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Chapter 1

Introduction

1.1 Historical overview

The most classical optimal stopping problem is the following secretary 
problem (known also as the marriage problem). There are n linearly ordered 
candidates for a job as a secretary (or for a wife as another story tells). 
They come to a selector one by one in some random order. The selector 
knows the total number of candidates as well as the relative ranks of the girls 
examined so far. However, he gets no information about the candidates that 
are still to come. His task is to hire (marry) the presently examined candidate 
maximizing the probability of choosing the absolute best one. The optimal 
strategy is of threshold type. It tells the selector to reject asymptotically 
first n/e candidates and after this time to hire (marry) the first which is 
presently the best. The probability of choosing the absolute best candidate 
according to this optimal algorithm is asymptotically 1/e. This solution was 
first written down by Lindley [19] in 1961 though, it seems, the problem and 
its solution were known before. For a comprehensive treatment of the subject 
consult Ferguson’s history of the secretary problem [3].

This beautiful problem and its elegant solution were the inspiration for 
considering various generalizations. One of them was replacing the linear 
order of candidates with a partial order and trying to stop the search on any 
element which is maximal in the whole poset. Some efficient stopping rules 
were found by Stadje [26] and Gnedin [8]. Morayne [22] found the optimal 
algorithm for choosing the root in a complete binary tree of given height 
(its probability of success tends to 1 with the height of the tree tending to 
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1. Introduction

infinity). The optimal stopping rule for n pairs of “twins”, i.e., for a poset 
consisting of n levels with two twin elements on each, was found by Garrod, 
Kubicki and Morayne in [5]. The optimal stopping times for other regular 
or simple posets were presented by Kazmierczak and Tkocz in [13], [14], [15] 
and [28].

A further interesting generalization was to narrow down the selector’s 
a priori knowledge only up to the number of candidates and try to find a 
universal algorithm that would be reasonably successful on any poset. In 
1999 Preater showed [23], quite surprisingly, that there exists an algorithm 
that wins with probability at least 1/8 on any poset. This lower bound was 
later improved for the same algorithm by Georgiou, Kuchta, Morayne and 
Niemiec in [7] to 1/4. Kozik in [16] found an algorithm giving a better bound 
than 1/4, 1/4 + £ for £ > 0. However a natural goal to achieve was to get a 
bound of 1/e (the probability of success of the optimal algorithm for a linear 
order) and thus to find an algorithm that would be not improvable. Such an 
algorithm was found by Freij and Wastlund in [4], For families with certain 
restrictions better algorithms were found by Garrod and Morris in [6] and 
Kumar, Lattanzi, Vassilvitskii and Vattani in [18].

Realizing that partially ordered sets may be treated as very rich directed 
graphs led to the next generalization. Dealing with a directed graph instead 
of a poset a selector can see at a given moment the induced graph gener­
ated by the vertices that have already arrived. One has to stop the search 
maximizing the probability (or ensuring a relatively high probability) that 
the presently examined vertex belongs to a particular part of a graph. The 
first and most natural thing to do was to consider a directed path (instead 
of the linear order) and search for the maximal vertex, i.e., the vertex with 
no outgoing edges, the sink (instead of the best candidate). Kubicki and 
Morayne presented in [17] the optimal algorithm for such a case, which tells 
the selector to wait as long as possible, i.e., to stop when there is still a 
positive probability that currently examined vertex is the maximal one and 
the probability that the maximal one is still to come is equal to zero. Di­
rected graphs are much poorer structures than partial orders therefore it 
seems that one cannot hope for too large probabilities of success. In the case 
of the directed path of length n the probability of success pn according to 
the optimal rule satisfies pny/n —> -^/tt/2 as n —> oo. The optimal stopping 
time for choosing one of the two top vertices from a directed path (so-called 
Gusein-Zade problem) was found by Przykucki and Sulkowska in [25]. In [24] 
Przykucki presented an optimal rule in a search for a vertex with full degree 
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1.2. Results of the thesis

in a random graph.
Throughout this thesis we will be looking for both optimal and, simply, 

effective stopping times for some families of directed graphs. By effective 
we understand strategies which give relatively large probability of success. 
The expression “relatively large” will be made more precise and placed in the 
context of the known optimal algorithms for graphs.

Such problems have real life interpratations. For instance, one may con­
sider on-line decision problems on structures that are useful for storing data 
or on structures that model computer networks. We can easily imagine the 
task of browsing a computer network with a known or unknown topology in 
a search for a server with a certain (possibly good) feature.

1.2 Results of the thesis
This thesis consists of three chapters. Two of them (3 and 4) are devoted 

to the universal effective algorithms for upward directed graphs. The third 
one generalizes the result of Kubicki and Morayne from [17] and describes 
the optimal algorithm for a certain family of graphs.

Chapter 3 is based on a joint work with Graham Brightwell, Paul Balister 
and Michal Morayne, [1]. We analyze a very simple universal algorithm for 
choosing a maximal vertex from an upward directed rooted graph. We show 
that it is effective for the whole special families of graphs, for instance, for 
A:-ary trees, graphs we call natural pyramids or half-cubes and for structures 
with large minimal indegree. We also indicate the connection between the 
stated problem and the theory of branching processes and the percolation 
theory.

Chapter 4 is based on article [27]. It presents a universal strategy for 
choosing a maximal element from a directed acyclic graph that belongs to 
a fairly general family of graphs when a selector knows in advance only the 
number n of its vertices. The problem considered in this chapter is comple­
mentary to the problem presented in Chapter 3 in such a sense that this time 
we consider upward directed graphs with bounded indegrees. Precisely, the 
number of elements dominated directly by the maximal ones is not greater 
than ci^/n for some positive constant Cj and the indegree of remaining ver­
tices is bounded by a common constant D. We show that the probability pn of 
the right choice according to our strategy satisfies lim inf^ooPn^/n > 6 > 0, 
where 6 is a constant depending on Ci and D. As it can be seen from the 

9



1. Introduction

optimal result for the directed path mentioned in the previous section one 
cannot hope, up to a constant, for a better result.

Chapter 5 is based on a joint work with Andrzej Grzesik and Michal 
Morayne, [10]. We consider the optimal algorithm for the Zcth power of a 
directed path. At first we assume that the selector knows in advance not only 
the underlying graph but also the distance in the underlying path between 
each two vertices that are joined by an edge in the induced graph. When 
k = 1 this problem reduces simply to a directed path case from [17]. We give 
the optimal algorithm for any A;th power and for k = 2 its exact probability 
of success. We also prove that for any k the probability of success pn (where 
n is the length of the path) satisfies pn = and for k such that
lim supn_>oo fc < 1/2 we have also pn = O(7i-1Afc+1)). We show this result 
also for the case when the selector is not given the additional information 
about the distances, although without the optimal stopping time.
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Chapter 2

Notation, definitions and formal 
model

This chapter contains notation and basic definitions that are used through­
out the whole thesis. Notation and definitions that are specific for particular 
chapters are going to be presented later on.

2.1 Basic definitions
A directed graph G is a pair G — (V, E), where V is a set of vertices and 

E is a set of edges, i.e., ordered pairs of elements from V (which means that 
each edge has a direction). The cardinality of V will be denoted by n.

Throughout this thesis we consider only simple graphs, i.e., (v,v) E for 
all v e V.

A directed cycle in G is a subgraph H = (PF, F) of G such that W — 
{wi,w2,.. .wk} and F = {(wj,wi+i) : i e {1,2,... ,k}} setting wk+i = w

An upward directed (acyclic) graph is a simple directed graph with no 
directed cycles. Note that the family of upward directed graphs coincides 
with the family of Hasse diagrams for posets.

A directed path or a chain is a graph Pn — {Vn,En) such that Vn = 
{vi,v2,... ,vn} and En = {(v^Ut-i) : i € {2,3,..., n}}. The length of Pn is 
defined here as n.

We call v € V a maximal vertex if v has no outgoing edges. For a 
directed graph G the set of its maximal vertices will be denoted by Max(G) 
or Max^y) if E is known from the context. Whenever there is only one 
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2. Notation, definitions and formal model

maximal vertex in G it is called root and denoted by 1. Then G is called 
rooted.

By the depth of v e V in G we understand the length of the shortest 
directed path that starts in v and ends in an element from Max^G).

By the height of G we understand the length of the longest directed path 
in G.

A leaf in a directed graph is a vertex with no incoming edges.
For v and w from V we say that w is a parent of v and v is a child of w 

if (v,w) e E (note that a maximal vertex is a vertex which has no parent).
For a graph G = (V, Efi its maximal connected induced subgraph G' = 

(IV, E A IV2), IV C V, is called a connected component.
Let Sn denote the family of all permutations of the set V. Let tf = 

(vri , tt2j • • • > ^n) € Sn. By G— G(tt) — (L(m)) E^m^), m V n, we denote 
the subgraph of G induced by {7^, ... , 7rm}, i.e.,

I^m) = {Al> ^2} • • • , >

E(m) = {(W^): {Vi,Vj} C {7T1,7T2, • • ■ (Vi,V.f) G E}.

Let c(G(m)) denote the number of connected components in G^my
Quite generally, let (Q,^, P) be a probability space. Let Px C C 

• ■ • Pn Q P be a sequence of <r-algebras, i.e., a filtration. A random variable 
r : cj —> {1, 2,..., n} is a stopping time with respect to a filtration (Pt)^! if 
T~1({0) e for each t < n. If we think of w 6 fi, as of a moment 
when to stop observing a certain process depending on oj and t = 1, 2,.. ., n, 
then the condition T-1({t}) G Pt means that our decision to stop at t is 
based only on the past and present events and it does not depend on any 
information about the future events.

Let (vx, v2, • ■ • >^m) be a sequence of distinct vertices of a directed graph 
G = (V, Efi Let R C N2. We write (tq, v^,... ,vm) = R if for all i,j < 
m,i j, (yi,Vj) e E if and only if (i,f) & R-

2.2 Formal model
Defining the formal model we follow [17]. We give a general probabilistic 

model concerning any directed graph. Let G = (V, E) be a fixed graph. 
We will work with the probability space (QjJ7, P), where Q = Sn, P = 
P(Q) and the probability measure P : P -> [0,1] will be defined by setting
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2.3. Notation

JP({tt}) ~ Vn- f°r each Sn. Let

Ft = cr({7T G : (7ri,7T2, R} : RC N2), 1 < t < n.

Let D be a subset of vertices of the graph G (i.e. D GV). When looking for 
a vertex from D an optimal stopping time is any stopping time r* for which

F[7rr. G D] = maxF[7rr G D], 

where T is the family of all stopping times and [irT G D] denotes the set 
{tt G Q : 7rT(,r) G D}. We will also consider effective stopping times, i.e., 
stopping times r* for which P[7Tr» G D] is relatively large. The expression 
“relatively large” will be made more precise in Chapters 3 and 4 by placing 
it in the context of the known optimal stopping times.

2.3 Notation
Symbol
N
B(n,p)
G = (V, B)
Pn

Max(G), Max(V)
1
Sn
7T — ^2, • • • > ^n)
G(m) — G(m)(?r) 
c(C(m))

Meaning
set of natural numbers {0,1, 2,3,...} 
binomial distribution with parameters n,p 
directed graph, V - set of vertices, E - set of edges 
directed path of length n
set of maximal vertices of G = (V, E)

13

root, the only one maximal vertex of G 
family of all permutations of set V 
random permutation of vertices from V 
subgraph of G induced by {tti, tt2,..., 7rm} 
number of connected components in G^
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Chapter 3

Analysis of a simple effective 
on-line algorithm for the 
graph-theoretic generalization of 
the best choice problem

3.1 Introduction

Throughout this chapter we present and analyze a simple deterministic 
on-line algorithm for some families of upward directed rooted graphs. We 
assume that the selector knows the height of the graph. His task is to choose 
the root with a relatively large probability.

The chapter is organized as follows. In Section 3.2 we introduce neces­
sary definitions. In Section 3.3 we state a simple deterministic algorithm for 
choosing the root and discuss some connection between the best choice prob­
lem and the theory of branching processes and the percolation theory. In 
Sections 3.4 and 3.5 we consider two families of graphs: the complete /c-ary 
trees and, so called, natural pyramids, analyzing the effectiveness of our al­
gorithm for these families of graphs. In Section 3.6 we present an asymptotic 
analysis of the same deterministic algorithm applied to the structures with a 
large minimal indegree. We consider a d-dimensional half-cube as an exam­
ple. In Section 3.7 we present the main theorem considering the effectiveness 
of our algorithm for the family of path-homogeneous graphs. The theorem 
is proved using the second moment method and, as in previous sections, the 
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

continuous time approach to arrival of vertices. Section 3.8 concludes the 
chapter with a short discussion about the choice of such an algorithm.

3.2 Definitions
The complete k-ary trees are upward directed rooted graphs in which each 

vertex except leaves has exactly k incoming edges and all the paths from the 
root to the leaves have the same length. (Ternary tree of height 3 is presented 
in Fig.3.1.)

The pyramids are upward directed rooted graphs. They have at least 
as many vertices at the level k + 1 as at the level k. Each vertex from the 
k + 1st level is connected by an edge with each vertex from the fcth level. 
The natural pyramid is a pyramid with exactly k vertices at the fcth level. 
(The natural pyramid of height 4 is presented in Fig.3.2.)

The half-cubes are upward directed rooted graphs with a diagram of an 
upper half of a d-dimensional cube. All the paths from the root to the leaves 
have the same length equal to [d/2] + 1. (The 4-dimensional half-cube is 
presented in Fig.3.3.)

In this chapter we consider only induced subgraphs of upward directed 
rooted graphs. Let H = (IT, F) be such a subgraph. For w G W the height 
of w in H is the length of the longest directed path of vertices from W that 
ends in w.

Let % G Sn and m < n. Recall that G^ = (V(m)> ^(m)) is a subgraph of 
G induced by {th, ... ,7rm}. Let v G V(my Let hm(v') denote the height of 
the vertex v in G(mp

Throughout this chapter G will be an upward directed rooted graph whose 
all leaves have depth N and the set of vertices we would like to stop on will 
be D = {!}.

3.3 Stopping time
Let G = (V, E) be an upward directed rooted graph whose all leaves 

have depth N. Recall that n denote the cardinality of the set of its vertices. 
Throughout this chapter we are going to consider the effectiveness of the 
following simple algorithm for choosing a root.
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3.3. Stopping time

Strategy: Let a stopping time be equal to m if hm('jrm) = N. If it 
never happens, let rN = n.

We do not have the exact formulas for P[7fTn = 1] for structures being 
considered. However, we are able to obtain the asymptotic effectiveness of tn 
using the second moment method and the following approach to the arrivals 
of vertices. Let us associate with each element v^, i = 1,2,... ,n, from VN, 
where vi is the root, a random variable Ai of a value drawn uniformly from 
the interval [0,1], where all A/s are independent. Let us treat Ai as the 
time of arrival of Vi. We have thus generated the uniform random order of 
arrivals of vertices from V^. The arrival time of the root will be denoted by 
p (Ai = p). This continuous time approach is equivalent to the discrete time 
one in the sense that all permutations of vertices are equiprobable.

Remark 3.1. Since Ads are independent random variables, if the arrival 
time of the root is A^ = p, the probability that a particular vertex appears 
before the root is equal to p.

By cp^ we denote the probability that at lest one chain of length N — 1 
appears before the root (provided Ai = p).

One can notice that such a statement of our problem generalizes and 
connects some issues from the theory of branching processes and percolation. 
For instance, if we consider only the graphs with maximum outdegree equal 
to 1 then cPtN is exactly the probability of survival of a branching process till 
time N, where the number of children of each parent is a random variable 
following the distribution depending on the structure of G (e.g. for A;-ary 
tree a binomial distribution with parameters k,p).

On the other hand we can state this issue as follows. Reveal randomly and 
independently with probability p the vertices of G. What is the probability 
that a path of length N appears? Or, in the limit, what is the probability that 
an infinite component appears? This is a classical question of site percolation 
theory. The intensive study of percolation process grown following the work 
of Broadbent and Hammersley [2]. For instance, the 2-dimensional lattices 
were considered in [20].

As P[ttTjv = 11Ax = p] = cPtN and all p’s are equiprobable, the following 
lemma holds.

Lemma 3.2. For an upward directed rooted graph whose all leaves have the 
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

same depth N we have
i

=i]=y CpiN dp.

o
□

3.4 Complete k-ary tree
In this section we prove a result for fc-ary trees using the continuous time 

approach to arrivals of vertices (this approach was described in Section 3.3).
Since now the probability of success of our deterministic algorithm de­

pends not only on N, but also on k we will write instead of By 
Tk,N — (Vk,N, we denote the upward directed complete Zc-ary tree 
of height N. As usually, let n denote the cardinality of VktN; of course, 
n = (^3 3 is presented in Fig.3.1.)

Figure 3.1: T3i3.

In the case of Tk,N also cp^ depends not only on p and N, but also on k. 
Nevertheless, as the value of k will always be clear from the context, we will 
simply write cp^. Note that by Remark 3.1 Cp^ is exactly the probability 
of survival of the Galton-Watson branching process till time N in which the 
offspring distribution is binomial with parameters k,p. Let us denote by X 
the corresponding random variable, X ~ B(k,pf We have EX = kp. Let us 
define c(p, k) — lini/v-^oo Cp,N- From the theory of Galton-Watson branching 
processes we know the following.

Lemma 3.3. If'EX > 1, i.e., p > 1/k, then c(p,k) is the unique root in 
(0,1) of the equation 1 — a = G(1 — a) where G(x) = (1 — p + px)k is the 
generating function for the offspring distribution. If EX < 1, i.e., p < 1/k, 
then c(p, k) = 0.

18



3.4. Complete k-ary tree

Theorem 3.4. Let tv be a random permutation of vertices of Tkjj- Let 
c(p, k) = lim^-^oo Cp,N- Then

i
lim P[?rTN = 1] = / c(p, k) dp.

N—>oo \ / j
0

In particular, for the binary tree lim^^oo P[%r(2 N) — 1] = 2 In 2 — 1 and for 
the ternary tree Iim7v-K» N) = 1] = 1.5In3 — 2 + tt/(2-\/3).

Proof. Let us generate the uniform random order of arrivals of vertices from 
14,7V as it is done in Section 4. By Lemma 3.2 P[7rT(fc N) = 1] = fo cP:n dp. 
By Lebesgue’s dominated convergence theorem (see [11]) and Lemma 3.3 we 
obtain

i i
lim P[7rT = 1] = lim / Cp^ dp = lim a,N dp =

N—^oo k J N—too J J N—too
0 0

By the same lemma we get c^p, 2) = (2p - l)/p2 for k = 2 and c(p, 3) = 
for k = 3. Finally,

lim P[7Fr = 1] = / (2p - l)/p2 dp = 2 In 2 - 1
TV—>oo ’ ’ J

1/2

and

^lim P[7Tt(3iN) = 1] = y —-----dp = 1.5 In 3 - 2 + tt/(2a/3). 

1/3
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

3.5 Natural pyramid

In this section we show that the asymptotic effectiveness of for the 
natural pyramid of height N is approximately 0.516203. We use the same 
idea as for T/^n (the previous section) - generating the uniform random order 
of arrivals of vertices.

By Zn = (Vn,En) we denote the natural pyramid of height N. Let n 
denote the cardinality of VN (of course n = (Z4 is presented in
Fig.3.2.) Let q = 1 — p and cqtN = cP,w-

Lemma 3.5. The probability cq^ satisfies

oo

lim c0 n — exp — >
N-+oo I i=l

1
1 - Q

Proof. We have

Ww = (1 - Q2)(l - ?3)(1 - 94)... (1 - /^(l - qN\

20



3.5. Natural pyramid

Thus
lncg]Ar = In (1 - §2) + In (1 - g3) + ... + In (1 - qN x) + In (1 - qN)

q2

-qN 1

q4 q6 q8_______ 3 q6 q9
2 3 4 ’ ■' q 2 3

g2(N-l) g3(N-l) g4(N-l)

q12 
4

-qN

2
q2N q3N

i=l

2 3

Q2l(l _ 
i(l - ^)

43

5—5=2 5=2

q2i
i(l - q^'

oo

We obtain
00 n2i 00 ni

n-^oo ’ z(l — q^ z(l — q^ i
i—1 i—1 z=l

hence

lim Cg n = exp
N—>oo ’

1
i-q

□
Theorem 3.6. Let n be a random permutation of vertices of Z^- We have 
limyv^oo P[7rTN = 1] « 0.516203.
Proof. By Lemma 3.2 and Lebesgue’s dominated convergence theorem (see 
[11]) we get

i

/
- , N-^oo
cq,N dq------ >

o
i / „

1q‘

o

(Wolfram Mathematica 8.)

i(l - q^ f 1-9 dq « 0.516203.

□
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

3.6 Structures with a large minimal indegree
In this section we prove that the asymptotic effectiveness of applied 

to structures with respectively large minimal indegrees equals 1. We give the 
structure of half-cube as an example. Let again q = 1 — p and cq^ — Cp,N-

Theorem 3.7. Let G be the upward directed rooted graph whose all leaves 
have the same depth N and let the minimal indegree of its vertices excluding 
leaves be 5 — Let N^°°> Then P[ttTn = 1] ——1.

Proof. We have cq^ > (1 — g6)^-1. Thus liminf^^oocq^ > lim^^ooe~qSN.
Since qq we obtain

log IV

lim log (qsN) = lim (5 log q 4- log N) = — oo. 
N—>oo W—>oo

Thus q5N 0 which gives lim^^oo cq,N = 1. By lemma 3.2 and Lebesgue’s 
dominated convergence theorem (see [11]) we get

= 1] = / Cq^N dq Idq = 1.

Example 3.8. Half-cube case. We denote the d-dimensional half-cube 
by Qd — (Yd, Ed). We have N = [d/2j + 1. (4-dimensional half-cube is 
presented in Fig.3.3.) As N does not identify the Qd in this case we will 
write T(d) instead of r^.
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3.7. Path-homogeneous structures

Note that the minimal indegree of Qd is 5(d) = d — N + 2 = + 1.
We have Sn = iogQd/tj+i) 00• Thus aPPtyihg Theorem 3.7 we get 

Pk(d) = 1] 1.

3.7 Path-homogeneous structures
In this section we show that our deterministic algorithm gives good 

results (the probability of its success tends to 1 with N tending to infinity) 
also when applied to a broader family of path-homogeneous structures. We 
prove it using the second moment method and the idea of generating the 
uniform random order of arrivals of vertices. We give the structures of Zc-ary 
trees and half-cubes as examples.

The second moment method is based on Chebyshev’s inequality.

Lemma 3.9 (Chebyshev’s Inequality, [21]). Let X be a random variable.
Then for all e > 0

P[|X - EX| > e] <
Var[X]

S2

In particular, for e = EX we have

P|X = 0] < P||X - EX| > EX] <

We call G = (V, E) path-homogeneous if for any two paths of the same 
length r, Pi = (l,vi, v2, ■ • •, W-1), P2 = (1, uh, w2,..., wr-1) there exists an 
isomorphism of G, p : V —> V such that p^vf) = Wi for each i = 1, 2,..., r — 1.

Let M denote the total number of paths of length N in a given structure. 
Let Ms denote the total number of paths of length N — 1 which do not contain 
the root and have exactly s vertices in common with a given path of length 
N. Note that Ms is well defined because our structure is path-homogeneous.

Theorem 3.10. Let G = (V, E) be path-homogeneous with all leaves of depth 
N. If swps(^y^s 0 for s e {1, 2,..., N — 2} and lim/v^oo = 0 
then

lim P[7Frjv = 1] = 1.
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3. Analysis of a simple effective on-line algorithm for the graph-theoretic generalization
of the best choice problem

Remark 3.11. Note that in most cases the condition sups 0
implies M~PN o. It is enough that we deal with a structure for which 
there exists a > 0 such that > 1.

Proof. Let us enumerate in G all the paths of length N — 1 which do not 
contain the root by 1,2, 3,..., M and define a sequence of random variables 
for i = 1,2,3,..., M:

( 1 if the ith path appears before the root 1, 
0 otherwise.

Let also X = Xi. Now X is the total number of paths of length N — 1 
that appear before the root 1. Note that cp^ = P[X > 0]. We have

M

EX = = MpN~\
i=l

E[X2] =E + 2 £ EIX^I

MpN~1 + 2 E[^^]

For 1 < i < j < M

( 1 if the ith and jth paths appear before the root 1, 
[ 0 otherwise.

If the ith and yth paths have s vertices in common then E[X,Xj] = 
Hence p2^"1) < EfXiXj] < pN. Since G is path-homogeneous there are 
pairs of paths of length N — 1 which do not contain the root that have s 
vertices in common. Therefore

N—2

l<i<j<M s=0
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3.7. Path-homogeneous structures

Using Chebyshev’s inequality (3.9) we get

FIX = nl < VarM = EX2 - (EX)2 =
1 J - (EX)2 (EX)2

+ 2 ^Xj __
“ (EXp
Wg + 1 + gg MX"1”5

M2p^N~^ MpN~l
Mp Mx M2 M3 Mv-2 1____ i
M + Mp + Mp2 + Mp3 + ''' + MpN~2 + Mp^1

Let Ln = sups(Ms/M)1/s for s E {1,2,..., N — 2}. Since Ln 0

f _ (Ln/p)^ ~ (Ln/p)n 2) V—»oo „

\ P / 1 - Ln/p

Thus also q and

Mp M — (1 + Mi + M^ + ... + Mn—2)
7l = M =

N—9
M-l _ V- M N->oo

M M 
3=1

Since M~^N 0 we also get l/(MpN^ly) q. Hence we obtain 
P[X = 0] N^°°) Q which gives

cP:N = 1 - P[X = 0] !.

By Lemma 3.2 and Lebesgue’s dominated convergence theorem (see [11]) we 
finally get

i

=i]=y cP!n dp n^°°> i. 

0
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Example 3.12. Complete fc-ary tree Let us recall that by Tk^iN
we denote the upward directed complete /c(N)-ary tree of height N. Let 
k^Nf —> oo with W —> oo.

For Tk{N}tN we have M = k(N)N~l and Ms = (k(N) - l^TV)^-^2) for 
s = 0,1,..., N — 2. Thus for s = 1, 2,..., N — 2 we get sups N-°°> 0
which in this case implies also lim^^oo M~^N = 0. Since is a
path-homogeneous structure we may apply theorem 3.10 and therefore get 

= 1] 1.

Example 3.13. Half-cube case. Let us recall that by we
denote the d-dimensional half-cube. In this case we will write again 
instead of r^. As usually, n denote the cardinality of Vd- We get the following 
relations:

N = [d/2j + 1,
2d~1,
2^ + KA)’2 \a/ 2J ’

n - odd
n - even

M = d(d-l)(d-2)...(d-(7V-2)) = (W-l)!f d\
W

Lemma 3.14. We have for Qd and s € {1, 2,..., [d/2j — I}.-

sup 
s

<y/s
M) ~

Proof. Note that Ms < — 1 — s)! where (7V71) the number of possi­
bilities of choosing s points on a given path of length N — 1 and (N — 1 — s)! 
is the upper estimation of the number of paths that go through those s points. 
Recalling that N = |_d/2j + 1 and M = we obtain

We are going to show that the function /(s) = fsiQA])) 1/s . ,is decreasing

and that /([d/2j — 1) --°°> oo. We have

/(s + i)A 
J

s^s+1} = (s + l)s 
" s!GAl) \ [a/ 2] / 
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3.8. Short discussion on the choice of the algorithm tn

Since is increasing, in order to obtain < 1 it is enough to show
< ([d/2j) for s = L^/2J - r We have

[d/2J(m-i) _ [d/^^ ^\d/2\ + l)(Fd/21 + 2).. .d _ / d \
(Ld/2J-l)l ~ Ld/2J! < Ld/2J’ “WJ/

We have shown that /(s) is decreasing. We have also

/ d' \ W2.-1) - (tm -1),

--------- P72j!--------- )
du/71 |9/9|

“1)!------ LW------ J L 1 J
□

Qd is path-homogeneous and for Qd we have limyv-^oo M = 0. Thus, 
by Lemma 3.14 and Theorem 3.10, we obtain P[7rT(d) = 1] ^222^ p

This result for half-cubes was already obtained in the previous section by 
simpler methods. However, there are families of upward directed graphs for 
which we can apply Theorem 3.10 while Theorem 3.7 does not work.

Example 3.15. Complete [log log WJ-ary tree case. Let us consider 
T^n^n with A;(W) = [log log 2VJ. For this structure the minimal indegree 
<5(7V) = [loglog IV] hence N^°°y $ and theorem 3.7 can not be applied. 
However Example 3.12 shows that for our [loglog WJ-ary tree by Theorem 
3.10 we get F[7rTJV = 1] 1.

3.8 Short discussion on the choice of the algo­
rithm tn

We have proved throughout this chapter that our deterministic algorithm 
rN for choosing the root, despite being very simple, works very well for many 
families of directed rooted graphs. One can however wonder why should not 
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of the best choice problem

we stop earlier. After all rN tells the selector to wait till the very end. Let us 
show that stopping at the top of a shorter path does not give a better result 
when playing on the structures presented in this chapter.

Let us consider the following algorithm. Let a stopping time be equal 
to the first m such that /im(7rm) = N — 1. If it never happens, let tn = n. 
Note that the algorithms rN and tn are disjoint, i.e., whenever fN stops, rN 
plays further and whenever stops, tn does not stop. Thus whenever one 
of them gives the probability of success greater than 0.5 the other one can not 
perform better. The probability of success of for the structures presented 
throughout the chapter either tends asymptotically to 1 with N tending to 
infinity or is equal to a value greater than 0.5 (except the complete binary 
tree case which is discussed below). This shows the advantage of over 
for the presented families of structures.

In the binary tree case we have P[7tTn = 1] N^°°y 2In 2 — 1 ~ 0.386. 
For a,b,c € Vn let EaibtC denote the event that the vertices a, b, c appear in 
a random permutation in exactly this oder. Let 2,3 be the children of the 
root 1. Note that P[tftn = 1|£i,2,3 U £1,3,2] = P^^ = 1|£i,2,3 U£1,3,2] = 0. 
Thus P[vrTN = 1] = = 11(£1,2,3 U £i,3,2)°]P[(£i,2,3 U £1,3,2)°] and
analogously for Since P[(£i,2,3 U £1,3,2)°] = 2/3 we get

P[7rTw = 11(£1,2,3 U £i,3,2)°] 3 ln2 - 3/2.

Recall that and are never equal, whence

P[7rrN = 11 (£1,2,3 U £1,3,2)°] <

1 - P^ = 11(£1,2,3 □ £1,3,2)°] 5/2 - 3 In 2.

Finally,

lim P[tt^ = 1] =
N—>00

lim P[7FfN = 11 (£1,2,3 U £1 3,2)°]P[(£i,2,3 U £1 3,2)°] < 
N—>00

(5/2-3 In 2)2/3 = 5/3 - 2 In 2 « 0.28.

Thus also in the binary tree case performs better than t^.
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Chapter 4

The best choice problem for 
upward directed graphs

4.1 Introduction

In [23] Preater presented a universal algorithm for partial orders in the 
case of restricted information, precisely, when a selector knows in advance 
only the cardinality of a poset. Surprisingly, this algorithm wins with the 
probability at least 1/4 (original Preater’s bound of 1/8 was improved in 
[7] to 1/4) on any partial order. (For further development of the subject 
see [16], [4], [6], [18]; compare also the Historical overview in Chapter 1.) 
A natural question is if such an efficient universal stopping time exists for 
upward directed graphs.

In this chapter we assume that the selector is told in advance only the 
total number n of vertices of an upward directed graph (actually there will 
be also some restriction on the structure of the graph). We describe a uni­
versal strategy for choosing a maximal element. We prove that, as long as 
the number of elements dominated directly by the maximal vertices is not 
greater than ciy/n for some positive constant q and the indegree of remain­
ing vertices is bounded by a constant D, the probability of success pn satisfies 
liminfn^ooPn-yn > 5 > 0, where 5 is some constant depending on cq and D. 
As it can be seen from the optimal result for the directed path from [17] one 
cannot hope, up to a constant, for a better result. The similar results have 
been obtained independently by Goddard, Kubicka and Kubicki in [9].

The chapter is organized as follows. In Section 4.2 we introduce necessary 
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4. The best choice problem for upward directed graphs

definitions. Section 4.3 presents our strategy and contains an analysis of its 
effectiveness. Section 4.4 contains a comparison of our universal algorithm 
with the optimal strategy in the directed path case and a short discussion 
about the universal algorithm for the structures with large minimal indegree 
that was introduced in Chapter 3.

4.2 Definitions
Let G = (y, E) be a directed graph. By in(v) we denote the indegree of 

v in G which is the number of edges incoming to v.
The depth of v e V in G will be denoted by d(y). The set of the elements 

of depth 2 will be denoted by Sec{G). (See Fig.4.1.)

Figure 4.1: An upward directed graph G with Max^G) = {a,b,c,d, f} and
Sec(G) = {e,g,h,j}.

Throughout this chapter G will be any upward directed graph and the 
set of vertices we would like to stop on will be D = Max(G\

4.3 Universal algorithm
In this section we present a stopping time rn for choosing a maximal ele­

ment from an upward directed graph Gn = (14, E^, |Vn| = n. Our strategy 
uses randomization that was first introduced in [23] to construct a universal 

30



4.3. Universal algorithm

best choice algorithm for posets. We show that as long as |Sec(Gn)| < Ciy/n 
for some positive constant cx and in(v) is bounded by a constant for all 
v & Vn\ (Max(Gn) U Sec(Gn)) the probability of success of our strategy 
satisfies liminf^oo P[7rTn € Max{Gn)]^n > 6 > 0, for some constant 6 
independent of n and the considered sequence of graphs.

Strategy: Let us define a stopping time rn as follows. Flip an asymmetric 
coin, having some probability p of coming down tails, n times. If it comes 
down tails M times reject the first M elements. After this time pick the first 
element which is maximal in the induced graph. In other words, rn is equal 
to the first j > M such that ttj G Max^G^. If no such j is found let rn — n.

Before we move on to analyzing the effectiveness of our strategy we are 
going to prove the following lemma.

Lemma 4.1. Let % G Sn be a random permutation of vertices in V. Suppose 
that we have a coin that comes down tails with probability p. Let M denote 
the number of occurrences of tails in n tosses. Then all vertices from V 
appear in {th, tt2, ..., ttm} with probability p independently.

Proof. Let Vm — {^1,^2, ■ • • ,^m}- Let v E V. We start with proving that
P[v G Vm] = P- Since M ~ we have

Now we are going to prove that all vertices from V appear in Vm indepen­
dently. We need to show that for each 1 < r < |V|:

P[*h G Vm, V2 G Vm, • • •, vr G VM\ — P[vx G Vm]P[v2 € Vm] . •. P[vr G Vm]-

We already know that P[vx G Vm]P[v2 G Vm] • • - P[w G Vm] = pr■ Thus we
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4. The best choice problem for upward directed graphs

need to show P[vi € ^2 G Vm, ■ ■ ■ ,vr E Vm] = pr ■ We have

P[fi G Vm, .. ■ ,vr G Vm]
n

g VM,... ,vr g vm\m = i]P[M = i]
i=l

e h(i -pr'=£ Cl Lp,<i ■=
o—r XT/ ' ' '

□
Theorem 4.2. Let Gn = (W> En) be an upward directed graph, |W| = Let 
it G Sn be a random permutation of vertices in Vn. Let also |Sec(Gn)| < Ciy/n 
for some positive constant Ci, m^v) < D for v E Vn \ (Max(Gn) U Sec(Gnf) 
and let p (from the definition of rn) be equal to 1 — c/y/n where c is some 
positive constant. Then

lim inf P[7rTn G Max(Gnf]y/n > 5 = 5(c, q, D) >0.
n—>00

Before stating the proof of Theorem 4.2 let us briefly discuss why the 
suggested stopping time rn with p = 1 — c/y/n would work. We are aim­
ing at the universal algorithm that gives the probability of success of the 
order 0(1/y/n). If we then let, on average, all but Cy/n vertices pass, the 
probability that at least one maximal vertex is still to come is of the or­
der Q(l/-y/n). Since the number of vertices that are still to come is “small” 
the probability that our algorithm will encounter among remaining Cy/n ver­
tices a “misleading” one which is maximal in the induced graph but not in 
Gn is also small whenever we deal with the graphs considered in this chapter.

Proof. Let M be the value mentioned in the definition of the stopping time 
rn and let Vm = {7ri,7r2,... , 7tm}. Let us partition the set V \ (Max(G/) U 
Sec(Gn)) into two sets: Vodd = {v G V\ (Max(Gn) USec(Gnf) : d(v) is odd}
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4.3. Universal algorithm

and Veven — {u G V\(Max(Gn) USec(Gn)) : d{v) is even}. Let |Veven| = Ln. 
Let us also assign to every vertex v e V \ {Max(Gn) U Sec{Gn)) one of its 
parents whose depth is smaller than the depth of v and denote it by r(v). 
Let s{v) — {w : (w,v) G E}. Let

J? — {r(u) . v € Veven \ Vw};

s = I |J s(n) I n vodd.
Veven \Vk/ /

Let us give an example of the sets R and S based on Figure 4.1. Con­
sider 7F = (/, e, v, f, u, m, g, b, t, h, c, j, s, d, q, w, k, n, a, p, i) and M = 14. Then 
Vm = {l,e,v, f,u,m,g,b,t,h,c,j,s,d} and V\VM — {q,w,k,n,a,p,i}. We 
have Veven \ Vm = {p,q} thus S = {t,u,v}. Choosing r{p) = I we also have 
R = {I, m}.

We have
IPk^ G Max(Gn)] =

Ln
G Max(Gn)\\VM n Veven\ = fc]P[|yM n Kvenl = k]. 

fc=0

By Lemma 4.1 we have P[|Vm D Veven| = k] = (^p^l — p)Ln~k. Let A 
be the event that after time M some maximal vertex is still to come, i.e., 
A = [Max(Gn) (jL Vm]- Note that if the event A n [(Sec(Gn) U R U S') C Vm] 
occurs then the vertex TTj E V \ Vm is maximal in the induced graph G^ 
if and only if it belongs to Max{Gn) (each vertex from V \ Vm with even 
depth in Gn has already one of its parents in R C Vm', also each vertex from 
V \ {Vm U Max(Gn)) with odd depth in Gn has at least one (“even”) parent 
in Vm since all the “odd” children of vertices from Veven \ Vm are already in 
S C VM)- Therefore nTn G Max(Gn) whenever the event A n [{Sec{Gn) U 
R U S) C Vm] occurs. Thus we have

P[7rrn G Max(Gn)\\VM A Veven] — k] >
P[A n {{Sec{Gn) U R u S) c n Ve„en| = k].

If \Vm n Veven] = k we have |1?| < Ln- k and |S| < D{Ln — k). The vertices 
from Max(Gn) U Sec{Gn) U R U S do not belong to Veven, hence by Lemma 
4.1 we get

P[^rn € Max(Gn)||VM n Veven\ = k] > (1 - p)p\Sec(-Gn'>\pLn~kpDVn-k^
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4. The best choice problem for upward directed graphs

Thus
Max^Gn)] >

L,

fc=0

(L;}pk^-p)Ln-k = 
\ K /

Ln
(1 _p)p|5eC(Gn)|pL„(D+l)

fc=0
(1 — p^Sec(-Gn^pLn^D+1'> (1 — p + p D>)Ln.

Since |Sec(Gn)| < Ciy/n we have

liminf y^(l — p)p'Sec(G’*^ > lim \/n—7= n—too n—>oo

Hence we will be done if we show that liminfn_>oopLn^'D+1\l — p + p D^Ln is 
some positive constant. We have

^Ln(P+l)^ _ p p-D^Ln _ +pP(l — p)))Ln =

We have Cy/n(l — (1 — c/y/n)D) n--—> c2D and c2(l — c/y/n)D -—ic2 Qujte 
formally, since Ln = |Vewen| < |K|> there exists a constant C2 < 1 such that 
(we introduce C2 only because we will refer to it in Section 4.4)

liminf (pn+1(l — p + p Dy\Ln > 
n—>oo v /

lim A _ cyWHizlcA^n+^(^^ = e_C5
n—>oo \ nJ

Since C2 < 1 we finally get
liminf P[7rTn 6 Max^Gn^y/n >ce-c(ci+c2c(o+i)) > 
n—>oo J

ce-c(c1+c(P+i)) = 5(c> C1> 2^) > o.
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4.4. Comments and remarks

Note that the constant c is the initial parameter of the algorithm, the con­
stants cj and D refer to the assumptions of Theorem 4.2 hence 5 does not 
depend on a particular sequence of graphs satisfying our hypothesis. □

4.4 Comments and remarks
Let us analyze how well our strategy works for the directed path. From 

[17] we know that the optimal algorithm r for choosing the top vertex 1 of 
a directed path satisfies P[tft = 1]-^ n~>°°> t/tt/2 ~ 0.89. For Gn being 
the directed path of length n we have |Sec(Gn)| = 1,D = 1 and = 1/2, 
where D and c2 are constants from the proof of Theorem 4.2. Then we obtain 
(setting |Sec(Gn)| = 1 already in (4.1)) liminf^ooPf^rn = HjV™ > ee~c2. 
The value c = 1/v^ maximizes this lower bound which is then equal to 
l/\/2e « 0.43.

In this chapter we have presented a universal stopping time rn for struc­
tures with bounded indegree. A simple universal algorithm tn for structures 
with large minimal indegree was presented in Chapter 3. It was shown that if 
the selector knows in advance the height N of the structure the probability of 
success of tn tends to 1 with N tending to infinity if the minimal indegree is 
w(logA') (Section 3.6). This justifies considering here a universal algorithm 
only for graphs with bounded indegrees.
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Chapter 5

The best choice problem for the 
Hh power of a directed path

5.1 Introduction

In this chapter we generalize the optimal algorithm for a directed path 
from [17] to any fcth power of a directed path. However, we additionally 
assume that the selector knows the distance in the underlying path between 
each two vertices that are joined by an edge in the induced graph. We give 
the exact probability of success for k — 2. We show that the probability 
of success pn (where n is the length of the path) according to the optimal 
algorithm for the A;th power of the directed path satisfies pn = Q^-1/^4-1)) 
and also for k such that limsupn^oo^^ < 1/2, pn = O(n-1^fc+1)), no 
matter whether the selector gets the additional information about distances 
or not. Quite surprisingly, one of the cases considered here turns out to be 
a case of the classical secretary problem (with the linear order) with extra 
information.

This chapter is organized as follows. In Section 5.2 a few definitions are 
introduced. In Section 5.3 we present the stopping time for choosing the root 
from the fcth power of a directed path when the selector is given the additional 
information about distances. We prove its optimality. In Section 5.4 we give 
the exact probability of success of our algorithm for k = 2. In Section 5.5 
we prove two theorems estimating the probability of success of the optimal 
algorithm. We consider the probability of success of the optimal algorithm 
also for the case when the selector is not given the additional information 
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5. The best choice problem for the fcth power of a directed path

about distances. Section 5.6 discusses separately the case k = n — 1 where 
the graph problem turns out to be the classical secretary problem where the 
selector knows the differences between the ranks of examined candidates.

5.2 Definitions
A kth power of a graph G = (V, E) is a graph with the set of vertices V 

and an edge between two vertices if and only if there is a path of length at 
most k + 1 between them in G.

Let us define a function de : E —> N by da^v, w)) = Ig((v, w)) — 2 where 
Zg((v,w)) is the length of the longest directed path in G joining the vertices 
v and w.

Throughout this chapter G will be a power of a directed path. It has 
only one maximal element 1 on which we would like to stop (D = {!}). 
We are also going to assume that the selector will be given some additional 
information, namely the value da of each edge that appears in the induced 
graph.

5.3 Optimal stopping time
Let E^) be the fcth power of the directed path Pn (1 < k < n).

The example of the second power of the directed path Pg may be found in 
Fig.5.1. (Whenever the context is clear we omit the indices n and k for clarity 
of notation and write P instead of F^.) In this section we present a stopping 
time rn for choosing the root from P* search and show that it is optimal.

Let 7r € Sn be a random permutation of vertices from and P^ be the 
graph induced by {ny, 7t2, ..., vrt}. Suppose that H = (W, F) is a connected 
component in P^ and that w and z are two extreme vertices of H. Since 
one knows the value dp(e) for each e E F, one can also tell how many of 
the remaining vertices are going to be placed between w and z on the full 
path Pn. Let us sum the number of those remaining “inner” vertices over all 
connected components in P^) and denote the result by bt. (Compare Fig.5.1.)

Strategy: Let us define a stopping time rn as follows.

= min{t < n : n-1 = k^P^) - 1) +bt, nt e 7r2,... 7rt}}, 

using the convention min 0 = n.
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5.3. Optimal stopping time

Note that rn tells the selector not to stop as long as there is still a chance 
to win in the future. (For instance, we have r9 = 6 in Fig.5.1.) The condition 
n — t = k^c^P^ — 1) + bt means that the probability that 1 is still to come 
is equal to zero because among n — t remaining vertices we need at least 
A;(c(F(t)) — 1) to connect the components that we have at the time t and bt 
is exactly the number of vertices that will join already existing components 
falling somewhere between their vertices. Thus the strategy rn can be stated 
exactly as the analogue of the optimal strategy for a directed path that was 
given by Kubicki and Morayne in [17].

Stop when there is a positive conditional (given history) probability that 
the presently examined candidate is the maximal one and the probability that 
the maximal one can be among the future candidates is equal to zero.
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•^6

•7T2

t = 7
b7 = 2

i = 8
ba = 1

Figure 5.1: Induced graphs of Pg at time t for the permutation % = 
(^2, Vg, V4, V7, V3,V1,V5, V8, .

Theorem 5.1. Let tt be a random permutation of vertices of P^. For P^, 
1 < k < n, the stopping time rn is optimal, i.e.,

P[7rTn = 1] = maxP[7rT = 1],

where T is the set of all stopping times.

Proof. 1 At first, let us observe that it is reasonable to stop at time m 
only if 7rm G Max{P^m)f Of course, we should definitely stop whenever 
P[1 G {7Fm+i,... ,7Tn}|7Tm G Max(P(mf)] = 0. From [17] we know that if 
we play on a directed path and P[1 G {7rm+i,..., 7rn}|7rm G Max(P(mff] > 0 
then it always pays off to play further, for instance simple waiting for the 
next maximal element in the induced graph is profitable. Now we are going 
to explain the full analogy of the situation at time m between the game on a 
directed path and the game on its fcth power. Since we assume that playing 

40



5.3. Optimal stopping time

on the Zcth power one has the additional information about the values dp, one 
knows that at least bm of the remaining vertices are “dummy”. They do not 
play any more any role in our game since we know that they are not going 
to appear as the maximal ones in the induced graph. We have /c(c(P(m)) — 1) 
more “dummy” vertices that will appear immediately under the components 
seen a time t = m (they are also not going to appear as the maximal ones 
in the induced graph). Note that it is exactly the directed path case at time 
m = m+6m + (Zc — l)c(F(m) — l) when tt^ is maximal in the induced graph, the 
number of components of the induced graph is c(P(m)) and we know about 
c(P(m)) — 1 “dummy” vertices (supporting the existing at t = m components). 
Recall that probability that 1 is still to come is positive thus we know that 
in a directed path case (k = 1) we should play further. Thus we should also 
play further in the Zcth power case since throughout the game we are going 
to obtain at least as many information as playing for k = 1.

As sometimes the intuitive type argument may contain a hidden bug, to 
be on the safe side, we also present the fully formal proof of optimality of rn 
below. □

Proof. 2. This proof is analogous to the one that shows the optimality of rn 
for k — 1 presented in [17]. At first, let us make the observation that it is 
reasonable to stop only if the currently examined vertex is maximal in the 
induced graph. Now, aiming for a contradiction, let us assume that there 
exists a stopping time r such that F[ttt = 1] > P[7rTn = 1] which is optimal 
and that there is no optimal stopping time f > t. By our observation we 
may also assume that t(tt) = t if and only if 7rt e Max^P^ or t = n.

Whenever 7rn = 1 we have rn(7d) — 1 thus

lP[7rT = l|r = n] < P[7rTn = l|r = n].

Hence now let us consider the event [r < n].
We have = m < n and 7rm e Max(P(mf). Let am = k(c(P[mf) — 1). 

Let us calculate the probability that r wins counting simply all the possible 
settings of the remaining vertices. We need at least am out of the remaining 
vertices to connect the components of P(m) (which refers to the term 
in (5.1)). Moreover, we need bm more vertices out of the remaining ones that 
will fall between the extreme vertices of the components in P^ (which refers 
to the term bm!). Finally, all the n — m — am — bm remaining vertices
may be arbitrarily permuted together with c(P(mf) components (which refers 
to the term (n — m — am — bm + c(F(m)))!). If we wish to have the component 
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5. The best choice problem for the A:th power of a directed path

containing 7rm at the top of the whole graph, then we can arbitrarily permute 
the n — m — am — bm remaining vertices with c(P(m)) — 1 components (which 
refers to the term (n — m — am — bm + c{P^) — 1)!). Hence we get

P^m =l|7Tm G MdX^)] =
-m-am-bm + c(P(m)) - 1)! _
- m - am - bm 4- c^))'. (5.1)

1 ________
72 772 dm bm T c(P(m})

Since all the components of P^j have equiprobable chance to be placed at 
the top of the whole underlying graph, we obtain

P[1 G P(m)|7rm G Max^F^)] ________ ______________
77. 772 dm bm 4“ C(P(m))

which implies

P[1 £ P(m)|7Tm G Max(P^)] 72 772 dm bm
tl ■ Tn bm 4* c(P(m))

Let us consider the following stopping time
_/ x f min{t > 772 : 7T4 G Mdx(P^))} if t(tt) = m < n,
T^) — n remaining cases,

using the convention min0 = n. Because r rn there exists 772 such that 
{t > 772 : 7rt G Max{P^)} / 0. We will show that

P[W(7r) = l|7Tm G Max^P^] > P[7rm = l|7rm G Max^P^]
Note that among 72 — 771 vertices that are still to come there are at most 
n — m — am — bm which may arrive as the maximal ones in the induced graph. 
Therefore if 1 is among the remaining vertices then with probability at least 
1 /(n — m — am — bm) it will appear as the first maximal vertex in the induced 
graph after time 772 (note that whenever 1 is among the remaining vertices, 
n — m — am — bm > 0). Therefore

= l|7Tm G Max(P(m))] =
P[r(7r) = 1|1 £ P(m),7Tm G Max(P(,n))]P[l £ P(m)|^m € Max(P(m))] > 

1 (t7. 772 dm bm)
(72 772 CLm bm) (72 771 dm bm 4" d(.P[m)))

P[7Tm = l|7Tm G Max(P(m))]
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5.4. Square of a directed path

Thus we have found the stopping time t which is at least equally effective as 
r and stops later than t which contradicts with the assumption that there 
is no optimal stopping time r > r. This proves the optimality of rn. □

5.4 Square of a directed path
In this section we give the exact probability of success of the optimal 

algorithm rn for the square of a directed path, i.e., for P^. Let

Bm = [7Tm G 7F2, • ■ ■ , Tim}],

Cm = [n - m = 2(c(P(m)) - 1) + bm], 
Am = Bm 0 Cm.

Since Cm = 0 for m < (n + 2)/3, we have
n

PK = i] = pk = ii^p^] = 
„__rn+2i m-| —I 

n

PK = qAm]P[Bm|Cm]P[Cm] 
^=1^1

Note that Cm means that at the time m all the remaining vertices are going 
to fall between the vertices of P^ (none of the remaining vertices can be the 
extreme vertex of Pn). Moreover, since we deal with the square of a directed 
path, not more than two vertices of those that are still to come can be finally 
placed on Pn next to each other. Therefore we have

[(n-m)/2J

P|CJ = 7m E
Ln/ k=0

m — 1
n — m — k

n — m — k 
k

In this formula the /cth term corresponds to P(m) having k 4- 1 components. 
The term { refers to forming a sequence of m Is and then out of all 
but the last element choosing n — m — k Is that will be followed by 0. That 
is the way we choose n — m — k spaces between m vertices of P^ for the 
elements that are still to come. We are going to have k spaces for the pairs of 
vertices (because we have k +1 components) and n — m — 2k spaces for single 
vertices that are still to arrive (the term refers to choosing which 
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5. The best choice problem for the Zcth power of a directed path

spaces are going to be “single” and which “double”). From n — m remaining 
vertices we may form at most [(n — m)/2j pairs which explains the upper 
limit of the summation. Let Wm = We have

L(n-m)/2j

52 P[Bm|[c(P(m)) = k + 1] n C'TO]P[c(P(m)) = k + l|Cm] 
k=0

Obviously,

P[Sm|[c(P(m)) - k + 1] A Cm] =P[Bm|c(P(m)) = k + 1] =
\Max(P(m))\ = k + 1 (5-2)

m m.

We also have

P[c(P(m)) = k + l|Cm] =
/ m— 1 \ (n—m—kX 
\n—m—k) \ k )

- (5-3)

thus

L(n-m)/2J

PtBrnl^] = 52
fc=0

m Wm
L(n~m)/2J

E (k+l)
fc=0

(5.4)
m — 1

n — m —

, 1 / m—1 \ (n—m—k\
k "b 1 \n—m—fc/ f k /

1

Let Tm = We have

P^Tn = l|An] =

L(n-m)/2J

= = ^ + 1] O An]P[c(P(m)) = k + 11Am]
k=0

Furthermore,

Pf^Tn — l|[c(B(m)) — k + 1] n Am] — 
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5.5. Probability of success

and, by (5.2), (5.3) and (5.4) for the second equality below,

P[c(P(m)) = k + l|Am] =
P[Bm| [c(P(m)) = fc + 1] n CTO]P[c(P(Tn)) = k + 1 |Cm] 

P[Bm|Cm] ~
/ m — 1 \(n—m — k\

fc+l kn-m-wl k J tlrJ-lV 
m Wm _ ' lJ\n-m-k) \ k )

Hence
[(n-m)/2J

= i|4m]= 22 
k=0

k + 1 Tm
Wm
Tm '

Thus

PK = ll^P^IC^P^] Wm Tm Wm 
Tm mWm (□

which finally gives

In the next section we are going to prove that P[7rTn = 1] = Sl(n x/3)

5.5 Probability of success
In this section we show that the probability of success pn according to 

our optimal strategy rn for P^ (the Zcth power of a directed path Pn) satisfies 
pn = Q(n-1/(fc+1l) for 1 < k < n. (Again for clarity of notation we write P 
instead of P*.) For k < n such that limsup^^ < 1/2 we also prove 
Pn = O(n-1^fc+1^). We show this result also for the case when the selector is 
not given the additional information about the values of dp in the induced 
graph. In order to prove this result we use the continuous time approach 
to arrivals of vertices and a probabilistic methods, more precisely: Markov’s 
inequality and Janson’s inequality.
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5. The best choice problem for the fcth power of a directed path

Recall that Vn — {vi,v2,... ,vn} and En = {(vi, Vi-i), i = 2,3,... ,n} are 
the sets of vertices and edges of Pn respectively; thus = 1 is the root. 
Note that if 1 = 7rt and vn is still to appear at the time t, then at the time 
t the condition n — t = — 1) + bt is not satisfied (we have then
n — t > k(c(P^) — 1) + bt). Thus the condition that vn precedes 1 in % 
is necessary for the event [7rTn = 1]. Note also that in the two easy cases, 
when k = n — 2 or k = n — 1 this condition is also sufficient. Then we get 
F[7rTn = 1] = 1/2. Throughout the rest of this section we always assume that 
1 < k < n — 2.

Now, let us recall what we understand by the continuous time approach to 
arrivals of vertices (we have already explained it in Section 3.3). We associate 
with each Vi, i = 1,2,..., n, a random variable Ai of a value drawn uniformly 
from the interval [0,1], where all AiS are independent. We treat Ai as the 
time of arrival of Vi. Thereby we have generated the uniform random order of 
arrivals of vertices from P„. The arrival time of the root will be again denoted 
by p (4i = p). We have already said that this continuous time variant is 
equivalent to the discrete time one in a sense that all the permutations of 
vertices are equiprobable. Let us recall also the following remark.

Remark 5.2. Since all 4/s are independent and the arrival time of the root 
is 4i = p, the probability that a particular vertex appears before the root is 
equal to p.

Let us define the following sequence of the indicator random variables

/ 1 if > P A Ai+2 > PA-" A Ai+k+l >
’ | 0 otherwise (5-5)

for 1 < i < n — k — 2. Let also X^ = ^p\ The event [X^ = 0]
means that in the induced graph at the time p there are no two components 
such that they are neighbors (no other element from the induced graph is 
between them) and the distance between them in Pn is greater than k + 2 
(by the distance between two components we understand the length of the 
shortest path in Pn that joins vertices from the different components). Hence 
the event [X^ = 0, An < p] ensures that at the time p when the root comes 
(suppose 1 = 7rt) the condition n — t = k^P^)) — 1) + bt is satisfied. It 
works also the other way round, i.e., whenever An > p or X^ > 0 we have 
n — t > fc(c(P(t)) — 1) + bt. Thus 7rTn = 1 if and only if = 0 and 4n < p. 
Thus, since P[7rTn = l|4i = p] = P[X^ = 0,4n < p|4x = p] and all p’s are 
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5.5. Probability of success

equiprobable, we have the following lemma (which is analogous to Lemma 
3.2).

Lemma 5.3. For Pf fl < k < n — 2) we have

P[^rn = 0, An < p|A! = p]dp.

□
In this section we are going to use the first moment method which is 

based on Markov’s inequality.

Lemma 5.4 (Markov’s Inequality, [21]). Let X be a nonnegative random 
variable. Then for all e > 0

EX
£

In particular, for e = 1 we have

P[X > 1] < EX.

We will also need the exponentially small bound on a lower tail of sums 
of not independent random variables. Whenever the dependence is relatively 
weak, the bound is given by Janson’s inequality.

Lemma 5.5 (Janson’s Inequality, [12]). Let F be a finite set. A subset R is 
drawn randomly from F such that the inclusions of individual elements from 
F are independent. Let A be a family of subsets of F. For each A E A we 
define

X - I 1 ifAQR
A (0 otherwise

and X = X^. For the ordered pairs (4, B), A,B E B, write A ~ B if
A B and An B / 0. Then, for every 0 < £ < 1,

In particular, for £ = 1 we have

P|X = 0] < exp {-1 x ) ■
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5. The best choice problem for the kth power of a directed path

Before we move on to our main theorems, let us prove the following 
lemma.

Lemma 5.6. For Pk (1 < k < n — 2) let X^ ’s be defined by (5.5) and, as 
earlier, • Let £ e (0> 1), an,e = 1 — (1 + and
bntE = 1 — (1 — . Then

f P[X^ = 0] if p > bn>E and k(n) n^°°y oo,
( P[X^p) = 0] > C > 0, if p > bn>£ and k is a constant, 

where C is some constant. When k is such that lim infn^oo > 1 and
e is chosen in such a way that an<e > 0

f limsup^oo P[X^ = 0] < c < 1, if p < an^ and k is a constant,
[ P[X^ = 0] XXS. Q, if p < ane an(j .nT?°> oo,

where c is some constant. More precisely

1 - ~ * plx“ = °l £
Remark 5.7. Note that k may be a constant independent of n or a function 
k = k(n) such that k(n) nXX, qq. As ft js aiWays known from the context, 
we simply write k.

Proof. We begin with proving the first two statements using the first moment 
method. We have P[X^ = 1] = (1 — p)k+\ therefore

EX(p) = (n - k - 2)(1 - p)k+l <n(l -p)k+1.

By Markov’s inequality (Lemma 5.4) P[X^ > 1] < EX^P\ thus we obtain

P[X(p) = 0] = 1 - P[X(p) > 1] > 1 - EX^ > 1 - n(l - p)k+1.

Hence, for p > 1 — (1 —

P[X(p) = 0] >1 - n(l - p)k+1 >
1 - n((l - €)n-1/(fe+1))fc+1 = 1 - (1 - e)fc+1.

Thus, for p > 1 — (1 — E^n anj = 
we get

oo (1 < k < n-2fi

P[X(p) = 0] > 1 - (1 - ^4- 1,
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5.5. Probability of success

and for p > 1 — (1 — e)n and k being a constant

P[X(p) = 0] > 1 - (1 - - C > 0.

Now we are going to justify the last two statements using Janson’s in­
equality. Let us write i ~ j , i,j G {1,2,..., n — k — 2}, when i j and 
X^, are not independent. Obviously, (EX^)2 = (n—k—2)2(1— 
Let us calculate then A^ = ^i~j EfX^xJ^]. If i ~ j then the total num­
ber of vertices s on which X^ and X^ depend satisfies k + 2<s<2k + l 
and we have EjXp^X^] = (1 — p)s- Moreover, there are 2(n — s — 1) pairs 
i ~ j such that X^ and X^ depend on s vertices altogether. Therefore

2k+l

A^ = 2(n - s - 1)(1 - p)s < 2fcn(l - p)k+2.
s=k+2

Thus we get

(EX(?>)2 (n — k- 2)2(1 -p)2^
EXM + A(p) ~ (n - A; - 2)(1 - p)^1 + 2fcn(l - p)k+2 ~ 

(n — k — 2)2(1 — p)k+1 
n(2k(l — p) + 1)

The function /(p) = is decreasing in p thus for p < 1 — (1 +
and by Lemma 5.5

P[X(p) = 0] < exp

exp

exp

1 (EX^)2 1
2 EXW + A(p) J ~
(n — k — 2)2(1 — p)^11

2n(2A;(l -p) + 1) J ~
(n — k — 2)2(1 + E)k+1 I

2n2^2k(l + + 1) J

Note that whenever k - k(n) OO) qq. Thus
for p < 1 — (1 + and k = k(n) nX°°> qq we obtain

lim P[X(p) = 0] = 0.
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5. The best choice problem for the /cth power of a directed path

Now assume that k is a constant. We have
(n-k-2f2(l +P)k+1 n-^oo + 

2n2(2/c(l + £)n-1/(fc+i) + i) ~ * 2

and thus for p < 1 - (1 + e)n-1^fc+1^ setting c = exp | we obtain

limsupPfX^ = 0] < c. 
n—>oo

□
Since rn is optimal there is no other strategy that performs better. In 

order to bound the effectiveness of rn from below we shall analyze the effec­
tiveness of another stopping time r* that was already introduced in Chapter 
4.

Strategy: Flip an asymmetric coin, having some probability p of coming 
down tails, n times. If it comes down tails M times reject the first M 
elements. After this time pick the first element which is maximal in the 
induced graph. In other words, r* is equal to the first j > M such that 
TVj G Max{P^f). If no such j is found let t* = n.

The strategy r* uses randomization that was introduced by Preater in [23] 
to construct a universal best choice algorithm for posets. In Chapter 4 the 
following lemma was proved.

Lemma 5.8. Let % G Sn be a random permutation of vertices in V. Suppose 
that we have a coin that comes down tails with probability p. Let M denote 
the number of occurrences of tails in n tosses. Then all vertices from V 
appear in {tti, 7t2,..., ttm} with probability p independently.

□
Theorem 5.9. Let Pf be the kth power of a directed path, 1 < k < n. Let % 
be a random permutation of its vertices. There exists a constant c > 0 such 
that

lim inf n1/^+1)p[7rTn = 1] > c. 
n—>oo

Proof. We have already discussed the two easy cases for A: = n—2 or k = n—1. 
Then P[7rTn = 1] = 1/2 and thus we get lim^oo = 1] = 1/2.
Throughout the rest of the proof we always assume that 1 < k < n — 2.
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5.5. Probability of success

Let us consider the stopping time r* with p = 1 — (1 — s)n-1Hfc+1) for 
some e G (0,1). Let V* be the set {tti,7r2, ■ . . ,ttm} from Lemma 5.8. Since 
rn is optimal, we have P[7rTn = 1] > = !]• Hence we are going to show
that the probability of success of r* satisfies the statement of the theorem.

Let us define the following sequence of the indicator random variables

_ fl if {Wj+i, Vi+2> • • • > } C Vn \ Vp ,
1 f 0 otherwise

for 1 < i < n - k - 2. Let also X^V Note that if =
0,un G V* ,1 G Vn \ IT*] then 1 is the only element which comes as the 
maximal one in the induced graph after time M. Thus we have

PK = i] > p[x^ = o, Vn & v;, i g \ v;].

Since p = 1 — (1 — e^V^Th-1), by Lemma 5.8 and by the lower bound from 
Lemma 5.6, we obtain

PK* = i] >p[x(m) = o]p[wi g v;]P[i g vn \ v;] >
(1-n(l-p)fc+1)p(l-p) =
(1 — (1 — e)fc+1)(l — (1 — E)n-1^fc+1^)(l —

Thus for 1 < k < n — 2

= 1] = 1] >
(1 - (1 - e)*+1)(1 - (1 - eK1/^1^! - e).

We have

lim inf (1 — (1 — s)fe+1)(l — (1 - E)n-1^fe+1^)(l — s) = c > 0, 
n—>oo

thus setting c = min{c, 1/2} we obtain for 1 < k < n

lim inf n1/(/c+1)p[7rTn = 1] > c. n—>oo
□

Theorem 5.10. Let P* be the kth power of a directed path and let tt be 
a random permutation of its vertices. There exists e > 0 such that for k 
satisfying limsup^^ < 1/2, k < n, we have

limsupn1/(fc+1)P[7rTn = 1] < 1 + e.
n—>00
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5. The best choice problem for the kth power of a directed path

Proof. First, let us assume liminf^oon1^fc+1^ > 1. Let again be 
defined by (5.5) and By Lemma 5.3, the independence
of Ai’s and the fact that F[An < p\Ai = p] = P[An < p] = p we have

i

o

We need to show that there exists s > 0 such that

lim sup
n—>oo

Let an>£ = 1 — (1 + e^n *+i and let s > 0 be such that an,£ > 0. We have

O'n.E

We are going to estimate the following expressions

an.c

nv(k+i) y Pp[x(p)=o] dp, 

0

1

n1/(*+1) y Pp[x(p) = 0] dp.

O>n,E

Let us start with (5.7). We have

i

nw+b y w = o] dp <

O-n^E

1

nl/(fc+l) y \dp = — On^) = 1 + £.

Q’n.e

(5-6)

(5-7)

(5.8)

52



5.5. Probability of success

Now let us estimate (5.6). By the upper bound from Lemma 5.6 and the 
fact that f(p) — decreasing in P we have

0
®n,e

0
2n(2^(l — p) + 1)

ni/(k+i) y exp 

0

exp

(n — k — 2)2(1 - an^y^1 
2n(2k{\ — an^ + 1)

(n-k - 2)2(1 - a^)^1 
2n(2A;(l - an>e) + 1)

dp =

(6.9)

exp (n-k-2)2 (1 + c)^1

nV(fc+i) exp

(1 + e) exp

2n2 2fc(l + + 1 J
J" (n — k — 2)2 (l+e)fc+1
{ 2n2 2A;(1 + e)n-1/(fc+i) 4-1

(n — k — 2)2 (l + e)fc+1
2n2 2A;(1 + £)n-1/(k+i) + 1 J

n1/(fc+1)(l - (1 + e)n

From the calculations in the proof of Lemma 5.6 we know that the second 
term converges to 0 when k = k(n) n^°°> 00. Now we will show that the first 
term n1^1^ exp { — ^7^-- 2fc(i+e)n-1Afe+»)+i} aiso fends to 0 with n tending 
to infinity. We have

ni/(fc+i) exp (n-fc-2)2 (l+£)*+1
2n2 2k(l + £)n-1/(fc+1) + 1

exp {n-k- 2)2 (1 + £)fc+1
2n2 2k(l + + 1

It is easy to notice that whenever is bounded by some positive constant, 
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5. The best choice problem for the fcth power of a directed path

we are done. Let us assume now that w~>°°> oo. We have

J Inn (n — k — 2)2 (1 + £)fc+1 1
6XP (F+l " 2n2 2/c(l + ^n-W+b + 1 J ~

( Inn / (n — k — 2)2 (k + 1)(1 + e)k+1 \
eXP [k + 1 V W (2fc(l + ^n-W+L + l)lnn)

Since now | it is enough to show

F • f (fe+l)(l + £)fc+1
n—>oo (2A;(l + £)n-W+i) + l)lnn

We have
(2fc(]J-j^^ _ (2fc(l + £) + exp{^})lnn

(k + 1)(1 + £)fc+1 exp {^j} (k + 1)(1 + £)fc+1 
2k In n In n

(A) + l)exp{£^} (1 +£)fe + (k + 1)(1 + £)fc+1 _

2 In n In n In n / 2 1
+e)fc + k^ + ^k + \exp{^|} +k

From the assumptions n^°°> oo and limsup^^ < 1/2 we obtain

v Inn / 2 1\ .
limsup—----- -7 —---f + T <1/2.n_>oo (1 + e)k yexp {^} kJ

Thus indeed
(fc+l)(l+£)‘+‘

hmmi ----- ;--- , -----r;---- > 2n^oo (2/c(l + £)n^1/(fc+1) + 1) In n

which yields

v 1/fk+il f (n-k-2)2 (l + £)fc+1 ]hm n1/(fc+1) exp <-------—;----- -tt/v——;—, —7 ? = 0.n—>00 [ 2n2 2/c(l + £)n^1/(/c+1) + 1J

From (5.9) we obtain

lim n1^fc+1^n—>00

an,e

y pP[X(p) = 0] dp = 0.

0
(5.10)
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From (5.8) and (5.10) for k satisfying both, limsup^^ <1/2 and 
lim infn^oo > 1 we obtain

limsupn^^+^PfTF^ — 1] < 1 + £. 
n—>oo

Thus for k such that limsupn_>oo < 1/2 and k < n we obtain

limsupn1/(fc+1)P[7rTn = 1] < 1 + e. 
n-too

Thus we have proved the conclusion under one of the assumptions

1. is bounded by a constant or
In n n OO2- S

Assume now that in general the conclusion does not hold, i.e.,

lim sup n1'/^+1^P[7rTn = 1] = oo. 
n—>oo

Passing to a subsequence we can write

lim = 1] = co.
n—>oo

Thus we know that — is unbounded. Again passing to a subsequence we 
can get n^°°> oo. But this contradicts the second case. Thus we have 
proved the conclusion under the assumption lim inf^oo > 1.

Note that if lim^oo = 1 the conclusion holds trivially. Using
again the argument of passing to subsequences we obtain the conclusion in 
the general situation. □

Note that although we do not formulate the optimal algorithm for the 
case when the selector does not know the values of dp in the induced graph, 
we are able to tell the order of the probability of its success.

Corollary 5.11. For being the kth power of a directed path let rn be the 
optimal stopping time for choosing the root when the selector does not know 
the values dp of each edge that appears in the induced graph. Then

P[7Tfn = 1] = for 1 < k < n,
F[7Tfn = 1] = O^n"1/^4-^) when k < n and limsup^^ < 1/2.
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5. The best choice problem for the Zcth power of a directed path

Proof. We have Pf-zT^ = 1] < P[7rTn = 1] because when the values of dP are 
known in the induced graph one can take at least as efficient decision as when 
they are not known. On the other hand note that our lower estimation of 
liminf^oo = 1] in Theorem 5.9 does not use the information
about the values dp at all. Thus the estimation is also true for rn. □

Remark 5.12. For now we do not know if for P[?Tfn = 1] — the
additional assumption about k may be dropped.

5.6 Comments and remarks
Note that for k = 1 our problem reduces to the directed path case from 

[17]. On the other hand when k — n — 1 we deal with a graph which gives 
the linear order of n elements. Recall that then, for 7r being the random 
permutation of vertices of F”-1, P[7rTn = 1] = 1/2 because 7rTn = 1 if and only 
if vn precedes 1 in %. Note that for k — n — 1 when we do not assume that the 
selector knows the values of dP(e) for each edge e that appears in the induced 
graph, we, in fact, talk about the classical linear order secretary problem. 
From [19] we know that the probability of success of the optimal algorithm for 
the linear order is asymptotically 1/e. It is quite surprising that revealing this 
additional information about distances increases the probability of success of 
the optimal algorithm only to 1/2.
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