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Rozdział 1

Wstęp

Termin robot (czes. robota - praca) oznacza cybernetyczną maszynę przeznaczoną do re­alizacji niektórych czynności energetyczno-ruchowych, sensualnych i intelektualnych czło­wieka. Termin powstał już w 1920r. i został wprowadzony przez czeskiego fantastyka Karela Capka w jego sztuce „R.U.R.” („Rossumovi Univerzalm Roboti”). Z kolei termin 
robotyka wprowadził w 1942r. amerykański pisarz rosyjskiego pochodzenia Isaac Asimov (AiiseK Aswmob) w opowiadaniu „Runaround”. Równolegle z wprowadzaniem pojęć za­częły także powstawać pierwowzory robotów. Pierwsze konstrukcje robotyczne datuje się na okres międzywojenny, kiedy to powstał na przykład „pies elektroniczny” zbudowany w 1929r. Po II wojnie światowej postęp techniki przyczynił się także do rozwoju dyscy­pliny robotyka. Pierwsze modele robotów przeznaczonych do pracy w przemyśle zostały zbudowane w Stanach Zjednoczonych na początku lat sześćdziesiątych. W Europie robo­ty pojawiły się niedługo później. Pierwszy europejski robot został zastosowany w 1971r. w Szwecji, a pierwszy robot w Polsce wspomógł pracę pracowników Olkuskiej Fabryki Na­czyń Emaliowanych w 1976r. Obecnie robotyka oprócz tematów związanych z największą grupą robotów - manipulacyjnych robotów przemysłowych, zajmuje się także zagadnie­niami robotów mobilnych i innych układów mechanicznych. Ostatnio, robotyka wkracza także w obszary psychologiczno-socjologiczne pracując nad robotami społecznymi. Za­dania stawiane robotykom mają różnoraki charakter. Od prostych i odwrotnych zadań kinematyki, poprzez takie zadania jak, planowanie ruchu czy śledzenie trajektorii, aż po skomplikowane zadania jak na przykład wyrażanie emocji.Proste i odwrotne zadanie kinematyki należą do fundamentalnych zadań w roboty­ce [4,29,48]. Proste zadanie kinematyki dla manipulatorów polega na zdefiniowaniu po­zycji (np. położenia i orientacji) końca efektora jako funkcji zmiennych przegubowych. Natomiast, celem odwrotnego zadania kinematyki jest wyznaczenie wartości zmiennych przegubowych dla określonej pozycji końca efektora. Odwrotne zadanie kinematyki jest szczególnym przypadkiem zadania planowania ruchu. Dla manipulatorów redundantnych, czyli dla takich, w których wymiar przestrzeni konfiguracyjnej jest większy od wymiaru przestrzeni zadaniowej, odwrotne zadanie kinematyki ma nieskończenie wiele rozwiązań. Aby otrzymać jednoznaczne rozwiązanie algorytmu kinematyki odwrotnej, nakłada się na rozwiązanie dodatkowe ograniczenia, jak na przykład minimalizacja prędkości przegubo­wych w trakcie ruchu, czy inne jak unikanie przeszkód, ograniczeń w przegubach, bądź konfiguracji osobliwych. Rozważania na temat kinematyki robotów redundantnych przed­stawione są w [12], W większości przypadków odwrotne zadanie kinematyki dla manipula­torów redundantnych jest rozwiązywane numerycznie, za pomocą jakobianowych algoryt­mów kinematyki odwrotnej, takich jak algorytm jakobianu pseudoodwrotnego, bądź algo­rytm jakobianu rozszerzonego. Z definicji, pierwszy z nich cechuje minimalizacja prędkości 



6 1. Wstępprzegubowych w czasie trwania ruchu oraz szybka zbieżność. Drugi z nich, konstruowany jest poprzez dodanie odpowiedniej ilości wierszy będących różniczką funkcji rozszerzają­cych, w taki sposób, aby wynikowy jakobian był macierzą kwadratową [7]. Odpowiedni dobór funkcji rozszerzających pozwala kształtować dynamikę algorytmu. Rozwiązanie al­gorytmu typu jakobianu rozszerzonego zależy od obranej funkcji rozszerzającej. Dlatego, algorytm ten poza rozwiązaniem odwrotnego zadania kinematyki może jednocześnie mini­malizować pewną funkcję kryterialną [25]. Z tego samego powodu, algorytm jakobianu roz­szerzonego posiada bardzo istotną cechę jaką jest powtarzalność [43]. Gwarantuje ona, że algorytm będzie generował powtarzalne rozwiązania. Innymi słowy, zamkniętym ścieżkom w przestrzeni zadaniowej odpowiadać będą zamknięte ścieżki w przestrzeni konfiguracyj­nej. Własność ta jest niezwykle przydatna podczas planowania ruchów cyklicznych. Ruchy takie są wymagane od robotów przemysłowych pracujących na liniach produkcyjnych, czy montażowych. Powszechnie wiadomo, że algorytm jakobianu pseudoodwrotnego nie posia­da cechy powtarzalności [26]. Alternatywą dla algorytmów jakobianowych jest algorytm oparty na zastosowaniu mnożników Lagrange’a [10]. W pracy [24] można znaleźć porówna­nie algorytmu jakobianu rozszerzonego i podejścia korzystającego z mnożników Lagran- ge’a. Problem osobliwości algorytmu jakobianu rozszerzonego został poruszony w [25], a następnie zdefiniowany na nowo w [24],Przy wykorzystaniu własności algorytmu jakobianu rozszerzonego jest możliwe zbudo­wanie powtarzalnego algorytmu kinematyki odwrotnej, który będzie przypominał w dzia­łaniu inny algorytm, w szczególności algorytm jakobianu pseudoodwrotnego. W tym celu, definiuje się miarę, która określa podobieństwo dwóch algorytmów. Następnie, rozwią­zuje się zadanie aproksymacji polegające na wyznaczeniu funkcji rozszerzającej minima­lizującej kryterium odległości. Po raz pierwszy takie zadanie zostało sformułowane dla manipulatorów stacjonarnych przez Robertsa i Maciejewskiego w serii artykułów [38-40]. Wspomniana literatura jest dedykowana problemowi optymalnej aproksymacji algorytmu jakobianu pseudoodwrotnego przez powtarzalny algorytm jakobianowy. Autorzy zdefinio­wali zadanie aproksymacji jako zadanie optymalizacji w przestrzeni funkcyjnej, które roz­wiązywali korzystając z metod rachunku wariacyjnego. Aby otrzymać optymalną funkcję rozszerzającą, należy rozwiązać układ nieliniowych cząstkowych równań różniczkowych, wynikających z równania Eulera-Lagrange’a. Rozwiązanie tak określonego układu rów­nań jest zadaniem bardzo trudnym, nawet dla manipulatora o kilku stopniach swobody. W przypadku bardziej skomplikowanych manipulatorów rozwiązanie zadania optymaliza­cji staje się wręcz niemożliwe, biorąc pod uwagę nie tylko metody analityczne, ale także dostępne metody numeryczne. W pracy [53] zaproponowano modyfikację metody Robertsa i Maciejewskiego, której rozwiązanie za pomocą metody Eulera-Lagrange’a sprowadza się do wyznaczenia funkcji rozszerzającej poprzez rozwiązanie układu liniowych, eliptycznych równań różniczkowych cząstkowych. Sformułowanie zadania aproksymacji dla kinematyki w SE(3) zawarte jest w [22], Praca [54] przedstawia nowe podejście do problemu, zaczerp­nięte z geometrii różniczkowej, w której zadanie aproksymacji sprowadza się do zadania aproksymacji ko dystrybucji. Istotą metody jest zdefiniowanie całkowalnej kodystrybucji pokrywającej się z daną, niecałkowalną kodystrybucją na pewnym obszarze w przestrzeni konfiguracyjnej manipulatora. Inspiracją do stworzenia podstaw teoretycznych tej metody jest teoria sterowania, w której rozważany jest problem przybliżonej linearyzacji poprzez sprzężenie zwrotne [46]. Przykład zadania aproksymacji algorytmu jakobianu pseudoodw­rotnego algorytmem jakobianu rozszerzonego zdefiniowanego zarówno za pomocą podej­ścia wariacyjnego jak i geometrii różniczkowej zawarto w pracy [56].Niniejsza praca dotyczy podstaw robotyki i odnosi się do matematycznych podstaw algorytmów stosowanych w robotyce. W rozprawie zostaną przedstawione metody aprok­



7symacji algorytmu jakobianu pseudoodrotnego jakobianem rozszerzonym korzystające za­równo z metod rachunku wariacyjnego jak i geometrii różniczkowej. Rozpoczniemy od wyprowadzenia algorytmów jakobianowych metodą homotopii definiującej algorytm jako układ dynamiczny zależny od funkcji błędu określonego w przestrzeni zadaniowej, dla którego trajektoria zbiega się z rozwiązaniem odwrotnego zadania kinematyki [14,52], W rozprawie będziemy rozpatrywać zadania aproksymacji korzystające z metod rachun­ku wariacyjnego lub z geometrii różniczkowej. Należy pamiętać, że wszystkie metody operują na podzbiorze konfiguracyjnym wolnym od osobliwości. „Funkcjonał błędu I” me­tody wariacyjnej swoje podstawy czerpie z koncepcji Robertsa i Maciejewskiego. Zakłada ona jednak trochę inne podejście do problemu. Polega ono na osadzeniu odwrotności jakobianów w większej przestrzeni. Wówczas, zadanie aproksymacji jest formułowane ja­ko zadanie optymalizacji w przestrzeni funkcyjnej, które następnie rozwiązujemy przy pomocy rachunku wariacyjnego. W efekcie, otrzymujemy układ równań różniczkowych cząstkowych dla funkcji rozszerzającej. Dla metody opracowanej przez Robertsa i Macie­jewskiego układ równań tworzą nieliniowe równania różniczkowe cząstkowe. W przypadku nowego podejścia układ ten zawiera liniowe, eliptyczne równania różniczkowe cząstkowe, którego rozwiązaniem mogą być funkcje harmoniczne [6,19]. Warto zwrócić uwagę na fakt, że jak dotąd, funkcje harmoniczne pojawiły się w dziedzinie robotyki w dwóch in­nych kontekstach: jako funkcje potencjału w zadaniu planowania ruchu manipulatora [23] i jako rozwiązanie zadania optymalizacji dystorsji kinematycznej manipulatora [32], Ce­lem „Funkcjonału błędu II” podejścia wariacyjnego i metody geometrycznej jest aprok­symacja kodystrybucji stowarzyszonych z odwrotnościami jakobianów pseudo odwrotnego i rozszerzonego. W przypadku małej redundancji rozpatrywanej kinematyki, wygodnie jest dystrybucję zastąpić kodystrybucją rozpiętą przez 1-formy różniczkowe anihilujące stowarzyszoną dystrybucję. W przypadku jakobianu pseudoodwrotnego kodystrybucją ta jest rozpięta przez 1-formy anihilujące jakobian transponowany. Natomiast, dla algorytmu jakobianu rozszerzonego stowarzyszona kodystrybucją jest rozpinana przez odpowiednie różniczki funkcji rozszerzającej kinematykę. Zadanie aproksymacji polega na znalezie­niu dystrybucji związanej z odwrotnością jakobianu rozszerzonego, która jest w pewnym sensie bliska danej dystrybucji stowarzyszonej z jakobianem pseudoodwrotnym. Zgodnie z podejściem geometrycznym, obszar nieosobliwy przestrzeni konfiguracyjnej jest prze­kształcony w foliację, której liście, o wymiarze równym stopniowi redundancji, są homo- topijne do liścia odniesienia. Homotopia ta definiuje pewne pole wektorowe. Kodystry- bucja stowarzyszona z jakobianem rozszerzonym powinna pokrywać się z kodystrybucją stowarzyszoną z jakobianem pseudoodwrotnym określoną na liściach foliacji i wzdłuż pola wektorowego określonego przez homotopię. Warunek ten sprowadza się do układu równań różniczkowych cząstkowych dla funkcji rozszerzających, które rozwiązuje się przy pomo­cy metody charakterystyk. Ostatecznie, funkcja rozszerzająca jest obliczana numerycznie poprzez całkowanie wstecz równania charakterystycznego. W przeciwieństwie do „Funk­cjonału błędu I”, gdzie funkcjonałem jest odległość pomiędzy jakobianami, w „Funkcjonale błędu II” konstruowany jest funkcjonał błędu aproksymacji będący miarą odległości po­między dwiema dystrybucjami/kodystrybucjami na podzbiorze nieosobliwym przestrzeni konfiguracyjnej. Warunek optymalności wyrażony poprzez równanie Eulera-Lagrange’a jest równoważny liniowemu, eliptycznemu równaniu różniczkowemu cząstkowemu. Ponie­waż liczba zmiennych niezależnych tego równania jest równa liczbie stopni swobody np. manipulatora, rozwiązanie tak sformułowanego zadania może być niemożliwe przy uży­ciu obecnie dostępnych narzędzi numerycznych. Z tego powodu, do rozwiązania zadania aproksymacji dla metod wariacyjnych posłużono się metodą Ritza [17].Metoda homotopii (zwana także metodą kontynuacji), która leży u podstaw algo­



8 1. Wstęprytmów jakobianowych znalazła ciekawe zastosowanie do syntezy algorytmów reproduk­cji trajektorii układu. Metoda homotopii jest jednym z narzędzi często stosowanych we współczesnej matematyce. W ogólności, metoda homotopii opiera się na zaleceniu, że 
jeśli nie potrafisz rozwiązać danego problemu, staraj się go uogólnić. W ten sposób, ory­ginalny problem jest niejako zanurzany w rodzinie podobnych problemów parametryzo- wanych pewną zmienną. Mając rozwiązanie problemu dla zadanej wartości parametru, przez przejście z parametrem do granicy (w szczególności do +oo) otrzymujemy rozwią­zanie problemu oryginalnego. Metoda homotopii znalazła zastosowanie przy rozwiązywa­niu problemów optymalizacyjnych [20,60,61], problemów równoważności [52] i zagadnień odwrotnych [2,37,51,52], Na jej podstawie powstały także efektywne algorytmy do obli­czeń numerycznych [1]. Pierwsze zastosowanie metody homotopii w robotyce przedstawił Sussmann w pracy [50]. Wykazał on, że przy pomocy metody homotopii można rozwią­zać odwrotne zadanie kinematyki dla układów nieholonomicznych spełniających warunek Strong Bracket Generating Condition [49]. Równolegle Wen i współpracownicy prowadzili prace nad wykorzystaniem tej metody do planowania ruchu manipulatorów redundant- nych [41], a także platform mobilnych [15,16]. W późniejszym czasie pojawiły się prace dotyczące planowania ruchu samochodu kinematycznego [14] i ciał toczących się [3,11]. Dogłębne rozważania na temat zastosowania metody homotopii do planowania ruchu ro­botów pojawiły się w [13,14]. Korzystając z idei homotopii rozwinęła się także metoda endogenicznej przestrzeni konfiguracyjnej [34,35,57], która umożliwia zastosowanie pojęć teorii manipulatorów stacjonarnych do robotów mobilnych.W niniejszej pracy zaadaptujemy metodę homotopii do rozwiązania zadania plano­wania, a także reprodukcji trajektorii układów robotycznych. Zadanie planowania tra­jektorii możemy sformułować następująco: mając dany afiniczny układ sterowania, wy­znaczyć funkcję sterującą, przy pomocy której układ będzie poruszał się wzdłuż zadanej trajektorii [27]. Rozwiązanie zadania planowania trajektorii wymaga pewnego rodzaju inwersji układu sterowania, a dokładniej, inwersji odwzorowania wejściowo-wyjściowego dla określonego stanu początkowego. W przypadku, gdy to odwzorowanie jest iniektyw- ne (różnowartościowe), system taki nazywamy lewostronnie odwracalnym. Natomiast, gdy odwzorowanie jest suriektywne nazywa się go prawostronnie odwracalnym. Ta ostatnia ce­cha nazywana jest także reprodukowalnością funkcjonalną [9]. W literaturze istnieje wiele pozycji koncentrujących się na inwersji układów sterowania, zarówno liniowych [44] jak i nieliniowych [45]. Należy podkreślić, że jeśli układ jest różniczkowo płaski [33] i znamy trajektorię wyjścia, to problem planowania trajektorii jest łatwo rozwiązywalny. Obszerny przegląd teorii i algorytmów odwracania układów sterowania zawiera praca [36].Zakładając funkcjonalną reprodukowalność, w rozprawie zaproponowane zostaną algo­rytmy funkcjonalnej reprodukcji stanu i wyjścia afinicznego układu sterowania. Algorytmy te polegają na rozwiązaniu pewnego równania różniczkowego cząstkowego drugiego rzę­du, w wyniku czego otrzymujemy jednoparametrową rodzinę sterowań. Następnie, przy parametrze dążącym do +oo otrzymujemy sterowanie będące rozwiązaniem zadania re­produkcji trajektorii. Algorytmy te mają zastosowanie do afinicznych układów sterowania, które w szczególności mogą reprezentować kinematykę nieholonomicznego robota mobilne­go lub dynamikę manipulatora bądź robota mobilnego. Ze względu na przejście graniczne, algorytmy mają charakter asymptotyczny. Zastosowanie metody homotopii do rozwiąza­nia zadania reprodukcji trajektorii stanu można znaleźć w [55], natomiast do zadania reprodukcji trajektorii wyjścia w pozycji [21],



9Biorąc pod uwagę powyższe rozważania autorka pracy stawia tezę:Jest możliwe nowe sformułowanie zadania aproksymacji algorytmów jakobia- nowych i jego rozwiązanie metodami rachunku wariacyjnego dla redundant- nych manipulatorów przemysłowych. Dodatkowo, korzystając z metody ho- motopii, można skonstruować algorytm reprodukcji trajektorii stanu i wyjścia robota.Praca składa się z 6 rozdziałów. Rozdział pierwszy zawiera wprowadzenie w tematykę pracy. W tej części zawarty jest także przegląd literatury. W rozdziale drugim przedstawio­ny został problem aproksymacji algorytmów planowania ruchu robotów, w odniesieniu do algorytmu typu jakobianu rozszerzonego aproksymującego algorytm typu jakobianu pseu- doodwrotnego i podano dwie metody jego rozwiązania. Pierwsza metoda wykorzystuje metody rachunku wariacyjnego. Zadanie aproksymacji algorytmów pochodzi od Robertsa i Maciejewskiego. Autorzy ci zdefiniowali miarę odległości jakobianu pseudoodwrotnego i odwrotności typu jakobianu rozszerzonego. Wówczas, zadanie aproksymacji sprowadza się do zadania znalezienia funkcji rozszerzającej minimalizującej przyjętą miarę. W roz­winięciu idei wymienionych autorów został opracowany nowy algorytm aproksymacyjny, oparty na naturalnym rozszerzeniu odwrotności jakobianu rozszerzonego jak i jakobianu pseudoodwrotnego do pewnych macierzy kwadratowych. W tym wypadku, zadanie aprok­symacji jest rozwiązywane poprzez skonstruowanie miary odległości rozszerzonych macie­rzy, a następnie jej minimalizacji ze względu na funkcję rozszerzającą. Wyprowadzone zostało także drugie kryterium, którego minimalizacja pozwala wyznaczyć funkcję rozsze­rzającą. W tym podejściu, funkcjonał błędu aproksymacji jest miarą odległości między dwiema dystrybucjami/kodystrybucjami w pewnym obszarze przestrzeni konfiguracyjnej. To kryterium służy do porównania wyników uzyskanych metodą wariacyjną i metodą geo­metryczną. Druga z tych metod korzysta z geometrii różniczkowej. Zadanie aproksymacji algorytmów zostało sformułowane jako zadanie aproksymacji kodystrybucji stowarzyszo­nych z odwrotnościami jakobianu pseudoodwrotnego i rozszerzonego. W ostatniej części rozdziału zostały opisane dwie metody rozwiązywania zadań wariacyjnych. Jest to kla­syczna metoda Eulera-Lagrange’a oraz metoda Ritza, która jest metodą bezpośrednią. Pozwalają one na obliczyć funkcję rozszerzającą minimalizującą odpowiedni funkcjonał błędu aproksymacji. Inny rodzaj algorytmów aproksymujących omawia rozdział trzeci. Opisuje on zastosowanie metody homotopii do rozwiązania zadania reprodukcji trajekto­rii stanu lub wyjścia robota. Otrzymane za pomocą wyprowadzonych algorytmów funkcje sterujące są aproksymacją funkcji sterujących realizujących zadaną trajektorię. Rozdział czwarty zawiera przykłady obliczeń numerycznych dla zadania aproksymacji algorytmu jakobianu pseudoodwrotnego przez algorytm jakobianu rozszerzonego. Symulacje zostały wykonane dla redundantnych manipulatorów stacjonarnych: prostego manipulatora 3R bez konfiguracji osobliwych, manipulatora typu TTR i manipulatora przemysłowego - POLYCRANK o 7 stopniach swobody. W omawianym rozdziale pojawił się również przy­kład syntezy algorytmów aproksymacyjnych dla robota mobilnego - monocykla. Rozdział zawiera porównanie metody wariacyjnej i metody geometrycznej. Na koniec omówione są aspekty obliczeniowe. Przykłady rozwiązania zadania reprodukcji trajektorii stanu i za­dania reprodukcji trajektorii wyjścia przedstawione są w rozdziale piątym. Efektywność działania algorytmów została pokazana dla modeli: podwójnego integratora, kinematyki monocykla, dynamiki łyżwiarza Czapłygina oraz kinematyki kuli kinematycznej. Pracę podsumowuje rozdział szósty, w którym także nakreślono kierunki dalszych badań.Badania prowadzone w tej pracy były wsparte ze środków Fundacji na rzecz Nauki Pol­skiej, Politechniki Wrocławskiej w ramach grantów statutowych oraz ze środków MNiSzW na naukę w latach 2010-2012 jako projekt promotorski.





Rozdział 2

Aproksymacja jakobianowych 
algorytmów kinematyki odwrotnej

W tym rozdziale będziemy rozważać problem syntezy jakobianowych algorytmów kine­matyki odwrotnej. Celem będzie zdefiniowanie algorytmu typu jakobianu rozszerzonego aproksymującego algorytm typu jakobianu pseudoodwrotnego. Przedstawimy dwa podej­ścia: pierwszy korzystający z rachunku wariacyjnego, drugi z geometrii różniczkowej. Dla metod wariacyjnych wyprowadzone zostaną dwa kryteria aproksymacji zależne od funkcji rozszerzającej. Rozważymy również różne sposoby reprezentacji kinematyki, we współ­rzędnych zadaniowych i bez współrzędnych, za pomocą odwzorowania w SE(3).
2.1 PreliminariaKinematyka manipulatora o n stopniach swobody zdefiniowana jest jako przekształcenie

A: IRn S^(3), Y = }C^= (2-1)
przyporządkowujące każdej konfiguracji przegubowej x € lRn odpowiednią pozycję i orien­tację końca efektora. Pozycja i orientacja należą do specjalnej grupy euklidesowej pozwa­lającej opisać ruch ciała sztywnego SE^ = SO(3) x ]R3, gdzie SO^ jest grupą obrotów. Przy zadanej kinematyce manipulatora (2.1) i pozycji efektora w przestrzeni zadaniowej 
Yd E SE (3), odwrotne zadanie kinematyki polega na znalezieniu konfiguracji xd, dla której

^Xd) = Yd.Używając współrzędnych przegubowych x i wybierając pewien układ współrzędnych za­daniowych otrzymujemy reprezentację kinematyki we współrzędnych 
k: HE lRm, y = k{x} = ..., A:m(x))T, (2.2)transformującą przestrzeń konfiguracyjną manipulatora x E lRn w przestrzeń zadaniową 

y E IRm. Niech J(x) = oznacza jakobian analityczny manipulatora. Konfiguracja 
x jest regularna jeśli jakobian J(x) jest suriekcją, w przeciwnym przypadku konfiguracja jest osobliwa. Mając daną kinematykę (2.2) i zadaną konfigurację końca efektora może­my zdefiniować odwrotne zadanie kinematyki: wyznaczyć konfigurację przegubową xdl dla której k{xd) = yd. Do rozwiązania odwrotnego zadania kinematyki będziemy posługiwa­li się algorytmem jakobianowym, którego wyprowadzenie korzysta z metody homotopii.



12 2. Aproksymacja jakobianowych algorytmów kinematyki odwrotnejMając daną konfigurację początkową x0> wybieramy gładką krzywą x(i) w przestrzeni konfiguracyjnej przechodzącą przez xg, w taki sposób, by błąd w przestrzeni zadaniowej e(i) = k(x(t\) — yd wzdłuż tej krzywej zanikał eksponencjalnie ze współczynnikiem 7 > 0,e(i) = <7(z(i))±(ż) = —7e(i). (2.3)Różniczkując powyższe równanie otrzymujemy równanie Ważewskiego-Dawidenki
= (2.4)

Załóżmy, że J#(x) G lRn*m jest prawostronną odwrotnością jakobianu tzn. J(a;)J#(a;) = 
Im. Ostatecznie, jakobianowy algorytm kinematyki odwrotnej jest zdefiniowany przez układ dynamiczny

x(t) = —7J#(z(£))e(£), (2.5)którego trajektoria prowadzi do rozwiązania Xd = lim^+oo x(t~). Zauważmy, że każdy algo­rytm oparty na prawostronnej odwrotności jakobianu będzie posiadał taką samą zbieżność błędu, zależną od 7. Jednakże, zbieżność w przestrzeni konfiguracyjnej manipulatora, wy­rażona przez (2.5), będzie różna, w zależności od obranego algorytmu.Jakobianowe algorytmy kinematyki odwrotnej najczęściej opierają się na dwóch rodza­jach odwrotności jakobianu: pseudoodwrotności i odwrotności typu jakobianu rozszerzo­nego. Pseudoodwrotność jakobianu opisuje rozwiązanie odwrotnego zadania kinematyki układu
y = J(x)xspełniające warunek minimalizacji formy kwadratowej [59]^(z) = hTx. (2.6)

Aby wyznaczyć pseudoodwrotność, należy rozwiązać zadanie optymalizacji funkcji (2.6) z ograniczeniami równościowymi. Po rozwiązaniu tego zadania otrzymujemy pseudoodw­rotność jakobianu
Jp#(x) = J\x) . (2.7)Alternatywnie, stosuje się odwrotność typu jakobianu rozszerzonego zdefiniowaną w na­stępujący sposób. Mając daną kinematykę w postaci (2.2), wybieramy odwzorowanie roz­szerzające

h:lRn—^lRs, h{x) = ... ,hsęx)), s = n — m. (2.8)Korzystając z (2.8), możemy zdefiniować kinematykę rozszerzonąZ = (A;, fi): TR" —> 7Rn, y = l(x\będącą przekształceniem przestrzeni IRn w lRn oraz jakobian rozszerzony
dxOstatecznie, odwrotność typu jakobianu rozszerzonego przyjmuje postać

= J~\x)
m pierwszych kolumn 

(2-9)



2.1. Preliminaria 13i jest prawostronną odwrotnością jakobianu
J&JE*(x) = Im,jednocześnie spełniającą warunek anihilacji

= 0.
dxKażdy z wyżej wymienionych algorytmów posiada swoiste zalety:• Algorytm typu jakobianu pseudoodwrotnego charakteryzuje się szybką zbieżnością i lokalną minimalizacją prędkości w przegubach w trakcie ruchu.• Algorytm typu jakobianu rozszerzonego jest powtarzalny, tzn. przekształca zamknię­te krzywe w przestrzeni zadaniowej w zamknięte krzywe w przestrzeni konfiguracyj­nej.Idea aproksymacji jakobianu pseudoodwrotnego przez jakobian rozszerzony pozwala stwo­rzyć nowy algorytm jakobianowy charakteryzujący się zaletami obu algorytmów składo­wych. Klasyczne sformułowanie zadania aproksymacji sprowadza się do problemu opty­malizacji, który może zostać rozwiązane za pomocą metod rachunku wariacyjnego. Alter­natywnie, kolumny macierzy definiującej odwrotności jakobianów (2.7) i (2.9) w równaniu (2.5) mogą być potraktowane jako pola wektorowe w IRn. Z każdym z tych algorytmów można więc stowarzyszyć dystrybucję

VP = span^^n) {Jf#(x), ..., } ,
T^e — span^^n) {J2 #(z), • • •, '4n#(a:)} •

W każdej konfiguracji x € lRn powyższe dystrybucje definiują m-wymiarową przestrzeń liniową dopuszczalnych kierunków ruchu. Dystrybucja jest całkowalna, jeśli przez każdy punkt x przechodzi m-wymiarowa rozmaitość, której przestrzeń styczna jest zdefiniowa­na przez tą dystrybucję. W ogólnym przypadku, dystrybucja Vp nie jest całkowalna, w przeciwieństwie do która posiada tą cechę dzięki własności anihilacji. Twierdzenie Frobeniusa orzeka, że dystrybucja jest całkowalna, jeśli jest inwolutywna, co oznacza że nawias Liego dowolnych pól wektorowych z dystrybucji należy do tej dystrybucji. Całko- walność stowarzyszonych dystrybucji zapewnia powtarzalność algorytmu jakobianowego.1-formy różniczkowe anihilujące powyższe dystrybucje definiują parę kodystrybucji
Vp = span^^n) {Qi(x), ^(z), • • •, fMz)} , 
Dp = span^oo^n) {dhi(x),d/i2(®), • • ■, dh3{x)} ,gdzie Qj(z) = 0, dla każdego i = 1,..., s i j = 1,..., m. Z definicji dystrybu­cji i (2.7) wynika, że 1-formy rozpinające Dp anihilują jakobian transponowany JT(x). Opis algorytmów jakobianowych za pomocą dystrybucji lub kodystrybucji jest równoważ­ny. Jednakże, dla niskiego stopnia redundancji s, efektywniejsze może być zastosowanie kodystrybucji.
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2.2 Metoda wariacyjna

2.2.1 Funkcjonał błędu Robertsa i MaciejewskiegoW tym podrozdziale zostanie przedstawione zadanie aproksymacji zdefiniowane przez R. Robertsa i A. Maciejewskiego w [38,39]. W tych pracach, autorzy przedstawili sposób umożliwiający zbudowanie powtarzalnego algorytmu kinematyki odwrotnej, przypomina­jący w działaniu inny algorytm, np. algorytm jakobianu pseudoodwrotnego.Rozważmy prawostronną odwrotność G(x) jakobianu J(x) dla układu (2.2)
i = G(x)y.Roberts i Maciejewski w [39] zauważyli, że każdą prawostronną odwrotność jakobianu możemy przedstawić jako

G{x) = . ,pm(x)] = Jp*(x) + K(x)W\x), (2.10)gdzie Jp#(x) jest pseudoodwrotnością jakobianu bez osobliwości, K(x) jest macierzą 
n x s o ortonormalnych kolumnach, Ky (x)K(x) = Is, rozpinającą jądro jakobianu, = 0, a W(ar) jest macierzą, której kolumnami są odpowiednie wektory, któ­re w sposób jednoznaczny definiują G(a;). Dobierając W(rr) w taki sposób, aby dystry­bucja rozpięta przez kolumny macierzy G(x) była inwolutywna otrzymamy powtarzalną odwrotność [43]. Korzystając z (2.10) łatwo pokazać, że

Ng^ = W(xj - K(x)jest macierzą o własności Ng^C^ — 0, co oznacza że wiersze Ng(x) są 1-formami anihilującymi G(x). Wynika stąd, że dystrybucja rozpięta przez kolumny G(x) jest in­wolutywna wtedy i tylko wtedy, gdy nawiasy Liego [^i, ^j] = - kolumnmacierzy G(x) spełniają warunek
NgW bń9j] (®) = 0, 1 < i < j < m. (2.11)Z faktu, że kolumny macierzy G(x} zależą od elementów macierzy W(x) wynika, że aby wyznaczyć macierz W(x) należy rozwiązać układ równań różniczkowych cząstkowych (2.11). Ponieważ odwrotności posiadających cechę powtarzalności jest nieskończenie dużo, możliwe jest wybranie takiej, która będzie zapewniała spełnienie dodatkowych warunków. Jednym z możliwych warunków jest minimalizacja odległości między pewną zadaną od­wrotnością Gd(x) a powtarzalną odwrotnością Gr(x) (na przykład, spełniającą równania (2.11)). Wówczas, miarą odległości będzie

[ \\Gr{x) — Gd(x)\\2F dx, (2.12)
gdzie ||M||f = ^/tr(MA/T) jest normą Frobeniusa, a Q jest obszarem aproksymacji z za­łożenia złożonym z konfiguracji regularnych. Równanie (2.12) jest miarą odległości między dwiema odwrotnościami. Korzystając z (2.10) mamy- G^)]^ = \\K{x^Wr^ - WdU))T||F.Ponieważ kolumny macierzy K(x) są wektorami o długości jednostkowej, kryterium opty­malizacji sprowadza się do funkcjonału[ ||Gr(z) - Gd(z)||F da; = [ || (Wr(z) - Wd^ ||^ dx. (2.13)



2.2. Metoda wariacyjna 15W praktyce, rozwiązanie cząstkowych równań różniczkowych (2.11) może być niemoż­liwe, co czyni problem nierozwiązalnym. Z tego powodu, w celu uzyskania rozwiązania od razu wybieramy Gr(x) w postaci zapewniającej powtarzalność. Własność tą posiada odwrotność typu jakobianu rozszerzonego
Gr(z) = JE*{x) = dh(x) (2-14)

m pierwszych kolumngdzie jest macierzą Jacobiego odwzorowania rozszerzającego h(x). Załóżmy, że
Gd^ = Jp*^ + K^W](x), 
Gr{x) = Jp*(x) +

(2-15)(2-16)Ponieważ chcemy, żeby Gr{x) było odwrotnością typu jakobianu rozszerzonego to
J(x)Gr(x) = Im, (2.17)^Gr(x) = 0. (2.18)

Warunek (2.17) jest spełniony automatycznie, ponieważ J(x} Jp*(x) = Im i J(x")K(x) = 0. Z (2.18) mamy
^Gr(x) = ^Jp*(x) + = 0.

(JT G/Jj GJ XZatem
\ dx ) dx co podstawiając do (2.16) otrzymujemy

Gr(x) = Jp*& - K(x) {^K^} 1
\ GJ X J G)Xdrugiej strony, z (2.15) możemy wyliczyć

Jp*(x) = Gd(x}-K{x)Wp(x\Wówczas
Gr(x) = Gd(x) - (z) - K(x) (^-K(x)} ^-Gd^+

W)(^W))
K(x)WdT(x)Ostatecznie, zależność pozwalająca wyznaczyć nam powtarzalny jakobian wyraża się po­przez

Gr{x) = Gd(rf - K{x) (ą^K(x)} ^-Gd(x),
\ ox J ox
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G^ - Gd^ = -K{x) 1 ®^Gd(x). (2.19)

Wstawiając (2.19) do (2.13) otrzymujemy kryterium optymalizacji 2 
dx. (2.20)

F<Q

dh(x) 
dx

1 dh(x)—3—Gd(x) 
dxQNa potrzeby pracy przyjmijmy, że odwrotnością Gd(x) nie posiadającą własności powta­rzalności jest jakobian pseudoodwrotny Jp#(x), załóżmy także, że stopień redundancji manipulatora jest równy s. Wtedy, zadanie aproksymacji polega na znalezieniu odwzoro­wania rozszerzającego minimalizującego błąd aproksymacji

£W = [ \\Jp*^x)-JE*^\\2Fdx, 
Jqgdzie Q C lRn jest zawarte w regionie konfiguracji regularnych. Dla tak postawionego zadania, z wzoru (2.20) wynika, że błąd aproksymacji jest równy

(W =

Ją \\ dx J ax \ ox ) \ dx ) )

Aby otrzymać optymalną funkcję rozszerzającą, minimalizującą funkcjonał (2.21), należy rozwiązać układ nieliniowych cząstkowych równań różniczkowych, wynikających z równa­nia Eulera-Lagrange’a. Rozwiązanie takiego układu równań jest bardzo trudne, a w przy­padku realistycznych manipulatorów przemysłowych wręcz niemożliwe.
2.2.2 InterpretacjaPrzyjrzyjmy się dokładniej matematycznej interpretacji aproksymacji algorytmów. W tym celu zdefiniujmy dwa algorytmy kinematyki odwrotneji(t) = A(x(t)) = X(z(t))a(z(t)), 

= YW)} = Yęy(j))a{y^),
(2.22)

gdzie X(x) = [Xi(z),..., Xm(rr)] i Y(y) = [Yi(y),..., Y^y)] są odwrotnościami jako- bianu, błąd w przestrzeni zadaniowej a(x) = k(x) — yd, a yd jest zadanym położeniem i orientacją efektora. Obliczmy różnicę trajektorii w przestrzeni konfiguracyjnej
- y(t) = z(0) - y(0) + [ {X{x{u^ du. (2.23)

JoAby wyznaczyć powyższą różnicę rozpiszmy
X(x) -Y(y) = X(x)a(x) - Y(y)a(y) =-r^))^) + (Y(x) -Y(y^a(y)+ Y{x){a{x) - a^y)).



2.2. Metoda wariacyjna 17Korzystając z lematu Hadamarda [18] mamyd/(tz + (1 - t)y) = [ D/(ta + (1 - t)y) dt(z - y). 
Jo JoStąd

(Y(z) - Y(y))a(y) = [ DY(tx + (1 - t)y)a(y) dt(x - y), 
Jo

Y(xJ)(a(x) — a(y\) = Y(x) / Da(tx + (1 — t^y) dt(x — y). 
Jo

(2.24)
(2.25)

Załóżmy, że x(0) = y(0). Podstawiając (2.24) i (2.25) do (2.23) otrzymujemy
x(t) — y(t) = / {X{x(u^ — Ydrz+ 

Jo
rt /■!

o Jo
u) + (1 — s)y(u))a(y(u)) ds(a;(u) — y(u\) du+

■t ri

Dalej
■t

Jo 
t /*!

o Jo
rt

- s)y(u))a(y(u))|| ds||z(rz) - y(u)|| du+

o o

oo - || ds||rrH - y(u)|| du.
Rozważmy

||(X(x(rz)) - y(z(u)))a(z(u))||2 = aT(z)(X(z) - y(z))T(X(z) - Y^a^) = tr((X(z) -y(z))a(z))T (X(xj -Y^a^ = ||(X(z) - y(z))a(x)||^ <||X(^) - y(m)ll^llct^)||^ = ||X(x) - y(m)||^||a(z)||2,gdzie || ■ || jest normą euklidesową. Mając różnicę wzdłuż krzywej leżącej w obszarze Q będącym zwartym podzbiorem JRn, możemy napisać
i

o
Załóżmy, że nierówności



18 2. Aproksymacja jakobianowych algorytmów kinematyki odwrotnejsą spełnione w Q. Wówczas
IkW - y^\\ <

7 = d + bc.Na podstawie nierówności Gronwalla [18] możemy napisać~ yWII < a [ ||X(x) - y(z)||F dzexp(7t).
Zatem, jeśli dla skończonych t miara odległości dwóch odwrotności jakobianu ||X(x} — y(rr)||F dz, jest mała to także różnica trajektorii w przestrzeni konfiguracyjnej jest mała. Wobec powyższego możemy sformułować następujące twierdzenie.
Twierdzenie 2.2.1 Niech X(x) i Y(x) oznaczają odwrotności jakobianów, a x(t), y(t) 
trajektorie w przestrzeni konfiguracyjnej wyznaczone przez odpowiednie jakobianowe algo­
rytmy kinematyki odwrotnej (2.22). Wówczas, dla pewnych liczb a, 7 > 0 prawdziwa jest 
nierówność IM*) - yWII <a [ ll^(z) ~ ^(®)IIf da?exp(7t).
2.2.3 Funkcjonał błędu I
Kinematyka we współrzędnychAby rozwiązać zadanie aproksymacji przy pomocy funkcjonału błędu (2.21) zdefiniowa­nego przez Robertsa i Maciejewskiego, należy rozwiązać układ nieliniowych cząstkowych równań różniczkowych. Rozwiązanie tak określonego układu równań jest zadaniem bar­dzo trudnym, nawet dla manipulatora o kilku stopniach swobody. W przypadku bardziej skomplikowanych manipulatorów rozwiązanie zadania optymalizacji staje się wręcz nie­możliwe, biorąc pod uwagę nie tylko metody analityczne, ale także dostępne metody numeryczne. Dlatego, w niniejszym rozdziale pracy zaproponujemy modyfikację metody Robertsa i Maciejewskiego, która prowadzi do sformułowania nowego błędu aproksymacji.Funkcjonał błędu I opiera się na naturalnym zanurzeniu macierzy odwrotności jako­bianu JE*(x) i Jp#(x) w parę macierzy wymiaru n x n, które pozwala zdefiniować nowy błąd aproksymacji [53,56]. Zauważmy, że poza konfiguracjami osobliwymi JE#(x) jest zawarty w odwrotności jakobianu rozszerzonego

E^) =
^] 1 = [^(z) Q(z)], (2.26)

gdzie Q(x) jest pewną macierzą dopełniającą wymiaru n x (n —m). Podobnie, dla Jp#(z) można zaproponować zanurzenie
[Jp*(z)£2(2) = KT(z) (2.27)



2.2. Metoda wariacyjna 19gdzie kolumny rozpinają jądro jakobianu = 0), jednocześnie są orto­gonalne Kp{x)K{x) = Is, s — n — m. Niech Q C IRn oznacza podzbiór konfiguracji regularnych manipulatora, wówczas za pomocą (2.26) i (2.27) możemy zdefiniować błąd aproksymacji jako miarę odległości między JP#(Y) i JE#(x) odniesioną do macierzy ^(a?) i E2(x)
= [ \\E^\x)E2(x) - In\\7Fm(jr) dx, (2.28)

gdzie m(x) = y/det(J(rr) JT(a;)) jest funkcją manipulowalności konfiguracji x, a m(x)dx pełni rolę formy objętości. Podstawiając (2.26) i (2.27) do (2.28) otrzymujemy
r /A f J(x}K(x\\ T . . J

~ Jq Jp#(x) K(x) n —

[ ([J(x)Jp*(E) - Im J(x)K{x)

A u
'J(x) Jp*(x) - Im 1T\X L ^JP#^ ^K{x) - ij )

Po przekształceniach, błąd aproksymacji przyjmuje postać
f dh(x^. . I dh(x}\J ndh(x} T^. . \ , ,n^i(h) = / tr ——P(a?) ( —-— - 2 ’ K(x) - Is m(x) da?, (2.29)

Jq \ ox y dx J dx j

gdzie P(^) = Jp*^Jp*T{x} + = (JT(x) J(x) + K(t)Kt(z))-1.
Kinematyka wyrażona w SE(3)Niech kinematyka manipulatora będzie przekształceniem postaci (2.1). Wówczas, odwrot­ne zadanie kinematyki sprowadza się do znalezienia konfiguracji przegubowej Xd, dla którejkoniec efektora przyjmuje zadane położenie i orientację Yd G SE'(3), tak że IC(xd) = Yd-

Rd Td 0 1Załóżmy, że Yd = G SE($), a x(t) jest trajektorią w przestrzeni konfigura­cyjnej. Wówczas, możemy zdefiniować błąd w postaci£?(i) = (log(R(z(i))Rj), T^-Td^^tY e2« (2.30)
gdzie logarytm macierzy obrotu log R = (7? — RT), zaś 0 < 0 < 7r spełnia równanie1 + 2cos</> = tr R. Błąd (2.30) należy do algebry Liego se(3) = so(3) x IR3, grupy SE{3). 0 —v3 v2Stosując standardowy izomorfizm v *-> [u] = 0 —Vi między IR3 i algebrą-v2 Vi 0Liego so(3), możemy przedstawić błąd orientacji za pomocą wektora ei G IR3, w taki sposób, że Er^ = [ei(t)]. Wówczas, błąd (2.30) będzie równoważny wektorowi błędu e = (e^,eJ)T G IR6. Równoważnie do (2.3) możemy zdefiniować reprezentację błędu dla kinematyki wyrażonej w SE(Y).
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Lemat 2.2.2 Ewolucja błędu w przestrzeni zadaniowej jest opisana równaniem różnicz­
kowym 01 [jp^t)). ż(t) = JMd{x{t))x(t) = -7e(t), (2-31)
gdzie

= k - 1 (e, W] + (^ + H(+, (2-32)
H*)] = log ^R^^R]), 1 + 2 cos ^(t) = tr ęR(x{t^R^ , 

oraz

JrW = [JR1{x\ . . . , ^(s)] , [^(z)] = ^^R^, JT(x) = (2.33)Cz Oz łL

□Indeks dolny d w równaniach (2.31) i (2.32) oznacza zależność od zadanej macierzy rotacji 
Rd, indeksy R i T odnoszą się odpowiednio do rotacji i translacji.
Dowód Z definicji R(x(ty)Rid = exp£\(t), tak więcexp (E^} exp {-E^ = R^R] (R^R^ = R(x^R^x^. (2.34)
Korzystając z formuły Hausdorffa [42] możemy stwierdzić, że lewa strona powyższego rów­nania jest równa [Pj'1(x(t))ei(t)] dla Pd(x(t)) określonego przez (2.32). Z drugiej strony, rozpisując prawą stronę równania (2.34) otrzymujemy

P(z(t))PT(x)(t) = £ ^^R^i^t) = 
. - 0Xi

n
^jRi^t^i^t)

. 1

[JR(x^x^] ,

jak zdefiniowano w (2.33). Ostatecznie, otrzymaliśmy górny blok równania (2.31). Dzięki postaci błędu 62 (2.30), wyprowadzenie dolnego bloku jest trywialne.
□Należy zauważyć, że JMd{x) jest rodzajem jakobianu geometrycznego manipulato­ra. Mając dany jakobian (2.31), możemy obliczyć jakobian pseudoodwrotny =

J^d^ (JMd(x')Jtód(x)') 1 oraz zdefiniować odpowiedni algorytm kinematyki odwrotnej. Pomimo tego, że jakobian JMd{x) zależy od pożądanej rotacji Rd, algorytmy jakobia­nu pseudoodwrotnego i jakobianu rozszerzonego są od niej niezależne. Niech Jrt(x) = 
Jr^)
Jt(x) ’

Twierdzenie 2.2.3 Układ dynamiczny związany z jakobianem pseudoodwrotnym 
przyjmuje postać

x = ~7JRT(x)e, 
gdzie JR#(x) oznacza pseudoodwrotność Jrt^).

□
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Dowód Z (2.31) mamy
Pd^^ 0 JrT^Y

<3Następnie, za pomocą powyższej tożsamości możemy obliczyć
Pd\t) o'o I3Ale jako że

w=■zobacz [43], oraz [u] w = v x w, otrzymujemy Pd1{t}e1(t) = e^t), zatem J^(x)e = 
Jrt (x)e-

□Podobne wnioskowanie możemy zastosować w odniesieniu do algorytmu jakobianu rozszerzonego. Zaczynamy od obrania przekształcenia rozszerzającego h: lRn —> JRn~6. Wtedy, odwrotność jakobianu rozszerzonego (2.9)
J Md \x ) dh(x) 

0x 6 pierwszych kolumndefiniuje układ dynamiczny (2.5) odpowiadający algorytmowi typu jakobianu rozszerzo­nego. Przez analogię do Lematu 2.2.3 możemy powiedzieć, że
Twierdzenie 2.2.4 Układ dynamiczny związany z odwrotnością jakobianu rozszerzonego (z) przyjmuje postać

i = —7J^(z)e, (2.35)
gdzie Jr?(x) jest jakobianem rozszerzonym stowarzyszonym z Jrt(x).

□
Dowód Bez straty na ogólności, możemy założyć, że jakobian rozszerzony przyjmuje postać [58]
gdzie x = (z1T, z2T)T € IR6 x lRn 6 i

Niech
A zatem

^(z) = JMd(x)

W(z) = JrtW

0̂
3

Wd~\x} = W’1 (z) m*)0



22 2. Aproksymacja jakobianowych algorytmów kinematyki odwrotnejLecz 
zatem przywołując tożsamość Pd Jei = ei, otrzymujemy układ dynamiczny opisany rów­naniem (2.35).

□Reasumując Lematy 2.2.3 i 2.2.4, błąd aproksymacji dla przypadku, kiedy kinematyka jest opisana w SEty możemy zdefiniować analogicznie do (2.29).Niech kinematyka manipulatora będzie opisana równaniem (2.1) i niech przekształcenie rozszerzające h(x) określa zadanie aproksymacji algorytmu jakobianu pseudoodwrotnego przez algorytm jakobianu rozszerzonego. Funkcjonał błędu dla tego problemu przybiera następująca postać
f /dh(x) _ . . Z3/i(z)\T ndh(x) . . \ . .SzW = / tr ——--PRT(x) I —-— - 2——KrT(x) - Is mRT(x) da;, (2.36)

j q \ ox y ox j ux /gdzie Pht(z) = + kRt(x)Krt(x),kolumny macierzy Krt(x) stanowią ortogonalną bazę jądra jakobianu Jrt{x\ natomiast 
mRT(x) = ypfet (Jrt(x). Całkowanie w (2.36) odbywa się w podzbiorze regular­nych konfiguracji manipulatora, w którym Jrt(x) jest poprawnie zdefiniowane.
2.2.4 Funkcjonał błędu IIAlternatywne sformułowanie zadania aproksymacji polega na zdefiniowaniu błędu aprok­symacji przy pomocy kodystrybucji określających odwrotności jakobianów. Funkcjonał błędu II posłuży nam do celów porównawczych jakości aproksymacji algorytmów otrzy­manych metodą wariacyjną i metodą geometryczną.Zauważmy, że każdy element kodystrybucji = spanCoo(Knj {d/ii(x),..., d/is(z)} określa tą samą odwrotność jakobianu rozszerzonego, dlatego możemy definiować od­wrotność przez pochodną DhtP) odwzorowań rozszerzających kinematykę. Wówczas, błąd aproksymacji może być zdefiniowany jako

(2.37)
gdzie

=

~dhi(x) . . . dhi(x)~ 
dxi dxn

dh3 (a;) dh3(x)
— dx~y dxn —

dhi(a;) dh2(z)
dhs{x)natomiast wiersze macierzy fi są utworzone przez 1-formy fi, anihilujące jakobian trans- ponowany, fi^ JT(a;) = 0. Q oznacza podzbiór lRn, na którym aproksymujemy. Funkcjonał błędu (2.37) powinien być minimalizowany ze względu na funkcje rozszerzające, w ten sposób zadanie aproksymacji sprowadza się do pewnego problemu rachunku wariacyjne­go-
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2.3 Metoda geometrycznaW metodzie geometrycznej, zadanie aproksymacji polega na skonstruowaniu całkowalnej kodystrybucji, która pokrywa się z zadaną kodystrybucją na pewnym obszarze przestrze­ni konfiguracyjnej i wzdłuż określonych kierunków w IRn [54,56]. Innymi słowy, szukamy kodystrybucji skojarzonej z odwrotnością typu jakobianu rozszerzonego, która aprok- symuje kodystrybucję Vp związaną z jakobianem pseudoodwrotnym. W tym celu, zde­finiujmy w przestrzeni IRn foliację z s-wymiarowymi liśćmi Ea, parametryzowaną przez 
a £ IRm i z zerowym liściem odniesienia Eo. Jak łatwo zauważyć, wymiar liści jest równy stopniowi redundancji kinematyki. Z foliacją związana jest homotopia 5>t: IRn —> lRn dla 
t € [0,1], taka że = idjRn, $0: IRn —* Eo, a dla t,s e IR mamy $so$t = Homotopia zachowuje strukturę foliacji w tym sensie, że każdy liść Ea jest odwzorowany w liśćC Eai. Homotopia definiuje pole wektorowe w IRnd&tCd diktóre określa charakterystyczny kierunek w IRn. Co więcej, łatwo pokazać, że pole wekto­rowe (2.38) spełnia następującą tożsamość4^ = X(ł,M), (2.39)
w wyniku czego, homotopia $t(^) może być traktowana jako strumień pola wektorowego 
X(x)/t, parametryzowanego czasem.Następnie, wybierzmy specjalne współrzędne x = (y,z) £ IRn, w taki sposób, że 
z € IRS zmienia się wzdłuż liścia a y £ IRm jest stałe na każdym z liści. Dla tak wybranych współrzędnych, liść odniesienia jest zdefiniowany jako Eo = {(0, z)\z £ IRS}, a zatem $0(y, z) = (0, z). Załóżmy, że na liściu Ea 1-formy rozpinające T>p są wyrażone za pomocą współrzędnych (y, z), w taki sposób, że Qi|B = d^, podczas gdy generatory kodystrybucji 
T>p przyjmują postać 

3 (2.40) j=igdzie i = l,...,s i B(x) = [By-(a;)] 0 jest macierzą funkcji gładkich. Zdefiniujmyteraz zadanie aproksymacji jakobianu pseudoodwrotnego przez odwrotność typu jako­bianu rozszerzonego w następujący sposób. Znaleźć odwzorowanie rozszerzające fi(x) = (h1(x), ^2(2); • • •, hs(x)), takie że h(z, 0) = z, a kodystrybucję T>p i Eg pokrywają się na liściach foliacji {Ea}
= = ^zi (2-41)i zgadzają się wzdłuż pola wektorowego X(x)Ql(x)Ar((c) = Q)(x)X(x), (2.42)dla każdego i = 1,..., s. Zauważmy, że= 22 = 22 22 6^)?.^.^ + 22 22• 1 X 1 / 1 ^yk n 1 / 1 uziJ=1 j=l k=l J=1 1=1co w rezultacie daje

J=1 (=1 OZI



24 2. Aproksymacja jakobianowych algorytmów kinematyki odwrotnejW konsekwencji, formuła (2.41) jest równoznaczna zB(x)^ = /S. (2.43)
ozDalej, podstawiając x = $t(y, z), Fi(x) = ^li(x')Xęx') i korzystając z zależności (2.39) i (2.40), równanie (2.42) możemy zapisać w postaci

s
Fi ($t(y, z)) = ^t^y, *)) dhj *)) X ^y, z)) =

J=1

t £ Bo (*■(«, z)) dh, (ł.to, 2)) -=
J=1i wywnioskować, że tB («.(», 2))^J4^=F(«1(!/,2)), (2.44)

atgdzie F(x) = (Fl(x), ..., Fs(x)). Po podstawieniu H(t, y, z) = h^t^y, z\) i niezbędnych przekształceniach z wykorzystaniem równań (2.43) i (2.44) otrzymujemy układ s równań różniczkowych, cząstkowych parametryzowanych współrzędną y
dH(t,y,z) _ dH(t,y,z)F($t(y, z)) = 

dt dz dtdla i = 1, ...,s. Do rozwiązania tego układu możemy zastosować metodę charaktery­styk [5]. Łatwo zauważyć, że H(t, y, z(tY) = const wzdłuż rozwiązania z(t) równania cha­rakterystycznego d2^ = _m^2»j = {2 45)
at tWiedząc o tym i korzystając z własności homotopii $t(a;) i z założenia, że na liściu od­niesienia h(0, z) = z, dostajemy

H(l,y,z(l)) = = h(y,z) = H^,y,z^

= h ^0(y, z(0))) = h(0, z0) = ^o,zatem h(y, z) — zq.Ostatnia zależność oznacza tyle, że aby wyznaczyć funkcję rozszerzającą musimy rozwiązać następujące równanie
z(F) = z = 0(1, y, h(y, z)) = 0(1, y, z0),gdzie 0(i, y, z0) jest strumieniem układu (2.45). Aby rozwiązać to zadanie, możemy po­służyć się całkowaniem wstecznym równania charakterystycznego (2.45) dla zadanego y, a następnie odzyskać oryginalną zmienną x.Zauważmy, że warunki (2.41) i (2.42) implikują pokrywanie się kodystrybucji Vp ina liściu Ea i wzdłuż trajektorii ^(z) pola wektorowego (2.38) łączącego ten liść z liściem odniesienia Eq- Otrzymane podzbiory przestrzeni konfiguracyjnejPQ = |J{$t(^)l^[0,l]}są nazywane stronicami.
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2.4 Metody rozwiązania

2.4.1 Metoda pośrednia — rachunek wariacyjnyZagadnieniem wariacyjnym nazywamy problem wyznaczenia wartości ekstremalnych funk­cjonału [17]. W niniejszym podrozdziale przedstawimy warunek konieczny istnienia ekstre­mum funkcjonału zależnego od funkcji rozszerzającej h(x) i zastosujemy go do rozwiązania zadania aproksymacji algorytmów.Dla kompletności, przytoczmy sposób rozwiązania zadania wariacyjnego o pochodnych cząstkowych z [17]. Rozpatrzmy funkcjonał
J(h(-)) = L(x1,...,xn,h(x},hX1,...,hXn)dx1...dxn, (2.46)

gdzie L(-) jest funkcją Lagrange’a, h = h(xi,..., xn), natomiast hXi oznacza pochodną cząstkową pierwszego rzędu po Xi. Obliczmy wariację tego funkcjonału zakładając, że obszar całkowania Q nie ulega zmianie. Niechh*(xi, . . . ,Xn) = h(Xi, ...,Xn) + ET)^, ...,Xn) + O(s2),wówczas przez wariację funkcjonału (2.46) rozumiemy część liniową ze względu na e z róż­nicy
J(h*) - J(h).W dalszej części wywodu dla uproszczenia zapisu uznajmy, że h(x} = h(xi,..., xn), T](x) = 

T)(xi,..., xn), a da; « da;i... dxn. Obliczając powyższą różnicę otrzymamy
J(h*) - = / [L(x, h(x) + et]^), hX1(x} + s^Ja;),... ,hXn(x) + Er]Xn{x))

JQ

-L(x,h(rf,hX1(x),.. .^„(z))] dx = s Lhr](x) + y2.Lhx r]Xk{x) L k=i
da; + O(s2).

Ostatecznie
SJ — E

n

k=l
da; (2.47)

jest wariacją funkcjonału (2.46). Przyjmując, że
(WW) -i podstawiając do równania (2.47) dostaniemy

Całka
£ / 52 dx= Lhxj](x) dx1...dxn-... + (-l)nLhxj](x) dx1...dxri^1
Jq f.=i oxk Jr



26 2. Aproksymacja jakobianowych algorytmów kinematyki odwrotnejna mocy wzoru Greena. Jeżeli przyjmiemy, że r](x) zeruje się na brzegu F obszaru Q, to całka ta równa się zeru.Tym samym, wzór dla wariacji sprowadza się do
Z warunku koniecznego istnienia ekstremum funkcjonału SJ = 0 dla wszystkich funkcji 
r]{x), wynika, że funkcja podcałkowa również musi zanikać

(2.48)
Równanie (2.48) stanowi warunek konieczny na rozwiązanie zadania wariacyjnego i jest nazywane równaniem Eulera-Lagrange’a dla tego zagadnienia.W przypadku, kiedy stopień redundancji s > 1, h(z) = (hi (z),..., hs{x)), należy rozwiązać układ równań Eulera-Lagrange’a

n

Lhi - 52
k=i

d dL 
dxkd^dla i = 1,..., s.Wyznaczenie minimalnego błędu aproksymacji sprowadza się do rozwiązania zadania wariacyjnego (2.29) dla przypadku kinematyki we współrzędnych, bądź (2.36) dla kinema­tyki wyrażonej w SE(3). Korzystając z rachunku wariacyjnego oraz zakładając, że błąd jest całką funkcji Lagrange’a L(x, ^^), możemy napisać równanie Eulera-Lagrange’a

d tr— 
ox

(2.49)
dla i = l,...,s. Specyficzna postać tego równania wyprowadzonego dla (2.29) i (2.36) jest następującatr^- - tr^- (m1’2^)^’2^)) =

dx \ ox J ox v 7

i dxkdxr dxr dxk
r=l \«=1 /c=l

d (m1,2(a;)A'^’2(x)) 
dxrdla i = 1,..., s, prawy, górny indeks odnosi się odpowiednio: 1 i równania (2.29) oraz 2 do (2.36). Dla każdego i = 1,... ,s, warunki optymalności (2.49) sprowadzają się równania [53] △hi = divKj, (2.50)gdzie △ jest operatorem Laplace’a, △ = J2"=1 a operator div oznacza dywergencję div K.M = . Równanie różniczkowe (2.50) znane jest jako równanie Poissona.Z tego wynika, że aby wyznaczyć optymalne odwzorowanie rozszerzające h(x), należy rozwiązać układ liniowych, eliptycznych równań różniczkowych cząstkowych.



2.4. Metody rozwiązania 27W celu wyznaczenia minimalnego „Funkcjonału błędu II”, łatwo sprawdzić z (2.37), że
(dh^ - 

j=i \ oxj ) ,=1 dXj ,=x (2-51)dla i = 1,..., s. Stąd, warunki optymalności przyjmują postać równań Eulera-Lagrange’aAńi(z) = div (2.52)gdzie A jest operatorem Laplace’a, a operator div oznacza dywergencję. Cząstkowe rów­nanie różniczkowe (2.52) jest równaniem Poissona. W przypadku, gdy prawa strona rów­nania (2.52) jest równa zero, jego rozwiązaniem są funkcje harmoniczne. W rzeczywistych przypadkach układów robotycznych, nie jesteśmy w stanie rozwiązać równania Poissona, nawet korzystając z metod numerycznych. Dlatego, aby otrzymać rozwiązanie konieczne jest zastosowanie metod bezpośrednich rachunku wariacyjnego, np. metody Ritza, patrz podrozdział 2.4.2.
2.4.2 Metoda bezpośrednia — metoda RitzaPodstawą metod bezpośrednich jest wykorzystanie tzw. minimalizujących ciągów funkcji. Jedną z najbardziej znanych metod jest metoda Ritza [17]. Dla uproszczenia wywodu, przyjmijmy stopień redundancji s = 1. Załóżmy, że poszukujemy minimum funkcjonału

W-)), (2.53)określonego na pewnej rozmaitości będącej obszarem całkowania w lRn. Weźmy pod uwagę pewien ciąg funkcji bazowych b(x) — (&i(z), 62(2)1...,), taki że
h(x) = ai&i(x) + 0262(2) + • • • = a^b^)spełnia warunki brzegowe tego funkcjonału. Zadanie polega na znalezieniu współczynni­ków a, dla których wartość funkcjonału (2.53) jest najmniejsza.Tak więc, dzięki sparametryzowanej postaci h(x), minimalizacja błędu aproksymacji 

gdzie prawy górny indeks 1 odpowiada (2.29) i 2 analogicznie (2.36), ze względu na para­metry cii, sprowadza się do minimalizacji formy kwadratowej^,2(a) = a^M^a - Za^N1’2 + d1’2, (2.54)gdzie M1’2 = r ^pl.2^) (da.
J Q ox \ ox j ' ' ’A1’2 = dx, (2-55)d1,2 = JQm1'2(x)/s dx.Różniczkując równanie (2.54) i przyrównując do zera otrzymujemy

= 21F4 - 2A1’2 = 0. (2.56)
da



28 2. Aproksymacja jakobianowych algorytmów kinematyki odwrotnejPod warunkiem, że macierz M1,2 jest nieosobliwa, optymalne odwzorowanie rozszerzające kinematykę jest równe
h(x) = a*T6(a;), (2-57)gdzie

Aby, zastosować metodę Ritza do rozwiązania zadania aproksymacji (2.37), zakładamy, że odwzorowanie rozszerzające kinematykę, dla stopnia redundancji s = 1, ma postać 
h(x) = aT5(z), gdzie 6(x) = (m),..., bp(z)] jest wektorem funkcji bazowych i a G IR? jest wektorem parametrów. Podstawiając h(x) do równania (2.37) otrzymujemy błąd w postaci formy kwadratowej £3(a) = ayMa — 2aJ N + Q, (2.58)gdzie

W (2W)
Q = dx.Różniczkując S3(a) względem a i przyrównując do zera mamy

2Ma - 2N = 0. (2.60)Naturalnie, błąd (2.58) osiąga minimum globalne dla a* = M^N.Powyższe wzory można analogicznie rozszerzyć na przypadek wyższego stopnia redun­dancji, t.j. dla s > 1.



Rozdział 3

Zastosowanie metody homotopii do 
zadania reprodukcji trajektorii układów 
robotycznych

Ciekawym przykładem zastosowania algorytmów aproksymacyjnych są algorytmy opar­te na metodzie homotopii. W rozdziale zostaną przedstawione algorytmy dedykowane zadaniom planowania trajektorii stanu [55] i wyjścia [21], oparte na metodzie homoto­pii. Wychodząc z metody homotopii, dla każdego z tych zadań wyprowadzone zostanie równanie różniczkowe cząstkowe, którego rozwiązaniem jest rodzina jednoparametrowych funkcji sterujących. W tej rodzinie, przy parametrze dążącym do nieskończoności, zawarte jest rozwiązanie zadania planowania trajektorii.Załóżmy, że kinematyka nieholonomicznego robota mobilnego lub dynamika mani­pulatora bądź robota mobilnego jest przedstawiona jest za pomocą afinicznego układu sterowania z funkcją wyjścia
i = f{x) + G(x)u = g^Ui

y = w(x) = (wi(z), w2(z),... ,wm{x^,
(3.1)

gdzie x G 7Rn są zmiennymi stanu, u G IRr jest wektorem sterowań i y G IRm są zmien­nymi wyjściowymi. Zakładamy, że system (3.1) jest kwadratowy, w tym sensie, że liczba zmiennych wyjścia jest równa liczbie sterowań, m = r. Niech dopuszczalne funkcje steru­jące u należą do pewnej przestrzeni U funkcji określonych na przedziale czasu [0, T] oraz przyjmujących wartości w IRr. Wszystkie pola wektorowe i funkcje układu (3.1) są gład­kie. Mając dany stan początkowy x0 i funkcję sterującą u(t) możemy wyliczyć trajektorię stanu x(t') = ^.tW-)) i trajektorię wyjścia y(t) = w(z(t)) układu sterowania (3.1).Odwzorowanie wejście-wyjście układu (3.1), przy ustalonym xq, może być zdefiniowane jako
: w y, = y(*)- (3-2)Trajektorię wyjścia y(-) G y będziemy nazywać reprodukowalną w xQ wtedy, gdy istnieje funkcja sterująca u(-) G U, taka że y(-) = .^(uf)). Wyznaczmy odwzorowanie końcowe układu (3.1) w chwili t jako

yXQy. U IRr\ ^0,*(«(■)) = yW = w(x(t)).Dla ograniczonych funkcji sterujących wyposażonych w topologię Lp, p>2 odwzorowanie końcowe jest klasy Cx [47]. Pochodną tego odwzorowania możemy wyznaczyć, posługując 



30 3. Zastosowanie metody homotopii...się przybliżeniem liniowym układu (3.1) wzdłuż pary sterowanie-trajektoria (u(t), z(t)), w następujący sposób
FIO>t(n(-) + av(-)) = s- w ((^(uG) + av(-))) =Q=0 a=0<9w(z(t)) d 

dx da ¥wH-) + M-))a=0 (3.3)
gdzie = C^t). W celu wyznaczenia ^|a=oFxo,t(u(')) zróżniczkujmy to wyrażenie względem t_d ddi da + M-)) =a=0

^x0,t(u(-) + av(-)) = a=0d da + M’))) + <2(¥W(UG) + a«(-)))(u(i) +a=0 d
dx da , -. ,dG(x(tAu(t) d ... ... .... . .

+ ^(-)) +----- -------- — ^(“(O + MO) + =a=0 a=0<9(/(M)) + G(x(t))u(t)) d 
dx da + G{x(t))v(fy.a=0 (3.4)

Niech A(t) = , B(t) = G{x{t}). Zdefiniujmy zmienną pomocniczą £(t) =tu ^Pxot{u^ + av(-)). Wówczas, równanie (3.4) możemy zapisać jako następujące li- a I a=0niowe równanie różniczkowe, będące przybliżeniem liniowym układu (3.1) wzdłuż pary sterowanie-trajektoria (u(i), x(t))
Ć(t) = + B(tMt), (3-5)z warunkiem początkowym £(0) = 0. Układ (3.5) nazywa się układem wariacyjnym sto­warzyszonym z (3.1). Posługując się teorią liniowych równań różniczkowych otrzymujemy ogólne rozwiązanie równania (3.5)

= DOMOWO = <Px0,Au^ + = [ £(M)#(sMs) ds,a=o Jo (3-6)
gdzie ^(ż, s) jest macierzą fundamentalną układu (3.1) spełniającą równanie ^$(t,s) = 
Alt^^s) z warunkiem początkowym $(s,s) = In. Ostatecznie, podstawiając rozwiąza­nie (3.6) do (3.3) otrzymujemy

Jo
^(t, s)B(s)v(s) ds.

Dla układu sterowania (3.1) i odwzorowania wejście-wyjście (3.2) sformułujmy zadanie reprodukcji trajektorii wyjścia w następujący sposób. Mając daną trajektorię wyjściową, 
yd^t), reprodukowalną w x0, znaleźć funkcję sterującą itd(i), taką że Fr0(ud(-))(i) = yd^. Przyjmując, że wyjściem są wszystkie zmienne stanu w analogiczny sposób możemy zde­finiować zadanie reprodukcji stanu [55].



31Załóżmy, że dopuszczalne funkcje sterujące są gładkie, klasy C°°. W takim razie, mo­żemy znaleźć rozwiązanie zadania reprodukcji trajektorii wnioskując w sposób charakte­rystyczny dla metody homotopii. Wybieramy gładką krzywą ugf/) G U, 0 E IR, ze zbioru dopuszczalnych funkcji sterujących przechodzącą przez Uo(-). Niech ye(t) oznacza trajek­torię wyjścia układu (3.1) odpowiadającą funkcji sterującej 'Ug(t). Następnie, dla zadanej trajektorii yd(t) zdefiniujmy funkcję błędue(t, 9) = ye(t) - yd^ = w(ę>XOit(ue(-))) - y^t). (3-7)Naszym zadaniem będzie wyznaczenie sterowania ug(t), dla którego błąd e(t, 0) będzie zbiegał do zera ze współczynnikiem a > 0. Podążając za ideą metody homotopii zdefi­niujmy funkcję homotopii jako
H{t, 9) = + ae(t, 9) - (+ ae(t, 0)^ exp(~70) (3.8)

Cz i \ o i jgdzie współczynnik zbieżności 7 > 0, t E [0, T], parametr homotopii 9 E IR i e(t, 0) ozna­cza błąd dla sterowania początkowego u(t, 0) = u0(t). Gdy przyrównamy odwzorowanie (3.8) do zera
H(t,9) = 0wówczas, łatwo wywnioskować, że dla 9 = 0 równanie (3.8) jest spełnione automatycznie, a dla 9 dążącej do +oc równanie staje się równaniem błędu

+ ae(t, 0) = 0. (3.9)
Cz lŻądamy, aby błąd zbiegał eksponencjalnie do zera, co jest spełnione, gdyż rozwiązanie (3.9) jest równe

e(t, 9) = e(t, 0) exp(—at).Równanie H(t, 0) = 0 określa rodzinę problemów planowania trajektorii parametryzowa- nych przez 9. Jeśli możemy rozwiązać problem dla danego 9, wtedy dążąc z parametrem do nieskończoności będziemy w stanie rozwiązać nasz oryginalny problem. Zróżniczkujmy teraz względem 9 tożsamość H(t, 0) = 0
d2e(t, 0) de(t,9) f de(t, 0) . .A , n+ a.ón. + 7 ? + ae(t, 0) exp(—70) = 0. (3.10)

OlOu Ou \ Ol /Korzystając z tego, że
de(t, 9) . . /9e(t,0) , nA , ...—-—I + ae{t, 9) = I —-—A + ae(t, 0) I exp(-70), 

Ol \ O l Ji robiąc odpowiednie podstawienie do (3.10), otrzymujemy następujące równanie błędu52e(t,0) de(t,9} de{t,9}

W celu wyznaczenia równania na sterowanie ue(t), konieczne jest wyznaczenie poniższych elementów posiłkując się równaniem (3.7)
= Ce(t)(/(^(t)) + G^t^ue^ - yd^,



32 3. Zastosowanie metody homotopii...

= cwomgdzie macierz Cg(t) jest wyznaczana wzdłuż trajektorii xg(t) oraz
Następnie posługując się (3.5) otrzymujemy

= Ć&W) + C,(t)&(t) =
OtCf u

Ćg^t) + Cg^Ag^t) + Cg^Bg^^^, 
OUgdzie Ag (i) i Bg(t) muszą być liczone wzdłuż trajektorii xg(t).Po zastąpieniu odpowiednich elementów w (3.11), dostajemy różniczkowo-całkowe równanie na sterowanie u(t, 0)

+ Mg^t) + yCg^Xg^ + G(^(t))u(t, 0)) = 
OU

y(yd(t)-ae(t,Oy), (3.12)gdzie macierze Mg^t) = Ćg^t) + Cg(t)(aln + ^(i)), Ng(t) = Cg^Bg^tyOstatecznie, różniczkując równanie (3.12) względem t i odwołując się do (3.5) otrzy­mujemy następujące cząstkowe równanie różniczkowe na sterowanie
+ + + 7M,(i)B#(f)u(t, 0)

+ Mg(t)^(t) + Mg^Ag^t^g^t) = 7( — Mg(t) f (xg(ty) + yd + Ocyd) • (3.13)Równanie (3.13) będziemy nazywać równaniem reprodukcji trajektorii układu (3.1), które razem z afinicznym układem sterowania i układem wariacyjnym stowarzyszonym z (3.1)f Mt) = + G^g^Ug^t)
\żg^ = Ag(t^ J

tworzy układ reprodukcji trajektorii [21]. Warunki początkowe i brzegowe dla tego układu są przyjęte jako
Xg(0) = x0, £0(0) = 0, u(t, 0) = u0(typodczas gdy u(0,0) jest rozwiązaniem liniowego równania różniczkowego otrzymanego z (3.12)

+ 7N(0M0, 0) = 7( - (WW + ydW ~ ^w{x0) - y^,

gdzie C(0) = AT(O) = C^OjG^rco)• Układ reprodukcji trajektorii, utworzony przez równania (3.13) i (3.14), będziemy rozwiązywać przy założeniu, że macierz Ng^t) jest odwracalna.



Rozdział 4

Przykłady numeryczne — 
aproksymacja algorytmów kinematyki 
odwrotnej

W rozdziale zostaną przedstawione wyniki obliczeń numerycznych dla zadania aproksyma­cji jakobianowych algorytmów kinematyki odwrotnej. Pokażemy przykłady zarówno dla metody wariacyjnej jak i dla metody geometrycznej. Dla metody wariacyjnej rozważymy funkcjonały błędu I i II. Modelami testowymi będą manipulatory i robot mobilny. Wśród wyników symulacji dla manipulatorów przedstawimy przypadki, w których kinematyka robota będzie wyrażona za pomocą współrzędnych [56], a także bez współrzędnych [22], za pomocą specjalnej grupy euklidesowej SE(3). Rozdział kończy porównanie metody opartej na geometrii różniczkowej oraz podejścia wariacyjnego.W rozdziale pokażemy także, że wszystkie wyprowadzone metody aproksymacji algo­rytmów jakobianowych można zastosować do rzeczywistego manipulatora przemysłowego. Wybierzemy manipulator POLYCRANK, w którym położenie i orientację efektora okre­ślamy w sześciowymiarowej przestrzeni, a jego stopień redundancji wynosi 1.
4.1 Manipulator POLYCRANKManipulator POLYCRANK, przedstawiony na rysunku 4.1, jest robotem o 7 stopniach swobody skonstruowanym na wydziale Mechanicznym, Energetyki i Lotnictwa Politech­niki Warszawskiej. Manipulator ten ma praktycznie nieograniczone zakresy obrotów na przegubach i izotropowe własności kinematyczne i dynamiczne [30,31].Parametry Denavita-Hartenberga robota są zawarte w tabeli 4.1. Parametr 9 i oznacza położenie i-tego przegubu, natomiast Xi to położenie i-tego silnika. Parametry geome­tryczne POLYCRANKa dane są następująco: li = 0.2975[m], l? = 0.18[m] , I3 = 1.552[m], 
h = l5 = 0.16[m], k = 0.2562[m].Korzystając z parametrów Denavita-Hartenberga, tabela 4.1, otrzymujemy kinematy­kę manipulatora wyrażoną w SE (3)

C3C7 — C6S3S7S3C7 + C6C3S7S6S7 0
—C6C7S3 — C3S7 C6C7C3 — S3S7 C7S6 0

S3S6 I1C1 + I2C2 + IqC3 + 53(^454 + I5S5)— C3S6 I1S1 + I2S2 + 1583 ~ + Z5S5)Cg I3 + l^Ci + Z5C50 1



34 4. Przykłady numeryczne — aproksymacja algorytmów...

Rysunek 4.1: Manipulator POLYCRANKTabela. 4.1: Parametry Denavita-Hartenberga dla manipulatora POLYCRANK
i di1 X1 0 li 02 X2 - X! 0 I2 03 X3 ~X2 + % l3 0 7F

24 Xą + 0 U 05 a?5 — xą 0 I5 06 xe - x5 + f hi 0 7F
27 + f 0 0 0

gdzie Si = sinzj oraz Ci cosxi. Odpowiednio, jakobian geometryczny manipulatoraprzyjmuje postać
Jrt(x) —

Jr(x)

000JiO 0
0 0 0 0 C3 S3S60 0 0 0 83 —C3S60 1 0 0 0 Cg

~hs2 ~l3S3 + C3G4S4 + ^5ss) I4C4S3 hc5s3 0 0
l2c2 l3c3 + ss04s4 + ^5ss) — I4C3C4 0 00 0 — I4S4 —15S5 0 0



4.2. Metoda wariacyjna — Funkcjonał błędu I... 35Niech kinematyka wyrażona za pomocą współrzędnych określa położenie końca efek- tora w przestrzeni kartezjańskiej i jego orientację wyrażoną przez kąty ZXZ Eulera
k(x) =

(ly COSZi + ^2 
b sina?i + Z2 cos x2 + Zg cos X3 + sin 2.3 (Z4 sin X4 + Z5 sin Xi + Iq sin X3 — cos X3 (£4 sin xą + 1$

I3 + I4 COS £4 + I5 cos x5£3
x6

x7

sin z5)\ sin z5) (4-2)
Obliczmy jakobian manipulatora

= — ~hs2 G4S4 + ^5S5)C3 — ^6^3 Z4S3C4 Z5S3C5 0 0'
bc2 G4s4 + ^5ss)s3 + ^6^3 —I4C3C4 —/5C3C5 0 00 0 0 — I4S4 0 00 0 1 0 0 0 0 ■0 0 0 0 0 1 00 0 0 0 0 0 1Manipulator POLYCRANK znajduje się w konfiguracjach osobliwych dla wartości zmien­nych przegubowych równych x^ = j7r lub a?2 — Xi = lir, j, l = 0, ±1,....

4.2 Metoda wariacyjna — Funkcjonał błędu I dla kine­
matyki we współrzędnych

4.2.1 Manipulator 3R bez konfiguracji osobliwychManipulator jest planarnym manipulatorem o 3 stopniach swobody [53], przedstawionym na rysunku 4.2, skonstruowanym w Zakładzie Podstaw Cybernetyki i Robotyki Politechni­ki Wrocławskiej, według projektu dra inż. K. Mianowskiego z Politechniki Warszawskiej, twórcy robota POLYCRANK.

Rysunek 4.2: Manipulator



36 4. Przykłady numeryczne — aproksymacja algorytmów...Niech zmienne przegubowe określone będą przez (zi, a?2, Z3), a dwie zmienne zadaniowe (j/ij 2/2) określają pozycję wózka W2 w układzie kartezjańskim związanym z podstawą. Zmienna przegubowa Zi jest poruszana bezpośrednio za pomocą silnika Mlt podobnie zmienna z3 jest zależna wyłącznie od silnika M3. Pozycja W2 wzdłuż prowadnicy P2 zale­ży od współrzędnej z3 oraz kąta obrotu koła zębatego z2. Kąt ten jest zadawany poprzez przekładnię, której przełożenie jest modyfikowane zmienną x2. Kinematyka manipulatora jest opisana przez równania y\ = CiZi oraz y2 = f2{x2} + C3Z3, gdzie Ci i C3 są stałymi a funkcja f2{x2) = , dla parametru a = n, r2 i l są odpowiednio promie­niami i długością tworzącej stożka ściętego będącego elementem przekładni. Zmieniając współrzędne qr = c1x1, q2 = c3x3, q3 = -^f2{x2) i powracając do pierwotnej notacji q = x, otrzymujemy
k(x) = (zi, z2 + XiX3\Po dokonaniu stosownych obliczeń obliczamy jakobian

dk(x) Tl 0 O’
/ — n 1 ’dx |_Z3 1 zimacierz manipulowalności

M(x) = J(x)JT(x) = 1 n *2\ 2 ,

generator jądra jakobianu
(° ~X1V1 + z?oraz manipulowalność m(z) = yl+Zj.Naszym zadaniem jest znalezienie takiej funkcji rozszerzającej h(x), która będzie mi­nimalizowała funkcjonał błędu I. Dla przykładu porównamy rozwiązanie otrzymane przy użyciu metody Maciejewskiego i Robertsa, z równaniem błędu (2.21), z funkcjonałem błędu I zadanym równaniem (2.29).

Metoda Robertsa i MaciejewskiegoDla uproszczenia obliczeń załóżmy, że h(z) = Z3/(zi), f(xi) / 0. Rozwiązanie zadania aproksymacji prowadzi do następującego równania Eulera-Lagrange’a dla funkcjonału (2.21) / , . 2. /d/(zi)\2 . . / d/(zi) . 2.d2/(zi)\\2z3 /2(zi) + 4(1 + z2) ( —-----  - /(rei) ( 5zi-^—- + (1 + z2)... ■ 2 1=0.\ y dzi j \ a.271 d.27j ) /Analityczne rozwiązanie powyższego równania możemy otrzymać korzystając z programu MATHEMATICA /Cd) = Ci yO + ZjZ11/I + Zj + sinh-1(zi) + C2 (4-3)
gdzie Ci i C2 oznaczają stałe całkowania. Optymalna funkcja rozszerzająca przybierapostać [56] h(z) = z3 Ci ^/1 + z2zi yT+zf + sinh 1 (zi) + C2 1/3- (4-4)



4.2. Metoda wariacyjna — Funkcjonał błędu I... 37Na potrzeby późniejszego porównania rozwińmy mianownik (4.3) w szereg Taylora wokół a?i = 0. Po podstawieniu Ci = C3 = 1 otrzymujemy
/(^i) -

a co za tym idzie, aproksymująca funkcja rozszerzająca jest równa
h(a?i,a?3) — (4-5)

Funkcjonał błędu ITeraz naszym celem jest wyznaczenie funkcji rozszerzającej h(x) minimalizującej funk­cjonał błędu (2.29). Zadanie rozwiążemy, tak jak poprzednio, odwołując się do równania Eulera-Lagrange’a. Aby móc to zrobić, powinniśmy najpierw wyliczyć
=

11 + z?
1 + z?
-x3

-x3x3

-2^3
M 

xixl—xf 1+Xj
- XiX3„ ~2 ~,3 l-Hr? 

l+2xi+XiX% l+ajjPo dokonaniu odpowiednich podstawień, równanie Eulera-Lagrange’a (2.49) przybiera następującą postać
' ^d2h{x') 1 + x^ + x2 + x^ d2h(x)1 +X1 dx2 (l+ajj)3/21 + 2z2 + a?2a?2 d2h(x) 2x3 d2h(x) 2x!x3 d2h(x')+ (1 + x2)3/2 dx2 (1 + a;2)1/2 9x^X2 (1 + a?2)1/2 dx1dx32a?i(a?2 — x2) d2h(x) 3a?ia?3 dh(x) 2xjx3 — x3 dh(x) _+ (1 + a;2)3/2 dx2dx3 (1 + x2)3/2 dx2 (1 + a;2)3/2 dx3

Załóżmy warunki brzegowe h(xi, $2,0) = 0 i, tak jak w poprzednim przykładzie, hęx) = ^3/(^1). Przy takich założeniach równanie (4.6) redukuje się do równania różniczkowego zwyczajnego drugiego rzędud2/(zi) _ 2a?3 d/(xi) da?2 1 + a;2 da?i 2r2 — 1 (4.7)
Podobnie jak wyżej, korzystając z programu MATHEMATICA otrzymujemy rozwiązanie analityczne (4.7) /(^i) = (aa?i + 6)^1 +a;?,gdzie a i b są stałymi całkowania [56]. W rezultacie, optymalna funkcja rozszerzająca jest równa

ha,b(x) = x3(ax1 + 6) + xj. (4.8)Porównując rozwiązania (4.5) i (4.8) można zauważyć, że pomimo różnych postaci funk­cjonałów błędu, otrzymane funkcje rozszerzające są sobie równe dla a = 1 i b = — |.
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4.2.2 Manipulator TTRKolejnym przykładem jest planarny manipulator o 3 stopniach swobody przedstawiony na rysunku 4.3. Jego kinematyka jest opisana równaniem

Rysunek 4.3: Manipulator TTR
k(x) = (x2 + lcosx3, x1 + l sinz3) .Jakobian manipulatora, macierz manipulowalności, generator jądra jakobianu oraz funkcja manipulowalności są odpowiednio równeT, . FO 1 — ZsinzsJ(z) = i n ; ,K 0 l cos x3

K{x) = a (—Zcosx3, Zsinz3, M(x) =
l + l2 sin2 x3 —l2smx3cosx3 

—l2sinx3cosx3 Z + Z2 cos2 x31)T, m(x) = VI + Z2.
Ponownie, naszym zadaniem jest znalezienie jednej funkcji rozszerzającej h{x), która bę­dzie minimalizowała błąd aproksymacji (2.29). Do tego celu wykorzystamy również rów­nanie Eulera-Lagrange’a. Korzystając z równania (2.49), po stosownych obliczeniach na- dajemy temu równaniu postać

d tr— 
oxgdzie R(x) = m(z)P(a;). Niech długość ramienia Z = 1, wtedy współczynniki macierzy

R(x) są równe
~ 7—cos(2z3) 

4
cos 23 sin 3:3 

2
_ COS aą

2

COS X3 sin 23 
2 

7+cos(2x3) 
4 

sin 23 
2

sinx3
2
3
2Ze względu na trudności obliczeniowe, załóżmy arbitralnie, że h(x) = h(x2, x3). W tym wypadku macierz R(x) redukuje się do

’7+cos(2x3) 
4

sin 23
2

sin X3 ~
2
3
2 .
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Rysunek 4.4: Optymalna funkcja rozszerzająca
Numeryczne rozwiązanie zadania przy warunkach brzegowych h^X2, —2) = X2, h(—2, x^) = x3, h(a?2,2) = — X2, h(2, z3) = —x^, otrzymane przy pomocy pakietu PDE toolbox progra­mu MATLAB jest przedstawione na rysunku 4.4. Na potrzeby dalszych obliczeń, aprok- symujmy otrzymane rozwiązanie wielomianem trzeciego stopnia

h(x2,x3) =3.5760 • lO"2^ - 8.2205 • 10“6^ + 1.6717 • lO-5^ + 1-5522 • 10~2x2^+ 1.4597 • 10“2^ - 4.0394 ■ 10~5z2 - 5.0074 • lO"1^^ - 1.5981 ■ 10-1z2+ 7.4522 • 10-6x3 + 2.8858 ■ 10~5,
które jest przedstawione na rysunku 4.5.

Rysunek 4.5: Aproksymowana funkcja rozszerzająca 



40 4. Przykłady numeryczne — aproksymacja algorytmów...Mając analityczną postać funkcji rozszerzającej, możemy wyliczyć jakobian rozszerzony— sin z 3 COS £3 
J33^ .gdzie

j32(x) = 1.0728 • RT1^ + 3.3434 • lO"5^^ + 1.5522 • lO-2^ + 2.9194 • 10"5x2- 5.0074 • 10-1x3 - 1.5981 • 10-1,j33(» = -2.4660 • 10~5^ + 1.6717 • 10“5^ + 3.1044 ■ lO-2^^ - 8.0788 • 10“5x3- 5.0074 • lO-1^ + 7.4522 • 10~6i odpowiednią odwrotność typu jakobianu rozszerzonego.Dla tak przygotowanych danych porównajmy rozwiązania zadania odwrotnej kinema­tyki otrzymane za pomocą algorytmu typu jakobianu pseudoodwrotnego i typu jakobianu rozszerzonego. Zadanie polega na osiągnięciu przez koniec efektora manipulatora punktu 
y — (0, 2) w przestrzeni zadaniowej. Konfiguracja początkowa x0 = (0, 1, 0), co odpowia­da położeniu yo = (2, 0) w przestrzeni zadaniowej. Rysunek 4.6 przedstawia ścieżki końca efektora dla algorytmu typu jakobianu pseudoodwrotnego i dla algorytmu typu jakobia­nu rozszerzonego. Porównanie trajektorii współrzędnych przegubowych jest zobrazowane na rysunku 4.7. Łatwo zauważyć, że oba algorytmy rozwiązały z powodzeniem zadanie kinematyki odwrotnej, a wygenerowane trajektorie przegubowe są bardzo bliskie siebie. Można jednak oczekiwać, że dla niektórych zadań różnica w otrzymywanych trajekto­riach może być dużo większa, ponieważ otrzymana funkcja rozszerzająca jest optymalna w sensie średnim na pewnym, założonym obszarze.

Rysunek 4.6: Ścieżka w przestrzeni zadaniowej otrzymana za pomocą algorytmu jakobianu pseudoodwrotnego (z lewej) i jakobianu rozszerzonego (z prawej)Kolejna symulacja będzie miała na celu sprawdzenie powtarzalności algorytmu. Wybierz- my cztery punkty w przestrzeni zadaniowej 4(0, 1), B(0, 2), C(l, 2) i D(l, 1). Zadanie będzie polegało na ruchu efektora pomiędzy tymi czterema punktami tworząc krzywą zamkniętą. Innymi słowy mówiąc, zaczynamy ruch od punktu A i wracamy do niego przechodząc przez punkty B, C oraz D. W każdym kroku punktem początkowym jest rozwiązanie otrzymane z poprzedniego kroku. Wyniki symulacji dla jakobianu pseudo­odwrotnego i jakobianu rozszerzonego zawarte są w tabeli 4.2. Jak widać, algorytm typu jakobianu rozszerzonego jest powtarzalny, w przeciwieństwie do algorytmu typu jakobianu pseudoodwrotnego.
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Rysunek 4.7: Trajektorie przegubowe

Tabela. 4.2: Sprawdzenie powtarzalnościAlgorytm Jakobian rozszerzony
A x0 0 0 1.5708
B xlf 0 0 1.5708
C x2f 1.9633 0.0007 0.0367
D x3f 0.9633 0.0007 0.0367
A xif 0 0 1.5708Algorytm Jakobian pseudoodwrotny
A Xo 0 0 1.5708
B Xif 1 0 1.5708
C X2f 1.1132 0.5379 1.0904
D x3f 0.2804 0.3056 0.8032
A X4f 0.0603 -0.3420 1.2217
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4.2.3 Manipulator POLYCRANKBadania symulacyjne przeprowadzono dla kinematyki manipulatora POLYCRANK wy­rażonej we współrzędnych formulą (4.2). Ponieważ stopień redundancji robota s = 1, naszym zadaniem jest znalezienie jednej funkcji rozszerzającej h(x\ która będzie mi­nimalizowała funkcjonał błędu określony równaniem (2.29). Zadanie rozwiążemy metodą Ritza. Załóżmy, że funkcja rozszerzająca jest funkcją liniową h(x) = a1^, a G TR7, natomiast aproksymacja będzie przeprowadzona na obszarzeQ = tx G R7|o.OOl < Xi < ^, ^ + 0.001 < x2 < 7r, 0 < x3 < %, 0.001 < x4l I z z z— + 0.001 < X$ < 7T — 0.001, 0.001 < Xq < 0 < X7 < 7r| .2 2 J (4-9)Optymalna funkcja rozszerzająca jest równa
h(x) = -0.016516x1 - 0.019845x2 + 0.023433x3 - 0.037846x4 + 0.037855x5, (4.10)a odpowiednia wartość funkcjonału błędu £i(h) = 0.763599. Za pomocą funkcji rozszerza­jącej (4.10) możemy zdefiniować odpowiedni jakobian rozszerzony i zdefiniować algorytm typu jakobianu rozszerzonego. Obliczenia przeprowadźmy dla trzech różnych zadań. We wszystkich symulacjach 7 = 3 a czas symulacji tmax = 5. W tabeli 4.3 zostały zebrane kon­figuracje początkowe i punkty zadane w przestrzeni zadaniowej dla odpowiednich zadań. Na rysunkach 4.8, 4.9, 4.10 zostały przedstawione rozwiązania zadań. Przebiegi normyTabela. 4.3: Dane potrzebne do obliczeńKonfiguracja początkowa Punkt końcowyZadanie 1 x0 = (0.15, 3, 1, 1.5, 3, 0.3, 3) yd = (0.25, 0.65, 1.7, f, f, f)Zadanie 2 x0 = (1, 1.7, 0.2, 1.5, 3, 0.5, 3) Vd = (0.21, 0.61, 1.7, f, f, f)Zadanie 3 x0 = (1.5, 2, 3, 0.4, 2, 0.5, 0.5) Vd= (0.21, 0.51, 1.5, f, f, f)

prędkości przegubowych w czasie pokazane są na rysunkach 4.11, 4.12 i 4.13, gdzie, dla porównania, wykreślono również przebiegi normy prędkości dla pewnej wybranej losowo, nieoptymalnej funkcji rozszerzającej. W tabeli 4.4 zebrano wartości kryteriów
Ji .— --------------------- , (4.11)
^2  -------- / ................................ .......... , (4.12)

y/fir iM*)ii2dtbędących miarą jakości aproksymacji. Odpowiadają one średniej, względnej różnicy tra­jektorii oraz średniej, względnej różnicy prędkości w przegubach otrzymanych z obu algo­rytmów na całym przedziale czasu symulacji.
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Rysunek 4.8: Rozwiązanie zadania 1
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Rysunek 4.9: Rozwiązanie zadania 2
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Rysunek 4.10: Rozwiązanie zadania 3
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Rysunek 4.11: Normy prędkości przegubowych dla zadania 1

Rysunek 4.12: Normy prędkości przegubowych dla zadania 2

Rysunek 4.13: Normy prędkości przegubowych dla zadania 3
Tabela. 4.4: Wartości miar jakości aproksymacji dla zadań 1, 2 i 3Jakobian rozszerzony optymalny Jakobian rozszerzony nieoptymalny51 Ó2 5i ^2Zadanie 1 0.07235 0.44217 0.23003 0.80258Zadanie 2 0.00566 0.06068 0.30564 0.53602Zadanie 3 0.05162 0.67504 0.11714 1.07615



4.2. Metoda wariacyjna — Funkcjonał błędu I... 47Analizując rysunki dochodzimy do wniosku, że zadanie aproksymacji zostało pomyśl­nie rozwiązane. Wynikowy algorytm typu jakobianu rozszerzonego jest rozsądną aprok­symacją algorytmu typu jakobianu pseudoodwrotnego. Ponieważ aproksymacja odbywa się na pewnym obszarze, otrzymana funkcja rozszerzająca, a co za tym idzie jakobian rozszerzony, jest optymalna w sensie średnim. Jak widać na rysunku 4.11, generowane średnie wartości prędkości przegubowych w trakcie ruchu są większe od tych otrzyma­nych z algorytmu jakobianu typu pseudoodwrotnego, nie mniej jednak lepsze od wyniku uzyskanego dla losowo wybranej funkcji rozszerzającej. Fakt, że w niektórych przypad­kach (por. rysunek 4.13) norma prędkości przegubowych dla jakobianu rozszerzonego jest mniejsza od otrzymanej za pomocą jakobianu pseudoodwrotnego, wynika z tego, że ten ostatni dostarcza rozwiązanie będące minimum lokalnym. Zdarzają się także przypadki, w których rozwiązanie algorytmu typu jakobianu rozszerzonego może być bardzo podobne lub być wręcz identyczne z rozwiązaniem algorytmu typu jakobianu pseudoodwrotnego, rysunek 4.9.Aby zbadać własność powtarzalności otrzymanych algorytmów, przeprowadzono na­stępujące doświadczenie. Wybrano trzy punkty w przestrzeni zadaniowej robota A = (0.35532, 0.203727, 1.53401, 0.5, 0.5, 3), B = (0.21, 0.51, 1.7, f, f, f) oraz punkt C = (0.48, 0.22, 1.51, 1, 1, 2). Rozwiązywanym zadaniem jest przeprowadzenie końca efektora manipulatora z punktu A pomiędzy punktami B, C z powrotem do punktu A, tworząc krzywą zamkniętą w przestrzeni zadaniowej. Dla przejrzystości wyników, zakreślamy tę krzywą dwa razy. Wyniki obliczeń zawarte są w tabeli 4.5. Na ich podstawie można wy­ciągnąć wniosek, że algorytm kinematyki odwrotnej oparty na jakobianie rozszerzonym posiada własność powtarzalności w przeciwieństwie do algorytmu typu jakobianu pseu­doodwrotnego. Dodatkowo, rysunki 4.14-4.16 przedstawiają graficzne potwierdzenie tej tezy. Tabela. 4.5: Sprawdzenie powtarzalnościAlgorytm Jakobian rozszerzony
A x0 0.5 3 0.5 0.5 3 0.5 3
B Xif 0.657333 2.72992 1.5708 -0.126507 1.63786 1.0472 1.0472
C -0.0045703 2.41081 1 0.935985 2.59736 1 2
A x2f 0.5 3 0.5 0.5 3 0.5 3
B XV 0.657333 2.72992 1.5708 -0.126507 1.63786 1.0472 1.0472
C -0.0045703 2.41081 1 0.935985 2.59736 1 2
A x6f 0.5 3 0.5 0.5 3 0.5 3Algorytm Jakobian pseudoodwrotny
A XO 0.5 3 0.5 0.5 3 0.5 3
B xlf 0.771934 2.88152 1.5708 0.0700009 1.64341 1.0472 1.0472
C x2f 0.226379 2.70766 1 1.10556 2.3619 1 2
A X3f 0.739445 2.92491 0.5 0.701542 2.63884 0.5 3
B Xif 0.894524 3.02032 1.5708 0.269479 1.60972 1.0472 1.0472
C X5f 0.358629 2.85292 1 1.23451 2.20494 1 2
A XQf 0.895779 2.80957 0.5 0.923094 2.36852 0.5 3
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Rysunek 4.14: Sprawdzenie powtarzalności dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)

Rysunek 4.15: Sprawdzenie powtarzalności dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)
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Rysunek 4.16: Sprawdzenie powtarzalności dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)
4.3 Metoda wariacyjna — Funkcjonał błędu I dla kine­

matyki w SE (3)

4.3.1 Podmanipulator stanfordzkiDla ilustracji konstrukcji algorytmu jakobianu rozszerzonego dla kinematyki zdefiniowanej jako odwzorowanie w SE^, rozwiążemy odwrotne zadanie kinematyki dla redundantnego nadgarstka będącego zmodyfikowanym manipulatorem stanfordzkim o czterech stopniach swobody, przedstawionego na rysunku 4.17. Ur!i N 

। 
ii 

n
' 

__iN

Rysunek 4.17: Redundantny nadgarstek



50 4. Przykłady numeryczne — aproksymacja algorytmów...Orientacja nadgarstka w przestrzeni jest określona za pomocą macierzy rotacji
R(x) =

— C4S1S3 + C1(C2C3C4 — S2S4) C3C4S2 + C2S4 S1(S2«4 ~ C2C3C4) — C1C4S3
S1S3S4 ~ C1(C4S2 + C2C3S4) C2C4 — C3S2S4C4S1S2 + 54(^2^381 + C1S3)

C3S1 + C1C2S38283C1C3 — ^28183gdzie x = (xi,... ,24) oraz Si i Cj oznaczają odpowiednio sins, i cosxj.Naszym celem jest wyznaczenie funkcji rozszerzającej, która będzie minimalizowała funkcjonał błędu £2 określony równaniem (2.36). W tym celu również posłużymy się me­todą Ritza, omówioną w podrozdziale 2.4.2. Załóżmy dwie postacie funkcji rozszerzającej• liniową hi(x) = 01X1 + a2®2 4- 03X3 + 04X4,• kwadratową h2(x) = OiXi + a2X2 + a3x3 + 04X4 + 05X1X2 + 06^1^3 + 07^1^4 + 03^2^3 + 09X3X4 4* 010273X4 + 0,11X1 + 012X2 4" a13x3 4" 014X4.Nieosobliwy obszar w przestrzeni konfiguracyjnej wybierzmy jakoQ = |x G IR4 7T 7T 7F 7F 7T 7T j2 < H 0.01 < 0 < X3 < 2. - 2 < X4 < 2 } .Po dokonaniu optymalizacji otrzymaliśmy optymalną liniową funkcję rozszerzającą
hi{x} = -0.454353x1 - 0.237304x2 4- 0.231516x3 + 0.464759x4 i kwadratową postać optymalnej funkcji rozszerzającejh2(x) = -0.46179xi + 0.13658x2 - 0.15069x3 + 0.46637x4 4- 0.03601xix2- 0.09928xiX3 — 0.00057X1X4 + 0.00524x2X3 + 0.09756x2X4 — 0.03657x3X4 —0.01898xi - 0.24783x2 4- 0.25060x^ + 0.01804x^.Wartość funkcjonału błędu dla przypadku liniowego jest równa £2(hi) = 10.0521, nato­miast dla funkcji kwadratowej £2(^2) = 5.38958 [22]. Posługując się powyższymi funkcjami rozszerzającymi zbudowano algorytmy typu jakobianu rozszerzonego oznaczone odpowied­nio J^{x) dla funkcji liniowej i J^#(x) dla funkcji kwadratowej.Zachowanie algorytmów kinematyki odwrotnej korzystających z otrzymanych jako- bianów rozszerzonych, w porównaniu do algorytmu jakobianu pseudoodwrotnego została przedstawiona na rysunkach 4.18-4.20. W tabeli 4.6 zebrano wartości miar jakości aprok­symacji (4.11) i (4.12). Rysunek 4.20 przedstawia kwadrat normy prędkości chwilowych w czasie dla wszystkich algorytmów. W obliczeniach przyjęto odpowiednio:• Zadanie 1: konfiguracja początkowa x(0) = (0, 0), orientacja zadana

Rd =

121 121
2która odpowiada kątom RPY(^, 0) w reprezentacji Roll-Pitch-Yaw. Współczyn­nik zbieżności algorytmu 7 = 2 i czas symulacji imax = 12.• Zadanie 2: konfiguracja początkowa x(0) = (~, j, 0.2, —|), orientacja zadana w kątach Roll-Pitch-Yaw RPY^, |). Współczynnik zbieżności algorytmu 7 = 0.6 i czas symulacji imax = 12.
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Rysunek 4.18: Rozwiązanie zadania 1

Rysunek 4.19: Rozwiązanie zadania 2



52 4. Przykłady numeryczne — aproksymacja algorytmów...Tabela. 4.6: Wartości miar jakości aproksymacji dla zadań 1 i 2Jakobian rozszerzony ------------- •---------------------------------Jakobian rozszerzony J25X 52 52Zadanie 1 0.09415 0.14098 0.03319 0.10536Zadanie 2 0.50389 0.61421 0.42605 0.41112

Rysunek 4.20: Normy prędkości przegubowych dla zadania 1 (z lewej) i 2 (z prawej)
Jakość aproksymacji dla algorytmu typu jakobianu rozszerzonego z kwadratowąfunkcją rozszerzającą jest lepsza niż dla przypadku algorytmu typu jakobianu rozszerzo­nego J^{x} z liniową funkcją rozszerzającą (por. rysunki 4.18-4.20 oraz tabela 4.6). Jeśli jednak zależy nam tylko na minimalizacji prędkości ruchu, w większości przypadków oba algorytmy i (a;) dają zadowalającą aproksymację algorytmu jakobianupseudoodwrotnego Jp#(x), co widać na rysunku 4.20.W celu sprawdzenia powtarzalności nowo otrzymanych algorytmów zażądaliśmy, aby koniec efektora przemieszczał się pomiędzy trzema konfiguracjami w przestrzeni zada­niowej A = RPY^, 0), B = RPY(Ą, 0), C = RPY(^, |). Ustalone pozycje przegubowe otrzymane przez wszystkie algorytmy zawarte są w tabeli 4.7.

Tabela. 4.7: Sprawdzenie powtarzalnościAlgorytm Jakobian rozszerzony

Q 
tu
 

B 
B 

W 
m

 
w 

w 
~ 

o 0 1.5708 1.0472 00.0969 0.8614 0.7194 -0.1041 0.5227 0.2999 1.0676 -0.14800 1.5708 1.0472 0Algorytm Jakobian rozszerzony J2*(x)

Q 
to
 

B 
B 

B 
m

 
“ 

“ 
o 0 1.5708 1.0472 00.1779 0.9376 0.6690 -0.2031 0.5734 0.3087 1.0191 -0.16560 1.5708 1.0472 0Algorytm Jakobian pseudoodwrotny Jp#(x)

h-
 Q

 t
u 
X 

B 
B 

B 
H 

w 
o 0 1.5708 1.0472 00.1580 0.9177 0.6809 -0.1776 0.6558 0.3260 0.9409 -0.1965 0.1833 1.6756 1.0568 -0.2109
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4.3.2 Manipulator POLYCRANKPrzejdźmy teraz do odwrotnego zadania kinematyki, w którym będziemy rozpatrywać nie tylko orientację, ale także położenie końca efektora. Jako przykład do obliczeń wykorzy­stamy manipulator POLYCRANK, omówiony w podrozdziale 4.1. Korzystając z parame­trów Denavita-Hartenberga, tabela 4.1, otrzymujemy kinematykę manipulatora wyrażoną w SE(3) (4.1). Ponieważ stopień redundancji manipulatora s = 1, szukamy jednej funkcji rozszerzającej hi(x), która będzie minimalizowała błąd aproksymacji dany równa­niem (2.36). Korzystając z metody Ritza, założyliśmy liniową postać funkcji h(x) = aTx, 
a 6 IR7. Obszar całkowania jest określony przez (4.9). W wyniku obliczeń wykonanych zgodnie z równaniami (2.56) i (2.57), optymalna funkcja rozszerzająca przyjmuje postać

h^) = -0.013179xi - 0.014623x2 + 0.021448x3 - 0.033563x4 + 0.033571x5, (4.13)przy wartości funkcjonału £2(^1) = 0.489715. Funkcja (4.13) określa jakobian rozszerzony i algorytm jakobianu rozszerzonego (2.35).Wyniki obliczeń numerycznych dla algorytmów typu jakobianu rozszerzonego i jakobia­nu pseudoodwrotnego zostały pokazane na rysunku 4.21. Na rysunku 4.22 przedstawiono porównanie normy prędkości przegubowych w trakcie trwania ruchu dla obu algorytmów. Do obliczeń numerycznych przyjęto następujące dane: konfiguracja początkowa x(0) =—1/2 0 ^3/2'(0.15, 3, 1, 1.5, 3, 0.3, 3), zadane orientacja końca efektora Rd = 0—10a/3/2 0 1/2i położenie Td = (0.25, 0.65, 1.7), współczynnik zbieżności 7 — 3 i czas symulacji = 5.Teraz, zawęźmy obszar całkowania do podzbioru konfiguracji wynikających z rozwią­zania algorytmu typu jakobianu pseudoodwrotnego w zadaniu 1. W efekcie otrzymamy zadanie optymalizacji na mniejszym obszarze, a minimalna funkcja rozszerzająca i odpo­wiednio jakobian rozszerzony będą dedykowane ruchowi z zadania 1. Spodziewamy się, że tak otrzymany jakobian rozszerzony zwróci rozwiązanie bliższe rozwiązaniu uzyskane­go przy pomocy algorytmu jakobianu pseudoodwrotnego, jednak w taki sposób tracimy na ogólności (zadanie aproksymacji algorytmów staje się zależne od ruchu, który chcemy uzyskać). Załóżmy, że nowy obszar całkowania jest równy
Q = |x e R7|0.1 < xi < 1.1, 2.1 < x2 < 3.1,0.9 < x3 < 1.7, 0.2 < x4 < 1.4,1.4 < x5 < 3.1, 0.2 < xg < 1.2, 1.4 < X7 < 3}.Dla tak obranego obszaru optymalna liniowa funkcja rozszerzająca minimalizująca funk­cjonał błędu (2.36) przybiera postaćh2(x) = -0.0747196xi - 0.0634196x2 - 0.00144952x3 - 0.0812601x4 + 0.0895736x5.Rysunek 4.24 przedstawia porównanie rozwiązań (dla danych z zadania 1) dostarczonych przez algorytmy typu jakobianu pseudoodwrotnego i jakobianu rozszerzonego z funkcją rozszerzającą Zi2(x). Dodatkowo, na rysunku 4.23 wykreślono kwadraty norm prędkości przegubowych wygenerowanych przez oba algorytmy. Jak widać, średnie prędkości prze­gubowe otrzymane z algorytmu typu jakobianu rozszerzonego są teraz bliższe średnim prędkościom wygenerowanym przez algorytm typu jakobianu pseudoodwrotnego niż te otrzymane dla algorytmu korzystającego z (4.13). Na potwierdzenie powyższej obserwa­cji, w tabeli 4.8 zebrano wartości miar jakości aproksymacji (4.11) i (4.12), zaś na rysun­kach 4.25 i 4.26 widnieją przebiegi prędkości przegubowych w czasie dla obu algorytmów
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Rysunek 4.21: Rozwiązanie zadania 1 dla algorytmów typu jakobianu pseudoodwrotnego i jakobianu rozszerzonego



4.3. Metoda wariacyjna — Funkcjonał błędu I... 55jakobianu rozszerzonego. Oczywiście, aproksymacja nie gwarantuje, że otrzymany opty­malny algorytm typu jakobianu rozszerzonego będzie zwracał rozwiązania mieszczące się w założonych przedziałach zmiennych przegubowych. Wynika to z faktu iż rozwiązania generowane przez oba algorytmy w ogólności różnią się ze względu na posiadanie bądź nieposiadanie własności powtarzalności.Tabela. 4.8: Wartości miar jakości aproksymacjiJakobian roz.5i szerzony52 Jakobian roz 5i szerzony J2 52Zadanie 1 0.03092 0.36787 0.09801 0.12950

Rysunek 4.22: Normy prędkości przegubowych dla odwrotności Jp# i

Rysunek 4.23: Normy prędkości przegubowych dla odwrotności Jp# i
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Rysunek 4.24: Rozwiązanie zadania 2 dla algorytmu typu jakobianu pseudoodwrotnego i jakobianu rozszerzonego
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Rysunek 4.25: Przebiegi prędkości przegubowych w czasie dla Jp# i (zadanie 1)
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Rysunek 4.26: Przebiegi prędkości przegubowych w czasie dla Jp* i (zadanie 2)
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4.4 Metoda wariacyjna — Funkcjonał błędu II

4.4.1 Manipulator POLYCRANKPrzyjrzyjmy się teraz zadaniu aproksymacji określonemu przez funkcjonał błędu (2.37) i zastosujmy go dla manipulatora o 7 stopniach swobody POLYCRANK. Kinematyka robota jest zdefiniowana równaniem (4.2). Stopień redundancji robota s = 1, zatem szu­kamy funkcji rozszerzającej h(x), minimalizującej funkcjonał błędu ^(/i). Niech funkcja rozszerzająca będzie funkcją liniową h(x) = aTx, a E IR7, natomiast obszar całkowania będzie równyQ = {z E R7 0.001 < Xi < + 0.001 < < ^,0 < x3 < tt, 0.001 < x4 <
7T
2’

4- 0.001 < x5 < 7r — 0.001, 0.001 <x6<^,0<x7<n

Dla tak założonych danych optymalna funkcja rozszerzająca przybiera postać
h(x) = —0.19532237 - 0.2918Z2 - 0.504088x4 + 0.504256a?s.Za pomocą tak zdefiniowanej funkcji rozszerzającej możemy zdefiniować jakobian roz­szerzony oraz zdefiniować algorytm typu jakobianu rozszerzonego. Obliczenia przeprowa­dzono dla dwóch zadań. Zadanie pierwsze jest opisane warunkiem początkowym x0 = (0.3, 1.6, 1.2, 1, 2, 0.5, 0.5) i warunkiem końcowym = (0.21, 0.51, 1.5, f)- Nato­miast, drugie zadanie: Xo = (1, 1-7, 0.2, 1.5, 3, 0.5, 3) i yd = (0.21, 0.61, 1.7, |, |, j). Pozostałe parametry potrzebne do obliczeń były takie same dla obu zadań i były równe: współczynnik zbieżności 7 = 3, czas symulacji imax = 5.Rozwiązania powyższych zadań zostały przedstawione na rysunkach 4.27 i 4.28. Rysun­ki 4.29 i 4.30 przedstawiają przebiegi normy prędkości przegubowych w czasie. Natomiast tabela 4.9 zawiera wartości miar jakości aproksymacji (4.11) i (4.12).Tabela. 4.9: Wartości miar jakości aproksymacjiJakobian rozszerzonŷ2Zadanie 1 0.07037 0.18430Zadanie 2 0.16762 0.25195

Analizując wyniki widać, że zadanie aproksymacji zostało rozwiązane poprawnie. Roz­wiązania otrzymane dzięki algorytmowi jakobianu rozszerzonego są bliskie rozwiązaniom algorytmu jakobianu pseudoodwrotnego. Także wartości norm prędkości przegubowych rozwiązań obu algorytmów są do siebie zbliżone.W celu sprawdzenia powtarzalności otrzymanego algorytmu typu jakobianu rozszerzo­nego, wyznaczono trzy punkty w przestrzeni zadaniowej A = (0.21, 0.51, 1.7, |, |),
B = (0.48, 0.22, 1.51, 1, 1, 2) i C = (0.36, 0.20, 1.53, 0.5, 0.5, 3). Zadanie polega na za­kreśleniu przez koniec efektora krzywej zamkniętej zawartej pomiędzy tymi punktami. Rozwiązanie zadania przez algorytm jakobianu pseudoodwrotnego i jakobianu rozszerzo­nego zawierają rysunki 4.31-4.33, z których można wywnioskować, że algorytm typu ja­kobianu rozszerzonego zachowuje cechę powtarzalności, w przeciwieństwie do algorytmu typu jakobianu pseudoodwrotnego.
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Rysunek 4.27: Rozwiązanie zadania 1 dla algorytmów typu jakobianu pseudoodwrotnego i jakobianu rozszerzonego
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Rysunek 4.29: Normy prędkości przegubowych w zadaniu 1 dla jakobianów Jp* i JE*

Rysunek 4.30: Normy prędkości przegubowych w zadaniu 2 dla jakobianów Jp# i JE*

Rysunek 4.31: Sprawdzenie powtarzalności dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)
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Rysunek 4.32: Sprawdzenie powtarzalności dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)

Rysunek 4.33: Sprawdzenie powtarzalności dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)
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4.4.2 MonocyklRozwiążmy zadanie z błędem aproksymacji (2.37) dla robota mobilnego. Obliczenia nu­meryczne przeprowadzimy dla kinematyki monocykla. Schemat robota z odpowiednimi oznaczeniami przedstawia rysunek 4.34.

Rysunek 4.34: Monocykl
Niech x = (a?i, x2, x$) określa pozycję i orientację monocykla poruszającego się po płasz­czyźnie. Kinematyka monocykla jest zdefiniowana za pomocą układu sterowaniacos 0sin £3 00 1 u2

gdzie sterowania Ui i u2 mają znaczenie prędkości liniowej i kątowej robota. Niech horyzont czasowy symulacji będzie imax = T = 2tf, a sterowania przyjmą postać
Ui(i) — ^10 4* Au sini,
u2(t) = A20 + A21 sini, (4.14)tak, że wektor współczynników funkcji sterujących A = (Ai0, Au, A20A21) € IR^.Załóżmy, że warunki początkowe xQ = 0. Wtedy, kinematyka monocykla podlegającego sterowaniu (4.14) jest następująca [56]^o,t(A) = (xia(T), ^(T), ^aCO), (4.15)

gdzie
®u(i) = / (A10 + Au sins) COSZ3A ds, x2x{t) = / (Ai0 + Au sin s) sin x3a ds,

Jo Jo®3A(i) = / (A2q + A2i sins) ds = A2oi + A2i(l - cosi).
JoMając daną kinematykę (4.15), obliczamy jakobian

■W(A) = (A)], (4.16)
(JA
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rT r

JnW = / cosz3A(s) ds, Ji2(A) = / sinscos(s) ds, 
Jo Jo

JisW = ~ / (Aio + Ansins)sinx3A(s)s ds, 
Jo
r

JuW = — / (A10 + An sins) sina?3A(s)(l — cosi) ds, 
Jo

J21W = / sina?3A(s) ds, J22W = / sin s sin ^(s) ds, 
Jo Jo

J23W = - / (Aio + Ansins)cosa;3A(s)sds, 
Jo

r
J24(A) = / (Axo + Au sin s) cos Z3a(s)(1 — cosi) ds,

JoJ3i(A) = 0, J32(A) = 0, T33(A) —2tt, J34(A) = 0.Taka postać Jakobianu (4.16) pozwala na wyznaczenie jego pseudoodwrotności jako/^^(A) — Jx0,tW {^x0,tWJx0,tW) • (4-17)Ponieważ s = 1, kodystrybucja anihilująca (4.17) jest wyrażona przez 1-formę Q(A) = (cui(A), w2(A), u>3(A), w4(A)), której składnikami są_ <714^)^22^) ~ ^12(A)^24(A)Ju(A)J24(A) - Ji4(A)J2i(A)’ w2(A) — 1,
w3 (A) — 0, ^4 (A) — >Ai(A) J24(A) — Ji4(A)J2i(A)Łatwo zauważyć, że aą(A) i w4(A) są dobrze określone, gdy A10 0.Jesteśmy teraz gotowi, aby zdefiniować zadanie aproksymacji: znaleźć funkcję rozsze­rzającą h(x) minimalizującą funkcjonał błędu określony równaniem (2.37). Niech obszar całkowania będzie równyQ = {A € 1R4|O.4 < A10 < 2.5, -0.5 < Au < 2.5, -0.5 < A20 < 2.5, -0.5 < A2i < 2.5} .Zakładając liniową postać funkcji rozszerzającej h(A) = aTA, a następnie posługując się metodą Ritza, otrzymaliśmy następujący wynikh(A) = O.27O289Aio + Au + 0.159457A2i.Rozpatrzmy dwa zadania kinematyki odwrotnej o różnych punktach początkowych. Waru­nek początkowy dla zadania 1 jest równy x0 = (5, 0, |), natomiast dla 2 x0 = (—5, 5, |). Pozostałe parametry potrzebne do obliczeń są takie same dla obu przypadków. Są to: czas symulacji tmax = T = 2tt, współczynnik zbieżności algorytmu 7 = 0.1, współczynniki ste­rowań początkowych Ao = (0.5, —0.25, 0.3, —0.25) i zadany punkt końcowy w przestrzeni zadaniowej yd = (1, 0, —|).Ścieżki (a?i, a?2) w przestrzeni zadaniowej będące rozwiązaniem zadań kinematyki od­wrotnej zostały przestawione na rysunkach: 4.35 dla zadania 1 oraz 4.37 dla zadania 2. Na rysunkach pokazano zarówno rozwiązania dla algorytmu typu jakobianu rozszerzone­go, jak i dla algorytmu typu jakobianu pseudoodwrotnego. Rysunki 4.36 i 4.38 pokazują 



66 4. Przykłady numeryczne — aproksymacja algorytmów...sterowania wygenerowane w kolejnych krokach przez oba algorytmy. Powyższe zadania zostały również rozwiązane w artykule [56], przy zastosowaniu metody geometrycznej. Porównując powyższe wyniki z wynikami zawartymi w artykule, można zauważyć, że ścieżka w przestrzeni zadaniowej zadania 1 uzyskana za pomocą metody geometrycznej jest bliższa rozwiązaniu algorytmu pseudoodwrotnego niż ścieżka otrzymana metodą wa­riacyjną. Z drugiej strony, porównując wyniki otrzymane dla zadania 2 widać, że bardziej dokładna jest metoda wariacyjna, metoda geometryczna zwróciła ścieżkę znacznie odległą od ścieżki algorytmu typu jakobianu pseudoodwrotnego. Zarówno w pierwszym, jak i w drugim przypadku metoda wariacyjna zwraca ścieżki odległe od ścieżek algorytmu typu jakobianu pseudoodwrotnego, ale o podobnym charakterze.

Rysunek 4.35: Ścieżka w przestrzeni zadaniowej dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej) - zadanie 1

Rysunek 4.36: Sterowania A dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej) - zadanie 1
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Rysunek 4.37: Ścieżka w przestrzeni zadaniowej dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej) - zadanie 2

Rysunek 4.38: Sterowania A dla algorytmów typu jakobianu rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej) - zadanie 2
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4.5 Metoda geometrycznaW niniejszym podrozdziale przedstawimy wyniki obliczeń dla metody geometrycznej opi­sanej w podrozdziale 2.3. Metoda ta posłuży nam także do porównań z metodą wariacyjną.
4.5.1 Manipulator POLYCRANKWybierzmy w przestrzeni przegubowej manipulatora obszar konfiguracji nieosobliwych Q i zdefiniujmy jego foliację, której liśćmi są proste równoległe do osi współrzędnych Z4 [54]

Ea,b,c,d = {ai + n} x {02 + 5} x {0:3} x IR. x {a5 + c} x {ag} x {ay},parametryzowaną przez a G IR6 i zależną od parametrów a, b, c 7^ 0, a b, których rolą jest umieszczenie liścia odniesienia Ea^cp = {u} X {5} x {0} x IR x {c} x {0} x {0} odpowiednio daleko od konfiguracji osobliwych. Wtedy, homotopia może być zdefiniowana jakô(z) = tx + (1 — b, c, x4, c, 0)t =
— a) + a, t(x2 — b) + b, t(x5 — c) + c, tx6, tx^ . (4.18)Na tej podstawie obliczamy pole wektorowe (2.38)

d$t(aQ dt
fxi-a\ 
x2 — b0
x5 - c z6 \ *7 /1-forma anihilująca jakobian transponowany, a jednocześnie zgodna z foliacją jest nastę­pująca [54]

/ I4 sin(a?5 — x4) sin(z3 — x2) l4sm(xs — xą) sin(x3 — xi) Ią sin x4 \\ /i sina^ sin(a?2 ~ Zn) ’ Z2 sin a?5 sin(z2 — ^i) ’ ’ ’ Z5 sinx$' ’ /(4-19)Łącząc tę 1-formę z polem wektorowym (4.18) otrzymujemy
= Q(z)X(z) ^2^4^5554532(^1 — n) — lllil-5s54S31{x2 — b) + ^1^2^454521 (^5 — c)

IM5S5S21gdzie Sij = sin(zi — Xj). Następnie, wprowadźmy nowe współrzędne x = (y, z), takie że 
z = x4 zmienia się wzdłuż liści oraz y, = xit i = 1,2,3 i yi+3 = xi+4 dla i = 1,2,3 są poprzeczne do liści. Podążając za procedurą opisaną w rozdziale 2.3, wyznaczamy równanie charakterystyczne (2.45)

dz(t) _ Z4(yi - a) sin(t(y4 - c) + c - z) sin(ty3 - t(y2 - ty - ty !
dt h sin(i(y4 — c) + c) sin(t(y2 - ty + b — t(y3 - a) — a)

l^yi - c) sin z _ Z4(y2 ~ ty sin(t(y4 - c) + c - z) sin(ty3 - - a) - a)
l5 sin(t(y4 - c) + c) l2 sin(t(y4 - c) + c) sin(t(y2 - b) + b - - a) - a)

(4.20)



4.5. Metoda geometryczna 69Niech <p(i,y,-Zo) oznacza strumień (4.20). Funkcja rozszerzająca ń(a;) = h(y,z) okre­ślająca odwrotność jakobianu rozszerzonego spełnia następujące równanie
z = <p(l,y,h(y, z^)i może być obliczona numerycznie. Tak otrzymaną odwrotność jakobianu rozszerzonego zastosujmy do rozwiązania dwóch zadań kinematyki odwrotnej dla POLYCRANKa. Kon­figuracja początkowa dla zadania 1 wynosi x0 = (0.8, 0.1, ^), natomiast punktzadany w przestrzeni zadaniowej yj = (0.30,0.51,1.60, |, |). Analogicznie, drugie za­danie opisane jest przez z0 = (1, ?r, f, 2, |, $) oraz yd = (—0.38,0.65,1.40,7r, |). Liść odniesienia ustalono zakładając a = ^i6 = c—Rozwiązania obu zadań zostały zobrazowane na rysunkach 4.39 i 4.40. Rysunek 4.41 przedstawia kwadrat normy prędkości przegubowych ||±(t)||2 w zależności od czasu dla algorytmów typu jakobianu rozszerzonego i jakobianu pseudoodwrotnego, odpowiednio dla obu zadań.Z rysunków można wywnioskować, iż oba zadania zostały rozwiązane poprawnie. Co więcej, rozwiązania są bliskie rozwiązaniu wynikającemu z zastosowania algorytmu ja­kobianu pseudoodwrotnego. Widać, że w przypadku zadania 2 otrzymane rozwiązanie jest nieznacznie dalsze od rozwiązania jakobianu pseudoodwrotnego niż ma to miejsce w przypadku zadania 1. Także różnice otrzymanych prędkości średnich obu algorytmów w przypadku 2 są większe. Aby wytłumaczyć tę różnicę, na rysunku 4.42 przedstawio­ne są dwie stronice w przestrzeni konfiguracyjnej POLYCRANKa przechodzące przez liście początkowej Ea i końcowej Ey konfiguracji przegubowej, odpowiednio dla zadania pierwszego i drugiego. Widać, że trajektorie przegubowe otrzymane dzięki algorytmowi jakobianu rozszerzonego nie leżą na stronicach przechodzących przez Ea. W przypad­ku gdy trajektoria należałaby do liścia, aproksymacja byłaby idealna. Intuicyjnie mo­żemy stwierdzić, że im trajektoria znajduje się bliżej liścia, tym lepszą otrzymujemy aproksymację. Biorąc pod uwagę zmienność Q jako miarę „bliskości”, możemy obliczyć przyrost AQ = Q(a;(0)) — n(a:(imax)). Zakładając, że imax = 10, dla zadania pierwszego ||AQ|| = 0.490325, natomiast dla zadania drugiego ||AQ|| = 0.755177.Wiadomo, że poprzez swoją postać algorytmy bazujące na jakobianie pseudoodwro- tnym lokalnie minimalizują prędkości w przegubach w trakcie ruchu. Aby sprawdzić efek­tywność jakobianu aproksymującego, na rysunku 4.41 pokazano, że kwadraty normy pręd­kości przegubowych otrzymanych za pomocą obu algorytmów są sobie bliskie. Dodatkowo, w tabeli 4.10 zebrano wartości miar jakości aproksymacji (4.11) i (4.12) przy imax = 10.

Tabela. 4.10: Wartości miar jakości aproksymacjiMetoda geometryczna52Zadanie 1 0.00975 0.05157Zadanie 2 0.02987 0.15749
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Rysunek 4.39: Rozwiązanie zadania 1
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Rysunek 4.40: Rozwiązanie zadania 2
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Rysunek 4.41: Kwadrat normy prędkości przegubowych dla zadania 1 (z lewej) i 2 (z prawej)

Rysunek 4.42: Stronice i trajektorie przegubowe dla zadania 1 (z lewej) i 2 (z prawej)
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4.6 Porównanie metody geometrycznej i wariacyjnejW niniejszym podrozdziale porównamy rozwiązania otrzymane dzięki metodzie geome­trycznej i wariacyjnej z funkcjonałem błędu opisanym równaniem (2.37). Rozwiążemy trzy różne zadania kinematyki odwrotnej dla manipulatora POLYCRANK, każde za pomocą obu wspomnianych metod. Wyprowadzenie algorytmu metodą geometryczną i wszelkie założenia są takie same jak w podrozdziale 4.5.1. Dla metody wariacyjnej założyliśmy obszar całkowania równy
Q = {x € R7 0.001 < XX < + 0.001 < X2 < 7T, 0 < X3 < 7T, 0.001 < Xą < —,

Z Z z— + 0.001 < x5 < 7r — 0.001, 0.001 < x6 <2 2Otrzymana za pomocą metody Ritza (2.60) optymalna, kwadratowa funkcja rozszerzająca przybiera postać
h(x) = 0.860096xi - 0.293629^ - 8.55278x2 - 0.475787xix2 + 0.485924^- 3.26389x3 - 1.04843a;ia:3 + 1.73457x2x3 + 3.1366x4 + 0.354132x!X4+ 0.584715x2x4 + 11.1985x5 + 1.34538xix5 + 2.22106x2x5— 1.60976x4X5 — 4.09794x5.Dla wyznaczonej funkcji rozszerzającej budujemy odpowiedni jakobian rozszerzony oraz algorytm typu jakobianu rozszerzonego.Rozwiązujemy trzy zadania, których odpowiednio punkty początkowe i zadane punkty końcowe w przestrzeni zadaniowej zebrane są w tabeli 4.11.

Tabela. 4.11: Dane potrzebne do obliczeńKonfiguracja początkowa Punkt końcowyZadanie 1 X0 = (1, 7T, TT, f, 2, f, f) yd = (-0.38, 0.64, 1.40, tt, f, f)Zadanie 2 X0 = (1, TT, TT, f, 2, f) yd = (-0.38, 0.56, 1.54, tt, f, f)Zadanie 3 x0 = (0.2, tt, l, 0.3, l + 0.001, l, f) yd= (0.54, 0.07, 1.42, 0.1, f, f)
Rozwiązania powyższych zadań zostały pokazane na rysunkach 4.43, 4.44, 4.45. Rysunki 4.46, 4.47 i 4.48 przedstawiają normy prędkości w czasie ||x(i)||2, natomiast rysunki 4.49, 4.50 i 4.51 obrazują przebiegi prędkości przegubowych i(t). W tabeli 4.12 zostały zebrane wartości miar jakości aproksymacji (4.11) i (4.12) przy tmax = 10.

Tabela. 4.12: Wartości miar jakości aproksymacjiMetoda wariacyjna Metoda geometryczna
52 5i 52Zadanie 1 0.08859 0.42052 0.02987 0.15749Zadanie 2 0.00847 0.11291 0.02202 0.12887Zadanie 3 0.06308 0.69200 0.04123 0.90550



74 4. Przykłady numeryczne — aproksymacja algorytmów...Analizując wyniki można zaobserwować, że zarówno algorytm uzyskany metodą geome­tryczną, jak i algorytm otrzymany za pomocą metody wariacyjnej zadowalająco rozwiąza­ły rozważane zadania. Co więcej, otrzymane rozwiązania są bliskie rozwiązaniu otrzyma­nym za pomocą algorytmu typu jakobianu pseudoodwrotnego. Jednakże, jakość aproksy-

Rysunek 4.43: Rozwiązanie zadania 1



4.6. Porównanie metody geometrycznej i wariacyjnej 75macji otrzymanej za pomocą metody geometrycznej zależy od zmienności 1-formy (4.19) w obrębie stronic w przestrzeni konfiguracyjnej. W metodzie geometrycznej, funkcja roz­szerzająca obliczana jest numerycznie tylko w konfiguracjach wygenerowanych przez al­gorytm kinematyki odwrotnej. Inaczej jest w metodzie wariacyjnej, gdzie uzyskuje się

Rysunek 4.44: Rozwiązanie zadania 2



76 4. Przykłady numeryczne — aproksymacja algorytmów...analityczną postać funkcji rozszerzającej na pewnym obszarze przestrzeni konfiguracyj­nej. Zaletą stosowania metody geometrycznej jest stosunkowo krótki czas obliczeń, z dru­giej jednak strony, funkcja rozszerzająca, jest zależna od zadania. Z tego powodu, musi być ona wyliczana każdorazowo dla kolejnego zadania. Obliczenia dla metody wariacyjnej są bardziej czasochłonne, lecz raz wyznaczona optymalna funkcja rozszerzająca pozwala rozwiązać wiele zadań, niezależnie od ich postaci.

Rysunek 4.45: Rozwiązanie zadania 3
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Rysunek 4.46: Normy prędkości przegubowych w zadaniu 1

Rysunek 4.47: Normy prędkości przegubowych w zadaniu 2
IWI2
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Rysunek 4.48: Normy prędkości przegubowych w zadaniu 3
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Rysunek 4.49: Prędkości przegubowe otrzymane dla zadania 1
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Rysunek 4.50: Prędkości przegubowe otrzymane dla zadania 2
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4.7 Aspekty obliczeniowePrzytoczmy kilka spostrzeżeń związanych z implementacją metod aproksymacji algoryt­mów jakobianowych. Wszystkie obliczenia numeryczne zostały przeprowadzone w progra­mie MATHEMATICA.W obliczeniach odnoszących się do metody Ritza, postać funkcji rozszerzającej była wybierana w klasie funkcji liniowych, kwadratowych i 3-stopnia. Uzyskane wyniki wska­zują na to, iż jakość aproksymacji stosunkowo nieznacznie wzrasta wraz ze wzrostem stopnia wielomianu. Z drugiej strony, zwiększenie stopnia wielomianu wiąże się z istotnie większym nakładem obliczeniowym. Dla manipulatora POLYCRANK (on = 7 stopniach swobody) liczba współczynników a 6 IRP dla liniowej funkcji rozszerzającej jest równa 
p = 7, dla kwadratowej p = 35, a w przypadku funkcji wielomianowej trzeciego stopnia wynosi p = 120. Zgodnie z (2.55), (2.59), wyznaczenie optymalnych wartości współczyn­ników polega na obliczeniu macierzy wymiaru p x p i wektora p X 1, których elementami są całki n-krotne. W związku z tym, czas obliczeń w przypadku funkcji liniowej jest na­wet piętnastokrotnie krótszy niż dla funkcji kwadratowej. Reasumując, biorąc pod uwagę nieznaczną poprawę jakości aproksymacji wraz ze wzrostem stopnia wielomianu i znacz­ny wzrost czasu obliczeń w zależności od p jest racjonalne, żeby w tych przypadkach, reprezentować funkcję rozszerzającą za pomocą wielomianu pierwszego stopnia.Przeprowadzone badania porównawcze aproksymacji algorytmów jakobianowych dla kinematyki w SE(3) i dla kinematyki wyrażonej we współrzędnych wykazują, że z punk­tu widzenia jakości aproksymacji obie reprezentacje kinematyki dają zbliżone wyniki. Jednakże, czas potrzebny na otrzymanie optymalnej funkcji rozszerzającej w przypadku kinematyki w SE(3) jest około dwa razy krótszy niż w przypadku kinematyki we współ­rzędnych. Daje to preferencje reprezentacji kinematyki bez współrzędnych.Porównując efektywność aproksymacji otrzymanej metodą geometryczną i metodą wa­riacyjną można dojść do w wniosku, że obie metody dają zadowalające wyniki. Jednak­że, jakość aproksymacji uzyskanej metodą geometryczną zależy od zmienności 1-formy w obrębie stronic w przestrzeni stanu. W metodzie geometrycznej, funkcja rozszerzają­ca obliczana jest numerycznie tylko w konfiguracjach wygenerowanych przez algorytm kinematyki odwrotnej. Inaczej jest w metodzie wariacyjnej, gdzie uzyskuje się analitycz­ną postać funkcji rozszerzającej na pewnym obszarze przestrzeni konfiguracyjnej. Badania wykazały, że w przypadku manipulatora POLYCRANK, czas potrzebny na obliczenia me­todą wariacyjną był od pięciu razy (dla liniowej funkcji rozszerzającej) do sześćdziesięciu razy (dla kwadratowej funkcji rozszerzającej) dłuży niż dla metody geometrycznej. Zale­tą zastosowania metody geometrycznej jest stosunkowo krótki czas obliczeń, ale w tym przypadku funkcja rozszerzająca musi być wyliczana dla każdego zadania indywidualnie. Wariacyjne zadanie optymalizacji jest bardziej czasochłonne obliczeniowo, jednak otrzy­mana funkcja rozszerzająca może być zastosowana do wielu różnych zadań, niezależnie od punktu początkowego i docelowego.





Rozdział 5

Przykłady numeryczne — zadanie 
reprodukcji trajektorii

5.1 Zadanie reprodukcji trajektorii stanuW tym podrozdziale przedstawimy wyniki obliczeń numerycznych dla afinicznych układów sterowania. Dla uproszczenia przyjmiemy założenie BT(t)B(t) = Im, które jest spełnione w modelach użytych do obliczeń, ale także, na przykład, w przypadku samochodu kine­matycznego. W rozdziale zawarte są przykłady reprodukcji trajektorii stanu i wyjścia. Obliczenia numeryczne będziemy przeprowadzać na modelach podwójnego integratora, kinematyki monocykla, dynamiki łyżwiarza Czapłygina i kuli kinematycznej.
5.1.1 Podwójny integratorZacznijmy od bardzo prostego przykładu. Podwójny integrator jest układem liniowym, opisanym równaniem 0

1
0 10 0 x +x = = Ax + Bu,co oznacza, że niezależnie od 9 i t, = A i Bg(t) = B. Korzystając z tej obserwacji i z faktu, że BTB = 1, uzyskujemy równanie reprodukcji (3.13) w następującej postaci [55]

d2u(t, 0) duft^ du(t,0) . . .. . .7 + a + 7—K-2 + a7^(t, 0) = 7^d2(t) +
dtd0 00 otz warunkami brzegowymi u(t, 0) = u^t) i u(O,0) będącym rozwiązaniem równania

dUg0 + 7«(0,0) = 7^(0).

Rozwiązanie powyższego zagadnienia brzegowego prowadzi do wyznaczenia funkcji steru­jącej, pod wpływem której jest realizowana zadana trajektoria. Zgodnie z ideą metody homotopii, rozwiązanie zadania oryginalnego otrzymuje się dla 0 —* +oo. Dla przykładu, wybierzmy trajektorię zadaną w postaci cykloidy Xdi(t') = t — sini, Xdi{t) = 1 — cos i. Naszym zadaniem jest wyznaczenie sterowania reprodukującego tę trajektorię. W imple­mentacji numerycznej współczynniki w funkcji homotopii wynoszą odpowiednio: a — 1, 7 = 0.2, czas obliczeń tmax = 20, warunek początkowy z(0) = (0, 0), sterowanie po­czątkowe u(t,0) = 0.2. Przeprowadzono obliczenia dla różnych wartości współczynnika 
0. Otrzymane wyniki są zgodne z oczekiwaniem, że dla większych wartości 0, uzyskana



84 5. Przykłady numeryczne — zadanie reprodukcji trajektoriitrajektoria ruchu jest bliższa zadanej. Na rysunku 5.1 przedstawiono ścieżkę wyliczoną i zadaną dla dwóch różnych wartości 9, natomiast na rysunkach 5.2 i 5.3 pokazano roz­wiązanie równania reprodukcji i otrzymaną funkcją sterującą.

Rysunek 5.1: Wyliczona i zadana ścieżka ruchu dla podwójnego integratoraprzy 9 = 10 i 0 = 40

Rysunek 5.2: Rozwiązanie równania reprodukcji i otrzymane sterowanie dla 0 = 10

Rysunek 5.3: Rozwiązanie równania reprodukcji i otrzymane sterowanie dla 9 = 40
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5.1.2 MonocyklKolejnym przykładem, dla którego rozwiążemy zadanie reprodukcji trajektorii stanu jest model kinematyki monocykla poruszającego się bez poślizgu bocznego. Model monocykla pojawił się w podrozdziale 4.4.2, dla kompletności, przypomnijmy równanie kinematykiii = Ui COS X3 ż2 = Ui sinzs ±3 = U2,gdzie Xi, x2 są współrzędnymi położenia, x3 jest orientację robota, natomiast sterowania 
Ui i u2 oznaczają odpowiednio prędkość wzdłużną i kątową.Teraz, przy zadanym (u(t), x(t\), wyznaczmy macierze przybliżenia liniowego dla po­wyższego modelu —Ui (i) sin x3(t) Ui(t) COS X3(t) 0oraz cos x3(i) sinz3(£) 0 0'0

1Jak łatwo zauważyć, warunek BT(t)B(t) = I2 jest spełniony. Korzystając z niego oraz po wyliczeniu
#) =

—Ui(t) sinawi) — Ui(i)u2(i) cosa^t) ui(t) cosa?3(t) — ui(t)u2(i) sina?3(ż) 0
W) =

-u2(i) sin z3(i) 0’u2(i) cos x3 (t) 00 0i dokonaniu odpowiednich podstawień w (3.13), otrzymujemy równanie reprodukcji tra­jektorii monocykla [55]
d2u(t,0) Ta a-1ui(i,0)u2(i,0)1 du(t,e) dufae) 

dtdO + [o a ] dd + 7 dt

a e)u2{t, 0) 
a

u(t, 0) = 7 cos ^(t, 0) 0 sinawi,0) 00 1
x (xd(t} + + 7 ui(t, 0)u2(i, 0) (id3 ~ (x3(t, 0) - Xd3^) 

0Warunek brzegowy u(t, 0) = Uo(i), a warunek początkowy u(0,0) jest rozwiązaniem linio­wego równania różniczkowego cos = 7du(0, 0)L ^+7u(O,0)
(7(7

zd3(0) sinzd3(0) 0 żd(0).

0 0
0 o 
o o

0 0 1Podobnie jak w poprzednim przykładzie, rozwiązujemy zadanie reprodukcji z warunkiem brzegowym, dla trajektorii Xdi(t) = sini, Xd2 = 1 — cos i, Xd3(t) = t definiującej okrąg



86 5. Przykłady numeryczne — zadanie reprodukcji trajektoriio środku w punkcie (zi, Z2) = (0, 1) i promieniu 1. W poprzednim przykładzie poka­zaliśmy wpływ współczynnika 0 na jakość otrzymywanych wyników. Dla kompletności, przedstawimy wyniki obliczeń dla różnych wartości współczynnika a. Pozostałe parame­try są następujące: 7 = 1, czas symulacji tmax = 30, 6 = 100, warunek początkowy Zi(0) = 0, £2(0) = 0, z3(0) = 0 oraz u^t, 0) = u^t, 0) = 1. Na rysunku 5.4 pokazaliśmy wyliczoną i zadaną ścieżkę robota na płaszczyźnie dla dwóch wartości parametru a = 50 i a = 1500. Uzyskane wyniki pokazują, że wzrost a zwiększa prędkość zbieżności wyliczo­nej ścieżki ruchu do ścieżki zadanej. Rozwiązanie równania reprodukcji oraz otrzymane sterowanie dla różnych a przedstawiają rysunki 5.5 - 5.8.

Rysunek 5.4: Wyliczona i zadana ścieżka ruchu dla monocykla przy a = 50 i 0 = 1500

Rysunek 5.5: Rozwiązanie równania reprodukcji dla monocykla przy a = 50

Rysunek 5.6: Otrzymane sterowanie dla monocykla przy a = 50
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Rysunek 5.7: Rozwiązanie równania reprodukcji dla monocykla przy a = 1500

Rysunek 5.8: Otrzymane sterowanie dla monocykla przy a = 1500
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5.1.3 Łyżwiarz CzapłyginaPoniższy przykład obrazuje rozwiązanie zadania reprodukcji trajektorii stanu dla układu z dynamiką. Rysunek 5.9 przedstawia łyżwiarza Czapłygina [8], którego równanie dyna­miki jest określone przez afiniczny układ sterowania z dryfem
/żĄ 
±2 
Ż3 
±4 
w

XąCOS Xs 
xą sin Xs 

x5 COS X3 o

o0001 = + G(x)u. (5.1)
W układzie (5.1) współrzędne Xi, X2, X3 oznaczają odpowiednio położenie oraz orienta­cję łyżwiarza, £4 jest prędkością liniową a £5 określa prędkość kątową, ui i u2 to siły zewnętrzne działające na łyżwiarza.

Rysunek 5.9: Łyżwiarz Czapłygina
Macierze przybliżenia liniowego wzdłuż pary sterowanie-trajektoria x{t)) są nastę­pujące

0 0 — X4(t) sina^ż) cosx3(t) 0 0 0'0 0 a^i) cos a?3 (i) sinawi) 0 0 0
W) = 0 0 0 0 1 0 00 0 — sinawi) 0 0 1 000 0 00. 0 1

oraz odpowiednie pochodne względem czasu t

’0 0 —Ż4 (i) sinawi) — a^i) cosa^i)^^) -sina?3(i)a;3(i) 0‘0 0 cosa^i) — jc4(i) sina73(t)ź3(t) cosa:3(t)±3(t) 0
#) = 0 0 0 0 00 0 — cosa^ja^i) 0 00 0 0 0 0
W) = 0] 5x2 'Korzystając z własności BT(i)B(i) = I2 oraz korzystając z powyższych obliczeń, równanie



5.1. Zadanie reprodukcji trajektorii stanu 89reprodukcji trajektorii dla łyżwiarza Czapłygina przyjmuje następującą postać
d2u(t, 0) 

dtdd

—a 2 005(2:3)2:3] du(t, 0) du(t, 0) Tl —a 3 cos(x^X3
a ^“+7^-+7“0 1

®4d _^5d_ 0 0 7 (—a 1 cos(x3)ż3 — sin(a?3))0 0 0 ya 2 COs(x3^X3

—ay0 —a 1 cos(x3)i3 — sin(z3) 0 a 2 003(2:3)^30 0 0 07(—acos(a?3) a 1 cos(a?3)±3x5) 0 (5-2)
+ 7«

a 0

z następującym warunkiem brzegowym u(t, 0) = Uo(t) oraz ^(0, 0) będącym rozwiązaniem/ 2:4(0) cos m3(0)3u(0,9) . .+ 7«(0,9) = 7
Ov

0 0 0 1 0'0 0 0 0 1 żd(0) - 2:4(0) sin 2:3(0) 2:5(0) cos 2:3(0)y 0 )

(5-3)
Rozwiązując równanie reprodukcji (5.2) z warunkiem brzegowym (5.3), przy 9 —> +oo otrzymamy funkcję sterującą, która będzie generowała zadaną trajektorię. Niech trajek­toria zadana określona będzie jako Xdi = exp(—i)(cos i — sini) +|(—3 — cos(2f) + 8 sin i), 
Xd2^t) = exp(—f)(cost + sini) + |(2 + i — cos i (4 +sin i)), Xd3^) = i, ZdAfy = exp(—i)(—2 + 2expi + expf sinf), Xd$(t) = 1. Pozostałe parametry są równe a = 0.4, 7 = 0.2, czas symulacji tmax = 20, warunki początkowe z(0) = (0, 0, 0, 0, 1) oraz u(^,0) = (2, 2). Ob­liczenia wykonano dla dwóch wartości 9 = 35 oraz 9 = 70. Rysunek 5.10 przedstawia trajektorie łyżwiarza dla dwóch wartości 9. Rysunki 5.11, 5.13 ilustrują rozwiązanie rów­nania reprodukcji, natomiast 5.12 i 5.14 pokazują otrzymane funkcje sterujące. Przebiegi poszczególnych zmiennych stanu w czasie zostały ukazane na rysunkach 5.15 oraz 5.16.

Rysunek 5.10: Trajektoria łyżwiarza Czapłygina dla 9 = 35 (z lewej) oraz dla 9 = 70 (z prawej)



90 5. Przykłady numeryczne — zadanie reprodukcji trajektorii

Rysunek 5.11: Rozwiązanie równania reprodukcji trajektorii dla 0 = 35

Rysunek 5.12: Otrzymane funkcje sterujące dla 0 = 35

Rysunek 5.13: Rozwiązanie równania reprodukcji trajektorii dla 0 = 70

Rysunek 5.14: Otrzymane funkcje sterujące dla 9 = 70



5.1. Zadanie reprodukcji trajektorii stanu 91Analizując otrzymane wyniki możemy stwierdzić, że już przy niewielkich wartościach parametru 0 = 70 zadanie reprodukcji trajektorii stanu łyżwiarza Czapłygina zostało rozwiązane poprawnie. Wartość parametru, dla którego otrzymane funkcje sterujące bę­dą zwracały trajektorię wystarczająco bliską trajektorii zadanej, zależy od modelu, dla którego rozwiązujemy zadanie reprodukcji trajektorii.

Rysunek 5.15: Przebiegi zmiennych stanu w czasie dla łyżwiarza przy 0 = 35
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Rysunek 5.16: Przebiegi zmiennych stanu w czasie dla łyżwiarza przy 0 = 70
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5.2 Zadanie reprodukcji trajektorii wyjścia

Jako ilustrację działania algorytmu reprodukcji trajektorii dla afinicznego układu stero­wania z wyjściem przedstawimy wyniki obliczeń numerycznych dla kuli kinematycznej.
5.2.1 Kula kinematycznaKinematyka kuli toczącej się po płaszczyźnie wyprowadzona w [8,28] jest reprezentowana przez bezdryfowy układ sterowania

±3 ±4 W

sin Xą sin x5 — sin xą cos X5 1 0— COS Xą

COS X5 sin x5 01 0
(5-4)

y = = (aą, x2),
gdzie Xi i x^ są współrzędnymi pozycji punktu kontaktu P kuli z podłożem w ukła­dzie kartezjańskim, x$ i x^ są współrzędnymi sferycznymi tego punktu w układzie kuli a z5 opisuje orientację kuli względem globalnego układu odniesienia X0Y0Z0. W efekcie współrzędne stanu są następujące x = (x, y, 0, 0, i reprezentują pozycję i orienta­cję kuli w globalnym układzie odniesienia. Rysunek 5.17 przedstawia kulę kinematyczną z naniesionymi współrzędnymi i trzema układami współrzędnych: globalnym X0Y0Z0, kuli 
XbYbZb i układem umieszczonym w punkcie kontaktu XpYpZp. Należy tutaj podkreślić,

Rysunek 5.17: Kula kinematyczna
że równania (5.4) obowiązują w przypadku, gdy kula nie toczy się przez bieguny północ­ny i południowy, zakładamy więc, że 0 < x± < 7F. Obliczmy teraz macierze przybliżenia
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4(i) =

5G(x(t))u(i) 
dx 0 0 0 cos 2:4 (i) sinawi)0 0 0 Ui(£) cosa^i) cosa^i)0 0 0 00 0 0 00 0 0 Ui(£) sinawi)

ui (i) sin x4 (i) cos x5(t) — U2 (i) sin x5 (i) ui(i) sinawi) sinawi) + u2(i) cosa?5(f) 000sin x4(B) sin a^f) cos x$ (t)— sin x4 (t) cos x5 (i) sin x5 (ż)
= G(x^ = 1 00 1— COS X4(t) 0Macierz wyjścia jest stała

C(t) = C =
10 0 00 10 0 0’0Łatwo jest sprawdzić, że macierz N(t) = CB(t) jest odwracalna dla każdej funkcji steru­jącej pod warunkiem, że 0 < x4 < 7r.Będziemy rozpatrywać następujące zadanie planowania trajektorii dla kuli kinema­tycznej: mając zadaną trajektorię wyjścia na płaszczyźnie znaleźć sterowanie u(t), które będzie reprodukowało tą trajektorię, z określonego punktu początkowego x0.Korzystając z odwrotności macierzy i równania (3.13), możemy wyznaczyć rów­nanie reprodukcji trajektorii dla kuli kinematycznej

d2u(t,0) a + 2ctgZ4(£, 0)u2(i, 0) 2 ctga^ż, 0)ui(i, 0) 3u(i,0)
dtdO + — 2 cos a^i, 0) sinawi, 0)ui(f,0) a d0

7 dt + 7(0 + ctga^i, 0)u2(ż, 0)) 7ctgX4(t, 0)u4{t, 0)—7cos $4(i, 0)u4(t, 0) ay u(t, 0}

+ 0 0 00 0 0 014 O15024 025 = 7 sinx5(t,6) __ coss5(t,0)sina:4(t,0) sin®4(t,0)cos Z5 (t, 0) sin X5(i, 0) (yd(t) + ayd(i)), (5-5)
gdzie 014 = wi(^ 0)(actga;4(i, 0) — 2u2(i, 0)) + ctga^i, 0)ui(t, 0),

015 — 1sin x4(t, 0)
(— cosa?4(t, 0) sin x4(t, 0)u2(t, 0) + au2(t, 0) + u2(Ł 0)),024 = o2(t, 0)(— cos2 x4(t, 0) + sin2 x4(t, 0)),®25 = 2 cos x4(i, 0)ui(t, 0)u2(t, 0) + sinawi, 0){au4(t, 0) + Ui).Symbol u oznacza pochodną po czasie Równanie (5.5) razem z równaniem kine­matyki (5.4) i równaniem wariacyjnymżeW = G(a;0(i))ue(i) &(t) = At(lW) +



5.2. Zadanie reprodukcji trajektorii wyjścia 95definiuje układ reprodukcji trajektorii wyjścia dla kuli kinematycznej [21]. Układ ten powinien być rozwiązywany przy warunkach początkowych ^(0) = xq, £g(0) = 0 oraz warunkach brzegowych u(t, 0) = Uo(t) i rz(0,0) = rze(O) będącego rozwiązaniem poniższego liniowego równania różniczkowego zwyczajnegodu(0,0) .——- + 7u(0,0) = 7
UC7

sin 35(0)
sin 24(0)COS Z5(0) _ cos ag (0) 

sin 14(0) sinz5(0) (yd(0) -a(w(xo))-yd(0)).

Rozwiążmy zadanie reprodukcji trajektorii. Niech zadana trajektoria będzie okręgiem 
ydi^ = tg 1 — cos(tcos 1) tg 1, yd2(t) — sin(£ cos 1) tg 1; warunki początkowe x(0) = (0, 0, 0 — 1, 0), czas symulacji tmax = 20, 7 — 1 i warunek początkowy na sterowanie ^o(^) — (1> 1)- Otrzymane rozwiązania numeryczne dla dwóch a: a = 50 i a = 200 oraz dwóch wartości parametru 6: 0 = 5 ■ 103 i 0 = 105 zostały przedstawione na rysunkach 5.18-5.25. Również w tym przypadku można zaobserwować, że dla większych wartości 0 otrzymane rozwiązanie jest bliższe trajektorii zadanej.Zauważmy, że układ reprodukcji trajektorii gwarantuje reprodukcję klasy C°. Oznacza to, że otrzymane funkcje sterujące są bliskie rzeczywistym w sensie C°.

Rysunek 5.18: Trajektoria punktu kontaktu dla a = 50, 6 = 5 • 103 (z lewej) oraz dla 
a = 50, 0 = 105 (z prawej)

0.6

0.4

Rysunek 5.19: Sterowania dla a = 50, 0 — 5 • 103
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Rysunek 5.20: Sterowania dla a = 50, 0 — 105

Rysunek 5.21: Rozwiązanie równania reprodukcji trajektorii dla a = 50, 6 = 105

Rysunek 5.22: Trajektoria punktu kontaktu dla a = 200, 0 = 5- 103(z lewej) i dla
a = 200, 0 = 105 (z prawej)
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0,6

0.4

Rysunek 5.23: Sterowania dla a = 200, 9 = 5 • 103

U]

1 .0 ■-----------------------------------------------------------------------------------------------

0.8

0.6

0.4
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5 10 15 20Rysunek 5.24: Sterowania dla a = 200, 9 = 105

Rysunek 5.25: Rozwiązanie równania reprodukcji trajektorii dla a = 200, 9 — 105





Rozdział 6

Podsumowanie

W pracy wyprowadzono i przebadano różne algorytmy aproksymacji algorytmów plano­wania ruchu robota. W pierwszej części, celem zadania aproksymacji było otrzymanie algorytmu typu jakobianu rozszerzonego, aproksymującego inny algorytm jakobianowy. Ze względu na pożądane cechy, skupiono się na aproksymacji algorytmu typu jakobia­nu pseudoodwrotnego. Otrzymane algorytmy posiadają, oprócz powtarzalności, szybką zbieżność i własność minimalizacji prędkości przegubowych w trakcie ruchu, co charak­teryzuje algorytm typu jakobianu pseudoodwrotnego. Wyprowadzono dwa różne kryte­ria aproksymacji oparte na pojęciach rachunku wariacyjnego. Udowodniono, że pierwsze z tych kryteriów może być stosowane zarówno do kinematyki wyrażonej we współrzęd­nych, jak i opisanej jako odwzorowanie w grupę SE(3). Podstawą sformułowania zadania aproksymacji przy pomocy pojęć rachunku wariacyjnego było, w pierwszym przypadku, zdefiniowanie miary odległości pomiędzy dwoma odwrotnościami jakobianu odwrotnymi. Natomiast w drugim wypadku, funkcjonał błędu został zdefiniowany jako miara odległości odpowiednich kodystrybucji stowarzyszonych z odwrotnościami jakobianów. Przez mini­malizację funkcjonałów błędu aproksymacji ze względu na funkcję rozszerzającą otrzy­muje się algorytm typu jakobianu rozszerzonego będący przybliżeniem algorytmu typu jakobianu pseudoodwrotnego. Przyjęto, że we wszystkich przypadkach zadanie aproksy­macji rozwiązywane jest na zbiorze nieosobliwych konfiguracji robota. Otrzymane zadania aproksymacji można rozwiązać korzystając z równania Eulera-Lagrange’a lub z metody Ritza. Równanie Eulera-Lagrange’a prowadzi do układu liniowych, eliptycznych równań różniczkowych cząstkowych. W przypadku robotów o większej liczbie stopni swobody ko­nieczne okazało się zastosowanie metody Ritza. W celach porównawczych, przedstawiono podejście pochodzące z geometrii różniczkowej, które jest oparte na aproksymacji kody­strybucji reprezentujących odwrotności jakobianów. Celem aproksymacji było znalezienie kodystrybucji pokrywającej się z daną kodystrybucją na pewnym obszarze przestrzeni konfiguracyjnej robota.Wszystkie uzyskane w pracy algorytmy przetestowano w badaniach symulacyjnych. Badania te pokazały, że można zbudować algorytm typu jakobianu rozszerzonego, któ­ry jest w określonym sensie bliski algorytmowi jakobianu pseudoodwrotnego. Wykazano także, że dla metody geometrycznej, jakość aproksymacji zależy od odległości trajektorii przegubowej (konfiguracyjnej) od liścia związanego z punktem początkowym. Obliczenia numeryczne pokazały, że dla pewnych zadań trajektorie przegubowe generowane przez algorytm typu jakobianu rozszerzonego otrzymanego metodą wariacyjną mogą być sto­sunkowo odległe od rozwiązań algorytmu typu jakobianu pseudoodwrotnego. Niemniej jednak, nawet w najgorszym przypadku, uzyskane trajektorie były bliższe niż rozwiąza­nia otrzymywane za pomocą nieoptymalnego algorytmu typu jakobianu rozszerzonego.



100 6. PodsumowaniePokazano, że ponieważ aproksymację przeprowadza się nad wskazanym obszarem kon­figuracji i daje ona przybliżenie w sensie średnim, zawężenie tego obszaru w sposób de­dykowany konkretnemu zadaniu poprawia jakość aproksymacji. Odbywa się to jednak kosztem utraty ogólności i uniwersalności algorytmu.W pracy zawarto wnioski dotyczące implementacji przedstawionych algorytmów. W obliczeniach korzystających z metody Ritza reprezentacja funkcji rozszerzającej w postaci wielomianu pierwszego stopnia okazała się najbardziej efektywna. Spośród dwóch repre­zentacji kinematyki, mniej czasochłonne jest otrzymanie rozwiązywania zadania aproksy­macji zdefiniowanego dla kinematyki w SE(3). Wreszcie, porównując metodę wariacyjna i geometryczną można wywnioskować, że obie metody dają zadowalające wyniki. Zale­tą zastosowania metody geometrycznej jest stosunkowo krótki czas obliczeń, ale funkcja rozszerzająca musi być wyliczana dla każdego zadania indywidualnie. Wariacyjne zadanie optymalizacji jest bardziej czasochłonne obliczeniowo, jednak otrzymana funkcja rozsze­rzająca jest bardziej uniwersalna.W drugiej części rozprawy opisano zastosowanie metody homotopii do zadania re­produkcji trajektorii wyjścia lub stanu układu robotycznego. Wyprowadzono równanie reprodukcji dla afinicznego układu sterowania z wyjściem. Równanie reprodukcji trajek­torii jest równaniem różniczkowym cząstkowym o zmiennej zależnej będącą funkcją ste­rującą. Poszukiwana funkcja sterująca, dla której układ realizuje zadaną trajektorię, jest otrzymywana w granicy przy parametrze 9 —* +oo. Algorytm przetestowano w badaniach symulacyjnych. Zgodnie z oczekiwaniem, wraz ze wzrostem wartości parametru 9 wzrasta dokładność reprodukcji. Jak wykazały badania, satysfakcjonujące rozwiązanie otrzymuje się często przy stosunkowo niewielkich wartościach parametru 9. Wartość tego parametru zależy od modelu, dla którego rozwiązujemy zadanie reprodukcji trajektorii. Otrzymana funkcja sterująca jest przybliżeniem rzeczywistej w sensie C°.Wyniki otrzymane w pracy stanowią uzasadnienie tezy sformułowanej we Wstępie.Na podstawie przeprowadzonych badań można nakreślić kierunki prac na przyszłość. W dziedzinie aproksymacji algorytmów jakobianowych będą to:• rozszerzenie metody aproksymacji na inne algorytmy jakobianowe,• uwzględnienie osobliwości algorytmicznych w funkcjonale jakości aproksymacji,• rozszerzenie zastosowań metody na manipulatory mobilne i inne układy robotyczne,• opracowanie metody aproksymacji wzdłuż trajektorii,• usprawnienie obliczeń numerycznych dla metod wariacyjnych.Jeżeli chodzi o zastosowanie metody homotopii do rozwiązania zadania reprodukcji tra­jektorii:• osłabienie założeń, przy których wyprowadzono równanie reprodukcji,• opracowanie metody reprodukcji w sensie Ck, k > 1.



Bibliografia

[1] E. L. Allgower, K. Georg. Numerical Continuation Methods: an Introduction. Springer-Verlag New York, Inc., Nowy Jork, 1990.[2] E. L. Allgower, K. Georg. Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics, 2003.[3] F. Alouges, Y. Chitour, R. Long. A motion planning algorithm for the rolling-body problem. Proc. 48th IEEE CDC/CCC Conference, strony 2112-2116, grudzień 2009.[4] J. Angeles. Fundamentals of Robotic Mechanical Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, wydanie 2, 2002.[5] V. Arnol’d, M. Levi. Geometrical Methods in the Theory of Ordinary Differential 
Eguations. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1988.[6] S. Axler, P. Bourdon, W. Ramey. Harmonie Function Theory. Springer, 2001.[7] J. Baillieul. Kinematic programming alternatives for redundant manipulators. Proc. 
IEEE Int. Conf. Rob. Automat., strony 818-823, St. Louis, 1985.[8] A. Bloch. Nonholonomic Mechanics and Contro! Interdisciplinary applied mathe­matics: Systems and control. Springer-Verlag, 2003.[9] R. Brockett, M. Mesarovic. The reproducibility of multivariable Systems. J. Maths. 
Analysis and Applications, 11:548-563, 1965.[10] P. Chang. A closed-form solution for inverse kinematics of robot manipulators with redundancy. IEEE Journal on Robotics and Automation, 3(5):393-403, 1987.[11] A. Chelouah, Y. Chitour. On the motion planning of rolling surfaces. Forum Mathe- 
maticum, 15(5):727-758, 2006.[12] S. Chiaverini, G. Oriolo, I. D. Walker. Kinematically redundant manipulators. Sprin­
ger Handbook of Robotics, strony 245-268. Springer-Verlag, Berlin, 2008.[13] Y. Chitour. A continuation method for motion-planning problems. ESAIM: Control, 
Optimisation and Calculus of Variations, 12:139-168, 2006.[14] Y. Chitour, H. J. Sussmann. Line-integral estimates and motion planning using the continuation method. J. Baillieul, S. S. Sastry, H. J. Sussmann, redaktorzy, Essays 
on Mathematical Robotics, strony 91-125. Springer-Yerlag, 1998.



102 BIBLIOGRAFIA[15] A. W. Divelbiss, S. Seereeram, J. T. Wen. Kinematic path planning for robots with holonomic and nonholonomic constraints. J. Baillieul, S. Sastry, H. Sussmann, redak­torzy, Essays on Mathematical Robotics, strony 127-150, New York, 1998. Springer- Verlag.[16] A. W. Divelbiss, J. T. Wen. A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Trans. Robot, and Autom., 13(3):443-451, 1997.[17] I. Gel’fand, S. Fomin, R. Silverman. Calculus of Variations. Selected Russian publi- cations in the mathematical Sciences. Prentice-Hall, 1965.[18] P. Hartman. Ordinary differential equations. Birkhauser, Boston, 1973.[19] S. Hildebrandt, M. Giaąuinta. Calculus of Variations I. Springer, 2004.[20] C. Hillermeier. Nonlinear Multiobjectiue Optimization: a Generalized Homotopy Ap­
proach. International series of numerical mathematics. Birkhauser Verlag, 2001.[21] J. Karpińska, K. Tchoń. Continuation method approach to trajectory planning in robotic systems. Proc. 16th International Conference on Methods and Models in 
Automation and Robotics, strony 51-56, 2011.[22] J. Karpińska, K. Tchoń. Optimal extended Jacobian inverse kinematics algorithm with application to attitude control of robotic manipulators. K. Kozłowski, redaktor, 
Robot motion and control 2011; Lecture Notes in Control and Information Sciences. Springer-Verlag, 2011. w druku.[23] J.-O. Kim, P. Khosla. Real-time obstacle avoidance using harmonie potential func- tions. IEEE Transactions on Robotics and Automation, czerwiec 1992.[24] C. A. Klein, L.-C. Chu. Comparison of extended Jacobian and Lagrange multiplier based methods for resolving kinematic redundancy. Journal of Intelligent and Robotic 
Systems, 19(l):39-54, 1997.[25] C. A. Klein, C. Chu-Jeng, S. Ahmed. A new formulation of the extended Jacobian method and its use in mapping algorithmic singulairties for kinematically redundant manipulators. IEEE Trans. Robot. Automat., 11:50-55, 1995.[26] C. A. Klein, C. H. Huang. Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Transactions on Systems Man and Cybernetics, SMC- 13(3):245-250, 1983.[27] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.[28] R. Murray, Z. Li, S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.[29] R. M. Murray, S. S. Sastry, L. Zexiang. A Mathematical Introduction to Robotic 
Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1994.[30] K. Nazarczuk, C. Zieliński. POLYCRANK - fast robot without joint limits. Proc. 
ROMANSY 12, strony 317-324, Wiedeń, 1998. Springer-Yerlag.



BIBLIOGRAFIA 103[31] K. Nazarczuk, C. Zieliński, S. Łuszczak. Development of the design of POLYCRANK manipulator without joint limits. Proc. ROMANSY 13, strony 285-292, Wiedeń, 2000. Springer-Verlag.[32] F. C. Park, R. W. Brockett. Kinematic dexterity of robotic mechanisms. I. J. Robotic 
Res., 13(1):1-15, 1994.[33] H. Ramirez, S. Agrawal. Differentially Fiat Systems. Marcel Dekker, 2004.[34] A. Ratajczak, J. Karpińska, K. Tchoń. Algorytm planowania ruchu statku z prioryte- towaniem zadań: metoda endogenicznej przestrzeni konfiguracyjnej. Prace Naukowe 
- Politechnika Warszawska. Elektronika, wolumen 166, strony 535-544, X KKR, Pie­chowice, Polska, 2008.[35] A. Ratajczak, J. Karpińska, K. Tchoń. Task-priority motion planning of underactu- ated Systems: an endogenous configuration space approach. Robotica, 28(6):885-892, 2010.[36] W. Respondek. Right and left invertibility of nonlinear control Systems. H. Sus- smann, redaktor, Nonlinear Controllability and Optimal Control, strony 133-176. Marcel Dekker, Nowy Jork, 1990.[37] S. L. Richter, R. A. DeCarlo. Continuation methods: Theory and applications. IEEE 
Trans. Circuits and Syst., 30:337-352, 1983.[38] R. Roberts, A. A. Maciejewski. Repeatable generalized inverse control strategies for kinematically redundant manipulators. IEEE Trans. Automat. Contr, 38:689-699, 1993.[39] R. G. Roberts, A. A. Maciejewski. Nearest optimal repeatable control strategies for kinematically redundant manipulators. IEEE Trans. Robotics Automat, 8:327-337, 1992.[40] R. G. Roberts, A. A. Maciejewski. Calculation of repeatable control strategies for kinematically redundant manipulators. Journal of Intelliaent and Robotic Systems, 14(1): 105-130, 1995.[41] S. Seereeram, J. Wen. A global approach to path planning for redundant manipula­tors. IEEE Trans. Robot, and Autom., 11 (1):152-160, 1995.[42] J. Selig. Geometrie Fundamentals of Robotics. Springer-Verlag, 2005.[43] T. Shamir, Y. Yomdin. Repeatability of redundant manipulators: Mathematical solution of the problem. IEEE Transactions on Automatic Control, 33:1004-1009, 1988.[44] L. Silverman. Inversion of multivariable linear Systems. Automatic Control, IEEE 
Transactions on, 14(3):270 - 276, czerwiec 1969.[45] S. Singh. Functional reproducibility of multivariable nonlinear Systems. Automatic 
Control, IEEE Transactions on, 27(l):270 - 272, luty 1982.



104 BIBLIOGRAFIA[46] W. M. Sluis, A. Banaszuk, J. Hauser, R. M. Murray. A homotopy algorithm for approximating geometrie distributions by integrable Systems. Systems & Control 
Lett., 27:285-291, 1995.[47] E. D. Sontag. Mathematical Control Theory. Springer-Verlag, Nowy Jork, 1990.[48] M. Spong, M. Vidyasagar, Z. Piłat. Dynamika i sterowanie robotów. Wydawnictwa Naukowo-Techniczne, 1997.[49] R. S. Strichartz. Sub-Riemannian geometry. J. Differential Geom., 24(2) :221—263, 1986.[50] H. J. Sussmann. New differential geometrie methods in nonholonomic path finding. 
Progress Systems and Control Theory, strony 365-384, 1992.[51] H. J. Sussmann. A continuation method for nonholonomic path-finding problems. 
Proc. IEEE CDC/ICC Conference, strony 2717-2723, 1993.[52] K. Tchoń. Continuation method in robotics. Proc. 7th Conference on Computer 
Methods and Systems, strony 17-24, Kraków, Polska, 2007.[53] K. Tchoń. Optimal extended Jacobian inverse kinematics algorithms for robotic manipulators. IEEE Transactions on Robotics, 24:1440-1445, 2008.[54] K. Tchoń, M. Janiak. Repeatable approximation of the Jacobian pseudo-inverse. 
Systems & Control Letters, 58(12) :849—856, 2009.[55] K. Tchoń, J. Karpińska. Asymptotyczna reprodukcja trajektorii stanu robota. Prace 
Naukowe - Politechnika Warszawska. Elektronika, 175:457-466, 2010.[56] K. Tchoń, J. Karpińska, M. Janiak. Approximation of Jacobian inverse kinematics algorithms. Int. J. Appl. Math. Comput. Sci., 19(4):519-531, 2009.[57] K. Tchoń, J. Jakubiak. Endogenous configuration space approach to mobile mani­pulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms. International Journal of Control, 76(14): 1387-1419, 2003.[58] K. Tchoń, J. Jakubiak. Extended Jacobian inverse kinematics algorithm for nonho­lonomic mobile robots. International Journal of Control, 79(8) :895-909, 2006.[59] K. Tchoń, A. Mazur, I. Dulęba, R. Hossa, R. Muszyński. Manipulatory i roboty 
mobilne. Problemy współczesnej nauki teoria i zastosowania: Robotyka. Akademicka Oficyna Wydawnicza PLJ, Warszawa, Polska, 2000.[60] L. T. Watson. Theory of globally convergent probability-one homotopies for nonlinear programming. SI AM J. on Optimization, 11:761-780, 2000.[61] L. T. Watson, R. T. Haftka. Modern homotopy methods in optimization. Comput. 
Methods Appl. Mech. Eng., 74:289-305, 1989.





Raport dostępności





		Nazwa pliku: 

		karpinska_aproksymacja_algorytmow_planowania_phd.pdf









		Autor raportu: 

		



		Organizacja: 

		







[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]



Podsumowanie



Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.





		Wymaga sprawdzenia ręcznego: 2



		Zatwierdzono ręcznie: 0



		Odrzucono ręcznie: 0



		Pominięto: 1



		Zatwierdzono: 28



		Niepowodzenie: 1







Raport szczegółowy





		Dokument





		Nazwa reguły		Status		Opis



		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności



		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy



		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF



		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu



		Język główny		Zatwierdzono		Język tekstu jest określony



		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym



		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki



		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów



		Zawartość strony





		Nazwa reguły		Status		Opis



		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana



		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane



		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury



		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku



		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane



		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu



		Skrypty		Zatwierdzono		Brak niedostępnych skryptów



		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych



		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się



		Formularze





		Nazwa reguły		Status		Opis



		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane



		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis



		Tekst zastępczy





		Nazwa reguły		Status		Opis



		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego



		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany



		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością



		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji



		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy



		Tabele





		Nazwa reguły		Status		Opis



		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot



		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR



		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki



		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie



		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie



		Listy





		Nazwa reguły		Status		Opis



		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L



		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI



		Nagłówki





		Nazwa reguły		Status		Opis



		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie










Powrót w górę

