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Wstęp

W pracy przedstawiono nową klasę parametryczno-nieparametrycznych algorytmów iden­
tyfikacji systemów Wienera z czasem dyskretnym, dla których przyjąć można założenie, iż 
pamięć części dynamicznej systemu jest skończona. Zaproponowane metody umożliwiają 
pełną identyfikację rozważanych systemów, tj. pozwalają na oszacowanie opisów zarówno 
podsystemów liniowych, jak i nieliniowych. Przeprowadzono analizę teoretyczną własności 
asymptotycznych skonstruowanych algorytmów oraz wykonano symulacje komputerowe, 
ilustrujące ich zachowanie dla małej i umiarkowanej liczby obserwacji.

W rozdziale 1. prezentowana jest ogólna koncepcja systemów o strukturze blokowej na 
tle innych podejść do opisu systemów nieliniowych spotykanych w literaturze. Główną 
uwagę poświęcono systemom Wienera - ich konstrukcji, zastosowaniom w dziedzinie 
aproksymacji systemów nieliniowych oraz implementacjom praktycznym. Rozdział 2. 
wprowadza do zagadnienia parametryczno-nieparametrycznej identyfikacji systemów Wie­
nera. Omówiono w nim najpierw ideę parametrycznej oraz nieparametrycznej identyfikacji 
systemów, ze szczególnym uwzględnieniem algorytmów opisanych w literaturze i poświę­
conych rozważanej klasie obiektów. Na tym tle wprowadzona została koncepcja mieszanej, 
parametryczno-nieparametrycznej, identyfikacji systemów Wienera oraz omówiony został 
wspólny schemat konstrukcji prezentowanych metod. Rozdział ten zawiera również 
podstawowe założenia wykorzystywane w pracy, a także tezę i cele pracy. W rozdziałach 
3., 4. i 5. przedstawiono kolejno trzy różne metody identyfikacji. Szczegółowo omówiono 
konstrukcje odpowiednich estymatorów podsystemów liniowych i nieliniowych oraz podano 
warunki gwarantujące zbieżność algorytmów. Oprócz analizy zgodności estymatorów, 
w rozdziałach 3. i 5. przeprowadzono analizę rzędów szybkości zbieżności odpowiednich 
oszacowań. W uzupełnieniu analizy asymptotycznej, dla każdej z metod wykonano badania 
symulacyjne ilustrujące ich efektywności dla skończonej liczby obserwacji. Rozdział 3. 
zawiera opis korelacyjnej metody identyfikacji. W rozdziale 4. przedstawiono algorytm 
oparty na metodzie najmniejszych kwadratów opracowany we współpracy z Panem 
Profesorem Mirosławem Pawlakiem z University of Manitoba. W rozdziale tym krótko 
omówiono również metodę identyfikacji systemów Wienera wykorzystującą ideę estymacji 
korelacji rangowej. Algorytm identyfikacji, wykorzystujący koncepcję estymacji uśred­
nionej pochodnej, konstruowany jest z kolei w rozdziale 5. Rozdział 6. zawiera zbiorczą 
analizę uzyskanych w rozprawie rezultatów teoretycznych oraz badań symulacyjnych 
algorytmów. W rozdziale 7. przedstawiono otwarte problemy naukowe, a także określono 
możliwe kierunki dalszych badań.

Autor pragnie podziękować Panu Profesorowi Zygmuntowi Hasiewiczowi, promo­
torowi pracy oraz Panu Profesorowi Włodzimierzowi Greblickiemu, kierownikowi Zakładu 
Sterowania i Optymalizacji w Instytucie Informatyki, Automatyki i Robotyki Politech­
niki Wrocławskiej, za liczne dyskusje oraz cenne uwagi przekazane w trakcie studiów 
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Pawlakowi z University of Manitoba za uwagi merytoryczne dotyczące materiału zawartego 
w rozdziale 4. oraz umożliwienie mi odbycia zagranicznego stażu naukowego w Department 
of Electrical and Computer Engineering, University of Manitoba. Dziękuję także wszystkim 
pracownikom Zakładu Sterowania i Optymalizacji, Instytutu Informatyki, Automatyki 
i Robotyki Politechniki Wrocławskiej. Na koniec dziękuję serdecznie moim Rodzicom oraz 
Kasi, bez których ta praca nie mogłaby powstać.



Rozdział 1

Wprowadzenie — systemy Wienera
i ich zastosowania

1.1 Koncepcja systemów blokowo-zorientowanych

Zadanie identyfikacji systemów, jako jedno z podstawowych zagadnień automatyki, polega 
na wyznaczeniu matematycznego modelu zjawiska fizycznego lub procesu technologicznego 
na podstawie dostępnych danych pomiarowych oraz posiadanej informacji wstępnej 
o systemie. Terminem system określa się przy tym obiekt posiadający wejście i wyjście, 
w którym zazwyczaj występuje niedostępny dla pomiarów sygnał zakłócający, rys. 1.1.

wejście

zakłócenie

ł
System

wyjście

Rysunek 1.1: System jako obiekt identyfikacji

Wykorzystywane w automatyce systemy, w zależności od stopnia skomplikowania ich 
struktury, określa się mianem obiektów prostych lub złożonych. Przykładowo, obiektem 
prostym jest dyskretny statyczny system nieliniowy opisany równaniem

Un = 9 fani ^n) , (1'1)

gdzie {xn} i {yn} są odpowiednio wejściem i wyjściem systemu, a {zn} jest sygnałem 
zakłócającym. Nieliniowa charakterystyka systemu jest reprezentowana przez funkcję 
g (•,•). Innym obiektem prostym jest dyskretny liniowy system dynamiczny opisany 
wzorem

Vn = + zn, (1-2)
gdzie 0 jest wektorem parametrów

0 — (ai,a2, • • • ,aq,bi,b2,... ,br)T ,

a </>n wektorem regresorów utworzonym z pomiarów wejścia i wyjścia

(jn = (~yn-1 , • • • l/n—qi ^n—1 , • • • ^n—r)

1
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Teoria identyfikacji obiektów prostych np. typu (1.1) lub (1.2) jest dobrze ugruntowana 
zarówno w przypadku deterministycznych, jak i losowych sygnałów wejściowych, zob. np. 
Hasiewicz [48,49], Sóderstrom i Stoica [118], Ljung [76], Mańczak i Nahorski [78], Goodwin 
i Payne [24], Nelles [83]. Niestety, wiele spotykanych w praktyce procesów i zjawisk 
nie daje się w zadowalający sposób reprezentować za ich pomocą, chociażby dlatego, 
że część z nich cechuje zarówno występowanie pamięci, jak i zależności nieliniowych. 
Do opisu takich obiektów wykorzystuje się zazwyczaj systemy złożone. Przez złożoność 
systemu rozumie się fakt, że system składa się z wielu elementów oraz że obiekty 
(podsystemy) wchodzące w skład całego systemu są ze sobą połączone i wzajemnie 
od siebie zależą, a ich rozdzielenie jest niemożliwe, niebezpieczne, lub zbyt kosztowne, 
Mzyk [80]. Z tego względu zagadnienie identyfikacji systemów złożonych jest na ogół 
znacznie trudniejsze od identyfikacji systemów prostych i rodzi dodatkowe problemy, 
które nie mają swoich odpowiedników w klasycznej teorii, Hasiewicz [48]. Utrudnienia te 
wynikają między innymi z faktu, że dla dynamicznych systemów złożonych nie jest znana 
uniwersalna reprezentacja umożliwiająca wyznaczenie matematycznej zależności między 
wejściem a wyjściem dowolnego systemu złożonego bez dodatkowej wiedzy apriorycznej 
o strukturze systemu. Pewne rezultaty można jednak otrzymać ograniczając rozważania 
do klasy systemów stacjonarnych (tj. takich, których parametry nie zmieniają się w czasie), 
przyczynowych (tzn. takich, w których wyjście w dowolnej chwili to nie zależy od wejścia 
i wyjścia w chwilach późniejszych) oraz posiadających nieliniowości spełniające określone 
warunki ciągłości, Boyd i Chua [9]. Jednym ze sposobów opisu tego typu systemów 
jest wykorzystanie tzw. szeregów Volterry, u podstaw których leży koncepcja rozwinięcia 
funkcji nieliniowej w szereg Taylora oraz reprezentacja ciągłych systemów liniowych za 
pomocą całki splotowej postaci

y (t) — f d (r) x (t — r) dr, (1.3)
Jo

gdzie {rr(t)} i {y (t)} są odpowiednio wejściem i wyjściem systemu, a {^(t)} jest jego 
odpowiedzią impulsową, Greblicki [34]. W przypadku systemów złożonych z czasem 
ciągłym i spełniających wymienione wyżej warunki, szereg Volterry (będący uogólnieniem 
całki (1.3)) przyjmuje postać

y (t) = ?9o + y • • • y di (n, • • • fi) x (t - ti) • ■ • x (t - Ti) dri• • • dTi, (1.4) 

gdzie di ( ) są tzw. jądrami Volterry. Analogicznie, dla systemów z czasem dyskretnym 
odpowiedni szereg Yolterry, jako uogólnienie splotu dyskretnego, wyraża się wzorem

oo 
yn — Qo 5 5 7 di (jl> • • • ji) xn—ji ' ’ ’ xn—jf (1.5)

i=l

Niewątpliwą zaletą reprezentacji (1.4) i (1.5) jest ich uniwersalność. Rozważane szeregi 
pozwalają bowiem na opisanie każdego stacjonarnego i fizycznie realizowalnego (tj. 
przyczynowego) systemu spełniającego określone warunki ciągłości, bez względu na 
jego złożoność i strukturę wewnętrzną. Ponadto opis obiektu za pomocą rozwinięcia 
w szereg Volterry może być otrzymany zarówno dla losowych, jak i deterministycznych 
sygnałów wejściowych. Niestety zależności (1.4) i (1.5) posiadają również wady, z których 
najistotniejsze związane są ze sposobem wyznaczania współczynników di ( ) i Qi(). 
Okazuje się bowiem, że w wielu przypadkach wyznaczenie jąder di ( ) lub Qi ( ) jest 
zadaniem na tyle skomplikowanym i wymagającym znacznych mocy obliczeniowych, 
że praktyczne zastosowanie zależności (1.4) i (1.5) do identyfikacji systemów nie daje 
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zadowalających rezultatów, Billings i Fakhouri [6]. Równie istotnym ograniczeniem 
związanym z wykorzystaniem szeregów Volterry jest wymaganie, aby nieliniowość systemu 
dawała się rozwinąć w szereg Taylora.

Innym sposobem opisu szerokiej klasy dynamicznych systemów nieliniowych jest 
wykorzystanie reprezentacji zaproponowanej przez Wienera [136], zob. też Therrien [122]. 
W odróżnieniu od szeregów Volterry, koncepcja Wienera opiera się na wykorzystaniu 
zbioru funkcjonałów, które przy założeniu że sygnał wejściowy jest gaussowskim białym 
szumem, są względem siebie ortogonalne, Therrien [122], zob. też Greblicki i Pawlak [39]. 
Proponowana zależność wyraża się wzorem

oo

y W = 52 Gi ’x M; T 6 (-oo> >
i=0

(1.6)

gdzie Gi ( ) są funkcjonałami o znanej postaci, ale posiadającymi nieznane jądra ki ( ). 
Niestety, podobnie jak zależności (1.4) i (1.5), również i to podejście nie pozwala na 
efektywne wykorzystanie w dziedzinie identyfikacji systemów złożonych. Zastosowanie 
reprezentacji (1.6) wymaga bowiem wykonania złożonych obliczeń, nawet w przypadku 
opisu systemów liniowych oraz nie pozwala na wykorzystanie w prosty sposób posiadanej 
informacji apriorycznej o systemie, Billings [5, str. 274].

Wspomniane powyżej, istotne ograniczenia reprezentacji systemów nieliniowych za 
pomocą funkcjonalnych zależności (1.4), (1.5) i (1-6), sprowokowały podjęcie badań nad 
wyznaczeniem nowych, równie uniwersalnych, ale łatwiejszych w zastosowaniach sposobów 
opisu systemów nieliniowych. Jednym z najczęściej wykorzystywanych obecnie podejść 
jest, sformułowana na początku lat osiemdziesiątych ubiegłego stulecia (ale wykorzysty­
wana wcześniej np. przez Narendrę i Gallmana [82]), koncepcja systemów o strukturze 
blokowej (ang. block-oriented systems), Billings [5], Billings i Fakhouri [6-8]. Podejście 
to zakłada, że identyfikowany system można przedstawić w postaci odpowiednio ze 
sobą połączonych liniowych obiektów dynamicznych i nieliniowych obiektów statycznych. 
W odróżnieniu od szeregów funkcjonalnych umożliwiających reprezentację o charakterze 
czarnej skrzynki (ang. black-box description), Billings [5], podejście blokowo-zorientowane 
pozwoliło sprowadzić zadanie identyfikacji do tzw. problemu szarej skrzynki (ang. gray-box 
description), tj. zadania w którym znana jest struktura połączeń wewnętrznych systemu, 
Sjoberg et al. [117], Pearson i Pottmann [94],

Stosunkowo często rozważanym w literaturze systemem blokowo-zorientowanym jest 
tzw. system sandwich (zwany również systemem Wienera-Hammersteina) utworzony 
poprzez kaskadowe połączenie kolejno liniowego obiektu dynamicznego, nieliniowego 
obiektu statycznego oraz liniowego obiektu dynamicznego, rys. 1.2, Billings [5], Billings 
i Fakhouri [8], Bershad et al. [3], Kibangou i Favier [65], Krzyżak [71], Korenberg i Hunter 
[69]. Zaletą systemu sandwich jest jego elastyczność, umożliwiająca reprezentację szerokiej 
klasy zjawisk i procesów technologicznych o charakterze nieliniowym i posiadających 
pamięć. Główną wadą jest natomiast fakt występowania dwóch niedostępnych dla 
pomiarów sygnałów wewnętrznych, tj. wejścia i wyjścia statycznego obiektu nieliniowego. 
W konsekwencji, pomimo znanej struktury całego systemu, zadanie identyfikacji (na 
podstawie obserwacji wejścia i wyjścia systemu) jest zadaniem skomplikowanym. Okazuje 
się jednak, że wydzielenie z systemu sandwich prostszych obiektów, tzw. systemów Wienera 
i Hammersteina (zob. rys. 1.2), prowadzi do struktur równie interesujących z punktu 
widzenia zastosowań do opisu zjawisk nieliniowych, a przy tym łatwiejszych w identyfikacji.

Niech {xn}, {yn} oznaczają odpowiednio wejście i wyjście systemu oraz {vn} będzie 
sygnałem wewnętrznym. Przez {zn} oznaczymy szum występujący w systemie. Przedsta-
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System Wienera

System Hammersteina

Rysunek 1.2: Struktura systemów sandwich, Wienera i Hammersteina

wiony na rysunku 1.3 system Wienera opisany jest za pomocą równań

p

i=0
Vn = g M,

(1-7)

(1-8)

gdzie {Ai}f=0 i g (•) są odpowiednio odpowiedzią impulsową podsystemu dynamicznego

Rysunek 1.3: System Wienera z addytywnym sygnałem zakłócającym na wyjściu podsystemu 
dynamicznego

oraz charakterystyką nieliniową podsystemu statycznego, ap € N jest długością pamięci 
systemu. Analogicznie system Hammersteina, zob. rys 1.4, definiowany jest za pomocą 
równań

= g
P

Un = 4“ ^n-
i=0

Rysunek 1.4: System Hammersteina

Opisane powyżej systemy Wienera i Hammersteina odgrywają kluczową rolę w teorii 
identyfikacji systemów nieliniowych. Ze względu na czytelną, blokowo-zorientowaną struk­
turę oraz liczne zastosowania, poczynając od lat siedemdziesiątych ubiegłego stulecia, 
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opracowano wiele różnych algorytmów ich identyfikacji oraz zaproponowano wykorzystanie 
ich w wielu dziedzinach naukowych i technicznych. Należy podkreślić, że istotny wkład 
w rozwój metod identyfikacji omawianych systemów został wniesiony przez Szkołę 
Identyfikacji Nieparametrycznej utworzoną przez profesora Włodzimierza Greblickiego. Jej 
twórca zapoczątkował rozwój nieparametrycznych metod identyfikacji systemów i wraz 
z profesorami Adamem Krzyżakiem, Mirosławem Pawlakiem i Leszkiem Rutkowskim 
opracował szereg nieparametrycznych algorytmów identyfikacji [26-29, 32, 33, 35, 37-43, 
71, 91, 103]. Zaproponowane metody w istotny sposób rozwinęły teorię i wzbogaciły 
praktykę algorytmów, umożliwiając identyfikację systemów w sytuacjach, w których 
wcześniej opracowane metody parametryczne nie mogły być stosowane. Koncepcja 
nieparametrycznej identyfikacji systemów ze szczególnym uwzględnieniem algorytmów 
dedykowanych systemom Wienera omówiona jest w rozdziale 2.

Oprócz przedstawionych powyżej systemów typu sandwich, Wienera i Hammersteina, 
w literaturze rozważa się także inne systemy blokowo-zorientowane. Są to między innymi: 
systemy Urysona (będące równoległym połączeniem wielu systemów Hammersteina), 
Billings [5] i addytywne systemy typu NARMAX, Mzyk [80]. Jednak zasadnicza uwaga 
badaczy skupia się na zagadnieniach identyfikacji systemów Hammersteina i Wienera. 
Należy przy tym podkreślić, że pomimo podobnej konstrukcji, zadanie identyfikacji 
systemów Wienera jest na ogół znacznie trudniejsze od zadania identyfikacji systemów 
Hammersteina. Istotne utrudnienia wynikają m.in. z faktu, że w systemach Wienera 
charakterystyka nieliniowa przekształca nieznany i niedostępny dla pomiarów sygnał 
interakcyjny, podczas gdy w systemach Hammersteina przekształceniu nieliniowemu 
podlega dostępny dla pomiarów sygnał wejściowy.

1.2 Systemy Wienera

Jak już zaznaczono, ważną rolę wśród omówionych wyżej systemów o strukturze blokowej 
odgrywają systemy Wienera (rys. 1.3). Ze względu na swoją budowę, obiekty te zna­
komicie nadają się do modelowania zjawisk fizycznych i procesów technologicznych, 
posiadających nie tylko cechy układów nieliniowych, ale dodatkowo charakteryzujących 
się występowaniem pamięci. Przykładowe zastosowania systemów Wienera w naukach 
technicznych oraz medycynie, chemii i biologii omówione są w p. 1.4.
Oprócz podstawowych cech struktury charakteryzujących systemy Wienera można 
wyróżnić szereg własności określających dodatkowo elementy tej klasy systemów. Są to 
między innymi:

• długość pamięci systemu (pamięć skończona lub nieskończona),

• własności charakterystyki nieliniowej (np. ciągłość, różniczkowalność itp.),

• miejsce występowania sygnału zakłócającego (szum wewnętrzny lub na wyjściu 
systemu),

• stacjonarność.

Rozważane w literaturze systemy Wienera są ponadto:

• systemami z czasem ciągłym lub dyskretnym,

• systemami o strukturach typu SISO, MISO lub MIMO.
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Długość pamięci systemu oraz własności charakterystyki nieliniowej w systemie 
mają szczególnie znaczenie przy doborze właściwego modelu w przypadku zastosowań 
omawianych systemów oraz w przypadku konstruowania algorytmów ich identyfikacji. 
Systemy ze skończoną pamięcią dyskutowane są m.in. przez Nordsjó i Zetterberga [84], 
Lacy’ego i Bernsteina [73], Pawlaka et dl. [93], Wachla [127,129], Raicha et al. [98] oraz 
Celkę et al. [12], Z kolei Grebłicki [26-29, 33] oraz Hughes i Westwick [56] rozważają 
identyfikację systemów z pamięcią nieskończoną. Typowym założeniem odnośnie chara­
kterystyki nieliniowej w systemie jest wymaganie, aby miała ona charakter wielomianowy, 
Lacy i Bernstein [73], Korenberg i Hunter [67], Celka et al. [12], zob. też Pajunen [87]. 
Rozważa się także systemy z nieliniowościami modelowanymi za pomocą funkcji odcinkami 
liniowych, Yoros [124], Pupeikis [96], Chen [15], Wigren [137], zob. też Hagenblad 
[44], lub funkcji sklejanych (ang. spline functions'), Hughes i Westwick [56]. Szczególnie 
szeroka, nieparametryczna klasa nieliniowości rozważana jest przez Greblickiego w pracach 
[26-29,33]. W [26] zakłada się tylko, że nieliniowość jest funkcją ściśle monofoniczną 
i posiadającą ograniczoną pochodną, podczas gdy w [28] dopuszczalna jest każda fizycznie 
realizowalna charakterystyka nieliniowa. Dyskutowane w literaturze systemy Wienera 
z reguły są systemami stacjonarnymi. Systemy niestacjonarne (Wienera i Hammersteina) 
omawiane są m.in. przez Nordsjo i Zetterberga [84] oraz Celkę i Colditza [13].

W zależności od miejsca występowania sygnału zakłócającego, systemy Wienera 
podzielić można na trzy grupy: systemy, w których zakłócenie nie występuje, zob. np. Lacy 
i Bernstein [73], systemy z addytywnym sygnałem zakłócającym na wyjściu podsystemu 
dynamicznego (zob. rys. 1.3 i wzory (1.7)—(1.8)), Gómez i Baeyens [22,23], Grebłicki 
[26-29,33] oraz systemy z szumem addytywnym na wyjściu podsystemu statycznego, rys. 
1.5, opisane równaniami

p

Vn =
i=0

Vn = 9 M + Zn,

(1-9)

(i-io)

zob. Pawlak et al. [93], Wachel [129], Hughes i Westwick [56], Bai [1].

Rysunek 1.5: System Wienera z addytywnym sygnałem zakłócającym na wyjściu systemu

Okazuje się, że obecność zakłóceń i miejsce ich występowania w systemie mają istotny 
wpływ na możliwości identyfikacji systemu i postać algorytmów.

Ze względu na powszechność techniki cyfrowej, większość zastosowań oraz opracowa­
nych algorytmów identyfikacji systemów Wienera dotyczy systemów z czasem dyskretnym. 
Zagadnienie identyfikacji systemów z czasem ciągłym dyskutowane jest np. przez Gre­
blickiego w pracy [29]. W kontekście liczby wejść i wyjść typową i najczęściej rozważaną 
w literaturze architekturą systemów Wienera jest architektura typu SISO (ang. Single 
Input, Single Output), zob. np. Billings i Fakhouri [8], Grebłicki [26-29, 33]. Systemy 
Wienera o strukturze MIMO (ang. Multiple Inputs, Multiple Outputs) dyskutowane 
są przez Westwicka i Verhaegena [135] oraz Jeonga et al. [62]. Z kolei algorytmy 
identyfikacji systemów typu MISO (ang. Multiple Inputs, Single Outpuf) omawiane są 
m.in. przez Westwicka i Kearney’ego [134] oraz Zhu [141]. Szczególny rodzaj systemu
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Wienera utworzonego z liniowego obiektu dynamicznego typu SIMO i nieliniowego obiektu 
statycznego typu MISO wykorzystywany jest przez Boyda i Chuę [9] do aproksymacji 
szerokiej klasy systemów nieliniowych, zob. p. 1.3.1.

1.3 Własności aproksymacyjne systemów Hammersteina 
i Wienera

Omówiona w p. 1.1 reprezentacja systemów nieliniowych przy użyciu operatorów Volterry 
z reguły nie jest bezpośrednio wykorzystywana w identyfikacji systemów. Stanowi ona 
jednak podstawę do konstruowania i analizy systemów, o strukturach umożliwiających 
aproksymację lub dokładną reprezentację szerokiej klasy dynamicznych systemów nieli­
niowych. W [115] Shi i Sun rozważają reprezentację systemów nieliniowych za pomocą 
równolegle połączonych systemów o strukturze sandwich. Dowodzą oni, że systemy z cza­
sem dyskretnym, skończoną pamięcią i posiadające reprezentację w postaci skończonego 
szeregu Volterry, mogą być precyzyjnie opisane za pomocą sumy skończonej liczby 
systemów typu sandwich. Z kolei w [68] Korenberg dyskutuje reprezentację systemów 
nieliniowych za pomocą odpowiednio połączonych liniowych obiektów dynamicznych 
z nieliniowymi obiektami statycznymi. W pracy tej wykazano, że każdy system nieliniowy 
o skończonej pamięci z czasem dyskretnym, dla którego istnieje reprezentacja w postaci 
skończonego szeregu Volterry może być dokładnie reprezentowany przez równoległe 
połączenie skończonej liczby systemów Wienera. Powyższy wynik prowadzi więc do 
ogólnego wniosku, że systemy będące równoległym połączeniem systemów Wienera typu 
SISO mogą być wykorzystywane do reprezentacji szerokiej klasy systemów nieliniowych. 
Nieco inne podejście do aproksymacji szerokiej klasy dynamicznych systemów nieliniowych 
proponuje Sandberg w serii prac [107-109]. W [107] autor rozważa koncepcję reprezentacji 
przyczynowych i stacjonarnych systemów nieliniowych z czasem dyskretnym za pomocą 
obiektów o strukturze Hammersteina. Omawiane podejście zakłada, że aproksymowane 
systemy posiadają „pamięć niemal skończoną” {ang. approximately-finite-memory1'). Ten 
sam warunek jest również wykorzystywany przez Parka i Sandberga w pracy [89]. Na 
podstawie prezentowanych w literaturze rezultatów, dla szerokiej klasy systemów nielinio­
wych autorzy formułują następującą, nieformalną tezę: Jeżeli wyjście systemu w dowolnej 
chwili to zależy od dalekiej przeszłości sygnału wejściowego tylko w dowolnie małym 
stopniu, to system może być dowolnie dokładnie aproksymowany przez proste struktury 
takie jak: skończone szeregi Volterry, dynamiczne wielowarstwowe sieci neuronowe lub 
sieci radialne”. Główne rezultaty teoretyczne zawarte w pracy zawierają sformułowanie 
jednolitych warunków koniecznych i wystarczających jakie musi spełniać system aby 
istniała reprezentacja za pomocą wymienionych wyżej struktur. Własności aproksymacyjne 
systemów o strukturze blokowej (w szczególności systemów Hammersteina i Wienera), na 
tle podejść wykorzystujących rozwinięcia w szeregi Volterry i Wienera, dyskutowane są 
również przez Billingsa w przekrojowej pracy [5].

Tłumaczenie autora.

Innym przykładem reprezentacji złożonych systemów nieliniowych jest, oparta na 
własności zanikania pamięci, teoria aproksymacji systemów nieliniowych zaproponowana 
przez Boyda i Chuę w pracy [9]. .
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1.3.1 Aproksymacja dynamicznych systemów nieliniowych za pomocą 
systemów Wienera

Przedstawione przez Boyda i Chuę [9] rezultaty odnoszą się do szerokiej klasy systemów 
stacjonarnych z zanikającą pamięcią (ang. fading memoryf Intuicyjnie system posiada 
zanikającą pamięć, jeżeli dwa sygnały wejściowe, bliskie w teraźniejszości, ale różniące się 
w przeszłości, powodują że odpowiadające im sygnały wyjściowe są odpowiednio bliskie 
w teraźniejszości (ścisłą definicję znaleźć można np. w [9]). Wymaganie, aby system 
posiadał zanikającą pamięć nie jest więc wymaganiem istotnie ograniczającym klasę 
spotykanych w praktyce systemów, a w przypadku systemów liniowych jest równoważne 
z wymaganiem stabilności systemu. Nieco silniejszym ograniczeniem zawężającym klasę 
systemów rozważanych w [9] jest natomiast wymaganie, aby nieliniowość w systemie była 
funkcją analityczną2.

2tj. funkcją, która daje się rozwinąć w szereg Taylora, Fichtenholz [20, t. II, str. 388].

Rezultaty otrzymane w omawianej pracy dotyczą zarówno systemów z czasem ciągłym 
jak i z czasem dyskretnym. W przypadku systemów z czasem dyskretnym, w pracy wyka­
zano, że każdy system spełniający określone powyżej warunki może być aproksymowany 
z dowolną dokładnością przez skończony szereg Volterry, zob. Boyd i Chua [9, Tw. 3]. 
Szereg ten można z kolei zapisać w wygodniejszej, blokowo-zorientowanej postaci jako 
tzw. operator NLMA (ang. Nonlinear Moving-Average) określony wzorem

Un = q(xn,Xn-1>...,Xn-M+l), (1-11)

gdzie {mn} i {yn} są odpowiednio sygnałem wejściowym i wyjściowym, q : RM —> R jest 
wielomianem, a M < oo pewną stałą.
Operator (1-11) można następnie przedstawić w postaci systemu Wienera (typu SISO)

Liniowy 
Podsystem 
Dynamiczny

Nieliniowy 
Podsystem 
Statyczny

Rysunek 1.6: System Wienera jako kaskadowe połączenie liniowego podsystemu dynamicznego 
typu SIMO z nieliniowym podsystemem statycznym typu MISO

utworzonego poprzez kaskadowe połączenie liniowego obiektu dynamicznego typu SIMO 
z nieliniowym obiektem statycznym typu MISO, zob. rys. 1.6. Pomimo stosunkowo 
nietypowej struktury otrzymanego systemu Wienera, powyższy rezultat prowadzi do 
wniosku, że systemy Wienera stanowią ważną klasę obiektów umożliwiających reprezen­
tację szerokiej rodziny nieliniowych systemów dynamicznych.
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1.4 Przykłady zastosowań praktycznych

Nieskomplikowana struktura systemów Wienera oraz fakt występowania w nich jednocze­
śnie pamięci i nieliniowości, powoduje że systemy te znajdują zastosowanie w wielu, często 
niezwiązanych za sobą, dziedzinach nauki. Poniżej omówiono dwie przykładowe aplika­
cje w telekomunikacji (kompensacja zniekształceń nieliniowych w systemach modulacji 
sygnałów) oraz chemii (sterowanie procesem neutralizacji pH). Wymienione zostały także 
zastosowania m.in. w takich dziedzinach jak medycyna, optyka i przetwarzanie obrazów.

1.4.1 Kompensacja zniekształceń nieliniowych w systemach modulacji 
sygnałów typu OFDM

Ze względu na liczne zalety technika transmisji danych OFDM (ang. Orthogonal Freguency 
Dwision Method) jest obecnie powszechnie wykorzystywana m.in. w szerokopasmowych 
systemach cyfrowych, takich jak: systemy telewizji cyfrowej, bezprzewodowy dostęp 
do Internetu, ADSL itp. Transmisja OFDM, polegająca na rozdzieleniu pojedynczego 
strumienia danych (bitów) na wiele podnośnych, oprócz wielu istotnych zalet posiada 
również wady. W szczególności, istotnym problemem jest występowanie zniekształceń 
nieliniowych wprowadzanych przez występujące w systemie wzmacniacze.

W pracy [64] Kang et al. dyskutują technikę adaptacyjnej prekompensacji zniekształceń 
nieliniowych występujących w systemach OFDM i powodowanych przez filtr liniowy 
połączony kaskadowo ze wzmacniaczem dużej mocy HPA (ang. High Power Amplifier). 
W omawianym podejściu statyczny wzmacniacz HPA, poprzedzony obiektem liniowym, 
modelowany jest za pomocą systemu Wienera, a prekompensacja zniekształceń polega 
na zastosowaniu na wejściu, układu o strukturze Hammersteina z odpowiednio dobraną 
pamięcią i nieliniowością. Zadaniem systemu Hammersteina jest takie wstępne przetworze­
nie sygnału wejściowego, aby po przejściu przez nieliniowy element (system Wienera) nie 
występowały zniekształcenia nieliniowe. Proponowany algorytm prekompensacji przedsta­
wiony jest schematycznie na rys. 1.7. W celu dostrojenia układu prekompensującego, 
tj. systemu Hammersteina, dokonywana jest identyfikacja nieznanego systemu Wienera. 
Zadanie to realizowane jest przez Algorytm Adaptacyjny i ustalający parametry modelu 
wzmacniacza na podstawie wielkości błędu en (zob. rys. 1.7). Otrzymane w procesie 
identyfikacji parametry nieznanego systemu Wienera, wraz z informacją o błędzie en (zob. 
rys. 1.7), wykorzystywane są następnie przez Algorytm Adaptacyjny II do wyznaczenia 
charakterystyki nieliniowej i filtru liniowego w systemie Hammersteina.

1.4.2 Proces neutralizacji pH

Istotnym elementem wielu procesów produkcyjnych jest powstawanie ścieków o chara­
kterze kwasowym lub zasadowym. W takich sytuacjach substancje odpadowe poddaje 
się neutralizacji, polegającej na wymieszaniu ścieków z odpowiednią ilością odczynnika 
o przeciwnym pH. Sterowanie omawianym procesem jest jednak zadaniem stosunkowo 
skomplikowanym, ze względu na występującą w nim inercję oraz silne zależności nieliniowe. 
Z tego powodu, przy konstruowaniu algorytmów sterowania wykorzystuje się modele 
nieliniowe omawianego zjawiska. Analiza odpowiednich reakcji chemicznych prowadzi do 
wniosku, że modele o strukturze Wienera szczególnie dobrze reprezentują omawiany proces 
zobojętniania, por. Gómez et al. [23], Norąuay et al. [85], Kalafatis et al. [63], Pajunen 
[87]. Zagadnienie neutralizacji pH omówione zostanie krótko na przykładzie procesu 
rozważanego przez Gómeza et al. w pracy [23]. Do zbiornika, zob. rys. 1.8, dostarczane 
są trzy substancje: wodorotlenek sodu (NaOH), wodorowęglan sodu (NaHCOg) oraz 
kwas azotowy(V) (HNO3). Wielkościami wejściowymi w omawianym procesie są szybkości
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Rysunek 1.7: Schemat prekompensacji zniekształceń nieliniowych wprowadzanych przez wzmac­
niacz dużej mocy w systemie OFDM

przepływu (odpowiednio x-^n, X2,n i ^3,n) wymienionych wyżej związków. Wyjściem yn 
całego systemu jest wartość współczynnika pH substancji wypływającej ze zbiornika. 
Zarówno szybkość przepływu x^n kwasu azotowego jak i poziom cieczy w zbiorniku 
są wielkościami stałymi. Celem procesu neutralizacji jest uzyskanie odpowiedniego pH 
substancji wypływającej ze zbiornika (ścieku) poprzez regulację przepływu xx<n, tj. ilości 
zasady NaOH dostarczanej do zbiornika. Zakłada się przy tym, że szybkość przepływu xz,n 
soli NaHCOs jest nieznana.
Powyższe założenia prowadzą do wniosku, że wejściem i wyjściem rozważanego obiektu 
identyfikacji są odpowiednio xi<n i yn, podczas gdy X2,n jest niedostępnym dla pomiarów 
szumem, a xstn stałym parametrem.

1.4.3 Inne zastosowania

Oprócz omówionych wyżej aplikacji, systemy Wienera wykorzystywane są z powodzeniem 
również w innych dziedzinach. Dalsze przykłady ich zastosowań to m.in.:

• modelowanie procesu destylacji (identyfikacja kolumny destylacyjnej), Zhu [141], 
Pearson i Pottmann [94],

• sterowanie procesem polimeryzacji, Jeong et al. [62],

• zastosowania w neurologii, Marmarelis i Naka [79],

• modelowanie układu wzrokowego człowieka, den Brinker [16],

• modelowanie i analiza zapisu EEG u niemowląt, Celka i Colditz [13],

• zastosowania w naukach biologicznych, Hunter i Korenberg [57],

• zastosowania w optyce, Celka et al. [12],



Rozdział 1. Wprowadzenie - systemy Wienera i ich zastosowania 11

• identyfikacja systemów chaotycznych z czasem ciągłym i dyskretnym, Chen et al. [14], 
Xu et al. [140],

• modelowanie prędkości przepływu wody w rzece, Sbarbaro i Johansen [110],
• usuwanie szumów z obrazów, Sekko et al. [114],

1.5 Systemy Wienera — podsumowanie zastosowań prakty­
cznych i własności teoretycznych

Przedstawiona wyżej krótka charakterystyka rozważanych w literaturze systemów Wie­
nera dowodzi, że obiekty te cieszą się dużym zainteresowaniem badaczy. Ich własności 
teoretyczne oraz prosta konstrukcja powodują, że stanowią one istotny element teorii 
aproksymacji dynamicznych systemów nieliniowych. Jednocześnie znajdują one szereg 
zastosowań praktycznych w wielu często niezwiązanych ze sobą dziedzinach naukowych. 
Powyższe obserwacje w pełni uzasadniają więc celowość konstruowania algorytmów 
identyfikacji systemów Wienera.

1.6 Określenie zakresu tematycznego pracy

W pracy rozważa się zadanie identyfikacji systemów Wienera z czasem dyskretnym i skońc­
zoną pamięcią. Zakłada się, że długość pamięci systemu jest znana. Równocześnie przyj­
muje się założenie, że wiedza wstępna o nieliniowej charakterystyce w systemie jest bardzo 
mała i ma charakter nieparametryczny. Szczególny nacisk kładzie się na opracowanie 
algorytmów umożliwiających identyfikację w przypadku losowych sygnałów wejściowych - 
o rozkładach innych niż rozkład normalny. Proponuje się parametryczno-nieparametryczne 
algorytmy identyfikacji, które umożliwiają identyfikację liniowego i nieliniowego podsys­
temu z dokładnością do nieznanej multiplikatywnej stałej. Dla skonstruowanych metod 
identyfikacji przeprowadza się analizę własności asymptotycznych. Wykonane badania 
eksperymentalne ilustrują natomiast zachowanie się algorytmów dla małej i średniej liczby 
obserwacji.
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Parametryczne—nieparametryczna 
identyfikacja systemów Wienera.
Teza i cele pracy

2.1 Parametryczna i nieparametryczna identyfikacja sys­
temów

Wiedza aprioryczna o strukturze systemu oraz charakterze sygnału wejściowego i zakłóca­
jącego ma kluczowe znaczenie przy doborze właściwej metody identyfikacji, Hasiewicz [49], 
Greblicki [25], Sóderstróm i Stoica [118]. Gdy jest ona na tyle duża, że zadanie identyfikacji 
daje się sprowadzić do wyznaczenia skończonej i znanej liczby parametrów systemu, 
możliwe jest zastosowanie tzw. parametrycznych metod identyfikacji. W wielu przypadkach 
natomiast, dostępna informacja o systemie jest znacznie bardziej ograniczona, a jej 
poszerzenie może być zbyt kosztowne lub niemożliwe. W sytuacjach takich, w zależności od 
charakteru posiadanej informacji wstępnej, konieczne jest zastosowanie tzw. algorytmów 
nieparametrycznych lub parametryczno-nieparametrycznych.

W rozdziale przedstawiona jest krótka charakterystyka parametrycznych, niepara­
metrycznych oraz nowych koncepcyjnie parametryczno-nieparametrycznych algorytmów 
identyfikacji systemów, ze szczególnym uwzględnieniem technik zastosowanych w pracy. 
Ponadto omówione są krótko, dotychczas prezentowane w literaturze, parametryczne 
i nieparametryczne algorytmy identyfikacji systemów Wienera.

2.1.1 Metody parametryczne

W zależności od zakresu posiadanej informacji wstępnej, metody parametryczne opra­
cowane dla celów identyfikacji systemów bazują na metodzie najmniejszych kwadratów, 
metodzie największej wiarygodności lub też metodzie największego prawdopodobieństwa 
a posteriori, Hasiewicz [49], Sóderstróm i Stoica [118], Ljung [76], Mańczak i Nahorski [78], 
Goodwin i Payne [24], Przykładowo, dla statycznego systemu nieliniowego opisanego 
równaniem

9n ~ 9 4" Zn,
gdzie funkcja znana jest z dokładnością do wektora parametrów 9 g Rfc, k < 
oo, a {Zn} jest stacjonarnym białym szumem o zerowej wartości oczekiwanej E {Zn} = 
0 i skończonej wariancji Var {Zn} < oo, metoda najmniejszych kwadratów polega na 

12
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minimalizacji funkcji kryterialnej

N
r(0) = £[2/n-5(^;<> 

n=l

gdzie N jest liczbą par obserwacji (a?n,2/n) wejścia i wyjścia systemu. Dla takiego 
podejścia opracowano szereg uogólnień i modyfikacji, umożliwiających stosowanie metody 
najmniejszych kwadratów w przypadku bardziej złożonych obiektów identyfikacji, zob. np. 
Mzyk [80]. Analizę własności asymptotycznych metody znaleźć można m.in. w Sóderstróm 
i Stoica [118], Van der Vaart [123], Jennrich [61], Wu [139].

2.1.2 Metody nieparametryczne

W odróżnieniu od metod parametrycznych, idea nieparametrycznej identyfikacji systemów 
jest relatywnie nowa, a u jej podstaw leży teoria nieparametrycznego wnioskowania 
statystycznego i w szczególności zagadnienie nieparametrycznej estymacji funkcji regresji. 
Metody nieparametryczne wymagają jedynie niewielkiej informacji wstępnej 
o identyfikowanym systemie i przez to umożliwiają rozwiązanie zadań iden­
tyfikacji będących poza zasięgiem jakichkolwiek podejść parametrycznych. 
Koncepcja omawianych algorytmów polega na znalezieniu zależności pomiędzy szukaną 
charakterystyką nieliniową występującą w systemie, a odpowiednią funkcją regresji dającą 
się w łatwy sposób estymować na podstawie zbioru posiadanych pomiarów. W typowym 
zadaniu nieparametrycznej identyfikacji prostego systemu statycznego zakłada się, że we­
jście {Xn} systemu jest ciągiem i.i.d. zmiennych losowych, a identyfikacja przeprowadzana 
jest na podstawie zbioru par obserwacji wejścia i wyjścia systemu, reprezentowanych przez 
zbiór zmiennych losowych {(A”n, Yi)}n=1. W przypadku statycznego systemu nieliniowego 
opisanego równaniem

Yn — 9 + Kn,
gdzie {Zn} jest losowym szumem o zerowej wartości oczekiwanej, niezależnym od wejścia 
systemu, a charakterystyka g (•) jest całkowicie nieznana, prawdziwa jest następująca 
zależność

5(a;) = F{Yn|Xn = x}. (2.1)

Zadanie identyfikacji nieliniowości g (•) można więc realizować poprzez estymację funkcji 
regresji (wyjścia względem wejścia) występującej w (2.1).

Gwałtowny rozwój nieparametrycznych metod identyfikacji dynamicznych systemów 
o złożonej strukturze zapoczątkowany został opublikowanymi przez Greblickiego i Pawlaka 
rezultatami badań dotyczących nieparametrycznej identyfikacji systemów Hammersteina. 
W [38] wykazali oni, że dla nieliniowej charakterystyki g (•) występującej w takim systemie 
prawdziwa jest następująca zależność

g (z) = aE — x} + b,

gdzie a i b są stałymi, niemożliwymi niestety do wyznaczenia bez dodatkowej informacji 
wstępnej. Powyższy wynik stanowi podstawę konstrukcyjną nieparametrycznych algoryt­
mów identyfikacji również innych systemów blokowo-zorientowanych (ale nie systemów 
Wienera), zob. np. Greblicki i Pawlak [39], Pawlak i Hasiewicz [92], Hasiewicz [50], 
Greblicki [31], Hasiewicz [51], Hasiewicz i Śliwiński [54]. Z kolei Greblicki, w cyklu 
prac [26-28], zastosował podejście nieparametryczne do identyfikacji systemów Wienera.
Uzyskane tam rezultaty omówione będą szerzej w p. 2.2.2.
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Nieparametryczna estymacja funkcji regresji

Koncepcja nieparametrycznej estymacji funkcji regresji, zaproponowana niezależnie przez 
Watsona [133] i Nadarayę [81], wywodzi się od jądrowych estymatorów funkcji gę­
stości prawdopodobieństwa, Parzeń [90]. Dla zmiennej losowej X posiadającej gęstość 
prawdopodobieństwa /(•), jądrowy estymator funkcji gęstości, zbudowany w oparciu 
o W-elementowy zbiór {An}i=1 niezależnych zmiennych losowych o rozkładzie1 /(•), 
przyjmuje postać

'W zastosowaniach praktycznych ciągowi zmiennych losowychfKnjOLj odpowiada zbiór obserwacji 
(pomiarów) {rcn}n=1 będący realizacją ciągu (procesu stochastycznego) {X„}n=1.

1 N y \

gdzie K (•) jest tzw. funkcją jądra, a h = h {N) dodatnim ciągiem liczbowym (tzw. 
parametrem wygładzania, ang. bandwidth, parameter), takim że h —♦ 0 i Nh —> oo przy 
N —» oo. Idea estymacji gęstości f (•) w ustalonym punkcie x polega zatem na przybliżaniu 
wartości f (z) na podstawie danych pomiarowych, które znajdują się odpowiednio blisko 
punktu x, zob. np. Greblicki [25], Hasiewicz [49], Kulczycki [72], Wand i Jones [132], 
Przyjmując odpowiednie założenia odnośnie jądra K (•) można pokazać, że estymator 
fN (•) jest zgodnym estymatorem gęstości / (•) w każdym punkcie ciągłości funkcji / (•). Dla 
estymatora fu (•) uzyskano ponadto szereg wyników teoretycznych określających warunki 
pozwalające otrzymać inne niż punktowa rodzaje zbieżności. Przykładowo, zbieżność 
jednostajna dyskutowana jest przez Silvermana [116], a zbieżność estymatora w metryce 
Li omawiana jest przez Devroye’a i Gyórfiego w [18].

Niech X i Y będą zmiennymi losowymi o łącznej gęstości prawdopodobieństwa 
fxY (•> •) oraz E |K| < oo. Podstawą konstrukcji jądrowego estymatora funkcji regresji

y{x) = E{Y\X — x}

jest obserwacja, że zgodnie z definicją warunkowej wartości oczekiwanej,

mW =
r {x)
Wy w

gdzie r (te) = yf {x, y) dy oraz / {x) jest gęstością prawdopodobieństwa zmiennej 
losowej X. Wykorzystując //-elementowy zbiór {(Xn,yn)}^=1 zmiennych losowych 
o rozkładzie fxy (•,•)> funkcję estymuje się przybliżając funkcje r (•) i f (•) 
w powyższym wyrażeniu. Szczególnie często rozważanymi estymatorami regresji /r(-) 
zbudowanymi w oparciu o dekompozycję (2.3) są estymatory jądrowe {ang. kamei 
estimates) oraz estymatory wykorzystujące rozwinięcia funkcji w szereg ortogonalny 
{ang. orthogonal series estimates). Konstruowane dalej w pracy algorytmy identyfikacji 
systemów Wienera budowane są w oparciu o estymatory jądrowe.

Jądrowe estymatory regresji. Pierwsze prace poświęcone jądrowym estymatorom 
funkcji regresji opublikowano w latach sześćdziesiątych ubiegłego stulecia, Watson [133], 
Nadaraya [81], a gwałtowny wzrost zainteresowania nowo otrzymanymi metodami za­
owocował szeregiem rezultatów rozwijających wstępne wyniki w wielu kierunkach, zob. 
np. Greblicki et al. [35], Devroye [17], Hardle [46], Wand i Jones [132],

Wstawiając estymator (2.2) do mianownika wyrażenia (2.3) oraz konstruując analogi­
czne oszacowanie dla całki w liczniku wyrażenia (2.3), otrzymuje się następujący estymator
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funkcji regresji2 (zob. np. Greblicki [25], Hasiewicz [49], Kulczycki [72])

2 W przypadku gdy licznik i mianownik estymatora są równe zero, zazwyczaj przyjmuje się, że 0/0 = 0 
(por. np. Greblicki i Pawlak [39]). Dla rozważanych w pracy estymatorów z jądrem również zastosujemy 
tę konwencję.

W = (2.4)

gdzie K (•) i h są odpowiednio funkcją jądra i parametrem wygładzania zależnym od 
liczby obserwacji N. Przyjmując odpowiednie założenia o funkcji jądra K (•) i parametrze 
wygładzania h można wykazać, że estymator fiN (•) zbiega do funkcji /z (•) według 
prawdopodobieństwa gdy N —> oo, w każdym punkcie x, w którym jj,(x) i f (s) są 
ciągłe oraz f (z) > 0. Ze względu na nieskomplikowaną budowę i łatwość implementacji, 
estymator jiN (■) stanowi istotny element konstrukcyjny wielu nieparametrycznych algoryt­
mów identyfikacji. Podobnie jak dla jądrowego estymatora gęstości prawdopodobieństwa, 
dla omawianego estymatora funkcji regresji otrzymano szereg wyników teoretycznych 
określających warunki, przy których (•) posiada różne własności asymptotyczne. 
Przykładowo zagadnienie asymptotycznej normalności estymatora (•) dyskutowane 
jest przez Nadarayę [81] i Schustera [113], problematyka optymalnej szybkości zbieżności 
fiN (■) omawiana jest przez Stona w [120], a Mack i Silverman [77] podają warunki, 
przy których zachodzi słaba i mocna jednostajna zgodność (iN (•). W [35] Greblicki et al. 
rozważają z kolei punktową zgodność estymatora fiN (•) w przypadku dowolnego rozkładu 
prawdopodobieństwa zmiennej wejściowej X (ang. distribution-free consistency').

2.1.3 Metody parametryczno—nieparametryczne

Algorytmy parametryczno-nieparametryczne umożliwiają identyfikację w sytuacji, gdy 
wiedza aprioryczna o systemie ma mieszany, parametryczny i nieparametryczny, charakter. 
Typowym przykładem tego rodzaju informacji wstępnej jest posiadanie dużej wiedzy 
(parametrycznej) o jednym z podsystemów i małej (nieparametrycznej) na temat drugiego 
podsystemu.

W kontekście identyfikacji systemów Hammersteina pierwszy tego rodzaju algorytm 
zaproponowany został przez Hasiewicza i Mzyka w [52], Wykorzystując technikę niepara­
metrycznej estymacji funkcji regresji, w pracy skonstruowano estymator wewnętrznego 
sygnału interakcyjnego, który następnie wykorzystano do przeprowadzenia niezależnie 
parametrycznej identyfikacji nieliniowego podsystemu statycznego i liniowego dynami­
cznego (metodą najmniejszych kwadratów).

2.2 Aktualny stan badań na temat identyfikacji systemów 
Wienera

Prezentowane w literaturze metody identyfikacji systemów Wienera klasyfikować można 
według różnych kryteriów. Typowa i często spotykana systematyka opiera się na podziale 
algorytmów ze względu na ilość informacji apriorycznej niezbędnej dla zastosowania 
określonej metody identyfikacji (algorytmy parametryczne i nieparametryczne). Inny, 
właściwy dla systemów Wienera podział, związany jest z charakterem sygnału wejściowego 
oraz szczególnymi własnościami charakterystyki nieliniowej. Ze względu na specyficzną 
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konstrukcję omawianych systemów (w szczególności fakt występowania podsystemu 
liniowego przed podsystemem nieliniowym) zazwyczaj przyjmowanym założeniem jest 
wymaganie, aby sygnał wejściowy systemu miał charakter gaussowski, zob. Billings 
i Fakhouri [6], Bershad et al. [2], Celka et al. [11], Chen [15], Enqvist [19], Greblicki [26-28], 
Westwick i Verhaegen [135]. Algorytmy umożliwiające identyfikację dla niegaussowskich 
sygnałów wejściowych są rzadziej omawiane w literaturze, zob. np. Pawlak et al. [93], Taleb 
et al. [121], Innym charakterystycznym dla systemów Wienera założeniem jest wymaganie, 
aby charakterystyka nieliniowa była funkcją odwracalną, zob. np. Greblicki [26,27], Gómez 
et al. [23], Gómez i Baeyens [22], Raich et al. [98], Sole-Casals et al. [119], Taleb et al. [121], 
Z kolei Greblicki [28], Hughes i Westwick [56], Lacy i Bernstein [73] oraz Wigren [138] 
prezentują algorytmy nie wymagające odwracalności nieznanej charakterystyki.

Fakt występowania nieliniowego obiektu statycznego za liniowym obiektem dynam­
icznym może powodować istotne komplikacje w identyfikacji, w przypadku gdy na wyjściu 
systemu występuje addytywny sygnał zakłócający (por. p. 1.2). Z tego powodu prezen­
towane w literaturze algorytmy dają się klasyfikować również pod kątem „lokalizacji” 
niedostępnych dla pomiaru zakłóceń. Identyfikacja systemów Wienera, w których szum nie 
występuje rozważana jest np. przez Lacy’ego i Bernsteina [73]. Systemy z addytywnym 
sygnałem zakłócającym interakcje, tj. występującym na wyjściu podsystemu dynami­
cznego, dyskutują Gómez i Baeyens [22,23] oraz Greblicki [26-29,33]. Z kolei identyfikacja 
systemów z szumem na wyjściu całego systemu rozważana jest przez Baia [1], Hughesa 
i Westwicka [56], Pawlaka et al. [93] oraz Wachla [129].

W dalszej części rozdziału omówione zostaną prezentowane dotychczas w literaturze 
parametryczne i nieparametryczne metody identyfikacji systemów Wienera i na tym tle 
przedstawiona zostanie ogólna koncepcja proponowanych w pracy nowych algorytmów 
parametryczno-nieparametrycznych.

2.2.1 Parametryczna identyfikacja systemów Wienera

W typowym zadaniu parametrycznej identyfikacji systemów Wienera zakłada się za­
zwyczaj, że podsystem dynamiczny posiada skończoną pamięć (o znanej długości), 
a nieliniowa charakterystyka g (•) jest wielomianem znanego stopnia, Lacy i Bernstein 
[73]. Rzadziej rozważa się ogólniejsze podejścia, w których pamięć systemu nie musi 
być skończona. Przykładowo Norąuay et al. [85] proponują algorytm umożliwiający 
parametryczną identyfikację systemów Wienera z wyjściowym szumem addytywnym (rys. 
1.5) i podsystemem liniowym opisywanym równaniem różnicowym 

Vn
b (r1)
A^-1)

gdzie A (ę-1) = l + aiQ-1 + .. . + akq~k oraz B (ę-1) = 5ig-1 + .. . + biq~l są wielomianami 
znanych stopni k i l, a q~Y jest operatorem przesunięcia wstecz. Nieliniowa charakterystyka 
g (•) jest wielomianem znanego stopnia m,

9 W = 71^ + 72^ + • • '

Zadanie identyfikacji polega na wyznaczeniu współczynników wielomianów A (ę-1), 
B (g^ i g(v), tj- elementów wektora 0q = [ai,..., at, 5i,..., 5;,71;.. - ,72, • • •,7m]T, 
na podstawie zbioru obserwacji wejścia i wyjścia systemu {(Xn, yn)}^=1. W oma­
wianym podejściu, na podstawie dostępnej informacji wstępnej, konstruuje się model 
„wejście-wyjście” systemu zależny od wektorowego parametru 9, 
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oraz funkcję kryterialną zbudowaną w oparciu o zbiór {ęXn,Yn)}n=1,

1 N

n=l

Metoda polega na wyznaczaniu takiego wektora 0 który minimalizuje funkcję kryterialną 
HG)-

Omówiony algorytm jest jedną z wielu parametrycznych metod identyfikacji systemów 
Wienera zbudowanych w oparciu o metodę najmniejszych kwadratów, por. np. Pupeikis 
[97], Lacy i Bernstein [73], Schoukens et al. [111], Bruls et al. [10], Hughes i Westwick 
[56]. Inne podejścia do identyfikacji systemów Wienera proponowane są m.in. przez 
Xu et al. [140] i Chena et al. [14] gdzie zastosowano teorię uczenia sieci neuronowych 
do modelowania nieliniowości w systemie. Podejście częstotliwościowe, umożliwiające 
identyfikację przy deterministycznym pobudzeniu sinusoidalnym, omawiane jest przez Baia 
[1], a zastosowanie metod korelacyjnych proponowane jest przez Billingsa i Fakhouriego 
w [7,8]. W [137] Wigren konstruuje rekurencyjny algorytm, oparty na metodzie błędu 
predykcji, umożliwiający identyfikację systemów z obiektem dynamicznym typu ARMA 
i odcinkami liniowymi nieliniowościami (ang. piecewise linear), zob. też Wigren [138]. 
Podejście rekurencyjne proponowane jest również przez Chena [15] do identyfikacji 
nieciągłych, odcinkami liniowych nieliniowości oraz przez Jacobsa [59], zob. też Yórós [124] 
i Hagenblad [44], Na uwagę zasługują także metody typu blind identification, Taleb et 
al. [121].

Należy podkreślić, że w odróżnieniu od algorytmów nieparametrycznych, dla większości 
omawianych w literaturze metod parametrycznej identyfikacji systemów Wienera nie 
przeprowadzono teoretycznej analizy ich własności asymptotycznych.

2.2.2 Nieparametryczna identyfikacja systemów Wienera

Pierwszy nieparametryczny algorytm identyfikacji systemów Wienera opublikowany został 
w roku 1992 przez Greblickiego w [26]. Zaproponowana metoda, podobnie jak opracowane 
wcześniej nieparametryczne algorytmy identyfikacji systemów Hammersteina (Greblicki 
i Pawlak [38]), bazowała na zależności pomiędzy odpowiednią funkcją regresji, a nieliniową 
charakterystyką występującą w systemie. W pracy wykazano, że dla asymptotycznie 
stabilnego systemu Wienera (1.7)-(1.8) o dowolnej pamięci, funkcja regresji (wejścia 
względem wyjścia) o postaci

n(y) = E{Xn\Yn=y}

jest związana z nieliniową charakterystyką g (•) następującą zależnością

V (y) = cg-1 (y), (2.5)

gdzie c jest stałą zależną od podsystemu liniowego oraz od wariancji sygnału {X„}. 
Otrzymany związek udowodniony został przy założeniu, że sygnał wejściowy {Xn} 
oraz wewnętrzny sygnał zakłócający są stochastycznie niezależnymi ciągami typu i.i.d. 
o rozkładach normalnych z zerowymi wartościami oczekiwanymi. Ponadto, ze względu na 
występowanie w (2.5) funkcji odwrotnej do g (•) przyjęto, że nieliniowa charakterystyka 
jest funkcją ściśle monofoniczną i spełniającą warunek Lipschitza (tzn. (uj) — 5(^2) | < 
a |vi — t>21^, /? > 0, a > 0, i ni, V2 6 R). Przedstawiony algorytm identyfikacji umożliwiał 
poprzez estymację regresji ?7(-) szacowanie odwrotności nieliniowej charakterystyki g(-). 
Do estymacji funkcji 77 (•) wykorzystano estymator jądrowy (por. (2.4)) zbudowany 
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w oparciu o N-elementowy zbiór obserwacji {(Xn, yn)}^=1 pochodzących z systemu,

gdzie K (•) jest nieujemną, ograniczoną i lipschitzowską funkcją jądra, taką że f K (i) dt — 
1 i K (t) t1+£ -* 0 gdy |t| —* oo, dla dowolnego e > 0 oraz h jest parametrem wygładzania 
spełniającym warunki h —> 0, N2h —* oo gdy N —> oo. W pracy wykazano, że estymator 

jes^ zgodnym estymatorem funkcji cg-1 (•) w każdym punkcie y, w którym gęstość 
prawdopodobieństwa wyjścia systemu jest dodatnia. Po przyjęciu dodatkowych założeń 
odnośnie jądra K (•) i gładkości funkcji g (•) określony został również rząd szybkości 
zbieżności estymatora

hN W = cg'1 (y) + OP (aH) >

gdy h ~ IV-1/6, w każdym punkcie y w którym gęstość wyjścia systemu jest dodatnia 
(zob. definicja symbolu Op (•) na str. 87).

Omówiony wyżej estymator r]N (y) został następnie zastosowany do skonstruowania 
nieparametrycznego algorytmu identyfikacji odpowiedzi impulsowej podsystemu dynami­
cznego. Podejście to wykorzystywało obserwację, że dla rozważanego systemu Wienera

cXi = E{Xori(Yi)}. (2.7)

Na podstawie powyższego wzoru zaproponowano estymator zbudowany w oparciu o nowy 
ciąg pomiarów {(Ą>^n)}^i niezależnych od obserwacji wykorzystanych w konstrukcji 
f)N (-). Ze względu na nieznajomość funkcji rj (•) w (2.7), w jej miejsce wstawiono estymator

{'Y Jako estymator cAj przyjęto zatem

i
Xi,N,N' = x'nf)N (Yi+n).

n=l

Zależność (2.5) stanowiła również podstawę kolejnego nieparametrycznego algo­
rytmu identyfikacji systemów Wienera, Greblicki [27]. W pracy tej zaproponowano 
klasę algorytmów ortogonalnych zbudowanych w oparciu o szeregi: trygonometryczny, 
Legendre’a i Hermite’a. Wykazano zgodność estymatorów oraz określono rzędy ich 
szybkości zbieżności. Otrzymane rezultaty wskazują, że dla dwukrotnie różniczkowalnych 
nieliniowości opisany powyżej algorytm jądrowy zbiega szybciej niż algorytmy ortogonalne. 
Niemniej jednak algorytmy ortogonalne cechują się lepszymi własnościami obliczeniowymi, 
zob. [27, str. 283].

Kolejny etap rozwoju teorii nieparametrycznej identyfikacji systemów Wienera polegał 
na opracowaniu metody identyfikacji, nie nakładającej żadnych ograniczeń na nieliniową 
charakterystykę w systemie3, Greblicki [28]. Opracowana metoda stanowiła uogólnienie 
algorytmu z [26] i, podobnie jak omówione wyżej algorytmy, bazowała na zależności 
(2.5). Z tego powodu założenia odnośnie charakteru sygnału wejściowego i zakłóca­
jącego pozostały niezmienione. Nieznaną funkcję regresji rj (y) estymowano przy pomocy 
estymatora (2.6), przyjmując jednak nieco inne założenia odnośnie jądra K (•), zob. 
[28, str. 540]. Wykazano zgodność algorytmu w punktach y, w których nieliniowa 
charakterystyka ^(-) jest odwzorowaniem różnowartościowym oraz w ich otoczeniu 

3 Nieliniowość musiala być jedynie funkcją mierzalną.
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spełnia warunek Lipschitza. Zakładając dodatkowo, że w rozważanych punktach g (•) ma 
niezerową pochodną wykazano, iż estymator posiada szybkość zbieżności Op (N-1/4), (dla 
h ~ IV-1/4). W omawianej pracy zaproponowano również nieparametryczny estymator 
odpowiedzi impulsowej podsystemu dynamicznego. W odróżnieniu od wcześniejszych 
wyników, algorytm nie wymaga stosowania estymatora funkcji regresji g (•) i opiera się 
na spostrzeżeniu, że w rozważanym systemie ciAj = E {JfoP)}, i = 0,1,..., gdzie ci jest 
pewną stałą. Jako estymator elementu ciAj przyjęto więc

1 N
Xi,N = XnYi-yn- (2-8)

n=l

Wykazano, że dla dowolnej nieliniowości g spełniającej warunek E [big (Vi)| < oo, 
gdzie {In} jest sygnałem interakcyjnym w systemie, powyższy estymator jest zgodnym 
estymatorem elementu ciAj, oraz że w przypadku gdy nieliniowość spełnia warunek 
Lipschitza, estymator posiada parametryczną szybkość zbieżności, tj.

ciAj — Xi,N + Op (n 5 ) , i = 0,1, 2,...

Oprócz omówionych powyżej algorytmów umożliwiających identyfikację przy bardzo 
łagodnych założeniach o postaci systemu, podjęto również próby opracowania metod 
nieparametrycznych, pozwalających na identyfikację w przypadku sygnałów wejściowych 
nie będących ciągami typu i.i.d. (ale w dalszym ciągu o charakterze gaussowskim), 
Greblicki [33]. Teorię nieparametrycznej identyfikacji systemów Wienera rozwijano też 
w innych kierunkach. W [30] Greblicki zaproponował rekurencyjną wersję algorytmu, 
a Wachel [125,126] przedstawił algorytm ortogonalny, zbudowany w oparciu o rozwinięcia 
falko we.

2.3 Ogólna charakterystyka proponowanych metod identy­
fikacji

Zarówno parametryczne jak i nieparametryczne metody identyfikacji systemów Wienera 
posiadają ograniczenia, wynikające ze specyficznej konstrukcji rozważanej klasy systemów. 
Omawiane zadanie identyfikacji jest stosunkowo trudne i zazwyczaj wymaga przyjęcia 
silnych założeń odnośnie samego systemu bądź też sygnałów wejściowego i zakłócającego. 
W praktyce, opracowane dotychczas algorytmy parametryczne wymagają dużej wiedzy 
o nieliniowości g (•) oraz występowania gaussowskiego sygnału wejściowego. Jeżeli infor­
macja o nieliniowości jest zbyt mała, możliwe jest zastosowanie algorytmów nieparame­
trycznych. Niestety, w przypadku gdy sygnał wejściowy nie jest sygnałem gaussowskim, 
większość metod parametrycznych oraz metody nieparametryczne nie mogą być stosowane. 
Z tego powodu szczególnie istotne wydaje się opracowanie algorytmów umożliwiających 
identyfikację w sytuacjach, gdy dostępna wiedza aprioryczna nie wystarcza do zastosowa­
nia algorytmów czysto parametrycznych oraz sygnał wejściowy systemu nie jest sygnałem 
gaussowskim. Prezentowane w pracy podejście parametryczno-nieparametryczne ma 
umożliwić identyfikację w przypadku, gdy omówione powyżej parametryczne i niepara­
metryczne metody identyfikacji nie mogą być stosowane wprost. Koniecznym warunkiem 
jest jednak skończoność i znajomość długości pamięci systemu, co jak wynika z rozważań 
w p. 2.2.1 nie jest założeniem nietypowym, podczas gdy informacja o nieliniowości 
w systemie może być bardzo mała. Zakłada się zatem, że dostępna informacja aprioryczna 
o podsystemie dynamicznym ma charakter parametryczny, a wiedza o nieliniowości jest 
nieparametryczna.



Rozdział 2. Parametryczno-nieparametryczna identyfikacja systemów Wienera 20

Zanim przedstawiona zostanie ogólna koncepcja proponowanych metod warto pod­
kreślić, że ze względu na kaskadową budowę systemów Wienera i nieznajomość obu 
podsystemów składowych, identyfikacja może być przeprowadzona tylko z dokładnością 
do nieznanej multiplikatywnej stałej co 0. Łatwo bowiem zauważyć, że dla dowolnego 
sygnału wejściowego, wyjście systemu opisanego równaniami (1.9)-(1.10) będzie iden­
tyczne z wyjściem systemu o odpowiedzi impulsowej {coAj}f=o i nieliniowości 5(-/co). 
Własność powyższa jest niezależna od stosowanej metody identyfikacji i wynika z budowy 
systemu oraz charakteru posiadanej informacji pomiarowej, a w szczególności z faktu, że 
wewnętrzny sygnał interakcyjny nie jest dostępny.

2.3.1 Idea dwuetapowej parametryczno—nieparametrycznej identyfikacji 
systemów Wienera

Proponowane w pracy parametryczno-nieparametryczne metody identyfikacji systemów 
Wienera konstruowane są z wykorzystaniem różnorodnych narzędzi statystyki matema­
tycznej, poczynając od metod korelacyjnych, poprzez metodę najmniejszych kwadratów 
i estymację korelacji rang, a kończąc na zastosowaniu jądrowego estymatora funkcji 
regresji oraz tzw. estymatora uśrednionej pochodnej (ang. auerage derivative estimate). 
Pomimo wielu istotnych różnic, proponowane algorytmy zbudowane są w oparciu 
o wspólny szkielet, którego geneza wywodzi się z opracowanej przez Hasiewicza i Mzyka 
parametryczno-nieparametrycznej metody identyfikacji systemów Hammersteina [52]. 
Należy przy tym podkreślić, że:

Uwaga 2.1 W systemach Hammersteina (pobudzanych sygnałami typu i.i.d.) zarówno 
wejście jak i wyjście nieliniowego podsystemu statycznego jest sygnałem typu i.i.d.; 
w przypadku systemów Wienera natomiast (bez względu na fakt, czy wejście systemu jest 
ciągiem typu i.i.d.), wejście i wyjście nieliniowego podsystemu statycznego jest sygnałem 
skorelowanym, a więc nie jest ciągiem typu i.i.d.

Uwaga 2.2 W systemach Hammersteina przekształceniu nieliniowemu poddawany jest 
dostępny dla obserwacji sygnał wejściowy systemu. W systemach Wienera natomiast, 
argumentem (wejściem') niełiniowości jest nieznany i niedostępny dla pomiarów sygnał 
interakcyjny.

Zawarte w uwagach 2.1 i 2.2 obserwacje prowadzą do wniosku, że zadanie identyfikacji 
systemów Wienera jest zazwyczaj znacznie bardziej skomplikowane niż zadanie identyfi­
kacji systemów Hammersteina.

Podstawą proponowanych w pracy metod jest elementarne spostrzeżenie, że przy 
znajomości podsystemu dynamicznego, niedostępny dla pomiarów sygnał interakcyjny 
{Vn} może być wyznaczony przy użyciu zgromadzonych obserwacji wejścia {Xn} całego 
systemu. Na podstawie zbioru par obserwacji nieliniowa charakterystyka g (•)
może być następnie estymowana metodami nieparametrycznymi. Dla systemu Wienera 
z addytywnym szumem wyjściowym niezależnym od wejścia, zachodzi bowiem związek4

4 Dodatkowo wartość oczekiwana zakłócenia musi być równa zero.

5(v) = F{Yi|V1=v}. (2.9)

W rzeczywistości, opracowane metody identyfikacji nie wymagają tak dużej informacji 
wstępnej dotyczącej części dynamicznej systemu. Wykorzystując pomiary wejścia i wyjścia 
całego systemu można bowiem skonstruować zgodne estymatory parametrów podsystemu 
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dynamicznego i, w konsekwencji, szacować nieznany sygnał {14}. Schemat proponowanych 
dwuetapowych algorytmów identyfikacji daje się przedstawić następująco:
Etap I
Parametryczna identyfikacja odpowiedzi impulsowej {Ai}f=0 podsystemu dynamicznego 
na podstawie dostępnych obserwacji wejścia i wyjścia całego systemu.
Etap Ila
Estymacja sygnału interakcyjnego {Vn} na podstawie dostępnych obserwacji wejścia oraz 
uzyskanego w etapie I estymatora odpowiedzi impulsowej.
Etap Ilb
Nieparametryczna identyfikacja charakterystyki nieliniowej g (•) z wykorzystaniem uzyska­
nego w etapie Ila estymatora sygnału {14} i dostępnych obserwacji wyjścia systemu.

2.4 Teza pracy

Zastosowanie parametryczno-nieparametrycznych metod identyfikacji systemów Wienera 
skonstruowanych w pracy, pozwala na identyfikację liniowych i nieliniowych podsystemów 
składowych, przy założeniu parametrycznej wiedzy o podsystemie dynamicznym i niepara­
metrycznej o podsystemie statycznym. Algorytmy parametryczno-nieparametryczne 
umożliwiają identyfikację w sytuacji, gdy losowy sygnał wejściowy nie jest sygnałem 
gaussowskim, a szum zakłócający działa na wyjście systemu. Ponadto algorytmy nie 
wymagają odwracalności charakterystyki nieliniowej systemu i umożliwiają estymację 
nieliniowości wprost, tj. nie poprzez funkcję odwrotną, łagodząc w ten sposób typowe 
wymagania wstępne i rozszerzając zakres stosowalności metod.

2.5 Cele pracy

Celami pracy są:

• Opracowanie algorytmów identyfikacji systemów Wienera, umożliwiających iden­
tyfikację w przypadku gaussowskich i niegaussowskich sygnałów wejściowych oraz 
odwracalnych i nieodwracalnych charakterystyk nieliniowych.

• Przeprowadzenie analizy teoretycznej algorytmów dotyczącej ich własności asympto­
tycznych.

• Wykonanie badań eksperymentalnych proponowanych metod, celem ilustracji za­
chowania algorytmów dla małej i średniej liczby obserwacji.

2.6 Podstawowe założenia oraz klasyfikacja zadań

W pracy rozważana jest identyfikacja systemów Wienera opisanych równaniami

p
Vn = ^XiXn_i, (2.10)

i=0
Yn = g(Vn) + Zn, (2.11)

gdzie {Xn} i {14} oznaczają odpowiednio sygnał wejściowy i wyjściowy, {Zn} jest 
addytywnym szumem na wyjściu systemu oraz {Vn} jest sygnałem wewnętrznym reprezen-
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tującym wyjście obiektu dynamicznego i zarazem wejście obiektu statycznego5. Skończony 
(p 4- l)-elementowy ciąg {Aj}?=0 jest odpowiedzą impulsową podsystemu dynamicznego. 
Funkcja g (•) reprezentuje nieliniową charakterystykę w systemie.

5 W rozważanym zadaniu identyfikacji sygnały {Xn} , {V„} , {Yn} i {Zn} są. ciągami zmiennych losowych.

2.6.1 Założenia ogólne

Odnośnie klasy identyfikowanych systemów Wienera przyjmuje się następujące założenia 
ogólne, wspólne dla wszystkich rozważanych w pracy metod identyfikacji:

Założenie 2.1 Długość p odpowiedzi impulsowej podsystemu dynamicznego jest skończona 
i znana. Ponadto Ao 0.

Założenie 2.2 Sygnał wejściowy {A„} jest ciągiem i.i.d. zmiennych losowych.

Założenie 2.3 Addytywny szum {Zn} zakłócający wyjście systemu jest ciągiem i.i.d. 
zmiennych losowych o zerowej wartości oczekiwanej i wariancji ^<00 oraz {Zn} i {Xn} 
są stochastycznie niezależne.

Założenie 2.4 Identyfikowany system znajduje się w stanie ustalonym.

2.6.2 Klasyfikacja zadań

Z przedstawionych w p. 2.5 celów pracy wynikają następujące zadania:

• Opracowanie metody identyfikacji dla przypadku gaussowskiego sygnału wejściowego 
oraz dowolnej charakterystyki nieliniowej systemu.

• Opracowanie algorytmów identyfikacji dla przypadku niegaussowskich sygnałów 
wejściowych, dodatkowo przy braku odwracalności charakterystyki nieliniowej.

• Analiza asymptotyczna algorytmów.

• Wykonanie badań symulacyjnych proponowanych metod identyfikacji.



Rozdział 3

Identyfikacja systemów Wienera 
z zastosowaniem metody 
korelacyjnej

W tym rozdziale prezentowana jest metoda identyfikacji systemów Wienera z gaussowskim 
sygnałem wejściowym. Omawiany algorytm bazuje na podejściu zaproponowanym przez 
Greblickiego [28], w którym do nieparametrycznej estymacji odpowiedzi impulsowej 
podsystemu dynamicznego wykorzystano korelacyjną metodę identyfikacji (zob. wzór 
(2.8)). Proponowany tutaj algorytm umożliwia identyfikację systemów z addytywnym 
szumem na wyjściu, pobudzanych gaussowskim sygnałem wejściowym o dowolnej (niez­
nanej) wartości średniej (zakłada się jednak, że w systemie nie występuje wewnętrzny 
sygnał zakłócający). W przeciwieństwie do [28], przedstawiona metoda umożliwia identy­
fikację nieliniowej charakterystyki wprost, tj. nie poprzez funkcję odwrotną.

Wprowadzone w rozdziale estymatory części liniowej, sygnału interakcyjnego i części 
nieliniowej systemu oznaczane będą indeksem „Cr" (od ang. Correlation).

3.1 Sformułowanie problemu

Rozważane zadanie identyfikacji dotyczy klasy systemów Wienera opisywanych równania­
mi (2.10)-(2.11), dla których spełnione są założenia (2.1)-(2.4). Dodatkowo zakładamy, 
że:

Założenie 3.1 Sygnał wejściowy {Xn} ma rozkład normalny N (ja.x, cr^) z nieznaną 
wartością oczekiwaną px * wariancją a^.

Założenie 3.2 Nieliniowa charakterystyka g (•) ograniczona jest przez wielomian, tj. 
I# (v)| < m (w), Vv G R, gdzie m (•) jest wielomianem dowolnego skończonego stopnia.

Założenie 3.3 Rozważana klasa systemów zawiera tylko systemy, dla których 
Cov {X\,Y\} 0.

3.2 Identyfikacja podsystemu dynamicznego metodą korela­
cyjną

Na mocy założenia 3.1 oraz twierdzenia B.l w dodatku B.2 zauważmy najpierw, że sygnał 
{14} jest ciągiem zmiennych losowych o rozkładzie normalnym z wartością oczekiwaną 

23



Rozdział 3. Identyfikacja systemów Wienera z zastosowaniem metody korelacyjnej 24

i wariancją określonymi wzorami
p p

My = Mx 52Xi oraz 52• (3-1)
i=0 i=0

Zatem, zgodnie z twierdzeniem B.2 (zob. dodatek B.2, wzór (B.3)), dla dowolnego i G 
{0,1,... ,p} prawdziwa jest następująca zależność

E {Xo\Vi} = px + p— ^-py), (3.2)

gdzie p jest współczynnikiem korelacji zmiennych losowych Xq i Vi, który wyznaczymy 
znajdując wcześniej kowariancję

Cov {Xo, Vi} = E {(px - Xo) - K)} - E {X0Vi} - pxpv.

Wykorzystując wzory (3.1) oraz definicję sygnału interakcyjnego {Ki} (zob. (2.10)), 
otrzymujemy

p
E{XoVi}—pxpv — XiE {Xq} + px 52 Aj~MxMv

3=0,
p p

— Xiax + Xipx + px 52 X3 “ Mx 52
3=0,3=0

Ostatecznie więc Cov {Xq, Vi} — Xicrx, i wobec tego

p = corr {Xo, V)} = Xi —.(Ty

Wyrażenie (3.2) można teraz zapisać w postaci
2

E{X0\Vi} = px + Xi^-(yi-pv). (3.3)
av

Zauważmy dalej, że

WJ - £?{xo?(yi)} = ^{£;{Xo5(K)|yi}} (3.4)
= E {g (K) E {X0|yź}} = E {YiE {X0|K}} .

Wstawiając (3.3) do (3.4) otrzymujemy kluczowe dla dalszych rozważań równanie

aXi = E{X0Yi}-^, (3.5)

w którym stałe a oraz 0 dane są wzorami
2 

a=~[E {Ki Vj} - pvpY] oraz P = P'xP‘Y’ (3-6)
av

natomiast pY jest wartością oczekiwaną wyjścia systemu, tj. pY = £/{Yi}.
Równanie (3.5) stanowiące podstawę omawianego algorytmu identyfikacji podsystemu 

dynamicznego jest uogólnieniem związku wprowadzonego w [28] na przypadek sygnałów 
wejściowych o niezerowej wartości oczekiwanej (tj. px 0). Jak łatwo zauważyć, dla px — 
0 stała jest równa zero oraz a = ax\<jyE {YiVi}, co odpowiada sytuacji przedstawionej 
w [28].

Wykorzystując powyższe rezultaty możemy przeprowadzić konstrukcję estymatora 
odpowiedzi impulsowej podsystemu dynamicznego.
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3.2.1 Konstrukcja estymatora podsystemu dynamicznego

Zgodnie z obserwacją w p. 2.3, zarówno podsystem dynamiczny jak i element statyczny 
systemu Wienera mogą być zidentyfikowane tylko z dokładnością do multiplikatywnej stałej 
co 0. Z równania (3.5) wynika (zob. założenie 2.1 na str. 22) że a = Aq 1 [E {WoKo} — P], 
co z kolei prowadzi do wniosku, że a 0 wtedy i tylko wtedy, gdy Cov {Xq, Ib} 0. Dla 
rozważanej klasy systemów warunek ten jest spełniony na mocy założenia 3.3, a w celu 
identyfikacji odpowiedzi impulsowej obiektu dynamicznego wystarczy estymować prawą 
stronę zależności (3.5).

Oznaczymy = E{XoYi}. Naturalnym estymatorem wartości 7f jest następująca 
średnia z próby, konstruowana w oparciu o zbiór obserwacji {(Xn,

1 N-i
*fi,N = 77 7 53 ^nYi+n- (3-7)

’ IV — l £' n=l

Drugim, koniecznym do oszacowania elementem równania (3.5), jest stała Ponieważ 
jest ona iloczynem wartości oczekiwanych wejścia i wyjścia systemu, więc odpowiedni 
estymator przyjmie następującą, naturalną, postać

0N = x i^Y^Ni (3-8)

gdzie Pxn, I^yn estymatorami wartości oczekiwanych odpowiednio wejścia i wyjścia 
systemu, tj.

1 i N
= °raZ ^Y,N = yy 53

n=l n=l

W rezultacie, do oszacowania elementów przeskalowanej odpowiedzi impulsowej aXi,i = 
0,1,... ,p, otrzymujemy następujący zbiór estymatorów

* Cr
\n = \n- Pn, ^ = 0, l,...,p, (3.9)

których własności asymptotyczne oraz zachowanie dla małej i średniej liczby obserwacji 
omówione zostaną odpowiednio w p. 3.5.1 i 3.7.

3.3 Estymacja sygnału interakcyjnego

Zauważmy, że odpowiedni estymator sygnału interakcyjnego {Vb} można łatwo uzyskać 
Cr

wstawiając we wzorze (2.10) otrzymane wyżej estymatory {Aj jy}f=0 w miejsce nieznanych, 
prawdziwych współczynników odpowiedzi impulsowej {Aj}?_0, tj.

i=0
(3.10)

Jednak, ze względu na ograniczoną liczbę dostępnych danych pomiarowych (N-par ob­
serwacji wejścia i wyjścia systemu, {(Xn, Yn')}^_1'), estymator może być wyznaczony 
tylko dla n g I, gdzie I jest zbiorem indeksów

I = {p + l,p + 2,..., N} . (3-11)

Z kolei występowanie multiplikatywnej stałej a w równaniu (3.5) oraz jej wpływ na esty- 
matory {A^}^ powoduje, że jest w rzeczywistości estymatorem przeskalowanego 
sygnału interakcyjnego {akb}. Fakt ten udowodniony zostanie w p. 3.5.2.
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3.4 Nieparametryczna identyfikacja nieliniowości

Konstruowanie nieparametrycznego estymatora charakterystyki nieliniowej rozpoczniemy 
od przytoczenia wzoru (2.9) (zob. str. 20), tj. spostrzeżenia, że funkcja g (•) jest równa 
funkcji regresji wyjścia systemu względem wartości sygnału interakcyjnego {14}, tj.

g (u) = E {Kilki = v}. (3.12)

Związek (3.12) prowadzi więc do wniosku, że nieznaną charakterystykę g (•) można 
przybliżać poprzez estymację warunkowej wartości oczekiwanej E {KI Ki — w}. Zakładając 
chwilowo, że sygnał interakcyjny {14} może być mierzony i stosując estymator jądrowy 
rozważanej funkcji regresji zbudowany w oparciu o zbiór otrzymujemy
następujące oszacowanie

gdzie K (•) i h = h (N) są odpowiednio wybraną funkcją jądra i parametrem wygładzania 
zależnym od liczby obserwacji N (por. p. 2.1.2).

Niestety, ze względu na brak możliwości pomiaru sygnału interakcyjnego {14}, 
bezpośrednie zastosowanie estymatora (3.13) nie jest możliwe. Wykorzystując oszacowanie 
(3.10) możemy jednak tak zmodyfikować estymator g^ (•)> aby był on zbudowany 
w oparciu o zbiór Ki)}ne/> gdzie I jest zbiorem indeksów zdefiniowanym w (3.11). 
Wystarczy w tym celu zastosować podstawienie w miejsce Vn. W efekcie otrzymujemy 
następujący estymator nieznanej charakterystyki nieliniowej g (•)

(3-14)

Zauważmy, że w przeciwieństwie do g^ (•) wyznaczenie wartości estymatora g^ (•) jest 
możliwe na podstawie dostępnych par obserwacji wejścia i wyjścia całego systemu. Jednak, 
jak pokazano w p. 3.5.3, ze względu na występowanie stałej a w równaniu (3.5), estymator 
9nT (') (Przy pewnych ogólnych założeniach o funkcji K (•) i parametrze wygładzania h) 
jest zgodnym estymatorem przeskalowanej nieliniowości g (-/a).

3.5 Własności asymptotyczne algorytmu

Analizę własności asymptotycznych omawianego algorytmu identyfikacji rozpoczniemy 
od określenia asymptotyki estymatorów {AiN}f=0 odpowiedzi impulsowej {aAi}?=0 
oraz estymatora V^N sygnału interakcyjnego {14}- Następnie zbadamy asymptotyczne 
zachowanie estymatora g^ (•). Sformułowane zostaną założenia o funkcji jądra K (•) 
i parametrze wygładzenia h, przy których g^r (■) jest zgodnym estymatorem funkcji g (-/a). 
Ponadto, ograniczając klasę dopuszczalnych nieliniowości do klasy funkcji dwukrotnie 
różniczkowalnych, określony zostanie rząd szybkości zbieżności estymatora g^ (■)•
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3.5.1 Analiza zbieżności estymatora odpowiedzi impulsowej podsystemu 
dynamicznego

W celu wykazania zbieżności oraz określenia rzędu szybkości zbieżności estymatorów \ N, 
i = 0,... ,p zbadane zostaną własności asymptotyczne estymatorów składowych yiN, i = 
0,... ,p oraz (zob. wzory (3.7) i (3.8)).
Zgodnie z przyjętymi założeniami o wejściu {Xn} i szumie {Zn}, sygnały {X„} i {Un} 
w stanie ustalonym są stacjonarne. Wynika stąd natychmiast, że

E{li,N}=7i- (3-15)

Wyznaczmy teraz oszacowanie wariancji

Var {^N} = Var J > • (3.16)

Zauważmy w tym celu, że

Var {XnYi+n} < E {X2g2 (Vi+n)} + a2zE {X2} ,

co na mocy założenia 3.2 daje

Var {XnYi+n} < E {X2m2 (Vi+n)} + a2zE {X2} . (3.17)

Oszacowanie (3.17), ze względu na skończoność wszystkich momentów gaussowskich 
zmiennych losowych, prowadzi do wniosku, że Var{XnYipn} < oo dla każdego i € 
{0,1,... ,p} , 1 < n < N — i.
Ze względu na skończoną długość pamięci systemu oraz na podstawie założenia 2.3 
o zakłóceniu wyjściowym, prawdziwa jest następująca własność:

Własność 3.1 Zmienne losowe XnYi+n oraz XkYi+k, (i 6 {0,1,...,p}) są niezależne, 
gdy \k - n| > p.

Wobec powyższego, na mocy Lematu A.l w dodatku A.l, otrzymujemy następujące 
oszacowanie wariancji estymatora N,

4-1 N~i + 1Var {^n} < 7^72 E Var {*nY+n} = -^—.Var {X0Y} •
(A - t) n=1 Uv E

Ostatecznie więc
Var {7^} = O = O (A-1) . (3.18)

Rezultaty (3.15) i (3.18) prowadzą do wniosku, że dla każdego i € {0,1,... ,p},

= Xi + Op (AT1/2) . (3.19)

Zbadamy obecnie asymptotyczne zachowanie estymatora PN. Zgodnie z przyjętymi 
założeniami zauważamy, że

= Px + °p (A-1/2) oraz pY,N = Py + OP (N-1/2) ,

skąd, na mocy lematu B.2 w dodatku B.l, otrzymujemy

Pn = PxPy + OP ^N-1^ . (3.20)

Uzyskane powyżej wyniki dowodzą prawdziwości następującego twierdzenia:
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Twierdzenie 3.1 Jeżeli dla systemu Wienera (2.10)-(2.11) spełnione są założenia (Jr
2.1-2 -4 oraz 3.1-3.3, to dla każdego i G {O,1,...,p} estymator XiN jest zgodnym 
estymatorem przeskalowanego elementu odpowiedzi impulsowej aXi. Ponadto

= aXi + OP ^N-1^ .

3.5.2 Analiza zbieżności estymatora sygnału interakcyjnego

Udowodnimy następujący lemat:

Lemat 3.1 Jeżeli spełnione są założenia twierdzenia 3.1, to dla każdego n € I estymator 
jest zgodnym estymatorem aVn. Ponadto

Vn,N = oWn + OP (A-1/2) . (3.21)

1 chodzi o zbadanie asymptotycznego zachowania ciągu zmiennych losowych un (tu) = supne/
aVn (w) |.

Dowód. Zgodnie z definicją (2.10) sygnału {KJ oraz definicją (3.10) estymatora V„N 
otrzymujemy 

p
-aVn=£ Xn-i - aX^ . (3.22)

i=0
Rezultat (3.21) wynika zatem bezpośrednio z (3.22) i twierdzenia 3.1. ■

W celu wykazania zbieżności estymatora charakterystyki statycznej części nielinio­
wej, oprócz wyniku (3.21), niezbędne jest również określenie asymptotycznej szybkości 
zbieżności jednostajnej estymatorów t° jest zbadanie zachowania się wyrażenia

sup|vn^-avd, (3.23)
nEl '

gdy N —r oo1. W tym celu udowodnimy najpierw następujący lemat pomocniczy:

Lemat 3.2 Niech {£n}^=1 będzie ciągiem zmiennych losowych typu i.i.d. o rozkładzie 
gaussowskim JJ . Wtedy, dla dowolnie małego e > 0, zachodzi

-i sup |en| = op (a"1/2^). (3.24)
V A l<n<N V '

Dowód lematu zamieszczony jest w dodatku A.l.
Uzyskany powyżej wynik pozwala obecnie na określenie asymptotyki wyrażenia (3.23). 
Lemat 3.3 podaje odpowiednie oszacowanie.

Lemat 3.3 Jeżeli spełnione są założenia twierdzenia 3.1, to 
sup\v^N - aUnl = Op (N~^+e\ , 

dla dowolnie małego £ > 0.

Dowód. Niech qn (w) będzie ciągiem zmiennych losowych, takim że qn (w) = 
sup!<n<N \Xn (w)| (lub krócej oN = |Xn|). Zgodnie z (3.22) otrzymujemy

p

sup - aVn < gN V \ - aXi .
ne/ 1 i=o 1 1

Teza twierdzenia wynika więc bezpośrednio z powyższego oszacowania oraz twierdzenia 
3.1 i lematu 3.2. ■
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3.5.3 Analiza zbieżności estymatora charakterystyki nieliniowej

Podamy obecnie warunki, jakie muszą spełniać jądro K (•) oraz parametr wygładzania 
h występujące we wzorze (3.14), aby estymator g^r (•) był zgodnym estymatorem prze- 
skalowanej charakterystyki nieliniowej g(-/a). Ponadto, przyjmując dodatkowe założenia 
o gładkości nieliniowości, zbadamy rząd szybkości zbieżności estymatora (3.14).

Zgodność estymatora charakterystyki nieliniowej

Przyjmiemy następujące założenia odnośnie jądra K (•) i parametru wygładzania h:

Założenie 3.4 Jądro K (•) jest nieujemną funkcją lipschitzowską (tj. 3L < oo, V«i,U2 6 
R, (tą) — K (v2)| < L |ui — U2I), dla której spełnione są następujące warunki: 
supveR K (u) = ko < 00, K (w) dv = 1 oraz lim^j^oo vK (u) = 0.

Założenie 3.5 Ciąg liczbowy h = h (N) jest rzędu N 1/5, tj. h ~ N 1^5.

Poniższe twierdzenie rozstrzyga o zgodności estymatora g^f (•)•

Twierdzenie 3.2 Jeżeli spełnione są założenia 2.1-2.4 oraz 3.1-3.5, to dla systemu 
Wienera (2.10)-(2.11) estymator g^ (u) jest zgodnym estymatorem funkcji g(y/a) 
w każdym punkcie ciągłości g (y/a), tzn.

9Nr W 9 /a) , gdy N-r ca, (3.25)

według prawdopodobieństwa, w każdym punkcie v € R, w którym g(y/a) jest funkcją 
ciągłą.

Dowód. Przyjmiemy następujące oznaczenia

gdzie Nj oznacza liczbę elementów zbioru I ( Nj = #{1} = N—p). Dodatkowo oznaczymy 
r (u) — a~rg (y/a) fy (y/a), gdzie fy (•) jest gęstością prawdopodobieństwa sygnału 
interakcyjnego {14}- Zbieżność w (3.25) zachodzi jeżeli r^ (u) i f^ (u) zbiegają według 
prawdopodobieństwa odpowiednio do r (u) i (y/a) przy N —* 00 w każdym punkcie 
v 6 R, w którym g(v/a) jest funkcją ciągłą. W dowodzie wykorzystamy następującą 
dekompozycję różnicy (y) — r (u)],

^Nr (n) -r(v) = [r^r (u) - rN (u)] + [ńv (v) - r (u)], (3.26)

gdzie

nEl

v - aVn 
h (3.27)

Zgodnie z (3.26) analizę wyrażenia [f^r (u) — r (u)] przeprowadzimy w dwóch etapach. 
Rozpoczniemy od zbadania zbieżności różnicy [77/ (u) — r (u)].

Teoria estymatorów jądrowych dla ciągów zmiennych losowych typu i.i.d. jest do­
brze ugruntowana i szeroko opisana w literaturze (zob. dyskusja w p. 2.1.2). Jednak 
w rozważanym przypadku ciąg {Vn}ne/ nie jest ciągiem typu i.i.d., co powoduje że 
klasyczne rezultaty dotyczące zbieżności nie mogą być bezpośrednio zastosowane do 
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określenia własności granicznych wyrażenia [fjv (w) — r (v)]. Zgodnie z przyjętymi założe­
niami odnośnie sygnału wejściowego i szumu na wyjściu systemu, zachodzą następujące 
równości

i /'OO / _. — rpT \ 1 /*°° / 71 — rr \
E{fN(y)} = - K(——)g(x)fv(x)dx = - K(——\r^dx. (3.28)

J — OO \ ^ / h J —00 \ ^ /

Ponieważ nieliniowa charakterystyka g (•) jest ograniczona przez wielomian (zob. założenie 
3.2) oraz sygnał wejściowy jest gaussowski, to całka (y)\dv jest skończona. Stąd, 
zgodnie z lematem B.3 z dodatku B.3, na mocy założeń 3.4 i 3.5, ma miejsce następująca 
zbieżność

E {tn (v)} —> r (u), gdy N —> 00, (3.29)
w każdym punkcie u G R, w którym g(y/a) jest funkcją ciągłą. Zauważmy dalej, że 
z założenia o skończonej długości pamięci i definicji sygnału {Vn} (zob. wzór 2.10) wynika 
następująca własność (por. własność 3.1):

Własność 3.2 Zmienne losowe Vn i są niezależne jeżeli |n — k\ > p.

Wykorzystując własność 3.2, na mocy lematu A.l z dodatku A.l, prawdziwe jest 
następujące oszacowanie wariancji estymatora (u),

Var{fN(u)}<^Var(YiJK('^^ (3.30)
IN JlL I \ / I

Ze względu na ograniczoność jądra K (•) zauważamy następnie, że element

h-1 Var{YxK ([u - aki] /h)}

występujący w (3.30), jest ograniczony przez (por. Greblicki [25])

+ (3.3!)
h y h j J hj l \ 7 J

Ponowne wykorzystanie założeń 3.1 i 3.2 prowadzi do wniosku, że |g2 (u/a) fy (u/a)| 
dv < 00. Zatem, na mocy lematu B.3 z dodatku B.3, wyrażenie (3.31) dąży do 

gdy N —» 00 w każdym punkcie v G R, w którym g (y/a) jest funkcją ciągłą. Ostatecznie 
więc nierówność (3.30), dla h spełniającego założenie 3.5, daje

Var {fN (u)} - O (n~4^ (3.32)

w każdym punkcie ciągłości funkcji g (y/a).
Zgodnie z rezultatami w (3.29) i (3.32) zachodzi więc zbieżność

[f# (u) — r (u)] —> 0, gdy N —► 00, 

według prawdopodobieństwa, w każdym punkcie v 6 R, w którym g(y/a) jest funkcją 
ciągłą.

Przejdziemy teraz do drugiego etapu dowodu tj. do zbadania asymptotyki wyrażenia
(u) — (u)] w dekompozycji (3.26). Korzystając z faktu, że jądro K (•) spełnia

warunek Lipschitza (zob. zał. 3.4), otrzymujemy

W - (v)| < sup aVn - V^N
nEl ' nG/
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Na mocy lematu A.l w dodatku A zachodzi następujące oszacowanie

n£/
^^{io^a-1)

Wobec tego
^£|Yn| = S{|*i|} + Op

n£l
(3.33)

Uzyskany w lemacie 3.3 rezultat dotyczący zbieżności wyrażenia sup„e/ |aVn — wraz 
z obserwacją (3.33) i założeniem 3.5, prowadzą do wniosku, że

-^(^1 —* o, gdy N —* oo,

według prawdopodobieństwa, w każdym punkcie v g R. Ostatecznie więc

(v) ~* r (v) > gdy N —> oo,

według prawdopodobieństwa, w każdym punkcie u g R, w którym g{y/a) jest funkcją 
ciągłą. Stosując analogiczną argumentację dla estymatora f^r (u) otrzymujemy

fNr(P)->a 1fv{y/a), gdy IV —* oo,

według prawdopodobieństwa, w każdym punkcie v g R, co kończy dowód. ■

Analiza szybkości zbieżności estymatora charakterystyki nieliniowej

Dla określenia rzędu szybkości zbieżności estymatora g^ (•) ograniczymy klasę 
rozważanych systemów Wienera do klasy z nieliniowościami, dla których spełnione są 
założenia (por. Greblicki [26]):

Założenie 3.6 Druga pochodna g" (•) nieliniowej charakterystyki g (•) jest funkcją ciągłą.

Założenie 3.7 Pochodna g' (•) nieliniowości g (•) ograniczona jest przez wielomian, tj. 
istnieje taki wielomian mo (•) dowolnego skończonego stopnia, że \g' (v)| < mo (u), Vu g R.

Przyjmiemy również dodatkowe założenia o funkcji jądra K (•).

Założenie 3.8 Jądro K (•) posiada ciągłą i ograniczoną drugą pochodną K" (•), tj. 
\K" (v)| < k\ < oo, Vv g R. Ponadto vK (u) dv = 0 oraz v2K (u) dv < oo.

Możemy teraz sformułować następujące twierdzenie:

Twierdzenie 3.3 Jeżeli spełnione są założenia twierdzenia 3.2 oraz dodatkowo założenia
3.6 -3.8, to dla systemu Wienera (2.10')-(2.11') zachodzi

9% W = g (y/a) + OP ^2/5^ (3.34)

dla dowolnie małego e > 0, w każdym punkcie u g R.

Dowód twierdzenia zamieszczony jest w dodatku A.l.
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3.6 Podsumowanie wyników teoretycznych

Dla opracowanej w rozdziale metody identyfikacji przeprowadzono analizę podstawowych 
własności asymptotycznych. W szczególności sformułowane zostały łagodne wymagania 
jakie musi spełniać nieliniowa charakterystyka w systemie aby zapewnić zbieżność algo­
rytmu (założenia 3.2 i 3.3). Ponadto, dla estymatorów odpowiedzi impulsowej podsystemu 
dynamicznego udowodniona została parametryczna szybkość zbieżności Op
W przypadku odpowiednio gładkich nieliniowości natomiast (założenia 3.6 i 3.7), pokazano 
że estymator gxr (■) zbiega punktowo do przeskalowanej charakterystyki nieliniowej g (-/a) 
z szybkością Op (y_(2/5^+e).

2 wartość stałej t wyznaczono oddzielnie dla każdej z rozważanych nieliniowości.
3”Noise-to-Signal Ratio” - współczynnik określający poziom szumu względem sygnału użytecznego.

3.7 Wyniki badań eksperymentalnych

Zachowanie się algorytmu dla małej i średniej liczby obserwacji badano eksperymentalnie 
przy użyciu środowiska obliczeniowego MATLAB. Eksperymenty wykonano dla systemów 
Wienera z liniowymi podsystemami dynamicznymi opisanymi odpowiedzią impulsową

i = 0,1,... ,p, (3.35)

gdzie p — 4. Symulacje przeprowadzono dla trzech różnych charakterystyk nieliniowych 
występujących w systemie (zob. rys. 3.1),

51 (w)

52 W

53 (v)

2 arctan (2v),
2 cos(2u), 
W >

(3.36)

gdzie [-J jest funkcją „podłoga”. Sygnał wejściowy systemu wygenerowano z rozkładu 
M {px^ax} z parametrami px — 1 oraz ax = 0,5. Stąd, zgodnie z przeprowadzoną 
wyżej analizą teoretyczną algorytmu, sygnał interakcyjny {Vn} posiadał rozkład normalny 
z wartością oczekiwaną i wariancją (por. wzory (3.1)):

p

Pv ~ ^x ~ 2,28,
i=0

P

av — ax ~ 0,36.
i=0

Przyjmiemy następujące oznaczenia t?! = pv — Sery ~ 0,48 oraz $2 = py + Sery « 4,08. 
Wtedy na mocy reguły „trzech sigm” zachodzi oszacowanie

P{V1 6 [tfi,tf2]}~l. (3.37)

Sygnał zakłócający {Zn} wygenerowano z rozkładu jednostajnego na odcinku [—t, t], gdzie 
r jest stałą2, dobraną tak, aby3 NSR= r/^ = 10% (przy czym 7 = max))g^1^2] g (u)). 
W nieparametrycznym estymatorze gxr (•) zastosowano gaussowską funkcję jądra, tj.

(3.38)

Dla każdego z rozważanych systemów wyznaczono numerycznie wartości multiplikatywnej 
stałej a (zob. wzór. (3.6)). Dokładność metody badano przy użyciu następujących błędów 
empirycznych:
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Rysunek 3.1: Wykorzystane w symulacjach nieliniowości 31, 32 i 93

• Błąd (względny) estymacji odpowiedzi impulsowej podsystemu dynamicznego:

1 R
Err(X; 01) = -^ 100% 4 £ 100%. (3.39)

• Globalny błąd (względny) estymacji charakterystyki nieliniowej:

MISE^a) (3.40)

gdzie (-)^ oznacza z-tą realizację estymatora, ||-|| jest normą euklidesową oraz 7? = 30 jest 
z A (jr \ T

liczbą realizacji estymatora (powtórzeń eksperymentu). Ponadto XN = ( Ao ..., XpN ]
i A — (Ao, • ■ •, ^p)T■ W definicji błędu MISĘ (g^r', a) przyjęto M = 1000. Ciąg {un} jest 
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M-elementowym zbiorem punktów równomiernie rozłożonych na odcinku [t9i,i?2]- Przez 
0 oznaczono odległość miedzy sąsiadującymi ze sobą wyrazami ciągu {vn}.

W kontekście problematyki związanej z identyfikacją systemów nieliniowych (a w szcze­
gólności z identyfikacją systemów Wienera), nieliniowości gi (•), 52 (•) i gs (•) scharaktery­
zować można następująco:

• Funkcja gi (•) jest typowym przykładem charakterystyki często spotykanej w lite­
raturze (zob. np. Raich et al. [98], Enqvist [19], Hasiewicz et al. [53]). Ze względu 
na fakt, że jest ona funkcją ściśle monofoniczną, wielokrotnie różniczkowalną oraz 
nieparzystą, nieliniowość gi (•) spełnia typowe wymagania występujące w identyfika­
cji systemów Wienera (jest np. funkcją odwracalną, por. Greblicki [26]).

• Nieliniowość 92 (•), podobnie jak g^ (•), jest funkcją wielokrotnie różniczkowalną. 
W odróżnieniu od gi (•) charakterystyka 32 (•) jest jednak tylko przedziałami ściśle 
monofoniczna, co powoduje, że jest ona również tylko przedziałami odwracalna. 
Nieliniowość 52 (•) jest funkcją parzystą.

• W odróżnieniu od funkcji gi (•) i g% (■) charakterystyka gz (•) jest funkcją nieciągłą 
(nieciągłości występują w punktach v G N). Ponadto, ze względu na fakt, że gs (•) 
jest odcinkami stała, nie istnieje funkcja odwrotna do gs (•).

W eksperymencie badano zachowanie algorytmu identyfikacji dla nieliniowości g\ (•), 
92 (•) i 93 (•)• Rysunki 3.2 oraz 3.3 (str. 35) przedstawiają odpowiednio błędy empiryczne 
Err{XN \ a) i MISĘ [g^-, a) dla rozważanych charakterystyk, w funkcji liczby obserwacji 
N zmienianej od 25 do 500. Uzyskane rezultaty pokazują, że w przypadku omawianych 
nieliniowości błędy te maleją wraz ze wzrostem liczby obserwacji N. W szczególności, dla ęr
charakterystyk g% (•) i gs (•) wartości błędów Err(AN ; a) są mniejsze od 10%, gdy liczba 
obserwacji N jest większa od 100 (por. rys. 3.2). Dla charakterystyki g^ (•) natomiast, 
dziesięcioprocentowy błąd Ett(\n ; a) osiągany jest dopiero, gdy N = 350. Gorsze 
rezultaty uzyskane w przypadku nieliniowości gi (•) wynikają z faktu, że na odcinku [?9i, ^2] 
(zob. wzór (3.37)) funkcja gi (u) = arctan(2v) jest bliska funkcji stałej (por. rys. 3.1), co 
z kolei powoduje, że kowariancja Cov {Xi, Fi} jest bliska zeru (por. zał. 3.3, str. 23) i tym 
samym bliska zeru jest również multiplikatywna stała a. Omówiony powyżej efekt nie 
jest natomiast widoczny na rysunku 3.3 przedstawiającym błędy estymacji nieliniowości. 
Zastosowana w symulacjach ciągła funkcja jądra (zob. wzór (3.38)) powoduje, że estymator 
g^ (■) lepiej przybliża ciągłą nieliniowość g^ (•) niż nieciągłą gs (•), co kompensuje większy

''Crbłąd estymatora \N w przypadku nieliniowości g^ (■). W szczególności, rysunek 3.3 
prowadzi do wniosku, że bez względu na charakter nieliniowości występującej w systemie, 
błędy empiryczne MISE(g^r;a) osiągają wartości nie większe niż 20%, gdy liczba 
obserwacji N jest większa od 400.

3.8 Podsumowanie i wnioski

Zaproponowana w tym rozdziale metoda identyfikacji dedykowana jest systemom Wie­
nera pobudzanym sygnałami gaussowskimi typu i.i.d. Analiza teoretyczna algorytmu 
pozwala stwierdzić, że dla stosunkowo szerokiej klasy nieliniowości estymatory części 
liniowej i nieliniowej są zgodne, oraz że estymator odpowiedzi impulsowej podsystemu 
dynamicznego posiada optymalny rząd szybkości zbieżności. Dodatkowo, dla dwukrotnie 
różniczkowalnych nieliniowości w systemie, estymator części nieliniowej posiada rząd szyb­
kości zbieżności Op (W~(2/5)+£) tylko nieznacznie gorszy od rzędu szybkości zbieżności 



Rozdział 3. Identyfikacja systemów Wienera z zastosowaniem metody korelacyjnej 35

estymatorów nieparametrycznych osiąganego przy identyfikacji systemów statycznych (tj. 
rzędu Op

Należy podkreślić, że prosta konstrukcja estymatorów {\ ^}f=0 i 9^ (') pozwala na 
łatwą implementację proponowanej metody identyfikacji. Algorytm nie wymaga stosowania 
specjalizowanych procedur numerycznych (np. odwracania macierzy lub poszukiwania 
ekstremum wielowymiarowych funkcji celu) co powoduje, że jego efektywna implementacja 
nie jest skomplikowana.

Rysunek 3.2: Wartości błędów estymacji Err(XN ; a) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości g\, g? i

Rysunek 3.3: Wartości błędów estymacji MISĘ a) w funkcji liczby obserwacji wejścia 
i wyjścia systemu dla nieliniowości g^, g? i gs



Rozdział 4

Identyfikacja systemów Wienera 
z wykorzystaniem metody 
najmniejszych kwadratów

W tym rozdziale przedstawiony jest algorytm identyfikacji systemów Wienera zbudowany 
w oparciu o metodę najmniejszych kwadratów oraz nieparametryczną estymację funkcji 
regresji. W odróżnieniu od metody korelacyjnej algorytm nie wymaga, aby wejście systemu 
było sygnałem gaussowskim. Przyjmuje się, że sygnał {Xn} jest ograniczony oraz ma 
ciągłą funkcję gęstości prawdopodobieństwa, różną od zera w otoczeniu punktu zero. 
Odnośnie nieliniowej charakterystyki g (•) zakłada się jedynie, że jest ona funkcją ciągłą. 
Dopuszcza się w ten sposób zarówno charakterystyki odwracalne, jak i nieodwracalne. 
Wyniki dotyczące metody zostały otrzymane we współpracy z prof. M. Pawlakiem i prof. 
Z. Hasiewiczem, i częściowo opublikowane w [93]. W rozdziale prezentowana jest także 
pokrewna idea metody identyfikacji skonstruowanej w oparciu o koncepcję korelacji 
rangowej.

Wprowadzone estymatory części liniowej, sygnału interakcyjnego i części nieliniowej 
systemu oznaczane będą indeksem „LS” w przypadku algorytmu zbudowanego w oparciu 
o metodę najmniejszych kwadratów (od ang. Least Sąuares) oraz indeksem „RC” 
w przypadku metody rangowej (od ang. Rank Correlation).

4.1 Sformułowanie problemu

Zgodnie z dyskusją w rozdziale 2, system Wienera (2.10)-(2.11) może być zidentyfikowany 
tylko z dokładnością do multiplikatywnej stałej. Stąd, bez utraty ogólności możemy 
przyjąć, że dla rozważnej klasy systemów zachodzi Ao = 1. Dodatkowo przyjmiemy 
następujące założenia o nieliniowości g (•) i gęstości prawdopodobieństwa fx (•) sygnału 
wejściowego {Xn} (zob. Pawlak et al. [93]):

Założenie 4.1 Gęstość prawdopodobieństwa fx(/) jest funkcją ciągłą o ograniczonym 
nośniku [«/,&/] takim, ze af <bf oraz fx (0) > 0.

Założenie 4.2 Nieliniowa charakterystyka g (•) jest ciągła i różna od funkcji stałej.

Uwaga 4.1 Ponieważ stała aj może być dowolnie mała, a stała bf dowolnie duża, 
to występujący w założeniu j.l warunek ograniczonego nośnika funkcji fx(f) nie jest 
z praktycznego punktu widzenia istotny. Przykładami gęstości spełniających założenie j.l 

36
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są m.in.: rozkład jednostajny, rozkład trójkątny, rozkład Epanechnikoua oraz obcięty rozkład 
normałny.

4.2 Parametryczna identyfikacja podsystemu dynamicznego 
z wykorzystaniem metody najmniejszych kwadratów

4.2.1 Koncepcja metody identyfikacji

Proponowany algorytm identyfikacji wymaga wydzielenia ze zbioru obserwacji wejścia 
i wyjścia {(Xn, Yn)}^=1 dwóch podzbiorów Ti i T2 określonych następująco

Tl = {(Xn,Yn)}neh, 
T2 =

gdzie

A = +
I2 = {2p+l + N1,...,N},

oraz Ni oznacza liczbę elementów zbioru Ii, (podobnie przez N2 będziemy oznaczać 
liczność zbioru I2), rys. 4.1. Ponieważ rozważana klasa systemów posiada pamięć o długości 
p, łatwo zauważyć, że elementy zbiorów Ti i T2 są wzajemnie stochastycznie niezależne1. 
Odnośnie liczności zbiorów Ti i T2 założymy, że Ni —* 00 i N2 —» 00, gdy N —> 00, por. 
Pawlak et al. [93].

1 tj. dowolna zmienna losowa ze zbioru Ti nie zależy od zmiennych losowych ze zbioru T2 i odwrotnie.

। P । N\ . । p । N2 i

r~
Ti T2

«Xn,Yn»Nn=i

Rysunek 4.1: Wydzielenie ze zbioru obserwacji {(Xn, Pn)}^=1 stochastycznie niezależnych 
podzbiorów Ti i T2

Koncepcję metody identyfikacji omówimy w dwóch etapach. Zakładając chwilowo, że 
nieliniowa charakterystyka g (•) jest znana, rozpoczniemy od rozważenia zadania identyfi­
kacji polegającego na oszacowaniu odpowiedzi impulsowej podsystemu dynamicznego na 
podstawie obserwacji ze zbioru T2. W celu uproszczenia zapisu wprowadzimy następującą 
notację wektorową. Przez A oznaczymy (p + l)-elementowy wektor utworzony z kolejnych 
wyrazów odpowiedzi impulsowej {Ai}f=0 podsystemu dynamicznego, tj. wektor o postaci

A = (l,Ai,...,Apf,

oraz określimy zbiór A C Rp+1 jako podzbiór przestrzeni Rp+1 utworzony z wektorów 
l — (loth, ■ • • ,lp)T, takich że Iq = 1 oraz li,...,łp < Lo, gdzie Lq < 00 jest pewną 
stałą. Zbiór A jest oczywiście zbiorem zwartym. Jest on bowiem zbiorem domkniętym 
i ograniczonym w przestrzeni skończenie wymiarowej.
Przyjmiemy następujące założenie:
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Założenie 4.3 Wektor A jest elementem zbioru A, tj. A G A.

Następnie, przez analogię do definicji sygnału wewnętrznego {Ki} (zob. wzór (2.10)), dla 
każdego l G A wprowadzimy sygnał {Vn (Z)} zależny od wektorowego parametru Z G A taki, 
że

p
Vn{l2 = ^iXn_i. (4.1)

i=0

Zgodnie ze wzorem (4.1) oraz wzorem (2.10) definiującym sygnał {Ki}, zachodzi

Vn (A) = V„, (4.2)

i tym samym g (Kn (A)) = g Yn)-
Podobieństwo konstrukcji sygnałów {Vn} i {Ki (Z)} oraz ciągłość funkcji Ki (Z) 

powoduje, że jeżeli wektor Z jest bliski2 wektorowi A, to różnica Ki — Ki (Z) jest mała 
(w pewnym sensie probabilistycznym3) i wobec tego dalej, jeżeli g (•) jest funkcją ciągłą, 
to także różnica g (Ki) — 9 (Ki (Z)) będzie odpowiednio mała. Obserwacja ta prowadzi 
do wniosku, że możliwe jest skonstruowanie (w oparciu o g (Ki (Z)) empirycznej funkcji 
kryterialnej Qn2 (Z) określającej dla dowolnego wektora Z G A Jakość przybliżenia” we­
ktora A przez l. W tym celu, na podstawie obserwacji ze zbioru 72) można utworzyć zbiór 
{(Ki (Z) )Ki)}ne/2 i funkcję kryterialną Qn2 (Z) zdefiniować następująco

^2 ® E - 9 Ym (Z))]2 . (4.3)
2 mel2

W rezultacie, wykorzystując kryterium (4.3), za estymator odpowiedzi impulsowej A 
można przyjąć wektor Z, który minimalizuje funkcję Qn2 (•), tj. estymator najmniejszych 
kwadratów o postaci

~ LS ~
^n2 = arg min Qn2 (Z) •

W sytuacji podstawowej dla naszych rozważań, gdy nieliniowa charakterystyka g (•) 
nie jest znana, zastosowanie funkcji kryterialnej Qn2 (Z) wprost nie jest możliwe i w kon­
sekwencji proponowane podejście nie może być bezpośrednio zastosowane. Można jednak 
powyższy schemat zmodyfikować i w miejsce nieznanych wielkości {g (Ki (Z))}ne/2 wstawić 
ich odpowiednie estymatory.

4.2 .2 Konstrukcja pilotowego estymatora charakterystyki nieliniowej

Wprowadzony wyżej sygnał {Ki (Z)} wykorzystamy do zdefiniowania funkcji g(-;Z) : R —> 
R, zależnej od wektorowego parametru Z, takiej że

(4.4)

Zgodnie z obserwacją (4.2) oraz wzorem (2.9) otrzymujemy natychmiast, że g (u; A) — 
g (u). Zauważmy następnie, że dla dowolnego Z G A możliwe jest skonstruowanie

2np. w sensie metryki euklidesowej.
3Koncepcja metody identyfikacji jest w sposób celowy omawiana z pominięciem ścisłych pojęć teorii 

prawdopodobieństwa, a jej precyzyjne sformułowanie oraz własności asymptotyczne zamieszczone są 
w dalszej części rozdziału.
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estymatora funkcji g (u; Z) na podstawie zbioru {(t^ (Z), Y^)}^^. Wykorzystując np. 
nieparametryczny estymator z jądrem (por. rozdział 2, str. 15), otrzymujemy4

4 W dalszej części rozdziału estymator gi^ (v,lj będzie nazywany estymatorem pilotowym.

n&I\(v; Z) =

V ~ Vn (?) 

ho
(4-5)

gdzie Kq (•) i ho — ho (M) są odpowiednio funkcją jądra i parametrem wygładzania 
zależnym od liczby obserwacji Ni. Zauważmy, że dla dowolnego wektora Z e A, ze 
względu na zależność (4.1), estymator (u; Z) może być wyznaczony na podstawie 
dostępnych obserwacji wejścia i wyjścia systemu ze zbioru Tj. Warto również podkreślić, 
że występujące w (4.5) sygnały {kę, (Z)} i {Yn} nie są ciągami typu i.i.d., co uniemożliwia 
bezpośrednie zastosowanie klasycznej teorii do określenia własności asymptotycznych 
estymatora g^ (•;!) (zob. też uwaga 2.1 na str. 20).

Modyfikacja funkcji kryterialnej Qn2 (Z)

W celu skonstruowania estymatora odpowiedzi impulsowej A w przypadku nieznanej 
nieliniowości g(-), zauważmy, że jeżeli (.;Z) jest zgodnym estymatorem funkcji g(-;Z) 
(dla każdego Z G A), to im mniejsza jest odległość wektora Z od A, tym dokładniej g^ (•; Z) 
przybliża nieliniową charakterystykę g (•) = g(-,X). Powyższa obserwacja sugeruje więc, 
aby estymator g^ (•; Z) wstawić w miejsce prawdziwej charakterystyki nieliniowej g (•) we 
wzorze definiującym funkcję kryterialną Qn2 (•). W rezultacie otrzymujemy nowe, w pełni 
empiryczne, kryterium określające jakość „dopasowania” wektora Z do A,

= TT E ® ^)12 • (4-6>
mel2

Wynikający z (4.6) estymator najmniejszych kwadratów odpowiedzi impulsowej A 
określony jest zatem wzorem

* LS
XN = argminieA QN (Z).

"LS *LSJak zaznaczono wyżej, w odróżnieniu od A^, do wyznaczenia estymatora nie jest 
wymagana znajomość nieliniowej charakterystyki g{-)-

4.3 Estymacja sygnału interakcyjnego

Skonstruowany powyżej estymator XN można teraz wykorzystać do estymacji elementów 
sygnału interakcyjnego {k^}. Stosując podejście wprowadzone w rozdziale 3. (por. wzór 
(3.10) na str. 25), otrzymujemy

(4-7)

gdzie X_n = (Xn, ... ,Xn^p)T. Ze względu na ograniczoną liczbę obserwacji wejścia 
i wyjścia systemu, estymator (4.7) może być wyznaczony jedynie dla Vn takich, że n E I = 
{p + l,p + 2,..., IV}, por. wzór (3.11) w rozdziale 3.
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4.4 Nieparametryczna identyfikacja charakterystyki nieli­
niowej

Jako estymator charakterystyki nieliniowej przyjmiemy, podobnie jak w punkcie 4.2.2,
nieparametryczny estymator z jądrem zbudowany tym razem w oparciu o zbiór 
{(Vn,N' YnWnel, tzn.

(4.8)

gdzie K (■) i h = h (N) są odpowiednio funkcją jądra i parametrem wygładzania, 
por. estymatory (3.14) oraz (4.5). Własności asymptotyczne estymatora oraz wyniki 
eksperymentów numerycznych przeprowadzonych dla małej i średniej liczby obserwacji 
przedstawione są odpowiednio w p. 4.5.3 i p. 4.8.

4.5 Własności asymptotyczne algorytmu

Zbadamy obecnie asymptotyczne zachowanie omawianego algorytmu identyfikacji. 
W szczególności skupimy się na wykazaniu zgodności estymatora odpowiedzi impulsowej 
podsystemu dynamicznego i estymatora nieliniowej charakterystyki podsystemu staty­
cznego. W tym celu przyjmiemy następujące założenia odnośnie elementów konstruk­
cyjnych pilotowego estymatora gxY (-;Z):

Założenie 4.4 Jądro Ko (•) jest funkcją ciągłą spełniającą warunek Kq (ar) dx = 1 
oraz taką, że

M[-r,r] (u) < Ko (v) < Mi-ąą (u) , 
gdzie r < R, ki < k? są dowolnymi stałymi.

Założenie 4.5 Parametr wygładzania ho — ho (Ni) spełnia warunki: ho —> 0 oraz Niho —* 
oo gdy Ni —* oo.

W celu zapewnienia identyfikowalności podsystemu dynamicznego przyjmiemy również 
założenie typowe dla metody najmniejszych kwadratów:

Założenie 4.6 Funkcja Q (l) = E {[Yj — g (14 (l); Z)]2} posiada jedyne minimum globałne 

w punkcie A.

Ponieważ w Q (Z) argument l wpływa równocześnie na konstrukcję funkcji g (•; Z) (zob. wzór 
(4.4)) jak i na jej argument Vi (Z) (zob. wzór (4.1)), to automatyczne spełnienie założenia 
4.6 nie jest oczywiste.

Wymagania odnośnie gjjs (•) umożliwiające wykazanie zgodności estymatora charakte­
rystyki nieliniowej zamieszczone są w p. 4.5.3.

5 zob. przypis na stronie 15

4.5.1 Analiza zbieżności estymatora odpowiedzi impulsowej podsystemu 
dy namicz nego

~LSZanim określone zostaną własności asymptotyczne estymatora XN zauważmy, że z za­
łożenia 4.4 wynika ciągłość5 funkcji (Vn (Z) ;Z) względem Z, dla każdego n e Ą. 
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W konsekwencji również Qn jest funkcją ciągłą. Z faktu, że A jest zbiorem zwartym 
* LS wynika następnie, że Qn (•) osiąga wartość najmniejszą w A i wobec tego estymator XN 

jest dobrze określony. Należy jednak podkreślić, że dla skończonej liczby obserwacji N, 
empiryczna funkcja kryterialna Qn (I) może posiadać więcej niż jedno minimum w zbiorze 
A. Założenie 4.6 gwarantuje jednak, że graniczna postać stosowanego kryterium (tj. przy 
N —* oo) posiada jedyne minimum globalne w punkcie A.

Poniższe twierdzenie formułuje warunki, przy których XN zbiega według prawdo­
podobieństwa do wektora odpowiedzi impulsowej A, gdy liczba obserwacji N rośnie do 
nieskończoności.

Twierdzenie 4.1 Jeżeli spełnione są założenia 2.1-2.4 oraz Ą.2-Ą.6, to dla systemu 
LSWienera (2.10j-(2.11) estymator XN jest zgodnym estymatorem wektora odpowiedzi 

impulsowej A podsystemu dynamicznego, tzn.

Apf —» A, gdy N —> oo,

według prawdopodobieństwa.

Pełny dowód, skonstruowany w oparciu o twierdzenie 5.7 w Van der Vaart [123] 
(przytoczone wraz z dowodem w dodatku A.2) zamieszczony jest w pracy Pawlaka et 
al. [93].

4.5.2 Analiza zbieżności estymatora sygnału interakcyjnego

Udowodnimy następujący lemat (por. analiza estymatora w rozdziale 3.):

Lemat 4.1 Jeżeli spełnione są założenia twierdzenia 4-1, to dla każdego n E I,

—> 0, gdy N —> oo, (4-9)

według prawdopodobieństwa.

Dowód. Zgodnie z definicją (4.1) sygnału {Ki} oraz definicją (4.7) estymatora 
otrzymujemy na mocy nierówności Cauchy’ego-Schwarza (zob. dodatek B.4) 

<||a-a^||||xji<c||a-a^|| (4.10)

gdzie C — (p + 1) max {|a/|, \bf |}, zob. zał. 4.1. Rezultat (4.9) wynika zatem bezpośrednio 
z ograniczoności sygnału {Xn} i twierdzenia 4.1. ■

4.5.3 Analiza zbieżności estymatora charakterystyki nieliniowej

Dla wykazania zgodności estymatora charakterystyki nieliniowej niezbędne jest posiadanie 
informacji na temat szybkości zbieżności estymatora odpowiedzi impulsowej części liniowej. 
Jednak przeprowadzona powyżej analiza własności asymptotycznych estymatora XN 
dowodzi jedynie zbieżności algorytmu i nie pozwala na wnioskowanie o jego szybkości 
zbieżności. Należy podkreślić, że określenie rzędu szybkości zbieżności estymatora odpowie­
dzi impulsowej podsystemu dynamicznego jest zagadnieniem skomplikowanym i wymaga 
zastosowania bardziej zaawansowanych narzędzi statystyki matematycznej i teorii praw­
dopodobieństwa, por. np. Ichimura [58].
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Z tego powodu analiza własności teoretycznych algorytmu identyfikacji nieliniowości 
będzie prowadzona przy dodatkowym, ogólnym, założeniu odnośnie szybkości zbieżności 
estymatora części liniowej. Załóżmy mianowicie, że zachodzi

||Ans-a||=opM, (4.u)

gdzie on jest pewnym ciągiem zbieżnym do zera.

Uwaga 4.2 Parametryczno-nieparametryczna konstrukcja estymatora AN (w szczegól­
ności występowanie pilotowego estymatora nieparametrycznego w kryterium średniokwadra- 
towym} może powodować, że XN zbiega do A wolniej niż Op (IV-1/2). W szczególności ciąg 
an może więc przyjąć postać ~ , gdzie y € (0, |).

Odnośnie konstrukcji estymatora gjjs (•) założymy, że:

Założenie 4.7 Jądro K (•) jest nieujemną funkcją lipschitzowską (tj. 3L < oo, Vui,«2 € 
R, \K (tą) — K (^2)1 < L |tą — U2I), dla której spełnione są następujące warunki: 
suPveR K (u) — ^0 < 00, K (u) dv = 1 oraz lim|v|_oo vK (u) = 0.

Założenie 4.8 Parametr wygładzania h = h (N) spełnia warunki

h—+0, Nh—+00, gdy N —> 00, (4-12)

oraz
aN/h2-^0, gdy N —* 00. (4-13)

Uwaga 4.3 Wymaganie (4.12) zawarte w założeniu j.8 spełnione jest w szczególności 
gdy h ~ N~@, gdzie p € (0,1). Z kolei, dla N~y (zob. uwaga j.2), warunek (4-13) 
zachodzi gdy P <7/2.

Zgodność estymatora g^s (•) przy powyższych założeniach oraz założeniach twierdzenia 
4.1 wykazana jest w następującym twierdzeniu:

Twierdzenie 4.2 Jeżeli spełnione są założenia twierdzenia 4-1 oraz założenia 4-7 i 4-8, 
to

9nS W g W , gdy N-^ 00, (4.14)

według prawdopodobieństwa w każdym punkcie v € R, w którym gęstość fy (u) 
wewnętrznego sygnału interakcyjnego {14} jest dodatnia.

Dowód twierdzenia zamieszczony jest w dodatku A.2.

4.6 Identyfikacja systemów Wienera z wykorzystaniem ko­
relacji rangowej

Omówiona powyżej metoda identyfikacji skonstruowana jest w oparciu o kryterium 
średniokwadratowe Qn (•) utworzone na podstawie dostępnych danych pomiarowych oraz 
przy użyciu pilotowego estymatora charakterystyki nieliniowej. Proponowana obecnie 
modyfikacja algorytmu polega na zastosowaniu koncepcji korelacji rangowej, zob. np. 
Koronacki i Mielniczuk [70], do skonstruowania odmiennej funkcji kryterialnej Sn (•)> por. 
Geenens i Simar [21], Podobnie jak w przypadku kryterium Qn (•)> w funkcji Sn (•) również 
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wykorzystuje się pilotowy estymator (4.5) oraz stosuje się wydzielenie ze zbioru obserwacji 
podzbiorów Ti i T2. Rozważany obecnie algorytm umożliwia identyfikację odpowiedzi 
impulsowej podsystemu dynamicznego poprzez minimalizację funkcji Śn (•)• W p. 4.6.2 
i 4.8.2 wprowadzono odpowiednio koncepcję metody oraz omówiono wyniki eksperymen­
tów numerycznych dla małej i średniej liczby obserwacji wejścia i wejścia systemu. Analiza 
teoretyczna własności asymptotycznych algorytmu nie została przeprowadzona.

4.6.1 Parametryczna identyfikacja podsystemu dynamicznego z wyko­
rzystaniem korelacji rangowej

Konstruowanie algorytmu rozpoczniemy od rozważenia uproszczonego zadania identyfika­
cji, w którym na wyjściu systemu nie występuje szum {Zn}. W tej sytuacji mamy

Kn = 5(K). (4-15)

Chwilowo założymy również, że nieliniowa charakterystyka g (•) jest znana, a zadanie 
identyfikacji polega na wyznaczeniu odpowiedzi impulsowej podsystemu dynamicznego 
na podstawie zbioru obserwacji {(Xn, Kn)}n=1.

4.6.2 Koncepcja metody identyfikacji

Idea omawianej metody opiera się na oczywistym spostrzeżeniu, że zgodnie z (4.15),

{# (14) > 9 (V))} wtedy i tylko wtedy, gdy {Yi > Yj} , (4.16)

dla dowolnych i,j G I. Wykorzystując powyższą obserwację wprowadzimy funkcję

s(vi,v2,yi,y2) = 1 [^(*>1) > 5(^2)] 1 [yi > y2] 
+1 [5 (^i) < 5 (^2)] 1 [yi < y2],

gdzie ui,v2<yi,y2 G R oraz 1 [A] oznacza indykator zdarzenia A. W uproszczonym 
zadaniu identyfikacji, tj. przy założeniu braku szumu wyjściowego, s (Vi,Vj,Yi,Yj) = 1 dla 
dowolnych i, j G I. Jednocześnie funkcja s (y (V) ,Vj ,Yi, Yj), gdzie elementy Vi (Z) i Vj (Z) 
zdefiniowane są wzorem (4.1), może przyjąć wartość zero jeżeli Z X. Własność ta pozwala 
na wykorzystanie funkcji s (vi, v2, yi,y2) w konstrukcji kryterium określającego jakość 
przybliżenia wektora A przez dowolny wektor Z G A. Odpowiednia funkcja kryterialna 
zbudowana w oparciu o obserwacje ze zbioru T2 przyjmuje postać (por. Geenens i Simar 
[21]) E sy^y^yy), (4.17)

gdzie czynnik wagowy (^2) oznacza symbol Newtona6 normalizujący funkcję Ąy2 (•) tak, 
aby jej wartości zawarte były w przedziale [0,1], por. Geenens i Simar [21], Han [45] oraz 
współczynnik Kendalla (zob. np. Koronacki i Mielniczuk [70, str. 474]). Jest oczywiste, 
że wartość maksymalną funkcja S^2 (Z) osiąga gdy l — A, bowiem dla każdego i,j G I2 
zachodzi s {y, Vj, Yi, Yj) = 1. Jako estymator odpowiedzi impulsowej A przyjąć więc można

6Symbol Newtona (^2) równy jest liczbie wszystkich kombinacji par elementów ze zbioru

~ RC ~
A^2 = argmax/eA SNi (Z).

Podobnie jak w przypadku Qn2 (■), kryterium §n2 (•) nie może być bezpośrednio użyte gdy 
~ RC

nieliniowość g (•) nie jest znana. W konsekwencji estymator A^2 nie może być wyznaczony. 
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Wykorzystując podejście omówione poprzednio, zastąpimy w §n2 (1) charakterystykę 
nieliniową g (•) pilotowym estymatorem (4.5). W rezultacie otrzymujemy

L x 7 J ijthityj

gdzie

śn! (vi,v2,yi,y2) = Mm (^) > 1 [yi > 2/2]

+1 [9Ni (vi;I) < g^ (^2;!)]1 [yi < 1/2],

i ostatecznie nowy estymator odpowiedzi impulsowej podsystemu dynamicznego przyjmuje 
postać

XN = arg max/eA SN (Z).

4.6.3 Estymacja sygnału interakcyjnego oraz identyfikacja charaktery­
styki nieliniowej

Uzyskany w p. 4.6.2 estymator XN , zgodnie z procedurą z p. 4.3, jest następnie 
wykorzystany do przybliżania sygnału wewnętrznego {W}- Przez analogię do
otrzymujemy

gdzie n E I. Następnie, postępując podobnie jak w przypadku estymatora g^3 (u), do 
identyfikacji nieliniowości można z kolei zastosować estymator

gdzie K (•) i h — h (N) są odpowiednio funkcją jądra i parametrem wygładzania.

4.6.4 Dyskusja algorytmu w kontekście podejścia wykorzystującego 
kryterium średniokwadratowe

Otrzymany powyżej estymator XN , podobnie jak uzyskany w p. 4.2.2 estymator XN , 
jest argumentem, dla którego odpowiednia funkcja celu przyjmuje wartość ekstremalną. 
W przypadku estymatora zbudowanego w oparciu o metodę najmniejszych kwadratów, 
wektor XN minimalizuje kryterium Qn(')> a w przypadku metody wykorzystującej 

RCkoncepcję korelacji rangowej wektor XN jest punktem, w którym Sn (•) przyjmuje wartość 
maksymalną,. Pomimo podobnej konstrukcji obu estymatorów, w przypadku estymatora 
XN w funkcji Sn (1) następuje uśrednianie ( 22) = 5 — N2) elementów losowych,
natomiast w Qn (•) uśrednianych jest tylko wyrazów. Zatem, dla skończonej liczby 

, .. . tRC . , . . .... . ;LSobserwacji, oszacowanie XN może posiadać mniejszą wariancję mz oszacowanie XN .
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4.7 Podsumowanie wyników teoretycznych

W rozdziale przeprowadzono analizę własności asymptotycznych algorytmu zbudowanego 
w oparciu o metodę najmniejszych kwadratów. Wykazano zgodność estymatora części 
liniowej oraz zgodność estymatora nieliniowej charakterystyki g (•) przy założeniu, że znany 
jest rząd szybkości zbieżności estymatora odpowiedzi impulsowej podsystemu dynami­
cznego. Warunki, przy których zachodzi zgodność estymatorów umożliwiają zastosowanie 
metody w przypadku szerokiej klasy sygnałów wejściowych (zob. zał. 4.1) oraz szerokiej 
klasy charakterystyk nieliniowych występujących w systemie (zob. zał. 4.2).

4.8 Wyniki badań eksperymentalnych

Symulacje komputerowe proponowanych w rozdziale algorytmów przeprowadzono dla 
trzech systemów Wienera z nieliniowościami gi (•), g^ (•) i ^3 (•) jak w p. 3.7 (zob. wzory 
(3.36) na str. 32). Podsystem dynamiczny, podobnie jak w rozdziale 3, modelowany 
był za pomocą odpowiedzi impulsowej (3.35). Rozważane systemy pobudzano sygnałami 
o następujących gęstościach prawdopodobieństwa (zob. rys. 4.2):

• rozkład jednostajny

. (4-18)

• rozkład trójkątny

Zx2(x) = / 1-1x1 dla ^H,1] (419)
[ 0 dla x£ [-1,1] ’ 1

• rozkład Epanechnikova

/v-3(a:) = / H1-®2) dla xe[-l,l] (4 20)
/x’3 ( } [ 0 dla x £ [—1,1] ’ ( }

Rysunek 4.2: Wykorzystywane w eksperymentach numerycznych gęstości prawdopodobieństwa 
fx,i, fx,2 i fx,3 sygnału wejściowego {Xn}

Do wyznaczania ekstremów funkcji kryterialnych Qn (•) i Sn (•) zastosowano funkcję 
fminsearch, wchodzącą w skład pakietu obliczeniowego MATLAB i będącą implementacją 
bezgradientowego algorytmu optymalizacji Neldera-Meada (zob. np. Walters et. al [131], 
Lagarias [74] et al.}. Sygnał zakłócający wygenerowano z rozkładu jednostajnego o zerowej
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wartości oczekiwanej i wariancji dobranej tak, aby NSR= 10% (por. p. 3.7 w rozdziale 
3). W symulacjach badano zależność błędów empirycznych Err{-\o) i MISĘ (•;«), 
określonych wzorami (3.39) i (3.40) na str. 33, od liczby obserwacji N wejścia i wyjścia 
systemu (zmienianej od 25 do 500). Zgodnie z założeniami przyjętymi w p. 4.1, mul- 
tiplikatywna stała a występująca we wzorach (3.39) i (3.40) jest równa 1. Podobnie 
jak w rozdziale 3 w definicjach błędów Err{-\Vj i MISĘ przyjęto następujące 
wartości stałych R i M: R = 30, M = 1000. Ponieważ nośnik rozważanych gęstości 
prawdopodobieństwa jest równy [—1,1], więc sygnał wewnętrzny {V^} posiadał gęstość 
prawdopodobieństwa o nośniku [i?i,gdzie « —2.28 oraz ^2 ~ 2.28. W pilotowym 
estymatorze g^ (•;/) (zob. wzór (4.5)) zastosowano funkcję jądra określoną wzorem

Ko (v) = łf U ~-2)2
0

dla v G [—1,1] 
dla v [—1,1]

W estymatorze (■) (zob. wzór (4.8)) wykorzystano natomiast jądro gaussowskie, tj. 
funkcję postaci

u2 
T

K (u) = }_ exp 
v2tt

Wyniki eksperymentów wykonanych dla algorytmu wykorzystującego kryterium średnio- 
kwadratowe i algorytmu zbudowanego w oparciu o ideę korelacji rangowej przedstawiono 
odpowiednio w p. 4.8.1 i p. 4.8.2.

4.8.1 Identyfikacja z wykorzystaniem metody najmniejszych kwadratów

Rysunki 4.3 i 4.4 (zob. str. 48) przedstawiają wyniki eksperymentu, tj. zależności błędów
XN ;1) i MISĘ {g^s-1) od liczby obserwacji N, dla gęstości sygnału wejściowego 

określonej funkcją fx,i (•)• Na rysunkach 4.5, 4.6 (zob. str. 48) oraz 4.7 i 4.8 przedstawiono 
z kolei rezultaty symulacji komputerowych odpowiednio dla gęstości wejścia fx,2 (•) 
oraz fx,3 (•)• Otrzymane wyniki pokazują, że w przypadku systemów z nieliniowościami 
91 (•) i 92 (•) (tj- nieliniowościami spełniającymi założenie 4.2), pobudzanych sygnałami 
o gęstościach fx,i (•)> fx,2 (•) i fx,3 (•)> błędy empiryczne maleją wraz ze wzrostem liczby 
obserwacji N. Podobne wartości błędów uzyskano również dla nieciągłej nieliniowości 
gs (•) nie spełniającej wymagania 4.2 co, nie przesądzając o zbieżności, sugeruje że 
przyjęte w rozdziale założenia dotyczące charakterystyki g (•) są jedynie warunkami 
wystarczającymi i przypuszczalnie mogą być osłabione. Rysunki 4.3, 4.5 oraz 4.7 prowadzą 
ponadto do wniosku, że charakter gęstości wejścia fx (•) nie ma istotnego wpływu na 
zachowanie się estymatorów części liniowej systemu. Przykładowo, dyskutowane błędy ££ \

XN ; 11 przyjmują wartości mniejsze niż 10%, gdy liczba obserwacji N jest większa 
od 250, niezależnie od zastosowanej gęstości wejścia fx (•)• Podobnie, w przypadku błędów 
empirycznych MISĘ [g^3', 1) uzyskane wartości (zob. rys 4.4, 4.6, 4.8) są mniejsze niż 10% 
gdy liczba obserwacji jest większa od 200.

4.8.2 Identyfikacja z wykorzystaniem korelacji rangowej

Rezultaty eksperymetów wykonanych dla algorytmu zbudowanego w oparciu o koncepcję 
korelacji rangowej zamieszczone są na rysunkach 4.9-4.14 (zob. str. 50-51). Rysunki \

xN > 1 i MISĘ (g3C; 1) dla sygnału wejściowego
o gęstości fx,i (•)• Podobnie rysunki 4.11, 4.12 oraz 4.13, 4.14 obrazują wyniki badań 
odpowiednio dla gęstości wejścia fx,2 (•) oraz /x,3(-). Otrzymane wyniki pokazują, że 



Rozdział 4. Identyfikacja systemów Wienera z wykorzystaniem metody najmniejszych kwadratów 47

badane błędy maleją wraz ze wzrostem liczby obserwacji N. W przypadku małej liczby 22^ \
Aw ; 1 i MISE(g*c-,l) są 

jednak większe od błędów uzyskanych w badaniach algorytmu wykorzystującego kryterium 
średniokwadratowe. W konsekwencji, w przypadku małej liczby obserwacji systemu, 
estymatory XN i g^3 (•) posiadają lepsze własności empiryczne od estymatorów 
i gRc (•) niezależnie od charakteru nieliniowości występującej w systemie oraz typu 
gęstości sygnału wejściowego {Xn}. W odróżnieniu od estymatorów XN i gŁs (•) omawiane 
obecnie estymatory XN i g^ (•) są ponadto bardziej wrażliwe na charakter nieliniowości 
występującej w systemie. Otrzymane wyniki (zob. rys. 4.9, 4.11, 4.13) pokazują, że 
najmniejsze wartości błędów estymacji części liniowej systemu uzyskano dla gładkiej 
i monotonicznej nieliniowości gi (■). Nieco większe wartości otrzymano dla gładkiej, 
ale niemonotonicznej nieliniowości 52 (•)• W przypadku odcinkami stałej i nieciągłej 
nieliniowości g^ (•) błędy Err (XN ; 1) przyjmowały natomiast wartości największe.

4.9 Podsumowanie i wnioski

W rozdziale zaprezentowano dwie metody identyfikacji systemów Wienera. Algorytm 
zbudowany w oparciu o metodę najmniejszych kwadratów dedykowany jest systemom 
pobudzanym ograniczonym sygnałem losowym typu i.i.d. o ciągłej funkcji gęstości 
prawdopodobieństwa. Metoda pozwala na identyfikację obiektów, w których nieliniowość 
g (•) spełnia warunek ciągłości. W celu estymacji odpowiedzi impulsowej liniowego 
podsystemu dynamicznego niezbędne jest wyznaczenie minimum nieliniowej funkcji 
kryterialnej <2 w (•)• Z tego powodu praktyczne zastosowanie algorytmu wymaga użycia 
dodatkowych technik optymalizacji nieliniowej. Podobna sytuacja ma miejsce w przypadku 
algorytmu zbudowanego w oparciu o koncepcję korelacji rangowej, w którym estymator 
odpowiedzi impulsowej podsystemu dynamicznego definiowany jest jako maksimum funkcji 
kryterialnej

W rozdziale przeprowadzono analizę teoretyczną własności asymptotycznych estyma- 
C RS T C / \torów XN i gjf (•) oraz omówiono wyniki eksperymentów numerycznych przeprowa- 

dzonych dla algorytmu wykorzystującego kryterium średniokwadratowe oraz algorytmu 
zbudowanego w oparciu o koncepcję korelacji rangowej.
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* LS
Rysunek 4.3: Błędy estymacji Err(XN ; 1) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości gi, g%, ga i gęstości sygnału wejściowego fx,i

Rysunek 4.4: Błędy estymacji MISĘ 1) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości g^, g%, ga i gęstości sygnału wejściowego fx,i

Rysunek 4.5: Błędy estymacji Err(XN ; 1) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości gi, ga, gs i gęstości sygnału wejściowego fx,2
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Rysunek 4.6: Błędy estymacji MISĘ (g^s\ 1) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości g^, g?, g^ i gęstości sygnału wejściowego fx,2

Rysunek 4.7: Błędy estymacji Err(XN ; 1) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości gi, g%, g^ i gęstości sygnału wejściowego fx$

Rysunek 4.8: Błędy estymacji MISĘ {g^s\ 1) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości g\, g?, gs i gęstości sygnału wejściowego fx,3
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Rysunek 4.9: Błędy estymacji Err^XN ; 1) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości 51, 52, 53 i gęstości sygnału wejściowego fx,i

Rysunek 4.10: Błędy estymacji MISĘ 1) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości 51, 52, 53 i gęstości sygnału wejściowego fx,i
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Rysunek 4.11: Błędy estymacji Err(\N ; 1) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości 51, 52, 53 i gęstości sygnału wejściowego fx,2
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Rysunek 4.12: Błędy estymacji MISĘ (gxC; 1) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości 5i, 52, 53 i gęstości sygnału wejściowego fx,2
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Rysunek 4.13: Błędy estymacji Err{\N ; 1) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości 51, 52, 53 i gęstości sygnału wejściowego fx,3

Rysunek 4.14: Błędy estymacji MISĘ 1) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości 51, 52, 53 i gęstości sygnału wejściowego fx,3



Rozdział 5

Identyfikacja systemów Wienera 
metodą uśrednionej pochodnej

W tym rozdziale przedstawiono algorytm identyfikacji systemów Wienera ze skończoną 
pamięcią i niegaussowskim sygnałem wejściowym, skonstruowany w oparciu o koncepcję 
estymacji uśrednionej pochodnej (ang. Average Deriuatiue estimate, zob. np. Powell et 
al. [95], Hardle i Stoker [47]). W odróżnieniu od metody zaproponowanej w rozdziale 4, 
algorytm pozwala na identyfikację podsystemu dynamicznego bez konieczności stosowania 
dodatkowych procedur optymalizacji nieliniowej, a więc jest prostszy pod względem 
obliczeniowym. Nie jest również dokonywana dekompozycja zbioru pomiarów.

Wprowadzone w rozdziale estymatory części liniowej, sygnału interakcyjnego i części 
nieliniowej systemu oznaczane będą indeksem „AD" (od ang. Auerage Derivative), gdy 
gęstość sygnału wejściowego {An} jest a priori znana oraz indeksem „fAD", gdy gęstość 
fx (•) jest nieznana.

5.1 Sformułowanie problemu

Ze względu na charakter zastosowanego podejścia kluczowymi założeniami odnośnie 
konstrukcji systemu i sygnału wejściowego są wymagania dotyczące gładkości nieliniowości 
5 (•) i gęstości prawdopodobieństwa fx (•) sygnału wejściowego {Xn}. Przyjmuje się 
w szczególności, że:

Założenie 5.1 Funkcja gęstości prawdopodobieństwa fx (•) sygnału wejściowego {An} 
posiada ograniczony nośnik, supp fx = [af, 5/], |a/|, 1 < oo oraz ciągłą pochodną f'x (z)
dla x G [af, bf]. Ponadto fx (af) = fx (bf) — 0.

Założenie 5.2 Nieliniowa charakterystyka g (■) posiada ciągłą pochodną g' (■).

5.2 Reprezentacja systemu Wienera za pomocą statycznego 
nieliniowego systemu typu MISO

Niech Xn = (Xn, Xn-i,..., Xn_p)T będzie (p + l)-elementowym wektorem utworzonym 
z kolejnych obserwacji sygnału wejściowego {Xn}. Wykorzystując powyższą notację, 
system Wienera (2.10)-(2.11) można zapisać w równoważnej postaci za pomocą równania

Yn = G(Xn) + Zn, (5.1)

52
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Rysunek 5.1: Reprezentacja systemu Wienera ze skończoną pamięcią przy pomocy statycznego 
systemu nieliniowego o strukturze MISO

gdzie funkcja G : Rp+1 —> R dana jest wzorem

G = g (XTx) x G Rp+1, (5-2)

a wektor A G Rp+1 utworzony jest z elementów odpowiedzi impulsowej podsystemu dy­
namicznego, tj. A = (Aq, Ai,, Ap)r. Reprezentacja (5.1) pozwala przedstawić rozważany 
system Wienera jako statyczny system nieliniowy o strukturze MISO z wektorowym 
wejściem {Xn} i skalarnym wyjściem {Y^}, (zob. rys. 5.1).

Wykorzystując zbiór obserwacji wejścia i wyjścia {(Xn,Yny}n=1 systemu (2.10)—(2.11) 
skonstruujemy analogiczny zbiór pomiarów wejścia i wyjścia, właściwy dla reprezentacji 
(5.1). Zbiór ten przyjmuje postać

TG = {(Xn,Yn)}n&I (5-3)

gdzie I = {p + l,p + 2,..., IV} jest (N — p)-elementowym zbiorem indeksów (standardo­
wo oznaczymy również Np = {1} = N — pf

W celu wprowadzenia koncepcji omawianej metody identyfikacji konieczne jest 
określenie podstawowych własności statystycznych sygnału {Xn}- Zgodnie z przyjętymi 
założeniami odnośnie wejścia {Xn} (zob. założenie 2.2, str. 22), sygnał {Xn} jest ciągiem 
wektorów losowych o tym samym rozkładzie, ale nie jest ciągiem typu i.i.d. Z kolei 
elementy składowe każdego wektora Xn są niezależnymi zmiennymi losowymi o tym samym 
rozkładzie. W konsekwencji prawdziwa jest poniższa własność:

Własność 5.1 Sygnał {Xn} jest ciągiem wektorów losowych o funkcji gęstości praw­
dopodobieństwa fx_: Rp+1 —> R danej wzorem

p+i
/x(30=nM-«))’ £eRp+i>

i=i
(5-4)

gdzie oznacza j-ty element wektora1 x.

1W rozdziale zapis oznaczać będzie ogólnie j-ty element wektora w.

Z założenia 5.1 oraz wzoru (5.4) wynika, że nośnik fi = supp/% funkcji /%(•) jest 
kostką w przestrzeni Rp+1 o bokach [a/,5/]. Ponadto /%(•) jest funkcją różniczkowalną 
w zbiorze fi.
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5.3 Idea metody uśrednionej pochodnej

Oznaczmy przez dc,i {xj i dy (xj następujące pochodne cząstkowe

dG{x) dfx{x)
dc,i (x) = -r----- oraz dfł (z) = — (5.5)dxw dxw

gdzie l G {1,2,... ,p + 1} oraz x e Rp+1. Niech dalej Dg (x) i Df {xj będą odpowiednio 
gradientami funkcji G(-) i fx_ (•) w punkcie x, tj.

Dg^) = (dG,i(x'),dG,2(x'),...,dG,p+i(<x')>)T, 
Df (z) = (d/,i (z), dft2 (z), ■ • •, dftP+1 (z))T .

Na mocy założenia 5.2, gradient Dg (x) jest dobrze określony w każdym punkcie x € 
Rp+1. Podobnie, zgodnie z założeniem 5.1, gradient Df {xj jest dobrze określony w każdym 
punkcie x G Q.

Podstawą omawianej metody identyfikacji jest obserwacja, że na mocy reprezentacji 
(5.2) prawdziwa jest zależność

Dg (z) = g’ (^x} A, (5.6)

gdzie g’ (x) oznacza pochodną funkcji g (•) w punkcie x G R. Wzór (5.6) prowadzi do 
kluczowego dla dalszych rozważań spostrzeżenia:

Wniosek 5.1 Gradient Dg{x) w dowolnym punkcie x € Rp+1 jest proporcjonalny do 
wektora odpowiedzi impulsowej A.

Powyższy wniosek sugeruje więc, aby jako oszacowanie przeskalowanej odpowiedzi 
impulsowej podsystemu dynamicznego przyjąć estymator gradientu Dg (E) w dowolnym, 
ustalonym punkcie x. Zauważmy jednak, że dowolność wyboru argumentu x prowadzi 
w szczególności do następującej równości

Dc^^g' {\TXn)X, nel,

i wobec tego prawdziwa jest również zależność

E{DG (Xn)} = «oA, (5-7)

gdzie kq — E {g1 (ArXn) }. Z równania (5.7) wynika, że wartość oczekiwana E {Dg (Xn)} 
jest proporcjonalna do wektora A ze stałym współczynnikiem proporcjonalności równym 
ko- Zatem identyfikacja podsystemu dynamicznego może być zrealizowana poprzez esty­
mację wyrażenia E {Dg (Xn)}- Niestety, ze względu na nieznajomość nieliniowości g(-), 
gradient Dg również nie jest znany i w konsekwencji bezpośrednie zastosowanie równania 
(5.7) nie jest możliwe. Pewnym rozwiązaniem, umożliwiającym ominięcie wspomnianego 
problemu, jest utworzenie estymatora Dg,n gradientu Dg i wstawienie go do (5.7) 
w miejsce Dg, a następnie estymacja wartości oczekiwanej E (%„)}. Podejście
to posiada jednak istotną wadę w postaci konieczności szacowania gradientu nieznanej, 
wieloargumentowej funkcji G(-).

W celu ominięcia powyższych trudności wprowadzimy do równania (5.6) czynnik 
wagowy fx U), tj.

fx (x) Dg (x) = fx (z) d ^x} A. (5.8)
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Równość (5.8) prowadzi teraz do wniosku, że

E {fx(Xn) DG (Xn)} = K1X, (5-9)

gdzie ^ = E{fx (XJ 9' ^TXn) }.
Dalsze rozważania poprzedzone zostaną następującym lematem (por. lemat 2.1 

w Powell et al. [95]).

Lemat 5.1 Dla nieliniowej charakterystyki g (•) oraz funkcji gęstości prawdopodobieństwa 
fx(/) sygnału wejściowego {Xn} spełniających odpowiednio założenia 5.1 i 5.2, zachodzi 
następujący związek

E {fx (Z„) DG (Xn)} = -2# {Df (Xn) Yn} . (5.10)

Dowód lematu zamieszczony jest w dodatku A.3.
Równość (5.10) pozwala przepisać wzór (5.9) w znacznie dogodniejszej dla dalszych 
rozważań formie, wykorzystującej obok sygnału wejściowego {Xn}, także sygnał wyjściowy 
{^n}, tj.

E{YnDf(Xn)} = KX, (5.11)
gdzie 

k = —ki/2.
W reprezentacji skalarnej zależność (5.11) przyjmuje postać p + 1 równań

E{Yndfii+1(Xj}^KXi, i = 0,l,...,p. (5.12)

Zauważmy teraz, że zgodnie z (5.4) oraz (5.5),
p+i

df,i (x) = f'x ^(i)) JJ fx (x{k^ , i e {1,2, ...,p + l}. (5.13)
k=ljk^i

Zatem, gdy gęstość prawdopodobieństwa fx (•) wejścia {Xn} jest znana, możliwe jest 
bezpośrednie wyznaczenie pochodnych cząstkowych df^^ ,i = 1,2,. ..,p+ 1. W tym 
przypadku zależność (5.12) pozwala więc na prostą estymację elementu «A, poprzez 
estymację odpowiedniej wartości oczekiwanej występującej we wzorze (5.12). Zagadnienie 
to omawiane jest poniżej.

5.4 Identyfikacja systemów Wienera w przypadku znanej 
gęstości prawdopodobieństwa sygnału wejściowego

5.4.1 Konstrukcja estymatora podsystemu dynamicznego

Zakładamy znajomość a priori funkcji gęstości prawdopodobieństwa fx (•) sygnału 
wejściowego {Xn}. Proponowany estymator konstruowany jest w oparciu o zależność 
(5.12). Naturalnym oszacowaniem wartości oczekiwanej po lewej stronie równania (5.12) 
jest średnia z próby utworzona na podstawie elementów zbioru TG, zob. wzór (5.3). 
W rezultacie estymator przeskalowanej odpowiedzi impulsowej {kAi}^ przyjmuje postać

E Y-df^ , 2 = o, 1,... ,p, (5.14)
1 nel

gdzie funkcja (•) określona jest wzorem (5.13).
ęAD ......Własności asymptotyczne estymatorów A^^yZ = 0,1,...,p oraz wyniki badan em- 

pirycznych dla małej i umiarkowanej liczby obserwacji omówiono odpowiednio w p. 5.4.4 
i p. 5.7.
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5.4.2 Estymacja sygnału interakcyjnego

Estymator przeskalowanego sygnału interakcyjnego {kI4} konstruowany jest podobnie jak 
w przypadku metod omawianych w rozdziałach 3. i 4. Obecnie jest on zatem zbudowany 

-ad .w oparciu o estymatory Aż N, z = 0,1,... ,p i wyraża się wzorem

V^ = ^^Xn-i. (5.15)

1=0

Vn = ^Xn.

Ze względu na ograniczoną liczbę dostępnych obserwacji wejścia i wyjścia systemu, 
estymator (5.15) może być wyznaczony dla n E I.

5.4.3 Nieparametryczna identyfikacja charakterystyki nieliniowej

W przypadku znanej gęstości prawdopodobieństwa fx (•) sygnału wejściowego, estymator 
przeskalowanej charakterystyki nieliniowej g^/tP) konstruowany jest w oparciu o ciąg 
oszacowań {VA^}nei sygnału {kVn} i określony jest wzorem

(5.16)

Podobnie jak w przypadku estymatorów g^r (•) i g^s (•) (zob. rozdziały 3. i 4.), K (•) 
i h = h (Al) są odpowiednio funkcją jądra i parametrem wygładzania zależnym od liczby 
obserwacji N.

5.4.4 Własności asymptotyczne algorytmu

Analiza zbieżności estymatora odpowiedzi impulsowej podsystemu dynami­
cznego

ADPoniższe twierdzenie podaje warunki, przy których estymator Aż N dany wzorem (5.14) 
zbiega do nXi,i — 0,1,..., p według prawdopodobieństwa z szybkością zbieżności rzędu 
Op (Al-1/2), tj. z szybkością typową dla metod parametrycznych.

Twierdzenie 5.1 Jeżeli dla systemu Wienera (2.10)-(2.11) spełnione są założenia AD
2.1- 2.Ą oraz 5.1, 5.2, to dla każdego i G {0,1, 2,... ,p} estymator Xi N zbiega według 
prawdopodobieństwa do K,Xi, gdy N —r oo. Ponadto

+ Op (ai-1/2) .

Dowód. Niech r]in = Yndfti+1 (Xn) dla każdego n E I oraz i € {0,1,...,p}. Wtedy 
? AD ’ . ’estymator Aź N można zapisać w postaci

\AD _ 'W
*i,N — n 7 rli,n-

nEl
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Ponieważ {Xn} i {Zn} są stacjonarnymi ciągami zmiennych losowych, więc {r?iin}ne/ 
również jest stacjonarnym ciągiem zmiennych losowych. Zatem wartość oczekiwana 
estymatora (5.14) jest równa

e{x^} =E{riitn} = E{Yndfs+1 (Xn)},

co na mocy równości (5.12) prowadzi do wniosku, że 

j \,N ( —

tzn. Aj N jest nieobciążonym estymatorem elementu K,Xi. Analizę wariancji estymatora Xi N 
rozpoczniemy od wykazania że V ar n} < oo. Ze względu na stochastyczną niezależność 
sygnału {X„} i szumu {Zn} oraz wzór (5.1), prawdziwa jest następująca nierówność

Var {tj^} < 2V ar {G (AJ dfti+1 (AJ} + 2a2Var {df<i+1 • (5.17)

Ponieważ G (•) jest funkcją ciągłą (na mocy założenia 5.2), a dfti+i (•) jest funkcją 
ograniczoną (na mocy założenia 5.1), więc wariancje po prawej stronie nierówności (5.17) są 
skończone i tym samym Var {r]in} < oo. Zauważmy następnie, że dla dowolnych indeksów 
k,l G I zmienne losowe tj, k i ; są stochastycznie niezależne, jeżeli \k — l\ > p. Zatem na 
mocy lematu A.l w dodatku A.l otrzymujemy

V ar ^^Var {^.n}

i wobec tego
Par {At;£} = O (AT1)

co kończy dowód twierdzenia. ■

Analiza zbieżności estymatora sygnału interakcyjnego

Poniższy lemat podaje warunki, przy których estymator zbiega według prawdopodo­
bieństwa do EVn.

Lemat 5.2 Jeżeli spełnione są założenia twierdzenia 5.1, to dla każdego n G I estymator 
jest zgodnym estymatorem elementunVn oraz

+ Op (AT1/2) (5.18)

Ponadto
sup \v^ - = Op (n-1'2 (5.19)
nEl '

Dowód. Rząd szybkości zbieżności w (5.18) wynika z definicji sygnału {Pn}, postaci 
* * AD

estymatora oraz z szybkości zbieżności XiN do kX{, (por. dowód lematu 3.1 na str.
28). Odnośnie (5.19) zauważmy, że

sup Vn^ -KVnl<
nEl

sup |An| 5 Aj N - K,Xi 
l<n<N 1

Zgodnie z założeniem 5.1, ciąg {sup1<n<N | An|} jest ograniczony z prawdopodobieństwem 
jeden, bowiem P {sup1<n<N |An| > co£ = 0, gdzie cq — max{|ay|, |5/|}. Zbieżność (5.19) 
wynika zatem z twierdzenia 5.1. ■
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Analiza zbieżności estymatora charakterystyki nieliniowej

Postępując podobnie jak w rozdziale 3. przyjmiemy następujące założenia o funkcji jądra 
K (•) i parametrze wygładzania h w estymatorze nieliniowości g^D (•):

Założenie 5.3 Jądro K (■) jest nieujemną funkcją lipschitzowską {tj. 3L < oo, Vią,V2 € 
R, | A (tą) — K (v2)| < L |vi — dla której spełnione są następujące warunki: 
suPveR K = k0 <oo, f^ K (u) dv = 1 oraz lim^i-^ vK (u) = 0.

Założenie 5.4 Zbieżny do zera ciąg liczbowy h = h(Nj posiada rząd szybkości zbieżności 
N-1/5, tj. h^N-1/5.

Warunki przy których estymator g^D (•) zbiega do przeskalowanej nieliniowości g{-/&) 
podaje poniższe twierdzenie.

Twierdzenie 5.2 Jeżeli spełnione są założenia twierdzenia 5.1 oraz założenia 5.3, 5-4 
i dodatkowo k 0, to dla systemu Wienera (2.10)-(2.11) zachodzi zbieżność

9nD O7) 9 (^/k) gdy N oo (5.20)

według prawdopodobieństwa, w każdym punkcie v G R, w którym fy (v/k) > 0.

Dowód. Dowód przebiega analogicznie do dowodu twierdzenia 3.2. Przyjmiemy standar­
dowe oznaczenia

oraz r (y) = k-1 g (y/k) fy (y/k). Zbieżność w (5.20) zachodzi jeżeli f^D (v) i f^ty) 
zbiegają według prawdopodobieństwa odpowiednio do r (u) i n~1fv (v/k) przy N —* oo, 
w każdym punkcie u G R, w którym fy {y/n) > 0. Wykorzystując dekompozycję

f^D M — r{v) = [f^D (u) - rN (u)] + [?W (u) - r (u)], (5.21)

gdzie
v — kV„ 

h

zbadamy asymptotykę wyrażeń [r^0 (v) — (v)] i [fw (n) — r (u)]. Rozpoczniemy od
określenia zachowania asymptotycznego różnicy [fn (u) — r (u)]. Zauważmy, że

1 /*OO / 1 / ni _  'T \
E{rN(y)} = -j K(—-—J g(x) fy (x)dx = - j K r {x) dx. (5.22)

Ponieważ nieliniowa charakterystyka g (•) jest funkcją ciągłą (założenie 5.2) oraz gęstość 
sygnału wejściowego ma ograniczony nośnik (założenie 5.1), to całka |r (u)| dv jest 
skończona. Stąd, zgodnie z lematem B.3 z dodatku B.3, na mocy założeń 5.3 i 5.4 ma 
miejsce następująca zbieżność

E {r^ (v)} —> r (v), gdy N —> oo, (5.23)

w każdym punkcie v G R.
Wykorzystując własność 3.2 z rozdziału 3, na mocy lematu A.l z dodatku A.l zauważamy 
następnie, że prawdziwe jest następujące oszacowanie wariancji estymatora r^ (u),

V ar {fy (v)}
p+1 ( (v - «Vi\ 1£ —)/■ (5.24)
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Ze względu na ograniczoność jądra K widzimy dalej, że element h 1Var{y'iK'(['y — 
kVl]//i)} występujący w (5.24) jest ograniczony przez

^EL2^k(—

2por. dowód tw. 3.2

, ^^Z rr f r/ fV ~ kV1 

+ ~irE]K l-~ (5.25)

Ponowne wykorzystanie założeń 5.1 i 5.2 prowadzi do wniosku, że g2 (u/k) fy (y/n) dv 
< oo. Zatem, na mocy lematu B.3 z dodatku B.3, wyrażenie (5.25) dąży do

2&o f (v\ r 2 (v\ . 21----fv -) \g - ) + crz < oo K \K/ L \K/ J

gdy N —> oo w każdym punkcie u G R. Ostatecznie więc nierówność (5.24), dla h 
spełniającego założenie 5.4, daje 

Var {r^ (u)} = O (n 4/5^ (5.26)

w każdym punkcie v 6 R.
Zgodnie z rezultatami w (5.23) i (5.26) zachodzi więc zbieżność

[rjv (u) — r (u)] —> 0, gdy N —> oo,

według prawdopodobieństwa, w każdym punkcie v G R.
Przejdziemy teraz do określenia asymptotyki wyrażenia [rj^° (u) — r^ (u)] • Korzystając 
z faktu, że jądro K (•) spełnia warunek Lipschitza (zob. zał. 5.3), otrzymujemy

1^ (u)_ (u)l sup Uk -
n€l ’

-t-y

Uzyskany w lemacie 5.2 rezultat dotyczący szybkości zbieżności wyrażenia (5.19) wraz 
ze zbieżnością2 (1/7V/) |yn| — {1^11} + Op (N-1/2} i założeniem 5.4 prowadzi do 
wniosku, że

1^ (v) - ?N (v)| -> 0, gdy N -> oo,

według prawdopodobieństwa w każdym punkcie v 6 R. Ostatecznie więc

r^D (w) ~* r(w)> gdy N —♦ oo,

według prawdopodobieństwa w każdym punkcie u G R.
Stosując analogiczną argumentację dla estymatora f^D (u) otrzymujemy zbieżność 

/nd (^) > gdy N -* oo,

według prawdopodobieństwa, w każdym punkcie v G R, co kończy dowód twierdzenia. ■

Uwaga 5.1 Należy zwrócić uwagę, że spełnienie wymagania k 0 zawartego w twierdze­
niu 5.2 zależy zarówno od postaci gęstości wejścia systemu jak i typu charakterystyki 
nieliniowej g (■). Stąd jego ogólna dyskusja jest zadaniem trudnym. Niemniej jednak warto 
zauważyć, że niezależnie od typu gęstości fx(/) spełniającej założenie 5.1, warunek ten 
zachodzi dla klasy ściśle monofonicznych charakterystyk nieliniowych.
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Analiza rzędu szybkości zbieżności estymatora charakterystyki nieliniowej

Określimy teraz rząd szybkości zbieżności estymatora gxD (•). W tym celu ograniczymy 
klasę rozważanych systemów do systemów z dwukrotnie różniczkowalnymi nieliniowościa- 
mi (por. założenia u Greblickiego [26]). Założymy również, że fx (•) jest funkcją dwukrotnie 
różniczkowalną.

Założenie 5.5 Drugie pochodne g" (•) i fx (■) nieliniowej charakterystyki g (•) i gęstości 
fx (•) s9 funkcjami ciągłymi.

Założenie 5.6 Pochodna g' (•) nieliniowości g (•) jest ograniczona przez wielomian, tj. 
istnieje taki wielomian mą (•) dowolnego skończonego stopnia, że \g' (u)| < mo (u), Vu G R.

Przyjmiemy również dodatkowe założenia o funkcji jądra K (•).

Założenie 5.7 Jądro K (•) posiada ciągłą i ograniczoną drugą pochodną K" (•), tj. \K" (u)| 
< ki < oo, Vu G R. Ponadto vK (u) dv = 0 oraz v2K (u) dv < oo.

Można teraz sformułować następujące twierdzenie.

Twierdzenie 5.3 Jeżeli spełnione są założenia twierdzenia 5.2 oraz dodatkowo założenia 
5.5-5.7, to dla systemu Wienera (2.10)-(2.11) zachodzi zbieżność

9nD W = 9 ^/tP) + Op , (5.27)

w każdym punkcie v G R, w którym fy (v/k) > 0.

Dowód twierdzenia zamieszczony jest w dodatku A.3.

5.5 Zastosowanie metody uśrednionej pochodnej w przy­
padku nieznanej gęstości prawdopodobieństwa sygnału 
wejściowego

Omówiony powyżej algorytm umożliwia identyfikację systemów Wienera przy założeniu, że 
gęstość prawdopodobieństwa sygnału wejściowego jest a priori znana. Obecnie rozważana 
modyfikacja metody pozwala z kolei na identyfikację, w przypadku gdy funkcja fx (•) nie 
jest dana a priori, lecz wiadomo jedynie, że fx (•) oraz jej pochodna /'(•) są funkcjami 
jednostajnie ciągłymi (zob. np. Rudin [99]).

Szczególnie wygodnym kryterium przy rozstrzyganiu czy dana funkcja spełnia warunek 
jednostajnej ciągłości jest twierdzenie, w myśl którego każda funkcja ciągła w zbiorze 
zwartym jest w tym zbiorze jednostajnie ciągła, Rudin [99, str. 78]. Wynika stąd 
bezpośrednio, że na mocy założenia 5.1 fx (•) oraz fx (•) są jednostajnie ciągłe.

5.5.1 Konstrukcja estymatora podsystemu dynamicznego

Proponowana wersja algorytmu polega na zastąpieniu funkcji fx (•) występującej we AD
wzorze definiującym estymatory XiN, i = 0,1,...,p, (zob. wzory (5.13) i (5.14)) przez 
estymator fx,N (•) gęstości prawdopodobieństwa sygnału {Xn} zbudowany w oparciu 
o dostępne obserwacje wejścia systemu {A’n}n=1. Podobnie, w miejsce pochodnej fx (•) 
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wstawiony zostanie estymator <j)x n (’) również utworzony na podstawie obserwacji wejścia 
systemu. W rezultacie, zmodyfikowany estymator przeskalowanej odpowiedzi impulsowej 

przyjmie postać

\,N ~ y ' Yndf,i+1,N (fLn) > $ ~ 0, 1, • • ■ , P, (5.28)
1 nei

gdzie i = 0,1,..., p, są estymatorami pochodnych cząstkowych dpi, i =
0,1,... ,p, i wyrażają się wzorem, por. (5.13),

p+1
df,i,N (x) = fx,N (ąo) II ^X,N (^(») ’ = 0, 1, . . . , p.

W rozważanym podejściu fx,N (•) jest estymatorem jądrowym (por. wzór (2.2) w rozdziale 
2) postaci

fx,N (x) = £ Ki (, (5.29)
riiJy L—' \ rii )

n=l z

gdzie hy = hi (IV) i Ki (■) są odpowiednio parametrem wygładzania i funkcją jądra. W celu 
oszacowania pochodnej f'x (•) wykorzystamy zaproponowany przez Bhattacharya’ę [4] 
estymator fxx (') określony następująco

(5.30)
n=l x z

W przypadku gdy fx,N (•) i <ix n (’) posiadają te same jądra oraz ciągi hi, h2 są równe, 
łatwo zauważyć, że zachodzi zależność

h / x dfx,x (z)
te ■

W rezultacie, w celu oszacowania pochodnej gęstości wejścia, wykorzystano estymator 
będący pochodną klasycznego, jądrowego estymatora gęstości prawdopodobieństwa.

Uwaga 5.2 Do estymacji funkcji gęstości prawdopodobieństwa fx (•) oraz jej pochodnej 
f'x (•) można zastosować również inne podejścia. Przykładowo, w pracy [36] Greblicki 
i Pawlak wprowadzają estymatory funkcji gęstości i jej pochodnych konstruowane przy 
użyciu szeregów Hermite’a.

5.5.2 Estymacja sygnału interakcyjnego i charakterystyki nieliniowej

Przez analogię do (5.15) wprowadzimy następujący estymator przeskalowanego sygnału 
interakcyjnego {kV^},

p
W? =

i=0
Podobnie, postępując tak jak w p. 5.4.3, estymator przeskalowanej charakterystyki 
nieliniowej g(-/fP) przyjmie postać

9fNAD^

gdzie K (•) i h = h(N) są odpowiednio funkcją jądra i parametrem wygładzania.
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5.5.3 Własności asymptotyczne algorytmu

Prezentowana obecnie analiza teoretyczna algorytmu dotyczy zbieżności metody. W celu 
wykazania zgodności estymatora g^D (•) konieczna jest jednak znajomość szybkości zbie- 

fAD
żności estymatora Xi N . Ze względu na trudności analityczne związane z określeniem 

* fADszybkości zbieżności estymatora Aź N , będziemy dalej zakładać, że szybkość zbieżności 
fAD

XiN jest znana. Analogiczne podejście zastosowano w rozdziale 4.

Analiza zgodności estymatora odpowiedzi impulsowej podsystemu dynami­
cznego

fAD
Określimy warunki, przy których XiN , i = 0,... ,p są zgodnymi estymatorami elementów 
przeskalowanej odpowiedzi impulsowej nXi,i = 0,... ,p. W tym celu zauważmy najpierw, 
że wobec zbieżności badanego wcześniej estymatora Aj N (zob. twierdzenie 5.1), nierówność

\~fAD I ItfAD -4PI I

1^ fAD ~ AD I
XiN ~ —* 0, gdy N —> oo,

według prawdopodobieństwa.
Zauważmy, że

~ \,7v| l^i| l^ńi+l.NC^n) “ dfti+1 (Xn)| ,
1 nel

i dlatego
~ < sup |d/,i+i,N (z) - dfti+1 (z)| — V |Kn|

1 1 zen1 1 A/ '— nEl

W celu wykazania zgodności estymatora wystarczy zatem dowieść, że

sup 4i+i|W(z)-d/,j+i(i) -»0, gdy A —> oo, (5.31)
1 1

według prawdopodobieństwa. Na mocy lematu A.2 w dodatku A.3 zbieżność w (5.31) 
zachodzi, jeżeli estymatory fx,N i (j>x,N W zbiegają, jednostajnie według prawdopodo­
bieństwa odpowiednio do fx (x) i f'x (m), gdy N —* oo, tzn.

sup \fx,N - fx (^)l -> 0, gdy A —> oo, (5.32)

oraz
sup \(j>x n (z) - fx Wl °, gdy A —> oo, (5.33)
zeR1 1

według prawdopodobieństwa.
Zagadnienie zbieżności jednostajnej jądrowych estymatorów gęstości prawdopodobień­

stwa dyskutowane jest między innymi przez Nadaraya’ę [81], Schustera [112], Van Ryzina 
[106] i Silvermana [116]. Zgodnie z wynikami otrzymanymi np. przez Silvermana, zbieżność 
w (5.32) i (5.33) zachodzi jeżeli funkcje fx (•) i fx (•) są jednostajnie ciągłe oraz jądra 
Ai (•), A2 (•) i parametry wygładzania hi, h? spełniają odpowiednio założenia twierdzeń 
A i C w [116].

Uzyskane powyżej rezultaty dowodzą prawdziwości następującego twierdzenia:
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Twierdzenie 5.4 Jeżeli dla systemu Wienera (2.10)-(2.11) spełnione są założenia twier­
dzenia 5.1 oraz zachodzą zbieżności (5.32) i (5.33), to dla każdego i G {O,... ,p} estymator 
? fAD

n Jes^ zgodnym estymatorem elementu K,Xi, tzn.
fAD

XiN ~gdy N —► OO, 

według prawdopodobieństwa.

Analiza zgodności estymatora odpowiedzi impulsowej podsystemu dynami­
cznego

Postępując tak jak w przypadku estymatora gjf (•) (zob. rozdział 4 i wzór (4.11)), 
założymy że zachodzi

= oP
, . -.fAD (-fAD -fAD -fAD\T ..... ,

gdzie XN = I X0N , A17V ..., Xp N I oraz a^ jest pewnym ciągiem zbieżnym do zera.

Odnośnie konstrukcji estymatora gjfD (•) założymy, że:

Założenie 5.8 Jądro K (•) jest nieujemną funkcją lipschitzowską (tj. UL < oo, V«i, «2 € 
R, \K (vi) — K (v2)| < L |ui — r>21), dla której spełnione są następujące warunki:
sup„GR K (u) — ko < oo, K (u) dv = 1 oraz lim|„|_łOO vK (u) = 0.

Założenie 5.9 Parametr wygładzania h = h(N) spełnia warunki

h —» 0, Nh —» oo, gdy N —> oo,

oraz
ax/h2~>0, gdy N —> oo.

Zgodność estymatora gjfD (•) przy powyższych założeniach oraz założeniach twierdzenia 
5.4, wykazana jest w następującym twierdzeniu:

Twierdzenie 5.5 Jeżeli spełnione są założenia twierdzenia 5.j, założenia 5.8, 5.9, oraz 
/t 0, to

9fNAD M 9 (?/«), gdy N —y oo,
według prawdopodobieństwa w każdym punkcie v G R, w którym fy (p/n) > 0.

Dowód twierdzenia przebiega analogicznie do dowodu twierdzenia 4.2 w rozdziale 4.

5.6 Podsumowanie wyników teoretycznych

W rozdziale omówiono algorytm identyfikacji systemów Wienera zbudowany w oparciu 
o koncepcję estymacji uśrednionej pochodnej. Dla skonstruowanej w dwóch wersjach 
metody (tj. dla przypadku ze znaną oraz z nieznaną gęstością prawdopodobieństwa sygnału 
wejściowego {Xn}) przeprowadzono analizę teoretyczną odnoszącą się do asymptoty­
cznego zachowania się estymatorów. W szczególności wykazano zgodność estymatorów 
PiwHLo’ 9n° i) oraz określono ich rzędy szybkości zbieżności. W przypadku estyma­
torów g{fD (•), tj. w sytuacji gdy gęstość prawdopodobieństwa fx (■) sygnału
wejściowego {Xn} jest nieznana, wykazano zgodność estymatorów odpowiedzi impulsowej 
części liniowej systemu oraz (przy założeniu, że znany jest rząd szybkości zbieżności

A fAD
oszacowań {A^ HLo) zgodność estymatora nieliniowej charakterystyki #(■).
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5.7 Wyniki badań eksperymentalnych

Dla opracowanego algorytmu identyfikacji wykonano badania symulacyjne ilustrujące 
zachowanie estymatorów , g^D (•) oraz )yN , g^D (•) dla małej i umiarkowanej liczby 
obserwacji wejścia i wyjścia systemu.

Badania przeprowadzono dla systemów pobudzanych sygnałami wejściowymi o gęsto­
ściach /x,2 (■)> fx,3 (•) (zob. wzory (4.19)-(4.20) na str. 45) oraz fx,4 (•), zob. rys. 5.2. 
Funkcja fx,4 (•) określona jest wzorem

2 1
fx,4 (z) = (z) + (z — 1-4),

gdzie <p(x) jest gęstością prawdopodobieństwa = (15/16) (z4 — 2z2 4-1) (^)-
Podobnie jak w rozdziałach 3. i 4., podsystem dynamiczny modelowany był za pomocą 
odpowiedzi impulsowej (3.35), str. 32. Ze względu na zerowanie się stałej k w przypadku 
nieliniowości 52 (•) i 53 (•) (por. uwaga 5.1 na str. 59), w badaniach wykorzystano 
następujące charakterystyki nieliniowe (zob. rys. 5.3)

51 (w) —. 2 arctan (2v),
54 (w) = 2 sin (2u),

( 1.5v + 4.5 dla
55 (u) = ) — 2u + 1 dla

1.5v - 2.5 dla

v < — 1
-1 < v < 1 .

V > 1

Rysunek 5.2: Wykorzystywane w eksperymentach numerycznych gęstości prawdopodobieństwa 
fx,2,fx,3 i fx,4

W symulacjach badano zależność błędów empirycznych Err (•;/«) i MISĘ (•;«), 
określonych wzorami (3.39) i (3.40) na str. 33, od liczby obserwacji N wejścia i wyjścia 
systemu (zmienianej od 25 do 500). W definicji błędów Err (•; k) i MISĘ (•;«) przyjęto 
następujące wartości stałych R i M: R = 30, M = 1000. Wartości stałej k, wyznaczono 
numerycznie dla każdej z zastosowanych nieliniowości (oraz dla gęstości fx,2 (•), fx,3 (•) 
i /x,4 (’))• W przypadku gęstości wejścia fx,2 (•) i fx,3 (•) (o nośniku [-1,1]), sygnał 
wewnętrzny {Vn} posiadał gęstość prawdopodobieństwa o nośniku [Di,i92], gdzie i?i « 
-2.28 i i?i w 2.28. Dla gęstości /%i4(-) (z nośnikiem [-1,2.4]) stałe i?i i 1^2 przyjmowały 
odpowiednio wartości -2.28 i 5.48. Sygnał zakłócający {Zn} wygenerowano z rozkładu 
jednostajnego o zerowej średniej i wariancji dobranej tak, aby NSR= 10% (por. rozdział 
3). W estymatorach g^D (•) i g^D (■) zastosowano gaussowską funkcję jądra
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Rysunek 5.3: Wykorzystywane w symulacjach nieliniowości pi, gi i

5.7.1 Rezultaty eksperymentów w przypadku znanej gęstości prawdo­
podobieństwa sygnału wejściowego

Rysunki 5.4-5.9 (zob. str. 67) przedstawiają wyniki eksperymentów numerycznych, tj. 
zależności błędów empirycznych Err(XN ; k) i MISE {g^D; k) od liczby obserwacji 
wejścia i wyjścia systemu. Uzyskane rezultaty prowadzą do wniosku, że wraz ze wzrostem 
liczby obserwacji N wartości badanych błędów maleją. Gdy sygnał wejściowy posiada 
gęstość fx,2 (•) lub fx,s (•) błędy empiryczne przyjmują zbliżone wartości, niezależnie od 
nieliniowości występującej w systemie (zob. rys. 5.4-5.7). Należy jednak podkreślić, że dla 
charakterystyki g$ (•) (nie spełniającej założenia 5.1) uzyskano nieznacznie gorsze rezultaty AJJ
eksperymentu (zob. rys. 5.4 i 5.6). Przykładowo, błąd Err(AN ;k) o wartości 5% dla 
nieliniowości gi (•) i gi (•) otrzymano przy N = 150. Dla nieliniowości g$ (•), natomiast, tę 
samą wartość błędu uzyskano przy N = 300 (dla N = 150 błąd przyjmował wartość 12%, 
por. rys. 5.4). W przypadku gęstości fx,ł (•) uzyskane błędy są istotnie większe (zob. rys. 
5.8 i 5.9) niż w przypadku gęstości fx,2 (•) i /x,3 (•), co prowadzi do wniosku, że badany 
algorytm jest wrażliwy na charakter gęstości sygnału wejściowego. Rezultaty otrzymane 
dla gęstości fx,i (•) wskazują ponadto, że typ nieliniowości występującej w systemie może 
również istotnie wpływać na efektywność algorytmu. Dla ciągłej i monofonicznej niełin- 
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iowości 51 (•), prezentowane na wykresach 5.8 i 5.9 błędy Err(AN ;k) i MISĘ [g^D-,Kj 
przyjmowały wartości najmniejsze. Dla nieliniowości 55 (•) z kolei (tj. nieliniowości nie 
spełniającej założenia 5.1), otrzymano większe wartości błędów.

5.7.2 Rezultaty eksperymentów w przypadku nieznanej gęstości praw­
dopodobieństwa sygnału wejściowego

Badany algorytm identyfikacji w przypadku nieznanej gęstości wejścia fx (•) wymaga zas­
tosowania estymatorów ^>x,N (0 i fx,N (■) (zob. wzory (5.29) i (5.30)). W eksperymentach 
numerycznych przyjęto, że funkcje K\ (■) i K2 (•) występujące w oszacowaniach <i>x,N (’) 
i fx,N (’) są jądrami gaussowskimi, tj.

Ki (u) = K2 (v) = exp 
v AK

Wykresy 5.10-5.15 (zob. str. 69) obrazują zmiany wielkości błędów empirycznych 
Err^A^ ;/c) i MISE ^g^D ■, otrzymanych dla systemów z nieliniowościami 51 (•), 

54 (’) > 95 (') i pobudzanych sygnałami o gęstościach prawdopodobieństwa fx,2 (•) > fx,3 (•) 
i fx,4 (•)• Na podstawie otrzymanych rezultatów można stwierdzić, że badane błędy 
maleją wraz ze wzrostem liczby obserwacji N zarówno dla charakterystyk 51 (•) i g^ (■) 
spełniających przyjęte w rozdziale założenia, jak i dla charakterystyki 55 (■), która nie jest 
różniczkowalna w punktach —lii.

Wartości uzyskanych błędów są na ogół większe od odpowiadających im błędów 
otrzymanych w przypadku algorytmu wykorzystującego aprioryczną znajomość gęstości 
prawdopodobieństwa sygnału wejściowego. Przykładowo, dla gęstości fx,2 (•) i nieliniowości 

fAD
gi (•) błąd estymatora XN n^e przekraczał 30%, gdy liczba obserwacji N była większa 
od 220 (zob. rys. 5.10). Analogiczny eksperyment wykonany dla estymatora AN (tj. przy 
założeniu znajomości gęstości wejścia) pozwolił uzyskać 30% błąd, już przy N = 30. Dla 
N = 220 błąd ten wynosił natomiast tylko około 3%.

5.8 Podsumowanie i wnioski

Przedstawiony w rozdziale algorytm identyfikacji skonstruowany został w oparciu o kon­
cepcję estymacji uśrednionej pochodnej, zob. Powell et dl. [95]. W wersji podstawowej 
metoda umożliwia szacowanie obu podsystemów przy założeniu, że gęstość praw­
dopodobieństwa sygnału wejściowego {Xn} jest znana. W rozdziale przedstawiono również 
modyfikację algorytmu pozwalającą na identyfikację w przypadku, gdy gęstość wejścia 
nie jest a priori znana. Przeprowadzono analizę teoretyczną własności asymptotycznych 
obu algorytmów. W szczególności wykazano zgodność oraz określono rzędy szybkości 
zbieżności estymatorów {\ jy}f=0 i g^D (•) (tj. estymatorów umożliwiających identyfikację, 
gdy gęstość wejścia jest znana) oraz wykazano zgodność estymatorów {AiN }?=0 i g^D (•) 
(tj. estymatorów umożliwiających identyfikację w przypadku nieznanej gęstości wejścia). 
Wykonane badania eksperymentalne proponowanych podejść ilustrują zachowanie się obu 
metod w przypadku małej i umiarkowanej liczby obserwacji wejścia i wyjścia systemu.



Rozdział 5. Identyfikacja systemów Wienera metodą uśrednionej pochodnej 67

Err

Rysunek 5.4: Błędy estymacji Err(XN ; k) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości gi, g<i, g$ i gęstości sygnału wejściowego fx,2

Rysunek 5.5: Błędy estymacji MISE (gxD;w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości gi, g^, gs i gęstości sygnału wejściowego fx,2

Rysunek 5.6: Błędy estymacji Err(XN ; n) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości gi, g^, gę, i gęstości sygnału wejściowego fx,3
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Rysunek 5.7: Błędy estymacji MISĘ w funkcji liczby obserwacji wejścia i wyjścia
systemu dla nieliniowości pi, P4, ps i gęstości sygnału wejściowego fx,3

Rysunek 5.8: Błędy estymacji Err(XN ; k) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości pi, P4, Ps i gęstości sygnału wejściowego

Rysunek 5.9: Błędy estymacji MISE^g^-K) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości pi, p4, ps i gęstości sygnału wejściowego fx,4
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* fAD
Rysunek 5.10: Błędy estymacji Err(XN ; k.) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości gi, g^, g^ i gęstości sygnału wejściowego fx,2

Rysunek 5.11: Błędy estymacji MISE^g^0-,^ w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości ffi, 34, 55 i gęstości sygnału wejściowego fx,2

* fADRysunek 5.12: Błędy estymacji Err(XN ; k) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości gi, g4, gs i gęstości sygnału wejściowego fx,3
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Rysunek 5.13: Błędy estymacji MISĘ yg^NAD-,Kj w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości <7i, <?4, <75 i gęstości sygnału wejściowego fx,3

* fADRysunek 5.14: Błędy estymacji Err(AN ; k) w funkcji liczby obserwacji wejścia i wyjścia systemu 
dla nieliniowości gi, g4, g$ i gęstości sygnału wejściowego fx,4

Rysunek 5.15: Błędy estymacji MISE(gk ;k) w funkcji liczby obserwacji wejścia i wyjścia 
systemu dla nieliniowości g^, g4, g$ i gęstości sygnału wejściowego fx,4



Rozdział 6

Porównanie opracowanych metod 
identyfikacji systemów Wienera

W tym rozdziale przedstawiona jest zbiorcza analiza porównawcza uzyskanych wyników 
oraz krótka charakterystyka cech wspólnych proponowanych metod identyfikacji, na tle 
innych podejść omawianych w literaturze. Dyskutowane w pracy algorytmy porównywane 
są również ze sobą pod kątem zakresu stosowalności, własności asymptotycznych oraz 
własności dla małej i umiarkowanej liczby obserwacji wejścia i wyjścia systemu.

6.1 Opracowane metody identyfikacji, a metody parame­
tryczne i nieparametryczne

Skonstruowane w pracy algorytmy i ich analiza rozszerzają dotychczasową teorię oraz dają 
możliwość identyfikacji systemów Wienera w przypadku, gdy bezpośrednie zastosowanie 
opracowanych wcześniej metod parametrycznych i nieparametrycznych jest niemożliwe. 
W odróżnieniu od większości wcześniejszych podejść, omawiane w pracy algorytmy 
(z pominięciem algorytmu korelacyjnego) pozwalają bowiem na identyfikację systemów 
Wienera, gdy 1) wejście systemu nie jest sygnałem gaussowskim, 2) charakterystyka 
nieliniowa systemu nie jest odwracalna. W przypadku gaussowskiego wejścia {X„}, zapro­
ponowana w rozdziale 3. metoda korelacyjna funkcjonuje dla szerokiej klasy charakterystyk 
nieliniowych w systemie. Nie zakłada się mianowicie, w odróżnieniu od większości metod 
parametrycznych, że nieliniowość jest typu wielomianowego (por. 2.2.1, str. 16), a jedynie 
że jest funkcją ograniczoną przez wielomian dowolnego (skończonego) stopnia.

Ze względu na jednolity szkielet konstrukcyjny (zob. p. 2.3.1, str. 20), proponowane 
podejścia posiadają następujące cechy wspólne:

• Zakładana jest parametryczna informacja wstępna o podsystemie dynamicznym oraz 
nieparametryczna o podsystemie statycznym (w odróżnieniu od metod parame­
trycznych i nieparametrycznych, w których zakłada się czysto parametryczną i czysto 
nieparametryczną informację wstępną o systemie).

• Algorytmy umożliwiają nieparametryczną identyfikację charakterystyki nieliniowej 
„wprost”, tj. nie poprzez funkcję odwrotną (w odróżnieniu od dotychczasowych 
podejść nieparametrycznych, w których szacowana jest funkcja odwrotna do nielin­
iowości) .
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• Identyfikacja nieliniowości przeprowadzana jest przy użyciu estymatora odpowiedzi 
impulsowej podsystemu dynamicznego (w odróżnieniu od algorytmów nieparame­
trycznych, w których oba podsystemy identyfikowane są niezależnie).

• Dopuszcza się występowanie addytywnego i niedostępnego dla pomiarów szumu na 
wyjściu całego systemu (por. dyskusja w p.2.2).

6.2 Zakres stosowalności

Proponowane w pracy podejścia różnią się między sobą pod względem zastosowanych do 
ich konstrukcji metod matematycznych. Algorytm omawiany w rozdziale 3. zbudowany 
jest w oparciu o metodę korelacyjną. Z kolei algorytmy przedstawione w rozdziale 4. 
bazują na metodzie najmniejszych kwadratów oraz idei estymacji korelacji rangowej, 
a metoda prezentowana w rozdziale 5. wykorzystuje koncepcję estymacji uśrednionej 
pochodnej. Zróżnicowana baza konstrukcyjna estymatorów powoduje, że dyskutowane 
algorytmy mogą być stosowane przy różnych założeniach odnośnie nieliniowości występu­
jącej w systemie oraz dla różnych sygnałów wejściowych. Ponadto algorytmy cechują 
się różnymi własnościami dla malej i umiarkowanej liczby obserwacji wejścia i wyjścia 
systemu. Określając zakres stosowalności, otrzymane w pracy algorytmy można więc 
charakteryzować według następujących kryteriów:

Wymagania dotyczące sygnału wejściowego. Szczególna konstrukcja systemów 
Wienera (zob. uwaga 2.1 i 2.2 na str. 20) powoduje, że charakter sygnału wejściowego 
{AJ ma kluczowe znaczenie podczas konstruowania algorytmów identyfikacji. Z tego 
względu parametryczne i nieparametryczne metody omawiane w literaturze z reguły 
wymagają, aby wejście systemu było sygnałem gaussowskim. Proponowane w pracy 
algorytmy pozwalają natomiast na identyfikację zarówno w przypadku gaussowskich 
(rozdział 3) jak i niegaussowskich (rozdziały 4 i 5) sygnałów wejściowych. Wspólnym 
wymaganiem dla proponowanych metod jest założenie, że sygnał wejściowy jest ciągiem 
typu i.i.d. Porównanie opracowanych algorytmów pod kątem założeń dotyczących sygnału 
wejściowego przedstawia tabela 6.1.

Algorytm identyfikacji Wymagania dotyczące sygnału wejściowego

Algorytm korelacyjny Gaussowski sygnał wejściowy o dowolnej wartości śre­
dniej i wariancji

Algorytm wykorzystujący me­
todę najmniejszych kwadra­
tów

Ciągła funkcja gęstości o ograniczonym (chociaż do­
wolnie dużym) nośniku

Algorytm wykorzystujący ko­
relację rangową

Nie przeprowadzono analizy teoretycznej algorytmu

Algorytm uśrednionej pocho­
dnej ze znaną gęstością wej­
ścia

Różniczkowalną gęstość o zwartym (chociaż dowolnie 
dużym) nośniku

Algorytm uśrednionej pocho­
dnej z nieznaną gęstością wej­
ścia

Różniczkowalną gęstość o zwartym (chociaż dowolnie 
dużym) nośniku

Tabela 6.1: Porównanie proponowanych algorytmów identyfikacji pod względem głównych 
wymagań dotyczących sygnału wejściowego
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Wymagania dotyczące sygnału zakłócającego. Proponowane w pracy metody umo­
żliwiają identyfikację systemów Wienera w przypadku, gdy sygnał wyjściowy (tzn. sygnał 
będący wyjściem nieliniowego podsystemu statycznego) zakłócany jest przez addytywny 
i niedostępny dla pomiarów szum {Zn} typu i.i.d. o zerowej średniej i skończonej wariancji. 
Wymaganie to jest wspólne dla wszystkich omawianych w pracy algorytmów.

Wymagania dotyczące podsystemu liniowego. Charakter proponowanych metod 
wymaga posiadania parametrycznej wiedzy o liniowym podsystemie dynamicznym (tj. 
znajomości długości pamięci, czyli stałej p < oo). Podobnie jak w przypadku założeń 
odnośnie szumu wyjściowego, wymaganie to jest wspólne dla wszystkich prezentowanych 
w pracy algorytmów.

Wymagania dotyczące podsystemu nieliniowego. W odróżnieniu od założeń doty­
czących podsystemu liniowego, dyskutowane metody różnią się między sobą pod wzglę­
dem warunków jakie musi spełniać nieliniowa charakterystyka występująca w systemie. 
Tabela 6.2 zawiera wykaz podstawowych wymagań odnośnie nieliniowości, gwarantujących 
zbieżność poszczególnych algorytmów.

Algorytm identyfikacji Wymagania dotyczące nieliniowości
Algorytm korelacyjny Nieliniowa charakterystyka ograniczona jest przez 

wielomian dowolnego skończonego stopnia
Algorytm wykorzystujący me­
todę najmniejszych kwadra­
tów

Nieliniowa charakterystyka jest ciągła i różna od 
funkcji stałej

Algorytm wykorzystujący ko­
relację rangową

Nie przeprowadzono analizy teoretycznej algorytmu

Algorytm uśrednionej pocho­
dnej ze znaną gęstością wej­
ścia

Nieliniowa charakterystyka posiada ciągłą pochodną

Algorytm uśrednionej pocho­
dnej z nieznaną gęstością wej­
ścia

Nieliniowa charakterystyka posiada ciągłą pochodną

Tabela 6.2: Porównanie proponowanych algorytmów identyfikacji pod względem głównych 
wymagań dotyczących nieliniowej charakterystyki w systemie

6.3 Własności asymptotyczne

Dla proponowanych w pracy algorytmów identyfikacji systemów Wienera przeprowadzona 
została analiza teoretyczna1 określająca asymptotyczne własności estymatorów liniowego 
podsystemu dynamicznego oraz nieliniowego podsystemu statycznego. W przypadku 
estymatorów odpowiedzi impulsowej części liniowej systemu badano zbieżność oraz 
szybkość zbieżności oszacowań według prawdopodobieństwa, a w przypadku estymatorów 
nieliniowej charakterystyki g (•), badano punktową zbieżność i szybkość zbieżności (również 

1W pracy nie przeprowadzono analizy teoretycznej własności asymptotycznych algorytmu zbudowanego 
w oparciu o koncepcję korelacji rangowej.
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według prawdopodobieństwa). Uzyskane wyniki prowadzą do wniosku, że proponowane 
metody identyfikacji są zbieżne.

6.4 Numeryczna realizacja algorytmów

Ważnym, z punktu widzenia zastosowań, kryterium porównawczym omawianych metod, 
jest łatwość ich implementacji. Zarówno algorytm korelacyjny, jak i metoda wykorzystująca 
koncepcję estymacji uśrednionej pochodnej (ze znaną oraz nieznaną gęstością wejścia), 
nie wymagają stosowania skomplikowanych procedur numerycznych (jak np. odwracanie 
macierzy czy wyznaczanie minimum wielowymiarowej funkcji celu). Z tego względu 
wymienione wyżej algorytmy mogą być łatwo zaimplementowane w wielu środowiskach 
programistycznych. Z kolei algorytmy zbudowane w oparciu o kryterium średniokwadra­
towe i koncepcję korelacji rangowej są algorytmami, w których konieczne jest wyznaczenie 
ekstremów wielowymiarowych funkcji celu co powoduje, że do ich efektywnej implementacji 
konieczne jest zastosowanie specjalizowanych procedur optymalizacyjnych.

Przedstawiona tu analiza pokazuje, że cele i zadania postawione w punktach 2.5 i 2.6.2 
zostały w pracy zrealizowane.



Rozdział 7

Uwagi końcowe

W rozdziale podsumowano oryginalne wyniki naukowe uzyskane w pracy, przedstawiono 
otwarte problemy badawcze oraz zaproponowano kierunki dalszych badań.

7.1 Oryginalne wyniki naukowe przedstawione w pracy

W pracy otrzymano następujące oryginalne wyniki naukowe:

• Zaproponowano ogólny schemat dwuetapowej, parametryczno-nieparametrycznej 
identyfikacji systemów Wienera wykorzystujący koncepcję estymacji nieznanego 
sygnału interakcyjnego {U.} występującego w systemie.

• Zaproponowano klasę parametryczno-nieparametrycznych algorytmów umożliwia­
jących identyfikację systemów Wienera przy różnorodnych założeniach odnośnie 
sygnału wejściowego oraz dla szerokiej klasy charakterystyk nieliniowych.
W szczególności opracowano:

— algorytm korelacyjny (rozdział 3),
— algorytm wykorzystujący metodę najmniejszych kwadratów (rozdział 4),
- algorytm zbudowany w oparciu o koncepcję korelacji rangowej (rozdział 4),
— algorytm wykorzystujący ideę estymacji uśrednionej pochodnej (rozdział 5).

• Przeprowadzono analizę teoretyczną własności asymptotycznych algorytmu korela­
cyjnego, algorytmu zbudowanego w oparciu o metodę najmniejszych kwadratów oraz 
algorytmu wykorzystującego ideę estymacji uśrednionej pochodnej.
W szczególności:

— dla metody korelacyjnej określono warunki, przy których estymatory podsys­
temów liniowego i nieliniowego są zgodne,

— określono rzędy szybkości zbieżności estymatorów części liniowej i nieliniowej 
w metodzie korelacyjnej,

— wykazano zgodność estymatorów podsystemów liniowego i nieliniowego opra­
cowanych w oparciu o metodę najmniejszych kwadratów,

- przy założeniu znajomości gęstości sygnału wejściowego dla metody wykorzystu­
jącej estymację uśrednionej pochodnej wykazano zgodność oraz określono rzędy 
szybkości zbieżności estymatorów podsystemów liniowego i nieliniowego.
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- w przypadku nieznanej gęstości wejścia dla metody wykorzystującej estymację 
uśrednionej pochodnej wykazano zgodność estymatorów części liniowej i nieli­
niowej systemu.

Ponadto:

• Opracowano implementację proponowanych algorytmów w środowisku obliczenio­
wym MATLAB.

• Przeprowadzono badania eksperymentalne algorytmów ilustrujące zachowanie się 
metod dla malej i umiarkowanej liczby obserwacji wejścia i wyjścia systemu.

7.2 Otwarte problemy badawcze

Prezentowane w rozprawie algorytmy, wraz z rezultatami teoretycznymi dotyczącymi 
ich własności asymptotycznych i wynikami eksperymentów numerycznych, prowadzą do 
następujących, nowych problemów badawczych:

• Określenie dalszych własności teoretycznych proponowanych algorytmów. W szczegól­
ności:

— opracowanie wersji algorytmu wykorzystującego kryterium średniokwadratowe 
umożliwiającej identyfikację systemów Wienera bez konieczności dzielenia 
zbioru dostępnych obserwacji wejścia i wyjścia systemu,

— określenie rzędu szybkości zbieżności algorytmu wykorzystującego kryterium 
średniokwadratowe,

— określenie własności asymptotycznych algorytmu wykorzystującego ideę ko­
relacji rangowej,

— analiza własności asymptotycznych algorytmów w przypadku sygnałów wejścio­
wych innych niż sygnały typu i.i.d.,

- analiza własności asymptotycznych algorytmów w przypadku szumu {Zn} nie 
będącego ciągiem typu i.i.d.

• Modyfikacja zaproponowanych algorytmów umożliwiająca identyfikację systemów 
Wienera w przypadku skończonej pamięci o nieznanej długości.

• Analiza zachowania algorytmów dla systemów Wienera o nieskończonej pamięci.



Dodatek A

Uzupełnienia i dowody twierdzeń

A.l Uzupełnienia do rozdziału 3

Lemat A.l {por. Pawlak et al. [93]} Niech {£n}^=i będzie ciągiem zmiennych losowych, 
takim że Var {£„} < oo, n = 1,2,..., N oraz [n i są niezależne jeżeli |n — m| > p, 
p E N,p < oo. Wtedy

yar{zLn=l^} - (P+^Y^n=lVar^ '

Dowód. Rozważmy przypadek gdy E {£n} = 0, n = 1,2,..., N. Zapiszemy sumę wyrazów 
w następujący sposób

gdzie Am = (£m+£m+(p+i)Km+2(p+i) + - ■ •+€m+s(P+i)) i s = [t+t] • Stosując nierówność
Cauchy’ego (zob. np. Leja [75], Jakubowski i Sztencel [60]), otrzymujemy

co przy założeniu że E {£n} = 0, n = 1,2,..., N, daje

Var Var{Am}.I z—'n=l J z—

Zauważając następnie, że zmienne losowe wchodzące w skład elementu Am, m € {1,2,..., 
p + 1} są niezależne, otrzymujemy nierówność (A.l). W przypadku ogólnym, tj. gdy 
nie zachodzi warunek E {£n} = 0,n = 1,2,..., A, nierówność (A.l) wynika z faktu, że 

- «} = ^ar {£m} , Va e R. ■
Dowód Lematu 3.2. Rozpoczniemy od wykazania tezy twierdzenia w przypadku gdy 

— 0 oraz = 1. Równość (3.24) oznacza1, że dla dowolnie małego e > 0 oraz dowolnie 
małego J > 0,

1 definicja symbolu op zamieszczona jest w dodatku B na str. 87.

lim P < N~£ sup |fn| > 5 > = 0.
N-*oo l<n<N J

77
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Zauważmy, że

AT 6 sup |£n| > 6 
l<n<N

1 -PiN £ sup |£n| < 5 
l<n<N

i-p^n-^ <ń)n...n(w-q^l<^}-

Ze względu na niezależność zmiennych losowych mamy dalej

p\n~£ sup |£nl>4=l-K^~£|€1l<ć}r = l-[mil<^^ 
l<n<N

Oznaczając przez $ (•) dystrybuantę rozkładu normalnego Ać (0,1) otrzymujemy nastę­
pnie, że

P J N~£ sup |£n| > = 1 - [2$ (5Ne) - 1]N.
l<n<N

W celu udowodnienia tezy (3.24) wystarczy więc pokazać, że dla dowolnie małego £ > 0 
i dowolnie małego 5 > 0

lim [2$ {8N£} - 1]N = 1.
N—>oo

Zauważmy, że ciąg [2$ (óN1^ — 1]^ jest ciągiem ograniczonym z góry przez 1. Wyko­
rzystamy następujące oszacowanie dystrybuanty rozkładu normalnego, zob. Jakubowski 
i Sztencel [60, str. 119],

Zatem

i tym samym

£(z) > 1- -i=e-l2/2i 
x

2$ {3N£) - 1 > 1 - -J- exp

[2<&(m-l]N> [l-^exp

x > 0.

62N2£ 
2

62N2£ 
2

(A.2)
i w

Zauważmy następnie, że ciąg exp dąży do zera asymptotycznie szybciej niż
ciąg 1/N2. Stąd, jeżeli zachodzi zbieżność

lim 
N-+oo N2 = 1, (A.3)1 -

to również prawa strona nierówności (A.2) dąży do 1, gdy N —> oo. Aby pokazać zbieżność 
w (A.3) wystarczy z kolei zauważyć, że

lim
N—>oo

j_r
N2

rlim 1 + — = e 1e1 = 1.
N—>oo N /

1 -

Na koniec, dla dowolnego i a2, otrzymujemy N x!2 sup1<n<7V |£„| = x/2x 
x supj^jy = op (N-^^+^+O (W1/2) = oP , co kończy
dowód. ■

Dowód Twierdzenia 3.3. W dowodzie wykorzystamy dekompozycję (3.26), określając 
najpierw rząd szybkości zbieżności estymatora (u) do r (u), a następnie rząd szybkości
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zbieżności do zera różnicy [r^r (u) — (v)]. Całkując przez podstawienie, zapiszemy 
wartość oczekiwaną estymatora fp (u) w postaci

h J —oo \ /

/•oo

r dx = K (x) r (y — hx) dx. 
J—oo

Stosując twierdzenie Taylora (zob. np. Leja [75], Wand i Jones [132]), na mocy założenia 
3.6, zauważamy że

r (u — hx} = r(y) — hxr' (u) + -h2x2r" (u) + o (h2) ,

2tj- Ćn n ~ n (w) jest tak^ zmienną losową, że dla każdego zdarzenia w, min{aVn (w), (w)} <
(w) < max{aVn (w), (w)}.

co z kolei prowadzi do wniosku, że (zob. założenia 3.4 i 3.8 o funkcji jądra)
1 7°°E {fp (y)} = r (y) +-h2r''(y) / x2K (z) dx + o (/z2) 

J —oo
Stąd, zgodnie z założeniem 3.5,

bias {rp (u)} = E {fp (v)} - r (u) = O ^N~2^ .

W rezultacie, wykorzystując oszacowanie wariancji estymatora fp (u) uzyskane w dowodzie 
twierdzenia 3.2 (patrz wzór (3.32)), otrzymujemy rząd szybkości zbieżności

[f;v (u) — r (u)] = Op (n~2^ ,
w każdym punkcie d 6 R. Udowodnimy z kolei, że

[f£r (v) - fp (u)] = Op ^~2^+^ . (A.4)

W tym celu wykorzystamy fakt dwukrotnej różniczkowalności jądra K (•). Rozwijając 
funkcję K (•) w szereg Taylora

K (ui) = K (u2) + K' (u2) («i - u2) + ^K” (uo) (ui - u2)2 , 

gdzie uq jest punktem pośrednim leżącym pomiędzy ui i u2, możemy różnicę [r^r (u) — 
fp (u)] zapisać w postaci

(A.5)
gdzie £n N jest zmienną losową przyjmującą wartości2 pomiędzy aVn i V^. Reprezentacja 
(A.5) prowadzi po zastosowaniu nierówności trójkąta do następującego oszacowania

|^r M - rp (v)| < \fp (v)| sup I^at] + sup {d^p} 
n&I n&I

gdzie dn,p — aVn - oraz f'N (u) jest pochodną estymatora fp(v), tj. fp (u) 
= dfp (y) /dv. Na podstawie założenia 3.8 o ograniczoności drugiej pochodnej jądra K (•), 
prawdziwe jest oszacowanie

|f^r (u) - fp (v)| < (v)| sup ]dn>jv| + sup {d2i7V}
nEl nEl Nph3 22 ly"l (A.6)

Odnośnie drugiego składnika po prawej stronie nierówności (A.6) zauważamy, że:
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• Na mocy lematu 3.3, dla dowolnie małego £ > 0,

= I sup|d„,7v| 
nEl \nGl

2
= op

• Zgodnie z założeniem 3.5,
h~3 ~ N3'5.

3Ciąg zmiennych losowych {W} jest ograniczony według prawdopodobieństwa, jeżeli dla każdego e > O
istnieje stała M taka, że sup„ P {|A„| > M} < e, Van der Vaart [123, str. 8].

• Stacjonarność sygnału {Yn} oraz skończona długość pamięci systemu prowadzą do 
wniosku, że

£^1=^11 + Op (w-1/2) .

n€l

Wobec tego
E = o? . 

ne/ ne/

W celu określenia rzędu szybkości zbieżności w (A.4) wystarczy więc udowodnić, że 
estymator f'N (u) jest ograniczony według prawdopodobieństwa3 w każdym punkcie v E R.
W tym celu wykażemy zbieżność f'N (u) według prawdopodobieństwa do r1 (u).
Zauważmy, że zgodnie z przyjętymi założeniami

/°° tk' (r W dx = K (r' (x) dx> (A.7)
J—OO h \ ll / J — oo \ li /

oraz że całka\r' (u)| dv jest skończona. Stąd na mocy lematu B.3 w dodatku B.2,

1 /* (1) — T \E {XN (u)} = To / A'' I —— ) r (z) dx -> r' (y), gdy N —» oo, 
nr J \ h J

w każdym punkcie v E R. W celu określenia własności asymptotycznych wariancji 
estymatora f'N (u), zastosujemy lemat A.l z dodatku A.l. Otrzymujemy

(”)} <

Wystarczy zatem pokazać, że funkcja
, . def. 1 f 2 7^/2 (v ~ A 1 

fcW = [—Jj.

zbiega do stałej, gdy N —> oo, dla każdego v E R. Zauważmy, że

Ib I \ Ib / I Ib I \ I U J I

Wykorzystując argumentację jak w (A.7) oraz lemat B.3 otrzymujemy (u) —> c(v) < 
oo, gdy N —» oo. Uzyskane rezultaty prowadzą do wniosku że

=r^ + Op ^-(2/5)+^) ; (A,8)

dla dowolnie małego £ > O w każdym punkcie v E R. Zauważmy dalej, że analogiczna 
argumentacja dla estymatora f^r (u) prowadzi do wniosku, że

f^r (u) = a’1/ (y/o) + Op , (A.9)

dla dowolnie małego £ > O w każdym punkcie v E R. Zbieżność w (3.34) wynika zatem 
bezpośrednio z (A.8) i (A.9) oraz lematu B.l w dodatku B.l, co kończy dowód. ■
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A.2 Uzupełnienia do rozdziału 4

Twierdzenie A. 1 {zob. Van der Vaart [123, tw. 5.7, str. J5]) Niech (3) będzie 
ciągiem funkcji losowych argumentu 3 G Q, gdzie 0 jest przestrzenią metryczną z metryką 
d (•,•). Niech ponadto M (3) będzie funkcją deterministyczną, taką że

sup \Mn (0) - M (0)| 0, gdy N -r oa, (A.10)
eee

według prawdopodobieństwa oraz dla każdego e > 0,

inf M (0) > M (0O), 
e-.d(e,e0)>e

(AU)

gdzie 0q jest elementem przestrzeni 0. Wtedy dowolny ciąg estymatorów |0w j , dla którego 
istnieje zbieżny do zera (według prawdopodobieństwa) ciąg zmiennych losowych {^}, taki 
że

Mn (On) < Mn (0o) + $N, (A.12)

zbiega według prawdopodobieństwa do 3q, gdy N —> oo.

Dowód, (por. Van der Vaart [123, tw. 5.7, str. 46]) Należy wykazać, że d (0n,3o) —> 0 
według prawdopodobieństwa gdy N —* oo. Z warunku A. 11 wynika, że dla każdego e > 0 
istnieje takie g > 0, że dla każdego 3 : d (0, 0q) > e,

M (0) >M(0o) + r].

Wobec tego zdarzenie {d(0N, 0o) > s} implikuje zdarzenie A = {M(3^ — M (0q) > g} 
i w celu udowodnienia tezy twierdzenia wystarczy pokazać że P {A} —» 0, gdy N oo. 
Mamy

M (0^ - M (0O) = [M (0^ - Mn (0n)] + [mn (0^ - M (0O)] , (A.13)

Z warunku (A.10) wynika, że [@nj — Mn —* 0 według prawdopodobieństwa,
gdy N —> oo. Odnośnie drugiego składnika po prawej stronie równości (A.13) zauważamy, 
że zgodnie z założeniem A.12,

Mn (dN) ~ M = [mn (3n) - Mn (0o)] + [Mn (0o) - M (0O)] 

< eW + [M^(0o)-M(0o)].

Wykorzystując ponownie warunek (A.10) otrzymujemy zbieżność [M77 (0q) — M (0q)] —► 
0 według prawdopodobieństwa, gdy N —* 00 i wobec tego P {A} —> 0 gdy N —» 00, co 
kończy dowód twierdzenia.

Dowód Twierdzenia 4.2. (por. dowód tw. 3.2) Przyjmiemy następujące oznaczenia

oraz

Dodatkowo oznaczymy r (u) = g (u) fy (u), gdzie fy (•) jest gęstością prawdopodobieństwa 
sygnału interakcyjnego {P^}. Zbieżność w (4.14) zachodzi, jeżeli r^f (u) i f[js (u) zbiegają
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według prawdopodobieństwa odpowiednio do r (v) i fy (u) przy N —> oo w każdym punkcie 
u G R, w którym fy (u) > 0. W dowodzie wykorzystamy dekompozycję

?NS («) - r (u) = [r^s (u) - ftf (u)] + (u) - r (u)] , (A. 14)

gdzie

iei x 7

Zgodnie z przyjętymi założeniami odnośnie sygnału wejściowego i szumu na wyjściu 
otrzymujemy

E{fNSM} = ^ K^j^r(x)dx.

Ponieważ nieliniowa charakterystyka g (•) jest funkcją ciągłą (zob. założenie 4.2) oraz 
sygnał wejściowy jest ograniczony (założenie 4.1), to < oo. Stąd, zgodnie
z lematem B.3 z dodatku B.3, na mocy założeń 4.7 i 4.8, ma miejsce następująca zbieżność

E {^nS (v)} ~* r M > gdyAT->oo, (A.15)

w każdym punkcie u G R. Lemat A.l z dodatku A.l oraz własność 3.2 (str. 30) prowadzą 
następnie do wniosku, że

(A.16)

Ze względu na ograniczoność jądra K (•), element h~xV ar {Y^K ([u — lĄ] /h)} występujący 
w (A.16) jest ograniczony przez (por. Greblicki.[25, dowód tw. 1])

/l l l \ ^ / J
Ponowne wykorzystanie założeń 4.2 i 4.1 prowadzi do wniosku, że f^g2 (v) fy (y)dv < 
oo. Zatem, na mocy lematu B.3 z dodatku B.3, wyrażenie (A.17) dąży do kofy (u) [g2 (u) + 
+a^] < oo, gdy N —* oo, w każdym punkcie v G R. Ostatecznie więc nierówność (A.16), 
dla h spełniającego założenie 4.8, daje

Var (u)} —> 0, gdy N —> oo, (A.18)

w każdym punkcie v G R.
Zgodnie z rezultatami w (A.15) i (A.18) zachodzi więc zbieżność

(u) - r (u)] -» 0, gdy N —> oo,

według prawdopodobieństwa, w każdym punkcie v G R.
Przejdziemy teraz do do drugiego etapu dowodu, tj. do zbadania asymptotyki wyrażenia 

(v) — rjf (u)] w dekompozycji (A.14). Korzystając z faktu, że jądro K (■) spełnia 
warunek Lipschitza (zob. zał. 4.7) otrzymujemy

|^S W - f^s (u)| < sup | Vn - 1^1 •

Wzór (4.10) oraz nierówność Cauchy’ego-Schwarza (zob. dodatek B.4) prowadzą do 
wniosku, że

sup 
nEl

|K-Vn^| sup 
nEl

xLS

sup 
nEl

|| IŁIl}
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gdzie C — (p + 1) max {|a/|, |6y|}. Zatem, na mocy (4.11), supne/ |Vn — = Op
Równocześnie (por. wzór (3.33))

1 iel

Otrzymujemy więc zbieżność (zob. założenie 4.8)

Pn5 ~ fNS (u)| °> gdy A -* oo,

według prawdopodobieństwa, w każdym punkcie u G R. W rezultacie 

^NS W ~* r W > gdy N —> oo, 

według prawdopodobieństwa w każdym punkcie u G R.
Stosując analogiczną argumentację dla estymatora fu (u) otrzymujemy zbieżność 

fNS (u) fv (f), gdy N -» oo, 

według prawdopodobieństwa, w każdym punkcie v G R, co kończy dowód twierdzenia. ■

A.3 Uzupełnienia do rozdziału 5

Dowód Lematu 5.1. (zob. też dowód lematu 2.1 w [95]) Należy wykazać, że

[ fx(x)DG(x)dx =-2 [ Df (z) G (x) fx(x) dx. (A.19)
JRp+i ~' JRP+1

Zgodnie z założeniem 5.1 funkcje podcałkowe w (A.19) mają nośnik fi. Ponadto G(E) 
i fx Qz) są różniczkowalne w zbiorze fi. Stąd, na mocy lematu B.4 w dodatku B.3, 
otrzymujemy tezę twierdzenia. ■
Dowód Twierdzenia 5.3. W dowodzie wykorzystamy dekompozycję (5.21), określając 
najpierw rząd szybkości zbieżności estymatora rpr (u), a następnie rząd szybkości zbieżności 
do zera różnicy [r(u) — (u)].
Całkując przez podstawienie zapiszemy wartość oczekiwaną estymatora (u) w postaci

1 fOO — f°°
E {r^ (v)} — - / K (—-—]r(x)dx= / K (E) r (u - hx) dx.

J — oo \ J J—oo

Zgodnie z rozwinięciem Taylora, na mocy założenia 5.5,

r(v — hx) = r (u) — hxr' (u) + ^h2x2r" (u) + o (ń2) ,

co z kolei prowadzi do wniosku, że (zob. założenia 5.3 i 5.7 o funkcji jądra)

1 f°°E {fN (v)} = r (u) + -h2r" (u) / x2K (z) dx + o {h2} .
4 J-oo

Stąd, ponieważ h ~ W-1/5,

bias {f^ (u)} = E {ny (u)} — r (u) = O ^N~2^^ .

W rezultacie, wykorzystując oszacowanie wariancji estymatora fw (u) uzyskane w dowodzie 
twierdzenia 5.2, (patrz wzór (5.26)) otrzymujemy rząd szybkości zbieżności

[rjy (u) — r (u)] = Op ęN~2/5^ ,
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w każdym punkcie u 6 R. Udowodnimy następnie, że

[r£D M ~ rN (v)] = OP (n~2^ . (A.20)

W tym celu wykorzystamy fakt dwukrotnej różniczkowalności jądra K (•). Rozwijając 
funkcję K (•) w szereg Taylora

K (tti) = K (u2) + K' (U2) (ui - u2) + (u0) (ui - u2)2 ,

gdzie tzo jest punktem pośrednim leżącym pomiędzy i u2, różnicę W - (v)]
zapiszemy w postaci

(A.21)
gdzie N jest zmienną losową przyjmującą wartości4 pomiędzy nVn i V^. Reprezentacja 
(A.21) prowadzi do następującego oszacowania

^N0 W - (v)| < |f)y (v)| sup |dn,w| + sup {d2)W}
nEl nEl

1 w k" ( Nph^ n \ h )
nEl X 7

gdzie dn>N = nVn — oraz r'N (y) jest pochodną estymatora tj- (v)
= df^ (u) /dv. Po uwzględnieniu założenia 5.7 otrzymujemy dalej

M (v)| < |rŃ (v)| sup |dn>7v| + sup {d2N} —lynl • (A-22)
nei nei lypn

Na mocy lematu 5.2 sup„e/| = (supn€/|dn);v|)2 = Op (N x). Zachodzi również 
zbieżność (por. wzór (3.33) w dowodzie tw. 3.2, str. 29)

n^1 E ly"l = £ lyil + Op (a^1/2)
nei

Stąd, na mocy założenia 5.4,

y |ynl=Op
W celu wykazania rzędu szybkości zbieżności jak we wzorze (A.20) wystarczy więc 
udowodnić, że estymator r'N (y) jest ograniczony według prawdopodobieństwa5 w każdym 
punkcie u G R. Wykażemy więc zbieżność r'N (u) według prawdopodobieństwa do r' (w). 
Zgodnie z przyjętymi założeniami

J-oo h \ h J
(A.23)

oraz całka|rz (v)| dv jest skończona. Stąd na mocy lematu B.3 w dodatku B.3,

4zob. przypis na stronie 79.
5 zob. przypis na stronie 80.

gdy N —> 00,
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w każdym punkcie v G R. W celu określenia własności asymptotycznych wariancji 
estymatora r'N (u), zastosujemy lemat A.l z dodatku A.l. Otrzymujemy

Var{r'N^} < ^Yar^K' 
liflb I \ Ib

Wystarczy zatem pokazać, że funkcja 

, 1 z? Jv2zr'2 — 1- ^E[Y1K

zbiega do stałej gdy N —> oo, dla każdego v € R. Zauważmy, że (zob. założenie 5.3)

"■ l \ h J) h k \ h J)

Wykorzystując argumentację jak w (A.23) oraz lemat B.3, otrzymujemy rj>N (y) c(v) < 
oo, gdy N —> oo. Uzyskane rezultaty prowadzą do wniosku, że

rxD = r (u) + Op (n 2/5 ) (A.24)

w każdym punkcie u G R. Analogiczna argumentacja dla estymatora f^D (u) prowadzi do 
wniosku, że

f^D (u) - K"1/ (u/k) + Op ^N-2^ , (A.25)

w każdym punkcie u G R. Zbieżność w (A.20) wynika zatem ze wzorów (A.24) i (A.25) 
oraz lematu B.l w dodatku B.l, co kończy dowód twierdzenia. ■

Lemat A.2 Jeżeli spełnione jest założenie 5.1 oraz zachodzą zbieżności (5.32) i (5.33), 
to

sup df,i+i,N te) - dfti+l (z) -» 0, gdy N -> oo,

według prawdopodobieństwa.

Dowód. Stosując elementarną nierówność6 |a6 — cd\ < |6| |a — c| + |c| |6 — d\ otrzymujemy 
następujące oszacowanie

6 Nierówność wynika z dekompozycji ab — cd = b (a — c) + c(b — d) oraz nierówności trójkąta.

|^f,i+l,N te) - dfŚ+l te)| < \0N,i te)| - fx | +

+ \fx (^(o) | \0N,i te) - 5i te)|>

gdzie 
p+i p+i

Si (x) = U fx oraz (z) = JJ fx,N • 
k=l,k^i 3=^,3^

Zatem

sup d7,i+i,Ar (x) - dfs+1 (z) < sup \0Ni (z)| sup \j)XtN (x) - fx (z) +

+c sup \/3Nti (z) - Si (z)|, 
seR?

gdzie c = supxeR l/Jf (z)|. Zauważmy, że wobec założenia 5.1, c < oo. z kolei zbieżność 
wyrażenia supxeRP \/3Nii (z)| do sup$eRP |5f (z)| < oo wynika ze zbieżności jednostajnej
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(tzn. w normie supremum) wyrażenia j/3^ (z) — 5 i (s)| do zera oraz ciągłości normy 
(w szczególności normy supremum). Zgodnie z nierównością (B.4) z dodatku B.4 otrzy­
mujemy dla każdego x € Rp, że

p

\pN,i te) - 5i te)| < te) 12 \fX’N ($b)) ~ | > (A-26)

j=i

gdzie yN (z) = max{|/x>Arte(i))L • ■ • > l/x,wte(P))l> l/xte(i))l> • • •, l/xte(P))|}- Oszacowanie 
(A.26) prowadzi z kolei do wniosku, że

sup \^N,i te) - 5i te)| < p sup wpn 1 te) SUP \fx,N (z) - fx (x) 
xeRp xeRp 1 1 1

co, po ponownym zastosowaniu nierówności (B.4) z dodatku B.4, kończy dowód lematu.



Dodatek B

Wykorzystywane w pracy fakty 
z teorii prawdopodobieństwa 
i analizy matematycznej

B.l Szybkość zbieżności ciągów zmiennych losowych

Definicja B.l Dla ciągu zmiennych losowych {£n} oraz ciągu liczb dodatnich {6n} zbie­
żnego do zera, symbol £n — Op (bn) oznacza, że ciąg zmiennych losowych {rn (Cn/bn)} 
zbiega do zera według prawdopodobieństwa gdy N —» oo, przy dowolnie wolno zbieżnym do 
zera ciągu liczbowym {rn}.

Definicja B.2 Dla ciągu zmiennych losowych {£n} oraz ciągu liczb dodatnich {6n} zbie­
żnego do zera, symbol £n = op (bn) oznacza, że ciąg zmiennych losowych {Cn/bn} zbiega 
do zera według prawdopodobieństwa gdy N —» oo.

Lemat B.l Niech {£n} oraz {Cn} będą ciągami zmiennych losowych takimi że £n = a + 
Op (an) oraz = b + Op (bn), gdzie b 0. Wówczas

= t + Op bn}) 
Cn b

Dowód, zob. Hasiewicz i Śliwiński [55, str. 259]. ■

Lemat B.2 Niech {£„} oraz {£n} będą ciągami zmiennych losowych, takimi że £n = 
a + Op (an) oraz (,n = b + Op (bn}. Wówczas

= ab + Op (max {an, bn})

Dowód. Należy pokazać, że dla dowolnie wolno zbieżnego do zera ciągu rn oraz dowolnego 
e > 0 zachodzi

Na podstawie dekompozycji

CnCn ~ ab — Cn - b) + b - a)

otrzymujemy następujące oszacowanie

|€nCn-^l<l€nIKn-^l + l&l l€n~a|- (B.l)

87
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Niech M G będzie dowolną stałą, taką że M > |a| i M > |&|. Załóżmy, że dla dowolnego 
e > 0 i ciągu rn dowolnie wolno zbieżnego do zera, zaszło zdarzenie określone za pomocą 
nierówności

l€n - “I < i Kn - &| < i < M.

Wtedy, zgodnie z nierównością (B.l), otrzymujemy

- 041 £ "awKi6"* + = W (“"+ w'
co prowadzi do wniosku, że

Zachodzi więc następujące oszacowanie

p(lt > ,, . max{an,bn}')
P S KnU - ab\ > e-------- r—j--------f < (B-2)l 1'nl )

+-P{lCn-&l ~ 2M|r„|4 +P^nl

Na mocy założeń twierdzenia dwa pierwsze wyrazy po prawej stronie nierówności (B.2) 
dążą do zera gdy n —> oo. Odnośnie wyrażenia P {|f„| > M} zachodzi natomiast

p {|€nl >M}<P {|£n - a| + |a| > M} = P {|£n - a| > M - |a|} .

Ostatecznie zatem, ponieważ Ęn = a + Op (an), otrzymujemy

lim B{|£n| > M} = 0 
n—>oo

co kończy dowód. ■

B.2 Wybrane własności zmiennych losowych gaussowskich

Twierdzenie B.l Niech ^,i = 1,2, ...,n będą niezależnymi gaussowskimi zmiennymi 
losowymi o średnich odpowiednio oraz wariancjach a?, tj. ~ Wtedy
zmienna losowa £ = EiE £j ma rozkład normalny J\f (p, <r2) z parametrami

m = E,=i ip °raz ° = Ei=i

Dowód. Zob. np. Ostasiewicz et al. [86] str. 169. ■

Twierdzenie B.2 Niech X i Y będą zmiennymi losowymi o łącznym rozkładzie normal­
nym. Niech E {X} = E {K} = py oraz Var {X} = i Var {V} = wtedy

E{X\Y = y} = pY+P—{y~ Px) (B-3)
&x

gdzie p = Corr {X, Y}.

Dowód. Zob. np. Papoulis [88] str. 201. ■
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B.3 Wybrane zagadnienia teorii całki i analizy matematy­
cznej

Lemat B.3 {zob. Parzeń [90]) Niech, </>(•) oznacza dowolną funkcję, dla której całka 
\p{x)\dx Óest skończona oraz K (•) będzie dodatnią funkcją borelowską, spełniającą 

warunki:

1. K (•) jest funkcją ograniczoną, tj. sup^ (v) < oo,

2- K (V) dv = b
3. lim^poo vK (n) = 0.

Wtedy dla dodatniego ciągu liczbowego h, zbieżnego do zera,

dx — p {u),

w każdym punkcie u G R, w którym p {u) jest ciągła.

Dowód. Zob. np. Parzeń [90]. ■

Lemat B.4 {zob. Kołodziej [66, str. SfO]) Jeżeli u i v są funkcjami klasy C1 zmiennych 
€i> ^2> • • • > określonymi na ograniczonym zbiorze otwartym fi w przestrzeni euklidesowej 
Rm i nośnik przynajmniej jednej z tych funkcji zawarty jest w fi, to

dv , u~—dx 
d^k

du , ^-^dx 
d^k

k = 1,2,... ,m.

Dowód. Zob. Kołodziej [66, str. 340]. ■

B.4 Wykorzystywane nierówności

Lemat B.5 {nierówność Cauchy’ego-Schwarza) Jeśli u € H i w G H, gdzie H jest 
przestrzenią z iloczynem skalarnym, to

|few)| < ||v|| ||w|| ,

gdzie (n, uf) jest iloczynem skalarnym elementów y i w.

Dowód. Zob. np. Rudin [100, str. 327] ■

Lemat B.6 Dla dowolnych p-elementowych ciągów liczbowych {a-i} i {&i} prawdziwa jest 
nierówność 

p p p
JJ ai - U bi < 7P-1 la’ - bi\, (B-4)

2=1 2=1 2=1

gdzie y — max{|ai|,..., |ap|, |&i|,..., |&p|}.

Dowód. Nierówność (B.4) wynika z nierówności trójkąta oraz równości 

p p p
(b-5)
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gdzie

{ćić2 • • • b^—i dla i > 1 | u$-|-iU£-[-2 ■ • • dla i < p
oraz Ai = <

1 dla i — 1 [1 dla i = p

Wzór (B.5) można z kolei udowodnić stosując zasadę indukcji matematycznej i dekompo­
zycję aia2 - bib2 = a2 (ai - b^ + ią (a2 - b2). ■
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