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Chapter 1

Introduction

1.1 Historical overview

The most classical optimal stopping problem is the following secretary
problem (known also as the marriage problem). There are n linearly ordered
candidates for a job as a secretary (or for a wife as another story tells).
They come to a selector one by one in some random order. The selector
knows the total number of candidates as well as the relative ranks of the girls
examined so far. However, he gets no information about the candidates that
are still to come. His task is to hire (marry) the presently examined candidate
maximizing the probability of choosing the absolute best one. The optimal
strategy is of threshold type. It tells the selector to reject asymptotically
first n/e candidates and after this time to hire (marry) the first which is
presently the best. The probability of choosing the absolute best candidate
according to this optimal algorithm is asymptotically 1/e. This solution was
first written down by Lindley [19] in 1961 though, it seems, the problem and
its solution were known before. For a comprehensive treatment of the subject
consult Ferguson’s history of the secretary problem [3].

This beautiful problem and its elegant solution were the inspiration for
considering various generalizations. One of them was replacing the linear
order of candidates with a partial order and trying to stop the search on any
element which is maximal in the whole poset. Some efficient stopping rules
were found by Stadje [26] and Gnedin [8]. Morayne [22] found the optimal
algorithm for choosing the root in a complete binary tree of given height
(its probability of success tends to 1 with the height of the tree tending to
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1. Introduction

infinity). The optimal stopping rule for n pairs of “twins”, i.e., for a poset
consisting of n levels with two twin elements on each, was found by Garrod,
Kubicki and Morayne in [5]. The optimal stopping times for other regular
or simple posets were presented by Kazmierczak and Tkocz in [13], [14], [15]
and [28].

A further interesting generalization was to narrow down the selector’s
a priori knowledge only up to the number of candidates and try to find a
universal algorithm that would be reasonably successful on any poset. In
1999 Preater showed [23], quite surprisingly, that there exists an algorithm
that wins with probability at least 1/8 on any poset. This lower bound was
later improved for the same algorithm by Georgiou, Kuchta, Morayne and
Niemiec in [7] to 1/4. Kozik in [16] found an algorithm giving a better bound
than 1/4, 1/4 + € for € > 0. However a natural goal to achieve was to get a
bound of 1/e (the probability of success of the optimal algorithm for a linear
order) and thus to find an algorithm that would be not improvable. Such an
algorithm was found by Freij and Wistlund in [4]. For families with certain
restrictions better algorithms were found by Garrod and Morris in [6] and
Kumar, Lattanzi, Vassilvitskii and Vattani in [18].

Realizing that partially ordered sets may be treated as very rich directed
graphs led to the next generalization. Dealing with a directed graph instead
of a poset a selector can see at a given moment the induced graph gener-
ated by the vertices that have already arrived. One has to stop the search
maximizing the probability (or ensuring a relatively high probability) that
the presently examined vertex belongs to a particular part of a graph. The
first and most natural thing to do was to consider a directed path (instead
of the linear order) and search for the maximal vertex, i.e., the vertex with
no outgoing edges, the sink (instead of the best candidate). Kubicki and
Morayne presented in [17] the optimal algorithm for such a case, which tells
the selector to wait as long as possible, i.e., to stop when there is still a
positive probability that currently examined vertex is the maximal one and
the probability that the maximal one is still to come is equal to zero. Di-
rected graphs are much poorer structures than partial orders therefore it
seems that one cannot hope for too large probabilities of success. In the case
of the directed path of length n the probability of success p, according to
the optimal rule satisfies p,/n — +/7/2 as n — oo. The optimal stopping
time for choosing one of the two top vertices from a directed path (so-called
Gusein-Zade problem) was found by Przykucki and Sulkowska in [25]. In [24]
Przykucki presented an optimal rule in a search for a vertex with full degree
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1.2. Results of the thesis

in a random graph.

Throughout this thesis we will be looking for both optimal and, simply,
effective stopping times for some families of directed graphs. By effective
we understand strategies which give relatively large probability of success.
The expression “relatively large” will be made more precise and placed in the
context of the known optimal algorithms for graphs.

Such problems have real life interpratations. For instance, one may con-
sider on-line decision problems on structures that are useful for storing data
or on structures that model computer networks. We can easily imagine the
task of browsing a computer network with a known or unknown topology in
a search for a server with a certain (possibly good) feature.

1.2 Results of the thesis

This thesis consists of three chapters. Two of them (3 and 4) are devoted
to the universal effective algorithms for upward directed graphs. The third
one generalizes the result of Kubicki and Morayne from [17] and describes
the optimal algorithm for a certain family of graphs.

Chapter 3 is based on a joint work with Graham Brightwell, Paul Balister
and Michal Morayne, [1]. We analyze a very simple universal algorithm for
choosing a maximal vertex from an upward directed rooted graph. We show
that it is effective for the whole special families of graphs, for instance, for
k-ary trees, graphs we call natural pyramids or half-cubes and for structures
with large minimal indegree. We also indicate the connection between the
stated problem and the theory of branching processes and the percolation
theory.

Chapter 4 is based on article [27]. It presents a universal strategy for
choosing a maximal element from a directed acyclic graph that belongs to
a fairly general family of graphs when a selector knows in advance only the
number n of its vertices. The problem considered in this chapter is comple-
mentary to the problem presented in Chapter 3 in such a sense that this time
we consider upward directed graphs with bounded indegrees. Precisely, the
number of elements dominated directly by the maximal ones is not greater
than c;+/n for some positive constant ¢; and the indegree of remaining ver-
tices is bounded by a common constant D. We show that the probability p,, of
the right choice according to our strategy satisfies lim inf,, o pn/n > 6 > 0,
where § is a constant depending on ¢; and D. As it can be seen from the
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1. Introduction

optimal result for the directed path mentioned in the previous section one
cannot hope, up to a constant, for a better result.

Chapter 5 is based on a joint work with Andrzej Grzesik and Michal
Morayne, [10]. We consider the optimal algorithm for the kth power of a
directed path. At first we assume that the selector knows in advance not only
the underlying graph but also the distance in the underlying path between
each two vertices that are joined by an edge in the induced graph. When
k = 1 this problem reduces simply to a directed path case from [17]. We give
the optimal algorithm for any kth power and for k£ = 2 its exact probability
of success. We also prove that for any k& the probability of success p, (where
n is the length of the path) satisfies p, = Q(n~Y/(*+1) and for k such that
lim sup,, . IC(II“T';% < 1/2 we have also p,, = O(n~Y/*+1)). We show this result
also for the case when the selector is not given the additional information
about the distances, although without the optimal stopping time.

10



Chapter 2

Notation, definitions and formal
model

This chapter contains notation and basic definitions that are used through-
out the whole thesis. Notation and definitions that are specific for particular
chapters are going to be presented later on.

2.1 Basic definitions

A directed graph G is a pair G = (V, E), where V is a set of vertices and
E is a set of edges, i.e., ordered pairs of elements from V' (which means that
each edge has a direction). The cardinality of V' will be denoted by n.

Throughout this thesis we consider only simple graphs, i.e., (v,v) ¢ E for
allv e V.

A directed cycle in G is a subgraph H = (W, F) of G such that W =
{wy,ws, ... wp} and F = {(w;, wi1) 11 € {1,2,...,k}} setting wryy = w;.

An upward directed (acyclic) graph is a simple directed graph with no
directed cycles. Note that the family of upward directed graphs coincides
with the family of Hasse diagrams for posets.

A directed path or a chain is a graph P, = (V,, E,) such that V, =
{v1,v2,...,v,} and E, = {(v;,vi-1) : ¢ € {2,3,...,n}}. The length of P, is
defined here as n.

We call v € V a mazimal vertex if v has no outgoing edges. For a
directed graph G the set of its maximal vertices will be denoted by Maxz(G)
or Maxz(V) if E is known from the context. Whenever there is only one
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2. Notation, definitions and formal model

maximal vertex in G it is called root and denoted by 1. Then G is called
rooted.

By the depth of v € V in G we understand the length of the shortest
directed path that starts in v and ends in an element from Maz(G).

By the height of G we understand the length of the longest directed path
in G.

A leaf in a directed graph is a vertex with no incoming edges.

For v and w from V we say that w is a parent of v and v is a child of w
if (v,w) € E (note that a maximal vertex is a vertex which has no parent).

For a graph G = (V, E), its maximal connected induced subgraph G’ =
(W, ENW?), W CV, is called a connected component.

Let S, denote the family of all permutations of the set V. Let m =
(m1, 72, .., Tn) € Spn. By Gm) = Gm)(1) = (Vim), E(m)), m < n, we denote
the subgraph of G induced by {m1,...,7n}, ie.,

Vimy = {m1, 72, ..., Tm},
By = { (v, 05): {w, v} C {mms, o0 0 A (v, v5) € E}.

Let ¢(G(m)) denote the number of connected components in G-

Quite generally, let (2, F, P) be a probability space. Let F, C F, C
... JFn» C F be a sequence of g-algebras, i.e., a filtration. A random variable
T:w—{1,2,...,n} is a stopping time with respect to a filtration (F;)7, if
771({t}) € F; for each ¢t < n. If we think of 7(w), w € §, as of a moment
when to stop observing a certain process depending on w and ¢t =1,2,...,n,
then the condition 77!({t}) € F; means that our decision to stop at t is
based only on the past and present events and it does not depend on any
information about the future events.

Let (vy,vs,...,un) be a sequence of distinct vertices of a directed graph
G = (V,E). Let R C N2. We write (v1,vq,...,0) = R if for all 4,5 <
m,i # 7, (vi,v;) € E if and only if (4,j) € R.

2.2 Formal model

Defining the formal model we follow [17]. We give a general probabilistic
model concerning any directed graph. Let G = (V, E) be a fixed graph.
We will work with the probability space (2, F,P), where Q = S,, F =
P(£2) and the probability measure P : F — [0, 1] will be defined by setting
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P({7}) = 1/n! for each m € S,. Let
Fi=oc({r € Q: (m,m,...,m) = R} : RCN?), 1<t < m.

Let D be a subset of vertices of the graph G (i.e. D C V). When looking for
a vertex from D an optimal stopping time is any stopping time 7* for which

P(m,+ € D] = maxP[n, € D],
TET

where 7 is the family of all stopping times and |7, € D] denotes the set
{m € Q 7 € D}. We will also consider effective stopping times, i.e.,
stopping times 7* for which P[r,. € D] is relatively large. The expression
“relatively large” will be made more precise in Chapters 3 and 4 by placing
it in the context of the known optimal stopping times.

2.3 Notation

Symbol Meaning

N set of natural numbers {0,1,2,3,...}
B(n,p) binomial distribution with parameters n,p
G=(V,E) directed graph, V - set of vertices, F - set of edges
Ls directed path of length n

Maz(G), Maz(V) set of maximal vertices of G = (V, E)

1 root, the only one maximal vertex of G
Sa family of all permutations of set V'

= (71, Ty, ) random permutation of vertices from V'
Gm) = G(my(m) subgraph of G induced by {7, 72, ..., 7m}
c(G(my) number of connected components in G
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Chapter 3

Analysis of a simple effective
on-line algorithm for the
graph-theoretic generalization of
the best choice problem

3.1 Introduction

Throughout this chapter we present and analyze a simple deterministic
on-line algorithm for some families of upward directed rooted graphs. We
assume that the selector knows the height of the graph. His task is to choose
the root with a relatively large probability.

The chapter is organized as follows. In Section 3.2 we introduce neces-
sary definitions. In Section 3.3 we state a simple deterministic algorithm for
choosing the root and discuss some connection between the best choice prob-
lem and the theory of branching processes and the percolation theory. In
Sections 3.4 and 3.5 we consider two families of graphs: the complete k-ary
trees and, so called, natural pyramids, analyzing the effectiveness of our al-
gorithm for these families of graphs. In Section 3.6 we present an asymptotic
analysis of the same deterministic algorithm applied to the structures with a
large minimal indegree. We consider a d-dimensional half-cube as an exam-
ple. In Section 3.7 we present the main theorem considering the effectiveness
of our algorithm for the family of path-homogeneous graphs. The theorem
is proved using the second moment method and, as in previous sections, the
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

continuous time approach to arrival of vertices. Section 3.8 concludes the
chapter with a short discussion about the choice of such an algorithm.

3.2 Definitions

The complete k-ary trees are upward directed rooted graphs in which each
vertex except leaves has exactly k incoming edges and all the paths from the
root to the leaves have the same length. (Ternary tree of height 3 is presented
in Fig.3.1.)

The pyramids are upward directed rooted graphs. They have at least
as many vertices at the level k + 1 as at the level k. Each vertex from the
k + 1st level is connected by an edge with each vertex from the kth level.
The natural pyramid is a pyramid with exactly k vertices at the kth level.
(The natural pyramid of height 4 is presented in Fig.3.2.)

The half-cubes are upward directed rooted graphs with a diagram of an
upper half of a d-dimensional cube. All the paths from the root to the leaves
have the same length equal to |d/2] + 1. (The 4-dimensional half-cube is
presented in Fig.3.3.)

In this chapter we consider only induced subgraphs of upward directed
rooted graphs. Let H = (W, F') be such a subgraph. For w € W the height
of win H is the length of the longest directed path of vertices from W that
ends in w.

Let m € S, and m < n. Recall that G(m) = (Vim), E(m)) is a subgraph of
G induced by {m,...,7n}. Let v € V(m). Let hp(v) denote the height of
the vertex v in Gm).

Throughout this chapter G will be an upward directed rooted graph whose
all leaves have depth N and the set of vertices we would like to stop on will
be D = {1}.

3.3 Stopping time

Let G = (V,E) be an upward directed rooted graph whose all leaves
have depth N. Recall that n denote the cardinality of the set of its vertices.
Throughout this chapter we are going to consider the effectiveness of the
following simple algorithm for choosing a root.

16



3.3. Stopping time

Strategy: Let a stopping time 7y be equal to m if h,,(m,) = N. If it
never happens, let 7y = n. ’

We do not have the exact formulas for P[r,, = 1] for structures being
considered. However, we are able to obtain the asymptotic effectiveness of 7
using the second moment method and the following approach to the arrivals
of vertices. Let us associate with each element v;, 1 = 1,2,...,n, from Vy,
where v; is the root, a random variable A; of a value drawn uniformly from
the interval [0, 1], where all A;’s are independent. Let us treat A; as the
time of arrival of v;. We have thus generated the uniform random order of
arrivals of vertices from V. The arrival time of the root will be denoted by
p (A1 = p). This continuous time approach is equivalent to the discrete time
one in the sense that all permutations of vertices are equiprobable.

Remark 3.1. Since A;’s are independent random variables, if the arrival
time of the root is A; = p, the probability that a particular vertex appears
before the root is equal to p.

By ¢, v we denote the probability that at lest one chain of length N — 1
appears before the root (provided A; = p).

One can notice that such a statement of our problem generalizes and
connects some issues from the theory of branching processes and percolation.
For instance, if we consider only the graphs with maximum outdegree equal
to 1 then c, x is exactly the probability of survival of a branching process till
time NN, where the number of children of each parent is a random variable
following the distribution depending on the structure of G (e.g. for k-ary
tree a binomial distribution with parameters k, p).

On the other hand we can state this issue as follows. Reveal randomly and
independently with probability p the vertices of G. What is the probability
that a path of length N appears? Or, in the limit, what is the probability that
an infinite component appears? This is a classical question of site percolation
theory. The intensive study of percolation process grown following the work
of Broadbent and Hammersley [2]. For instance, the 2-dimensional lattices
were considered in [20].

As Plr,, = 1|A; = p|] = ¢, v and all p’s are equiprobable, the following
lemma holds.

Lemma 3.2. For an upward directed rooted graph whose all leaves have the

17



3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

same depth N we have

1
Plr,, =1] = /cp,N dp.
0

3.4 Complete k-ary tree

In this section we prove a result for k-ary trees using the continuous time
approach to arrivals of vertices (this approach was described in Section 3.3).

Since now the probability of success of our deterministic algorithm de-
pends not only on N, but also on k we will write 7(x ny instead of 7n. By
Ten = (Vin, Exn) we denote the upward directed complete k-ary tree
of height N. As usually, let n denote the cardinality of Vi n; of course,
n = E =1 (T3 is presented in Fig.3.1.)

ol

T~
SN TN N

Figure 3.1: T33.

In the case of Ty n also ¢, v depends not only on p and IV, but also on k.
Nevertheless, as the value of k will always be clear from the context, we will
simply write ¢, y. Note that by Remark 3.1 ¢, n is exactly the probability
of survival of the Galton-Watson branching process till time /V in which the
offspring distribution is binomial with parameters k,p. Let us denote by X
the corresponding random variable, X ~ B(k,p). We have EX = kp. Let us
define c(p, k) = limy_00 ¢pn. From the theory of Galton-Watson branching
processes we know the following.

Lemma 3.3. If EX > 1, i.e., p > 1/k, then c(p, k) is the unique root in
(0,1) of the equation 1 — a = G(1 — @) where G(z) = (1 — p + px)* is the
generating function for the offspring distribution. If EX <1, i.e., p < 1/k,
then c(p, k) = 0.

18



3.4. Complete k-ary tree

Theorem 3.4. Let m be a random permutation of vertices of Ty n. Let
c(p, k) = limy_y00 cpn. Then

N—o00

1
lim P, ,, =1]= /c(p, k) dp.
0

In particular, for the binary tree limy_ oo IP’[WT(Z,N) =1] =2In2 -1 and for
the ternary tree imy o0 P[WT(S’N) =1]=15n3 -2+ 7r/(2\/§)

Proof. Let us generate the uniform random order of arrivals of vertices from
Vi, as it is done in Section 4. By Lemma 3.2 P[r,, . = 1] = fol Cp,N dp.
By Lebesgue’s dominated convergence theorem (see [11]) and Lemma 3.3 we
obtain

1 1
i Pl =11 = i [covdo= [ i covd =
0 0
1 1
/ (Ko = / (p, k) dp.
0 1/k

By the same lemma we get c(p,2) = (2p — 1)/p? for k = 2 and c(p,3) =
K VA W for kK = 3. Finally,

1
lim Plr,, ,, =1] = /(2p —1)/p*dp=2In2-1

N—oo
1/2

and

1

. 3p* — v/4p® — 3p*
lim P, =1]= / o3 dp=1.5In3 - 24 7/(2V3).

N—oo
1/3

19



3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

3.5 Natural pyramid

In this section we show that the asymptotic effectiveness of 7,y for the
natural pyramid of height N is approximately 0.516203. We use the same
idea as for T, v (the previous section) - generating the uniform random order
of arrivals of vertices.

By Zy = (Vy, En) we denote the natural pyramid of height N. Let n
denote the cardinality of Vi (of course n = M%ﬂl) (Z4 is presented in
Fig.3.2.) Let g=1—p and ¢qn = cp -

ol

N

Figure 3.2: Z4.

Lemma 3.5. The probability ¢, n satisfies

R :eXp{—Z i(1 —qi)} 1-q

i1=1
Proof. We have

En=01-)1-)1—-¢"...01 =" (1 -g").

20



3.5. Natural pyramid

Thus
Inév=m(1-¢)+In(1-¢)+...+In(1-=¢" DN +In(1-¢")=
IS B S N N
2 3 4 o 2 3 4
- qN—l - q2(N—1) - q3(N—1) - - -
2 3 4
2N 3N N N 9 N 3;
_N_2 T _ i_N4D N9
" T3 773 Zq Z 2 Z 3
J=2 7=2 j=2
iqm(l qi(N—l)) N-soo, _i qzi
~  i(l-¢) —~i(1-¢")
We obtain

hence

e = q 1
R e

i=1

d

Theorem 3.6. Let m be a random permutation of vertices of Zy. We have
limpy 00 P[m,, = 1] &~ 0.516203.

Proof. By Lemma 3.2 and Lebesgue’s dominated convergence theorem (see
[11]) we get

N—o0

HD[WTN = ]l] = éq,N dq —>

expd - —2 dg ~ 0.516203.
—~i(l1-¢)| 1-¢

7

/
/

0
(Wolfram Mathematica 8.)
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

3.6 Structures with a large minimal indegree

In this section we prove that the asymptotic effectiveness of 7 applied
to structures with respectively large minimal indegrees equals 1. We give the
structure of half-cube as an example. Let again ¢ =1 — p and ¢, n = ¢, n.

Theorem 3.7. Let G be the upward directed rooted graph whose all leaves
have the same depth N and let the minimal indegree of its vertices excluding

leaves be § = 6(N). Let lo(gNI\)/ N2 5. Then Plr., = 1] ik

Proof. We have o > (1= @®)N1. Thus liminfy e Eqn > limy o0 eV,
Since ‘S(N ) N2, we obtain

. SN — 1 o
A}l_rgolog(qN)—A}l_r)r(l)o(élogq+logN)— 0.

Thus ¢° N N2 () which gives limy_,o0 Cg v = 1. By lemma 3.2 and Lebesgue’s
dominated convergence theorem (see [11]) we get

1
Plr., = 1] :/aq,quM/mq: 1.
0

a
Example 3.8. Half-cube case. We denote the d-dimensional half-cube
by Qu = (Va, Eg). We have N = |d/2]| + 1. (4-dimensional half-cube is

presented in Fig.3.3.) As N does not identify the Q4 in this case we will
write 7(g) instead of 7y.

W

el2 34
Figure 3.3: Q4.
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3.7. Path-homogeneous structures

Note that the minimal indegree of Qg is 6(d) = d — N +2 = [¢] + 1.

d o6 :
We have liéd])v = log([ﬁi]/;j—}-l) 42%% 0. Thus applying Theorem 3.7 we get
d—oo

IP[ﬂ'.r(d) =1] — 1.

3.7 Path-homogeneous structures

In this section we show that our deterministic algorithm 7y gives good
results (the probability of its success tends to 1 with N tending to infinity)
also when applied to a broader family of path-homogeneous structures. We
prove it using the second moment method and the idea of generating the
uniform random order of arrivals of vertices. We give the structures of k-ary
trees and half-cubes as examples.

The second moment method is based on Chebyshev’s inequality.

Lemma 3.9 (Chebyshev’s Inequality, [21]). Let X be a random wvariable.
Then for all e > 0
Var[X]

PIX ~EX|> ] < —

In particular, for e = EX we have

Var[X
(EX)?

P[X = 0] < P[|X —EX| > EX] <
0

We call G = (V, E) path-homogeneous if for any two paths of the same
length 7, P, = (1,v1,v2,...,0,-1), Po = (1, w;,ws,...,w,_1) there exists an
isomorphism of G, p : V' — V such that p(v;) = w; foreach ¢ =1,2,...,r—1.

Let M denote the total number of paths of length N in a given structure.
Let M, denote the total number of paths of length NV —1 which do not contain
the root and have exactly s vertices in common with a given path of length
N. Note that M is well defined because our structure is path-homogeneous.

Theorem 3.10. Let G = (V, E) be path-homogeneous with all leaves of depth
N. If sup,(¥:)/s 229 for s € {1,2,..., N — 2} and limy_,o M~Y/N =0
then

1\}1_r)r(1>o]P[7rTN = H=1.
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

Remark 3.11. Note that in most cases the condition sup, (% )1/ ° Moo,

0
implies M~N X2% 0 It is enough that we deal with a structure for which

there exists o > 0 such that M,y > 1.

Proof. Let us enumerate in G all the paths of length NV — 1 which do not
contain the root by 1,2,3,..., M and define a sequence of random variables
fori=1,2,3,..., M:

1 if the sth path appears before the root 1,
Xi == .
0 otherwise.

Let also X = Zfil X;. Now X is the total number of paths of length NV —1
that appear before the root 1. Note that ¢, v = P[X > 0]. We have

M
EX = ZIEXZ- = Mp"N1,

i=1

=E +2 > EBXX]=

E[X? = [ZX ZX2
1<i<j<M
MpNTt+2 Y EXX]

1<i<j<M

For1<i<j<M

1 if the 7th and jth paths appear before the root 1,
X; X; = .
0 otherwise.

If the ith and jth paths have s vertices in common then E[X;X;] = p*N—1)=s,
Hence p*V=1 < E[X;X;] < p". Since G is path-homogeneous there are 22
pairs of paths of length NV — 1 which do not contain the root that have s
vertices in common. Therefore

>, E

1<i<i<M s=0

N—-

t\)

52N1)s
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3.7. Path-homogeneous structures

Using Chebyshev’s inequality (3.9) we get
Var[X] EX?-(EX)®

P[X = 0] <

(EX)2 —  (EX)?
EX +23 1 cicionm EXiX; o
(EX)?
MpN—l s Zi\fz—OZ M]\/ISPZ(N—l)—s 1+ Z:{_—_()Z ]VISPN_l_s
M2p2(N=1) L= MpN-1 — b=
My, M, M, M; Mpy_o 1

Mo _ 1
Ty M T T T M T i

Let Ly = sup,(M,/M)Ys for s € {1,2,...,N — 2}. Since Ly 2= 0
IN=

S ()7 s
<ﬁ) _ (Ln/p)(1 = (Ln/p)V"?) N-soo,
p 1-Ly/p

Z
&

0.

§=1

N-2 p, N—oo
Thus also ., * ¥ === 0 and

My M—(1+M+M+...+Myo)

M M -
M“l__N-ZMs N—o00 1
M e M

Since M~UN N2 we also get 1/(MpV—1) dlko,
N—oo

P[X = 0] —— 0 which gives

0. Hence we obtain

epn =1—P[X =0] 222 1.
By Lemma 3.2 and Lebesgue’s dominated convergence theorem (see [11]) we
finally get

1

Plr,, = 1] = /c,,,N dp 22 1.
0
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of the best choice problem

Example 3.12. Complete k-ary tree Ty ~n. Let us recall that by T n) v
we denote the upward directed complete k(N)-ary tree of height N. Let
k(N) — oo with N — o0.

For Ty(vy,n we have M = k(N)V=! and M, = (k(N) — 1)k(N)N=(+2) for

§s=0,1,...,N-2. Thusfors:1,2,...,N—2wegetsups(%i)l/s Moo g

which in this case implies also limy_o M -1/N = 0. Since Tynyn is a
path-homogeneous structure we may apply theorem 3.10 and therefore get
Plr,, = 1] 2221

Example 3.13. Half-cube case. Let us recall that by Q4 = (Vy, Eg) we
denote the d-dimensional half-cube. In this case we will write again (g
instead of 7. As usually, n denote the cardinality of V;. We get the following
relations:

N =|d/2] +1,
[ 2+ n - odd
M= 2414 %(;}2), n - even

M=d(d—1)(d—2)...(d—(N_2)):(N_l)!<Nd—l> :de/z_;”

Lemma 3.14. We have for Q4 and s € {1,2,...,|d/2] — 1}:

sup (Ms>1/s ——>N_’°° 0
s M '

Proof. Note that M, < ("')(N—1-s)! where (") is the number of possi-
bilities of choosing s points on a given path of length N—1and (N — 1 — s)!
is the upper estimation of the number of paths that go through those s points.
Recalling that N = |d/2] + 1 and M = —%- we obtain

[a/2]]
()" = ()

1/s
We are going to show that the function f(s) = (s!(L d‘/i2 J)) is decreasing
and that f(|d/2] —1) 42%, 5. We have

(f(s + 1))““” _(s+1)p
f(s) S!(Ld(/iu)

26



3.8. Short discussion on the choice of the algorithm 7

Since ﬁft—f)—s is increasing, in order to obtain ! &s(j)l) < 1 it is enough to show

(s+1)° _ ([d%l) for s = [d/2] — 1. We have

|df2)ea)-1) . |d/2] e (fd/2]+1)([d/2]+2)...d_< d)
={, ,

CZ2ED R [d/2]! d/2]

We have shown that f(s) is decreasing. We have also

PR =
f(ld/2) —1) = ((Ld/2j = 1)!W> _
((Ld/z CLE: 1>L2(/d2/ﬁ1 +2).. d> e _
(14/2]-)\ TR o
((Ld/z |- 1) Ld/2J(Lde//2 2JJ>! )m i

O

Q4 is path-homogeneous and for Qg we have limy_,co M~/N = 0. Thus,
d—o0

by Lemma 3.14 and Theorem 3.10, we obtain P[r, , = 1] — 1.

This result for half-cubes was already obtained in the previous section by
simpler methods. However, there are families of upward directed graphs for
which we can apply Theorem 3.10 while Theorem 3.7 does not work.

Example 3.15. Complete [loglog N |-ary tree case. Let us consider

Tivy,n with k(N) = [loglog N]. For this structure the minimal indegree
§(N) = |loglog N | hence %g—\;—v)— N2, 0 and Theorem 3.7 can not be applied.
However Example 3.12 shows that for our |loglog N |-ary tree by Theorem

3.10 we get P[m,, = 1] 222 1.

3.8 Short discussion on the choice of the algo-
rithm 7 N

We have proved throughout this chapter that our deterministic algorithm
7n for choosing the root, despite being very simple, works very well for many
families of directed rooted graphs. One can however wonder why should not
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

we stop earlier. After all 7y tells the selector to wait till the very end. Let us
show that stopping at the top of a shorter path does not give a better result
when playing on the structures presented in this chapter.

Let us consider the following algorithm. Let a stopping time 7y be equal
to the first m such that A, (7m,) = N — 1. If it never happens, let 7y = n.
Note that the algorithms 7 and 7y are disjoint, i.e., whenever Ty stops, 7y
plays further and whenever 7y stops, 7 does not stop. Thus whenever one
of them gives the probability of success greater than 0.5 the other one can not
perform better. The probability of success of 7,y for the structures presented
throughout the chapter either tends asymptotically to 1 with N tending to
infinity or is equal to a value greater than 0.5 (except the complete binary
tree case which is discussed below). This shows the advantage of 7y over 7y

for the presented families of structures.

In the binary tree case we have Plr,, = 1] N2 91n2 — 1 = 0.386.

For a,b,c € Vy let I, denote the event that the vertices a,b,c appear in
a random permutation in exactly this oder. Let 2,3 be the children of the
root 1. Note that P[W}N = 1|En)2,3 UEnya,g] = P[W-;N = 1|En,2’3 U E1)3’2] = 0.
Thus P[’IT.,—N = ]l] = P['TT-,—N = 1|(E]1,2'3 U E]l’gyz)c]lp[(En,z);; U En’gyz)c] and
analogously for 7y. Since P[(Ey 23U Eg32)°] = 2/3 we get

N—o00

P,y = 1|(F1,2,3 U En,3,2)c] —— 3In2 - 3/2.
Recall that 7 and 75 are never equal, whence

Plrzy = 1|(E1,2,3 U F1,32)°] <
1 — P[r,, =1|(Ey23U E1352)°) 2225 5/2 — 3In2.
Finally,
WS Pl =11 =
JL{%OP[W%N =1|(F1,23U E132)°|P[(Ey 23U En,s,z)c] <
(5/2 —31n2)2/3 = 5/3 — 2In2 ~ 0.28.

Thus also in the binary tree case 7y performs better than 7y.
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Chapter 4

The best choice problem for
upward directed graphs

4.1 Introduction

In [23] Preater presented a universal algorithm for partial orders in the
case of restricted information, precisely, when a selector knows in advance
only the cardinality of a poset. Surprisingly, this algorithm wins with the
probability at least 1/4 (original Preater’s bound of 1/8 was improved in
[7] to 1/4) on any partial order. (For further development of the subject
see [16], [4], [6], [18]; compare also the Historical overview in Chapter 1.)
A natural question is if such an efficient universal stopping time exists for
upward directed graphs.

In this chapter we assume that the selector is told in advance only the
total number n of vertices of an upward directed graph (actually there will
be also some restriction on the structure of the graph). We describe a uni-
versal strategy for choosing a maximal element. We prove that, as long as
the number of elements dominated directly by the maximal vertices is not
greater than c;/n for some positive constant ¢; and the indegree of remain-
ing vertices is bounded by a constant D, the probability of success p,, satisfies
liminf,, o Pny/m > § > 0, where § is some constant depending on ¢, and D.
As it can be seen from the optimal result for the directed path from [17] one
cannot hope, up to a constant, for a better result. The similar results have
been obtained independently by Goddard, Kubicka and Kubicki in [9].

The chapter is organized as follows. In Section 4.2 we introduce necessary
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4. The best choice problem for upward directed graphs

definitions. Section 4.3 presents our strategy and contains an analysis of its
effectiveness. Section 4.4 contains a comparison of our universal algorithm
with the optimal strategy in the directed path case and a short discussion
about the universal algorithm for the structures with large minimal indegree
that was introduced in Chapter 3.

4.2 Definitions

Let G = (V, E) be a directed graph. By in(v) we denote the indegree of
v in G which is the number of edges incoming to v.

The depth of v € V in G will be denoted by d(v). The set of the elements
of depth 2 will be denoted by Sec(G). (See Fig.4.1.)

N

LN I
e
SN

Figure 4.1: An upward directed graph G with Maz(G) = {a,b,¢,d, f} and
Sec(G) = {e,g,h,7}.

Throughout this chapter G will be any upward directed graph and the
set of vertices we would like to stop on will be D = Maz(G).
4.3 Universal algorithm

In this section we present a stopping time 7, for choosing a maximal ele-
ment from an upward directed graph G, = (Vy,, En), |Va| = n. Our strategy
uses randomization that was first introduced in [23] to construct a universal
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4.3. Universal algorithm

best choice algorithm for posets. We show that as long as |Sec(Gy)| < c1v/n
for some positive constant ¢; and in(v) is bounded by a constant for all
v € Vo \ (Maz(G,) U Sec(G,)) the probability of success of our strategy
satisfies liminf, o P[m,, € Maz(G,)]y/n > ¢ > 0, for some constant §
independent of n and the considered sequence of graphs.

Strategy: Let us define a stopping time 7,, as follows. Flip an asymmetric
coin, having some probability p of coming down tails, n times. If it comes
down tails M times reject the first M elements. After this time pick the first
element which is maximal in the induced graph. In other words, 7, is equal
to the first j > M such that m; € Maz(G(;)). If no such j is found let 7,, = n.

Before we move on to analyzing the effectiveness of our strategy we are
going to prove the following lemma.

Lemma 4.1. Let m € S,, be a random permutation of vertices in V. Suppose
that we have a coin that comes down tails with probability p. Let M denote
the number of occurrences of tails in n tosses. Then all vertices from V
appear in {my,ma, ..., Tp b with probability p independently.

Proof. Let Vir = {m1,m2,...,mp}. Let v € V. We start with proving that
Plv € V] = p. Since M ~ B(n,p) we have

Plv € V] =j;IP’[v € Vu|M = i|P[M =i] = ; %<?>pi(1 )=
> (323 pa-pr- 5 ("7 )pa-are -

1=1
n—1

n—1 j n—1)—j
pZ( j )p’(l—p)( Y =p.1=p.
3=0

Now we are going to prove that all vertices from V appear in V) indepen-
dently. We need to show that for each 1 < r < |V

P[’Ul € Va,vs € Vagy .., 0, € VM] = ]P['Ul (S V]\/[]P[UQ s VM] ‘i P{’Ur & VM].
We already know that Plv; € Viy|Plvg € Viy...Plv, € Viy] = p™. Thus we
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4. The best choice problem for upward directed graphs

need to show Plv; € Vir,vs € Vi, ..., v € Viy] = p". We have
HD[’Ul eEVu,...,ur € VM] =

ZIP"Ul € Vatyo oo, 0 € Vy|M = 4P[M = i) =

z—<> s

1=

n—r

T n-— n—r)—j r 'r
P ( ‘ ) PA-p) 7 =p - 1=p"
0 J

J==
0

Theorem 4.2. Let G, = (V,,, E,) be an upward directed graph, |V,| =n. Let
m € S, be a random permutation of vertices in V,,. Let also |Sec(Gp)| < c1v/n
for some positive constant c1, in(v) < D forv e V, \ (Maz(G,) U Sec(G,))
and let p (from the definition of 1,) be equal to 1 — ¢/+/n where c is some
positive constant. Then

hfﬂ,iogfp[ﬂ’n € Maz(Gp)]v/n > 6 =6(c,c1, D) > 0.

Before stating the proof of Theorem 4.2 let us briefly discuss why the
suggested stopping time 7, with p = 1 — ¢/4/n would work. We are aim-
ing at the universal algorithm that gives the probability of success of the
order ©(1/4/n). If we then let, on average, all but cy/n vertices pass, the
probability that at least one maximal vertex is still to come is of the or-
der Q(1/4/n). Since the number of vertices that are still to come is “small”
the probability that our algorithm will encounter among remaining c/n ver-
tices a “misleading” one which is maximal in the induced graph but not in
G, is also small whenever we deal with the graphs considered in this chapter.

Proof. Let M be the value mentioned in the definition of the stopping time
7, and let Vi = {m1,ma,...,mar}. Let us partition the set V' \ (Maz(G,) U
Sec(Gy)) into two sets: Vogg = {v € V' \ (Maz(G,)USec(Gy)) : d(v) is odd}
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4.3. Universal algorithm

and Veyen, = {v € V'\ (Maz(G,)USec(Gy)) : d(v) is even}. Let |Viyen| = L.
Let us also assign to every vertex v € V' \ (Maz(G,) U Sec(G,)) one of its
parents whose depth is smaller than the depth of v and denote it by r(v).
Let s(v) = {w : (w,v) € E}. Let

R = {r(v) : v € Veyen \ Vur},

S = U S(U)) N vodd-

’Ueveven\VA'I

Let us give an example of the sets R and .S based on Figure 4.1. Con-
siderm = (I, e,v, f,u,m,9,b,t,h,c j,8,d,q,w, k,n,a,p,i) and M = 14. Then
Vu = {l,e,v, f,u,m, 9,b,t,h,c,j,s,d} and V \ Viy = {q,w, k,n,a,p,i}. We
have Veyen \ Var = {p, ¢} thus S = {t,u,v}. Choosing r(p) = | we also have
R = {l,m}.

We have

Plr,, € Maz(G,)] =

Ln
Z]P)[WTH € MCLCE(Gn)IIVM N V:avenl = k]P“‘/AI N ‘/evenl = k}

k=0

By Lemma 4.1 we have P[|[Vis N Viyen| = k] = (5)pF(1 — p)in*. Let A
be the event that after time M some maximal vertex is still to come, i.e.,
A = [Maz(G,) ¢ Vu]. Note that if the event AN [(Sec(Gn)URUS) C Viy]
occurs then the vertex m; € V' \ Vi is maximal in the induced graph G
if and only if it belongs to Maz(G,) (each vertex from V \ Vi; with even
depth in G, has already one of its parents in R C V)y; also each vertex from
V\ (Vi U Maz(G,)) with odd depth in G, has at least one (“even”) parent
in Vs since all the “odd” children of vertices from Ve, \ Vis are already in
S C V). Therefore 7, € Maz(G,) whenever the event A N [(Sec(G,) U
RUS) C Vi) occurs. Thus we have

P[an. € MG,CE(Gn)H‘/A/[ N ‘/even' = k] >
HD[A N ((SBC(Gn) URU S) & VM)“VM N ‘/evenl o k]

If |V N Veyen| = k we have |R| < L, — k and |S| < D(L,, — k). The vertices
from Maz(G,)U Sec(G,) U RU S do not belong to V,yen, hence by Lemma
4.1 we get '

Plr, € Maz(Gp)|[Var N Veven| = k] = (1 — p)p!Secl@nliphn=FpDLn=k)
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4. The best choice problem for upward directed graphs

Thus
P[n,, € Maz(G,)] >

L

- L
Z(l _ p)pISCC(Gn)lan—ka(Ln—k) < kn>pk(1 _ p)Ln~k —
k=0

L
n LT" _ B
(1= POl S () )1 = gyt =
k=0

(1 . p)p|SeC(Gn)|an(D+l)(1 _ p + p——D)Ln.
Since |Sec(Gr)| < ¢1y/n we have

c1y/n
imi — p\plSeeGa)l > 1 L (15 — e
hrILE)g;lf Vn(l—p)p > T}l_)rgo \/ﬁ\/ﬁ (1 \/ﬁ> ce” . (4.1)

Hence we will be done if we show that liminf, e ptrPHN(1 —p 4 p~D)In g
some positive constant. We have

pr P —p+p~P) 0 = (p(1 +p" (1 — )™ -
(-3 (+0-7))) -
(82507

(il OV o c/\/ﬁ>”)b” |

n

We have cy/n(1—(1—c/v/n)P) 222 2D and c2(1—c/\/n)P 222 2. Quite
formally, since L, = |Veyen| < |Va|, there exists a constant ¢ < 1 such that
(we introduce ¢, only because we will refer to it in Section 4.4)

liminf (p”*'(1 - p +p‘D))L" b

nh_)r{.lo <1 _ cyv/n(l—(1- C/\/ﬁ:)) + (1 - C/\/'FL)D)CM _ o2 (D+1).

Since ¢, < 1 we finally get
lim inf P[7,,, € Maz(G,)]v/n >ce~clertacD+D) >

n—00
ce—clerte(D+1)) (5(0, C1, D) > 0.
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4.4. Comments and remarks

Note that the constant c is the initial parameter of the algorithm, the con-
stants ¢; and D refer to the assumptions of Theorem 4.2 hence § does not
depend on a particular sequence of graphs satisfying our hypothesis. 0

4.4 Comments and remarks

Let us analyze how well our strategy works for the directed path. From
[17] we know that the optimal algorithm 7 for choosing the top vertex 1 of
a directed path satisfies Pz, = 1]y/n =2 /7/2 ~ 0.89. For G, being
the directed path of length n we have |Sec(G,)| = 1,D =1 and ¢, = 1/2,
where D and ¢, are constants from the proof of Theorem 4.2. Then we obtain
(setting |Sec(Gp)| = 1 already in (4.1)) liminf, e P[r,, = 1]y/n > ce<.
The value ¢ = 1/4/2 maximizes this lower bound which is then equal to
1/v2e ~ 0.43. A

In this chapter we have presented a universal stopping time 7, for struc-
tures with bounded indegree. A simple universal algorithm 7y for structures
with large minimal indegree was presented in Chapter 3. It was shown that if
the selector knows in advance the height N of the structure the probability of
success of 7y tends to 1 with NV tending to infinity if the minimal indegree is
w(log N) (Section 3.6). This justifies considering here a universal algorithm
only for graphs with bounded indegrees.
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Chapter 5

The best choice problem for the
kth power of a directed path

5.1 Introduction

In this chapter we generalize the optimal algorithm for a directed path
from [17] to any kth power of a directed path. However, we additionally
assume that the selector knows the distance in the underlying path between
each two vertices that are joined by an edge in the induced graph. We give
the exact probability of success for £ = 2. We show that the probability
of success p, (where n is the length of the path) according to the optimal
algorithm for the kth power of the directed path satisfies p, = Q(n=/(+1)
and also for k such that limsup,, ., k(inTZ)k <. 1)2, py = Ofnz"EH)), ne
matter whether the selector gets the additional information about distances
or not. Quite surprisingly, one of the cases considered here turns out to be
a case of the classical secretary problem (with the linear order) with extra

information.

This chapter is organized as follows. In Section 5.2 a few definitions are
introduced. In Section 5.3 we present the stopping time for choosing the root
from the kth power of a directed path when the selector is given the additional
information about distances. We prove its optimality. In Section 5.4 we give
the exact probability of success of our algorithm for k& = 2. In Section 5.5
we prove two theorems estimating the probability of success of the optimal
algorithm. We consider the probability of success of the optimal algorithm
also for the case when the selector is not given the additional information
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5. The best choice problem for the kth power of a directed path

about distances. Section 5.6 discusses separately the case £ = n — 1 where
the graph problem turns out to be the classical secretary problem where the
selector knows the differences between the ranks of examined candidates.

5.2 Definitions

A kth power of a graph G = (V, E) is a graph with the set of vertices V
and an edge between two vertices if and only if there is a path of length at
most k + 1 between them in G.

Let us define a function dg : E — N by dg((v,w)) = lg((v,w)) — 2 where
lo((v,w)) is the length of the longest directed path in G joining the vertices
v and w.

Throughout this chapter G will be a power of a directed path. It has
only one maximal element 1 on which we would like to stop (D = {1}).
We are also going to assume that the selector will be given some additional
information, namely the value dg of each edge that appears in the induced
graph.

5.3 Optimal stopping time

Let P* = (V¥ EF) be the kth power of the directed path B, (1 < k < n).
The example of the second power of the directed path Py may be found in
Fig.5.1. (Whenever the context is clear we omit the indices n and k for clarity
of notation and write P instead of P*.) In this section we present a stopping
time 7, for choosing the root from P* search and show that it is optimal.

Let 7 € S, be a random permutation of vertices from V¥ and Py be the
graph induced by {m, 72, ..., m}. Suppose that H = (W, F') is a connected
component in Py and that w and z are two extreme vertices of H. Since
one knows the value dp(e) for each e € F', one can also tell how many of
the remaining vertices are going to be placed between w and z on the full
path P,. Let us sum the number of those remaining “inner” vertices over all
connected components in Py and denote the result by b,. (Compare Fig.5.1.)

Strategy: Let us define a stopping time 7,, as follows.

To(m) = min{t <n:n—t=k(c(Py)—1)+b:, m € Maz{m,ms,...m}},

using the convention min () = n.
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5.3. Optimal stopping time

Note that 7, tells the selector not to stop as long as there is still a chance
to win in the future. (For instance, we have 79 = 6 in Fig.5.1.) The condition
n —t = k(c(Py) — 1) + b, means that the probability that 1 is still to come
is equal to zero because among n — t remaining vertices we need at least
k(c(Pury) — 1) to connect the components that we have at the time ¢ and b,
is exactly the number of vertices that will join already existing components
falling somewhere between their vertices. Thus the strategy 7,, can be stated
exactly as the analogue of the optimal strategy for a directed path that was
given by Kubicki and Morayne in [17].

Stop when there is a positive conditional (given history) probability that
the presently examined candidate is the mazimal one and the probability that
the mazimal one can be among the future candidates is equal to zero.

.7(1
o o] eTy 1T . Oy
.’/T3
t=1 t =2 t=3
bl = b2 = b3 = 1
.7'{'6
o7 OT
L Y] ®7Ty OT LYV 7| 1 ey
IT 1T 1| €75 IT OT lT
73 7T OT 7Ty 1 LU 7Ty
LUE of
73
t =4 t=2>5 t=6
b4 =2 b5 =1 b()‘ =1
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.7'('6
T OT
L OT 1| ey
of 1 em of
1| @7 OT o5 |1
OT o5 |1 oT
75 |1 OT 1( @73
o} 1| oms of
1| ®73 OT 77 |1
o o
o7y 1T 1{ o7y
1T o7y OT
Lot oT Ty |1
1} 1( e7s o}
oy oT 1| emg
7Ty OT
.7‘[‘2
t=7 t=238 t=9
b7 = 7 bg =1 bg ==

Figure 5.1: Induced graphs of P? at time ¢ for the permutation 7 =
(U2)U97U4,U7:U37U1)U5)’U8>’U6)'

Theorem 5.1. Let w be a random permutation of vertices of P*. For PF,
1 < k < n, the stopping time T, is optimal, i.e.,
Pl = 1] = siax Plr, = 1],

TET

where T 1is the set of all stopping times.

Proof. 1 At first, let us observe that it is reasonable to stop at time m
only if 7, € Maz(Pm)). Of course, we should definitely stop whenever
Pl € {mmi1,.- - Tn}|Tm € Maz(Pyny)] = 0. From [17] we know that if
we play on a directed path and P[1 € {mpn41, ..., Tn}|Tm € Maz(FPpmy)] > 0
then it always pays off to play further, for instance simple waiting for the
next maximal element in the induced graph is profitable. Now we are going
to explain the full analogy of the situation at time m between the game on a
directed path and the game on its kth power. Since we assume that playing
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5.3. Optimal stopping time

on the kth power one has the additional information about the values dp, one
knows that at least b, of the remaining vertices are “dummy”. They do not
play any more any role in our game since we know that they are not going
to appear as the maximal ones in the induced graph. We have k(c(Piny) — 1)
more “dummy” vertices that will appear immediately under the components
seen a time ¢t = m (they are also not going to appear as the maximal ones
in the induced graph). Note that it is exactly the directed path case at time
m = M+bp+(k—1)c(Pmy—1) when 7 is maximal in the induced graph, the
number of components of the induced graph is ¢(P,)) and we know about
c(Ppny) — 1 “dummy” vertices (supporting the existing at ¢ = /m components).
Recall that probability that 1 is still to come is positive thus we know that
in a directed path case (k = 1) we should play further. Thus we should also
play further in the kth power case since throughout the game we are going
to obtain at least as many information as playing for k = 1.

As sometimes the intuitive type argument may contain a hidden bug, to
be on the safe side, we also present the fully formal proof of optimality of 7,
below. O

Proof. 2. This proof is analogous to the one that shows the optimality of 7,
for £ = 1 presented in [17]. At first, let us make the observation that it is
reasonable to stop only if the currently examined vertex is maximal in the
induced graph. Now, aiming for a contradiction, let us assume that there
exists a stopping time 7 such that P[r, = 1] > P[r,, = 1] which is optimal
and that there is no optimal stopping time 7 > 7. By our observation we
may also assume that 7(m) =t if and only if 7, € Max(Py) or t = n.
Whenever 7, = 1 we have 7,,(7) = 1 thus

Pz, = 1|7 =n] £ Pln,, = 1|7 =nl.

Hence now let us consider the event [7 < n].

We have 7(7) = m < n and m, € Maz(Pm)). Let an = k(c(Pmy) — 1).
Let us calculate the probability that 7 wins counting simply all the possible
settings of the remaining vertices. We need at least a,, out of the remaining
vertices to connect the components of P,y (which refers to the term (”;:‘) G
in (5.1)). Moreover, we need b,, more vertices out of the remaining ones that
will fall between the extreme vertices of the components in Py,) (which refers
to the term ("_'b':a"‘) br,!). Finally, all the n—m — a,, — b,,, remaining vertices
may be arbitrarily permuted together with c¢(F,)) components (which refers
to the term (n —m — am — by + ¢(Pimy))!). If we wish to have the component
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5. The best choice problem for the kth power of a directed path

containing 7, at the top of the whole graph, then we can arbitrarily permute
the n —m — am — by, remaining vertices with ¢(Ppn)) — 1 components (which
refers to the term (n —m — ap — b + ¢(Pm)) — 1)!). Hence we get
P[ﬂ'm =]1|7rm € MCLCL'(P(m))] =
"™ am!("_’lz:“”‘)bm!(n — M = G — b, + ¢(Pm)) — 1)! _
(") am! ("o bl (n = M~ am — b + ¢(Pm))! (5.1)
1
n—m — G — by + c(Pm))

Since all the components of P,y have equiprobable chance to be placed at
the top of the whole underlying graph, we obtain

C(P(m))
n—m=—Qyn — bn + c(P(m))

IP’[]I S P(m)lﬂm € MCLIL‘(P(m))] =

which implies
n—m—Qn— bn

P[1 ¢ Pyny|mm € Maz(Ppuy)] = n—m — ay — by, + c(P(m))'

Let us consider the following stopping time

() = min{t > m: m € Maz(Py)} if 7(7) =m <n,
=1 n in the remaining cases,

using the convention min{) = n. Because 7 # 7, there exists m such that
{t >m:m € Maz(Py)} # 0. We will show that

Plrz(r) = 1|7 € Maz(Pimy)] 2 Pl = 1|7 € Maz(Pimy)].

Note that among n — m vertices that are still to come there are at most
n — M — Ay — by, Which may arrive as the maximal ones in the induced graph.
Therefore if 1 is among the remaining vertices then with probability at least
1/(n—m — @y — by,) it will appear as the first maximal vertex in the induced
graph after time m (note that whenever 1 is among the remaining vertices,
n —m — Qm — by, > 0). Therefore

P(mr(r) = 1|7m € Maz(Pm))] =
PIF(m) = 1|1 ¢ Py, mm € Maz(Pim)P[L & Py mm € Maz(Pim))] 2
1 (n—m— am — by)
(n—m — Gm — b)) (0 — M — @y — b + c(Ppmy)) B
P = 1|7m € Maz(Ppm)).
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5.4. Square of a directed path

Thus we have found the stopping time 7 which is at least equally effective as
7 and stops later than 7 which contradicts with the assumption that there
is no optimal stopping time 7 > 7. This proves the optimality of 7,,. U

5.4 Square of a directed path

In this section we give the exact probability of success of the optimal
algorithm 7, for the square of a directed path, i.e., for P2. Let

Bm = [Wm S Max{ﬂ—laﬂ% Oi0 S a”Tm}]?
Cm = [n—m = 2(c(Pymy) — 1) + b,
A, =B, NC,,.

Since Cy, = 0 for m < (n + 2)/3, we have

Plr,, =1]= Y Plr,, = 1|An|P[An] =

2
n; ‘I

> Py, = 1|Am]P[Bpn|Crn]P[Crn].
=[242]

m=[

Note that C,, means that at the time m all the remaining vertices are going
to fall between the vertices of P,y (none of the remaining vertices can be the
extreme vertex of P,). Moreover, since we deal with the square of a directed
path, not more than two vertices of those that are still to come can be finally
placed on P, next to each other. Therefore we have

=g 8 (L))

m k=0

In this formula the kth term corresponds to P, having k -+ 1 components.
The term (nT'r;-l—k) refers to forming a sequence of m 1s and then out of all
but the last element choosing n — m — k 1s that will be followed by 0. That
is the way we choose m — m — k spaces between m vertices of Py for the
elements that are still to come. We are going to have k spaces for the pairs of
vertices (because we have k+1 components) and n —m — 2k spaces for single

vertices that are still to arrive (the term (" 77*) refers to choosing which
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5. The best choice problem for the kth power of a directed path

spaces are going to be “single” and which “double”). From n — m remaining
vertices we may form at most |[(n — m)/2] pairs which explains the upper
limit of the summation. Let W,, = Zl(n m)/2) (n iy A) (”“’" k) We have

P[Bm|C] =
[(n—m)/2]
> P[Bnllc(Pmy) = k + 1] N Cr]P[c(Pimy) = k + 1|Cr).
k=0
Obviously,
P[BmHC(P(m)) =k+ 1] N Cm] :P[Bmlc(P(m)) =k -+ 1] =
|Maz(Pimy)|  k+1 (5.2)
m oom

We also have

Ble(P) = b+ 110y = L2 U (53)

thus

[(n—m)/2] n— m k
k+1(,71
P[Bm|Cnl = D, ~— W, ’“V)V( )
A0 (5.4)

g U= —m—k
— 1 .
mWn, kz:; (e (n —-m— ) ( k )

Let T, = ™2 (k4 1) (™2 ) (*"™7%). We have

Plr,, =1|Ay] =
L(n=m)/2]
> Plr, = 1|[c(Pimy) = k + 1] N An]Plc(Pimy) = k + 1] Ap).

Furthermore,

Plrr, = 1|[e(Pm) = k+ 1] N Am] = Tl
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5.5. Probability of success

and, by (5.2), (5.3) and (5.4) for the second equality below,

Plc(Pimy) = k + 1|An) =
P[B|[c(Pun) = k + 1] N Con]Ple(Pmy) = k + 1|Crm] _

]P)[Bmlcm]
m—1 n—m-—=k
i e R ] gy
e T
Hence
[(n=m)/2] m—1 n—m—k
1 (k: + 1)(n—m—k>( k ) _ Wm
Plrr, = 1An] = ; k+1 i R
Thus

IP)[TTT,, = ]l[Am]P[BmICm]P[Cm] = T mW, (n) - m(")

m

which finally gives

n

Plr,, =1]= Y. mzn)L(nf/%(nf&;ik)(n_zﬁk).

m=[(n+2)/3] m k=0

In the next section we are going to prove that P[r,, = 1] = Q(n~1/3).

5.5 Probability of success

In this section we show that the probability of success p, according to
our optimal strategy 7, for P¥ (the kth power of a directed path P,) satisfies
pn = Qn Y)Y for 1 < k < n. (Again for clarity of notation we write P
instead of P;.) For k < n such that limsup, ., pi'er < 1/2 we also prove
pn = O(n~Y®+1)) We show this result also for the case when the selector is
not given the additional information about the values of dp in the induced
graph. In order to prove this result we use the continuous time approach
to arrivals of vertices and a probabilistic methods, more precisely: Markov’s

inequality and Janson’s inequality.
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5. The best choice problem for the kth power of a directed path

Recall that V,, = {vy,v2,...,v,} and E, = {(v;,v;-1),% = 2,3,...,n} are
the sets of vertices and edges of P, respectively; thus v; = 1 is the root.
Note that if 1 = m; and v, is still to appear at the time ¢, then at the time
t the condition n — ¢t = k(c(Py) — 1) + by is not satisfied (we have then
n —t > k(c(Py) — 1) + b). Thus the condition that v, precedes 1 in =
is necessary for the event [m,, = 1]. Note also that in the two easy cases,
when kK =n — 2 or k = n — 1 this condition is also sufficient. Then we get
P[r,, = 1] = 1/2. Throughout the rest of this section we always assume that
1<k<n-—2.

Now, let us recall what we understand by the continuous time approach to
arrivals of vertices (we have already explained it in Section 3.3). We associate
with each v;, 7 = 1,2,...,n, arandom variable A; of a value drawn uniformly
from the interval [0, 1], where all A;’s are independent. We treat A; as the
time of arrival of v;. Thereby we have generated the uniform random order of
arrivals of vertices from P¥. The arrival time of the root will be again denoted
by p (A; = p). We have already said that this continuous time variant is
equivalent to the discrete time one in a sense that all the permutations of
vertices are equiprobable. Let us recall also the following remark.

Remark 5.2. Since all A;’s are independent and the arrival time of the root
is A; = p, the probability that a particular vertex appears before the root is
equal to p.

Let us define the following sequence of the indicator random variables

0 otherwise (5.5)

x® — { 1 if Ay >pAAipa >p Ao AAijkr > D,
for 1 <i<mn—k—2 LetalsoX® =3"F2x® The event [X® = 0]
means that in the induced graph at the time p there are no two components
such that they are neighbors (no other element from the induced graph is
between them) and the distance between them in P, is greater than k + 2
(by the distance between two components we understand the length of the
shortest path in P, that joins vertices from the different components). Hence
the event [X ) = 0, A, < p| ensures that at the time p when the root comes
(suppose 1 = ;) the condition n —t = k(c(Py) — 1) + b is satisfied. It
works also the other way round, i.e., whenever A, > p or X > (0 we have
n—t > k(c(Py) — 1)+ b;. Thus 7, =1 if and only if X® =0 and A, <p.
Thus, since P[r,, = 1|4; = p] = P[X® =0, A,, < p|A; = p] and all p’s are
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5.5. Probability of success

equiprobable, we have the following lemma (which is analogous to Lemma
3.2
Lemma 5.3. For P* (1 <k <n —2) we have
1
thzmz/ﬁwwzoAﬂ<m%=M¢l

0
U

In this section we are going to use the first moment method which is
based on Markov’s inequality.

Lemma 5.4 (Markov’s Inequality, [21]). Let X be a nonnegative random
variable. Then for all e > 0

PX >¢] < —.
€
In particular, for e =1 we have

P[X > 1] < EX.

We will also need the exponentially small bound on a lower tail of sums
of not independent random variables. Whenever the dependence is relatively
weak, the bound is given by Janson’s inequality.

Lemma 5.5 (Janson’s Inequality, [12]). Let F' be a finite set. A subset R is
drawn randomly from F such that the inclusions of individual elements from
F' are independent. Let A be a family of subsets of F'. For each A € A we
define

w._ {1 #ACR
A7) 0 otherwise

and X = ) 4o 4 Xa. For the ordered pairs (A, B), A,B € F, write A~ B if
A+# B and ANB # (0. Then, for every 0 <e <1,

1 (eEX)?
5EX+§:MBEMQXQ}'

PX <(1-¢)EX] < exp{—

In particular, for € =1 we have

1 (EX)?
PIX = 0] < &xp {‘5 EX + 5,5 E[XX5] } '
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5. The best choice problem for the kth power of a directed path

Before we move on to our main theorems, let us prove the following
lemma.

Lemma 5.6. For P* (1 <k <n-—2)let XPs be defined by (5.5) and, as
6&Tli67”, X(p) = Z?:_lk.—2 Xi(p)' Let e € (O> 1); Ane = 1~ (1 + E)Tb_l/(k+l) and
bpe =1— (1 —g)n Y&+ Then

PX® =0] 2221, 4f p > b, and k(n) == oo,
PX® =0]>C >0, if p> by and k is a constant,

where C is some constant. When k is such that liminf, . n/*t1) > 1 and
€ is chosen in such a way that a,. > 0

limsup,,_, PX® =01 <c<1, if p<ane and k is a constant,
P[X® = (] 2% 0, if p<an.andk(n) % 66,

where ¢ is some constant. More precisely

1—n(l —p)** <PX® =0] < exp {-(ng;l(kQ;;(12)_(;1;)_+pl))Jr } '

Remark 5.7. Note that £ may be a constant independent of n or a function
k = k(n) such that k(n) === co. As it is always known from the context,

we simply write k.

Proof. We begin with proving the first two statements using the first moment
method. We have P[X = 1] = (1 — p)**+1, therefore

EX® = (n -k —2)(1 —p)**! < n(1 — p)F+L.
By Markov’s inequality (Lemma 5.4) P[X® > 1] < EX® thus we obtain
PX® =0]=1-PX® >1]>1-EX® >1—n(1-p)*t.
Hence, for p > 1 — (1 — g)n~1/(+1)
PX® = 0] 21 ~n(1 - p)**' >
1 = n((1 — &)~ YERYEHL | _ (1 — g)k+1,

Thus, for p > 1 — (1 —e)n " V*D and k = k(n) =2 00 (1 < k < n —2),
we get,

PX® =0]>1—(1—-¢)* 2221

)
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5.5. Probability of success

and for p > 1 — (1 — &)n~Y*+1 and k being a constant
PX® =0]>1-(1-=¢)f'=C>0.

Now we are going to justify the last two statements using Janson’s in-
equality. Let us write ¢ ~ 5, 4,5 € {1,2,...,n — k — 2}, when 7 # j and
X&), X(p) are not independent. Obviously, (EX®)? = (n—k—2)?(1—p)2k+1),
Let us calculate then A®) =5~ ]E[X(”)X(p)] If i ~ j then the total num-
ber of vertices s on which Xfp and X jp ) depend satisfies £ +2 < s <2k +1
and we have lE[Xi(p)X]@)] = (1 — p)®. Moreover, there are 2(n — s — 1) pairs
i ~ j such that Xi(p ) and Xj(p) depend on s vertices altogether. Therefore

2k+1

AP = 3™ 2(n— s —1)(1 - p)°* < 2kn(1 - p)¥+2
: s=k+2
Thus we get
(EX(p))2 . ( —k— 2)2(1 p)'z(k+1)

EX® + A = (n =k — 2)(1 = p)*+i  2kn(l = p)F*2 =
(n— k — 21 —p)**!
n(2k(1—p) ¥ 1)

The function f(p) = % is decreasing in p thus for p < 1 — (1 +

g)n~V/*+1) and by Lemma 5.5

1 (EX®)?
. it SN O
2EX® + A | —

(n—k—2)’(1 —p)***
“p{“ on(2k(1 — p) + 1) }5

(A= k =221+
P 2022k + eV 1 1)

P[X® = 0] <exp {—

. S k
Note that whenever k = k(n) B0 oo ‘an((;k(li +3:f_1$2+t)1+1) T

for p <1—(1+&)n Y* D and k = k(n) 22 co we obtain

> 00. Thus

lim P[X® = (] = 0.

n—0o0
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5. The best choice problem for the kth power of a directed path

Now assume that k is a constant. We have

(n —k — 2)2(1 + 5)1c+1 n—so0, (1 + €)k+1

2n2(2k(1 + e)n~1/(+1) 4 1) 2

and thus for p < 1 — (1 + €)n~Y/*+) setting ¢ = exp {—(—li‘?—w—l} we obtain

limsup P[X® = 0] < c.

n—oo
t

Since 7, is optimal there is no other strategy that performs better. In
order to bound the effectiveness of 7,, from below we shall analyze the effec-
tiveness of another stopping time 7, that was already introduced in Chapter
4.

Strategy: Flip an asymmetric coin, having some probability p of coming
down tails, n times. If it comes down tails M times reject the first M
elements. After this time pick the first element which is maximal in the
induced graph. In other words, 7, is equal to the first j > M such that
7; € Max(Pg)). If no such j is found let 7, = n.

The strategy 7, uses randomization that was introduced by Preater in [23]
to construct a universal best choice algorithm for posets. In Chapter 4 the
following lemma was proved.

Lemma 5.8. Let 7 € S, be a random permutation of vertices in V. Suppose
that we have a coin that comes down tails with probability p. Let M denote
the number of occurrences of tails in n tosses. Then all vertices from V
appear in {my, T, ..., Ta} with probability p independently.

O

Theorem 5.9. Let P be the kth power of a directed path, 1 < k <mn. Let
be a random permutation of its vertices. There exists a constant ¢ > 0 such
that

lim inf ¥/ *VP[r, =1] > c.

n—oo
Proof. We have already discussed the two easy cases for k =n—2or k = n—1.
Then P[r,, = 1] = 1/2 and thus we get lim,_,oo nY/**VP[r, = 1] = 1/2.
Throughout the rest of the proof we always assume that 1 < k <n — 2.
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5.5. Probability of success

Let us consider the stopping time 73 with p = 1 — (1 — g)n™"/*+1) for

some € € (0,1). Let V,* be the set {m,,..., 7y} from Lemma 5.8. Since

7, is optimal, we have P[r,, = 1] > P[r.. = 1]. Hence we are going to show

that the probability of success of 7, satisfies the statement of the theorem.
Let us define the following sequence of the indicator random variables

x ) 1 if (i1, vidas - Vi1 } © Vo \ Ve
4 0 otherwise

for 1 <i<n—k—2 Letalso X® =y k2 xM Note that if (X =
0,v, € V5,1 € V, \ V] then 1 is the only element which comes as the
maximal one in the induced graph after time M. Thus we have

_ M) __ * *
Plr.s =1] > P[XM =0,v, € V', 1 €V, \ V).
Since p = 1 — (1 — e)n~Y*+1) by Lemma 5.8 and by the lower bound from
Lemma 5.6, we obtain
Plryy = 1] 2P[X™ = 0]P[v; € V7P € Vo \ V] >
(1—n(1-p)*)p(l—p) =
(1-Q=e)**)(1 = (1 —e)n VED) (1 — g)n VD),
Thusfor 1 <k<n-—2
nY/*DP(r, = 1) >/ DP[r,. = 1] >
(1-(Q1=-e)**){1 -1 -enVE)1-¢).
We have
liminf(1 — (1 —e)**)(1 - (1 — e)n VED)1 —¢) =& > 0,

n—oo

thus setting ¢ = min{¢, 1/2} we obtain for 1 <k <n

lim inf nl/(k+l)ﬂ”[7rTn =12 e

n—o0

g

Theorem 5.10. Let P* be the kth power of a directed path and let T be
a random permutation of its vertices. There exrists € > 0 such that for k
satisfying limsup,,_, o k(ll%’;)g <1/2, k < n, we have

limsup n/**VP[r, =1]<1+e.

n—oo
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5. The best choice problem for the kth power of a directed path

Proof. First, let us assume liminfy ,on/®+) > 1. Let again Xs be
defined by (5.5) and X ®) = Z?z_lk_z Xi(p ), By Lemma 5.3, the independence
of Ay’s and the fact that P[A, < p|A; = p| = P[A, < p] = p we have

We need to show that there exists € > 0 such that

1/(k+1)

lim supn pP[X® =0]dp < 1 +e.

n—oo

O\H

Let ape =1—(1+€)n %1 and let € > 0 be such that ane > 0. We have

1 Qn,c 1

[rpix® =adp= [ pPX® = 0ldp+ [ pPIXP = 0.

0 0 Qn,e

We are going to estimate the following expressions

Qn,e

nt/(k+1) /p]p[X(P) = 0] dp, (5.6)
0
1

nl/(k+1) /pIP[X(P) = 0] dp. (5.7)

Let us start with (5.7). We have

1
nl/(k+1) / pIP’[X(p) =0]dp <

an,e
1 (5.8)
n 1/ (k+1) / ldp = nl/(k+1)(1 —ane) =1+e¢.

a )
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5.5. Probability of success

Now let us estimate (5.6). By the upper bound from Lemma 5.6 and the
n—k—-2)2 k
fact that f(p) = (”271‘(2;()19;7)71)1)' is decreasing in p we have

an.e

nl/(k+1) / pIP’[X(p) — Q] dp <

1/(k+1)

{ n2_n 21:12—(1) i 1):+1} ap <
{ n

—Jo—=2) 1 = )P
P
2n(2k(1 — ane) +1)

L/ (k1) / exp
0

pM/ B0 exp d — (n—k—2)2(1 — an ) _ (5.9)
i m(2k(1 — ane) + 1)
nl/(k+l)(1 — {1 5)n—1/(k+1))'
—k—2)? 1 k41
exp {— (n ) ( 4 €} } _

2n? 2k(1 + g)n~V(+1) 4 1

nl/(k+1) exp _(TL“' k— 2)2 (1 +E)k+1 3
2n? 2k(1 + e)n~1/(+1) 4 1

(n—k —2)? (1+ g)k+!
(1 + E) exp{ 2n2 2]{:(1 + 8) —l/(k+1) + 1

From the calculations in the proof of Lemma 5.6 we know that the second
term converges to 0 when k = k(n) "= co. Now we will show that the first

(n—k—2)2 (14e)k+1 . :
termﬁnl/(k+1\;vexg {— e 2k(1+6)n‘5‘1/(’°+1)+l} also tends to 0 with n tending
to infinity. We have

In? 2k(1 +e)n~V/(k+1) 4]

Inn  (n—k-2)° (1+¢)k+?
A P 2n?2  2k(14e)n~V(k+1) 41

It is easy to notice that whenever m is bounded by some positive constant,
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5. The best choice problem for the kth power of a directed path

we are done. Let us assume now that zl:ﬂ 27 00. We have
Inn  (n—k—2)? (14 g)kt?
ex — _
Ple+1 2n? 2k(1 + e)n=1/(k+1) 41

ox Inn . (n—k—2)2 (k+ 1)(1 + g)*+?
Ple+1 2n2 (2k(1 + e)n~Y*+D) + 1)Inn ) |

. 2)2 n—oo
Since now %L =% 1 it is enough to show

(k+1)(1 + ¢)**1

lim inf 2
noeo (2k(1+e)n-VED £ 1)Inn g
We have
(2k(1 4+ )n YEH) £ 1)Inn  (2k(1 +€) +exp {221)Inn B
(k+ 1)(1 + e)k+1 exp {22} (k+1)(1+e)H
2kInn Inn
Inn k + k 1)(1 k+1 S
(k+1) exp{kJrl (1+e)k (k+1)(1+¢)

2Inn . Inn Inn 9 +1
exp {22} (1+e)k  k(L+e)  (L+e)f \exp{p2} k)’

1 n—00 :
5 — oo and limsup,,_,, m < 1/2 we obtain

Inn 2 1
lim su + - | <1/2.
TP T+ o <e><p (k= k) /

From the assumptions

Thus indeed

k+1
lim inf (D)€ te)

2
n—oo (2k(1 +€)n~1/¢+) + 1)lnn ”

which yields

nh_{go n VD) oy,

(n—k-2)? (1 +¢)k+? ",
2n2  2k(1+e)n V&) 41

From (5.9) we obtain

lim nl/(k+D) / pP[X® = 0]dp = 0. (5.10)

n—od

0
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From (5.8) and (5.10) for k satisfying both, limsup,,_, ., k('l—%g < 1/2 and
liminf,,_,o, nY/*+1) > 1 we obtain

limsup n/*+tVP[r, =1] <1+e.

n—od

Thus for k such that limsup,,_, k(1+€)k < 1/2 and k < n we obtain

limsup n/®P[r, =1] < 1+e.

n—00

Thus we have proved the conclusion under one of the assumptions

1. In j5 hounded by a constant or

k+1
Inn n—roo
2. lan 229, o,

Assume now that in general the conclusion does not hold, i.e.,

lim sup n'/®+VP[r, =1] = 0o
n—o0

Passing to a subsequence we can write

lim nY/¢®DPr, =1] = oo

n—oo
Thus we know that ,lc% is unbounded. Again passing to a subsequence we
can get 1% "= co. But this contradicts the second case. Thus we have

proved the conclusion under the assumption liminf,_,o, n'/*+1) > 1.

Note that if lim,_,e n'/**1) = 1 the conclusion holds trivially. Using
again the argument of passing to subsequences we obtain the conclusion in
the general situation. 0

Note that although we do not formulate the optimal algorithm for the
case when the selector does not know the values of dp in the induced graph,
we are able to tell the order of the probability of its success.

Corollary 5.11. For PF being the kth power of a directed path let 7, be the
optimal stopping time for choosing the root when the selector does not know
the values dp of each edge that appears in the induced graph. Then

Plrz, = 1] = Q(n V&) for1 <k < n,
Plr;, = 1] = O(n~Y*+1)) when k < n and limsup,,_, k(1+e)’° <1/2.

1)



5. The best choice problem for the kth power of a directed path

Proof. We have P[r;, = 1] < P[n,, = 1] because when the values of dp are
known in the induced graph one can take at least as efficient decision as when
they are not known. On the other hand note that our lower estimation of
liminf, o n'/**DP[xr, = 1] in Theorem 5.9 does not use the information
about the values dp at all. Thus the estimation is also true for 7,. O

Remark 5.12. For now we do not know if for P[r;, = 1] = O(n~Y/*+1) the
additional assumption about £ may be dropped.

5.6 Comments and remarks

Note that for £ = 1 our problem reduces to the directed path case from
[17]. On the other hand when k = n — 1 we deal with a graph which gives
the linear order of n elements. Recall that then, for = being the random
permutation of vertices of P?~!, P[r,, = 1] = 1/2 because 7., = 1 if and only
if v, precedes 1 in 7. Note that for &k = n—1 when we do not assume that the
selector knows the values of dp(e) for each edge e that appears in the induced
graph, we, in fact, talk about the classical linear order secretary problem.
From [19] we know that the probability of success of the optimal algorithm for
the linear order is asymptotically 1/e. It is quite surprising that revealing this
additional information about distances increases the probability of success of
the optimal algorithm only to 1/2.
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