtru 3-stanowego (rozdz. 6) 
istnieje pewna oczekiwana wartość stałej czasu składowej aperiodycznej i 
model filtru ma parametry obliczone dla tej wartości. Jeśli jednak pew­
na realizacja sygnału ma inną wartość stałej czasu składowej aperiodycz­
nej niż oczekiwana, to powstają pewne błędy, które maleją z czasem, nie­
mniej jednak istotne pozostaje określenie ich wartości maksymalnych.War­
tości te byłyby raczej trudne do obliczenia, dlatego wykonano badania 
symulacyjne. W badaniach tych przyjęto typowe modele zakłóceń o warian­
cji malejącej z czasem-(rys. 6.6). Maksymalne wartości błędów badano dla 
czasów większych od czasu ustalania filtru dla trzech założonych wartoś­
ci oczekiwanych stałych czasu, tj.: T /T1 = 2; 1 i 0,5. Wartości tych 
błędów, w szerokim zakresie zmian rzeczywistej stałej czasu, pokazano na 
rys. 7.7. Jak widać, przy tak dużych zmianach stałej czasu wartości błę­
dów też zmieniają się w szerokich granicach i mogą przyjmować znaczne 
wartości. Wykres ten wskazuje także, że racjonalne jest przyjmowanie ra­
czej za dużych niż za małych jej wartości. Jak widać, dla Ta/T^ = 0,5 
błędy dla rzeczywistej stałej czasu, równej 10, wynoszą prawie 40% i 
bardzo wolno zanikają. Tymczasem, gdy założymy Ta/T^ = 2, błędy dla 
dłuższych, wolno zanikających stałych czasowych są mniejsze niż 10%, a 
dla krótszych stałych czasowych wynoszą około 20%, ale bardzo szybko za­
nikają. Tak więc przy stałej czasu rzeczywistej, równej założonej ocze-



Rys. 7.7. Maksymalne błędy powodowane składową aperiodyczną w 3-stanowym 
filtrze Kalmana dla różnych wartości oczekiwanej stałej czasu (Ta/T.j)k 
Fig. 7.7. Maximum errors due to decaying DC using 3-state Kalman filter 

for different expected time constant (T /Т.). a I к
kiwanej wartości, pomiar jest bezbłędny, przy niewielkich odchyleniach 
błędy nie są duże, a dla szerokiego zakresu zmian rzeczywistych stałych 
czasu błędy są zbliżone do tych uzyskiwanych podczas standardowej fil­
tracji lub korelacji fourierowskiej.

7.2. Błędy wywołane zakłóceniami oscylacyjnymi

Drugi istotny czynnik błędów pomiaru wielkości kryterialnych stano­
wią zakłócenia oscylacyjne sygnałów. Zakłócenia te to najczęściej sygnał 
o jednej dominującej częstotliwości i na ogół niezbyt dużej względnej am­
plitudzie (rozdz. 3 [140],[145]). Dla takich założeń można otrzymać 
dość zwarte, analityczne postąpię błędów pomiaru różnych wielkości powo­
dowanych przez zakłócenie prądów i(lub) napięć. W istocie głównym celem 
tego podrozdziału jest porównanie błędów powstających podczas stosowania 



dwu wyróżnionych rodzin algorytmów; pierwszej opisanej równaniami (4.20), 
(4.23) i (4.25) oraz drugiej, którą opisują równania (4.27)-(4.29) 
(rozdz. 4). Porównanie to jest o tyle istotne, że - jak wykazano - pra­
wie wszystkie znane algorytmy pomiaru wielkości kryterialnych można zali­
czyć do jednej lub drugiej rodziny. Jeśli więc założyć, że przed zastoso­
waniem właściwego algorytmu pomiarowego, należącego do jednej lub dru­
giej rodziny, sygnały były tak samo filtrowane i ortogonalizowane, to 
można przez to porównanie stwierdzić, w jakim zakresie częstotliwości i 
który z algorytmów jest skuteczniejszy w sensie mniejszych błędów powodo­
wanych zakłóceniem.

Do celów tej analizy wygodnym sposobem zapisu sygnałów może być 
przedstawienie ich w postaci wykładniczej, a sygnały takie bywają nazywa­
ne fazorami. Przyjęte zostaną następujące oznaczenia: 

°1 = U1

T1t I1. 
и;

j(w1t+<pu)

j(w1t+q>i)

j [w,] (t—т)+Ф J

j [ш. Се-т)+Ф±]
e
-j(w1t+(pu)

(7.17)

gdzie U* - wartość sprzężona do , podobnie jest sprzężone z .

Algorytmy należące do obu omawianych rodzin mogą być, z zastosowaniem 
fazorów, zapisane w następującej, zwartej formie: 
- równania (4.20), (4.23)

lf(t) = I*

2P = Re I*} (7.18)

2Q = Im {U1 I*}

gdzie Re { } oraz Im { } oznaczają część rzeczywistą oraz urojoną 

- równania (4.27), (4.28)

■^l^^ = 2sin w1r Im ^1t^1 " ^1t^1 )

2P = Im <U1 T1% - Vl*> ^.19)

2Q = - Re flT - Vl*}
gdzie P, Q - moc czynna oraz bierna, r - czas opóźnienia sygnału.



Równania (7«18) i (7.19) zostały określone przy założeniu niezakłóco­
nych sygnałów, zawierających tylko napięcia i prądy o częstotliwości pod­
stawowej. Równania te są naturalnie również podstawą do wyznaczania mie­
rzonych wielkości wtedy, gdy napięcia lub prądy są zakłócone i wówczas 
rezultat jest obarczony pewnym błędem. Jeśli na przykład zakłócony jest 
prąd, to w równaniach (7.18) i (7.19) fazory , 1^, , 1^. trzeba za­
stąpić przez fazory I, I*, 1^, które są sumą fazorów o częstotliwoś­
ci podstawowej i zakłócenia. Analogicznie też postępuje się podczas za­
kłócenia fazora napięcia lub wtedy, gdy oba sygnały są zakłócone. Aby 
ocenić wartości błędów w tych warunkach, trzeba określić równania fazo- 
rów U, I, opisujących sygnały zakłócone, które są filtrowane przed ob­
liczaniem wielkości kryterialnych. Stosowane filtry ortogonalne mają tę 
właściwość, że na ich wyjściu otrzymuje się składowe ortogonalne sygna­
łów o częstotliwości podstawowej, mające tę samą amplitudę oraz sygnały
o innej częstotliwości też ortogonalne, jednak o różnej amplitudzie rów­
nej Gd(m)
filtrów, a

i Gq(m), gdzie G(m) jest unormowaną charakterystyką widmową 
m - względną częstotliwością (rozdz. 5). Gdy założymy, że do

wydzielania składowych ortogonalnych napięcia oraz prądu stosuje się ta­
kie same filtry, oraz że zakłócenia mają względną częstotliwość m taką 
samą w prądzie i napięciu, a amplitudy ich wynoszą U , I , otrzyma się 
następujące sygnały wyjściowe filtrów:

ud(t) = [cos Y1u + kmu Gd(m) cos ymu]
u (t) = Un [sin y1u + kmu G (m) sin Ymu]

(7.20)
id(t) » [cos yu + km. Gd(m) cos YmiJ
iq(t) - [sin Yn + kmi Gq(m) sin Ymi]

gdzie 
y. = w.t + m . Mu 1 *u’
Уц = + ф£,
Ymu " ra “1* + ’mu*
Ymi = m ^t + <pml,
kmu ” Un/U1’ kmi =
G.(m), G (m) - unormowane widma filtrów, d q 
m =

Fazor napięcia można, stosownie do równań (7.20), przedstawić nastę­
pująco:

U = ud(t)+ juq(t) = ^{e Ylu + kmu[Gd(m) cos Ymu +jGq(m) sin Ymu]} 

(7.21 )



Ponieważ widma unormowane filtrów Gd(m), Gq(m) mają różne wartości 
(z wyjątkiem szczególnych wartości m), to aby zakłócenie na wyjściu 
filtrów przedstawić w postaci fazora (wykładniczej), trzeba część równa­
nia (7.21) w nawiasie kwadratowym przekształcić. Po prostych przekształ­
ceniach otrzymuje się równoważną postać tego wyrażenia:

Gd(m) cos ymu + jGq(m) sin Ymu =
Gd(m) + G (m) jYmu Gd(m) - G (m) -jYmu 

= --------- ----e + ------ -----e t (. z z)
2 2

Szczególnie proste wyrażenia określające połowę sumy i różnicy widm 
unormowanych otrzymuje się, gdy stosuje się filtrację z funkcjami wagi 
sinus i cosinus pełno- lub półokresową (rozdz. 5). Odpowiednie równania 
mają teraz postać:

Gd(m) = Sa я(m - 1 ) + Sa Tt(m + 1)
G (m) = Sa я(m - 1) - Sa я(ш + 1) 
q

gdzie Sa(x) = sin(x)/x,

(7.23a)

(w algorytmie półokresowym zastępuje się n przez я/2) i stąd

Gj(m) + G (m)
_2______ 2__

2
= Sa я(m - 1)

(7.23b)
Gd(m) - Gg(m)

2
- Sa я(m + 1)

Uwzględniwszy równania (7.20)-(7.23) można ostatecznie fazory zakłó­
conych napięć i prądów zapisać w postaci:

U = Ud {e^1u + k [sa я(т - 1) eJYmu + Зая (m + 1) e"dYmu]}
1 l mu*- -*J (7.24)

I = I^e^11 + kmi [Sa я (m - 1) edYmi + Зая (m + 1) e dYmi]} 

gdzie 
*lu = ш1г + '’’u*
Yn = w1t + <pit

Ymu = m + <pmu,

Ymi = m + ’mi*

Fazory sprzężone do U, I otrzyma się przez zastąpienie j przez 
-j, a fazory opóźnione UT, IT ((7.17)) przez zastąpienie w argumentach 
wartości t przez t - t. Mierzone wartości stosownie do pierwszej i 
drugiej rodziny algorytmów otrzyma się ze wzorów (7.18) i (7.19) i za­
stąpienie tamże , I1 przez U, I z równań (7.24).



Wartości błędów mierzonych wielkości kryterialnych w pierwszej rodzi­
nie algorytmów otrzyma się przez podstawienie zależności (7.24) do rów­
nań (7.18). Po prostych przekształceniach uzyskuje się mierzone jednost­
kowe wielkości wraz z błędem na jednostkę, dane następującymi równaniami:

/I (t)\2 _
(—--- ) = 1 + 2D± cosfwp + - a^(t)] + p (7.25a)
' I1 '

2P (t)
..... = соз(ф - ф. ) +D cos [ant + ф, - a (t)l + (7.25b)

TT ą- U U I X U
UV1

+ D. cos [w^t + фц - ontt)]

^2.
Vi

s sin(q>u - фр - Du sin^t + ф± - au(t)] + 

+ sin^t + q>u - aŁ(t)] (7.25c)

R(t) m
|Ż |

S cos(qu - ф±) + Du cos [wp + - au(t)] + (7.25d)
+ Di cos [wp + ф u - aptjj - 2Di соз[шр + ф1 - apt)]

X (t) m
|Z |

= sin(pu - qn) - Du sin[w1t + q^ -au^t)] +
(7.25e)

+ Di sinpt + фи - opt)] - 2D^ cos [шр+ q^ - opt)]

gdzie
к mu 1 ) u - 2Sa (m + 1 ) тс Sa (m - 1 ) тс cos 2ути*

D. к . mi
(m + 1 )n + Sa2(m - 1 ) it - 2Sa(m + 1 )ir Sa(m - 1 )m cos 2ymi

tg au(t) =
Sa(m - 1 )tc - Sa(m + 1 )rt

Sa(m - 1)к+ Sa(m + 1)n tg mu

tg
Sa(m - 1 )tt - Sa(m + 1 Л
Sa(m - 1 )tc + Sa(m + 1 )n

tg mi*

mu U).t + q> .1 Tmu’

^mi a), t + q> ., 1 *mi’

D

a.(t) =

m

m

kmu 

kmi = Im/I1



Najprościej można określić wartości błędów podczas pomiaru amplitudy 
lub kwadratu amplitudy prądu (podobnie też napięcia), wynikające z zależ­
ności (7.25a). Założywszy, że fazy składowej podstawowej i zakłócenia są 
niezależne, otrzymuje się maksymalną wartość błędu amplitudy prądu wyno­
szącą D^. Ponieważ wartość zależy od parametrów zakłócenia, to 
błąd będzie maksymalny przy maksymalnej wartości D^. Można to zapisać 
tak:

6Imax = lDimax । = ikmi max {llSa(m + 1 M + lSa<m " iM ♦ 

||Sa(m + 1)u |- |Sa(m - 1 )n ||j (7.26)

Na przykład podczas zakłócenia prądu składową o 3,5 razy większej 
częstotliwości i względnej dwudziestoprocentowej amplitudzie maksymalny 
błąd nie przekracza 4%.

W podobny sposób, przy założeniu niezależnych i dowolnych faz skła­
dowych podstawowych napięcia i prądu oraz ich zakłóceń można oszacować, 
że maksymalne błędy mocy czynnej i biernej (na jednostkę) wynoszą 
Pul + lDil-

Niewiele trudniejsze jest obliczenie maksymalnych błędów podczas wy­
znaczania rezystancji i reaktancji; można to oszacować podobnie jak po­
przednio. W tym wypadku można by pokusić się o wykreślenie trajektorii 
błędów na płaszczyźnie R-X. Najłatwiej uzyskać trajektorę błędów powodo­
wanych zakłóceniami napięcia.

Łatwo tu zauważyć, że jeśli zakłócenia prądu są zerowe, to można na­
pisać następujące równanie na podstawie (7.25a) i (7.25c):

r^m^)—----------cos(cp
L i z i u

ГХ (t) m sin(<pu - (7.27)
_ IZl

Rys. 7.8. Obszar, wewnątrz którego znajduje się mierzony wektor IZI 
podczas zakłócenia napięcia składową oscylacyjną

Fig. 7.8. Region of measured vector |ZI on impedance plane when 
voltage noise includes oscillatory component



Tak więc trajektoria błędów znajduje się wewnątrz dwu współśrodko- 
wych okręgów, tak jak zaznaczono to na rys. 7.8. Zakreskowana powierz­
chnia na tym rysunku to właśnie obszar, gdzie znajduje się koniec wekto­
ra impedancji, którego początek znajduje się w początku układu współ­
rzędnych. Ten pierścień błędu wykreślono tutaj dla zerowej różnicy faz 
napięcia i prądu (składowej podstawowej), lecz pierścień ten nie ulega 
zmianie podczas zmian tej różnicy faz, a jedynie zmienia się położenie 
środka tych okręgów (równanie (7.27)).

W razie zakłóceń prądu lub też napięcia i prądu narysowanie takich 
trajektorii byłoby bardzo trudne, gdyż zbyt wiele parametrów ma wpływ na 
ich kształt. Można jednakże wyznaczyć maksymalne wartości błędów rezys­
tancji i reaktancji w zależności od różnicy faz napięcia i prądu. Zakre-

Rys. 7.9. Zakresy błędów pomiaru rezystancji i reaktancji w zależności 
od przesunięcia fazy między napięciem a prądem podczas zakłócenia prądu 

składową oscylacyjną
Fig. 7.9. Ranges od errors of resistance and reactance measurement for 
different phase shift between voltage and current and when current noise 

includes oscillatory component



sy tych błędów spowodowanych zakłóceniami prądu przedstawiono na rys.7.9 
dla фи - ф^ = O, Tt/4 oraz ti/2. Jak widać, wraz ze wzrostem tego kąta błę­
dy rezystancji rosną, a błędy reaktancji maleją.

Takie same wartości błędów maksymalnych rezystancji i reaktancji 
osiąga się dla różnicy faz tc/4. Podobny wykres można by sporządzić tak­
że dla zakłóceń prądu i napięcia, lecz łatwo te maksymalne błędy ocenić 
na podstawie równania (7.25).

Wartości błędów mierzonych wielkości kryterialnych według równań dru­
giej rodziny algorytmów otrzyma się po podstawieniu fazorów (7.24) do 
równań (7.19). Po przekształceniach“otrzyma się mierzone jednostkowe 
wielkości zawierające błąd, które dane są równaniami:

LAU г / T \S1 + 20,005^- + Ti - ₽i<t) (7.28a)

U1Z1
a cos(tu - ф±) + Cu cos p1 p ~ + Ф1 “ 3u(t)J +

+ C± cos p - - ^(t)! (7.28b)

—2— S sin(<pu - Ф1) - Cu sin p - + Ф£ - pu(t)] +

+ C± sin p1 p - + фц - ^(t)^ (7.28c)

R. )-Ł--- s соз(фи - Фх) + Cu cos p1 p - ) + ф± - 3u(tf| +

+ C± cos p1 p - - j + фи - ^(tfj -

- 2C± cos p - | j + ф£ - ₽x(t)J (7.28d)

₽u(t)]

(7.28e)

gdzie
Cu = kmu7+ s| - 2S1S2cos2 (ymu - m W1 J)',

Ci = kmiVS1 + Sl “ SS^co^pmi - m w1 -) ,

tg ₽u(t)
S1 ~ S2
S1 + S2

ct4mu - m Ш1 j)



tg ^(t)
S1 - S2

S1 + S2
- mw1

S1 =SaTC(m - 1)
sinCw^T)

sin(—ш.т)
S? = Sa7t(m + 1)--- -— ----—-

sin(o),]T)

Y = m w.t + <p ,, 'mu 1 ^mu’

Y j = m (iLt + m . , ‘mi “

t - czas opóźnienia sygnałów.
Jak można zauważyć, ogólne postacie równań (7.25) i (7.28) są bardzo 

do siebie podobne, a pewne różnice dotyczą mniej lub bardziej istotnych 
szczegółów związanych z parametrami, a zwłaszcza wartością opóźnienia t. 
Tak więc na przykład błąd w określeniu amplitudy ma wartość maksymalną 
wynoszącą (poprzednio D^). Przy tym Ла wartość jest osiągana dla 
innej fazy ęn ze względu na opóźnienie t/2 oraz wartość p^(t) różną 
od a^(t). To jest akurat nieco mniej istotne, natomiast ważne jest to,że 
maksymalne wartości są różne od maksymalnych wartości D^. A kon­
kretniej: ta wartość maksymalna jest teraz iloczynem względnej amplitudy 
zakłócenia i sumy bezwzględnych wartości i S2 (poprzednio występo­
wała tu suma wartości bezwzględnych funkcji Sa). Wartości tych dwu funk­
cji (S^ i S2) są, jak można zauważyć z ich równań w opisie wzorów (7.28), 
większe niż funkcji Sa, i to tym większe, im mniejsza jest wartość opóź­
nienia г . Przykładowo: jeśli opóźnienie r jest takie, że jest rów­
ne тг/6 (opóźnienie o jedną próbkę przy częstotliwości próbkowania 
600 Hz), to i S2 mogą być maksymalnie dwukrotnie większe niż odpowied­
nie funkcje Sa. Ostatecznie, w omawianym przykładzie błędy maksymalne z 
zastosowaniem drugiej rodziny algorytmów będą także w przybliżeniu dwu­
krotnie większe niż z zastosowaniem pierwszej z nich dla częstotliwości 
zakłócenia bliskiej częstotliwości Nyquista, to jest równej połowie czę­
stotliwości próbkowania. Przy niższych częstotliwościach zakłócenia będą 
one mniej niż dwukrotnie większe, a co jest bardzo istotne w pewnym za­
kresie częstotliwości, mogą być mniejsze niż w pierwszej rodzinie algo­
rytmów. Dotyczy to częstotliwości zakłócenia mniejszych od częstotliwoś­
ci podstawowej. Jak widać z równań określających S. i S2, są one 'wte­
dy mniejsze od odpowiednich wartości Sa i właśnie dlatego błędy są 
mniejsze.

W podsumowaniu można stwierdzić, że istotną cechą wyróżniającą algo­
rytmy pierwszej i drugiej rodziny jest to, że te pierwsze mają charakter 



dolnoprzepustowy, a drugie górnoprzepustowy. Ta uwaga о charakterze ogól­
nym pozwala przewidzieć typ filtrów wstępnych napięcia i prądu, które po­
winny poprzedzać stosowanie jednej lub drugiej rodziny algorytmów, 

Rozważania te można sprowadzić do kilku wniosków:
1. Powodowane zakłóceniami błędy pomiaru wielkości kryterialnych za­

leżą od wstępnej filtracji sygnałów oraz stosowanej rodziny algorytmów. 
Tak więc filtry używane do wydzielania składowych ortogonalnych sygnałów 
powinny mieć inne charakterystyki widmowe zależne od tego, czy wielkości 
kryterialne oblicza się na podstawie pierwszej, czy drugiej rodziny algo­
rytmów.

2. W pierwszym przypadku należy zwrócić uwagę przede wszystkim na 
skuteczną wstępną filtrację zakłóceń aperiodycznych, a nawet stosować 
ewentualne metody specjalne tłumiące to zakłócenie.

3. Podczas stosowania drugiej rodziny algorytmów należy uprzednio 
skutecznie stłumiać zakłócenia wysokoczęstotliwościowe, gdyż one mają 
swój główny udział w błędach pomiaru wielkości kryterialnych.

7.3. Przykłady symulacji pomiaru amplitudy różnymi metodami

W celu zilustrowania skutków stosowania różnego rodzaju filtracji i 
ich porównania dokonano symulacyjnych badań pomiaru amplitudy prądów i 
napięć. Świadomie zdecydowano się na badania najprostszych wielkości, 
gdyż wówczas znacznie bardziej przejrzysta staje się ocena wpływu różne­
go rodzaju zakłóceń na ich przebiegi w stanie przejściowym i ustalonym.

W badaniach tych przyjęto modele sygnałowe, które zmieniają się sko­
kowo w chwili t = 0 powstania zaburzenia. Sygnały te są opisane nastę­
pującymi równaniami:

u(t) = cos w^t dla t < 0
u(t) = 0,5 [cos + h^cos “ptj dla t >0 (7.29)

gdzie h1 = 0,25, a>p ■ 3,5 w1.
i(t) =0 dla t < 0,
i(t) = cosCw.t + <p) - coso exp(- t/T ) +1 a (7.30)

+ h sin ® sin w t dla t > 0P
gdzie
Ta = 2TV (T1 - 2л /ш^,
h - 0,1,
u)p - 3,5

Symulacyjne pomiary amplitud tak określonych napięć i prądów dokona­
no z zastosowaniem Czterech sposobów ortogonalnej filtracji sygnałów:



a) fitracja rekursywna z funkcjami wagi sinus i cosinus; okno pomia­
rowe długości równej okresowi składowej podstawowej T = (p. 5.2.2),

b) jak wyżej, lecz okno pomiarowe równe połowie okresu składowej pod­
stawowej T = T^/2,

c) filtracja o zmiennym oknie pomiarowym;podczas pomiaru prądu wa­
riant metody z kompensacją składowej stałej (p. 5.5),

d) filtracja Kalmana - filtr 2-stanowy podczas pomiaru napięcia i 3- 
stanowy podczas pomiaru prądu (rozdz. 6).

Rys. 7.10. Przebiegi symulacji pomiaru amplitudy napięcia z wykorzysta­
niem: a - standardowej filtracji pełnookresowej, b - półokresowej, c - 

metody filtracji o zmiennym oknie, d - filtracji Kalmana
Fig. 7.10. Simulation of voltage magnitude measurement using: a -standard 
full cycle filters, b - half cycle filters, c - filters with variable 

data window, d - Kalman filter

Rezultaty symulacji pomiaru amplitudy napięcia przedstawiono na rys. 
7.10, a pomiaru prądu na rys. 7.11 i 7.12. Jak widać na rys. 7.10, stoso­
wanie różnych metod filtracji napięcia ma swoje odbicie przede wszystkim 
w charakterze i parametrach stanu przejściowego po skokowej zmianie syg­
nału. Podczas stosowania pełno- i półokresowej filtracji nierekursywnej 
(a,b) mierzona amplituda wolno i monotonicznie zmierza od jednej wartoś­
ci ustalonej (1 ) do nowej wartości ustalonej (0,5). Czas trwania tego 
stanu przejściowego jest równy długości okna pomiarowego i wynosi w jed-



Rys. 7.11. Przebiegi symulacji pomiaru amplitudy prądu z wykorzystaniem standardowej filtracji: 
a - pełnookresowej, b - półokresowej

Fig.7.11.. Simulation of current magnitude measurement using: a - standard full cycle filters, 
b - half cycle filters

СП
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Rys. 7.12. Przebiegi symulacji pomiaru amplitudy prądu z wykorzystaniem: a - 3-stanowego filtru Kalmana, 
b - zmodyfikowanej metody filtracji o zmiennym oknie pomiarowym

Fig. 7.12. Simulation of current magnitude measurement using: a - 3-state Kalman filter, 
b - modified filter with variable data window



nym przypadku jeden okres, a w drugim pół okresu składowej podstawowej 
(odpowiednio i T^/2). Błędy w stanie ustalonym mają w obu przypad­
kach zbliżone wartości i są niewielkie. Zupełnie inna jest dynamika sta­
nu przejściowego pomiaru podczas stosowania dwu pozostałych metod fil­
tracji, to znaczy metody zmiennego okna pomiarowego (c) i filtracji Kal- 
mana (d). Otóż teraz przejście między jednym a drugim stanem ustalonym 
jest bardzo szybkie i niemonotoniczne, lecz z niewielkimi oscylacjami 
wokół wartości ustalonej. W zasadzie po jednej czwartej okresu składowej 
podstawowej jest już osiągany ten nowy stan ustalony przy kilkuprocento­
wym błędzie dynamicznym, który szybko zanika. Błędy stanu ustalonego po­
wodowane zakłóceniami są bardzo małe (około 1,5%) - podobnie jak z zasto­
sowaniem poprzednich metod filtracji. Są one najmniejsze podczas stosowa­
nia filtru Kalmana, lecz różnice w porównaniu z pozostałymi metodami są 
niewielkie.

Przebiegi symulacji pomiaru amplitudy prądu przedstawiono na rys. 
7.11 i 7.12. Parametrem tych wykresów była faza sygnału opisana równa­
niem (7.30). Przyjęto trzy wartości fazy: Ф = 0, я/4 oraz u/2. Odpowiada 
to przypadkom, w których prąd zawiera jedynie zakłócenie aperiodyczne 
(<P= O), jedynie zakłócenie oscylacyjne (ф = n/2) oraz jest sumą obu 
tych odpowiednio wyważonych zakłóceń. Zmiana tego parametru pozwala więc 
dodatkowo na ocenę wrażliwości omawianych metod na różne zakłócenia syg­
nału.

Na rysunku 7.11 zilustrowano przebiegi symulacji podczas filtracji z 
funkcjami wagi sinus i cosinus w pełnookresowym (rys. 7.11a) i półokre- 
sowym (rys. 7.11b) oknie pomiarowym. Jak można zauważyć, stan przejścio­
wy jest równy długości okna pomiarowego, a jego przebieg zależy od fazy 
początkowej ф. Błędy stanu ustalonego zależą przede wszystkim od zakłó­
cenia aperiodycznego. Gdy ф ma wartość я/2, błędy pomiaru są bardzo ma­
łe, gdyż sygnał jest zakłócony jedynie składową oscylacyjną (7.30), któ­
ra ma niedużą amplitudę i jest skutecznie filtrowana. Dla dwu pozosta­
łych wartości fazy dominuje już zakłócenie aperiodyczne i błędy pomiaru 
wyraźnie rosną. W algorytmie pełnookresowym (T = ) błędy te mają war­
tości maksymalne takie, jak obliczono w p. 7.2 i są przy stałej czasowej 
T /Т. = 2 mniejsze niż 10%. Inaczej jest w algorytmie półokresowym,gdzie 
błędy sięgają 100%, co oznacza, że standardowy algorytm półokresowy nie 
może być stosowany podczas pomiaru amplitudy prądu, jak też innych wiel­
kości kryterialnych wykorzystujących składowe ortogonalne prądu, bez 
specjalnych metod zmniejszających zawartość zakłócenia aperiodycznego.

Na rys. 7.12 pokazano rezultaty symulacji pomiaru amplitudy prądu 
podczas stosowania filtracji o zmiennym oknie pomiarowym (rys. 7.12b) i 
filtracji Kalmana (rys. 7.12a). Można zauważyć na obu tych rysunkach do­
minujący wpływ zakłócenia oscylacyjnego na przerosty stanu przejściowego.



Otóż w miarę zbliżania się fazy sygnału do n:/2 rośnie udział tego zakłó­
cenia (dla <₽ = ^/2 istnieje tylko zakłócenie oscylacyjne) i wzrastają 
też przerosty, które są nieco większe podczas stosowania filtracji Kalma­
na. Błędy w stanie ustalonym zależą natomiast przede wszystkim od zakłó­
cenia aperiodycznego. Wprawdzie nie obserwuje się ich w filtrze Kalmana, 
lecz wynika to z tego, że przyjęto identyczne wartości oczekiwanej i rze­
czywistej (w równaniu (7.30)) stałej czasowej. Mogą one być różne i wów­
czas wartości błędów będą zbliżone do tych rozważanych w p. 7.2.4. Tak 
więc, gdy dominuje zakłócenie oscylacyjne (Ф = и/г) stan ustalony jest, 
przy znacznych przerostach, osiągany po czasie około pół okresu składo­
wej podstawowej, ale błędy w stanie ustalonym są niewielkie. Z kolei,gdy 
dominuje zakłócenie aperiodyczne (Ф= 0), wówczas błędy w stanie ustalo­
nym mają wartości zbliżone do błędów osiąganych podczas standardowej fil­
tracji pełnookresowej (rys. 7.11a), ale stan przejściowy nie ma przeros­
tów i jest bardzo krótki, bo trwa tylko jedną czwartą okresu składowej 
podstawowej.

Badania symulacyjne pozwalają na sformułowanie kilku wniosków:
1. Najszybszy pomiar amplitud prądu i napięcia uzyskuje się z zasto­

sowaniem filtracji Kalmana oraz filtracji metodą zmiennego okna pomiaro­
wego. Pewną przewagę ma tutaj ostatnia metoda, gdyż nie wymaga żadnych 
danych a priori w przeciwieństwie do filtracji Kalmana, której stosowa­
nie musi być poprzedzone długimi seriami badań modelowych w celu okreś­
lenia parametrów projektowych filtru.

2. Stosowanie tak szybkich metod pomiaru wymaga jednak zwrócenia uwa­
gi na znaczne przerosty w stanach przejściowych, powodowane przez zakłó­
cenia oscylacyjne i redukcję lub usunięcie powstałych błędów dynamicz­
nych, na przykład przez stosowanie zwłoki czasowej.

3. Gdy tak szybki pomiar nie jest wymagany, wówczas może być stosowa­
na standardowa filtracja pełnookresowa. Stosowanie filtracji półokreso- 
wej do pomiaru wielkości kryterialnych z udziałem prądu jest uwarunkowa­
ne efektywnym ograniczeniem zakłócenia aperiodycznego.

4. Dynamika pomiaru wielkości kryterialnych jest zdeterminowana dyna­
miką toru prądowego.

5. Źródłem największych błędów pomiaru w stanie ustalonym jest zakłó­
cenie aperiodyczne.

8 Z WNIOSKI

1. W pracy rozważono cyfrowe pomiary wielkości kryterialnych zabez­
pieczeń elektroenergetycznych, oparte na napięciach i prądach o często­
tliwości podstawowej. Istotne trudności w przeprowadzeniu pomiaru w odpo­



wiednio krótkim czasie i z wymaganą dokładnością związane są z silnym za­
kłóceniem sygnałów użytecznych stacjonarnymi i niestacjonarnymi składowy­
mi o różnych nieznanych częstotliwościach, których źródłem jest powstałe 
zaburzenie w chronionym obiekcie. Sprostanie stawianym wymaganiom metro­
logicznym powoduje konieczność stosowania złożonych metod teoretycznych, 
środków technicznych oraz odpowiedniej rozbudowy sytemu pomiarowego.

2. Podstawą w przygotowaniu optymalnej metody pomiarowej jest zało­
żenie adekwatnego do rzeczywistości modelu sygnałowego, zawierającego 
sygnał użyteczny i model zakłóceń. Wyodrębniono trzy takie modele sygna­
łowe: deterministyczny, częściowo i całkowicie probabilistyczny. Przygo­
towanie odpowiedniego modelu sygnałowego wymaga stosownego nakładu pra­
cy, innego w każdym przypadku. Scharakteryzowanie modelu deterministycz­
nego nie wymaga właściwie wiedzy a priori, gdy tymczasem określenie para­
metrów pozostałych.dwu modeli jest bardzo czaso- i pracochłonne. Koniecz­
ne jest tutaj stosowanie zaawansowanych metod modelowania cyfrowego oraz 
odpowiednie przygotowanie teoretyczne do umiejętnej oceny parametrów 
tych modeli sygnałowych. Przyjęte modele implikują różne metody optyma­
lizacji, a także inne ich miary.

3. W cyfrowym przetwarzaniu sygnałów wchodzących w skład procesu po­
miaru wielkości kryterialnych wyodrębniono trzy etapy: filtrację, orto- 
gonalizację oraz właściwy algorytm pomiarowy. Filtracja ma na celu stłu­
mienie, w wymaganym stopniu, zakłóceń w stosunku do sygnału użytecznego, 
ortogonalizacja - rozszczepienie sygnałów użytecznych na składowe umożli­
wiające możliwie proste obliczenie wielkości kryterialnych przez właści­
wy algorytm.

4. Ortogonalizacja jest procesem wydzielania składowych zespolonego 
wektora będącego funkcją czasu, zwanego też fazorem, lub też jego rzutów 
na wzajemnie prostopadłe osie w chwili t = 0 (szczegółowe definicje po­
dano w zakończeniu p. 4.1). Ortogonalizacja może być realizowana oddziel­
nie lub też łącznie z filtracją przez zastosowanie pary filtrów ortogo­
nalnych. W pierwszym przypadku wykorzystuje się liniową kombinację opóź­
nionych sygnałów lub dyskretne różniczkowanie. Metody wyodrębnionej orto- 
gonalizacji stanowią, jak stwierdzono, filtry cyfrowe o różnie ukształto­
wanych górnoprzepustowych charakterystykach widmowych.

5. Klasyczne metody cyfrowej nierekursywnej filtracji ortogonalnej 
oraz korelacji stanowią skuteczny sposób jednoczesnej ortogonalizacji 
sygnałów użytecznych i filtracji składowych zakłócających. Ich stosowa­
nie nie wymaga żadnych danych a priori. Filtry wydzielające składowe or­
togonalne powinny mieć funkcje wagi, z których jedna jest parzystą, a dru­
ga nieparzystą funkcją czasu w odniesieniu do okna pomiarowego. Klasycz­
na korelacja, jak stwierdzono, zapewnia wydzielanie składowych ortogonal­
nych, jeśli okno pomiarowe jest całkowitą wielokrotnością półokresu iden­
tyfikowanej składowej podstawowej sygnału.



Algorytmy realizujące filtrację lub korelację są proste, a także mo­
gą być znacznie modyfikowane i upraszczane przez stosowanie postaci re- 
kursywnych lub odpowiednio ukształtowanych funkcji wagi filtrów, na przy­
kład funkcji Walsha, Haara i innych. Ich charakterystyki widmowe mają ko­
rzystny dolnoprzepustowy przebieg, których szczegółowe parametry zależą 
od wymaganej długości okna pomiarowego. Składowe zakłócające najskutecz­
niej są tłumione w algorytmach pełnookresowych z funkcjami wagi sinus i 
cosinus.

Ważną cechą wszystkich rozpatrywanych filtrów ortogonalnych jest li­
niowość fazy w funkcji częstotliwości. Właściwość ta może być zastosowa­
na do specjalnych typów filtrów, na przykład filtrów składowych symetry­
cznych. Stosowanie opracowanych metod specjalnych umożliwia minimaliza­
cję błędów powodowanych zakłóceniami aperiodycznymi, co jest szczególnie 
ważne, gdyż jest to źródło największych błędów.

W klasycznej filtracji nierekursywnej oraz korelacji po skokowej 
zmianie sygnałów występują stany przejściowe, których czas trwania jest 
równy długości okna pomiarowego. Charakter przebiegu tego stanu przejś­
ciowego zależy od szczegółowych parametrów sygnałów,a wielkość mierzona 
może być w tak szerokim zakresie, że jest w tym przedziale mało użytecz­
na. W omawianych w pracy zastosowaniach stan przejściowy jest ważnym ele­
mentem charakterystyki filtracji, a także algorytmu pomiarowego.

6. Czas trwania stanu przejściowego można skrócić przez stosowanie 
metod zmiennego okna pomiarowego, odwzorowania krzywych lub optymalizu­
jących stan przejściowy. W każdym z tych przypadków konieczna jest dodat­
kowa informacja dotycząca modelu sygnałowego, jego własności i parame­
trów. Najmniej informacji a priori potrzeba w metodach zmiennego okna i 
odwzorowania krzywych. Istotna jest tu jedynie taka znajomość modelu 
sygnałowego (deterministycznego lub częściowo probabilistycznego), aby 
właściwie dobrać funkcje aproksymujące. Jeśli są one dobrane optymalnie, 
to pomiar będzie odbywał się w zasadzie bez stanu przejściowego, a cha­
rakterystyki widmowe będą poprawiać się wraz ze zwiększaniem długości ok­
na i dostarczaniem nowych informacji, aż do osiągnięcia widma odpowiada­
jącego temu dla ustalonego okna pomiarowego. Omawiane metody zapewniają 
podobne własności statyczne i dynamiczne,jak te wykorzystujące filtrację 
Kalmana,do mniejszej i łatwiej dostępnej wiedzy a priori.

Filtr Kalmana zastosowany do ortogonalizacji i filtracji sygnałów wy­
maga przechowywania najmniejszego ciągu danych, gdyż potrzebne są tylko 
ich bieżące wartości. Filtr ten, jeśli starannie zaprojektowany, wykazu 
je bardzo korzystne cechy dynamicżne, wyrażające się bardzo krótkim sta­
nem przejściowym. Jego charakterystyka widmowa jest niezbyt korzystnie 
ukształtowana i wykazuje na ogół słabe tłumienie składowych zakłócają­
cych. Zależy ona w pewnym stopniu od parametrów projektowych filti-u i mo­



że być poprawiona kosztem dynamiki filtracji. Algorytm realizujący ten 
filtr jest prosty i nie wymaga dużego nakładu obliczeń. Tłumienie zakłó­
cenia aperiodycznego z zastosowanie filtru 3-stanowego jest - w wyniku 
zmiany stałej czasu tego zakłócenia w szerokim zakresie - gorsze niż w 
filtrach fourierowskich, a błędy nim powodowane są niewielkie tylko wte­
dy, gdy rzeczywista stała czasu odchyla się nieznacznie od wartości ocze­
kiwanej. Zwłaszcza nie jest odrzucana składowa stała i może ona być źród­
łem znacznych błędów pomiaru.

7. Cyfrowe algorytmy pomiaru wielkości kryterialnych sprowadzono do 
dwu podstawowych rodzin algorytmów, niezależnie od stosowanych metod fil­
tracji i ortogonalizacji. Umożliwiło to znaczną redukcję ich zbioru oraz 
ograniczenie liczby testów i badań przeprowadzonych w celu określenia 
ich własności. Na podstawie tych dwu rodzin można utworzyć dużą liczbę 
szczegółowych algorytmów o pożądanych cechach. Algorytmy pierwszej rodzi­
ny ((4.20)- (4. 25)) wykazują dolnoprzepustowe charakterystyki filtracyjne i 
wykorzystują próbki sygnałów w tych samych dyskretnych chwilach. Algoryt­
my drugiej rodziny ((4.27)-(4.29)) wykazują górnoprzepustowe charakterys­
tyki filtracyjne oraz wprowadzają dodatkowe opóźnienie pomiaru, gdyż wy­
magają użycia odpowiednio opóźnionych składowych ortogonalnych sygnałów. 
Ogólnie więc algorytmy pierwszej rodziny są lepiej dostosowane do tłumie­
nia wysokoczęstotliwościowych zakłóceń sygnałów, a drugiej - do tłumie­
nia zakłóceń o niskiej częstotliwości i(lub) składowej aperiodycznej.

Fundamentalnymi wielkościami w obu rodzinach algorytmów są: amplitu­
dy oraz kwadraty amplitud napięć i prądów, tudzież moce czynna i bierna. 
Składowe impedancji są obliczane jako iloraz odpowiednich z tych wielkoś­
ci.

8. Podstawową przyczyną błędów pomiaru są zakłócenia sygnałów. Miary 
i sposoby minimalizacji błędów są różne, zależne od przyjętego modelu 
sygnałowego. Jak stwierdzono, największe i najtrudniejsze w minimaliza­
cji są błędy powodowane zakłóceniami aperiodycznymi sygnałów. Trajekto­
rie błędów złożonych wielkości kryterialnych, takich jak składowe impe­
dancji, są złożonymi krzywymi zamkniętymi na płaszczyźnie R-X. Ich war­
tości maksymalne, zależne od stosowanych metod filtracji oraz rodziny al­
gorytmów pomiarowych określono na podstawie błędów pomiaru prostych wiel­
kości kryterialnych wchodzących w algorytm pomiarowy.

W każdej ze stosowanych metod filtracji i algorytmach pomiaru ma swo­
je odzwierciedlenie znany dylemat szybkość-dokładność. Oznacza on, że 
zwiększenie dokładności może następować tylko przez wydłużenie czasu po­
miaru (okno filtrów) i odwrotnie - każde skrócenie czasu pomiaru spowo­
duje zwiększony błąd, jakiekolwiek byłyby jego miary.
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Praca wpłynęła do Redakcji 5 października 1989 r.

SIGNAL RECOGNITION IN DIGITAL POWER SYSTEM PROTECTION

A digital identification of criterion values of power system protec­
tion has been presented. The following criterion values have been con­
sidered: magnitudes of voltages and currents, active and reactive power, 
resistance and reactance (conductance, susceptance)', which are measured 
using voltages and currents of fundamental frequency of protected system.

A structure of digital power system protection and in particular a 
separated block of measurement have been considered. Signal processing 
consists of two steps in the digital part of the protection: digital 
filtration or estimation and digital algorithms themselves.The synthesis 
of such algorithms made it possible to divide them into two fundamental 
families, which include most of the algorithms worked out untill now. To 
both of them, orthogonal signal components are applied. These components 
can be obtained in different ways resulting in different features of the 
given algorithm.

Optimization of digital signal processing in the measurement block 
has been done, taking into consideration three signal models: determinis­
tic, partially and completely probabilistic. The method of optimization 
as well as minimalization of measurement errors due to signal noises 
have been examined according to the models assumed. To this purpose, 
digital filtration and correlation having constant and variable data 
window, curve fitting method and Kalman filter as well as methods of 



analysis of measuremet errors of criterion values, have been used. 
Different methods of minimalization of measurement errors due to decaying 
DC, which in standard methods is a source of substantial and difficult 
to be removed errors, have been also presented.

Results of analysis, synthesis and optimalization have been illustrat­
ed by computer simulations, which confirmed the conclusions resulting 
from the theoretical approach.

ОПОЗНАВАНИЕ СИГНАЛОВ В ЦИФРОВОЙ ЗАЩИТНОЙ АВТОМАТИКЕ
В работе представлены цифровые методы идентификации сигналов, вы­

ступающих в качестве критериальных величин электроэнергетических защит. 
Рассматривается следующие критериальные величины: амплитуды напряжений 
и токов, активные и реактивные мощности, активное и реактивное сопро­
тивление, которые определяются посредством значений тока и напряжения 
основной гармоники в защищаемом объекте.

Рассматривается структура цифровых электроэнергетических защит, а 
в особенности, структура их измерительного органа. В его цифровой под­
системе преобразование сигналов проводится в следующие два этара: ци­
фровая фильтрация или оптимальная эстимация и измерение критериальной 
величины посредством соответствующего алгоритма. Проведенный синтез по­
зволил выделить два основных семейства этих измерительных алгоритмов, 
в которых помещаются все основные разработанные до сих пор методы. Они' 
базируют на разложении сигнала на ортогональные составляющие. Методы 
выделения этих составляющих обусловливают свойства алгоритмов.

Оптимизацию цифрового преобразования сигналов в измерительных ор­
ганах проводится относительно трех следующих моделей сигналов: детер­
министической, частично и вполне стохастической. Соответственно этому, 
проведен анализ методов оптимизации алгоритмов и минимизации ошибок, 
вносимых помехами. Для этого используется цифровая фильтрация и корре­
ляция с постоянным и переменным измерительными окнами, методы аппрокси­
мации функции, калмановская фильтрация, а также разработанные методы 
анализа ошибок критериальных величин. Представлены также методы миними­
зации ошибок от апериодической составляющей, которая в известных мето­
дах является источником значительных и трудноопределимых ошибок.

Результаты анализа, синтеза и оптимизации проиллюстрированы про­
веденными модельными экспериментами, которые подтверждают выводы, выте­
кающие из теоретических исследований.



SPIS TREŚCI

1. Wstęp ......................................  3

2. Struktura pomiarów cyfrowych zabezpieczeń elektroenergetycznych.. 5
2.1. Schemat blokowy zabezpieczeń cyfrowych ..................... 5
2.2. Podstawowe wymagania metrologiczne i funkcjonalne .......... 9

3. Modele sygnałów i układów ........................................  14
3.1. Model sygnałowy deterministyczny i sygnałowy model probabi­

listyczny ............................................... 15
3.2. Współzależność modeli sygnałów i układów pierwotnych ...... 17
3.3. Transformacje sygnałów w torze pomiarowym .................... 19

4. Mierzone wielkości kryterialne .................................... 20
4.1. Wprowadzenie ................................................ 20
4.2. Metody otrzymywania składowych ortogonalnych sygnałów i ich 

charakterystyki ........................................  22
4.3. Podstawy algorytmów pomiarowych z zastosowaniem składowych 

ortogonalnych ........................................... 31
4.4. Pomiar amplitudy napięcia lub prądu ........................ 36

4.4.1. Zastosowanie składowych ortogonalnych ............... 36
4.4.2. Metody uśredniania ..........................   41

4.5. Złożone wielkości kryterialne .............................  42
4.5.1. Pomiar mocy ..........................................  42
4.5.2. Pomiar składowych impedancji ........................  47
4.5.2.1. Zastosowanie składowych ortogonalnych .............  47
4.5.2.2. Pomiar rezystancji i reaktancji z równań obwodu 

zwarciowego ............................... 51

5. Cyfrowa filtracja i korelacja .................................... 55
5.1. Wprowadzenie ..............................................  55
5.2. Filtracja cyfrowa ........................................... 60

5.2.1. Widmo całkowania ciągłego i dyskretnego ............. 63
5.2.2. Filtry nierekursywne o typowych funkcjach wagi i ich 

widma..... ..   36
5.2.2.1. Widma filtrów i unormowane charakterystyki często­

tliwościowe ............................... 66
5.2.2.2. Algorytmy i sygnały wyjściowe filtrów........ '..... 73

5.3. Metoda korelacji i odwzorowania krzywych ................... 32
5.3.1. Zasady i równania ogólne ............................. 32
5.3.2. Przypadki szczególne korelacji i odwzorowania krzy­

wych ............... ...........................



5.3.2.1. Zastosowanie współczynników szeregu Fouriera. 
Charakterystyki częstotliwościowe ....... 86

5.3.2.2. Optymalna estymacja i wariancje błędów ........... 89
5.4. Stany przejściowe filtracji i korelacji ................... 94
5.5. Filtracja przy oknie pomiarowym zmiennej długości ......... 100

5.5.1. Zasady i równania ogólne ........................... 100
5.5.2. Własności metody - charakterystyki widmowe i warian­

cje .   105
6. Filtracja Kalmana ................................................ 110

6.1. Podstawowe równania i modele procesu oraz filtru ..........  112
6.2. Modele i filtry o różnej liczbie stanów ...................  115
6.3. Parametry projektowe filtru i macierz [K] .................  121
6.4. Charakterystyki efektywności filtru .......................  122

6.4.1. Macierz [K] i wariancje błędów estymacji ........... 122
6.4.2. Czasy odpowiedzi i charakterystyki częstotliwościowe 

filtru .......................................  131
7. Dokładność wielkości kryterialnych .............................. 139

7.1. Filtracja składowej aperiodycznej .......................... 141
7.1.1. Błędy wywołane składową aperiodyczną w metodach 

standardowych ................................ 141
7.1.2. Szereg Fouriera składowej aperiodycznej ...........  145
7.1.3. Metody minimalizacji błędów ........................  147
7.1.4. Ocena błędów podczas stosowania filtru Kalmana .... 151

7.2. Błędy wywołane zakłóceniami oscylacyjnymi .................  152
7.3. Przykłady symulacji pomiaru amplitudy różnymi metodami .... 161

8. Wnioski ........................................................... 166

Literatura ........................................................... 170

CONTENTS

1 . Preface ........................................................... 3

2. Structure of digital measurements of power system protection ... 5
2.1. Block scheme of digital protection ........................ 5
2.2. Fundamental metrological and functional requirements ..... 9

3. Signal and circuit models .......................................  14
3.1. Deterministic and probabilistic signal models ............. 15
3.2. Interdependence of signal and circuit models .............. 17
3.3. Signal transformation in measurement system..... ......... 19»

4. Criterion values measured .......................................  20
4.1. Introduction..........     20



4.2. Methods of extraction of orthogonal signal components 
and their characteristics .............................. 22

4.3. Fundamentals of measurement algorithms using orthogonal 
components .............................................. 31

4.4. Voltage and current magnitude measurement .................. 36
4.4.1. Application of orthogonal components........   36
4.4.2. Averaging methods .,.................................. 41

4.5. Complex criterion values ...................   42
4.5.1. Power measurements .......................   42
4.5.2. Measurement of impedance components ................. 47
4.5.2.1. Application of orthogonal components .............. 47
4.5.2.2. Measurement of resistance and reactance solving the 

equation of fault circuit ................ 51

5. Digital filtration and correlation ............................... 55
5.1. Introduction...........................    55
5.2. Digital filtration ........................................... 60

5.2.1. Spectra of continuous and discrete integration rules. 63
5.2.2. Nonrecursive filters having typical impulse responses 

and their spectra..... L...................... 66
5.2.2.1. Spectra of filters and their normalized frequency 

responses...... ........................... 66
5.2.2.2. Algorithms and output signals of filters .......... 76

5.3. Correlation and curve fitting methods ......................  82
5.3.1. Principles and general equations .........  82
5.3.2. Particular cases of correlation and curve fitting 

methods ........................................ 86
5.3.2.1. Applications of coefficients of Fourier series. 

Frequency responses ....   86
5.3.2.2. Optimum estimation and variance of errors ......  89

5.4. Transients of filtration and correlation ................... 94
5.5. Filtration with variable data window.......................  100

5.5.1. Principles and general equations ....................  100
5.5.2. The method characteristic: spectra and variances .... 105

6. Kalman filter.....................................................  110
6.1. Fundamental equations, process and filter models ........... 112
6.2. Models and filters having different number of states ......  115
6.3. Design parameters of the filter and matrix [K] ............. 121
6.4. Characteristics of filter quality..........................  122

6.4.1. Matrix [K] and variances of estimation errors ......  122
6.4.2. Settling time and frequency responses.... .......... 131

7. Accuracy of criterion values .....................................  139
7.1. Filtration of decaying DC ...................................  141

7.1.1• • Errors due to decaying DC in standard methods ....... 141



7.1.2. Fourier series of decaying DC ......................  145
7.1.3. Methods of errors minimalization  ..........  147
7.1.4. Errors estimation when Kalman filters are applied .. 151

7.2. Errors due to oscillatory noise components ................ 152
7.3. Simulation examples of magnitude measurements using 

different methods.............. ................ . 161
8. Conclusions  ......     166

Bibliography  ............................................... 170





PRACE NAUKOWE INSTYTUTU ENERGOELEKTRYKI 
(wydane w latach 1988—1989)

Nr 78, Monografie nr 20, M. Zielichowski, Procesy ziemnozwarciowe 
w stojanach turbogeneratorów, Wrocław 1988 250,—

Nr 79, Konferencje nr 29, Teoria cyfrowych systemów zabezpieczeń, 
Wrocław 1988 170,—

Nr 80, Monografie nr 21, Z. Wróblewski, Wielowariantowa metoda prog­
nozowania niezawodności styczników elektromagnetycznych prądu 
przemiennego z bieżącej produkcji, Wrocław 1988 250,—

Nr 81, Konferencje nr 30, Systemy elektroenergetyczne — eksploatacja 
i rozwój. II. Wrocław 1988 190,—

Nr 82, Monografie nr 22, Z. Kremens, Analiza błędnych danych z testem 
obserwowalności w ocenie stanu pracy systemu elektroenergetycz­
nego, Wrocław 1989 540,—



Cena zł 1800,—

Subscription should be sent (at any time of the year) to: 
„Ars Polona”

Krakowskie Przedmieście 7, 00-068 Warszawa
Bank account number: PBK XIII Oddz. W-wa 370044-1195-139-11 

Zamówienia na prenumeratę można składać:
OR PAN, PKiN, 00-901 Warszawa

Nr konta bankowego: PBK IX Oddz. W-wa, 370031-4792

Wydawnictwa Politechniki Wrocławskiej 
ma stale na składzie Księgarnia Wr 49 

Wybrzeże Wyspiańskiego 27, 50-370 Wrocław 
oraz Wojewódzka Księgarnia Techniczna 

ul. Świdnicka 8, 50-067 Wrocław

ISSN 0324-976X





Raport dostępności





		Nazwa pliku: 

		PN_PWr_I8_83_MO_23_1990.pdf









		Autor raportu: 

		



		Organizacja: 

		







[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]



Podsumowanie



Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.





		Wymaga sprawdzenia ręcznego: 2



		Zatwierdzono ręcznie: 0



		Odrzucono ręcznie: 0



		Pominięto: 1



		Zatwierdzono: 28



		Niepowodzenie: 1







Raport szczegółowy





		Dokument





		Nazwa reguły		Status		Opis



		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności



		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy



		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF



		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu



		Język główny		Zatwierdzono		Język tekstu jest określony



		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym



		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki



		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów



		Zawartość strony





		Nazwa reguły		Status		Opis



		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana



		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane



		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury



		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku



		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane



		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu



		Skrypty		Zatwierdzono		Brak niedostępnych skryptów



		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych



		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się



		Formularze





		Nazwa reguły		Status		Opis



		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane



		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis



		Tekst zastępczy





		Nazwa reguły		Status		Opis



		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego



		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany



		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością



		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji



		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy



		Tabele





		Nazwa reguły		Status		Opis



		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot



		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR



		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki



		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie



		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie



		Listy





		Nazwa reguły		Status		Opis



		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L



		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI



		Nagłówki





		Nazwa reguły		Status		Opis



		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie










Powrót w górę

