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Wykaz wazniejszych oznaczen

Oznaczenia podano w kolejnoéci alfabetycznej zastosowanych symboli.

Il — norma euklidesowa
|| — wartoé¢ bezwzgledna

[-] — funkcja ,podloga”

(-)[i] — i—ta realizacja estymatora

(- — transpozycja

(T)AD — estymator zbudowany w oparciu o metode uérednionej pochodnej

e — estymator zbudowany w oparciu o metode korelacyjng

(T)f AD — estymator zbudowany w oparciu o metode urednionej pochodnej
oraz wykorzystujacy jadrows estymacje gestosci sygnatu {X,}

(T)L S — estymator zbudowany w oparciu o metode najmniejszych kwadratéw

(?)RC — estymator zbudowany w oparciu o metode korelacji rangowej

1[A4] — indykator zdarzenia A

1p (z) — funkcja wskaznikowa przyjmujaca warto$¢ 1, gdy x € Bi0, gdy z ¢ B

\4 — kwantyfikator ogélny (,dla kazdego...”)

3 — kwantyfikator szczegétowy (,istnieje...”)

«a — stala multiplikatywna w metodzie korelacyjnej

bias{-} = — obciagzenie estymatora

corr{-,-} — korelacja

Cov{:,-} - kowariancja

Dy (4) — gradient funkcji fx (-)

D¢ (+) — gradient funkcji G ()

E{} — operator wartoéci oczekiwanej

Err(-;-) - empiryczny blad estymacji odp. impulsowej podsystemu dynamicznego

v () — funkcja gestoéci prawdopodobiefistwa sygnatu interakcyjnego {V,}

fx () — funkcja gestoéci prawdopodobiefistwa sygnatu wejsciowego {Xn,}

fx () — funkcja gestoéci prawdopodobienstwa sygnatu wektorowego {X,,}

D (-) — dystrybuanta standardowego rozktadu normalnego N (0, 1)

g(") — nieliniowa charakterystyka podsystemu statycznego

g(510) — funkcja regresji zalezna od wektorowego parametru [ € A

G(+) — nieliniowoé¢ w reprezentacji systemu Wienera za pomocg statycznego
systemu typu MISO

h — parametr wygtadzania w estymatorze charakterystyki nieliniowej

ho — parametr wygladzania w estymatorze pilotowym

h1 — parametr wygladzania w estymatorze gestosci fx (+)

vii
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ho — parametr wygladzania w estymatorze pochodnej gestosci fx (+)

I — zbiér indekséw, I = {p+1,p+2,...,N}

I — zbidr indekséw, I1 = {p+1,...,p+ N1}

I — zbiér indekséw, I = {2p+ 1+ Ny,..., N}

K — stala multiplikatywna w metodzie uérednionej pochodnej

K () — funkcja jagdra w estymatorze charakterystyki nieliniowej

Ky (+) — funkcja jadra w estymatorze pilotowym

K; () — funkcja jadra w estymatorze gestoSci prawdopodobiefistwa sygnatu
wejsciowego {X,}

K (+) — funkcja jadra w estymatorze pochodnej gestoéci prawdopodobiehstwa
sygnatu wejsciowego {X,}

{MYieg — odpowiedZ impulsowa podsystemu dynamicznego

A — wektor utworzony z elementéw odpowiedzi impulsowej podsystemu
dynamicznego, A = (Ao, A1, - -, /\p)T

A — zbiér mozliwych odpowiedzi impulsowych podsystemu dynamicznego

MISE (+;-) — empiryczny blad estymacji charakterystyki nieliniowej

Ly — warto$é oczekiwana sygnatu interakcyjnego {V,}

Lx — warto$¢ oczekiwana sygnatu wejéciowego { X, }

Ly — warto$¢ oczekiwana sygnatu wyjsciowego {Y,}

N — liczba dostepnych obserwacji wejécia i wyjscia systemu

Ny — liczba elementéw zbioru I

Ny, — liczba elementéw zbioru Iy

Ny, — liczba elementéw zbioru I

N(0,1) — standardowy rozklad normalny

NSR — wspélezynnik ,noise-to—signal ratio”

P — dlugo$¢ pamieci systemu

Qn () — funkcja kryterialna wykorzystywana w konstrukcji estymatora _;\_ZS

& s . nr LRC

Sn () — funkcja kryterialna wykorzystywana w konstrukcji estymatora Ay

a%, — wariancja sygnatu interakcyjnego {V,}

a% — wariancja sygnatu wej$ciowego {X,}

a5 - wariancja sygnatu zaklécajacego {Z,}

T — zbiér par obserwacji wejscia i wyjscia systemu, T1 = {(Xn, Yn) }ner,

Ty — zbiér par obserwacji wejécia i wyjécia systemu, Tz = {(Xn, Yn)}ner,

Te — zbi6r par obserwacji wejécia i wyjécia systemu, Tg = {(X,,, Yn) }per

Var{} — wariancja

{Va} — sygnatl interakcyjny (ciag zmiennych losowych)

{X.} — sygnal wejSciowy (ciag zmiennych losowych)

X - (p + 1)—elementowy wektor utworzony z kolejnych obserwacji

wejécia systemu, X,, = (Xpn, Xn—1, ... ,Xn_p)T

{X.,.} — wektorowy sygnal wejSciowy w reprezentacji systemu Wienera
za pomocy, statycznego systemu typu MISO

(X Yn)}ﬁ;l — zbiér par obserwacji wejscia i wyjScia systemu

{¥n} — sygnat wyjéciowy (cigg zmiennych losowych)
{Z,} - addytywny sygnat zaklécajacy (ciag zmiennych losowych)
Q - no$nik funkeji fx (+)
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W pracy przedstawiono nowg klase parametryczno-nieparametrycznych algorytméw iden-
tyfikacji systeméw Wienera z czasem dyskretnym, dla ktérych przyjaé mozna zalozenie, iz
pamigé czedci dynamicznej systemu jest skoficzona. Zaproponowane metody umozliwiajg
pelng identyfikacje rozwazanych systeméw, tj. pozwalaja na oszacowanie opiséw zaréwno
podsysteméw liniowych, jak i nieliniowych. Przeprowadzono analize teoretyczng wiasnosci
asymptotycznych skonstruowanych algorytméw oraz wykonano symulacje komputerowe,
ilustrujgce ich zachowanie dla malej i umiarkowanej liczby obserwacji.

W rozdziale 1. prezentowana jest ogélna koncepcja systeméw o strukturze blokowej na
tle innych podejé¢ do opisu systeméw nieliniowych spotykanych w literaturze. Giéwna
uwage po$wiecono systemom Wienera — ich konstrukcji, zastosowaniom w dziedzinie
aproksymacji systeméw nieliniowych oraz implementacjom praktycznym. Rozdziat 2.
wprowadza do zagadnienia parametryczno—nieparametrycznej identyfikacji systeméw Wie-
nera. Oméwiono w nim najpierw ideg parametrycznej oraz nieparametrycznej identyfikacji
systeméw, ze szczegdlnym uwzglednieniem algorytméw opisanych w literaturze i po$wie-
conych rozwazanej klasie obiektéw. Na tym tle wprowadzona zostata koncepcja mieszanej,
parametryczno—nieparametrycznej, identyfikacji systeméw Wienera oraz oméwiony zostat
wspélny schemat konstrukcji prezentowanych metod. Rozdzial ten zawiera réwniez
podstawowe zalozenia wykorzystywane w pracy, a takze teze i cele pracy. W rozdzialach
3., 4. 1 5. przedstawiono kolejno trzy rézne metody identyfikacji. Szczegétowo oméwiono
konstrukcje odpowiednich estymatoréw podsysteméw liniowych i nieliniowych oraz podano
warunki gwarantujace zbiezno$§¢ algorytméw. Oprécz analizy zgodnoSci estymatoréw,
w rozdziatach 3. i 5. przeprowadzono analize rzedéw szybko$ci zbieznoéci odpowiednich
oszacowan. W uzupeknieniu analizy asymptotycznej, dla kazdej z metod wykonano badania
symulacyjne ilustrujace ich efektywno$ci dla skonczonej liczby obserwacji. Rozdzial 3.
zawiera opis korelacyjnej metody identyfikacji. W rozdziale 4. przedstawiono algorytm
oparty na metodzie najmniejszych kwadratéw opracowany we wspélpracy z Panem
Profesorem Mirostawem Pawlakiem z University of Manitoba. W rozdziale tym krétko
omoéwiono réwniez metode identyfikacji systeméw Wienera wykorzystujaca idee estymacji
korelacji rangowej. Algorytm identyfikacji, wykorzystujacy koncepcje estymacji uéred-
nionej pochodnej, konstruowany jest z kolei w rozdziale 5. Rozdzial 6. zawiera zbiorczg
analize uzyskanych w rozprawie rezultatéw teoretycznych oraz badan symulacyjnych
algorytméw. W rozdziale 7. przedstawiono otwarte problemy naukowe, a takze okreslono
mozliwe kierunki dalszych badan. _

Autor pragnie podziekowaé¢ Panu Profesorowi Zygmuntowi Hasiewiczowi, promo-
torowi pracy oraz Panu Profesorowi Wlodzimierzowi Greblickiemu, kierownikowi Zakladu
Sterowania i Optymalizacji w Instytucie Informatyki, Automatyki i Robotyki Politech-
niki Wroclawskiej, za liczne dyskusje oraz cenne uwagi przekazane w trakcie studiéw
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doktoranckich. Szczegélne podzigkowania sktadam réwniez Panu Profesorowi Mirostawowi
Pawlakowi z University of Manitoba za uwagi merytoryczne dotyczace materialu zawartego
w rozdziale 4. oraz umozliwienie mi odbycia zagranicznego stazu naukowego w Department
of Electrical and Computer Engineering, University of Manitoba. Dzigkuje takze wszystkim
pracownikom Zaktadu Sterowania i Optymalizacji, Instytutu Informatyki, Automatyki
i Robotyki Politechniki Wroctawskiej. Na koniec dzigkuje serdecznie moim Rodzicom oraz
Kasi, bez ktérych ta praca nie moglaby powstac.



Rozdziat 1

Wprowadzenie — systemy Wienera
i ich zastosowania

1.1 Koncepcja systeméw blokowo-zorientowanych

Zadanie identyfikacji systeméw, jako jedno z podstawowych zagadnieh automatyki, polega
na wyznaczeniu matematycznego modelu zjawiska fizycznego lub procesu technologicznego
na podstawie dostepnych danych pomiarowych oraz posiadanej informacji wstepnej
o systemie. Terminem system okreSla sie przy tym obiekt posiadajacy wejscie i wyjscie,
w ktérym zazwyczaj wystepuje niedostepny dla pomiaréw sygnal zakiécajacy, rys. 1.1.

zaktécenie
wejScie wyjscie
—_—> System >

Rysunek 1.1: System jako obiekt identyfikacji

Wykorzystywane w automatyce systemy, w zaleznoéci od stopnia skomplikowania ich
struktury, okre§la sie mianem obiektéw prostych lub zlozonych. Przykitadowo, obiektem
prostym jest dyskretny statyczny system nieliniowy opisany réwnaniem

Yn = g (Tn,2n), (1.1)
gdzie {z,} i {yn} sa odpowiednio wejSciem i wyjSciem systemu, a {z,} jest sygnalem
zaklécajagcym. Nieliniowa charakterystyka systemu jest reprezentowana przez funkcje

9(-,-). Innym obiektem prostym jest dyskretny liniowy system dynamiczny opisany

wzorem
Yn = GL0 + zn, (1.2)

gdzie 6 jest wektorem parametréw
T
0= (al,ag,.. . ,aq,bl,bz,. oo ,br) ’
a ¢, wektorem regresoréw utworzonym z pomiaréw wejscia i wyjscia

T
¢'n = (—yn—la v T Yn—q; Tn—1y- - - mn—r) .
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Teoria identyfikacji obiektéw prostych np. typu (1.1) lub (1.2) jest dobrze ugruntowana
zaréwno w przypadku deterministycznych, jak i losowych sygnaléw wejéciowych, zob. np.
Hasiewicz [48,49], S6derstrém i Stoica [118], Ljung [76], Maficzak i Nahorski [78], Goodwin
i Payne [24], Nelles [83]. Niestety, wiele spotykanych w praktyce proceséw i zjawisk
nie daje si¢ w zadowalajacy spos6éb reprezentowal za ich pomocs, chociazby dlatego,
ze czes¢ z nich cechuje zaréwno wystepowanie pamieci, jak i zaleznoSci nieliniowych.
Do opisu takich obiektéw wykorzystuje sie zazwyczaj systemy zlozone. Przez zlozono§é
systemu rozumie si¢ fakt, ze system sklada si¢ z wielu elementéw oraz ze obiekty
(podsystemy) wchodzace w sklad calego systemu sa ze sobg polgczone i wzajemnie
od siebie zaleza, a ich rozdzielenie jest niemozliwe, niebezpieczne, lub zbyt kosztowne,
Mzyk [80]. Z tego wzgledu zagadnienie identyfikacji systeméw zlozonych jest na ogét
znacznie trudniejsze od identyfikacji systeméw prostych i rodzi dodatkowe problemy,
ktére nie majg swoich odpowiednikéw w klasycznej teorii, Hasiewicz [48]. Utrudnienia te
wynikajg miedzy innymi z faktu, ze dla dynamicznych systeméw zlozonych nie jest znana
uniwersalna reprezentacja umozliwiajgca wyznaczenie matematycznej zaleznoéci miedzy
wejSciem a wyjSciem dowolnego systemu zlozonego bez dodatkowej wiedzy apriorycznej
o strukturze systemu. Pewne rezultaty mozna jednak otrzymaé ograniczajac rozwazania
do klasy systeméw stacjonarnych (tj. takich, ktérych parametry nie zmieniajg sie w czasie),
przyczynowych (tzn. takich, w ktérych wyjscie w dowolnej chwili ¢ nie zalezy od wejscia
i wyjécia w chwilach pé6zniejszych) oraz posiadajacych nieliniowo$ci spelniajace okreslone
warunki cigglosci, Boyd i Chua [9]. Jednym ze sposob6éw opisu tego typu systeméw
jest wykorzystanie tzw. szeregéw Volterry, u podstaw ktérych lezy koncepcja rozwiniecia
funkcji nieliniowej w szereg Taylora oraz reprezentacja ciaglych systeméw liniowych za
pomocg calki splotowej postaci

g} = /O 9 () z (it~ 7} dr, (1.3)

gdzie {z (t)} i {y(¢)} sa odpowiednio wejéciem i wyjéciem systemu, a {9 (t)} jest jego
odpowiedzig impulsows, Greblicki [34]. W przypadku systeméw zlozonych z czasem
ciagglym i spelniajacych wymienione wyzej warunki, szereg Volterry (bedacy uogélnieniem
calki (1.3)) przyjmuje postac

(t) =Y + cor [ O (11, Tz (t—T1) e (t— 7)) dTy - - - dTgy (1.4)
v@=s+3 [ [ouim 1

gdzie ¥; () sa tzw. jadrami Volterry. Analogicznie, dla systeméw z czasem dyskretnym
odpowiedni szereg Volterry, jako uogélnienie splotu dyskretnego, wyraza sie wzorem

o0
ynZQO"'Z Z o; (.717.71) Tn—j1 * " Tn—g;- (1'5)

=1 j1,..,Ji 20

Niewatpliwg zalety reprezentacji (1.4) i (1.5) jest ich uniwersalno§¢. Rozwazane szeregi
pozwalaja bowiem na opisanie kazdego stacjonarnego i fizycznie realizowalnego (tj.
przyczynowego) systemu spelniajacego okreélone warunki ciagloéci, bez wzgledu na
jego zlozono$t i strukture wewnetrzng. Ponadto opis obiektu za pomocg rozwinigcia
w szereg Volterry moze byé otrzymany zaréwno dla losowych, jak i deterministycznych
sygnaléw wejéciowych. Niestety zaleznosci (1.4) i (1.5) posiadajg réwniez wady, z ktérych
najistotniejsze zwigzane sg ze sposobem wyznaczania wspéiczynnikéw 9; () i g; ().
Okazuje sie bowiem, ze w wielu przypadkach wyznaczenie jader 9J; () lub g; () jest
zadaniem na tyle skomplikowanym i wymagajgcym znacznych mocy obliczeniowych,
ze praktyczne zastosowanie zaleznosci (1.4) i (1.5) do identyfikacji systeméw nie daje
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zadowalajacych rezultatéw, Billings i Fakhouri [6]. Réwnie istotnym ograniczeniem
zwigzanym z wykorzystaniem szeregéw Volterry jest wymaganie, aby nieliniowo$¢ systemu
dawala si¢ rozwingé w szereg Taylora.

Innym sposobem opisu szerokiej klasy dynamicznych systeméw nieliniowych jest
wykorzystanie reprezentacji zaproponowanej przez Wienera [136], zob. tez Therrien [122].
W odréznieniu od szeregéw Volterry, koncepcja Wienera opiera si¢ na wykorzystaniu
zbioru funkcjonaléw, ktére przy zalozeniu ze sygnal wejSciowy jest gaussowskim bialym
szumem, sg wzgledem siebie ortogonalne, Therrien [122], zob. tez Greblicki i Pawlak [39].
Proponowana zaleznos¢ wyraza sie wzorem

y(®) =) Gilki(r);2(1);7 € (~o0,1)], (1.6)
i=0

gdzie G; () sg funkcjonalami o znanej postaci, ale posiadajacymi nieznane jadra k; ().
Niestety, podobnie jak zaleznosci (1.4) i (1.5), réwniez i to podejécie nie pozwala na
efektywne wykorzystanie w dziedzinie identyfikacji systeméw zlozonych. Zastosowanie
reprezentacji (1.6) wymaga bowiem wykonania zlozonych obliczefi, nawet w przypadku
opisu systeméw liniowych oraz nie pozwala na wykorzystanie w prosty sposéb posiadanej
informacji apriorycznej o systemie, Billings [5, str. 274].

Wspomniane powyzej, istotne ograniczenia reprezentacji systeméw nieliniowych za
pomocg funkcjonalnych zaleznosci (1.4), (1.5) i (1.6), sprowokowaly podjecie badan nad
wyznaczeniem nowych, réwnie uniwersalnych, ale latwiejszych w zastosowaniach sposobéw
opisu systeméw nieliniowych. Jednym z najczeéciej wykorzystywanych obecnie podejsé
jest, sformulowana na poczatku lat osiemdziesigtych ubiegtego stulecia (ale wykorzysty-
- wana wczeéniej np. przez Narendre i Gallmana [82]), koncepcja systeméw o strukturze
blokowej (ang. block-oriented systems), Billings (5], Billings i Fakhouri [6-8]. Podejscie
to zaklada, ze identyfikowany system mozna przedstawi¢c w postaci odpowiednio ze
sobg polaczonych liniowych obiektéw dynamicznych i nieliniowych obiektéw statycznych.
W odréznieniu od szeregéw funkcjonalnych umozliwiajacych reprezentacje o charakterze
czarnej skrzynki (ang. black-box description), Billings [5], podejécie blokowo-zorientowane
pozwolilo sprowadzi¢ zadanie identyfikacji do tzw. problemu szarej skrzynki (ang. gray—boz
description), tj. zadania w ktérym znana jest struktura polgczenh wewnetrznych systemu,
Sjoberg et al. [117], Pearson i Pottmann [94].

Stosunkowo czesto rozwazanym w literaturze systemem blokowo-zorientowanym jest
tzw. system sandwich (zwany réwniez systemem Wienera—Hammersteina) utworzony
poprzez kaskadowe polaczenie kolejno liniowego obiektu dynamicznego, nieliniowego
obiektu statycznego oraz liniowego obiektu dynamicznego, rys. 1.2, Billings [5], Billings
i Fakhouri [8], Bershad et al. [3], Kibangou i Favier [65], Krzyzak [71], Korenberg i Hunter
[69]. Zaletg systemu sandwich jest jego elastycznosé, umozliwiajaca reprezentacje szerokiej
klasy zjawisk i proceséw technologicznych o charakterze nieliniowym i posiadajacych
pamieé. Gléwng wada jest natomiast fakt wystgpowania dwéch niedostepnych dla
pomiaréw sygnaléw wewnetrznych, tj. wejscia i wyjécia statycznego obiektu nieliniowego.
W konsekwencji, pomimo znanej struktury calego systemu, zadanie identyfikacji (na
podstawie obserwacji wejécia i wyjscia systemu) jest zadaniem skomplikowanym. Okazuje
sie jednak, ze wydzielenie z systemu sandwich prostszych obiektéw, tzw. systeméw Wienera
i Hammersteina (zob. rys. 1.2), prowadzi do struktur réwnie interesujacych z punktu
widzenia zastosowan do opisu zjawisk nieliniowych, a przy tym tatwiejszych w identyfikacji.

Niech {z,}, {yn} oznaczaja odpowiednio wejscie i wyjécie systemu oraz {v,} bedzie
sygnalem wewnetrznym. Przez {z,} oznaczymy szum wystepujacy w systemie. Przedsta-
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System Wienera

AL
r )
wejscie Liniowy Nieliniowy Liniowy wyjscie
Podsystem »  Podsystem » Podsystem [ »
Dynamiczny Statyczny Dynamiczny
\ )

VT
System Hammersteina

Rysunek 1.2: Struktura systeméw sandwich, Wienera i Hammersteina

wiony na rysunku 1.3 system Wienera opisany jest za pomocg réwnan

P

U = Zz\ixn_i+zn (1.7)
i=0

yn = g(vn), (1.8)

gdzie {\i}2_, 1 g(-) sa odpowiednio odpowiedzig impulsows podsystemu dynamicznego

Zn

Enw (A}, Yn o og(s) 2

Rysunek 1.3: System Wienera z addytywnym sygnalem zakiécajacym na wyjéciu podsystemu
dynamicznego

oraz charakterystyks nieliniowa podsystemu statycznego, a p € IN jest dlugoscig pamigci
systemu. Analogicznie system Hammersteina, zob. rys 1.4, definiowany jest za pomoca

réwnan

vn = g(zn)
P
Yn = D AiUn—i+ Zn.
=0
Zn
Xn Vn 4 Vn
— g > {Aitio

Rysunek 1.4: System Hammersteina

Opisane powyzej systemy Wienera i Hammersteina odgrywaja kluczows role w teorii
identyfikacji systeméw nieliniowych. Ze wzgledu na czytelna, blokowo-zorientowang struk-
ture oraz liczne zastosowania, poczynajac od lat siedemdziesigtych ubieglego stulecia,
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opracowano wiele réznych algorytmoéw ich identyfikacji oraz zaproponowano wykorzystanie
ich w wielu dziedzinach naukowych i technicznych. Nalezy podkredli¢, ze istotny wkiad
w rozw6j metod identyfikacji omawianych systeméw zostal wniesiony przez Szkole
Identyfikacji Nieparametrycznej utworzong przez profesora Wiodzimierza Greblickiego. Jej
twoérca zapoczatkowal rozwdj nieparametrycznych metod identyfikacji systeméw i wraz
z profesorami Adamem Krzyzakiem, Mirostawem Pawlakiem i Leszkiem Rutkowskim
opracowal szereg nieparametrycznych algorytméw identyfikacji [26-29, 32, 33, 35, 37-43,
71, 91, 103]. Zaproponowane metody w istotny sposéb rozwingly teorie i wzbogacity
praktyke algorytméw, umozliwiajac identyfikacje systeméw w sytuacjach, w ktérych
wcze$niej opracowane metody parametryczne nie mogly by¢ stosowane. Koncepcja
nieparametrycznej identyfikacji systeméw ze szczegélnym uwszglednieniem algorytméw
dedykowanych systemom Wienera oméwiona jest w rozdziale 2.

Oprécez przedstawionych powyzej systeméw typu sandwich, Wienera i Hammersteina,
w literaturze rozwaza sig takze inne systemy blokowo-zorientowane. Sg to miedzy innymi:
systemy Urysona (bedace réwnoleglym polaczeniem wielu systeméw Hammersteina),
Billings [5] i addytywne systemy typu NARMAX, Mzyk [80]. Jednak zasadnicza uwaga
badaczy skupia si¢ na zagadnieniach identyfikacji systeméw Hammersteina i Wienera.
Nalezy przy tym podkresli¢, ze pomimo podobnej konstrukeji, zadanie identyfikacji
system6éw Wienera jest na ogét znacznie trudniejsze od zadania identyfikacji systeméw
Hammersteina. Istotne utrudnienia wynikajg m.in. z faktu, ze w systemach Wienera
charakterystyka nieliniowa przeksztalca nieznany i niedostepny dla pomiaréw sygnat
interakcyjny, podczas gdy w systemach Hammersteina przeksztalceniu nieliniowemu
podlega dostepny dla pomiaréw sygnal wejéciowy.

1.2 Systemy Wienera

Jak juz zaznaczono, wazng role wéréd oméwionych wyzej systeméw o strukturze blokowej
odgrywaja systemy Wienera (rys. 1.3). Ze wzgledu na swoja budowe, obiekty te zna-
komicie nadajg sie do modelowania zjawisk fizycznych i proceséw technologicznych,
posiadajacych nie tylko cechy ukiadéw nieliniowych, ale dodatkowo charakteryzujacych
sie wystgpowaniem pamieci. Przykladowe zastosowania systeméw Wienera w naukach
technicznych oraz medycynie, chemii i biologii oméwione sg w p. 1.4.

Oprécz podstawowych cech struktury charakteryzujacych systemy Wienera mozna
wyréznié szereg whasnosci okre§lajacych dodatkowo elementy tej klasy systeméw. Sg to
miedzy innymi:

e dlugosé pamieci systemu (pamigé skoficzona lub nieskonczona),
e wlasnoéci charakterystyki nieliniowej (np. cigglosé, rézniczkowalnosé itp.),

e miejsce wystepowania sygnatu zaklécajacego (szum wewnetrzny lub na wyjSciu
systemu),

e stacjonarno$c.
Rozwazane w literaturze systemy Wienera sg ponadto:

e systemami z czasem cigglym lub dyskretnym,

e systemami o strukturach typu SISO, MISO lub MIMO.



Rozdziat 1. Wprowadzenie — systemy Wienera i ich zastosowania 6

Dlugo$¢é pamieci systemu oraz wilasnoéci charakterystyki nieliniowej w systemie .
majg szczegdlnie znaczenie przy doborze wilasciwego modelu w przypadku zastosowan
omawianych systeméw oraz w przypadku konstruowania algorytméw ich identyfikacji.
Systemy ze skoficzong pamigcig dyskutowane sg m.in. przez Nordsjd i Zetterberga [84],
Lacy’ego i Bernsteina [73], Pawlaka et al. [93], Wachla [127,129], Raicha et al. [98] oraz
Celke et al. [12]. Z kolei Greblicki [26-29, 33] oraz Hughes i Westwick [56] rozwazaja
identyfikacje systeméw z pamiecia nieskoficzong. Typowym zalozeniem odnoénie chara-
kterystyki nieliniowej w systemie jest wymaganie, aby miala ona charakter wielomianowy,
Lacy i Bernstein [73], Korenberg i Hunter [67], Celka et al. [12], zob. tez Pajunen [87].
Rozwaza sie takze systemy z nieliniowo$ciami modelowanymi za pomocg funkcji odcinkami
liniowych, Vorss [124], Pupeikis [96], Chen [15], Wigren [137], zob. tez Hagenblad
[44], lub funkcji sklejanych (ang. spline functions), Hughes i Westwick [56]. Szczegélnie
szeroka, nieparametryczna klasa nieliniowo§ci rozwazana jest przez Greblickiego w pracach
[26-29, 33]. W [26] zaklada sie¢ tylko, ze nieliniowo$¢ jest funkcjg SciSle monotoniczng
i posiadajacag ograniczong pochodng, podczas gdy w [28] dopuszczalna jest kazda fizycznie
realizowalna charakterystyka nieliniowa. Dyskutowane w literaturze systemy Wienera
z reguly sa systemami stacjonarnymi. Systemy niestacjonarne (Wienera i Hammersteina)
omawiane sg m.in. przez Nordsjo i Zetterberga [84] oraz Celke i Colditza [13].

W =zalezno$ci od miejsca wystepowania sygnalu zaklécajacego, systemy Wienera
podzieli¢ mozna na trzy grupy: systemy, w ktérych zaklécenie nie wystepuje, zob. np. Lacy
i Bernstein [73], systemy z addytywnym sygnalem zaklécajagcym na wyjéciu podsystemu
dynamicznego (zob. rys. 1.3 i wzory (1.7)—(1.8)), Gémez i Baeyens [22, 23], Greblicki
[26-29, 33] oraz systemy z szumem addytywnym na wyjéciu podsystemu statycznego, rys.
1.5, opisane réwnaniami

p
Un = Z)\ixn—iy (19)
i=0
Yn = g(vn)+ 2n, (1.10)

zob. Pawlak et al. [93], Wachel [129], Hughes i Westwick [56], Bai [1].

Zn

Vn Vn
= {di}io > g()

Rysunek 1.5: System Wienera z addytywnym sygnalem zaklécajacym na wyjsciu systemu

Okazuje sig, ze obecno$¢ zakl6cen i miejsce ich wystepowania w systemie majg istotny
wplyw na mozliwoéci identyfikacji systemu i posta¢ algorytméw.

Ze wzgledu na powszechno$¢ techniki cyfrowej, wigkszoé¢ zastosowan oraz opracowa-
nych algorytméw identyfikacji systeméw Wienera dotyczy systeméw z czasem dyskretnym.
Zagadnienie identyfikacji systeméw z czasem cigglym dyskutowane jest np. przez Gre-
blickiego w pracy [29]. W kontekscie liczby wejs¢ i wyjéé typows i najczgSciej rozwazang
w literaturze architekturg systeméw Wienera jest architektura typu SISO (ang. Single
Input, Single Output), zob. np. Billings i Fakhouri [8], Greblicki [26-29, 33]. Systemy
Wienera o strukturze MIMO (ang. Multiple Inputs, Multiple Outputs) dyskutowane
sg przez Westwicka i Verhaegena [135] oraz Jeonga et al. [62]. Z kolei algorytmy
identyfikacji systeméw typu MISO (ang. Multiple Inputs, Single Output) omawiane sg
m.in. przez Westwicka i Kearney’ego [134] oraz Zhu [141]. Szczegdlny rodzaj systemu
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Wienera utworzonego z liniowego obiektu dynamicznego typu SIMO i nieliniowego obiektu
statycznego typu MISO wykorzystywany jest przez Boyda i Chue [9] do aproksymacji
szerokiej klasy systeméw nieliniowych, zob. p. 1.3.1.

1.3 WilasnoSci aproksymacyjne systeméw Hammersteina
i Wienera

Oméwiona w p. 1.1 reprezentacja systeméw nieliniowych przy uzyciu operatoréw Volterry
z reguly nie jest bezpo$rednio wykorzystywana w identyfikacji systeméw. Stanowi ona
jednak podstawe do konstruowania i analizy systeméw, o strukturach umozliwiajacych
aproksymacje lub dokladng reprezentacje szerokiej klasy dynamicznych systeméw nieli-
niowych. W [115] Shi i Sun rozwazajg reprezentacje systeméw nieliniowych za pomoca
réwnolegle polgczonych systeméw o strukturze sandwich. Dowodzg oni, ze systemy z cza-
sem dyskretnym, skoniczong pamiecig i posiadajace reprezentacje w postaci skonczonego
szeregu Volterry, moga byC precyzyjnie opisane za pomocg sumy skonczonej liczby
systeméw typu sandwich. Z kolei w [68] Korenberg dyskutuje reprezentacje systeméw
nieliniowych za pomocg odpowiednio polgczonych liniowych obiektéw dynamicznych
z nieliniowymi obiektami statycznymi. W pracy tej wykazano, ze kazdy system nieliniowy
o skoficzonej pamieci z czasem dyskretnym, dla ktérego istnieje reprezentacja w postaci
skoficzonego szeregu Volterry moze by¢ dokladnie reprezentowany przez réwnolegle
polaczenie skonczonej liczby systeméw Wienera. Powyzszy wynik prowadzi wiec do
og6lnego wniosku, ze systemy bedace réwnoleglym polaczeniem systeméw Wienera typu
SISO mogg byé wykorzystywane do reprezentacji szerokiej klasy systeméw nieliniowych.
Nieco inne podejscie do aproksymacji szerokiej klasy dynamicznych systeméw nieliniowych
proponuje Sandberg w serii prac [107-109]. W [107] autor rozwaza koncepcje reprezentacji
przyczynowych i stacjonarnych systeméw nieliniowych z czasem dyskretnym za pomocs,
obiektéw o strukturze Hammersteina. Omawiane podejécie zaklada, ze aproksymowane
systemy posiadaja ,,pamieé niemal skoficzong” (ang. approzimately—finite-memory'). Ten
sam warunek jest réwniez wykorzystywany przez Parka i Sandberga w pracy [89]. Na
podstawie prezentowanych w literaturze rezultatéw, dla szerokiej klasy systeméw nielinio-
wych autorzy formutujg nastepujaca, nieformalng teze: ,jezeli wyjscie systemu w dowolnej
chwili ty zalezy od dalekiej przesztoéci sygnalu wejSciowego tylko w dowolnie malym
stopniu, to system moze by¢ dowolnie dokladnie aproksymowany przez proste struktury
takie jak: skonczone szeregi Volterry, dynamiczne wielowarstwowe sieci neuronowe lub
sieci radialne”. Gléwne rezultaty teoretyczne zawarte w pracy zawierajg sformulowanie
jednolitych warunkéw koniecznych i wystarczajacych jakie musi spelnia¢ system aby
istniala reprezentacja za pomocg wymienionych wyzej struktur. Wiasnoéci aproksymacyjne
systeméw o strukturze blokowej (w szczegblnoéci systeméw Hammersteina i Wienera), na
tle podejs¢ wykorzystujacych rozwinigcia w szeregi Volterry i Wienera, dyskutowane sg
réwniez przez Billingsa w przekrojowej pracy [5].

Innym przyktadem reprezentacji zlozonych systeméw nieliniowych jest, oparta na
wlasnoS§ci zanikania pamigci, teoria aproksymacji systeméw nieliniowych zaproponowana
przez Boyda i Chue w pracy [9]. .

Ltlumaczenie autora.
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1.3.1 Aproksymacja dynamicznych systeméw nieliniowych za pomoca
systeméw Wienera

Przedstawione przez Boyda i Chue [9] rezultaty odnoszg sie do szerokiej klasy systeméw
stacjonarnych z zanikajaca pamiecig (ang. fading memory). Intuicyjnie system posiada
zanikajacg pamieé, jezeli dwa sygnaly wejSciowe, bliskie w terazniejszoéci, ale réznigce sig
w przesztoéci, powoduja ze odpowiadajace im sygnaly wyjéciowe sg odpowiednio bliskie
w terazniejszo$ci (Scisly definicje znalezé mozna np. w [9]). Wymaganie, aby system
posiadal zanikajacg pamieé nie jest wigc wymaganiem istotnie ograniczajacym klase
spotykanych w praktyce systeméw, a w przypadku systeméw liniowych jest réwnowazne
z wymaganiem stabilnoSci systemu. Nieco silniejszym ograniczeniem zawezajacym klase
systeméw rozwazanych w [9] jest natomiast wymaganie, aby nieliniowoé¢ w systemie byta
funkcja analityczna?.

Rezultaty otrzymane w omawianej pracy dotycza zaréwno systeméw z czasem ciaglym
jak i z czasem dyskretnym. W przypadku systeméw z czasem dyskretnym, w pracy wyka-
zano, ze kazdy system spelniajacy okreslone powyzej warunki moze byé aproksymowany
z dowolng dokladnoscig przez skoficzony szereg Volterry, zob. Boyd i Chua [9, Tw. 3].
Szereg ten mozna z kolei zapisa¢ w wygodniejszej, blokowo-zorientowanej postaci jako
tzw. operator NLMA (ang. Nonlinear Moving-Average) okre$lony wzorem

Yn ZQ(mn;xn—l,”-amn—M-{-l), (1.11)
gdzie {z,} i {yn} sa odpowiednio sygnalem wejéciowym i wyjsciowym, ¢ : RM — R jest

wielomianem, a M < co pewng, stala.
Operator (1.11) mozna nastepnie przedstawi¢é w postaci systemu Wienera (typu SISO)

| Xn
I
R
| =1 |
| A |
| | Xn-1
I T >
Lz : y
xﬂ I n
> : . >
| — | ; q(+)
| 1
| |
| |
I -
I 2= : :
: ! X n—M+1
e I i
Liniowy Nieliniowy
Podsystem Podsystem
Dynamiczny Statyczny

Rysunek 1.6: System Wienera jako kaskadowe potgczenie liniowego podsystemu dynamicznego
typu SIMO z nieliniowym podsystemem statycznym typu MISO

utworzonego poprzez kaskadowe potaczenie liniowego obiektu dynamicznego typu SIMO
z nieliniowym obiektem statycznym typu MISO, zob. rys. 1.6. Pomimo stosunkowo
nietypowej struktury otrzymanego systemu Wienera, powyzszy rezultat prowadzi do
wniosku, ze systemy Wienera stanowig wazng klase obiektéw umozliwiajgcych reprezen-
tacje szerokiej rodziny nieliniowych systeméw dynamicznych.

2tj. funkcja, ktéra daje sie rozwingé w szereg Taylora, Fichtenholz [20, t. II, str. 388].
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1.4 Przyklady zastosowan praktycznych

Nieskomplikowana struktura systeméw Wienera oraz fakt wystegpowania w nich jednocze-
$nie pamieci i nieliniowoéci, powoduje ze systemy te znajduja zastosowanie w wielu, czesto
niezwigzanych za soba, dziedzinach nauki. Ponizej oméwiono dwie przykiadowe aplika-
cje w telekomunikacji (kompensacja znieksztalcen nieliniowych w systemach modulacji
sygnaléw) oraz chemii (sterowanie procesem neutralizacji pH). Wymienione zostaly takze
zastosowania m.in. w takich dziedzinach jak medycyna, optyka i przetwarzanie obrazéw.

1.4.1 Kompensacja znieksztalcen nieliniowych w systemach modulacji
sygnatéw typu OFDM

Ze wzgledu na liczne zalety technika transmisji danych OFDM (ang. Orthogonal Frequency
Division Method) jest obecnie powszechnie wykorzystywana m.in. w szerokopasmowych
systemach cyfrowych, takich jak: systemy telewizji cyfrowej, bezprzewodowy dostep
do Internetu, ADSL itp. Transmisja OFDM, polegajaca na rozdzieleniu pojedynczego
strumienia danych (bitéw) na wiele podnoénych, oprécz wielu istotnych zalet posiada
réwniez wady. W szczegblnoéci, istotnym problemem jest wystepowanie znieksztalcen
nieliniowych wprowadzanych przez wystepujace w systemie wzmacniacze.

W pracy [64] Kang et al. dyskutuja technike adaptacyjnej prekompensacji znieksztalcen
nieliniowych wystepujacych w systemach OFDM i powodowanych przez filtr liniowy
polaczony kaskadowo ze wzmacniaczem duzej mocy HPA (ang. High Power Amplifier).
W omawianym podejéciu statyczny wzmacniacz HPA, poprzedzony obiektem liniowym,
modelowany jest za pomoca systemu Wienera, a prekompensacja znieksztalcen polega
na zastosowaniu na wejéciu, uktadu o strukturze Hammersteina z odpowiednio dobrang
pamiecig i nieliniowoéciag. Zadaniem systemu Hammersteina jest takie wstepne przetworze-
nie sygnalu wejéciowego, aby po przejsciu przez nieliniowy element (system Wienera) nie
wystepowaly znieksztalcenia nieliniowe. Proponowany algorytm prekompensacji przedsta-
wiony jest schematycznie na rys. 1.7. W celu dostrojenia ukladu prekompensujacego,
tj. systemu Hammersteina, dokonywana jest identyfikacja nieznanego systemu Wienera.
Zadanie to realizowane jest przez Algorytm Adaptacyjny i ustalajacy parametry modelu
wzmacniacza na podstawie wielkoéci bledu &, (zob. rys. 1.7). Otrzymane w procesie
identyfikacji parametry nieznanego systemu Wienera, wraz z informacjg o bledzie e, (zob.
rys. 1.7), wykorzystywane sa nastepnie przez Algorytm Adaptacyjny II do wyznaczenia
charakterystyki nieliniowej i filtru liniowego w systemie Hammersteina.

1.4.2 Proces neutralizacji pH

Istotnym elementem wielu proceséw produkcyjnych jest powstawanie Sciekéw o chara-
kterze kwasowym lub zasadowym. W takich sytuacjach substancje odpadowe poddaje
sie neutralizacji, polegajacej na wymieszaniu $ciekéw z odpowiednig ilocig odczynnika
o przeciwnym pH. Sterowanie omawianym procesem jest jednak zadaniem stosunkowo
skomplikowanym, ze wzgledu na wystepujacag w nim inercje oraz silne zaleznoéci nieliniowe.
Z tego powodu, przy konstruowaniu algorytméw sterowania wykorzystuje sig modele
nieliniowe omawianego zjawiska. Analiza odpowiednich reakcji chemicznych prowadzi do
wniosku, ze modele o strukturze Wienera szczegélnie dobrze reprezentujg omawiany proces
zobojetniania, por. Gémez et al. [23], Norquay et al. [85], Kalafatis et al. [63], Pajunen
[87]. Zagadnienie neutralizacji pH oméwione zostanie krétko na przykladzie procesu
rozwazanego przez Gémeza et al. w pracy [23]. Do zbiornika, zob. rys. 1.8, dostarczane
sy trzy substancje: wodorotlenek sodu (NaOH), wodoroweglan sodu (NaHCOj3) oraz
kwas azotowy (V) (HNO3). WielkoSciami wej$ciowymi w omawianym procesie sg szybkosci
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Rysunek 1.7: Schemat prekompensacji znieksztalcen nieliniowych wprowadzanych przez wzmac-
niacz duzej mocy w systemie OFDM

przeptywu (odpowiednio z1n, T2 i Z3,) Wymienionych wyzej zwigzkéw. Wyjsciem y,
calego systemu jest warto$¢ wspélczynnika pH substancji wyplywajacej ze zbiornika.
Zaréwno szybko$¢é przeplywu z3, kwasu azotowego jak i poziom cieczy w zbiorniku
sa wielko$§ciami stalymi. Celem procesu neutralizacji jest uzyskanie odpowiedniego pH
substancji wyplywajacej ze zbiornika ($cieku) poprzez regulacje przepltywu zj n, tj. ilosci
zasady NaOH dostarczanej do zbiornika. Zaklada si¢ przy tym, ze szybko$¢ przeptywu 2
soli NaHCOs3 jest nieznana.

Powyzsze zalozenia prowadza do wniosku, ze wejéciem i wyjéciem rozwazanego obiektu
identyfikacji s3 odpowiednio z1 5, i yn, podczas gdy T2, jest niedostgpnym dla pomiaréw
szumem, a z3, stalym parametrem.

1.4.3 Inne zastosowania

Oprécz oméwionych wyzej aplikacji, systemy Wienera wykorzystywane sg z powodzeniem
réwniez w innych dziedzinach. Dalsze przyklady ich zastosowan to m.in.:

° modelowanie.procesu destylacji (identyfikacja kolumny destylacyjnej), Zhu [141],
Pearson i Pottmann [94],

e sterowanie procesem polimeryzacji, Jeong et al. [62],

e zastosowania w neurologii, Marmarelis i Naka [79],

e modelowanie ukladu wzrokowego cztowieka, den Brinker [16],

e modelowanie i analiza zapisu EEG u niemowlat, Celka i Colditz [13],
e zastosowania w naukach biologicznych, Hunter i Korenberg [57],

e zastosowania w optyce, Celka et al. [12],
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Rysunek 1.8: Proces neutralizacji Ph

e identyfikacja systeméw chaotycznych z czasem ciggltym i dyskretnym, Chen et al. [14],
Xu et al. [140],
e modelowanie predkoéci przeptywu wody w rzece, Sbarbaro i Johansen [110],

e usuwanie szuméw z obrazéw, Sekko et al. [114].

1.5 Systemy Wienera — podsumowanie zastosowan prakty-
cznych i wlasnoSci teoretycznych

Przedstawiona wyzej krétka charakterystyka rozwazanych w literaturze systeméw Wie-
nera dowodzi, ze obiekty te cieszg sie duzym zainteresowaniem badaczy. Ich wiasnoéci
teoretyczne oraz prosta konstrukcja powoduja, ze stanowig one istotny element teorii
aproksymacji dynamicznych systeméw nieliniowych. Jednocze$nie znajduja one szereg
zastosowan praktycznych w wielu czesto niezwigzanych ze sobg dziedzinach naukowych.
Powyzsze obserwacje w pelni uzasadniaja wiec celowo$¢ konstruowania algorytméw
identyfikacji systeméw Wienera.

1.6 Okreslenie zakresu tematycznego pracy

W pracy rozwaza si¢ zadanie identyfikacji systeméw Wienera z czasem dyskretnym i skoiic-
zong pamiecia. Zaktada sie, ze dlugos¢ pamieci systemu jest znana. Réwnocze$nie przyj-
muje si¢ zalozenie, ze wiedza wstepna o nieliniowej charakterystyce w systemie jest bardzo
mala i ma charakter nieparametryczny. Szczegdlny nacisk kladzie si¢ na opracowanie
algorytméw umozliwiajacych identyfikacje w przypadku losowych sygnaléw wejéciowych —
o rozkladach innych niz rozklad normalny. Proponuje si¢ parametryczno-nieparametryczne
algorytmy identyfikacji, ktére umozliwiajg identyfikacje liniowego i nieliniowego podsys-
temu z dokladnoécig do nieznanej multiplikatywnej stalej. Dla skonstruowanych metod
identyfikacji przeprowadza si¢ analize wiasnosci asymptotycznych. Wykonane badania
eksperymentalne ilustrujg natomiast zachowanie sie algorytméw dla malej i éredniej liczby
obserwacji.
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Parametryczno—nieparametryczna
identyfikacja systemoéw Wienera.
Teza i cele pracy

2.1 Parametryczna i nieparametryczna identyfikacja sys-
temow

Wiedza aprioryczna o strukturze systemu oraz charakterze sygnatu wejsciowego i zakiéca-
jacego ma kluczowe znaczenie przy doborze wiasciwej metody identyfikacji, Hasiewicz [49)],
Greblicki [25], Stderstrém i Stoica [118]. Gdy jest ona na tyle duza, ze zadanie identyfikacji
daje sie sprowadzi¢ do wyznaczenia skonczonej i znanej liczby parametréw systemu,
mozliwe jest zastosowanie tzw. parametrycznych metod identyfikacji. W wielu przypadkach
natomiast, dostepna informacja o systemie jest znacznie bardziej ograniczona, a jej
poszerzenie moze by¢ zbyt kosztowne lub niemozliwe. W sytuacjach takich, w zalezno$ci od
charakteru posiadanej informacji wstepnej, konieczne jest zastosowanie tzw. algorytméw
nieparametrycznych lub parametryczno—nieparametrycznych.

W rozdziale przedstawiona jest krétka charakterystyka parametrycznych, niepara-
metrycznych oraz nowych koncepcyjnie parametryczno-nieparametrycznych algorytméw
identyfikacji systeméw, ze szczegélnym uwzglednieniem technik zastosowanych w pracy.
Ponadto oméwione sg krétko, dotychczas prezentowane w literaturze, parametryczne
i nieparametryczne algorytmy identyfikacji systeméw Wienera.

2.1.1 Metody parametryczne

W zaleznosci od zakresu posiadanej informacji wstepnej, metody parametryczne opra-
cowane dla celéw identyfikacji systeméw bazuja na metodzie najmniejszych kwadratéw,
metodzie najwigkszej wiarygodnosci lub tez metodzie najwiekszego prawdopodobienstwa
a posteriori, Hasiewicz [49], S6derstrém i Stoica [118], Ljung [76], Manczak i Nahorski [78],
Goodwin i Payne [24]. Przykladowo, dla statycznego systemu nieliniowego opisanego

réwnaniem
Yn = g (Zn; 0) + Zy,

gdzie funkcja g (-;6) znana jest z dokladno$ciag do wektora parametréw 6 € R* k <
o0, a {Zn} jest stacjonarnym bialym szumem o zerowej wartosci oczekiwanej E {Z,} =
0 i skonczonej wariancji Var{Z,} < oo, metoda najmniejszych kwadratéw polega na

12
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minimalizacji funkcji kryterialnej
N
INGES Z [Yn — 9 (Tn; 9)]2 )
n=1

gdzie N jest liczba par obserwacji (zn,yn) wejécia i wyjécia systemu. Dla takiego
podejscia opracowano szereg uogélnien i modyfikacji, umozliwiajacych stosowanie metody
najmniejszych kwadratéw w przypadku bardziej zlozonych obiektéw identyfikacji, zob. np.
Mzyk [80]. Analize wlasnoéci asymptotycznych metody znalezé mozna m.in. w Séderstrém
i Stoica [118], Van der Vaart [123], Jennrich [61], Wu [139].

2.1.2 Metody nieparametryczne

W odréznieniu od metod parametrycznych, idea nieparametrycznej identyfikacji systeméw
jest relatywnie nowa, a u jej podstaw lezy teoria nieparametrycznego wnioskowania
statystycznego i w szczegdlnoéci zagadnienie nieparametrycznej estymacji funkeji regres;ji.
Metody nieparametryczne wymagaja jedynie niewielkiej informacji wstepnej
o identyfikowanym systemie i przez to umozliwiaja rozwigzanie zadan iden-
tyfikacji bedacych poza zasiggiem jakichkolwiek podejs¢ parametrycznych.
Koncepcja omawianych algorytméw polega na znalezieniu zaleznoéci pomiedzy szukang
charakterystyka nieliniowg wystepujaca w systemie, a odpowiednig funkcja regresji dajaca,
sie w latwy sposéb estymowaé na podstawie zbioru posiadanych pomiaréw. W typowym
zadaniu nieparametrycznej identyfikacji prostego systemu statycznego zaktada sie, ze we-
jécie { X, } systemu jest ciggiem i.7.d. zmiennych losowych, a identyfikacja przeprowadzana
jest na podstawie zbioru par obserwacji wejécia i wyjécia systemu, reprezentowanych przez
zbiér zmiennych losowych {(X5, Yn)}f:':l. W przypadku statycznego systemu nieliniowego

opisanego réwnaniem
Yy = g (Xn) + Zn,

gdzie {Z,} jest losowym szumem o zerowej warto§ci oczekiwanej, niezaleznym od wejscia
systemu, a charakterystyka g (-) jest calkowicie nieznana, prawdziwa jest nastepujaca

zaleznosé
g{z) = BE{Y,| X\, = 2}. (2.1)

Zadanie identyfikacji nieliniowoéci g (-) mozna wiec realizowaé poprzez estymacje funkcji
regresji (wyjscia wzgledem wejscia) wystepujacej w (2.1).

Gwaltowny rozwdj nieparametrycznych metod identyfikacji dynamicznych systeméw
o ztozonej strukturze zapoczatkowany zostal opublikowanymi przez Greblickiego i Pawlaka
rezultatami badan dotyczacych nieparametrycznej identyfikacji systemé6w Hammersteina.
W [38] wykazali oni, ze dla nieliniowej charakterystyki g (-) wystepujacej w takim systemie
prawdziwa jest nastepujaca zalezno$¢

g(z) =aE{Y,| X, =z} +0,

gdzie a i b sg stalymi, niemozliwymi niestety do wyznaczenia bez dodatkowej informacji
wstepnej. Powyzszy wynik stanowi podstawe konstrukcyjng nieparametrycznych algoryt-
méw identyfikacji réwniez innych systeméw blokowo-zorientowanych (ale nie systeméw
Wienera), zob. np. Greblicki i Pawlak [39], Pawlak i Hasiewicz [92], Hasiewicz [50],
Greblicki [31], Hasiewicz [51], Hasiewicz i Sliwinski [54]. Z kolei Greblicki, w cyklu
prac [26-28], zastosowal podejécie nieparametryczne do identyfikacji systeméw Wienera.
Uzyskane tam rezultaty oméwione bedg szerzej w p. 2.2.2.
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Nieparametryczna estymacja funkcji regresji

Koncepcja nieparametrycznej estymacji funkeji regresji, zaproponowana niezaleznie przez
Watsona [133] i Nadaraye [81], wywodzi si¢ od jadrowych estymatoréw funkcji ge-
stosci prawdopodobiefistwa, Parzen [90]. Dla zmiennej losowej X posiadajacej gestosé
prawdopodobiefistwa f (-), jadrowy estymator funkcji gestoéci, zbudowany w oparciu
o N-elementowy zbiér {Xn}fil niezaleznych zmiennych losowych o rozkladzie! f(-),

przyjmuje postac
A ] & z— X
foe =gk (). (22)

gdzie K () jest tzw. funkcjg jadra, a h = h(N) dodatnim ciagiem liczbowym (tzw.
parametrem wygladzania, ang. bandwidth parameter), takim ze h — 0 i Nh — oo przy
N — oo. Idea estymacji gestosci f (-) w ustalonym punkcie z polega zatem na przyblizaniu
wartoéci f (z) na podstawie danych pomiarowych, ktére znajdujg sie odpowiednio blisko
punktu z, zob. np. Greblicki [25], Hasiewicz [49], Kulczycki [72], Wand i Jones [132].
Przyjmujac odpowiednie zalozenia odnoénie jagdra K (-) mozna pokazaé, ze estymator
fa () jest zgodnym estymatorem gestosci f (-) w kazdym punkcie ciaglosci funkcji f (-). Dla
estymatora fy () uzyskano ponadto szereg wynikéw teoretycznych okreslajacych warunki
pozwalajace otrzymaé inne niz punktowa rodzaje zbieznoéci. Przyktadowo, zbieznosé
jednostajna dyskutowana jest przez Silvermana [116], a zbieznos¢ estymatora w metryce
L; omawiana jest przez Devroye’a i Gyorfiego w [18].

Niech X i Y beda zmiennymi losowymi o lacznej gestosci prawdopodobienstwa
fxy (+,-) oraz E|Y| < co. Podstawg konstrukcji jadrowego estymatora funkcji regresji

p(z) = E{Y|X ==z}

jest obserwacja, ze zgodnie z definicja warunkowej wartosci oczekiwanej,

r(z)
p(z) = —=, 2.3
@ =753 (23)
gdzie r (z) = ff°°o yf (z,y)dy oraz f(z) jest gestoScia prawdopodobiefistwa zmiennej
N

losowej X. Wykorzystujac N-elementowy zbiér {(Xn,Yn)},—; zmiennych losowych
o rozktadzie fxy (-,-), funkcje wp(-) estymuje si¢ przyblizajac funkcje 7(-) i f(:)
w powyzszym wyrazeniu. Szczegllnie czesto rozwazanymi estymatorami regresji u(-)
zbudowanymi w oparciu o dekompozycje (2.3) sa estymatory jadrowe (ang. kernel
estimates) oraz estymatory wykorzystujace rozwinigcia funkcji w szereg ortogonalny
(ang. orthogonal series estimates). Konstruowane dalej w pracy algorytmy identyfikacji
systeméw Wienera budowane sg w oparciu o estymatory jadrowe.

Jadrowe estymatory regresji. Pierwsze prace po$wigcone jadrowym estymatorom
funkcji regresji opublikowano w latach sze$édziesigtych ubieglego stulecia, Watson [133],
Nadaraya [81], a gwaltowny wzrost zainteresowania nowo otrzymanymi metodami za-
owocowal szeregiem rezultatéw rozwijajacych wstepne wyniki w wielu kierunkach, zob.
np. Greblicki et al. [35], Devroye [17], Hérdle [46], Wand i Jones [132].

Wstawiajac estymator (2.2) do mianownika wyrazenia (2.3) oraz konstruujac analogi-
czne oszacowanie dla calki w liczniku wyrazenia (2.3), otrzymuje si¢ nastepujacy estymator

W zastosowaniach praktycznych ciggowi zmiennych Iosowych{X,,},I:’=1 odpowiada zbiér obserwacji
(pomiaréw) {zn},':;l bedacy realizacjg ciggu (procesu stochastycznego) {Xn}f=1.
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funkcji regresji? (zob. np. Greblicki [25], Hasiewicz [49], Kulczycki [72])

| _gYnK<x—th)
by (z) = — — (2.4)
> (=)

n=1

gdzie K () i h sa odpowiednio funkcjg jadra i parametrem wygladzania zaleznym od
liczby obserwacji N. Przyjmujac odpowiednie zalozenia o funkcji jadra K () i parametrze
wygladzania h mozna wykazaé, ze estymator [y (-) zbiega do funkcji u(-) wedhug
prawdopodobiefistwa gdy N — oo, w kazdym punkcie z, w ktérym p(z) i f(z) sa
ciagle oraz f (z) > 0. Ze wzgledu na nieskomplikowana budowe i tatwoé¢ implementacji,
estymator [ (-) stanowi istotny element konstrukcyjny wielu nieparametrycznych algoryt-
méw identyfikacji. Podobnie jak dla jadrowego estymatora gesto$ci prawdopodobienstwa,
dla omawianego estymatora funkcji regresji otrzymano szereg wynikéw teoretycznych
okre$lajacych warunki, przy ktérych fiy () posiada rézne wlasnoéci asymptotyczne.
Przykladowo zagadnienie asymptotycznej normalno$ci estymatora fiy (-) dyskutowane
jest przez Nadaraye [81] i Schustera [113], problematyka optymalnej szybkosci zbieznosci
fiy () omawiana jest przez Stona w [120], a Mack i Silverman [77] podaja warunki,
przy ktérych zachodzi staba i mocna jednostajna zgodnos¢ fiy (). W [35] Greblicki et al.
rozwazajg z kolei punktows zgodnoéé estymatora fiy (-) w przypadku dowolnego rozktadu
prawdopodobienstwa zmiennej wejsciowej X (ang. distribution—free consistency).

2.1.3 Metody parametryczno—nieparametryczne

Algorytmy parametryczno—nieparametryczne umozliwiajg identyfikacje w sytuacji, gdy
wiedza aprioryczna o systemie ma mieszany, parametryczny i nieparametryczny, charakter.
Typowym przykladem tego rodzaju informacji wstepnej jest posiadanie duzej wiedzy
(parametrycznej) o jednym z podsysteméw i malej (nieparametrycznej) na temat drugiego
podsystemu.

W kontekscie identyfikacji systeméw Hammersteina pierwszy tego rodzaju algorytm
zaproponowany zostal przez Hasiewicza i Mzyka w [52]. Wykorzystujac technike niepara-
metrycznej estymacji funkcji regresji, w pracy skonstruowano estymator wewnetrznego
sygnatu interakcyjnego, ktéry nastepnie wykorzystano do przeprowadzenia niezaleznie
parametrycznej identyfikacji nieliniowego podsystemu statycznego i liniowego dynami-
cznego (metoda najmniejszych kwadratéw).

2.2 Aktualny stan badan na temat identyfikacji systeméw
Wienera

Prezentowane w literaturze metody identyfikacji systeméw Wienera klasyfikowaé mozna
wedlug ré6znych kryteriéw. Typowa i czesto spotykana systematyka opiera sie na podziale
algorytméw ze wzgledu na ilo§¢ informacji apriorycznej niezbednej dla zastosowania
okre$lonej metody identyfikacji (algorytmy parametryczne i nieparametryczne). Inny,
wlasciwy dla systeméw Wienera podzial, zwigzany jest z charakterem sygnalu wejSciowego
oraz szczegblnymi wiasnoSciami charakterystyki nieliniowej. Ze wzgledu na specyficzng,

W przypadku gdy licznik i mianownik estymatora sg réwne zero, zazwyczaj przyjmuje sie, ze 0/0=0
(por. np. Greblicki i Pawlak [39]). Dla rozwazanych w pracy estymatoréw z jadrem réwniez zastosujemy

te konwencje.
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konstrukcje omawianych systeméw (w szczegblnoSci fakt wystepowania podsystemu
liniowego przed podsystemem nieliniowym) zazwyczaj przyjmowanym zaloZeniem jest
wymaganie, aby sygnal wejéciowy systemu mial charakter gaussowski, zob. Billings
i Fakhouri [6], Bershad et al. [2], Celka et al. [11], Chen [15], Enqvist [19], Greblicki [26-28],
Westwick i Verhaegen [135]. Algorytmy umozliwiajace identyfikacje dla niegaussowskich
sygnaléw wejéciowych sg rzadziej omawiane w literaturze, zob. np. Pawlak et al. [93], Taleb
et al. [121]. Innym charakterystycznym dla systeméw Wienera zalozeniem jest wymaganie,
aby charakterystyka nieliniowa byla funkcjg odwracalng, zob. np. Greblicki [26,27], Gémez
et al. [23], Gémez i Baeyens [22], Raich et al. [98], Solé-Casals et al. [119], Taleb et al. [121].
Z kolei Greblicki [28], Hughes i Westwick [56], Lacy i Bernstein [73] oraz Wigren [138]
prezentujg algorytmy nie wymagajace odwracalnoéci nieznanej charakterystyki.

Fakt wystepowania nieliniowego obiektu statycznego za liniowym obiektem dynam-
icznym moze powodowa¢ istotne komplikacje w identyfikacji, w przypadku gdy na wyjéciu
systemu wystepuje addytywny sygnal zaklécajacy (por. p. 1.2). Z tego powodu prezen-
towane w literaturze algorytmy daja sie klasyfikowa¢ réwniez pod katem ,lokalizacji”
niedostepnych dla pomiaru zaklécen. Identyfikacja systeméw Wienera, w ktérych szum nie
wystepuje rozwazana jest np. przez Lacy’ego i Bernsteina [73]. Systemy z addytywnym
sygnatem zaklécajacym interakcje, tj. wystepujacym na wyjéciu podsystemu dynami-
cznego, dyskutujg Gémez i Baeyens [22,23] oraz Greblicki [26-29,33]. Z kolei identyfikacja
systeméw z szumem na wyjéciu catego systemu rozwazana jest przez Baia [1], Hughesa
i Westwicka [56], Pawlaka et al. [93] oraz Wachla [129].

W dalszej czeéci rozdzialu oméwione zostang prezentowane dotychczas w literaturze
parametryczne i nieparametryczne metody identyfikacji systeméw Wienera i na tym tle
przedstawiona zostanie ogdélna koncepcja proponowanych w pracy nowych algorytméw
parametryczno—nieparametrycznych.

2.2.1 Parametryczna identyfikacja systeméw Wienera

W typowym zadaniu parametrycznej identyfikacji systeméw Wienera zaklada si¢ za-
zwyczaj, ze podsystem dynamiczny posiada skoficzong pamieé (o znanej dlugosci),
a nieliniowa charakterystyka g (-) jest wielomianem znanego stopnia, Lacy i Bernstein
[73]. Rzadziej rozwaza sie ogdlniejsze podejécia, w ktérych pamieé systemu nie musi
by¢ skoficzona. Przykladowo Norquay et al. [85] proponujg algorytm umozliwiajacy
parametryczng identyfikacje systeméw Wienera z wyjéciowym szumem addytywnym (rys.
1.5) i podsystemem liniowym opisywanym réwnaniem réznicowym
B(g™)

Vp=—1—=X,

tTA@EHT”
gdzie A (q‘l) =14a1g7 +.. .+akq"k oraz B (q‘l) =big1+... +b;g~" sg wielomianami
znanych stopni ki1, a ¢~! jest operatorem przesuniecia wstecz. Nieliniowa charakterystyka
g (+) jest wielomianem znanego stopnia m,

9 () = 110+ 7907 + - ™

Zadanie identyfikacji polega na wyznaczeniu wspélczynnikéw wielomianéw A (q“l),
B(q’l) i g(v), tj. elementéw wektora 6y = [al,...,ak,bl,...,bl,fyl,...,'yQ,...,'ym]T
na podstawie zbioru obserwacji wejécia i wyjécia systemu {(Xn,Yn)}i:,:l. W oma-
wianym podejéciu, na podstawie dostepnej informacji wstepnej, konstruuje si¢ model
,wejécie-wyijécie” systemu zalezny od wektorowego parametru 0,

m -1 &

i=1

bl
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oraz funkcje kryterialng zbudowang w oparciu o zbiér {(X,, Yn)}f:]:l,

1 N
L1 (6) = 5 3 ¥ — Ya (Xai O,

n=1

Metoda polega na wyznaczaniu takiego wektora 6 ktéry minimalizuje funkcje kryterialng
INNOR

Omoéwiony algorytm jest jedng z wielu parametrycznych metod identyfikacji systeméw
Wienera zbudowanych w oparciu o metode najmniejszych kwadratéw, por. np. Pupeikis
[97], Lacy i Bernstein [73], Schoukens et al. [111], Bruls et al. [10], Hughes i Westwick
[56]. Inne podejscia do identyfikacji systeméw Wienera proponowane sg m.in. przez
Xu et al. [140] i Chena et al. [14] gdzie zastosowano teori¢ uczenia sieci neuronowych
do modelowania nieliniowo$ci w systemie. Podejécie czestotliwoéciowe, umozliwiajace
identyfikacje przy deterministycznym pobudzeniu sinusoidalnym, omawiane jest przez Baia
[1], a zastosowanie metod korelacyjnych proponowane jest przez Billingsa i Fakhouriego
w [7,8]. W [137] Wigren konstruuje rekurencyjny algorytm, oparty na metodzie bledu
predykcji, umozliwiajacy identyfikacje systeméw z obiektem dynamicznym typu ARMA
i odcinkami liniowymi nieliniowo$ciami (ang. piecewise linear), zob. tez Wigren [138].
Podejécie rekurencyjne proponowane jest réwniez przez Chena [15] do identyfikacji
nieciggtych, odcinkami liniowych nieliniowoéci oraz przez Jacobsa [59], zob. tez Vorss [124]
i Hagenblad [44]. Na uwage zasluguja takze metody typu blind identification, Taleb et
al. [121]. '

Nalezy podkre$li¢, ze w odréznieniu od algorytméw nieparametrycznych, dla wigkszoSci
omawianych w literaturze metod parametrycznej identyfikacji systeméw Wienera nie
przeprowadzono teoretycznej analizy ich wlasnosci asymptotycznych.

2.2.2 Nieparametryczna identyfikacja systeméw Wienera

Pierwszy nieparametryczny algorytm identyfikacji systeméw Wienera opublikowany zostat
w roku 1992 przez Greblickiego w [26]. Zaproponowana metoda, podobnie jak opracowane
wczeéniej nieparametryczne algorytmy identyfikacji systemé6w Hammersteina (Greblicki
i Pawlak [38]), bazowata na zaleznoéci pomiedzy odpowiednig funkcja regresji, a nieliniows,
charakterystyka wystepujacg w systemie. W pracy wykazano, ze dla asymptotycznie
stabilnego systemu Wienera (1.7)-(1.8) o dowolnej pamieci, funkcja regresji (wejscia
wzgledem wyjécia) o postaci
1Y) = E{Xn|Yn =y}

jest zwigzana z nieliniowg charakterystyka g (-) nastepujaca zaleznoscig
1(y) =cg™ ' (), (2:5)

gdzie c¢ jest staly zalezng od podsystemu liniowego oraz od wariancji sygnatu {Xp,}.
Otrzymany zwigzek udowodniony zostal przy zalozeniu, ze sygnal wejsciowy {X,}
oraz wewnetrzny sygnal zaklécajacy sa stochastycznie niezaleznymi ciggami typu .¢.d.
o rozkladach normalnych z zerowymi warto$ciami oczekiwanymi. Ponadto, ze wzgledu na
wystepowanie w (2.5) funkcji odwrotnej do g (-) przyjeto, ze nieliniowa charakterystyka
jest funkcjg éciéle monotoniczng i spetniajacg warunek Lipschitza (tzn. |g (v1) — g (v2)| <
alv; — vzlﬁ , B>0,a>0,1iwv;,v2 € R). Przedstawiony algorytm identyfikacji umozliwial
poprzez estymacje regresji n () szacowanie odwrotnoéci nieliniowej charakterystyki g (-).
Do estymacji funkcji n(-) wykorzystano estymator jadrowy (por. (2.4)) zbudowany
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w oparciu o N—elementowy zbiér obserwacji {(Xn, Yn)}f:,:l pochodzacych z systemu,

N
Yy — Y'n.
z_:anK ( T )
in () = =5 ; (2.6)

e

gdzie K (-) jest nieujemna, ograniczong i lipschitzowsks funkcja jadra, taks ze [ K (t)dt =
1i K (t)t'*¢ — 0 gdy |t| — oo, dla dowolnego & > 0 oraz h jest parametrem wygladzania
speliajacym warunki A — 0, N2h — oo gdy N — co. W pracy wykazano, ze estymator
fin (-) jest zgodnym estymatorem funkcji cg~! (-) w kazdym punkcie y, w ktérym gestoéé
prawdopodobienstwa wyjscia systemu jest dodatnia. Po przyjeciu dodatkowych zalozen
odnoénie jadra K () i gladkoéci funkeji g (-) okreSlony zostal réwniez rzad szybkosci

zbiezno$ci estymatora

v (y) =cg™' (y) + Op (N‘é) ,

gdy h ~ N71/6 w kazdym punkcie y w ktérym gestoé¢ wyjécia systemu jest dodatnia
(zob. definicja symbolu Op (-) na str. 87).

Omoéwiony wyzej estymator 7y (y) zostal nastgpnie zastosowany do skonstruowania
nieparametrycznego algorytmu identyfikacji odpowiedzi impulsowej podsystemu dynami-
cznego. Podejscie to wykorzystywalo obserwacje, ze dla rozwazanego systemu Wienera

ehi = E{Xon (Y:)} . (2.7)

Na podstawie powyzszego wzoru zaproponowano estymator zbudowany w oparciu o nowy
ciagg pomiaréw {(X,’I,Y,{)},]:Zl niezaleznych od obserwacji wykorzystanych w konstrukcji
fin (). Ze wzgledu na nieznajomosé funkeji 7 (-) w (2.7), w jej miejsce wstawiono estymator
Ay (+). Jako estymator c); przyjeto zatem '

NI

. 1 .

Xi, NN = T ZX:JIN (Yiin) -
n=1

Zalezno§¢ (2.5) stanowila réwniez podstawe kolejnego nieparametrycznego algo-
rytmu identyfikacji systeméw Wienera, Greblicki [27]. W pracy tej zaproponowano
klase algorytméw ortogonalnych zbudowanych w oparciu o szeregi: trygonometryczny,
Legendre’a i Hermite’a. Wykazano zgodno$¢ estymatoréw oraz okreSlono rzedy ich
szybkosci zbieznoéci. Otrzymane rezultaty wskazuja, ze dla dwukrotnie rézniczkowalnych
nieliniowoéci opisany powyzej algorytm jadrowy zbiega szybciej niz algorytmy ortogonalne.
Niemniej jednak algorytmy ortogonalne cechujg sie lepszymi wlasno$ciami obliczeniowymi,
zob. [27, str. 283].

Kolejny etap rozwoju teorii nieparametrycznej identyfikacji systeméw Wienera polegal
na opracowaniu metody identyfikacji, nie naktadajacej zadnych ograniczen na nieliniowsg
charakterystyke w systemie®, Greblicki [28]. Opracowana metoda stanowila uogélnienie
algorytmu z [26] i, podobnie jak oméwione wyzej algorytmy, bazowala na zaleznoSci
(2.5). Z tego powodu zalozenia odnoénie charakteru sygnalu wejéciowego i zakl6ca-
jacego pozostaly niezmienione. Nieznang funkcje regresji 7 (y) estymowano przy pomocy
estymatora (2.6), przyjmujac jednak nieco inne zalozenia odnoénie jadra K (-), zob.
[28, str. 540]. Wykazano zgodnoé¢ algorytmu w punktach y, w ktérych nieliniowa
charakterystyka ¢ (-) jest odwzorowaniem réznowartoSciowym oraz w ich otoczeniu

3 Nieliniowoéé musiala by¢ jedynie funkcja mierzalng.
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spelnia warunek Lipschitza. Zaktadajac dodatkowo, ze w rozwazanych punktach g () ma
niezerowg pochodng wykazano, iz estymator posiada szybkos¢ zbieznosci Op (N -1/ 4), (dla
h ~ N~/ 4). W omawianej pracy zaproponowano réwniez nieparametryczny estymator
odpowiedzi impulsowej podsystemu dynamicznego. W odréznieniu od weczeéniejszych
wynikéw, algorytm nie wymaga stosowania estymatora funkcji regresji n () i opiera sie
na spostrzezeniu, ze w rozwazanym systemie c;\; = E{XoY;}, ¢ = 0,1,..., gdzie ¢; jest
pewng stala. Jako estymator elementu c;\; przyjeto wiec

N
- 1
XiN = 77 ; XnYitn. (2.8)

Wykazano, ze dla dowolnej nieliniowosci g (-) spelniajacej warunek F |Vig(V1)| < oo,
gdzie {V,} jest sygnalem interakcyjnym w systemie, powyzszy estymator jest zgodnym
estymatorem elementu c;);, oraz ze w przypadku gdy nieliniowo$¢ spelnia warunek
Lipschitza, estymator posiada parametryczng szybkos¢ zbieznosci, tj.

i =Xn+0p (N72),i=0,1,2,...

Oprécz oméwionych powyzej algorytméw umozliwiajacych identyfikacje przy bardzo
tagodnych zalozeniach o postaci systemu, podjeto réwniez préby opracowania metod
nieparametrycznych, pozwalajacych na identyfikacje w przypadku sygnaléw wejéciowych
nie bedacych ciggami typu i.i.d. (ale w dalszym ciggu o charakterze gaussowskim),
Greblicki [33]. Teori¢ nieparametrycznej identyfikacji systeméw Wienera rozwijano tez
w innych kierunkach. W [30] Greblicki zaproponowal rekurencyjna wersje algorytmu,
a Wachel [125,126] przedstawit algorytm ortogonalny, zbudowany w oparciu o rozwinigcia
falkowe.

2.3 Ogdblna charakterystyka proponowanych metod identy-
fikacji

Zaréwno parametryczne jak i nieparametryczne metody identyfikacji systeméw Wienera
posiadajg ograniczenia, wynikajace ze specyficznej konstrukeji rozwazanej klasy systeméw.
Omawiane zadanie identyfikacji jest stosunkowo trudne i zazwyczaj wymaga przyjecia
silnych zalozen odnoénie samego systemu badz tez sygnatéw wejéciowego i zaklécajacego.
W praktyce, opracowane dotychczas algorytmy parametryczne wymagaja duzej wiedzy
o nieliniowoéci g () oraz wystepowania gaussowskiego sygnalu wejéciowego. Jezeli infor-
macja o nieliniowo$ci jest zbyt mata, mozliwe jest zastosowanie algorytméw nieparame-
trycznych. Niestety, w przypadku gdy sygnal wejéciowy nie jest sygnalem gaussowskim,
wiekszo$¢ metod parametrycznych oraz metody nieparametryczne nie mogg by¢ stosowane.
7Z tego powodu szczegdlnie istotne wydaje sig¢ opracowanie algorytméw umozliwiajacych
identyfikacje w sytuacjach, gdy dostgpna wiedza aprioryczna nie wystarcza do zastosowa-
nia algorytméw czysto parametrycznych oraz sygnal wejéciowy systemu nie jest sygnalem
gaussowskim. Prezentowane w pracy podejécie parametryczno—nieparametryczne ma
umozliwi¢ identyfikacje w przypadku, gdy oméwione powyzej parametryczne i niepara-
metryczne metody identyfikacji nie moga by¢ stosowane wprost. Koniecznym warunkiem
jest jednak skonczonos¢ i znajomo§¢ dlugosci pamieci systemu, co jak wynika z rozwazan
w p. 2.2.1 nie jest zalozeniem nietypowym, podczas gdy informacja o nieliniowoéci
w systemie moze by¢ bardzo mala. Zaklada sie zatem, ze dostepna informacja aprioryczna
o podsystemie dynamicznym ma charakter parametryczny, a wiedza o nieliniowoéci jest
nieparametryczna.
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Zanim przedstawiona zostanie ogélna koncepcja proponowanych metod warto pod-
kreslié, ze ze wzgledu na kaskadowsg budowe systeméw Wienera i nieznajomo$é obu
podsysteméw sktadowych, identyfikacja moze by¢ przeprowadzona tylko z dokiadnoscig
do nieznanej multiplikatywnej stalej ¢y # 0. Latwo bowiem zauwazy¢, ze dla dowolnego
sygnatu wejsciowego, wyjécie systemu opisanego réwnaniami (1.9)-(1.10) bedzie iden-
tyczne z wyjéciem systemu o odpowiedzi impulsowej {coAi}r_, i nieliniowosci g (-/co).
Wiasnosé powyzsza jest niezalezna od stosowanej metody identyfikacji i wynika z budowy
systemu oraz charakteru posiadanej informacji pomiarowej, a w szczegélnoéci z faktu, ze
wewnetrzny sygnal interakcyjny nie jest dostepny.

2.3.1 Idea dwuetapowej parametryczno—nieparametrycznej identyfikacji
systeméw Wienera

Proponowane w pracy parametryczno—nieparametryczne metody identyfikacji systeméw
Wienera konstruowane sg z wykorzystaniem réznorodnych narzedzi statystyki matema-
tycznej, poczynajac od metod korelacyjnych, poprzez metode najmniejszych kwadratéw
i estymacje korelacji rang, a kofczac na zastosowaniu jadrowego estymatora funkcji
regresji oraz tzw. estymatora uérednionej pochodnej (ang. average derivative estimate).
Pomimo wielu istotnych réznic, proponowane algorytmy zbudowane sg w oparciu
o wspélny szkielet, ktérego geneza wywodzi sie z opracowanej przez Hasiewicza i Mzyka
parametryczno—nieparametrycznej metody identyfikacji systeméw Hammersteina [52].
Nalezy przy tym podkresli¢, ze:

Uwaga 2.1 W systemach Hammersteina (pobudzanych sygnatami typu i.7.d.) zaréwno
wejscie jak 1 wyjécie nieliniowego podsystemu statycznego jest sygnatem typu i.i.d.;
w przypadku systemdéw Wienera natomiast (bez wzgledu na fakt, czy wejscie systemu jest
ciggiem typu i.i.d.), wejscie 1 wyjscie nieliniowego podsystemu statycznego jest sygnatem
skorelowanym, a wiec nie jest ciggiem typu i.i.d.

Uwaga 2.2 W systemach Hammersteina przeksztalceniu nieliniowemu poddawany jest
dostepny dla obserwacji sygnal wejsciowy systemu. W systemach Wienera natomiast,
argumentem (wejsciem) nieliniowosci jest nieznany i niedostepny dla pomiaréw sygnal
interakcyiny.

Zawarte w uwagach 2.1 i 2.2 obserwacje prowadza do wniosku, ze zadanie identyfikacji
system6éw Wienera jest zazwyczaj znacznie bardziej skomplikowane niz zadanie identyfi-
kacji systeméw Hammersteina.

Podstawg, proponowanych w pracy metod jest elementarne spostrzezenie, ze przy
znajomoé$ci podsystemu dynamicznego, niedostepny dla pomiaréw sygnat interakcyjny
{V.} moze by¢ wyznaczony przy uzyciu zgromadzonych obserwacji wejécia {X,} calego
systemu. Na podstawie zbioru par obserwacji (Vy,Y,), nieliniowa charakterystyka g (-)
moze byé¢ nastepnie estymowana metodami nieparametrycznymi. Dla systemu Wienera
z addytywnym szumem wyjéciowym niezaleznym od wejécia, zachodzi bowiem zwigzek®

9() =E{hi=v}. (2.9)

W rzeczywistoéci, opracowane metody identyfikacji nie wymagajg tak duzej informacji
wstepnej dotyczacej czeéci dynamicznej systemu. Wykorzystujac pomiary wejscia i wyjscia
calego systemu mozna bowiem skonstruowa¢ zgodne estymatory parametréw podsystemu

‘Dodatkowo wartoé¢ oczekiwana zaklécenia musi byé¢ réwna zero.



Rozdziat 2. Parametryczno—nieparametrycéna identyfikacja systeméw Wienera 21

dynamicznego i, w konsekwencji, szacowat nieznany sygnat {V,, }. Schemat proponowanych
dwuetapowych algorytméw identyfikacji daje sie¢ przedstawié nastepujaco:

Etap I

Parametryczna identyfikacja odpowiedzi impulsowej {)\i}f=0 podsystemu dynamicznego
na podstawie dostepnych obserwacji wejscia i wyjécia calego systemu.

Etap Ila

Estymacja sygnatu interakcyjnego {V,,} na podstawie dostepnych obserwacji wejécia oraz
uzyskanego w etapie I estymatora odpowiedzi impulsowe;j.

Etap IIb

Nieparametryczna identyfikacja charakterystyki nieliniowej g (-) z wykorzystaniem uzyska-
nego w etapie Ila estymatora sygnatu {V,} i dostgpnych obserwacji wyjécia systemu.

2.4 Teza pracy

Zastosowanie parametryczno-nieparametrycznych metod identyfikacji systeméw Wienera
skonstruowanych w pracy, pozwala na identyfikacje liniowych i nieliniowych podsysteméw
sktadowych, przy zalozeniu parametrycznej wiedzy o podsystemie dynamicznym i niepara-
metryczne] o podsystemie statycznym. Algorytmy parametryczno—nieparametryczne
umozliwiajg identyfikacje w sytuacji, gdy losowy sygnal wejSciowy nie jest sygnalem
gaussowskim, a szum zakidécajacy dziala na wyjscie systemu. Ponadto algorytmy nie
wymagaja odwracalnoéci charakterystyki nieliniowej systemu i umozliwiajg estymacje
nieliniowo$ci wprost, tj. nie poprzez funkcje odwrotng, lagodzac w ten sposéb typowe
wymagania wstepne i rozszerzajac zakres stosowalno$ci metod.

2.5 Cele pracy
Celami pracy sa:

e Opracowanie algorytméw identyfikacji systeméw Wienera, umozliwiajacych iden-
tyfikacje w przypadku gaussowskich i niegaussowskich sygnaléw wejSciowych oraz
odwracalnych i nieodwracalnych charakterystyk nieliniowych.

e Przeprowadzenie analizy teoretycznej algorytméw dotyczacej ich wiasnosci asympto-
tycznych.

e Wykonanie badan eksperymentalnych proponowanych metod, celem ilustracji za-
chowania algorytméw dla malej i Sredniej liczby obserwacji.

2.6 Podstawowe zalozenia oraz klasyfikacja zadan

W pracy rozwazana jest identyfikacja systeméw Wienera opisanych réwnaniami

P

Vi = Y NXa, (2.10)
=0

Y, = g(Vn)+Zna (2'11)

gdzie {X,} i {Yn} oznaczaja odpowiednio sygnal wejsciowy i wyjsciowy, {Z,} jest
addytywnym szumem na wyjéciu systemu oraz {V,,} jest sygnalem wewnetrznym reprezen-
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tujacym wyjécie obiektu dynamicznego i zarazem wejécie obiektu statycznego®. Skoniczony
(p + 1)—elementowy ciag {\;}i_, jest odpowiedzg impulsowg podsystemu dynamicznego.
Funkcja g (-) reprezentuje nieliniowg charakterystyke w systemie.

2.6.1 Zalozenia ogdlne

Odnoénie klasy identyfikowanych systeméw Wienera przyjmuje sie nastepujace zalozenia
ogdlne, wspdlne dla wszystkich rozwazanych w pracy metod identyfikacji:

Zalozenie 2.1 Dlugost p odpowiedzi impulsowej podsystemu dynamicznego jest skonczona
i znana. Ponadto Ao # 0.

Zalozenie 2.2 Sygnal wejsciowy {X,} jest ciggiem i.i.d. zmiennych losowych.

Zalozenie 2.3 Addytywny szum {Z,} zakidcajocy wyjscie systemu jest ciggiem i.i.d.
zmiennych losowych o zerowej wartoéci oczekiwanej i wariancji 0% < oo oraz {Z,} i {Xn}
sq stochastycznie niezalezne.

Zalozenie 2.4 Identyfikowany system znajduje sie w stanie ustalonym.

2.6.2 Klasyfikacja zadan

Z przedstawionych w p. 2.5 celé6w pracy wynikaja nastepujace zadania:

e Opracowanie metody identyfikacji dla przypadku gaussowskiego sygnatu wejsciowego
oraz dowolnej charakterystyki nieliniowej systemu.

e Opracowanie algorytméw identyfikacji dla przypadku niegaussowskich sygnaléw
wejSciowych, dodatkowo przy braku odwracalnoSci charakterystyki nieliniowej.

e Analiza asymptotyczna algorytméw.

e Wykonanie badan symulacyjnych proponowanych metod identyfikacji.

5W rozwazanym zadaniu identyfikacji sygnaly {Xn},{Va},{Yn}i{Zn} sa ciagami zmiennych losowych.



Rozdziat 3

Identyfikacja systemow Wienera
z zastosowaniem metody
korelacyjnej

W tym rozdziale prezentowana jest metoda identyfikacji systeméw Wienera z gaussowskim
sygnatem wejSciowym. Omawiany algorytm bazuje na podejéciu zaproponowanym przez
Greblickiego [28], w ktérym do nieparametrycznej estymacji odpowiedzi impulsowe;
podsystemu dynamicznego wykorzystano korelacyjng metode identyfikacji (zob. wzér
(2.8)). Proponowany tutaj algorytm umozliwia identyfikacje systeméw z addytywnym
szumem na wyjsciu, pobudzanych gaussowskim sygnalem wej$ciowym o dowolnej (niez-
nanej) warto$ci éredniej (zaklada si¢ jednak, ze w systemie nie wystepuje wewnetrzny
sygnal zaklécajacy). W przeciwienstwie do [28], przedstawiona metoda umozliwia identy-
fikacje nieliniowej charakterystyki wprost, tj. nie poprzez funkcje odwrotna,.

Wprowadzone w rozdziale estymatory czeSci liniowej, sygnatu interakcyjnego i czesci
nieliniowej systemu oznaczane bedg indeksem ,,Cr” (od ang. Correlation).

3.1 Sformulowanie problemu

Rozwazane zadanie identyfikacji dotyczy klasy system6éw Wienera opisywanych réwnania-
mi (2.10)—(2.11), dla ktérych spelnione sg zalozenia (2.1)—(2.4). Dodatkowo zaktadamy,

ze:

Zalozenie 3.1 Sygnal wejsciowy {X,} ma rozklad normalny N (/J,X,O'g{) z nieznang
wartodciq oczekiwang [Lx 1 warianciq cr%(.

Zalozenie 3.2 Nieliniowa charakterystyka g () ograniczona jest przez wielomian, tj.
lg (v)] <m(v),Yv € R, gdzie m (-) jest wielomianem dowolnego skoficzonego stopnia.

Zalozenie 3.3 Rozwazana klasa systemoéw zawiera tylko systemy, dla ktérych

Cov {X1,Y1} #0.

3.2 Identyfikacja podsystemu dynamicznego metoda korela-
cyjng

Na mocy zalozenia 3.1 oraz twierdzenia B.1 w dodatku B.2 zauwazmy najpierw, ze sygnat
{V,} jest ciagiem zmiennych losowych o rozkladzie normalnym z warto$cig oczekiwang

23
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i wariancjg okre$lonymi wzorami

P P
Wy = lx Z)\i oraz  of =uo% Z (3.1)
i=0 =0
Zatem, zgodnie z twierdzeniem B.2 (zob. dodatek B.2, wzér (B.3)), dla dowolnego i €
{0,1,...,p} prawdziwa jest nastepujaca zaleznosé
ox
E{Xo|Vi} = pux to, Vi —py), (32)

gdzie p jest wspéiczynnikiem korelacji zmiennych losowych Xy i V;, ktéry wyznaczymy
znajdujac wczesniej kowariancje

Cov{Xo, Vi} = E{(ux — Xo) (uy — Vi)} = E{XoVi} — uxpy-
Wykorzystujac wzory (3.1) oraz definicje sygnalu interakcyjnego {V,} (zob. (2.10)),

otrzymujemy

P
E{XoVi} —uxpy = ME{X3}+uk D N —pxpy

J"O,j#i
P
= Nok + Nk + ik Z Aj — g(z)‘J
J=0,j7#1 Jj=

Ostatecznie wigc Cov {Xo, Vi} = \io%, i wobec tego
p = corr {Xo,Vi} = )\ia—x.
ov
Wyrazenie (3.2) mozna teraz zapisat w postaci
B {XolW} = px + ML (V ). (33)

Zauwazmy dalej, ze

E{XYi} = E{Xog(Vi)} = E{E{Xog (Vi) |Vi}} (3.4)
E{g (Vi) E{Xo|Vi}} = E {V:E {Xo[Vi}} .

Wstawiajac (3.3) do (3.4) otrzymujemy kluczowe dla dalszych rozwazan réwnanie
a/\i = E{X()Y;} — ﬁ, (3.5)

w ktérym stale o oraz 8 dane sg wzorami
o
a=—5[E {iVi} —pypy] oraz B =pxpy, (3.6)
v

natomiast iy jest warto§cig oczekiwang wyjscia systemu, tj. py = E {Y1}.

Réwnanie (3.5) stanowigce podstawe omawianego algorytmu identyfikacji podsystemu
dynamicznego jest uogélnieniem zwiazku wprowadzonego w [28] na przypadek sygnaléw
wejéciowych o niezerowej wartoéci oczekiwanej (tj. ux # 0). Jak tatwo zauwazy¢, dla py =
0 stala B jest réwna zero oraz o = a%\a%,E {Y;V;}, co odpowiada sytuacji przedstawione;
w [28].

Wykorzystujac powyzsze rezultaty mozemy przeprowadzi¢ konstrukcje estymatora
odpowiedzi impulsowej podsystemu dynamicznego.
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3.2.1 Konstrukcja estymatora podsystemu dynamicznego

Zgodnie z obserwacjg w p. 2.3, zaréwno podsystem dynamiczny jak i element statyczny
systemu Wienera mogg by¢ zidentyfikowane tylko z doktadnoécig do multiplikatywnej stalej
co # 0. Z réwnania (3.5) wynika (zob. zalozenie 2.1 na str. 22) ze a = \y* [E {XoYo} — 8],
co z kolei prowadzi do wniosku, ze a # 0 wtedy i tylko wtedy, gdy Cov {Xp, Yo} # 0. Dla
rozwazanej klasy systeméw warunek ten jest spelniony na mocy zalozenia 3.3, a w celu
identyfikacji odpowiedzi impulsowej obiektu dynamicznego wystarczy estymowaé prawg,
strone zaleznoéci (3.5).

Oznaczymy v; = E{X,Y;}. Naturalnym estymatorem warto$ci ; jest nastepujaca

$rednia z préby, konstruowana w oparciu o zbiér obserwacji {(Xp, Yn)}f:':l,

1 N—i
Y= T ; XnYitn. (3.7)

Drugim, koniecznym do oszacowania elementem réwnania (3.5), jest stala 3. Poniewaz
jest ona iloczynem wartoéci oczekiwanych wejscia i wyjscia systemu, wiec odpowiedni
estymator przyjmie nastepujaca, naturalna, postaé

By = Bx,N X By, (3.8)

gdzie fix v, fly,y sa estymatorami wartosci oczekiwanych odpowiednio wejscia i wyjscia
systemu, tj. '
I o ]
. H’X,N:WZX" oraz /“YYNIWZY"
n=1 n=1
W rezultacie, do oszacowania elementéw przeskalowanej odpowiedzi impulsowej a);, i =
0,1,...,p, otrzymujemy nastepujacy zbiér estymatoréw

:C R ~ .
>‘i,11;/:7i,N_6N7 120»1,---,% (39)

ktérych wilasnoéci asymptotyczne oraz zachowanie dla malej i éredniej liczby obserwacji
oméwione zostang odpowiednio w p. 3.5.1 1 3.7.

3.3 Estymacja sygnatu interakcyjnego

Zauwazmy, ze odpowiedni estymator sygnatu interakcyjnego {V;,} mozna latwo uzyskaé

:C . .
wstawiajac we wzorze (2.10) otrzymane wyzej estymatory { ’\z‘,ltf}f:o w miejsce nieznanych,
prawdziwych wspéleczynnikéw odpowiedzi impulsowej {A;}7_, tj.

o

~ ~C

Voh = AinXnoi- (3.10)
=0

Jednak, ze wzgledu na ograniczong liczbe dostepnych danych pomiarowych (N-par ob-
serwacji wejécia i wyjécia systemu, {(Xp, Yn)}f:;l), estymator Vncl’(, moze by¢ wyznaczony
tylko dla n € I, gdzie I jest zbiorem indekséw

I={p+1,p+2,...,N}. (3.11)

Z kolei wystgpowanie multiplikatywnej stalej o w réwnaniu (3.5) oraz jej wplyw na esty-
' "

matory {)‘i,;/}f:0 powoduje, ze Vnc:lf, jest w rzeczywistoSci estymatorem przeskalowanego

sygnatu interakcyjnego {aV,,}. Fakt ten udowodniony zostanie w p. 3.5.2.
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3.4 Nieparametryczna identyfikacja nieliniowoSci

Konstruowanie nieparametrycznego estymatora charakterystyki nieliniowej rozpoczniemy
od przytoczenia wzoru (2.9) (zob. str. 20), tj. spostrzezenia, ze funkcja g (-) jest réwna
funkcji regresji wyjécia systemu wzgledem wartosci sygnatu interakcyjnego {V,}, tj.

9(v) = E{¥i|Vi = v}. (3.12)

Zwiazek (3.12) prowadzi wigc do wniosku, ze nieznang charakterystyke g(-) mozna
przyblizaé poprzez estymacje warunkowej warto$ci oczekiwanej F {Y1|V1 = v}. Zakladajac
chwilowo, ze sygnal interakcyjny {V,,} moze by¢ mierzony i stosujac estyrnator jadrowy
rozwazanej funkcji regresji zbudowany w oparciu o zbiér {(V,,Y, )} —1, otrzymujemy

nastepujace oszacowanie
N v—-V
>vak (252

N (v) = = : (3.13)
,; B (v Vn)

gdzie K () i h = h (V) sg odpowiednio wybrang funkcja jadra i parametrem wygtadzania
zaleznym od liczby obserwacji N (por. p. 2.1.2).

Niestety, ze wzgledu na brak mozliwoci pomiaru sygnatu interakcyjnego {V,},
bezpoérednie zastosowanie estymatora (3.13) nie jest mozliwe. Wykorzystujac oszacowanie
(3.10) mozemy jednak tak zmodyfikowa¢ estymator gy (-), aby byl on zbudowany
w oparciu o zbiér {(V.€ > Yn)}ner, gdzie I jest zbiorem indekséw zdefiniowanym w (3.11).
Wystarczy w tym celu zastosowat podstawienie Vn’ w miejsce V,,. W efekcie otrzymujemy
nastepujacy estymator nieznanej charakterystyki nieliniowej g (+)

o (55

~Cr (’U) — nel

v— Vncl’{,)
K ]
=

Zauwazmy, ze w przeciwienistwie do gy (-) wyznaczenie wartoéci estymatora §§" (+) jest
mozliwe na podstawie dostepnych par obserwacji wejscia i wyjécia calego systemu. Jednak,
jak pokazano w p. 3.5.3, ze wzgledu na wystepowanie stalej & w réwnaniu (3.5), estymator
35" () (przy pewnych ogélnych zalozeniach o funkeji K (-) i parametrze wygtadzania h)
jest zgodnym estymatorem przeskalowanej nieliniowosci g (-/c).

(3.14)

3.5 WiasnoSci asymptotyczne algorytmu

Analize wlasnoéci asymptotycznych omaw1anego algorytmu identyfikacji rozpoczniemy
od okreélenia asymptotyki estymatoréw {\ N}z—O odpowiedzi impulsowej {ai}_,
oraz estymatora Vn’ % sygnatu interakcyjnego {V,}. Nastepnie zbadamy asymptotyczne
zachowanie estymatora gf,r (). Sformutowane zostang zalozenia o funkcji jadra K (:)
i parametrze wygladzenia h, przy ktérych §§ (+) jest zgodnym estymatorem funkeji g (-/c).
Ponadto, ograniczajac klase dopuszczalnych nieliniowoéci do klasy funkcji dwukrotnie
rézniczkowalnych, okre§lony zostanie rzad szybkosci zbieznoéci estymatora _&%}’ ().
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3.5.1 Analiza zbieznoSci estymatora odpowiedzi impulsowej podsystemu
dynamicznego

W celu wykazania zbieznoéci oraz okreslenia rzedu szybkosci zbieznoéci estymatoréw ;\f ;,,
i=0,...,p zbadane zostang wlasnoéci asymptotyczne estymatoréw sktadowych %, y, 1 =
0,...,poraz &y (zob. wzory (3.7) i (3.8)).

Zgodnie z przyjetymi zalozeniami o wejsciu {X,} i szumie {Z,}, sygnaly {X,} i {¥,}
w stanie ustalonym sg stacjonarne. Wynika stad natychmiast, ze

E{¥in} =" (3.15)
Wyznaczmy teraz oszacowanie wariancji
1 N—i
Var {#;n} = ——=Vor {Z XnYH.n} . (3.16)
(N.—1) g

Zauwazmy w tym celu, ze
Var {XnYiin} < E{X2¢* (Viyn)} + 02 E { X2},
co na mocy zalozenia 3.2 daje
Var {X,Yitn} < E{Xgm? (Vitn)} + 0ZE { X3} (3.17)

Oszacowanie (3.17), ze wzgledu na skonczono$¢ wszystkich momentéw gaussowskich
zmiennych losowych, prowadzi do wniosku, ze Var {X,Yit+n} < oo dla kazdego i €
{0,1,...,p},1<n< N —i.

Ze wzgledu na skonczong dlugo$¢ pamieci systemu oraz na podstawie zalozenia 2.3
o zakléceniu wyjsSciowym, prawdziwa jest nastepujaca wiasnosé:

Wiasnoéé 3.1 Zmienne losowe X,Yiin oraz XiYivk, (2 € {0,1,...,p}) sq niezalezne,
g9dy |k —n| > p.

Wobec powyzszego, na mocy Lematu A.1 w dodatku A.l, otrzymujemy nastepujace
oszacowanie wariancji estymatora ; y,

Var {’Y’L N} - ( 2)2 Z Var {X )/H—n} (N l)Var {XOY}

Ostatecznie wiec

Var {%; n} =0<N1_Z_) =0 (N71). (3.18)
Rezultaty (3.15) i (3.18) prowadzg do wniosku, ze dla kazdego i € {0,1,...,p},
Yo =i+ Op (N712). (3.19)

Zbadamy obecnie asymptotyczne zachowanie estymatora B ~- Zgodnie z przyjetymi
zalozeniami zauwazamy, ze

bxn =px+Op (N—1/2) oraz  fiyny = py +Op (N—1/2) ,

skad, na mocy lematu B.2 w dodatku B.1, otrzymujemy
By = nxpy + Op (N—l/z) . (3.20)

Uzyskane powyzej wyniki dowodzg prawdziwoSci nastepujacego twierdzenia:
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Twierdzenie 3.1 Jezeli dla systemu Wienera (2.10)-(2.11) spelnione sq zatozenia

. :C
2.1-2.4 oraz 8.1-8.3, to dla kazdego i € {0,1,...,p} estymator )\i,;, jest zgodnym
estymatorem przeskalowanego elementu odpowiedzi impulsowej al;. Ponadto

Sim =X+ 0p (N71/2) .

3.5.2 Analiza zbieznoSci estymatora sygnalu interakcyjnego

Udowodnimy nastepujacy lemat:

Lemat 3.1 Jezeli spelnione sq zalozenia twierdzenia 3.1, to dla kazdego n € I estymator
Vnc,}(, jest zgodnym estymatorem o'V,. Ponadto

VS = aVo+0p (N7/2). (3.21)

Dowéd. Zgodnie z definicja (2.10) sygnatu {V,,} oraz definicja (3.10) estymatora VTEJ’{,
otrzymujemy

D
Vo —aVh=Y Xni (J\f,’v - a,\,-) . (3.22)
=0

Rezultat (3.21) wynika zatem bezpoérednio z (3.22) i twierdzenia 3.1. m

W celu wykazania zbieznoéci estymatora charakterystyki statycznej czeSci nielinio-
wej, oprécz wyniku (3.21), niezbedne jest réwniez okreélenie asymptotycznej szybkosci
zbieznoéci jednostajnej estymatoréw {Vnc"ﬁ}ne I, to jest zbadanie zachowania si¢ wyrazenia

(3.23)

sup Vnc}{, —aV,

nel

)

gdy N — oco'. W tym celu udowodnimy najpierw nastepujacy lemat pomocniczy:
Lemat 3.2 Niech {{n}fy:l bedzie ciqgiem zmiennych losowych typu i.i.d. o rozkiadzie
gaussowskim N (,ug, ag). Wtedy, dla dowolnie matego € > 0, zachodzi

1
— 8 .| = op (N71/2+¢) 3.24
= 5P [6,] = op (N7V/2¥) (3:24)

Dowdd lematu zamieszczony jest w dodatku A.1.
Uzyskany powyzej wynik pozwala obecnie na okreélenie asymptotyki wyrazenia (3.23).
Lemat 3.3 podaje odpowiednie oszacowanie.

Lemat 3.3 Jezeli spelnione sq zatozenia twierdzenia 3.1, to

sup Vnc}\} - aVn| =op (N_%*'E) 5

nel

dla dowolnie matego € > 0.

Dowéd. Niech gy (w) bedzie ciagiem zmiennych losowych, takim ze oy (w) =
SUP; << [ Xn (w)| (lub krécej oy = sup;<n<ny [Xn|)- Zgodnie z (3.22) otrzymujemy

P
<on Z
i=0

Teza twierdzenia wynika wiec bezposrednio z powyzszego oszacowania oraz twierdzenia
3.1ilematu 3.2. m

! chodzi o zbadanie asymptotycznego zachowania ciggu zmiennych losowych vy (w) = sup,,¢; lV,f,’v (w)—
aVp (w)|.

~ :Cr
Ve — aVn AN — o\

sup
nel
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3.5.3 Analiza zbieznoSci estymatora charakterystyki nieliniowej

Podamy obecnie warunki, jakie muszg spe}niaé jadro K (-) oraz parametr wygladzania
h wystepujace we wzorze (3.14), aby estymator Qf,r -) byl zgodnym estymatorem prze-
skalowanej charakterystyki nieliniowej g (-/a). Ponadto, przyjmujac dodatkowe zalozenia
o gladkoéci nieliniowoéci, zbadamy rzad szybkoSci zbieznoéci estymatora (3.14).

Zgodnost estymatora charakterystyki nieliniowej

Przyjmiemy nastepujace zalozenia odnoénie jadra K (-) i parametru wygtadzania h:

Zalozenie 3.4 Jgdro K (-) jest nieujemnq funkcjq lipschitzowskq (tj. AL < oo, Yv1,v2 €
R, |K (v1) — K (v2)| < L |vy — v2|), dla ktérej spetnione sq nastepujgce warunki:
sup,cr K (v) = ko < 00, [ K (v)dv =1 oraz limyy_, vK (v) = 0.

Zalozenie 3.5 Ciag liczbowy h = h (N) jest rzedu N5 ¢. b~ N71/5,
Ponizsze twierdzenie rozstrzyga o zgodnoéci estymatora §§” (-).

Twierdzenie 3.2 Jezeli spelnione sq zalozenia 2.1-2.4 oraz 8.1-8.5, to dla systemu
Wienera (2.10)-(2.11) estymator §§7 (v) jest zgodnym estymatorem funkeji g (v/c)
w kazdym punkcie cigglosci g (v/c), tzn.

9% () = g(v/a),  gdy N — oo, (3.25)

wedlug prawdopodobienstwa, w kazdym punkcie v € R, w ktérym g (v/a) jest funkcjq
ciqgtq.

Dowdéd. Przyjmiemy nastepujace oznaczenia
A 1 v — VCI(, 2o 1 v — \A/CX,
TIC\}T (’U) = N_Ih Z YnK (Tn' oraz fNT ('U) = m z K —Ez‘l_ .
nel nel
gdzie Ny oznacza liczbe elementéw zbioru I ( Ny = #{I} = N —p). Dodatkowo oznaczymy
r(v) = a"lg(v/a)fv (v/a), gdzie fv (-) jest gestoécig prawdopodobiefistwa sygnatu
interakcyjnego {V;}. Zbieznosé w (3.25) zachodzi jezeli 75" (v) i f§™ (v) zbiegaja wedlug
prawdopodobienistwa odpowiednio do r (v) i ! fy (v/a) przy N — co w kazdym punkcie
v € R, w ktérym g (v/a) jest funkcjg ciagla. W dowodzie wykorzystamy nastepujaca
dekompozycje réznicy [fff (v) —r (v)],

7 (v) =7 (v) = [PF (v) = Fn ()] + [Py () =7 ()], (3.26)
gdzie "
- _ L v—aV,

iy (v) = Nlh;YnK (—h ) : (3.27)

Zgodnie z (3.26) analize wyrazenia [ff,” (v) — r('u)] przeprowadzimy w dwéch etapach.
Rozpoczniemy od zbadania zbieznosci réznicy [Fy (v) — r (v)].

Teoria estymatoréw jadrowych dla ciggéw zmiennych losowych typu ¢.7.d. jest do-
brze ugruntowana i szeroko opisana w literaturze (zob. dyskusja w p. 2.1.2). Jednak
w rozwazanym przypadku ciag {Vp},; nie jest ciagiem typu i.i.d., co powoduje ze
klasyczne rezultaty dotyczace zbieznoSci nie mogg by¢ bezpoérednio zastosowane do
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okre$lenia wlasnoéci granicznych wyrazenia [Fy (v) — 7 (v)]. Zgodnie z przyjetymi zaloze-
niami odnoénie sygnalu wejéciowego i szumu na wyjSciu systemu, zachodza nastepujace
réwnosci

E{in ()} = %/::K (” _ha“’) 9(2) fv (z)dz = %/m K (”;”) r(z)dz. (3.28)

—00

Poniewaz nieliniowa charakterystyka g (-) jest ograniczona przez wielomian (zob. zalozenie
3.2) oraz sygnal wejSciowy jest gaussowski, to calka ffooo |r (v)| dv jest skonczona. Stad,
zgodnie z lematem B.3 z dodatku B.3, na mocy zalozen 3.4 i 3.5, ma miejsce nastepujaca
zbieznosé

E{fn (v)} =7 (v), gdy N — oo, (3.29)
w kazdym punkcie v € R, w ktérym g (v/c) jest funkcjy ciggly. Zauwazmy dalej, ze
z zalozenia o skonczonej dtugoéci pamieci i definicji sygnatu {V,,} (zob. wzér 2.10) wynika
nastepujaca wlasnoéé (por. wiasnosé 3.1):

Wiasnoéé 3.2 Zmienne losowe Vi, i Vi sq niezalezne jezeli |n — k| > p.

Wykorzystujac wlasnoéé 3.2, na mocy lematu A.1 z dodatku A.1, prawdziwe jest
nastepujace oszacowanie wariancji estymatora 7n (v),

Var {fn (v)} < ?\fj-hi Var {yl K <” —haVl) } , (3.30)

Ze wzgledu na ograniczono$é jadra K (-) zauwazamy nastepnie, ze element
R War{1 K ([v — aV4] /h)}

wystepujacy w (3.30), jest ograniczony przez (por. Greblicki [25])

%E {92 (V1) K (U _havl)} + 2k(;szE{K (v _havl>}- (3.31)

Ponowne wykorzystanie zatozen 3.1 i 3.2 prowadzi do wniosku, ze [%_|g% (v/a) fv (v/a)|
dv < co. Zatem, na mocy lematu B.3 z dodatku B.3, wyrazenie (3.31) dazy do

2, (2) [ () +3] <o

gdy N — co w kazdym punkcie v € R, w ktérym g (v/a) jest funkcjg ciagla. Ostatecznie
wiec nieréwnoé¢ (3.30), dla h spelniajacego zalozenie 3.5, daje

Var {fy (v)} = O (N"4/5) (3.32)

w kazdym punkcie cigglosci funkcji g (v/a).
Zgodnie z rezultatami w (3.29) i (3.32) zachodzi wigc zbieznoéé

v (v) —r ()] =0, gdy N — oo,

wedlug prawdopodobiefistwa, w kazdym punkcie v € R, w ktérym g (v/c) jest funkcja
ciagly.

Przejdziemy teraz do drugiego etapu dowodu tj. do zbadania asymptotyki wyrazenia
[ (v) — 7n (v)] w dekompozycji (3.26). Korzystajac z faktu, ze jadro K (-) speinia
warunek Lipschitza (zob. zal. 3.4), otrzymujemy

~ L
~Cr = < ‘ _ VC'r Y. .
TN (U) TN (U)I = ilél}) aVy n,N N[h2 nZ: | 'n-l

el
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Na mocy lematu A.1 w dodatku A zachodzi nastepujgce oszacowanie

1 p
Var {EZIY}LI} <

nel

+11Va7" {(Va}=0(N71).

Wobec tego
3 2 ¥l = B{%il} +0p (N712). (3.33)

neI

Uzyskany w lemacie 3.3 rezultat dotyczacy zbieznoSci wyrazenia sup,,r laVn - Vncﬁ, wraz

z obserwacjg (3.33) i zalozeniem 3.5, prowadzg do wniosku, ze
|r 'u)—rN('u)|—>O gdy N — oo,
wedtug prawdopodobienstwa, w kazdym punkcie v € R. Ostatecznie wigc
() =r@), gdy N — oo,

wedlug prawdopodobienstwa, w kazdym punkcie v € R, w ktérym g (v/a) jest funkeja
ciggly. Stosujac analogiczng argumentacje dla estymatora fg’;r (v) otrzymujemy

N () > a7 fy (v/e),  gdy N — oo,
wedlug prawdopodobienstwa, w kazdym punkcie v € R, co koniczy dowéd. m

Analiza szybkoSci zbieznoSci estymatora charakterystyki nieliniowej

Dla okreSlenia rzedu szybkosci zbieznoSci estymatora Qf,’" (-) ograniczymy klase
rozwazanych systeméw Wienera do klasy z nieliniowoéciami, dla ktérych spelnione sg
zalozenia (por. Greblicki [26]):

Zalozenie 3.6 Druga pochodna g” (-) nieliniowej charakterystyki g () jest funkcjq ciggtq.

Zalozenie 3.7 Pochodna ¢' () nieliniowosci g (-) ograniczona jest przez wielomian, tj.
istnieje taki wielomian myg (-) dowolnego skoficzonego stopnia, e g’ (v)] < mo (v), Yv € R.

Przyjmiemy réwniez dodatkowe zalozenia o funkeji jadra K (+).

Zalozenie 3.8 Jqdro K (-) posiada ciqglq i ograniczong drugq pochodng K" (), t
|K” (v)] < k1 < o0, Vv € R. Ponadto [*° vK (v)dv =0 oraz [ v?K (v)dv < co.

Mozemy teraz sformutowaé nastepujace twierdzenie:

Twierdzenie 3.3 Jezeli spetnione sq zalozenia twierdzenia 3.2 oraz dodatkowo zalozenia
3.6-3.8, to dla systemu Wienera (2.10)—(2.11) zachodzi

37 (v) = g(v/e) + Op (N <2/5)+f) , (3.34)
dla dowolnie matego € > 0, w kazdym punkcie v € R.

Dowéd twierdzenia zamieszczony jest w dodatku A.1.
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3.6 Podsumowanie wynikéw teoretycznych

Dla opracowanej w rozdziale metody identyfikacji przeprowadzono analize podstawowych
wlasnoéci asymptotycznych. W szczegélnosci sformutowane zostaly lagodne wymagania
jakie musi spetnia¢ nieliniowa charakterystyka w systemie aby zapewnié zbieznoé¢ algo-
rytmu (zalozenia 3.2 i 3.3). Ponadto, dla estymatoréw odpowiedzi impulsowej podsystemu
dynamicznego udowodniona zostala parametryczna szybko§¢ zbieznosci Op (N =1 2).
W przypadku odpowiednio gladkich nieliniowo$ci natomiast (zatozenia 3.6 i 3.7), pokazano
ze estymator §§7 (-) zbiega punktowo do przeskalowanej charakterystyki nieliniowej g (/)
z szybkoscia Op (N~(3/9F¢).

3.7 Wiyniki badan eksperymentalnych

Zachowanie sie algorytmu dla matej i $redniej liczby obserwacji badano eksperymentalnie
przy uzyciu $rodowiska obliczeniowego MATLAB. Eksperymenty wykonano dla systeméw
Wienera z liniowymi podsystemami dynamicznymi opisanymi odpowiedzig impulsows
1 .
)\i=(i+1),z=0,1,...,p, (3.35)
gdzie p = 4. Symulacje przeprowadzono dla trzech réznych charakterystyk nieliniowych
wystepujacych w systemie (zob. rys. 3.1),

g1 (v) = 2arctan (2v),
g2 (v) = 2cos(2v), (3.36)
gs(v) = |v],

gdzie |-| jest funkcja ,podloga”. Sygnal wejéciowy systemu wygenerowano z rozkiladu
N (ux,o0x) z parametrami puy = 1 oraz ox = 0,5. Stad, zgodnie z przeprowadzong
wyzej analizg teoretyczng algorytmu, sygnat interakcyjny {V,,} posiadat rozklad normalny
z warto$cig oczekiwang i wariancja (por. wzory (3.1)):

4
py = px ) N2,
=0

P
oy = ok > A =0,36.
i=0
Przyjmiemy nastepujace oznaczenia 91 = puy — 3oy = 0,48 oraz ¥2 = uy + 3oy ~ 4,08.
Wtedy na mocy reguly ,trzech sigm” zachodzi oszacowanie
P{Vl S [191,’192]} ~ 1. (337)
Sygnat zaktécajacy {Z,} wygenerowano z rozkladu jednostajnego na odcinku [—7, 7], gdzie

T jest stala?, dobrang tak, aby® NSR= 7/y = 10% (przy czym v = maX,e[s, 9, 9 (v))-
W nieparametrycznym estymatorze Q%}’" () zastosowano gaussowsks funkcje jadra, tj.

i) = \/% o <—”;) . (3.38)

Dla kazdego z rozwazanych systeméw wyznaczono numerycznie wartoéci multiplikatywnej
stalej a (zob. wzér. (3.6)). Doktadnoé¢ metody badano przy uzyciu nastepujacych bledéow

empirycznych:

2 warto§é stalej 7 wyznaczono oddzielnie dla kazdej z rozwazanych nieliniowoéci.
3” Noise-to-Signal Ratio” — wspélczynnik okreslajacy poziom szumu wzgledem sygnatu uzytecznego.
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w

g1(v)

$1g2(v)

N I/

31g3(v)

Rysunek 3.1: Wykorzystane w symulacjach nieliniowosci g1, g2 i g3

e Blad (wzgledny) estymacji odpowiedzi impulsowej podsystemu dynamicznego:

35 - e  Jotsi" -
Err(A;a) = RZ—”—XH——H)O% RZ T 100%. (3.39)

i=1

e Globalny btad (wzgledny) estymacji charakterystyki nieliniowej:

1 B Mo 2
=210 (35 (@v) - 9 (w9)

=4 | =
MISE (3§ @) = — 100%, (3.40)
[ @
Y1
gdzie (,)[i] oznacza i—tg realizacje estymatora, ||-|| jest norma euklidesows oraz R = 30 jest
. ‘ < ; :Cr cr\T
liczbg realizacji estymatora (powtérzen eksperymentu). Ponadto Ay = ()‘0, Ny e oy Ay N)

A= (No,-- .,/\p)T. W definicji bledu MISE (g,?,r;a) przyjeto M = 1000. Ciag {vn} jest
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M—elementowym zbiorem punktéw réwnomiernie rozlozonych na odcinku [¥1,12]. Przez
6 oznaczono odlegloé¢ miedzy sgsiadujacymi ze sobg wyrazami ciagu {v,}.

W kontekécie problematyki zwigzanej z identyfikacja systeméw nieliniowych (a w szcze-
gélnosci z identyfikacja systeméw Wienera), nieliniowosci g1 (+), g2 (*) 1 g3 () scharaktery-
zowat mozna nastepujaco:

e Funkcja g; () jest typowym przykiadem charakterystyki czesto spotykanej w lite-
raturze (zob. np. Raich et al. [98], Enqvist [19], Hasiewicz et al. [53]). Ze wzgledu
na fakt, ze jest ona funkcjg SciSle monotoniczna, wielokrotnie rézniczkowalna, oraz
nieparzysta, nieliniowo$¢ g; (+) spelnia typowe wymagania wystepujace w identyfika-
cji systeméw Wienera (jest np. funkcjg odwracalng, por. Greblicki [26]).

e Nieliniowo$¢ go (), podobnie jak g; (-), jest funkcja wielokrotnie rézniczkowalng.
W odréznieniu od g¢; () charakterystyka go (-) jest jednak tylko przedziatami $cisle
monotoniczna, co powoduje, ze jest ona réwniez tylko przedzialami odwracalna.

Nieliniowo$¢ g2 (+) jest funkcjg parzysta.

e W odréznieniu od funkcji g1 (+) i g2 (-) charakterystyka gs (-) jest funkcjg nieciagly
(nieciagloéci wystepuja w punktach v € N). Ponadto, ze wzgledu na fakt, ze g3 (-)
jest odcinkami stala, nie istnieje funkcja odwrotna do g3 (-).

W eksperymencie badano zachowanie algorytmu identyfikacji dla nieliniowosci ¢; (+),
g2 (+) 1 g3(-). Rysunki 3.2 oraz 3.3 (str. 35) przedstawiaja odpowiednio bledy empiryczne
ETT(AIC\',T; a)i MISE (g,?,r; a) dla rozwazanych charakterystyk, w funkcji liczby obserwacji
N zmienianej od 25 do 500. Uzyskane rezultaty pokazuja, ze w przypadku omawianych
nieliniowo$ci bledy te maleja wraz ze wzrostem liczby obserwacji N. W szczegélnoéci, dla
charakterystyk go (-) i g3 () wartosci bledéw Err(;l,c\i,r; «) sg mniejsze od 10%, gdy liczba
obserwacji N jest wigksza od 100 (por. rys. 3.2). Dla charakterystyki g; (-) natomiast,
dziesigcioprocentowy blad Err(é,c\;r; «) osiggany jest dopiero, gdy N = 350. Gorsze
rezultaty uzyskane w przypadku nieliniowoéci g; () wynikaja z faktu, ze na odcinku [91, 9]
(zob. wzér (3.37)) funkcja g; (v) = arctan (2v) jest bliska funkcji stalej (por. rys. 3.1), co
z kolei powoduje, ze kowariancja Cov {X1,Y1} jest bliska zeru (por. zal. 3.3, str. 23) i tym
samym bliska zeru jest réwniez multiplikatywna stala a. Oméwiony powyzej efekt nie
jest natomiast widoczny na rysunku 3.3 przedstawiajacym biedy estymacji nieliniowosci.
Zastosowana w symulacjach ciggla funkcja jadra (zob. wzér (3.38)) powoduje, ze estymator
g,?,’" (-) lepiej przybliza ciagly nieliniowo$¢ g; () niz nieciagly g3 (), co kompensuje wiekszy
blagd estymatora i,c\',r w przypadku nieliniowoéci ¢; (-). W szczegélnosci, rysunek 3.3
prowadzi do wniosku, ze bez wzgledu na charakter nieliniowoéci wystepujacej w systemie,
bledy empiryczne MISE (gg‘,r; a) osiggajag warto§ci nie wigksze niz 20%, gdy liczba
obserwacji N jest wieksza od 400.

3.8 Podsumowanie i wnioski

Zaproponowana w tym rozdziale metoda identyfikacji dedykowana jest systemom Wie-
nera pobudzanym sygnalami gaussowskimi typu .i.d. Analiza teoretyczna algorytmu
pozwala stwierdzi¢, ze dla stosunkowo szerokiej klasy nieliniowosci estymatory czeSci
liniowej i nieliniowej sg zgodne, oraz ze estymator odpowiedzi impulsowej podsystemu
dynamicznego posiada optymalny rzad szybkoSci zbieznosci. Dodatkowo, dla dwukrotnie
rézniczkowalnych nieliniowo$ci w systemie, estymator czeéci nieliniowej posiada rzad szyb-
kosci zbieznosci Op (N =@/ 5)‘*'5) tylko mieznacznie gorszy od rzedu szybkosci zbiezno$ci
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estymatoréw nieparametrycznych osigganego przy identyfikacji systeméw statycznych (tj.
rzedu Op (N‘(2/5))).
:C
Nalezy podkredli¢, ze prosta konstrukcja estymatoréw {)‘i,;f}?.—.o i gff -) pozwala na
latwa implementacje proponowanej metody identyfikacji. Algorytm nie wymaga stosowania,

specjalizowanych procedur numerycznych (np. odwracania macierzy lub poszukiwania

ekstremum wielowymiarowych funkcji celu) co powoduje, ze jego efektywna implementacja
nie jest skomplikowana.
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Rysunek 3.2: Wartoéci bledéw estymacji Err(A NT; a) w funkcji liczby obserwacji wejécia i wyjscia

systemu dla nieliniowoéci g1, g2 1 g3
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Rysunek 3.3: Wartoéci bledéw estymacji MISE (gf,’;a) w funkcji liczby obserwacji wejScia
i wyjécia systemu dla nieliniowoéci g;, g2 1 g3



Rozdzial 4

Identyfikacja systeméw Wienera
z wykorzystaniem metody
najmniejszych kwadratow

W tym rozdziale przedstawiony jest algorytm identyfikacji systeméw Wienera zbudowany
w oparciu o metode najmniejszych kwadratéw oraz nieparametryczna estymacje funkcji
regresji. W odréznieniu od metody korelacyjnej algorytm nie wymaga, aby wejécie systemu
bylo sygnalem gaussowskim. Przyjmuje sie, ze sygnal {X,} jest ograniczony oraz ma
ciagly funkcje gestoSci prawdopodobiefistwa, rézng od zera w otoczeniu punktu zero.
Odnoénie nieliniowej charakterystyki g (-) zaklada si¢ jedynie, ze jest ona funkcjg ciagla.
Dopuszcza si¢ w ten sposéb zaréwno charakterystyki odwracalne, jak i nieodwracalne.
Wiyniki dotyczace metody zostaly otrzymane we wspéipracy z prof. M. Pawlakiem i prof.
Z. Hasiewiczem, i czeéciowo opublikowane w [93]. W rozdziale prezentowana jest takze
pokrewna idea metody identyfikacji skonstruowanej w oparciu o koncepcje korelacji
rangowe;j.

Wprowadzone estymatory czesci liniowej, sygnalu interakcyjnego i czedci nieliniowej
systemu oznaczane bedg indeksem ,,L.S” w przypadku algorytmu zbudowanego w oparciu
o metode najmniejszych kwadratéw (od ang. Least Squares) oraz indeksem ,RC”
w przypadku metody rangowej (od ang. Rank Correlation).

4.1 Sformulowanie problemu

Zgodnie z dyskusja w rozdziale 2, system Wienera (2.10)—(2.11) moze byé¢ zidentyfikowany
tylko z dokladno$ciag do multiplikatywnej stalej. Stad, bez utraty ogélnosci mozemy
przyjaé, ze dla rozwaznej klasy systeméw zachodzi A9 = 1. Dodatkowo przyjmiemy
nastepujace zalozenia o nieliniowoéci g (+) 1 gestoéci prawdopodobiefistwa fx (-) sygnatu
wejsciowego {X,} (zob. Pawlak et al. [93]):

Zalozenie 4.1 Gestost prawdopodobienstwa fx (-) jest funkcja ciggla o ograniczonym
noéniku [af,bs] takim, ze ay <0 < by oraz fx (0) > 0.

Zalozenie 4.2 Nieliniowa charakterystyka g (-) jest ciagla i rézna od funkcji statej.
Uwaga 4.1 Poniewa? stala ay moze byt dowolnie mala, a stata by dowolnie duza,
to wystepujacy w zalozeniu 4.1 warunek ograniczonego nodnika funkcji fx (-) nie jest

z praktycznego punktu widzenia istotny. Przykladami gestosci spetniajgcych zatozenie 4.1

36
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sq m.in.: rozktad jednostajny, rozktad trdjkatny, rozkiad Epanechnikova oraz obciety rozktad
normalny.

4.2 Parametryczna identyfikacja podsystemu dynamicznego
z wykorzystaniem metody najmniejszych kwadratéw

4.2.1 Koncepcja metody identyfikacji

Proponowany algorytm identyfikacji wymaga wydzielenia ze zbioru obserwacji wejécia
i wyjscia {(Xn, Yn)}f:;l dwéch podzbioréw T3 i Tp okre$lonych nastepujaco

o= {(XmYn)}neIl’
I, = {(Xnayn)}ne]27

gdzie

Il = {p+13)p+Nl}7
I, = {2p+1+MNy,...,N},

oraz Nj oznacza liczbe elementéw zbioru I;, (podobnie przez N» bedziemy oznaczaé
licznoé¢ zbioru I3), rys. 4.1. Poniewaz rozwazana klasa systeméw posiada pamieé o dlugosci
p, tatwo zauwazy¢, ze elementy zbioréw T3 i T» sa wzajemnie stochastycznie niezalezne!.
Odnoénie licznosci zbioréw T3 i T» zalozymy, ze N1 — oo i Np — oo, gdy N — oo, por.
Pawlak et al. [93].

e P

(LI T I T I I I I T T I I T I T T I TTTT]

L L ;l | | }2 j
(o T},

Rysunek 4.1: Wydzielenie ze zbioru obserwacji {(X,I,Yn)}f:’=1 stochastycznie niezaleznych
podzbioréw 717 i Ty

Koncepcje metody identyfikacji oméwimy w dwéch etapach. Zakladajac chwilowo, ze
nieliniowa charakterystyka g (-) jest znana, rozpoczniemy od rozwazenia zadania identyfi-
kacji polegajacego na oszacowaniu odpowiedzi impulsowej podsystemu dynamicznego na
podstawie obserwacji ze zbioru 75. W celu uproszczenia zapisu wprowadzimy nastepujaca,
notacje wektorows. Przez A oznaczymy (p + 1)—elementowy wektor utworzony z kolejnych
wyrazéw odpowiedzi impulsowej {\;},_, podsystemu dynamicznego, tj. wektor o postaci

_/\_:(I)AI)"WAP)T’

oraz okreélimy zbiér A C RP*! jako podzbiér przestrzeni RPT! utworzony z wektoréw
l = (lo,ll,...,lp)T, takich ze lp = 1 oraz l,...,l, < Lo, gdzie Ly < oo jest pewng
stalg. Zbiér A jest oczywiscie zbiorem zwartym. Jest on bowiem zbiorem domknigtym
i ograniczonym w przestrzeni skoficzenie wymiarowej.

Przyjmiemy nastepujace zalozenie:

'tj. dowolna zmienna losowa ze zbioru T; nie zalezy od zmiennych losowych ze zbioru T i odwrotnie.
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Zalozenie 4.3 Wektor )\ jest elementem zbioru A, tj. A € A.

Nastepnie, przez analogi¢ do definicji sygnalu wewnetrznego {V,,} (zob. wzér (2.10)), dla
kazdego [ € A wprowadzimy sygnal {V,, (1)} zalezny od wektorowego parametru [ € A taki,
ze

Vo () = i Xyt (4.1)
=0

Zgodnie ze wzorem (4.1) oraz wzorem (2.10) definiujacym sygnat {V,}, zachodzi
Val A=V, (4.2)

i tym samym g (V, (A)) = g (V).

Podobienstwo konstrukeji sygnatéw {Vp} i {V,(l)} oraz ciagltoé¢ funkcji Vj (1)
powoduje, ze jezeli wektor [ jest bliski? wektorowi A, to réznica Vi, — Vj, (I) jest mala
(w pewnym sensie probabilistycznym?) i wobec tego dalej, jezeli g (-) jest funkcjg ciagta,
to takze réznica g(Vn) — g (Va (1)) bedzie odpowiednio mata. Obserwacja ta prowadzi
do wniosku, ze mozliwe jest skonstruowanie (w oparciu o g(V, (1)) empirycznej funkcji
kryterialnej QN2 (I) okreslajacej dla dowolnego wektora [ € A ,jako§¢ przyblizenia” we-
ktora A przez [. W tym celu, na podstawie obserwacji ze zbioru 75, mozna utworzy¢ zbiér
{(Va (1) , Yn) }ner, 1 funkcje kryterialng Qn, (1) zdefiniowaé nastepujaco

G =5 X =9 (Ve O (43)

mely

W rezultacie, wykorzystujac kryterium (4.3), za estymator odpowiedzi impulsowej A
mozna przyjaé wektor [, ktéry minimalizuje funkcje @, (+), tj. estymator najmniejszych
kwadratéw o postaci

..LS ~

AN, = in l).

An, = argminQn, (1)

W sytuacji podstawowej dla naszych rozwazan, gdy nieliniowa charakterystyka g (-)
nie jest znana, zastosowanie funkcji kryterialnej QN2 (1) wprost nie jest mozliwe i w kon-
sekwencji proponowane podejécie nie moze byé bezpoérednio zastosowane. Mozna jednak
powyzszy schemat zmodyfikowa¢ i w miejsce nieznanych wielkoéci {g (V. (1)) },,¢;, wstawi¢
ich odpowiednie estymatory.

4.2.2 Konstrukcja pilotowego estymatora charakterystyki nieliniowej

Whprowadzony wyzej sygnat {V,, (1)} wykorzystamy do zdefiniowania funkcji g (;1) : R —
R, zaleznej od wektorowego parametru [, takiej ze

g (0;1) = E {Y,|V (1) = v} (4.4)

Zgodnie z obserwacjg (4.2) oraz wzorem (2.9) otrzymujemy natychmiast, ze g (v;A) =
g (v). Zauwazmy nastepnie, ze dla dowolnego I € A mozliwe jest skonstruowanie

2np. w sensie metryki euklidesowe;j.

3Koncepcja metody identyfikacji jest w sposéb celowy omawiana z pominigciem &cistych pojeé¢ teorii
prawdopodobiefistwa, a jej precyzyjne sformulowanie oraz wlasnoéci asymptotyczne zamieszczone sg
w dalszej czeéci rozdziatu.
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estymatora funkeji g (v;l) na podstawie zbioru {(Vn (I),Yn)},er,- Wykorzystujac np.
nieparametryczny estymator z jadrem (por. rozdziat 2, str. 15), otrzymujemy*

S Yako (v —}Zn (D)

g, (1) = =2 T (45)
v=Va(l)
,;,1 o ( ho )

gdzie Ko () i ho = ho(N1) sa odpowiednio funkcja jadra i parametrem wygladzania
zaleznym od liczby obserwacji V). Zauwazmy, ze dla dowolnego wektora [ € A, ze
wzgledu na zaleznoé¢ (4.1), estymator gu, (v;l) moze byé wyznaczony na podstawie
dostepnych obserwacji wejécia i wyjécia systemu ze zbioru 77. Warto réwniez podkreslié,
ze wystepujace w (4.5) sygnaly {V,, (1)} i {Yn} nie sg ciagami typu 7.i.d., co uniemozliwia
bezpoérednie zastosowanie klasycznej teorii do okre$lenia wlasnoSci asymptotycznych
estymatora gy, (+;1) (zob. tez uwaga 2.1 na str. 20).

Modyfikacja funkcji kryterialnej Qy, (1)

W celu skonstruowania estymatora odpowiedzi impulsowej A w przypadku nieznanej
nieliniowoéci g (-), zauwazmy, ze jezeli gn, (+;1) jest zgodnym estymatorem funkeji g (+;1)
(dla kazdego I € A), to im mniejsza jest odlegloéé wektora [ od A, tym dokladniej gn, (+;1)
przybliza nieliniows, charakterystyke g (1) = g (-,A). Powyzsza obserwacja sugeruje wiec,
aby estymator gy, (+;1) wstawi¢ w miejsce prawdziwej charakterystyki nieliniowej g (+) we
wzorze definiujagcym funkcje kryterialng Q N, (+). W rezultacie otrzymujemy nowe, w petni
empiryczne, kryterium okreélajace jako$§é ,dopasowania” wektora [ do A,

A 1 _
Qv W) =5 D [Ym —dm (Vm (00 (4.6)
2m€[2
Wynikajacy z (4.6) estymator najmniejszych kwadratéw odpowiedzi impulsowej A
okreslony jest zatem wzorem

~LS . .
Ay = argmingep Qn (1)

. . LS . <LS . .
Jak zaznaczono wyzej, w odréznieniu od Ay,, do wyznaczenia estymatora Ay nie jest
wymagana znajomo$¢ nieliniowej charakterystyki g (+).

4.3 Estymacja sygnatu interakcyjnego

< LS -
Skonstruowany powyzej estymator Ay mozna teraz wykorzysta¢ do estymacji elementéw
sygnatu interakcyjnego {V,}. Stosujac podejécie wprowadzone w rozdziale 3. (por. wzér
(3.10) na str. 25), otrzymujemy

A ~LS\T
Vi = (V) Xa, (4.7)
gdzie X. = (Xn; Xpiy: - ,Xn_p)T. Ze wzgledu na ograniczong liczbe obserwacji wejécia

i wyjécia systemu, estymator (4.7) moze by¢ wyznaczony jedynie dla V,, takich, zen € I =
{p+1,p+2,...,N}, por. wzér (3.11) w rozdziale 3.

‘W dalszej czeéci rozdziatu estymator gn, (v;l) bedzie nazywany estymatorem pilotowym.
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4.4 Nieparametryczna identyfikacja charakterystyki nieli-
niowej

Jako estymator charakterystyki nieliniowej przyjmiemy, podobnie jak w punkcie 4.2.2,
nieparametryczny estymator z jadrem zbudowany tym razem w oparciu o zbiér

{(VES, Ya)Iner, ton,
v — VIS

Y. K Z__'nN

> ( ! )

A nel
i (v) = = SIEY (4.8)
nel h

gdzie K(-) i h = h(N) sa odpowiednio funkcjg jadra i parametrem wygladzania,
por. estymatory (3.14) oraz (4.5). Wiasnodci asymptotyczne estymatora oraz wyniki
eksperymentéw numerycznych przeprowadzonych dla malej i $redniej liczby obserwacji
przedstawione sg odpowiednio w p. 4.5.3 i p. 4.8.

4.5 Wilasnosci asymptotyczne algorytmu

Zbadamy obecnie asymptotyczne zachowanie omawianego algorytmu identyfikacji.
W szczegélnodei skupimy sie na wykazaniu zgodno$ci estymatora odpowiedzi impulsowej
podsystemu dynamicznego i estymatora nieliniowej charakterystyki podsystemu staty-
cznego. W tym celu przyjmiemy nastepujace zalozenia odnoénie elementéw konstruk-

cyjnych pilotowego estymatora gy, (-;1):

Zatozenie 4.4 Jgdro Ky (-) jest funkcjq ciggla speiniajacq warunek ffooo Ko(z)dz =1
oraz takq, ze
kll[—'r,'r] (’Z)) < Ko (U) < k21[—R,R] (U))

gdzier < R, k1 < ko sq dowolnymi statymi.

Zalozenie 4.5 Parametr wygladzania hg = ho (N1) spetnia warunki: hg — 0 oraz Nihg —
oo gdy N1 — oo.

W celu zapewnienia identyfikowalnoSci podsystemu dynamicznego przyjmiemy réwniez
zalozenie typowe dla metody najmniejszych kwadratéw:

Zalozenie 4.6 Funkcja Q (1) =FE {[Y1 —gi(b); L)]z} posiada jedyne minimum globalne
w punkcie A.
Poniewaz w @ (1) argument [ wplywa réwnocze$nie na konstrukcje funkeji g (+; 1) (zob. wzér
(4.4)) jak i na jej argument Vj (I) (zob. wzér (4.1)), to automatyczne spelnienie zalozenia
4.6 nie jest oczywiste.

Wymagania odno$nie g,%,s () umozliwiajace wykazanie zgodnoéci estymatora charakte-
rystyki nieliniowej zamieszczone sg w p. 4.5.3.

4.5.1 Analiza zbieznosci estymatora odpowiedzi impulsowej podsystemu
dynamicznego

< LS
Zanim okre$lone zostang wlasnoSci asymptotyczne estymatora Ay zauwazmy, ze z za-
lozenia 4.4 wynika ciggloé¢® funkeji gn, (Vi (1) ;1) wzgledem [, dla kazdego n € Ii.

Szob. przypis na stronie 15
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W konsekwencji réwniez Qy (1) jest funkcjg ciggla. Z faktu, ze A jest zbiorem zwartym
wynika nastepnie, ze Q ~ () osigga warto$é najmniejsza w A i wobec tego estymator if\,s
jest dobrze okredlony. Nalezy jednak podkresli¢, ze dla skoficzonej liczby obserwacji N,
empiryczna funkcja kryterialna Q (I) moze posiada¢ wigcej niz jedno minimum w zbiorze
A. Zalozenie 4.6 gwarantuje jednak, ze graniczna postaé stosowanego kryterium (tj. przy
N — o) posiada jedyne minimum globalne w punkcie ).

. s . . v L LS .
Ponizsze twierdzenie formuluje warunki, przy ktérych Ay zbiega wedlug prawdo-
podobiefistwa do wektora odpowiedzi impulsowej A, gdy liczba obserwacji IV roénie do
nieskonczonoéci.

Twierdzenie 4.1 Jezeli speinione sq zalozenia 2.1-2.4 oraz 4.2—4.6, to dla systemu

< LS
Wienera (2.10)-(2.11) estymator Ay jest zgodnym estymatorem wektora odpowiedzi
impulsowej A podsystemu dynamicznego, tzn.

<LS
Ay = A gdy N — oo,
wedtug prawdopodobienstwa.

Pelny dowdd, skonstruowany w oparciu o twierdzenie 5.7 w Van der Vaart [123]
(przytoczone wraz z dowodem w dodatku A.2) zamieszczony jest w pracy Pawlaka et

al. [93].
4.5.2 Analiza zbieznosci estymatora sygnatu interakcyjnego
Udowodnimy nastepujacy lemat (por. analiza estymatora Vncjf, w rozdziale 3.):
Lemat 4.1 Jezeli spelnione sq zalozenia twierdzenia 4.1, to dla kazdego n € I,
[V,{’f, — Vn} — 0, gdy N — o, (4.9)
wedlug prawdopodobienstwa.

Dowéd. Zgodnie z definicjg (4.1) sygnatu {V,} oraz definicja (4.7) estymatora Van,
otrzymujemy na mocy nieréwno$ci Cauchy’ego—Schwarza (zob. dodatek B.4)

vo-V| = |p- 5 ol < - i1z s ofa- 5 w0

gdzie C' = (p + 1) max {|ag|, |bf|}, zob. zal. 4.1. Rezultat (4.9) wynika zatem bezposrednio
z ograniczonosci sygnatu {X, } i twierdzenia 4.1. m

4.5.3 Analiza zbieznosci estymatora charakterystyki nieliniowej

Dla wykazania zgodnoSci estymatora charakterystyki nieliniowej niezbedne jest posiadanie
informacji na temat szybkoSci zbieznoSci estymatora odpowiedzi impulsowej czeéci liniowej.
Jednak przeprowadzona powyzej analiza wilasno$ci asymptotycznych estymatora _Xﬁs
dowodzi jedynie zbieznoSci algorytmu i nie pozwala na wnioskowanie o jego szybkoSci
zbieznosci. Nalezy podkresli¢, ze okreslenie rzedu szybkoSci zbieznoéci estymatora odpowie-
dzi impulsowej podsystemu dynamicznego jest zagadnieniem skomplikowanym i wymaga
zastosowania bardziej zaawansowanych narzedzi statystyki matematycznej i teorii praw-
dopodobienstwa, por. np. Ichimura [58].
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Z tego powodu analiza wiasnosci teoretycznych algorytmu identyfikacji nieliniowo$ci
bedzie prowadzona przy dodatkowym, ogélnym, zalozeniu odno$nie szybko$ci zbieznoéci
estymatora czeSci liniowej. Zalézmy mianowicie, ze zachodzi

“;ﬁs = AH — Oplax), (4.11)

gdzie ay jest pewnym ciggiem zbieznym do zera.

Uwaga 4.2 Parametryczno—nieparametryczna konstrukcja estymatora LLVS (w szczegdl-
nosci wystepowanie pilotowego estymatora nieparametrycznego w kryterium sredniokwadra-
towym) moze powodowaé, ze iﬁs zbiega do A wolniej niz Op (N =4 2). W szczegdlnosci cigg
an moze wiec przyjat postat any ~ N7, gdzie v € (O, %)

Odnoénie konstrukcji estymatora §%° (-) zatozymy, ze:

Zalozenie 4.7 Jgdro K (-) jest nieujemnq funkcjq lipschitzowskq (tj. AL < oo, Yv1,v2 €
R, |K (v1) — K (v2)| < L|vy — v2|), dla ktdrej spetnione sq nastepujgce warunki:
sup,er K (v) = ko < 0o, [%° K (v)dv =1 oraz lim}y|—,co vK (v) = 0.

Zalozenie 4.8 Parametr wygladzania h = h (N) spelnia warunki

h — 0, Nh — oo, gdy N — oo, (4.12)

oraz

an/h? =0, gdy N — oo. (4.13)

Uwaga 4.3 Wymaganie (4.12) zawarte w zalozeniu 4.8 spelnione jest w szczegdlnosci
gdy h ~ N8, gdzie B € (0,1). Z kolei, dla ay ~ N~ (z0b. uwaga 4.2), warunek (4.13)
zachodzi gdy B < v/2.

Zgodno$¢ estymatora g S () przy powyzszych zalozeniach oraz zalozeniach twierdzenia
4.1 wykazana jest w nastepujacym twierdzeniu:

Twierdzenie 4.2 Jezeli spelnione sq zatozenia twierdzenia 4.1 oraz zatozenia 4.7 i 4.8,
to

O —g0), gy N o, (4.14)
wedlug prawdopodobiehstwa w katdym punkcie v € R, w ktorym gestosé fy (v)
wewnetrznego sygnatu interakcyjnego {V,} jest dodatnia.

Dowéd twierdzenia zamieszczony jest w dodatku A.2.

4.6 Identyfikacja systeméw Wienera z wykorzystaniem ko-
relacji rangowej

Oméwiona powyzej metoda identyfikacji skonstruowana jest w oparciu o kryterium
sredniokwadratowe Q y (+) utworzone na podstawie dostegpnych danych pomiarowych oraz
przy uzyciu pilotowego estymatora charakterystyki nieliniowej. Proponowana obecnie
modyfikacja algorytmu polega na zastosowaniu koncepcji korelacji rangowej, zob. np.
Koronacki i Mielniczuk [70], do skonstruowania odmiennej funkCJl kryterlalneJ Sy (+), por.
Geenens i Simar [21]. Podobnie jak w przypadku kryterium Qn (), w funkcji Sy () réwniez
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wykorzystuje sie pilotowy estymator (4.5) oraz stosuje si¢ wydzielenie ze zbioru obserwacji
podzbioréw T; i Tp. Rozwazany obecnie algorytm umozliwia identyfikacje odpowiedzi
impulsowej podsystemu dynamicznego poprzez minimalizacje funkcji Sy (-). W p. 4.6.2
1 4.8.2 wprowadzono odpowiednio koncepcje metody oraz oméwiono wyniki eksperymen-
téw numerycznych dla malej i éredniej liczby obserwacji wejécia i wejécia systemu. Analiza
teoretyczna wlasnoéci asymptotycznych algorytmu nie zostala przeprowadzona.

4.6.1 Parametryczna identyfikacja podsystemu dynamicznego z wyko-
rzystaniem korelacji rangowej

Konstruowanie algorytmu rozpoczniemy od rozwazenia uproszczonego zadania identyfika-
cji, w ktérym na wyjéciu systemu nie wystepuje szum {Z,}. W tej sytuacji mamy

Chwilowo zalozymy réwniez, ze nieliniowa charakterystyka g (-) jest znana, a zadanie
identyfikacji polega na wyznaczeniu odpowiedzi impulsowej podsystemu dynamicznego
na podstawie zbioru obserwacji {(Xp, Yn)}71:7=1'

4.6.2 Koncepcja metody identyfikacji
Idea omawianej metody opiera si¢ na oczywistym spostrzezeniu, ze zgodnie z (4.15),

{9 (Vi) 2 g(V;)} wtedy i tylko wtedy, gdy {Vi >Y;}, (4.16)
dla dowolnych i, j € I. Wykorzystujac powyzszg obserwacje wprowadzimy funkcje

s (v1,v2,91,92) = 1[g(v1) > g (v2)]1[y1 > 2]
+1[g(v1) < g (v2)]1[y1 < y2,

gdzie v1,v291,y2 € R oraz 1[A] oznacza indykator zdarzenia A. W uproszczonym
zadaniu identyfikacji, tj. przy zalozeniu braku szumu wyjéciowego, s (V;,V;,Y;,Y;) = 1 dla
dowolnych 7, j € I. Jednoczeénie funkcja s (V; (1), V; (1) ,Y;, Y;), gdzie elementy V; (1) i V; (1)
zdefiniowane sg wzorem (4.1), moze przyja¢ warto$¢ zero jezeli [ # \. Wlasnosé ta pozwala
na wykorzystanie funkcji s(v1,v2,¥1,y2) w konstrukcji kryterium okreSlajacego jakosé
przyblizenia wektora A przez dowolny wektor [ € A. Odpowiednia funkcja kryterialna
zbudowana w oparciu o obserwacje ze zbioru 75 przyjmuje postaé (por. Geenens i Simar

21)
smo=[()]" 3 M0G0 %), (@17

gdzie czynnik wagowy (1\2,2) oznacza symbol Newtona® normalizujacy funkcje S N, (+) tak,
aby jej wartosci zawarte byly w przedziale [0, 1], por. Geenens i Simar [21], Han [45] oraz
wspéiczynnik Kendalla (zob. np. Koronacki i Mielniczuk [70, str. 474]). Jest oczywiste,
ze wartoé¢ maksymalng funkcja Sy, (I) osiaga gdy [ = A, bowiem dla kazdego i,7 € I
zachodzi s (V;, V},Y;, Y;) = 1. Jako estymator odpowiedzi impulsowej A przyjaé wiec mozna

~RC =
Ay, = argmaxies Sy, (1) -

Podobnie jak w przypadku Q, (-), kryterium Sy, (-) nie moze byé bezposrednio uzyte gdy
nieliniowos¢ g (-) nie jest znana. W konsekwencji estymator A N, Die moze by¢ wyznaczony.

6Symbol Newtona (A,?) réwny jest liczbie wszystkich kombinacji par elementéw ze zbioru I.
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Wykorzystujac podejécie oméwione poprzednio, zastgpimy w .§'N2 (1) charakterystyke
nieliniowg g (-) pilotowym estymatorem (4.5). W rezultacie otrzymujemy

SN@):[(N?)]"l S a0,V 0),%Y),

2 o~
gdzie

8 (v1,v2,91,92) = 1[dn (v150) > Gn, (v2; 0] 1 [y1 > v
+1[gn, (v1;0) < Gy (v2;0)] 1 [y1 < ye),

i ostatecznie nowy estymator odpowiedzi impulsowej podsystemu dynamicznego przyjmuje
postac

~RC .

Ay =argmaxges Sy (1)

4.6.3 Estymacja sygnalu interakcyjnego oraz identyfikacja charaktery-
styki nieliniowej

~RC P
Uzyskany w p. 4.6.2 estymator Ay , zgodnie z procedurg z p. 4.3, jest nastepnie
wykorzystany do przyblizania sygnalu wewnetrznego {V,}. Przez analogie do anjf,
otrzymujemy

N ~RC\T

an,zl\c; = (AN ) lm

gdzie n € I. Nastgpnie, postepujac podobnie jak w przypadku estymatora Gk (v), do
identyfikacji nieliniowo$ci mozna z kolei zastosowaé estymator

v VRS
2 Yok (‘—h—)

A I

gI}\i;C (U) = ne v — f/RC )
DK (—f’”)
nel

gdzie K (-) i h = h (V) sg odpowiednio funkcjg jadra i parametrem wygtadzania.

4.6.4 Dyskusja algorytmu w kontekScie podejscia wykorzystujacego
kryterium Sredniokwadratowe

L RC < LS
Otrzymany powyzej estymator Ay , podobnie jak uzyskany w p. 4.2.2 estymator Ay ,
jest argumentem, dla ktérego odpowiednia funkcja celu przyjmuje wartos¢ ekstremalna,.
W przypadku estymatora zbudowanego w oparciu o metode najmniejszych kwadratéw,

wektor LI:,S minimalizuje kryterium Qu (-), a w przypadku metody wykorzystujacej
koncepcje korelacji rangowej wektor if,c jest punktem, w ktérym Sy () przyjmuje wartosc
maksymalng. Pomimo podobnej konstrukcji obu estymatoréw, w przypadku estymatora
iﬁc w funkcji Sy (1) nastepuje uérednianie (1\2’2) = %(sz — N;) elementéw losowych,
natomiast w @n (-) uérednianych jest tylko Np wyrazéw. Zatem, dla skoﬁczonejL ;iczby

obserwacji, oszacowanie Ay, moze posiada¢ mniejszg wariancje niz oszacowanie Ay .
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4.7 Podsumowanie wynikéw teoretycznych

W rozdziale przeprowadzono analize wlasno$ci asymptotycznych algorytmu zbudowanego
w oparciu o metode najmniejszych kwadratéw. Wykazano zgodno$é estymatora czesci
liniowej oraz zgodnoé¢ estymatora nieliniowej charakterystyki g (-) przy zalozeniu, ze znany
jest rzad szybkosci zbieznoéci estymatora odpowiedzi impulsowej podsystemu dynami-
cznego. Warunki, przy ktérych zachodzi zgodnoé¢ estymatoréw umozliwiajg zastosowanie
metody w przypadku szerokiej klasy sygnaléw wejSciowych (zob. zal. 4.1) oraz szerokiej
klasy charakterystyk nieliniowych wystepujacych w systemie (zob. zal. 4.2).

4.8 Wiyniki badan eksperymentalnych

Symulacje komputerowe proponowanych w rozdziale algorytméw przeprowadzono dla
trzech systeméw Wienera z nieliniowo$ciami g; (+), g2 (+) i g3 (-) jak w p. 3.7 (zob. wzory
(3.36) na str. 32). Podsystem dynamiczny, podobnie jak w rozdziale 3, modelowany
byl za pomocg odpowiedzi impulsowej (3.35). Rozwazane systemy pobudzano sygnatami
o nastepujacych gestoéciach prawdopodobienstwa (zob. rys. 4.2):

e rozklad jednostajny

dla ze[-1,1]
dla =z ¢[-1,1]° [415)

O ol

fx(z) = {

e rozklad tréjkatny
[ 1—-|z|] dla =ze[-1,1]
fxa (@)= { 0 da z¢[-11]° (4.19)
e rozklad Epanechnikova

3(1_ .2 L
O i s PR

-
-

Sxa(x) Sx2(x) Sx3(x)

-6 0.5 0.5

x 0 x { 0-

(=]

Rysunek 4.2: Wykorzystywane w eksperymentach numerycznych gestosci prawdopodobienstwa
fxa, fxz21 fx,3 sygnatu wejsciowego {X,}

Do wyznaczania ekstreméw funkeji kryterialnych Qu (-) i Sy (+) zastosowano funkcje
fminsearch, wchodzaca w sktad pakietu obliczeniowego MATLAB i bedaca implementacja
bezgradientowego algorytmu optymalizacji Neldera—-Meada (zob. np. Walters et. al [131],
Lagarias [74] et al.). Sygnal zaklécajacy wygenerowano z rozkladu jednostajnego o zerowej
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warto$ci oczekiwanej i wariancji dobranej tak, aby NSR= 10% (por. p. 3.7 w rozdziale
3). W symulacjach badano zalezno$¢ bledéw empirycznych Err(;a) i MISE (;a),
okreslonych wzorami (3.39) i (3.40) na str. 33, od liczby obserwacji N wejscia i wyjécia
systemu (zmienianej od 25 do 500). Zgodnie z zalozeniami przyjetymi w p. 4.1, mul-
tiplikatywna stala a wystepujaca we wzorach (3.39) i (3.40) jest réwna 1. Podobnie
jak w rozdziale 3 w definicjach bledéw Err(;1) i MISE(-;1) przyjeto nastgpujace
wartoSci stalych R i M: R = 30, M = 1000. Poniewaz no$nik rozwazanych gestoSci
prawdopodobiefistwa jest réwny [—1,1], wiec sygnal wewnetrzny {V,} posiadal gestosé
prawdopodobienstwa o noéniku [91,92], gdzie ¥; ~ —2.28 oraz J2 ~ 2.28. W pilotowym
estymatorze gn, (+;1) (zob. wzér (4.5)) zastosowano funkcje jadra okreslong wzorem

B 15 (1 _ 2% dla v € [-1,]1]
Ko(v)—{ 56( ) da v¢[-1,1]

W estymatorze §&° (-) (zob. wzér (4.8)) wykorzystano natomiast jadro gaussowskie, tj.

funkcje postaci
K (v) L e < v2)
=——exp|——|.
V2 s 2

Wiyniki eksperymentéw wykonanych dla algorytmu wykorzystujacego kryterium $rednio-
kwadratowe i algorytmu zbudowanego w oparciu o ideg korelacji rangowej przedstawiono
odpowiednio w p. 4.8.1 1 p. 4.8.2.

4.8.1 Identyfikacja z wykorzystaniem metody najmniejszych kwadratéw

Rysunki 4.3 i 4.4 (zob. str. 48) przedstawiajg wyniki eksperymentu, tj. zaleznosci btedéw
Err (gﬁs; 1) i MISE (QJI(,S : 1) od liczby obserwacji NV, dla gestosci sygnalu wejsciowego
okreslonej funkejg fx,1 (-). Na rysunkach 4.5, 4.6 (zob. str. 48) oraz 4.7 i 4.8 przedstawiono
z kolei rezultaty symulacji komputerowych odpowiednio dla gestosci wejscia fx 2 ()
oraz fx3(-). Otrzymane wyniki pokazuja, Zze w przypadku systeméw z nieliniowo$ciami
91 () 1 g2 () (tj. nieliniowoéciami spelniajacymi zalozenie 4.2), pobudzanych sygnalami
o gestosciach fx 1 (-), fx2(-) i fx,3(-), bledy empiryczne malejg wraz ze wzrostem liczby
obserwacji N. Podobne wartoéci btedéw uzyskano réwniez dla niecigglej nieliniowoci
g3 (-) nie spelniajacej wymagania 4.2 co, nie przesadzajac o zbieznosci, sugeruje ze
przyjete w rozdziale zalozenia dotyczace charakterystyki g () sa jedynie warunkami
wystarczajacymi i przypuszczalnie mogg by¢ ostabione. Rysunki 4.3, 4.5 oraz 4.7 prowadza,
ponadto do wniosku, ze charakter gestosci wejécia fx () nie ma istotnego wplywu na
zachowanie si¢ estymatoréw czeéci liniowej systemu. Przykladowo, dyskutowane biedy
Err ifvs; l) przyjmuja warto$ci mniejsze niz 10%, gdy liczba obserwacji N jest wigksza
od 250, niezaleznie od zastosowanej gestosci wejécia fx (). Podobnie, w przypadku bledéw
empirycznych MISE (g,LVS : 1) uzyskane wartoéci (zob. rys 4.4, 4.6, 4.8) sa mniejsze niz 10%
gdy liczba obserwacji jest wigksza od 200.

4.8.2 Identyfikacja z wykorzystaniem korelacji rangowej

Rezultaty eksperymetéw wykonanych dla algorytmu zbudowanego w oparciu o koncepcje
korelacji rangowej zamieszczone sa na rysunkach 4.9-4.14 (zob. str. 50-51). Rysunki
4.9, 4.10 przedstawiaja bledy Err (if,c; 1) i MISE (gﬁ,c; 1) dla sygnalu wej$ciowego
o gestosci fx,1(-). Podobnie rysunki 4.11, 4.12 oraz 4.13, 4.14 obrazujg wyniki badan
odpowiednio dla gestosci wejscia fx o (-) oraz fx3(-). Otrzymane wyniki pokazujg, ze
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badane bledy malejg wraz ze wzrostem liczby obserwacji N. W przypadku malej liczby
obserwacji (tj. mniejszej od 200) wartosci bledéw Err (if,c;l) i MISE (gﬁc;l) sg,
jednak wigksze od bledéw uzyskanych w badaniach algorytmu wykorzystujgcego kryterium
sredniokwadratowe. W konsekwencji, w przypadku malej liczby obserwacji systemu,
estymatory AII(,S i Qf,s (+) posiadajg lepsze wlasnoéci empiryczne od estymatoréw 21}3,—
i f]ﬁc (-) niezaleznie od charakteru nieliniowoSci wystgpujacej w systemie oraz typu
gestosci sygnatu wejsciowego { X, }. W odréznieniu od estymatoréw LI(,S i gﬁ,s -) omawiane

obecnie estymatory 21}30 i g}?,c -) sa ponadto bardziej wrazliwe na charakter nieliniowosci
wystepujacej w systemie. Otrzymane wyniki (zob. rys. 4.9, 4.11, 4.13) pokazuja, zZe
najmniejsze wartoSci bledéw estymacji czeéci liniowej systemu uzyskano dla gladkiej
i monotonicznej nieliniowoéci g (-). Nieco wigksze wartoéci otrzymano dla gladkiej,
ale niemonotonicznej nieliniowoéci go (). W przypadku odcinkami stalej i nieciaglej

3 *RC . . o ..
nieliniowoéci g3 () btedy Err (A N 1) przyjmowaly natomiast warto$ci najwigksze.

4.9 Podsumowanie i wnioski

W rozdziale zaprezentowano dwie metody identyfikacji systeméw Wienera. Algorytm
zbudowany w oparciu o metode najmniejszych kwadratéw dedykowany jest systemom
pobudzanym ograniczonym sygnalem losowym typu i.%.d. o cigglej funkcji gestoSci
prawdopodobienstwa. Metoda pozwala na identyfikacje obiektéw, w ktérych nieliniowo$é
g(-) spelnia warunek ciaglosci. W celu estymacji odpowiedzi impulsowej liniowego
podsystemu dynamicznego niezbedne jest wyznaczenie minimum nieliniowej funkcji
kryterialnej Qn (). Z tego powodu praktyczne zastosowanie algorytmu wymaga uzycia
dodatkowych technik optymalizacji nieliniowej. Podobna sytuacja ma miejsce w przypadku
algorytmu zbudowanego w oparciu o koncepcje korelacji rangowej, w ktérym estymator
odpowiedzi impulsowej podsystemu dynamicznego definiowany jest jako maksimum funkcji
kryterialnej Sn (-). -

W rozdziale przeprowadzono analize teoretyczng wlasnosci asymptotycznych estyma-
toréw Z\A_II(,S i gIL\,S (-) oraz oméwiono wyniki eksperymentéw numerycznych przeprowa-
dzonych dla algorytmu wykorzystujacego kryterium $redniokwadratowe oraz algorytmu
zbudowanego w oparciu o koncepcje korelacji rangowe;j.
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Rysunek 4.3: Bledy estymacji Err(Ay ;1) w funkcji liczby obserwacji wejécia i wyjécia systemu
dla nieliniowoéci g1, g2, g3 i gestosci sygnatu wejéciowego fx 1
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Rysunek 4.4: Bledy estymacji MISE (Q,I;,S ;1) w funkcji liczby obserwacji wejScia i wyjécia
systemu dla nieliniowoéci g1, g2, g3 i gestoéci sygnalu wejsciowego fx 1
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Rysunek 4.5: Bledy estymacji Err(Ay ;1) w funkcji liczby obserwacji wejscia i wyjécia systemu
dla nieliniowosci g1, g2, g3 1 gestoéci sygnatu wejsciowego fx 2
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Rysunek 4.6: Bledy estymacji MISE (gf\’,s ;1) w funkcji liczby obserwacji wejscia 1 wyjscia
systemu dla nieliniowosci g1, g2, g3 i gestoéci sygnatu wejsciowego fx 2
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Rysunek 4.7: Bledy estymacji Err(Ay ;1) w funkcji liczby obserwacji wejécia i wyjécia systemu
dla nieliniowoéci g1, g2, g3 1 gestosci sygnalu wejSciowego fx 3
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Rysunek 4.8: Bledy estymacji MISE (35°;1) w funkcji liczby obserwacji wejécia i wyjécia
systemu dla nieliniowoéci g1, ga, g3 1 gestosci sygnatu wejsciowego fx,3
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Rysunek 4.9: Bledy estymacji Err(Ay ;1) w funkcji liczby obserwacji wejécia i wyjécia systemu

dla nieliniowoéci g1, g2, g3 i gestosci sygnatu wejéciowego fx 1
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Rysunek 4.10: Bledy estymacji MISE (g}j}c; 1) w funkcji liczby obserwacji wejécia i wyjécia

systemu dla nieliniowoéci g1, g2, g3 i gestosci sygnalu wejéciowego fx 1
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Rysunek 4.11: Bledy estymacji Err(Ay ;1) w funkeji liczby obserwacji wejécia i wyjscia systemu

dla nieliniowosci g1, g2, g3 1 gestosci sygnatu wejsciowego fx 2
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Rysunek 4.12: Bledy estymacji MISE (g,{'}c; 1) w funkcji liczby obserwacji wejécia i wyjscia
systemu dla nieliniowoéci g1, g2, g3 i gestoéci sygnatu wejsciowego fx 2
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Rysunek 4.13: Bledy estymacji Err(Ay ;1) w funkcji liczby obserwacji wejscia i wyjécia systemu
dla nieliniowosci g1, g2, g3 1 gestoci sygnalu wejéciowego fx 3
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Rysunek 4.14: Bledy estymacji MISE (g}?,c; 1) w funkcji liczby obserwacji wejécia i wyjécia
systemu dla nieliniowosci g1, g2, g3 1 gestoSci sygnatu wejsciowego fx3



Rozdzial 5

Identyfikacja systemow Wienera
metoda uSrednionej pochodnej

W tym rozdziale przedstawiono algorytm identyfikacji systeméw Wienera ze skoficzong,
pamiecig i niegaussowskim sygnatem wejSciowym, skonstruowany w oparciu o koncepcje
estymacji uérednionej pochodnej (ang. Average Derivative estimate, zob. np. Powell et
al. [95], Hérdle i Stoker [47]). W odréznieniu od metody zaproponowanej w rozdziale 4,
algorytm pozwala na identyfikacje podsystemu dynamicznego bez koniecznoéci stosowania
dodatkowych procedur optymalizacji nieliniowej, a wiec jest prostszy pod wzgledem
obliczeniowym. Nie jest réwniez dokonywana dekompozycja zbioru pomiaréw.

Wprowadzone w rozdziale estymatory czeéci liniowej, sygnatu interakcyjnego i czeSci
nieliniowej systemu oznaczane beda indeksem ,AD” (od ang. Average Derivative), gdy
gestoséé sygnatu wejsciowego {X,} jest a priori znana oraz indeksem ,fAD”, gdy gestosé
fx (-) jest nieznana.

5.1 Sformulowanie problemu

Ze wzgledu na charakter zastosowanego podejécia kluczowymi zalozeniami odno$nie
konstrukeji systemu i sygnatu wejéciowego sg wymagania dotyczace gtadkosci nieliniowosci
g(-) 1 gestoéci prawdopodobienstwa fx (-) sygnalu wejéciowego {X,}. Przyjmuje sie
w szczegdlnosci, ze:

Zalozenie 5.1 Funkcja gestosci prawdopodobienistwa fx () sygnatu wejsciowego {Xy,}
posiada ograniczony nosnik, supp fx = [ag,by], |ag|, |bf| < co oraz ciggle pochodng f' (z)
dla = € [ag,bf|. Ponadto fx (af) = fx (bf) = 0.

Zalozenie 5.2 Nieliniowa charakterystyka g (-) posiada cigqglq pochodng g' (-).

5.2 Reprezentacja systemu Wienera za pomoca statycznego
nieliniowego systemu typu MISO

Niech X,, = (Xn, Xn-1,-- ‘,Xn_p)T bedzie (p + 1)-elementowym wektorem utworzonym

z kolejnych obserwacji sygnatu wejsciowego {X,}. Wykorzystujac powyzsza notacje,
system Wienera (2.10)—(2.11) mozna zapisa¢ w réwnowaznej postaci za pomocg réwnania

Y, = G(Xn) + Zn, (5~1)

52
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Rysunek 5.1: Reprezentacja systemu Wienera ze skoficzong pamiecig przy pomocy statycznego
systemu nieliniowego o strukturze MISO

gdzie funkcja G : RP*! — R dana jest wzorem
G(z)=9(A"z), zeRF, (5.2)

a wektor A\ € RP*! utworzony jest z elementéw odpowiedzi impulsowej podsystemu dy-
namicznego, tj. A = (Ao, A1, .. ., )\p)T. Reprezentacja (5.1) pozwala przedstawi¢ rozwazany
system Wienera jako statyczny system nieliniowy o strukturze MISO z wektorowym
wejSciem {X,, } i skalarnym wyjéciem {Y,}, (zob. rys. 5.1).

Wykorzystujac zbiér obserwacji wejécia i wyjscia {(Xp, Yn)},J:;l systemu (2.10)—(2.11)
skonstruujemy analogiczny zbiér pomiaréw wejScia i wyjécia, wiasciwy dla reprezentacji
(5.1). Zbiér ten przyjmuje postaé

Te = {(_)gmyn)}neh (5'3)

gdzie I ={p+1,p+2,...,N} jest (N — p)—elementowym zbiorem indekséw (standardo-
wo oznaczymy réwniez Ny = #{I} = N —p).

W celu wprowadzenia koncepcji omawianej metody identyfikacji konieczne jest
okreslenie podstawowych wlasnoéci statystycznych sygnatu {X,,}. Zgodnie z przyjetymi
zalozeniami odnoénie wejécia {X,} (zob. zalozenie 2.2, str. 22), sygnal {X,,} jest ciagiem
wektoréw losowych o tym samym rozkiadzie, ale nie jest ciagiem typu i.2.d. Z kolei
elementy sktadowe kazdego wektora X, sg niezaleznymi zmiennymi losowymi o tym samym
rozkladzie. W konsekwencji prawdziwa jest ponizsza wlasno§é:

Wiasnoéé 5.1 Sygnat {X,} jest ciggiem wektoréw losowych o funkcji gestosci praw-
dopodobieistwa fx : RPT — R danej wzorem

p+1
fx@=T1]fx(z), zerF, (5.4)
j=1

gdzie z(;) oznacza j-ty element wektora! z.

Z zalozenia 5.1 oraz wzoru (5.4) wynika, ze noénik Q = supp fx funkecji fx () jest
kostka w przestrzeni RP*! o bokach [af,bs]. Ponadto fx (-) jest funkcjg rézniczkowalng

w zbiorze Q.

'W rozdziale zapis w(;y oznaczat bedzie ogdlnie j-ty element wektora w.
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5.3 Idea metody usSrednionej pochodnej

Oznaczmy przez dg, (z) i dy; (z) nastepujace pochodne czastkowe

9G (z) 9fx (z)
dg(z) = ——— oraz dj(z)=—"F—, 55
@)= 5 @) = 5= (5:5)
gdzie | € {1,2,...,p+ 1} oraz z € RP™. Niech dalej D¢ (z) i Dy (z) beda odpowiednio
gradientami funkeji G () i fx (-) w punkcie z, tj.

Dg(z) = (dg1(z),de2 (), dept1(z)T,
Di(z) = (df1(z),df2(@),...,djpr1 ().

Na mocy zalozenia 5.2, gradient D¢ (z) jest dobrze okreSlony w kazdym punkcie z €
RP*!. Podobnie, zgodnie z zalozeniem 5.1, gradient Dy (z) jest dobrze okreslony w kazdym
punkcie z € .

Podstaws omawianej metody identyfikacji jest obserwacja, ze na mocy reprezentacji
(5.2) prawdziwa jest zaleznosé

D¢ (z) =¢' (ATz) A (5.6)

=)

gdzie ¢’ (z) oznacza pochodng funkcji g (-) w punkcie z € R. Wzér (5.6) prowadzi do
kluczowego dla dalszych rozwazan spostrzezenia:

Whiosek 5.1 Gradient Dg (z) w dowolnym punkcie z € RPY! jest proporcjonalny do
wektora odpowiedzi impulsowej .

Powyzszy wniosek sugeruje wiec, aby jako oszacowanie przeskalowanej odpowiedzi
impulsowej podsystemu dynamicznego przyjaé estymator gradientu D¢ (z) w dowolnym,
ustalonym punkcie z. Zauwazmy jednak, ze dowolno$¢ wyboru argumentu z prowadzi
w szczegblnosci do nastepujacej réwnosci

Dg(X,)=¢ ATX,)A nel,
i wobec tego prawdziwa jest réwniez zalezno§c¢
E{Dg (X,)} = oA, (5.7)

gdzie ko = E {¢’ (ATX,) }. Z réwnania (5.7) wynika, ze warto$¢ oczekiwana E {Dg (X,,)}
jest proporcjonalna do wektora A ze stalym wspdélczynnikiem proporcjonalnodci réwnym
ko. Zatem identyfikacja podsystemu dynamicznego moze by¢ zrealizowana poprzez esty-
macje wyrazenia E {Dg (X,,)}. Niestety, ze wzgledu na nieznajomoé¢ nieliniowoéci g (-),
gradient Dg réwniez nie jest znany i w konsekwencji bezposrednie zastosowanie réwnania
(5.7) nie jest mozliwe. Pewnym rozwigzaniem, umozliwiajagcym ominigcie wspomnianego
problemu, jest utworzenie estymatora f)G,N gradientu Dg i wstawienie go do (5.7)
w miejsce Dg, a nastgpnie estymacja wartoéci oczekiwanej E {f)G,N (X, n)} Podejscie
to posiada jednak istotng wade w postaci koniecznodci szacowania gradientu nieznanej,
wieloargumentowej funkeji G ().

W celu ominiecia powyzszych trudnoéci wprowadzimy do réwnania (5.6) czynnik

wagowy fx (z), tj.
fx (2) Dg (z) = fx (z) g (ATz) A (5.8)
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Roéwnoéé (5.8) prowadzi teraz do wniosku, ze
E{fx (X,) De (X))} = xa), (5.9)

gdzie k1 = E{fx (X,) ¢ A\TX,,)}.
Dalsze rozwazania poprzedzone zostang nastepujacym lematem (por. lemat 2.1
w Powell et al. [95]).

Lemat 5.1 Dla nieliniowej charakterystyki g (-) oraz funkcji gestoéci prawdopodobienstwa
fx () sygnatu wejsciowego {Xn} spetniajacych odpowiednio zatozenia 5.1 i 5.2, zachodzi
nastepujgcy zwigzek

E{fx (X,) Dg (X,)} = —2E{Dy (X,,) Yn}. (5.10)

Dowéd lematu zamieszczony jest w dodatku A.3.
Réwnosé (5.10) pozwala przepisaé wzér (5.9) w znacznie dogodniejszej dla dalszych
rozwazan formie, wykorzystujacej obok sygnatu wejsciowego { X, }, takze sygnat wyjsciowy
{¥5]; i
E{YnDs(X,)} = kA, (5.11)
gdzie
K= —K1/2.

W reprezentacji skalarnej zaleznosé (5.11) przyjmuje postaé p + 1 réwnan

E{Yndf’H_l (l'n.)} ZI{/\i, g = 0,1,...,p. (512)

Zauwazmy teraz, ze zgodnie z (5.4) oraz (5.5),
p+1
dri@) = fx (z0) TI fx(zw), ie{lz...p+1}.  (513)
k=1,k#i

Zatem, gdy gestoé¢ prawdopodobiefistwa fx (-) wejscia {X,} jest znana, mozliwe jest
bezpo$rednie wyznaczenie pochodnych czastkowych df;(-),2 = 1,2,...,p+ 1. W tym
przypadku zaleznoé¢ (5.12) pozwala wigc na prosta estymacje elementu kA; poprzez
estymacje odpowiedniej warto$ci oczekiwanej wystepujacej we wzorze (5.12). Zagadnienie
to omawiane jest ponizej.

5.4 Identyfikacja systeméw Wienera w przypadku znanej
gestosci prawdopodobienstwa sygnalu wejSciowego

5.4.1 Konstrukcja estymatora podsystemu dynamicznego

Zakladamy znajomoéé a priori funkcji gestosci prawdopodobiefnstwa fx (-) sygnatu
wejéciowego {X,}. Proponowany estymator konstruowany jest w oparciu o zaleznos¢
(5.12). Naturalnym oszacowaniem warto$ci oczekiwanej po lewej stronie réwnania (5.12)
jest érednia z préby utworzona na podstawie elementéw zbioru Tg, zob. wzér (5.3).
W rezultacie estymator przeskalowanej odpowiedzi impulsowej {x\; }2_, przyjmuje postaé

<AD 1 )
AN =3 > Yadin (X)), i=0,1,...,p, (5.14)

nel
gdzie funkcja df;4+1 (+) okreslona jest wzorem (5.13).
<AD iR ,
Wiasnosci asymptotyczne estymatoréw A; ,i = 0,1,...,p oraz wyniki badan em-
pirycznych dla malej i umiarkowanej liczby obserwacji oméwiono odpowiednio w p. 5.4.4
ip.5.7.
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5.4.2 Estymacja sygnatu interakcyjnego

Estymator przeskalowanego sygnatu interakcyjnego {«V,,} konstruowany jest podobnie jak
w przypadku metod omawianych w rozdziatach 3. i 4. Obecnie jest on zatem zbudowany

: 2 AD : :
w oparciu o estymatory A; 5, ¢ =0,1,...,p i wyraza si¢ wzorem
" T
VAR = NinXni. (5.15)
i=0
Vo=ATX;,

Ze wzgledu na ograniczong liczbe dostepnych obserwacji wejScia i wyjScia systemu,
estymator (5.15) moze by¢ wyznaczony dla n € I.
5.4.3 Nieparametryczna identyfikacja charakterystyki nieliniowej

W przypadku znanej gestoéci prawdopodobienstwa fx (-) sygnatu wejéciowego, estymator
przeskalowanej charakterystyki nieliniowej g (-/x) konstruowany jest w oparciu o ciag
oszacowan {an}]{? Iner sygnatu {kV,} i okreslony jest wzorem

v—VAD
) K (T)

AAD( ):nGI

gn- v =
ZK U——an}Je
h

nel

(5.16)

Podobnie jak w przypadku estymatoréw §§" () i §5° (-) (zob. rozdzialy 3. i 4.), K (-)
i h = h(N) sg odpowiednio funkcjg jadra i parametrem wygladzania zaleznym od liczby
obserwacji N.

5.4.4 Wilasnosci asymptotyczne algorytmu

Analiza zbiezno$ci estymatora odpowiedzi impulsowej podsystemu dynami-
cznego

«AD
Ponizsze twierdzenie podaje warunki, przy ktérych estymator A; y dany wzorem (5.14)
zbiega do k\;,1 = 0,1,...,p wedlug prawdopodobienstwa z szybkoécia zbieznoSci rzedu
Op (N ~1/ 2), tj. z szybkoScig typows dla metod parametrycznych.

Twierdzenie 5.1 Jezeli dla systemu Wienera (2.10)-(2.11) speinione sq zatozenia
~AD

2.1-2.4 oraz 5.1, 5.2, to dla kazdego i € {0,1,2,...,p} estymator \; y zbiega wediug

prawdopodobienstwa do k\;, gdy N — co. Ponadto

Siv =rAi+0p (N7V/2).

Dowdd. Niech 7;,, = Yndfiy1 (X,) dla kazdego n € I oraz i € {0,1,...,p}. Wtedy

“AD ., .
estymator )\i’ N Imozna zapisaC w postaci

~AD 1
AN = > Mg
I nel
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Poniewaz {X,} i {Z,} sa stacjonarnymi ciggami zmiennych losowych, wiec {ni,n}n el
réwniez jest stacjonarnym ciggiem zmiennych losowych. Zatem warto$¢ oczekiwana
estymatora (5.14) jest réwna

E {)‘ } E {771 'n,} E{Y df'H-l (_X.n)}
co na mocy réwnosci (5.12) prowadzi do wniosku, ze

E {j\fﬁ} = KA,

AD
tzn. /\z N Jest nieobcigzonym estymatorem elementu xk;. Analize wariancji estymatora )\1 N
rozpoczniemy od wykazania ze Var {771 n} < 00. Ze wzgledu na stochastyczng mezaleznosc
sygnatu {X,} i szumu {Z,} oraz wzér (5.1), prawdziwa jest nastepujaca nieréwnosc¢

Var {772 n} <2Var {G( 'n.) df i+1 (ln)} + 2O-Z‘/a’r {df,z+1 (.)_(.n)} (517)

Poniewaz G (-) jest funkcjg ciagly (na mocy zalozenia 5.2), a df;y1(-) jest funkcja
ograniczong (na mocy zalozenia 5.1), wigc wariancje po prawej stronie nieréwnoéci (5.17) sg
skonczone i tym samym Var {ni,n} < 00. Zauwazmy nastepnie, ze dla dowolnych indekséw
k,l € I zmienne losowe 7; ;, i m;; sa stochastycznie niezalezne, jezeli |k — | > p. Zatem na
mocy lematu A.1 w dodatku A.1 otrzymujemy

Var {)\f,e}

Var {771 n}

i wobec tego
Var {5\:15} =0 (N_l) 3

co konczy dowéd twierdzenia. m

Analiza zbieznoéci estymatora sygnalu interakcyjnego

Ponizszy lemat podaje warunki, przy ktérych estymator Vn"}ﬁ zbiega wedlug prawdopodo-
bienstwa do kV,.

Lemat 5.2 Jezeli spelnione sq zalozenia twierdzenia 5.1, to dla kazdego n € I estymator
V N Jjest zgodnym estymatorem elementu KV, oraz

VAR = &V, + Op (N"l/z) . (5.18)
Ponadto X
sup V,{?Ie n| =Op (N‘lﬂ) 3 (5.19)
nel

Dowéd. Rzad szybkoéci zbieznoéci w (5.18) wynika z definicji sygnatu {V,}, postaci
p CAD

estymatora VnA}\? oraz z szybkosci zbieznosci A; ; do kA;, (por. dowdd lematu 3.1 na str.

28). Odnosnie (5.19) zauwazmy, ze

P _ kVu| < sup [X|Z

1<n<N

zN

nel

Zgodnie z zalozeniem 5.1, cigg { SUP1<n<N |Xn|} jest ograniczony z prawdopodobienstwem
jeden, bowiem P {sup;<,<n [Xn| > cof = 0, gdzie ¢y = max {|ag|, |bf|}. Zbieznosé (5.19)
wynika zatem z twierdzenia 5.1. m
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Analiza zbieznoéci estymatora charakterystyki nieliniowej

Postepujac podobnie jak w rozdziale 3. przyjmiemy nastepujqce zalozenia o funkcji jadra
K (-) i parametrze wygladzania h w estymatorze nieliniowoéci g 1)

Zalozenie 5.3 Jgdro K () jest nieujemnq funkcjq lipschitzowskq (tj. 3L < oo, Yv,v2 €
R, |K (v1) — K (v2)| < L|v1 — v2l|), dla ktérej spetnione sq nastepujgce warunki:
supyer K (v) = ko < 00, [%0 K (v)dv =1 oraz limpy_,0o vK (v) = 0.

Zalozenie 5.4 Zbietny do zera cigg liczbowy h = h (N) posiada rzqd szybkosci zbieznosci
N=Y5 4. h~ N7U/5,

Warunki przy ktérych estymator gaP () zbiega do przeskalowanej nieliniowosci g (-/k)
podaje ponizsze twierdzenie.

Twierdzenie 5.2 Jeseli spelnione sq zalozenia twierdzenia 5.1 oraz zatozenia 5.8, 5.4
i dodatkowo k # 0, to dla systemu Wienera (2.10)-(2.11) zachodzi zbieinosé

gn° (v) = g (v/K) gdy N — o0 (5.20)
wedtug prawdopodobiefistwa, w kazdym punkcie v € R, w ktérym fy (v/k) > 0.

Dowéd. Dowdd przebiega analogicznie do dowodu twierdzenia 3.2. Przyjmiemy standar-
dowe oznaczenia

P (v) = == VoK ik 74P (v) = — > K 0= Vi
k N h nel h , N Nrh nel h ’

oraz 7 (v) = kg (v/k) fv (v/K). Zbieznos¢ w (5.20) zachodzi jezeli 74P (v) i f;\‘}D (v)
zbiegaja wedlug prawdopodobiefistwa odpowiednio do 7 (v) i k™1 fy (v/k) przy N — oo,
w kazdym punkcie v € R, w ktérym fy (v/k) > 0. Wykorzystujac dekompozycje

P (v) =7 (v) = [P (v) = v ()] + [P () =7 (V)] (5.21)

gdzie

- 1 v — KV,
o) = 5 vk (S5,
nel

zbadamy asymptotyke wyrazen [F4P (v) —7n (v)] i [Fa (v) —7 (v)]. Rozpoczniemy od
okreélenia zachowania asymptotycznego réznicy [Fy (v) — 7 (v)]. Zauwazmy, Ze

sino) = [ K (5E)s@n@d=3 [ k(52 r@ds. (522

Poniewaz nieliniowa charakterystyka g (-) jest funkcja ciagla (zalozenie 5.2) oraz gestosc¢
sygnatlu wejéciowego ma ograniczony noénik (zalozenie 5.1), to caltka f |7 (v)|dv jest
skonczona. Stad, zgodnie z lematem B.3 z dodatku B.3, na mocy zaloZen 5.3 154 ma

miejsce nastepujaca zbieznosc

E{fn (v)} =7 (v), gdy N — oo, (5.23)

w kazdym punkcie v € R.
Wykorzystujac wtasnosé 3.2 z rozdziatu 3, na mocy lematu A.1 z dodatku A.1 zauwazamy

nastepnie, ze prawdziwe jest nastgpujace oszacowanie wariancji estymatora 7y (v),

Var i (o)} < B2 Var{ K (” “h"“/l)} . (5.24)
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Ze wzgledu na ograniczono$¢ jadra K (-) widzimy dalej, ze element h™'Var{V1K([v —
kVi]/h)} wystepujacy w (5.24) jest ograniczony przez

Zop{ponr () b B [k ()

Ponowne wykorzystanie zalozen 5.1 i 5.2 prowadzi do wniosku, ze [ g2 (v/k) fv (v/k) dv
< 00. Zatem, na mocy lematu B.3 z dodatku B.3, wyrazenie (5.25) dazy do

gy (2) [ (2) i) <o

K K

gdy N — oo w kazdym punkcie v € R. Ostatecznie wigc nieréwnoé¢ (5.24), dla h
spelniajacego zalozenie 5.4, daje

Var {fy (v)} = O (N"4/ 5) , (5.26)

w kazdym punkcie v € R.
Zgodnie z rezultatami w (5.23) i (5.26) zachodzi wigc zbieznosé

[Fn (v) =7 (v)] =0, gdy N — oo,
wedlug prawdopodobienstwa, w kazdym punkcie v € R.

Przejdziemy teraz do okreslenia asymptotyki wyrazenia [FﬁD (v) — N (v)] Korzystajac
z faktu, ze jadro K (-) spelnia warunek Lipschitza (zob. zal. 5.3), otrzymujemy

A L
~AD ~ AD
vk v) — 7N (V)] <su ‘/{Vn—vn ’ E Yol

Uzyskany w lemacie 5.2 rezultat dotyczacy szybkosci zbieznoSci wyrazenia (5.19) wraz
ze zbieznoécia® (1/N1) Y1 |Yal = E{V1]} + Op (N—1/2) i zalozeniem 5.4 prowadzi do
wniosku, ze

#° (v) =7y (V)| - 0, gdy N — oo,

wedtug prawdopodobienstwa w kazdym punkcie v € R. Ostatecznie wiec
P () =7 (v), gdy N — oo,

wedlug prawdopodobiefistwa w kazdym punkcie v € R.
Stosujac analogiczng argumentacje dla estymatora f,'\‘}D (v) otrzymujemy zbieznos¢

AP (v) — k7 fyv (v/K), * gdy N — oo,

wedlug prawdopodobienistwa, w kazdym punkcie v € R, co konczy dowéd twierdzenia. m

Uwaga 5.1 Nalezy zwrdcit uwage, ze spetnienie wymagania k # 0 zawartego w twierdze-
niu 5.2 zalezy zaréwno od postaci gestoSci wejscia systemu jak i typu charakterystyki
nieliniowej g (+). Stqd jego ogdina dyskusja jest zadaniem trudnym. Niemniej jednak warto
zauwazyt, e niezaletnie od typu gestosci fx (-) spelniajgcej zatozenie 5.1, warunek ten
zachodzi dla klasy 5cisle monotonicznych charakterystyk nieliniowych.

2por. dowdd tw. 3.2
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Analiza rzedu szybkosci zbieznoSci estymatora charakterystyki nieliniowej

Okres$limy teraz rzad szybkosci zbiezno§ci estymatora g;é,D (+). W tym celu ograniczymy
klase rozwazanych systeméw do systeméw z dwukrotnie rézniczkowalnymi nieliniowoécia-
mi (por. zalozenia u Greblickiego [26]). Zalozymy réwniez, ze fx (-) jest funkcja dwukrotnie
rézniczkowalng,.

Zalozenie 5.5 Drugie pochodne g" (-) i f¥% (-) nieliniowej charakterystyki g (-) i gestosci
fx (+) sq funkcjami cigglymi.

Zatozenie 5.6 Pochodna ¢’ (-) nieliniowosci g (-) jest ograniczona przez wielomian, tj.
istnieje taki wielomian my (-) dowolnego skoficzonego stopnia, ze |g' (v)| < mp (v), Vv € R.

Przyjmiemy réwniez dodatkowe zalozenia o funkcji jadra K (-).

Zalozenie 5.7 Jgdro K () posiada cigglq i ograniczong drugq pochodng K" (-), tj. |K” (v)|
< k1 < o0, Vv € R. Ponadto [*7 vK (v)dv =0 oraz [ v2K (v)dv < oo.

Mozna teraz sformulowaé nastepujgce twierdzenie.

Twierdzenie 5.3 Jezeli spelnione sq zatozenia twierdzenia 5.2 oraz dodatkowo zalozenia
5.5-5.7, to dla systemu Wienera (2.10)-(2.11) zachodzi zbiesnosé

GNP (v) = g (v/x) + Op (N~C/D), (5.27)
w kazdym punkcie v € R, w ktérym fv (v/k) > 0.

Dowdd twierdzenia zamieszczony jest w dodatku A.3.

5.5 Zastosowanie metody uSrednionej pochodnej w przy-
padku nieznanej gestoSci prawdopodobienstwa sygnatu
wejSciowego

Oméwiony powyzej algorytm umozliwia identyfikacje systeméw Wienera przy zalozeniu, ze
gesto$¢ prawdopodobiefnstwa sygnatu wejSciowego jest a priori znana. Obecnie rozwazana
modyfikacja metody pozwala z kolei na identyfikacje, w przypadku gdy funkcja fx () nie
jest dana a priori, lecz wiadomo jedynie, ze fx (-) oraz jej pochodna f’(-) sa funkcjami
jednostajnie ciggltymi (zob. np. Rudin [99]).

Szczegdblnie wygodnym kryterium przy rozstrzyganiu czy dana funkcja spenia warunek
jednostajnej ciagloéci jest twierdzenie, w my$l ktérego kazda funkcja ciggla w zbiorze
zwartym jest w tym zbiorze jednostajnie ciggla, Rudin [99, str. 78]. Wynika stad
bezpoérednio, ze na mocy zatozenia 5.1 fx (-) oraz f% (-) sa jednostajnie ciagle.

5.5.1 Konstrukcja estymatora podsystemu dynamicznego

Proponowana wersja algorytmu polega na zastgpieniu funkcji fx (-) wystepujacej we
wzorze definiujacym estymatory ;\fﬁ, i =0,1,...,p, (zob. wzory (5.13) i (5.14)) przez
estymator fX,N (-) gestosci prawdopodobienstwa sygnatu {X,} zbudowany w oparciu
o dostepne obserwacje wejécia systemu {Xn}ﬁlzl. Podobnie, w miejsce pochodnej f% ()
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wstawiony zostanie estymator ¢ x,n (+) réwniez utworzony na podstawie obserwacji wejécia
systemu. W rezultacie, zmodyfikowany estymator przeskalowanej odpowiedzi impulsowej

{k\i}E_, przyjmie postaé

JfAD .
NN = ZY diinin(X,), i=0,1,...,p, (5.28)

neI

gdzie cff,i,N (), ¢ = 0,1,...,p, s estymatorami pochodnych czastkowych ds;, i =
0,1,...,p, 1 wyrazajg si¢ wzorem, por. (5.13),

‘Zf,z‘,N (z) = &x,N (i(i)) ﬁ fx,N <§(j)) . T =10;1;:0:,P:

=1,

W rozwazanym podejsciu f x,N (+) jest estymatorem jadrowym (por. wzér (2.2) w rozdziale
2) postaci

fxn(z)= N N ZK1 ( hIXn), (5.29)

gdzie h; = hy (V) i K () sa odpowiednio parametrem wygladzania i funkcja jadra. W celu
oszacowania pochodnej f% (-) wykorzystamy zaproponowany przez Bhattacharya’e [4]
estymator ¢y x (-) okreslony nastepujaco

1 o x— X
7 _ / — An
Pxn (%) = oy ;19 ( » ) : (5.30)

W przypadku gdy fx,N ()i qAbX,N () posiadaja te same jadra oraz ciagi hy, he sa réwne,
tatwo zauwazy¢, ze zachodzi zaleznosc

- d
¢x.n(z) = ______fxdz;r (=)

W rezultacie, w celu oszacowania pochodnej gestoSci wejScia, wykorzystano estymator
bedacy pochodng klasycznego, jadrowego estymatora gesto$ci prawdopodobienstwa.

Uwaga 5.2 Do estymacji funkcji gestosci prawdopodobienstwa fx (-) oraz jej pochodnej
f% (-) mozna zastosowaé réwniez inne podejscia. Przyktadowo, w pracy [36] Greblicki
1 Pawlak wprowadzajg estymatory funkcji gestosct i jej pochodnych konstruowane przy
uzyciu szeregdw Hermite’a.

5.5.2 Estymacja sygnalu interakcyjnego i charakterystyki nieliniowej

Przez analogie do (5.15) wprowadzimy nastepujacy estymator przeskalowanego sygnatu
interakcyjnego {kV,},

AD
74P fo Xoiy el
Podobnie, postepujac tak jak w p. 5.4.3, estymator przeskalowanej charakterystyki
nieliniowej g (-/k) przyjmie postac
VfAD
Sk

AfAD( y = nel

gn V)= v_VfAD )

nel

gdzie K () i h = h (V) sa odpowiednio funkcjg jadra i parametrem wygtadzania.
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5.5.3 WilasnoSci asymptotyczne algorytmu

Prezentowana obecnie analiza teoretyczna algorytmu dotyczy zbieznoéci metody. W celu
wykazania zgodnoS$ci estymatora g]]:, (+) konieczna jest jednak znajomoéé szybkosci zbie-

AD , . ' . o
znoéci estymatora /\i’N . Ze wzgledu na trudnoSci analityczne zwigzane z okre$leniem

L fAD
szybkoéci zbieznoSci estymatora )\f ~ » bedziemy dalej zakladaé¢, ze szybko§¢ zbiezno$ci

5{ N Jjest znana. Analogiczne podejicie zastosowano w rozdziale 4.

Analiza zgodnosci estymatora odpowiedzi impulsowej podsystemu dynami-
cznego

s fAD
Okreélimy warunki, przy ktérych /\z{ ~N >t =0,...,ps3 zgodnymi estymatorami elementéw
przeskalowanej odpowiedzi impulsowej kA;,4 = 0,...,p. W tym celu zauwazmy najpierw,
~AD
ze wobec zbieznosci badanego wcze$niej estymatora A; y (zob. twierdzenie 5.1), nieréwnos¢

LAD

~fA
it A’LN—K'A"'

L fAD < AD
Ai,N - K,)\i

NN —AN| T

=

)

~fA "
SN = Niw| = 0,8dy N - o0,

sprowadza rozwazany obecnie problem do wykazania, ze
wedlug prawdopodobiefstwa.
Zauwazmy, ze

<fAD <AD
NN — AN <—

i1 n (Xn) — dpiv1 (Xo)]

i dlatego

~fAD <AD - 1
NN — ’\i,N, < sup |dfit1,n (Z) — dfiv1 (&)‘ N Z |Yn|
zeN T
nel
W celu wykazania zgodnoS$ci estymatora wystarczy zatem dowiesé, ze

SUPIdf1+1N($) dir1 (@) =0, gdy N — oo, (5.31)

wedlug prawdopodobieistwa. Na mocy lematu A.2 w dodatku A.3 zbieznos¢ w (5.31)
zachodzi, jezeli estymatory fx v (z) i ¢x y (z) zbiegaja jednostajnie wedtug prawdopodo-
biefistwa odpowiednio do fx (z) i f% (z), gdy N — oo, tzn.

sup‘fXN(:v) fx (z) ‘ — 0, gdy N — oo, (5.32)

oraz
sup [ (2) = fi (2)| = 0, gdy N = oo, (5.33)

wedlug prawdopodobiefistwa.

Zagadnienie zbieznoSci jednostajnej jadrowych estymatoréw gestosci prawdopodobien-
stwa dyskutowane jest migdzy innymi przez Nadaraya’e [81], Schustera [112], Van Ryzina
[106] i Silvermana [116]. Zgodnie z wynikami otrzymanymi np. przez Silvermana, zbieznos¢
w (5.32) i (5.33) zachodzi jezeli funkcje fx (-) i fi (-) sa jednostajnie ciagle oraz jadra
K; (), K2 () i parametry wygladzania hi, he speliajg odpowiednio zalozenia twierdzen
AiCw[116].

Uzyskane powyzej rezultaty dowodzg prawdziwosci nastepujgcego twierdzenia:
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Twierdzenie 5.4 Jezeli dla systemu Wienera (2.10)-(2.11) spetnione sq zatozenia twier-
dzenia 5.1 oraz zachodzg zbieznosci (5.32) i (5.33), to dla katdego i € {0,...,p} estymator

+fAD
}\ZJ: N Jjest zgodnym estymatorem elementu ki, tzn.

~fAD
/\ZJ:N — k\;, gdy N — oo,

wedtug prawdopodobienstwa.

Analiza zgodnoéci estymatora odpowiedzi impulsowej podsystemu dynami-
cznego

Postepujac tak jak w przypadku estymatora g,’(,S (1) (zob. rozdzial 4 i wzér (4.11)),
zalozymy ze zachodzi

|33 = ra|| = 0p (@m),

. «fAD ~fAD fAD ~fAD\T . .. .
gdzie Alfv = (,\{; N ,/\{, N ...,)\;,t, N ) oraz ay jest pewnym ciggiem zbieznym do zera.
Odnoénie konstrukeji estymatora g}:,AD (+) zalozymy, ze:

Zalozenie 5.8 Jqdro K (-) jest nieujemng funkcjq lipschitzowskq (tj. 3L < oo, Yv1,v2 €
R, |K (v1) — K (v2)| < L|v1 — v2|), dla ktérej spelnione sq nastepujace warunki:
sup,er K (v) = ko < 0o, [0 K (v) dv =1 oraz lim},|_,o vK (v) = 0.

Zalozenie 5.9 Parametr wygladzania h = h (N) spetnia warunki

h— 0, Nh — o0, gdy N — oo,

oraz
an/h? =0, gdy N — oo.

Zgodnos¢ estymatora Qj{,AD (-) przy powyzszych zalozeniach oraz zalozeniach twierdzenia

5.4, wykazana jest w nastepujacym twierdzeniu:

Twierdzenie 5.5 Jezeli spelnione sq zatozenia twierdzenia 5.4, zalozenia 5.8, 5.9, oraz
Kk # 0, to "

~fAD

P W)~ g(w/k),  gdy N — oo,

wediug prawdopodobiehstwa w kazdym punkcie v € R, w ktérym fy (v/k) > 0.

Dowdd twierdzenia przebiega analogicznie do dowodu twierdzenia 4.2 w rozdziale 4.

5.6 Podsumowanie wynikéw teoretycznych

W rozdziale oméwiono algorytm identyfikacji systeméw Wienera zbudowany w oparciu
o koncepcje estymacji uérednionej pochodnej. Dla skonstruowanej w dwéch wersjach
metody (tj. dla przypadku ze znang oraz z nieznang gestoscig prawdopodobiefhstwa sygnatu
wejéciowego {X,}) przeprowadzono analize teoretyczng odnoszacg si¢ do asymptoty-
cznego zachowania sie¢ estymatoréw. W szczegdlnoéci wykazano zgodno$¢ estymatoréw

< AD ‘ . 4t
{A N }¥_o, GRP () oraz okreslono ich rzedy szybkosci zbieznosci. W przypadku estyma-

L fAD v 22 P
toréw {/\i N b QJ{,AD (+), tj. w sytuacji gdy gestos¢ prawdopodobiefistwa fx (-) sygnatu
wejéciowego { X, } jest nieznana, wykazano zgodno$¢ estymatoréw odpowiedzi impulsowej
czesci liniowej systemu oraz (przy zalozeniu, Ze znany jest rzad szybkosci zbieznoéci

<fAD e .
oszacowan {)\{ N }_o) zgodnoét estymatora nieliniowej charakterystyki g (-).
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5.7 Wiyniki badan eksperymentalnych

Dla opracowanego algorytmu identyfikacji wykonano badania symulacyjne ilustrujace
zachowanie estymatoréw A ND, GaP () oraz E{VAD, g{\;“D (+) dla matej i umiarkowanej liczby
obserwacji wejScia i wyjScia systemu.

Badania przeprowadzono dla systeméw pobudzanych sygnatami wejSciowymi o gesto-
ciach fx2(-), fx,3(-) (zob. wzory (4.19)—(4.20) na str. 45) oraz fx4(:), zob. rys. 5.2.

Funkcja fx 4 (-) okreélona jest wzorem
2 1
fxa(z) = 3% (z) + ggo(x —1.4),

gdzie () jest gestoscia prawdopodobiefistwa ¢ (z) = (15/16) (z* — 222 + 1) 1(_y 1 (@).
Podobnie jak w rozdziatach 3. i 4., podsystem dynamiczny modelowany byl za pomocs
odpowiedzi impulsowej (3.35), str. 32. Ze wzgledu na zerowanie sie stalej K w przypadku
nieliniowoéci g2 (-) i g3(-) (por. uwaga 5.1 na str. 59), w badaniach wykorzystano
nastepujace charakterystyki nieliniowe (zob. rys. 5.3)

g1 (v) = 2arctan(2v),
g4 (v) = 2sin(2v),
1.5v+4.5 dla v < —1
g5 (v) = —-2v+1 dla -1<v<1.
1.5v—2.5 dla v>1
"Ax2(x) "1 fx3(x) " fra(x)
0.5 0.5 .5
o X _ o X o X
2 1 0 1 2 -2 1 0 1 21 0 1 2 3

Rysunek 5.2: Wykorzystywane w eksperymentach numerycznych gestoéci prawdopodobienstwa
fxz2 fx31 fxa

W symulacjach badano zaleznoé¢ bledéw empirycznych Err (k) i MISE (- k),
okreélonych wzorami (3.39) i (3.40) na str. 33, od liczby obserwacji N wejscia i wyjscia
systemu (zmienianej od 25 do 500). W definicji btedéw Err (-; &) i MISE (-; k) prayjeto
nastepujace wartoéci statych R i M: R = 30, M = 1000. Wartoéci stalej x wyznaczono
numerycznie dla kazdej z zastosowanych nieliniowosci (oraz dla gestosci fx 2 (-), fx,3 (")
i fxa(). W przypadku gestoéci wejécia fx2(-) i fx3(-) (o noéniku [-1,1]), sygnal
wewnetrzny {V;,} posiadal gestosé prawdopodobiefistwa o noéniku [9,72], gdzie ¥1 ~
—2.28 i ¥; =~ 2.28. Dla gestosci fx 4 () (z noénikiem [—1,2.4]) stale 9, i 92 przyjmowaly
odpowiednio wartoéci —2.28 i 5.48. Sygnal zaklécajacy {Z,} wygenerowano z rozktadu
jednostajnego o zerowej $redniej i wariancji dobranej tak, aby NSR= 10% (por. rozdzial

3). W estymatorach g;é,D )i g,{,AD () zastosowano gaussowsks funkcje jadra

B (o= \/%exp (-’;—2>
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1g1(v)

31g4(v)

Rysunek 5.3: Wykorzystywane w symulacjach nieliniowosci g1, g4 i g5

5.7.1 Rezultaty eksperymentéw w przypadku znanej gestoSci prawdo-
podobienstwa sygnalu wejSciowego

Rysunki 5.4-5.9 (zob. str. 67) przedstawiaja wyniki eksperymentéw numerycznych, tj.

zalezno$ci bledéw empirycznych Er'r(i,/\{,D;n) i MISE (g,(‘,D ;k) od liczby obserwacji

wejscia 1 wyjécia systemu. Uzyskane rezultaty prowadzg do wniosku, ze wraz ze wzrostem
liczby obserwacji N wartoéci badanych bledéw maleja. Gdy sygnal wejSciowy posiada
gestosé fx 2 (+) lub fx 3 (-) bledy empiryczne przyjmuja zblizone wartosci, niezaleznie od
nieliniowoéci wystepujacej w systemie (zob. rys. 5.4-5.7). Nalezy jednak podkresli¢, ze dla
charakterystyki gs (-) (nie spetniajacej zalozenia 5.1) uzyskano nieznacznie gorsze rezultaty
eksperymentu (zob. rys. 5.4 i 5.6). Przykiadowo, blad E'r'r(if,D;n) o wartoéci 5% dla
nieliniowo$ci g; (-) i g4 (*) otrzymano przy N = 150. Dla nieliniowoéci gs (), natomiast, te
sama wartoéé btedu uzyskano przy N = 300 (dla N = 150 blad przyjmowal wartose 12%,
por. rys. 5.4). W przypadku gestosci fx 4 (-) uzyskane bledy sg istotnie wigksze (zob. rys.
5.8 i 5.9) niz w przypadku gestosci fx2(-) i fx,3(:), co prowadzi do wniosku, ze badany
algorytm jest wrazliwy na charakter gestoSci sygnalu wejéciowego. Rezultaty otrzymane
dla gestosci fx,4 (-) wskazujg ponadto, ze typ nieliniowoéci wystgpujacej w systemie moze
réwniez istotnie wplywaé na efektywnosé algorytmu. Dla ciaglej i monotonicznej nielin-
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. s . RAD ; a
iowosci g1 (), prezentowane na wykresach 5.8 i 5.9 bledy Err(Ay ;) i MISE (g,“\‘,D ;K)
przyjmowaly warto$ci najmniejsze. Dla nieliniowoéci g5 (-) z kolei (tj. nieliniowosci nie
spelniajacej zalozenia 5.1), otrzymano wigksze wartosci btedéw.

5.7.2 Rezultaty eksperymentéw w przypadku nieznanej gesto$ci praw-
dopodobienstwa sygnalu wejSciowego

Badany algorytm identyfikacji w przypadku nieznanej gestosci wejécia fx () wymaga zas-
tosowania estymatoréw ¢x n (-) i fx,n () (zob. wzory (5.29) i (5.30)). W eksperymentach
numerycznych przyjeto, ze funkcje Kj (-) i Kz (-) wystepujace w oszacowaniach &SX,N ()
i fx, ~ () sa jadrami gaussowskimi, tj.

i) =160 = L (~2).

Wykresy 5.10-5.15 (zob. str. 69) obrazujg zmiany wielko$ci bledéw empirycznych
<fAD

ETT(A{V ;) 1 MISE g,vaD;n) otrzymanych dla systeméw z nieliniowo$ciami g; (+),
94 (-), g5 (-) i pobudzanych sygnatami o gestosciach prawdopodobiefistwa fx 2 (-), fx,3 ()
i fxa(). Na podstawie otrzymanych rezultatéw mozna stwierdzié¢, ze badane bledy
maleja wraz ze wzrostem liczby obserwacji N zaréwno dla charakterystyk g1 (+) i g4 (:)
speiajacych przyjete w rozdziale zalozenia, jak i dla charakterystyki gs (-), ktéra nie jest
rézniczkowalna w punktach —11 1.

Wartoéci uzyskanych bledéw sa na ogét wigksze od odpowiadajacych im bledéw
otrzymanych w przypadku algorytmu wykorzystujacego aprioryczng znajomosé gestoSci
prawdopodobienstwa sygnatu wejéciowego. Przykladowo, dla gestodci fx 2 (-) i nieliniowosci

~fAD
91 (-) blad estymatora A{v nie przekraczat 30%, gdy liczba obserwacji N byla wigksza

~AD
od 220 (zob. rys. 5.10). Analogiczny eksperyment wykonany dla estymatora Ay  (tj. przy
zalozeniu znajomoéci gestoéci wejécia) pozwolil uzyskaé 30% blad, juz przy N = 30. Dla
N = 220 blad ten wynosil natomiast tylko okolo 3%.

5.8 Podsumowanie i wnioski

Przedstawiony w rozdziale algorytm identyfikacji skonstruowany zostat w oparciu o kon-
cepcje estymacji uérednionej pochodnej, zob. Powell et al. [95]. W wersji podstawowej
metoda umozliwia szacowanie obu podsysteméw przy zalozeniu, ze gesto$¢ praw-
dopodobienstwa sygnatu wejsciowego { X, } jest znana. W rozdziale przedstawiono réwniez
modyfikacje algorytmu pozwalajaca na identyfikacje w przypadku, gdy gestos¢ wejscia
nie jest a priori znana. Przeprowadzono analize teoretyczna wiasnosci asymptotycznych
obu algorytméw. W szczegélnoéci wykazano zgodnos¢ oraz okreSlono rzedy szybkoSci
zbiezno$ci estymatoréw {5\;4 Ie Vgl P (¢) (tj. estymatoréw umozliwiajacych identyfikacje,
PO e 5 JfAD.p . .fAD
gdy gestos¢ wejscia jest znana) oraz wykazano zgodnoé¢ estymatoréw {A; v }ioidy ()
(tj. estymatoréw umozliwiajacych identyfikacje w przypadku nieznanej gestoéci wejscia).
Wykonane badania eksperymentalne proponowanych podejé¢ ilustrujg zachowanie si¢ obu
metod w przypadku malej i umiarkowanej liczby obserwacji wejScia i wyjScia systemu.
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Rysunek 5.4: Bledy estymacji Err(Ay ;&) w funkgji liczby obserwacji wejécia i wyjécia systemu
dla nieliniowoéci g1, g4, gs 1 gestosci sygnalu wejSciowego fx o
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Rysunek 5.5: Bledy estymacji MISE (g,@D ;n) w funkcji liczby obserwacji wejscia i wyjécia
systemu dla nieliniowosci g1, g4, g5 i gestodci sygnatu wejéciowego fx o
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Rysunek 5.6: Bledy estymacji Err(Ay ;&) w funkcji liczby obserwacji wejécia i wyjscia systemu
dla nieliniowoSci g1, g4, g5 1 gesto$ci sygnatu wejéciowego fx 3
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Rysunek 5.7: Bledy estymacji MISE (§a47;k) w funkcji liczby obserwacji wejécia i wyjécia
systemu dla nieliniowoéci g1, g4, g5 1 gestosci sygnatu wejéciowego fx,3
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Rysunek 5.8: Bledy estymacji Err(Ay ;) w funkcji liczby obserwacji wejscia i wyjécia systemu
dla nieliniowosci g1, ga, g5 1 gestoSci sygnalu wejSciowego fx 4
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Rysunek 5.9: Bledy estymacji MISE (g,/},D ;n) w funkcji liczby obserwacji wejscia i wyjscia
systemu dla nieliniowo$ci g1, g4, g5 1 gestoSci sygnatu wejéciowego fx 4
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Rysunek 5.10: Bledy estymacji Err(
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A{\, ; k) w funkeji liczby obserwacji wejécia i wyjécia systemu

dla nieliniowoéci g1, g4, g5 i gestodci sygnatu wejéciowego fx o
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Rysunek 5.11: Bledy estymacji MISE(§)" ;) w funkcji liczby obserwacji wejécia i wyjécia
systemu dla nieliniowosci g1, ga, g5 1 gestosci sygnalu wejsciowego fx 2

Rysunek 5.12: Bledy estymacji Err(
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A,{, ; k) w funkcji liczby obserwacji wejécia i wyjécia systemu

dla nieliniowoSci g1, g4, g5 1 gestoSci sygnalu wejSciowego fx 3
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Rysunek 5.13: Bledy estymacji MISE (Q{VAD ;/s) w funkcji liczby obserwacji wejécia i wyjécia
systemu dla nieliniowosci g1, g4, g5 1 gestodci sygnatu wejéciowego fx 3
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Rysunek 5.14: Bledy estymacji Err(Ai, ; k) w funkcji liczby obserwacji wejécia i wyjScia systemu
dla nieliniowosci g1, g4, g5 1 gestosci sygnatu wejéciowego fx 4

Rysunek 5.15: Bledy estymacji MISE(_(}IfVAD;K) w funkcji liczby obserwacji wejscia i wyjscia
systemu dla nieliniowoéci g1, g4, g5 1 gestodci sygnalu wejéciowego fx 4



Rozdzial 6

Poréwnanie opracowanych metod
identyfikacji systeméw Wienera

W tym rozdziale przedstawiona jest zbiorcza analiza poréwnawcza uzyskanych wynikéw
oraz krétka charakterystyka cech wspélnych proponowanych metod identyfikacji, na tle
innych podej$¢é omawianych w literaturze. Dyskutowane w pracy algorytmy poréwnywane
sg réwniez ze soba pod katem zakresu stosowalnosci, wlasnoéci asymptotycznych oraz
wlasnoSci dla malej i umiarkowanej liczby obserwacji wejécia i wyjscia systemu.

6.1 Opracowane metody identyfikacji, a metody parame-
tryczne i nieparametryczne

Skonstruowane w pracy algorytmy i ich analiza rozszerzajg dotychczasows teorig oraz daja
mozliwo$é identyfikacji systeméw Wienera w przypadku, gdy bezposrednie zastosowanie
opracowanych wcze$niej metod parametrycznych i nieparametrycznych jest niemozliwe.
W odréznieniu od wigkszoéci wezedniejszych podej$é, omawiane w pracy algorytmy
(z pominigciem algorytmu korelacyjnego) pozwalaja bowiem na identyfikacje systeméw
Wienera, gdy 1) wejécie systemu nie jest sygnalem gaussowskim, 2) charakterystyka
nieliniowa systemu nie jest odwracalna. W przypadku gaussowskiego wejécia { X, }, zapro-
ponowana w rozdziale 3. metoda korelacyjna funkcjonuje dla szerokiej klasy charakterystyk
nieliniowych w systemie. Nie zaklada si¢ mianowicie, w odréznieniu od wigkszo$ci metod
parametrycznych, ze nieliniowo$¢ jest typu wielomianowego (por. 2.2.1, str. 16), a jedynie
ze jest funkcjg ograniczong przez wielomian dowolnego (skoriczonego) stopnia.

Ze wzgledu na jednolity szkielet konstrukeyjny (zob. p. 2.3.1, str. 20), proponowane
podejécia posiadaja nastepujace cechy wspdélne:

e Zakladana jest parametryczna informacja wstepna o podsystemie dynamicznym oraz
nieparametryczna o podsystemie statycznym (w odréznieniu od metod parame-
trycznych i nieparametrycznych, w ktérych zaklada si¢ czysto parametryczng i czysto
nieparametryczng informacje wstepng o systemie).

e Algorytmy umozliwiajg nieparametryczng identyfikacje charakterystyki nieliniowej
,wprost”, tj. nie poprzez funkcje odwrotng (w odréznieniu od dotychczasowych
podejéé nieparametrycznych, w ktérych szacowana jest funkcja odwrotna do nielin-

iowosci).
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e Identyfikacja nieliniowoéci przeprowadzana jest przy uzyciu estymatora odpowiedzi
impulsowej podsystemu dynamicznego (w odréznieniu od algorytméw nieparame-
trycznych, w ktérych oba podsystemy identyfikowane sg niezaleznie).

e Dopuszcza si¢ wystepowanie addytywnego i niedostepnego dla pomiaréw szumu na
wyjéciu calego systemu (por. dyskusja w p.2.2).

6.2 Zakres stosowalnoSsci

Proponowane w pracy podejscia réznig sie miedzy sobg pod wzgledem zastosowanych do
ich konstrukcji metod matematycznych. Algorytm omawiany w rozdziale 3. zbudowany
jest w oparciu o metode korelacyjna. Z kolei algorytmy przedstawione w rozdziale 4.
bazuja na metodzie najmniejszych kwadratéw oraz idei estymacji korelacji rangowej,
a metoda prezentowana w rozdziale 5. wykorzystuje koncepcje estymacji uérednionej
pochodnej. Zréznicowana baza konstrukcyjna estymatoréw powoduje, ze dyskutowane
algorytmy moga by¢ stosowane przy réznych zalozeniach odno$nie nieliniowoéci wystepu-
jace] w systemie oraz dla réznych sygnaléw wejSciowych. Ponadto algorytmy cechujg
sie réznymi wiasnoSciami dla malej i umiarkowanej liczby obserwacji wejécia i wyjScia
systemu. Okreélajac zakres stosowalnoSci, otrzymane w pracy algorytmy mozna wiec
charakteryzowaé wedlug nastepujacych kryteriéw:

Wymagania dotyczgace sygnalu wejSciowego. Szczegélna konstrukcja systemow
Wienera (zob. uwaga 2.1 i 2.2 na str. 20) powoduje, ze charakter sygnalu wej$ciowego
{X,} ma kluczowe znaczenie podczas konstruowania algorytméw identyfikacji. Z tego
wzgledu parametryczne i nieparametryczne metody omawiane w literaturze z regutly
wymagaja, aby wejScie systemu bylo sygnalem gaussowskim. Proponowane w pracy
algorytmy pozwalaja natomiast na identyfikacje zaréwno w przypadku gaussowskich
(rozdziat 3) jak i niegaussowskich (rozdzialy 4 i 5) sygnaléw wejsciowych. Wspélnym
wymaganiem dla proponowanych metod jest zalozenie, ze sygnal wejSciowy jest ciggiem
typu i.7.d. Poréwnanie opracowanych algorytméw pod katem zalozen dotyczacych sygnatu
wejSciowego przedstawia tabela 6.1.

Algorytm identyfikacji Wymagania dotyczace sygnalu wejsciowego

Algorytm korelacyjny Gaussowski sygnat wejsciowy o dowolnej wartosci ére-
‘dniej i wariancji

Algorytm wykorzystujacy me- | Ciagla funkcja gestoéci o ograniczonym (chociaz do-
tode najmniejszych kwadra- | wolnie duzym) noéniku

tow
Algorytm wykorzystujacy ko- | Nie przeprowadzono analizy teoretycznej algorytmu
relacje rangowsg
Algorytm uérednionej pocho- | Rézniczkowalna gesto§é o zwartym (chociaz dowolnie
dnej ze znang gestoécig wej- | duzym) noéniku

cia
Algorytm uérednionej pocho- | Rézniczkowalna gestosé o zwartym (chociaz dowolnie
dnej z nieznang, gestoscig wej- | duzym) noéniku

Scia

Tabela 6.1: Poréwnanie proponowanych algorytméw identyfikacji pod wzgledem gléwnych
wymagan dotyczacych sygnatu wejSciowego
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Wymagania dotyczace sygnatu zaklécajacego. Proponowane w pracy metody umo-
zliwiajg identyfikacje systeméw Wienera w przypadku, gdy sygnat wyjéciowy (tzn. sygnal
bedacy wyjéciem nieliniowego podsystemu statycznego) zaki6cany jest przez addytywny
i niedostepny dla pomiaréw szum {Z,} typu i.7.d. o zerowej éredniej i skoficzonej wariancji.
Wymaganie to jest wspélne dla wszystkich omawianych w pracy algorytméw.

Wymagania dotyczace podsystemu liniowego. Charakter proponowanych metod
wymaga posiadania parametrycznej wiedzy o liniowym podsystemie dynamicznym (tj.
znajomos$ci dlugo$ci pamieci, czyli stalej p < 0). Podobnie jak w przypadku zalozen
odnoénie szumu wyjéciowego, wymaganie to jest wspélne dla wszystkich prezentowanych
w pracy algorytmoéw.

Wymagania dotyczace podsystemu nieliniowego. W odréznieniu od zalozen doty-
czacych podsystemu liniowego, dyskutowane metody réznig sie miedzy soba pod wzgle-
dem warunkéw jakie musi spelnia¢ nieliniowa charakterystyka wystepujaca w systemie.
Tabela 6.2 zawiera wykaz podstawowych wymagan odno$nie nieliniowo$ci, gwarantujacych
zbieznos¢ poszczegdlnych algorytmdéw.

Algorytm identyfikacji Wymagania dotyczace nieliniowosci

Algorytm korelacyjny Nieliniowa charakterystyka ograniczona jest przez
wielomian dowolnego skonczonego stopnia

Algorytm wykorzystujacy me- | Nieliniowa charakterystyka jest ciagla i rézna od
tode najmniejszych kwadra- | funkcji stalej

tow -
Algorytm wykorzystujacy ko- | Nie przeprowadzono analizy teoretycznej algorytmu
relacje rangowsg
Algorytm uSrednionej pocho- | Nieliniowa charakterystyka posiada ciggla pochodna
dnej ze znang gestoscig wej-
Scia

Algorytm uérednionej pocho- | Nieliniowa charakterystyka posiada ciagla pochodna
dnej z nieznang gestoscig wej-
Scia

Tabela 6.2: Por6wnanie proponowanych algorytméw identyfikacji pod wzgledem gléwnych
wymagan dotyczacych nieliniowej charakterystyki w systemie

6.3 Wilasnosci asymptotyczne

Dla proponowanych w pracy algorytméw identyfikacji systeméw Wienera przeprowadzona
zostala analiza teoretyczna! okreélajaca asymptotyczne wlasnoéci estymatoréw liniowego
podsystemu dynamicznego oraz nieliniowego podsystemu statycznego. W przypadku
estymatoréw odpowiedzi impulsowej czeSci liniowej systemu badano zbiezno$¢ oraz
szybko§é zbiezno$ci oszacowan wedtug prawdopodobiefistwa, a w przypadku estymatoréw
nieliniowej charakterystyki g (), badano punktows zbieznosé i szybko§¢ zbieznosci (réwniez

I'W pracy nie przeprowadzono analizy teoretycznej wlasnosci asymptotycznych algorytmu zbudowanego
w oparciu o koncepcje korelacji rangowej.
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wedlug prawdopodobienstwa). Uzyskane wyniki prowadzg do wniosku, ze proponowane
metody identyfikacji sa zbiezne.

6.4 Numeryczna realizacja algorytmoéw

Waznym, z punktu widzenia zastosowan, kryterium poréwnawczym omawianych metod,
jest tatwo$¢ ich implementacji. Zaréwno algorytm korelacyjny, jak i metoda wykorzystujaca
koncepcje estymacji uérednionej pochodnej (ze znang oraz nieznang gesto$cig wejscia),
nie wymagaja stosowania skomplikowanych procedur numerycznych (jak np. odwracanie
macierzy czy wyznaczanie minimum wielowymiarowej funkeji celu). Z tego wzgledu
wymienione wyzej algorytmy moga byt latwo zaimplementowane w wielu $§rodowiskach
programistycznych. Z kolei algorytmy zbudowane w oparciu o kryterium $redniokwadra-
towe i koncepcje korelacji rangowej sg algorytmami, w ktérych konieczne jest wyznaczenie
ekstreméw wielowymiarowych funkeji celu co powoduje, ze do ich efektywnej implementacji
konieczne jest zastosowanie specjalizowanych procedur optymalizacyjnych.

Przedstawiona tu analiza pokazuje, ze cele i zadania postawione w punktach 2.5 i 2.6.2
zostaly w pracy zrealizowane.



Rozdzial 7

Uwagi koncowe

W rozdziale podsumowano oryginalne wyniki naukowe uzyskane w pracy, przedstawiono
otwarte problemy badawcze oraz zaproponowano kierunki dalszych badan.

7.1 Oryginalne wyniki naukowe przedstawione w pracy
W pracy otrzymano nastepujace oryginalne wyniki naukowe:

e Zaproponowano ogdélny schemat dwuetapowej, parametryczno—nieparametrycznej
identyfikacji systeméw Wienera wykorzystujacy koncepcje estymacji nieznanego
sygnatu interakcyjnego {V,,} wystepujacego w systemie.

e Zaproponowano klase parametryczno—nieparametrycznych algorytméw umozliwia-
jacych identyfikacje systeméw Wienera przy réznorodnych zalozeniach odno$nie

sygnalu wejéciowego oraz dla szerokiej klasy charakterystyk nieliniowych.
W szczegdblno$ci opracowano:

— algorytm korelacyjny (rozdzial 3),
— algorytm wykorzystujgcy metode najmniejszych kwadratéw (rozdziat 4),

algorytm zbudowany w oparciu o koncepcje korelacji rangowej (rozdziat 4),

algorytm wykorzystujacy idee estymacji uérednionej pochodnej (rozdziat 5).

e Przeprowadzono analize teoretycznag wlasno$ci asymptotycznych algorytmu korela-
cyjnego, algorytmu zbudowanego w oparciu o metode najmniejszych kwadratéw oraz
algorytmu wykorzystujacego idee estymacji uérednionej pochodne;j.

W szczegdblnoéci:

— dla metody korelacyjnej okreslono warunki, przy ktérych estymatory podsys-
teméw liniowego i nieliniowego sg zgodne,

— okreslono rzedy szybkosci zbieznoSci estymatoréw czeSci liniowej i nieliniowej
w metodzie korelacyjnej,

— wykazano zgodno$¢ estymatoréw podsysteméw liniowego i nieliniowego opra-
cowanych w oparciu o metode najmniejszych kwadratéw,

— przy zalozeniu znajomoSci gestoSci sygnatu wejsciowego dla metody wykorzystu-
jacej estymacje uérednionej pochodnej wykazano zgodno§¢ oraz okreslono rzedy
szybkoéci zbieznosci estymatoréw podsysteméw liniowego i nieliniowego.
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— w przypadku nieznanej gestoéci wejécia dla metody wykorzystujacej estymacje
uérednionej pochodnej wykazano zgodnoéé estymatoréw czeSci liniowej i nieli-
niowej systemu. ’

Ponadto:

e Opracowano implementacje proponowanych algorytméw w $rodowisku obliczenio-
wym MATLAB.

e Przeprowadzono badania eksperymentalne algorytméw ilustrujace zachowanie sie
metod dla malej i umiarkowanej liczby obserwacji wejScia i wyjScia systemu.

7.2 Otwarte problemy badawcze

Prezentowane w rozprawie algorytmy, wraz z rezultatami teoretycznymi dotyczacymi
ich wlasnoéci asymptotycznych i wynikami eksperymentéw numerycznych, prowadzg do
nastepujacych, nowych probleméw badawczych:

e Okreslenie dalszych wlasnosci teoretycznych proponowanych algorytméw. W szczegél-
nosci:

— opracowanie wersji algorytmu wykorzystujacego kryterium éredniokwadratowe
umozliwiajacej identyfikacje systeméw Wienera bez koniecznosci dzielenia
zbioru dostepnych obserwacji wejScia i wyjécia systemu,

— okre$lenie rzedu szybko$ci zbieznosci algorytmu wykorzystujacego kryterium
$redniokwadratowe,

— okreélenie wiasnoéci asymptotycznych algorytmu wykorzystujacego idee ko-
relacji rangowej,

— analiza wlasnoéci asymptotycznych algorytméw w przypadku sygnatéw wejscio-
wych innych niz sygnaly typu ¢.7.d.,

— analiza wlasnosci asymptotycznych algorytméw w przypadku szumu {Z,} nie
bedacego ciggiem typu i.i.d.

e Modyfikacja zaproponowanych algorytméw umozliwiajaca identyfikacje systeméw
Wienera w przypadku skoficzonej pamieci o nieznanej diugosci.

e Analiza zachowania algorytméw dla systeméw Wienera o nieskoficzonej pamieci.



Dodatek A

Uzupelnienia i dowody twierdzen

A.1 Uzupelnienia do rozdziatu 3

Lemat A.1 (por. Pawlak et al. [93]) Niech {fn}g’:l bedzie ciggiem zmiennych losowych,
takim ze Var{¢,} < oo, n = 1,2,...,N oraz &, i &, sq niezaletne jezeli |n —m| > p,
p € N,p < co. Wtedy

- { Ziv:l En} <(+1) Z;V:l Var{€,}. (A1)

Dowéd. Rozwazmy przypadek gdy E{£,} =0,n = 1,2,..., N. Zapiszemy sume¢ wyrazéw
ciggu {fn}ﬁ’:l w nastepujacy sposéb

N p+1
Zn=1 En = Zm:1 Am,
. _mJ . Stosujac nieré6wnosé

gdzie Ay, = (€m+€m+(p+l)+§m+2(p+1)+' C '+€m+s(p+1)) is= [ p+1
Cauchy’ego (zob. np. Leja [75], Jakubowski i Sztencel [60]), otrzymujemy

p+1 2 p+1
B{(S0 4n) | < G403 B (AR,
co przy zalozeniu ze F {{,} =0,n=1,2,..., N, daje

Var {Z:le fn} <(p+1) Z:;ll Var {An}.

Zauwazajac nastepnie, ze zmienne losowe wchodzace w sklad elementu A,,, m € {1,2,...,
p + 1} sa niezalezne, otrzymujemy nieréwno$¢ (A.1). W przypadku ogélnym, tj. gdy
nie zachodzi warunek E {{,} = 0,n = 1,2,..., N, nieréwno$¢ (A.1) wynika z faktu, ze
Var{¢, —a} =Var{{,},VacR.m

Dowéd Lematu 3.2. Rozpoczniemy od wykazania tezy twierdzenia w przypadku gdy
pe = 0 oraz ag = 1. R6éwnoéé (3.24) oznaczal, ze dla dowolnie matego € > 0 oraz dowolnie

matego § > 0,

lim P{N‘E sup |&,] >5} = )

N—oo 1<n<N

definicja symbolu op () zamieszczona jest w dodatku B na str. 87.
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Zauwazmy, ze

1<n<N 1<n<N

P{N"E sup [§n|>5} = 1—P{N‘€ sup |§n|§6}
= 1-P{(NE|g| <o) n...n(N"°|¢x] <0)}.

Ze wzgledu na niezalezno$¢ zmiennych losowych {fn}ﬁzl mamy dalej

1<n<

P{N‘6 suleﬁnl >5} =>1— [P{N"¢|&] 55}]N =1—[P{l&] < oN V.

Oznaczajac przez ® () dystrybuante rozkladu normalnego N (0, 1) otrzymujemy naste-
pnie, ze
P {N‘E sup |€,| > 5} =1-[2® (6N°) — 1]V
1<n<N
W celu udowodnienia tezy (3.24) wystarczy wiec pokazaé, ze dla dowolnie matego € > 0

i dowolnie matego § > 0
lim [2® (6N¢) — 1]V =1.
N—oo

Zauwazmy, ze ciag [2® (6N¢) — l]N jest ciggiem ograniczonym z géry przez 1. Wyko-
rzystamy nastepujace oszacowanie dystrybuanty rozkladu normalnego, zob. Jakubowski
i Sztencel [60, str. 119],

1 2701
Plz)>1——e®R>, 30
(z) - -
Zatem N2
1
E — — —
20 (6N°) —1>1 JNEexp( 5 ),

1 tym samym

2

e (_52N 2)] . (A.2)

[2® (6N°F) — 1]V > [1

Zauwazmy nastepnie, ze ciag 6# exp (—52—1;’%) dazy do zera asymptotycznie szybciej niz
ciag 1/N2. Stad, jezeli zachodzi zbieznosé

i N
Jim {1 = WJ =1, (A.3)

to réwniez prawa strona nieréwnosci (A.2) dazy do 1, gdy N — oo. Aby pokaza¢ zbieznos¢
w (A.3) wystarczy z kolei zauwazy¢, ze

1 N 1 N 1 N -
im (1| = lim [1-— lim [1+~| |=elel=1
N [1 N2] (1\}1_‘.“00 [1 N] oo [ N NJ ©

Na koniec, dla dowolnego p, i ag, otrzymujemy N~1/2 SUP1<n<n [€nl = crEN‘l/zx

X SUP1 < IfnT"E*‘E.~+#£N—1/2 — op (N-0/24¢) 4O (N-1/2) = op (N~(/2)+¢) , co koticzy
dowdd. m

Dowéd Twierdzenia 3.3. W dowodzie wykorzystamy dekompozycje (3.26), okreélajac
najpierw rzad szybko$ci zbieznosci estymatora 7y (v) do 7 (v), a nastepnie rzad szybkosci
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zbieznoéci do zera réznicy [TN (v) — N ('u)] Calkujac przez podstawienie, zapiszemy
warto$¢ oczekiwang estymatora 7y (v) w postaci

E{FN(U)}:%/_ZK<U m>7'(.7:)d:c=/_Z:K(af;)r('u——har:)d:v

Stosujac twierdzenie Taylora (zob. np. Leja [75], Wand i Jones [132]), na mocy zalozenia
3.6, zauwazamy ze

r (v —hz) =7 (v) — hzr' (v)+ h2 2" (v) + o (R?),
co z kolei prowadzi do wniosku, ze (zob. zalozenia 3.4 i 3.8 o funkcji jadra)

E{fy ()} =7 @)+ —;-h%" (v) / 2K (z)dz + o (h?).

—00

Stad, zgodnie z zalozeniem 3.5,
bias {Fx (v)} = E {7 (v)} — 7 (v) = O (N2/%) .

W rezultacie, wykorzystujac oszacowanie wariancji estymatora 7y (v) uzyskane w dowodzie
twierdzenia 3.2 (patrz wzér (3.32)), otrzymujemy rzad szybkoSci zbieznoéci

[ (v) = 7 (v)] = Op (N7°),
w kazdym punkcie v € R. Udowodnimy z kolei, ze
[7§" (v) - (v)] = Op (N(_Z/SHE) : (A.4)

W tym celu wykorzystamy fakt dwukrotnej rézniczkowalnosci jadra K (-). Rozwijajac
funkcje K () w szereg Taylora

K (1) = K (uz) + K' (uz) (w1 — u2) + 5K (w0) (12 = w2)?,

gdzie ug jest punktem poérednim lezacym pomiedzy u; i ug, mozemy réznice [F§" (v) —
7n (v)] zapisaé w postaci

1 1 —aV, ~ Cr 1 v—y ~or\2
e (2525) o5 e (282) -8
(A.5)

gdzie §,,  jest zmienng losows przyjmujaca wartoéci? pomiedzy Vi, i Vncl’\', Reprezentacja
(A.5) prowadzi po zastosowaniu nieréwnosci tréjkata do nastepujacego oszacowania

h3ZYK”( EnN)

nel

,rN (v) —7n ('u)| < "rN | sup |dn,N| + sup {d

)

gdzie dp v = aV, — V,,LC]’\", oraz 7 (v) jest pochodng estymatora 7y (v), tj. 7n (v)
=dfy (v) / dv. Na podstawie zalozenia 3.8 o ograniczonoéci drugiej pochodnej jadra K (-),
prawdziwe jest oszacowanie

Y (v) = fiv (v)] < [y (0)] sup ldn,w + s {dr v} 37 thIYl (A.6)
n # nel

Odnoénie drugiego sktadnika po prawej stronie nieréwnoéci (A.6) zauwazamy, Ze:

2tj. &n.n = &n v (w) jest taka zmienna losows, ze dla kazdego zdarzenia w, min{aV, (w), V,ff,’v (W)} <
&y (w) < max{aVn (w), ViR (W)}
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e Na mocy lematu 3.3, dla dowolnie malego € > 0,
2
sup {dfb',N} = (sup |dn,N[> =op (N_H'E) .
nel nel

e Zgodnie z zalozeniem 3.5,
' h3 ~ N3/5,
e Stacjonarnoé¢ sygnatu {Y,} oraz skoficzona dlugo$¢ pamieci systemu prowadzg do
wniosku, ze
NS |Yal = EVi| + Op (N‘l/z) .
nel

Wobec tego

sup {42 v} N h3 Z %] =0z <N (2/5)+5) '

W celu okreélenia rzedu szybkosci zbleznosm w (A.4) wystarczy wigc udowodni¢, ze
estymator 7 (v) jest ograniczony wedlug prawdopodobienstwa3 w kazdym punkcie v € R.
W tym celu wykazemy zbieznos¢ 7 (v) wedlug prawdopodobiefistwa do 7/ (v).
Zauwazmy, ze zgodnie z przyjetymi zalozeniami

/_:, %K’< ;i)"(“’)“:/_:ff (v;x) r' (z) dz, (A.7)

oraz ze catka [%_|r' (v)| dv jest skoficzona. Stad na mocy lematu B.3 w dodatku B.2,

Bl - [x 2

w kazdym punkcie v € R. W celu okreSlenia wlasnoéci asymptotycznych wariancji
estymatora 7 (v), zastosujemy lemat A.1 z dodatku A.1. Otrzymujemy

v-W
N h4Var {YIK' ( 5 )}
Wystarczy zatem pokazaé, ze funkcja

ef. 1 p -
on o) L {vin (B4

zbiega do stalej, gdy N — oo, dla kazdego v € R. Zauwazmy, ze

w0 < ep {00 (1)} + 22m i (1511,

Wykorzystujac argumentacje jak w (A.7) oraz lemat B.3 otrzymujemy ¢y (v) — c(v) <
00, gdy N — oo. Uzyskane rezultaty prowadza do wniosku ze

~Cr (v) =7 (v) + Op (N (2/5)+E) , (A.8)

dla dowolnie maltego € > 0 w kazdym punkcie v € R. Zauwazmy dalej, ze analogiczna
argumentacja dla estymatora fﬁ’.’ (v) prowadzi do wniosku, ze

Cr (1) = a~1f (v/a) + Op (-, (A.9)

x)r(x)dx—»r’(v), gdy N — oo,

Var {7y (v)} <P

dla dowolnie malego € > 0 w kazdym punkcie v € R. Zbiezno$¢ w (3.34) wynika zatem
bezposrednio z (A.8) i (A.9) oraz lematu B.1 w dodatku B.1, co koficzy dowéd. m

3 Cigg zmiennych losowych {X,} jest ograniczony wedtug prawdopodobiefistwa, jezeli dla kazdego € > 0
istnieje stala M taka, ze sup, P {|Xn| > M} < &, Van der Vaart [123, str. 8].
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A.2 Uzupekienia do rozdziatlu 4

Twierdzenie A.1 (z0b. Van der Vaart [123, tw. 5.7, str. 45]) Niech My (8) bedzie
ciggiem funkcji losowych argumentu 6 € ©, gdzie © jest przestrzeniq metryczng z metrykq
d(-,). Niech ponadto M (0) bedzie funkcjq deterministycznag, takq ze

sup |My (0) — M (6)] - 0, gdy N — oo, (A.10)
0co

wedlug prawdopodobienstwa oraz dla kazdego € > 0,

inf M (0)> M (0 A.11
e . (0) > M (6o), (A.11)

gdzie 6y jest elementem przestrzeni ©. Wtedy dowolny cigg estymatoréw {9 N} , dla ktdrego

istnieje zbiezny do zera (wedtug prawdopodobienstwa) cigg zmiennych losowych {&x}, taki
ze

My <9N) < My (6p) + &p, (A.12)
zbiega wedlug prawdopodobienstwa do 6y, gdy N — co.
Dowéd. (por. Van der Vaart [123, tw. 5.7, str. 46]) Nalezy wykazaé, ze d (91\/,6’0) -0

wedlug prawdopodobienstwa gdy IV — oco. Z warunku A.11 wynika, ze dla kazdego € > 0
istnieje takie n > 0, ze dla kazdego 6 : d (60, 60p) > ¢,

M (8) > M (6o) +1.

Wobec tego zdarzenie {d(fy,0p) > €} implikuje zdarzenie A = {M (On) — M (6p) > 1}
i w celu udowodnienia tezy twierdzenia wystarczy pokazaé¢ ze P {A} — 0, gdy N — oo.
Mamy

M (éN) — M (8o) = [M (éN) — My (i)N)] + [MN (E)N) - M (90)} , (A.13)

Z warunku (A.10) wynika, ze [M (91\/) — My <9N>] — 0 wedlug prawdopodobienistwa,
gdy N — co. Odnoénie drugiego sktadnika po prawej stronie réwnoéci (A.13) zauwazamy,
ze zgodnie z zalozeniem A.12,

My (91\/) - M(bo) = [MN (éN) — My (90)] + [My (60) — M (0)]
En + [Mn (60) — M (6o)] -

IN

Wykorzystujac ponownie warunek (A.10) otrzymujemy zbiezno$¢ [My (6p) — M (6p)] —
0 wedlug prawdopodobiefistwa, gdy N — oo i wobec tego P{A} — 0 gdy N — oo, co
koniczy dowéd twierdzenia.

Dowéd Twierdzenia 4.2. (por. dowéd tw. 3.2) Przyjmiemy nastepujace oznaczenia

1 v—VES . 1 v — VLS

FES (v) = — ;K | ——2= oraz LS (y) = o K| ——==].
Dodatkowo oznaczymy 7 (v) = g (v) fv (v), gdzie fy (-) jest gestoscig prawdopodobiefistwa
sygnaltu interakcyjnego {V;}. Zbieznoé¢ w (4.14) zachodzi, jezeli 7%° (v) i & (v) zbiegaja
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wedtug prawdopodobienstwa odpowiednio do r (v) i fy (v) przy N — oo w kazdym punkcie
v € R, w ktérym fy (v) > 0. W dowodzie wykorzystamy dekompozycje

N (v) =7 () = [f§° () = 7% )] + [FF° (v) =7 ()], (A.14)

#L8 () = NhZYK< hV)

Zgodnie z przyjetymi zalozeniami odnodnie sygnalu wejéciowego i szumu na wyjsciu

otrzymujemy -
E {78 (v)} = %/ K (”;””') P l) .

—00

gdzie

Poniewaz nieliniowa charakterystyka g (-) jest funkcja ciagla (zob. zalozenie 4.2) oraz
sygnal wejéciowy jest ograniczony (zalozenie 4.1), to ff°°o |r (v)]dv < oo. Stad, zgodnie
z lematem B.3 z dodatku B.3, na mocy zalozen 4.7 i 4.8, ma miejsce nastepujaca zbieznosc

E {F,I\’,S (v)} —r (), gdy N — oo, (A.15)

w kazdym punkcie v € R. Lemat A.1 z dodatku A.1 oraz wlasno$é¢ 3.2 (str. 30) prowadzg
nastepnie do wniosku, ze

Var {755 (v)} < N h2Var {YlK <” —th)} (A.16)

Ze wzgledu na ograniczonoé¢ jadra K (-), element A~ 'Var {Y1 K ([v — V1] /h)} wystepujacy
w (A.16) jest ograniczony przez (por. Greblicki [25, dowéd tw. 1))

orfpooe(55) (e ()} o

Ponowne wykorzystanie zatozeti 4.2 i 4.1 prowadzi do wniosku, ze [° g 2 () fv (v)dv <

0. Zatem, na mocy lematu B.3 z dodatku B.3, wyrazenie (A.17) dazy do ko fv (v) [¢% (v) +
+0%] < 00, gdy N — oo, w kazdym punkcie v € R. Ostatecznie wigc nieréwnoé¢ (A.16),

dla h speliajacego zalozenie 4.8, daje
Var {FII(,S (v)} =0, gdy N — oo, (A.18)

w kazdym punkcie v € R.
Zgodnie z rezultatami w (A.15) i (A.18) zachodzi wiec zbiezno$é

[7%° (v) —r(v)] -0, gdy N — oo,

wedtug prawdopodobienstwa, w kazdym punkcie v € R.

Przejdziemy teraz do do drugiego etapu dowodu, tj. do zbadania asymptotyki wyrazenia
[+&5 (v) — 75° (v)] w dekompozycji (A.14). Korzystajac z faktu, ze jadro K (-) spelnia
warunek Lipschitza (zob. zal. 4.7) otrzymujemy

|ALS ’U)—-T‘LS(’U)l VLS'NhQZ’Y|

Wzér (4.10) oraz nieréwnoé¢ Cauchy’ego-Schwarza (zob. dodatek B.4) prowadzg do
wniosku, ze

oo 725] = sup| [ 357" x,
nel nel
< sup{[a- 2w 11}

- olp-52]
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Vo — V,f:f,‘ = Op (an).

gdzie C = (p+ 1) max {|ay|, |bs|}. Zatem, na mocy (4.11), sup,,¢;
Réwnoczeénie (por. wzér (3.33))

3y Il = Bl +0r (V7).

Otrzymujemy wigc zbieznoé¢ (zob. zalozenie 4.8)

%5 (v) — 7K (v)| = 0, gdy N — oo,

wedlug prawdopodobienstwa, w kazdym punkcie v € R. W rezultacie
7% () =7 (v), gdy N — oo,

wedlug prawdopodobienistwa w kazdym punkcie v € R.
Stosujac analogiczng argumentacje dla estymatora fy (v) otrzymujemy zbiezno$c¢

f&°5 (v) = fv (v), gdy N — oo,

wedtug prawdopodobienstwa, w kazdym punkcie v € R, co koficzy dowéd twierdzenia. m

A.3 TUzupelnienia do rozdziatu 5

Dowéd Lematu 5.1. (zob. tez dowéd lematu 2.1 w [95]) Nalezy wykazag, ze
[ a@De@dz=-2] D@6 hkEdz (4.19)
Rp+1 Rp+1

Zgodnie z zalozeniem 5.1 funkcje podcatkowe w (A.19) maja noénik Q. Ponadto G (z)
i fx (z) sa rézniczkowalne w zbiorze Q. Stad, na mocy lematu B.4 w dodatku B.3,
otrzymujemy teze twierdzenia. m

Dowéd Twierdzenia 5.3. W dowodzie wykorzystamy dekompozycje (5.21), okredlajac
najpierw rzad szybkoSci zbieznoéci estymatora 7 (v), a nastepnie rzad szybkosci zbieznosci
do zera réznicy [FaP (v) — Fn (v)].

Calkujac przez podstawienie zapiszemy warto$¢ oczekiwang estymatora 7 (v) w postaci

E{fN(v)}z%/_c:K( )r(m)dw=/_:K(m)r(v——hx)dx.

Zgodnie z rozwinigciem Taylora, na mocy zalozenia 5.5,

v

—itp
h

r(v—hz) =71 (v) — hzr' (v) + %h("x?r" (v) + o (h?),
co z kolei prowadzi do wniosku, ze (zob. zalozenia 5.3 i 5.7 o funkeji jadra)
E{fn ()} = r (o) + %" (0) /_ Z 2K (¢)dz + o (h2) .
Stad, poniewaz h ~ N~1/3,
bias {Fy (v)} = E {fx ()} =7 (v) = O (N-2/5) .

W rezultacie, wykorzystujac oszacowanie wariancji estymatora 7y (v) uzyskane w dowodzie
twierdzenia 5.2, (patrz wzér (5.26)) otrzymujemy rzad szybkosci zbieznosci

[y (0) = 7 (v)] = Op (N72/%),
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w kazdym punkcie v € R. Udowodnimy nastepnie, ze
[#4° (v) — 7 (v)] = Op (N—2/5) : (A.20)

W tym celu wykorzystamy fakt dwukrotnej rézniczkowalno$ci jadra K (-). Rozwijajac
funkcje K (-) w szereg Taylora

K () = B fug) B fuig) iy — g & %K” O Y— Y

gdzie ug jest punktem poérednim lezacym pomiedzy wu; 1 ug, réznice [fI’e,D (v) — 7N (v)]
zapiszemy w postaci

1 1o (v—kKVn > AD w (V=N ~AD)?
Nrh ; o [hK ( 3 ) (w70 - ViR) + WK TR (=R |
(A.21)

gdzie £, y jest zmienng losowa przyjmujaca wartoéci pomiedzy kVj, i Vn’?ﬁ . Reprezentacja
(A.21) prowadzi do nastepujacego oszacowania .

7 IU_&n,N
s LYk (L)

nel

AAD (v) — 7y ('U)I < |rN ('u)] sup |dn,n| + sup {dn N}

gdzie dpy = KVn — V,{‘}Ie oraz 7y (v) jest pochodng estymatora 7y (v), tj. 7y (v)
= d7y (v) /dv. Po uwzglednieniu zalozenia 5.7 otrzymujemy dalej

|77 (v) — 7 ()] < |y (v)lilgldn,zvl + 81D {d? n} N h3 ;lYl (A.22)

Na mocy lematu 5.2 sup,¢; {dfl)N} = (suppe;s ]dn’N|)2 = Op (N7!). Zachodzi réwniez
zbieznoé¢ (por. wzér (3.33) w dowodzie tw. 3.2, str. 29)

N7 Yol = E[Yi| + 0p (N712).

nel

Stad, na mocy zalozenia 5.4,

2 k1 _ —2/5
sup {4} s 2Pl = 0 (W77

W celu wykazania rzedu szybkosci zbieznosci jak we wzorze (A.20) wystarczy wiec
udowodnié¢, ze estymator 7y (v) jest ograniczony wediug prawdopodobienstwa® w kazdym
punkcie v € R. Wykazemy wigc zbieznosé 7y (v) wedlug prawdopodobienistwa do 7’ (v).
Zgodnie z przyjetymi zatozeniami

/_:%K'< ;x)r(x)dxz/::K(v;x) 7' (z) dz, (A.23)

oraz catka [*_|r’ (v)|dv jest skonczona. Stad na mocy lematu B.3 w dodatku B.3,

E{?’N(v)}=%/K'<v;x)r(x)dx——>r'(v), gdy N — oo,

4z0b. przypis na stronie 79.
®zob. przypis na stronie 80.
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w kazdym punkcie v € R. W celu okre$lenia wiasnoSci asymptotycznych wariancji
estymatora 7 (v), zastosujemy lemat A.1 z dodatku A.1. Otrzymujemy

Var {7y (v)} < N h4 i 7 {YIK’ <%) } .

Wystarczy zatem pokazaé, ze funkcja

on ) e e {viee (211,

zbiega do stalej gdy N — oo, dla kazdego v € R. Zauwazmy, ze (zob. zalozenie 5.3)

o s gE{sonx (50 )+ e {x (1)}

Wykorzystujac argumentacje jak w (A.23) oraz lemat B.3, otrzymujemy ¢y (v) — ¢ (v) <
00, gdy N — oo. Uzyskane rezultaty prowadzg do wniosku, ze

#4D (v) = r (v) + Op ( 2/5) , (A.24)

w kazdym punkcie v € R. Analogiczna argumentacja dla estymatora fﬁD (v) prowadzi do

wniosku, ze
P (v) = 571f (u/w) + Op (N2/°) (A.25)

w kazdym punkcie v € R. Zbiezno§¢ w (A.20) wynika zatem ze wzoréw (A.24) i (A.25)
oraz lematu B.1 w dodatku B.1, co koiczy dowéd twierdzenia. m

Lemat A.2 Jezeli spelnione jest zalozenie 5.1 oraz zachodzq zbieznosci (5.32) i (5.39),

to
Sup dfiv1,n () — dfit1 (z)| — 0, 9gdy N — o0,
€

wedlug prawdopodobienstwa.

Dowéd. Stosujac elementarng nieréwnoéé® |ab — cd| < |b| |a — c|+|c| |b — d| otrzymujemy
nastepujace oszacowanie

‘Jf,iﬂ,N (z) = dgita (E)l = IIBN,i (Q)I ,‘%X,N (23.(1)) - fx (Qi))l +
+ ’fﬁ( (Q(i))‘ |Bn,i () — 6 ()],

gdzie
p+1 ptl
i (z) = H Ix (x(k)) oraz Py ;(z) = H Fx.n (x(3)>
k=1,k#i J=1,j#i
Zatem

sup lcff,¢+1,1v (z) — dgiv1 (z)‘ < sup |By,(z)| sup ’a?x,N (x) - fx (m)' +
zeN zERP zeR

+c sup IﬁN,i (z) — & (2)| )
z€RP

gdzie ¢ = sup,cr |f% (z)|. Zauwazmy, ze wobec zalozenia 5.1, ¢ < oo. z kolei zbieznos¢
wyrazenia supgcgy |By; (z)| do supgers |0i (2)] < co wynika ze zbieznosci jednostajnej

S Nier6wnoéé wynika z dekompozycji ab — cd = b (a — ¢) + ¢ (b — d) oraz nier6wnoéci tréjkata.
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(tzn. w normie supremum) wyrazenia |By; (z) — 6; (g)l do zera oraz ciggloéci normy
(w szczegdlnoéci normy supremum). Zgodnie z nieréwnoécig (B.4) z dodatku B.4 otrzy-
mujemy dla kazdego z € RP, ze :

/4
By (2) = 6i(@)] <7 (=) ) ‘fX,N (z(j)) - fx (g(j))} , (A.26)
j=1
gdzie vy (z) = max{| fx v (), - [fx.n (@) 1 fx @), - - -5 | fx (2 ()]} Oszacowanie

(A.26) prowadzi z kolei do wniosku, ze

sup |By.; (z) — 6i(z)| <p sup [+& " (z)l sup Ifx,zv (z) — fx (x)‘
zeRP zERP z€R

co, po ponownym zastosowaniu nieréwnoéci (B.4) z dodatku B.4, koficzy dowéd lematu.
|



Dodatek B

Wykorzystywane w pracy fakty
z teorii prawdopodobienstwa
i analizy matematycznej

B.1 Szybkosc zbieznosci ciagéw zmiennych losowych

Definicja B.1 Dla ciggu zmiennych losowych {£,} oraz ciggu liczb dodatnich {b,} zbie-
snego do zera, symbol £, = Op (by) oznacza, e cigg zmiennych losowych {rn (§,/bn)}
zbiega do zera wedlug prawdopodobienstwa gdy N — oo, przy dowolnie wolno zbieznym do
zera ciggu liczbowym {ry}.

Definicja B.2 Dla ciggu zmiennych losowych {£,} oraz ciagu liczb dodatnich {b,} zbie-
snego do zera, symbol £, = op (bn) oznacza, e cigg zmiennych losowych {&, /bn} zbiega
do zera wedtug prawdopodobienstwa gdy N — oo.

Lemat B.1 Niech {£€,} oraz {¢,} beda ciagami zmiennych losowych takimi ze &, = a +
Op (ay) oraz ¢, = b+ Op (bn), gdzie b # 0. Wowczas

f_n — + Op (max {an, bp})

(o b

Dowdéd. zob. Hasiewicz i Sliwinski [55, str. 259]. m

Lemat B.2 Niech {£,} oraz {(,} beda ciggami zmiennych losowych, takimi e &, =
a+ Op (an) oraz {, = b+ Op (bn). Wowczas

£nCn = ab+ Op (max {an, bn})

Dowdéd. Nalezy pokazaé, ze dla dowolnie wolno zbieznego do zera ciaggu ry, oraz dowolnego
€ > 0 zachodzi
lfn(n — ab'

lim P —rr = ().
Lt {|7"n| max {an, bp } ~ E}
Na podstawie dekompozycji

EnCn —ab= gn (Cn - b) +b(£n - a)
otrzymujemy nastepujace oszacowanie

87
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Niech M € R bedzie dowolng stals, takg ze M > |a|i M > |b|. Zal6zmy, ze dla dowolnego
€ > 0 i ciggu 7, dowolnie wolno zbieznego do zera, zaszto zdarzenie okreslone za pomocsg,
nieréwnosci

|€n —a] < mane i J6p—bl< 2—Ml|mbn€ i€, <M.

Wtedy, zgodnie z nieréwnoécig (B.1), otrzymujemy

b <M—— M—
,é‘nCn a‘l 2M'n, bne + 2Mln| 2,n|5<an+b'n.);
co prowadzi do wniosku, ze
i€.¢. — ab| < e 22X {an bu}
|l
Zachodzi wiec nastepujace oszacowanie
b
P {Isncn — ab| > e—ma‘xl{:"l“ "}} < (B.2)
n

an bn
Pl -al2 el + P{ica =t > e} + Pl 2 M},

Na mocy zalozen twierdzenia dwa pierwsze wyrazy po prawej stronie nieréwnoéci (B.2)
dazg do zera gdy n — co. Odnosnie wyrazenia P {|{,| > M} zachodzi natomiast

P{|é]| 2 M} < P{l¢, —al +|a| 2 M} = P{|{, —a| 2 M —|a]}.
Ostatecznie zatem, poniewaz &,, = a + Op (ay), otrzymujemy

nlglgop{lénl 2 M} =0

co konczy dowéd. m

B.2 Wpybrane wlasnoéci zmiennych losowych gaussowskich
Twierdzenie B.1 Niech £;,7 = 1,2,...,n bedg m'ezaleznymz' gaussowskimi zmiennyms

losowymi o §rednich odpowiednio p; oraz wariancjach o2, tj. & ~ N (ui,af). Wtedy
zmienna losowa & =Y o, & ma rozktad normalny N (,u, ) z parametrami

p=Yim oraz  oP=3 0}
Dowéd. Zob. np. Ostasiewicz et al. [86] str. 169. m

Twierdzenie B.2 Niech X 1Y bedq zmiennymi losowymi o lacznym rozkladzie normal-
nym. Niech E{X} = px, E{Y} = py oraz Var {X} = 0% i Var {Y} = 0} wtedy

o
E{X|Y =y} =uy+p£ (y — px) (B.3)
gdzie p = Corr {X,Y}.

Dowéd. Zob. np. Papoulis [88] str. 201. m
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B.3 Wpybrane zagadnienia teorii calki i analizy matematy-
cznej

Lemat B.3 (20b. Parzen [90]) Niech ¢ (-) oznacza dowolng funkcje, dla ktdrej catka
22 o (z)| dz jest skoficzona oraz K (-) bedzie dodatniq funkcjq borelowska, speiniajacq
warunki:

1. K (-) jest funkcjq ograniczong, tj. sup,eg K (v) < 0o,
2. [ K(v)dv=1,
3. lim[u}—*oo vK ('U) =0

Wtedy dla dodatniego ciqgu liczbowego h, zbieznego do zera,

V=T

}Lgr%)%/_:w(x)K( - >d~'c=<p(v),

w kazdym punkcie v € R, w ktérym ¢ (v) jest ciagta.

Dowéd. Zob. np. Parzen [90]. m

Lemat B.4 (z0b. Kolodziej [66, str. 340]) Jezeli u i v sq funkcjami klasy C* zmiennych

£1,€q, ..., &y OkreSlonymi na ograniczonym zbiorze otwartym Q w przestrzeni euklidesowej
R™ i nosnik przynajmniej jednej z tych funkcji zawarty jest w 2, to
ov

ou
U—dr = — —dz k=1,2,...,m.
o O /Qvafk

Dowéd. Zob. Kolodziej [66, str. 340]. m

B.4 Wykorzystywane nieréwnoSci

Lemat B.5 (nierdwnosé Cauchy’ego-Schwarza) Jesli v € H i w € H, gdzie H jest
przestrzeniq z iloczynem skalarnym, to

(v, w)| < 2l 2l
gdzie (v, w) jest iloczynem skalarnym elementéw v i w.

Dowéd. Zob. np. Rudin [100, str. 327 =

Lemat B.6 Dla dowolnych p—elementowych ciggéw liczbowych {a;} i {b;} prawdziwa jest

nieréwnost
p P P
Hai—Hb,' S'YP—IZ‘ai—bil, (B.4)
i=1 i=1 i=1

gdzie v = max {|a1|, ..., |ap|,|b1],. -, |bp|}-

Dowéd. Nieréwnoéé (B.4) wynika z nieré6wnoéci tréjkata oraz réwnosci

Haiv_ Hbi = ZB’A’ (a,; — bz) " (B.5)
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gdzie

bibs ... bi——l dla i>1 Qi+1Qi42 ... Qp dla 1< p
Bi= oraz A; = .
1 dla =1 1 dla i=»p

Wzér (B.5) mozna z kolei udowodni¢ stosujac zasade indukeji matematycznej i dekompo-
ZijQ ajag — b1b2 = Q2 (a1 = b1) + b1 (a2 = bz). | |
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