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Rozdzial 1

Wstep

Termin robot (czes. robota - praca) oznacza cybernetyczna maszyne przeznaczona do re-
alizacji niektorych czynnosci energetyczno—ruchowych, sensualnych i intelektualnych czto-
wieka. Termin powstal juz w 1920r. i zostal wprowadzony przez czeskiego fantastyka
Karela Capka w jego sztuce ,R.U.R.” (,Rossumovi Univerzalni Roboti”). Z kolei termin
robotyka wprowadzil w 1942r. amerykanski pisarz rosyjskiego pochodzenia Isaac Asimov
(A#izex AsmmoB) w opowiadaniu ,Runaround”. Réwnolegle z wprowadzaniem pojeé za-
czely takze powstawaé pierwowzory robotéw. Pierwsze konstrukcje robotyczne datuje sie
na okres miedzywojenny, kiedy to powstal na przyklad ,pies elektroniczny” zbudowany
w 1929r. Po II wojnie §wiatowe]j postep techniki przyczynit sie takze do rozwoju dyscy-
pliny robotyka. Pierwsze modele robotéw przeznaczonych do pracy w przemysle zostalty
zbudowane w Stanach Zjednoczonych na poczatku lat szesé¢dziesiatych. W Europie robo-
ty pojawily sie niedlugo po6zniej. Pierwszy europejski robot zostal zastosowany w 1971r.
w Szwecji, a pierwszy robot w Polsce wspomégt prace pracownikéw Olkuskiej Fabryki Na-
czyni Emaliowanych w 1976r. Obecnie robotyka oprocz tematéw zwiazanych z najwieksza
grupa robotéw — manipulacyjnych robotéw przemystowych, zajmuje si¢ takze zagadnie-
niami robotéw mobilnych i innych ukladéw mechanicznych. Ostatnio, robotyka wkracza
takze w obszary psychologiczno—socjologiczne pracujac nad robotami spolecznymi. Za-
dania stawiane robotykom maja roznoraki charakter. Od prostych i odwrotnych zadan
kinematyki, poprzez takie zadania jak, planowanie ruchu czy Sledzenie trajektorii, az po
skomplikowane zadania jak na przyklad wyrazanie emocji.

Proste i odwrotne zadanie kinematyki nalezg do fundamentalnych zadan w roboty-
ce [4,29,48]. Proste zadanie kinematyki dla manipulatoréw polega na zdefiniowaniu po-
zycji (np. polozenia i orientacji) kornca efektora jako funkcji zmiennych przegubowych.
Natomiast, celem odwrotnego zadania kinematyki jest wyznaczenie wartosci zmiennych
przegubowych dla okreslonej pozycji korica efektora. Odwrotne zadanie kinematyki jest
szczegOlnym przypadkiem zadania planowania ruchu. Dla manipulatoréw redundantnych,
czyli dla takich, w ktorych wymiar przestrzeni konfiguracyjnej jest wiekszy od wymiaru
przestrzeni zadaniowej, odwrotne zadanie kinematyki ma nieskoinczenie wiele rozwigzan.
Aby otrzymacé jednoznaczne rozwiazanie algorytmu kinematyki odwrotnej, naklada si¢ na
rozwigzanie dodatkowe ograniczenia, jak na przyklad minimalizacja predkosci przegubo-
wych w trakcie ruchu, czy inne jak unikanie przeszkod, ograniczen w przegubach, badz
konfiguracji osobliwych. Rozwazania na temat kinematyki robotéw redundantnych przed-
stawione sa w [12]. W wiekszosci przypadkéow odwrotne zadanie kinematyki dla manipula-
tor6w redundantnych jest rozwigzywane numerycznie, za pomoca jakobianowych algoryt-
moéw kinematyki odwrotnej, takich jak algorytm jakobianu pseudoodwrotnego, badz algo-
rytm jakobianu rozszerzonego. Z definicji, pierwszy z nich cechuje minimalizacja predkosci
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przegubowych w czasie trwania ruchu oraz szybka zbieznos¢. Drugi z nich, konstruowany
jest poprzez dodanie odpowiedniej ilosci wierszy bedacych rézniczka funkeji rozszerzaja-
cych, w taki sposéb, aby wynikowy jakobian byl macierza kwadratowa [7]. Odpowiedni
dobér funkceji rozszerzajacych pozwala ksztaltowaé¢ dynamike algorytmu. Rozwiazanie al-
gorytmu typu jakobianu rozszerzonego zalezy od obranej funkcji rozszerzajacej. Dlatego,
algorytm ten poza rozwigzaniem odwrotnego zadania kinematyki moze jednocze$nie mini-
malizowaé¢ pewng funkcje kryterialna [25]. Z tego samego powodu, algorytm jakobianu roz-
szerzonego posiada bardzo istotna ceche jaka jest powtarzalnosé [43]. Gwarantuje ona, ze
algorytm bedzie generowal powtarzalne rozwiagzania. Innymi stowy, zamknietym $ciezkom
w przestrzeni zadaniowej odpowiada¢ beda zamkniete Sciezki w przestrzeni konfiguracyj-
nej. Wlasno$¢ ta jest niezwykle przydatna podczas planowania ruchéw cyklicznych. Ruchy
takie s wymagane od robotéw przemystowych pracujacych na liniach produkeyjnych, czy
montazowych. Powszechnie wiadomo, ze algorytm jakobianu pseudoodwrotnego nie posia-
da cechy powtarzalnosci [26]. Alternatywa dla algorytméw jakobianowych jest algorytm
oparty na zastosowaniu mnoznikéw Lagrange’a [10]. W pracy [24] mozna znalez¢ poréwna-
nie algorytmu jakobianu rozszerzonego i podejécia korzystajacego z mnoznikéw Lagran-
ge’a. Problem osobliwosci algorytmu jakobianu rozszerzonego zostal poruszony w [25],
a nastepnie zdefiniowany na nowo w [24].

Przy wykorzystaniu wlasnoéci algorytmu jakobianu rozszerzonego jest mozliwe zbudo-
wanie powtarzalnego algorytmu kinematyki odwrotnej, ktéry bedzie przypominal w dzia-
laniu inny algorytm, w szczegélnosci algorytm jakobianu pseudoodwrotnego. W tym celu,
definiuje sie miare, ktéra okre$la podobieristwo dwoch algorytméw. Nastepnie, rozwia-
zuje sie zadanie aproksymacji polegajace na wyznaczeniu funkcji rozszerzajacej minima-
lizujacej kryterium odleglosci. Po raz pierwszy takie zadanie zostalo sformutowane dla
manipulatoréw stacjonarnych przez Robertsa i Maciejewskiego w serii artykutow [38-40].
Wspomniana literatura jest dedykowana problemowi optymalnej aproksymacji algorytmu
jakobianu pseudoodwrotnego przez powtarzalny algorytm jakobianowy. Autorzy zdefinio-
wali zadanie aproksymacji jako zadanie optymalizacji w przestrzeni funkcyjnej, ktére roz-
wigzywali korzystajac z metod rachunku wariacyjnego. Aby otrzymaé optymalna funkcje
rozszerzajaca, nalezy rozwigza¢ uklad nieliniowych czastkowych réwnan rézniczkowych,
wynikajacych z rownania Eulera-Lagrange’a. Rozwiazanie tak okreslonego uktadu réw-
nan jest zadaniem bardzo trudnym, nawet dla manipulatora o kilku stopniach swobody.
W przypadku bardziej skomplikowanych manipulatoréw rozwigzanie zadania optymaliza-
cji staje sie wrecz niemozliwe, biorac pod uwage nie tylko metody analityczne, ale takze
dostepne metody numeryczne. W pracy [53| zaproponowano modyfikacje metody Robertsa
i Maciejewskiego, ktorej rozwigzanie za pomoca metody Eulera—Lagrange’a sprowadza sie
do wyznaczenia funkcji rozszerzajacej poprzez rozwiazanie uktadu liniowych, eliptycznych
rownan rézniczkowych czastkowych. Sformutowanie zadania aproksymacji dla kinematyki
w SE(3) zawarte jest w [22]. Praca [54] przedstawia nowe podejscie do problemu, zaczerp-
niete z geometrii rézniczkowej, w ktoérej zadanie aproksymacji sprowadza sie do zadania
aproksymacji kodystrybucji. Istota metody jest zdefiniowanie catkowalnej kodystrybucji
pokrywajacej sie z dana, niecatkowalng kodystrybucja na pewnym obszarze w przestrzeni
konfiguracyjnej manipulatora. Inspiracja do stworzenia podstaw teoretycznych tej metody
jest teoria sterowania, w ktorej rozwazany jest problem przyblizonej linearyzacji poprzez
sprzezenie zwrotne [46]. Przyklad zadania aproksymacji algorytmu jakobianu pseudoodw-
rotnego algorytmem jakobianu rozszerzonego zdefiniowanego zaréwno za pomocg podej-
§cia wariacyjnego jak i geometrii rézniczkowej zawarto w pracy [56].

Niniejsza praca dotyczy podstaw robotyki i odnosi si¢ do matematycznych podstaw
algorytmoéw stosowanych w robotyce. W rozprawie zostana przedstawione metody aprok-
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symacji algorytmu jakobianu pseudoodrotnego jakobianem rozszerzonym korzystajace za-
réwno z metod rachunku wariacyjnego jak i geometrii r6zniczkowej. Rozpoczniemy od
wyprowadzenia algorytméw jakobianowych metoda homotopii definiujacej algorytm jako
uklad dynamiczny zalezny od funkcji btedu okreslonego w przestrzeni zadaniowej, dla
ktorego trajektoria zbiega sie z rozwiazaniem odwrotnego zadania kinematyki [14, 52].
W rozprawie bedziemy rozpatrywaé zadania aproksymacji korzystajace z metod rachun-
ku wariacyjnego lub z geometrii rézniczkowej. Nalezy pamietac¢, ze wszystkie metody
operuja na podzbiorze konfiguracyjnym wolnym od osobliwosci. ,,Funkcjonal bledu I"” me-
tody wariacyjnej swoje podstawy czerpie z koncepcji Robertsa i Maciejewskiego. Zaklada
ona jednak troche inne podejécie do problemu. Polega ono na osadzeniu odwrotnosci
jakobianéw w wiekszej przestrzeni. Wowczas, zadanie aproksymacji jest formulowane ja-
ko zadanie optymalizacji w przestrzeni funkcyjnej, ktére nastepnie rozwigzujemy przy
pomocy rachunku wariacyjnego. W efekcie, otrzymujemy uktad réwnan rézniczkowych
czastkowych dla funkeji rozszerzajacej. Dla metody opracowanej przez Robertsa i Macie-
jewskiego uklad rownan tworza nieliniowe réwnania rézniczkowe czastkowe. W przypadku
nowego podejscia uktad ten zawiera liniowe, eliptyczne réwnania rézniczkowe czastkowe,
ktorego rozwigzaniem moga by¢ funkcje harmoniczne [6,19]. Warto zwr6cié uwage na
fakt, ze jak dotad, funkcje harmoniczne pojawily si¢ w dziedzinie robotyki w dwoch in-
nych kontekstach: jako funkcje potencjatu w zadaniu planowania ruchu manipulatora 23]
i jako rozwigzanie zadania optymalizacji dystorsji kinematycznej manipulatora [32]. Ce-
lem ,Funkcjonatu bledu II” podejscia wariacyjnego i metody geometrycznej jest aprok-
symacja kodystrybucji stowarzyszonych z odwrotnosciami jakobianéw pseudoodwrotnego
i rozszerzonego. W przypadku matej redundancji rozpatrywanej kinematyki, wygodnie
jest dystrybucje zastapi¢ kodystrybucja rozpieta przez 1-formy rézniczkowe anihilujace
stowarzyszona dystrybucje. W przypadku jakobianu pseudoodwrotnego kodystrybucja ta
jest rozpieta przez 1-formy anihilujace jakobian transponowany. Natomiast, dla algorytmu
jakobianu rozszerzonego stowarzyszona kodystrybucja jest rozpinana przez odpowiednie
rozniczki funkeji rozszerzajacej kinematyke. Zadanie aproksymacji polega na znalezie-
niu dystrybucji zwiazanej z odwrotnoécia jakobianu rozszerzonego, ktéra jest w pewnym
sensie bliska danej dystrybucji stowarzyszonej z jakobianem pseudoodwrotnym. Zgodnie
z podejéciem geometrycznym, obszar nieosobliwy przestrzeni konfiguracyjnej jest prze-
ksztalcony w foliacje, ktorej liscie, o wymiarze réwnym stopniowi redundancji, sa homo-
topijne do liScia odniesienia. Homotopia ta definiuje pewne pole wektorowe. Kodystry-
bucja stowarzyszona z jakobianem rozszerzonym powinna pokrywaé sie z kodystrybucja
stowarzyszong z jakobianem pseudoodwrotnym okreslong na liéciach foliacji i wzdtuz pola
wektorowego okreslonego przez homotopie. Warunek ten sprowadza sie do uktadu réwnan
rozniczkowych czastkowych dla funkeji rozszerzajacych, ktore rozwiazuje sie przy pomo-
cy metody charakterystyk. Ostatecznie, funkcja rozszerzajaca jest obliczana numerycznie
poprzez catkowanie wstecz réwnania charakterystycznego. W przeciwienstwie do ,Funk-
cjonatu btedu I”, gdzie funkcjonalem jest odleglosé pomiedzy jakobianami, w , Funkcjonale
btedu II” konstruowany jest funkcjonat bledu aproksymacji bedacy miara odlegtosci po-
miedzy dwiema dystrybucjami/kodystrybucjami na podzbiorze nieosobliwym przestrzeni
konfiguracyjnej. Warunek optymalno$ci wyrazony poprzez réwnanie Eulera—-Lagrange’a
jest rownowazny liniowemu, eliptycznemu réwnaniu rézniczkowemu czastkowemu. Ponie-
waz liczba zmiennych niezaleznych tego réwnania jest réwna liczbie stopni swobody np.
manipulatora, rozwigzanie tak sformulowanego zadania moze by¢ niemozliwe przy uzy-
ciu obecnie dostepnych narzedzi numerycznych. Z tego powodu, do rozwiazania zadania
aproksymacji dla metod wariacyjnych postuzono si¢ metoda Ritza [17].

Metoda homotopii (zwana takze metoda kontynuacji), ktora lezy u podstaw algo-
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rytméw jakobianowych znalazla ciekawe zastosowanie do syntezy algorytmoéw reproduk-
cji trajektorii uktadu. Metoda homotopii jest jednym z narzedzi czesto stosowanych we
wspoblczesnej matematyce. W ogolnosci, metoda homotopii opiera si¢ na zaleceniu, ze
jesli nie potrafisz rozwigzac danego problemu, staraj sie go uogdlnié. W ten sposéb, ory-
ginalny problem jest niejako zanurzany w rodzinie podobnych probleméw parametryzo-
wanych pewna zmienng. Majac rozwigzanie problemu dla zadanej wartosci parametru,
przez przejécie z parametrem do granicy (w szczegblnosci do +00) otrzymujemy rozwia-
zanie problemu oryginalnego. Metoda homotopii znalazla zastosowanie przy rozwiazywa-
niu probleméw optymalizacyjnych [20,60,61], probleméw réwnowaznosci [52] i zagadnien
odwrotnych [2,37,51,52|. Na jej podstawie powstaly takze efektywne algorytmy do obli-
czen numerycznych [1]. Pierwsze zastosowanie metody homotopii w robotyce przedstawit
Sussmann w pracy [50]. Wykazal on, ze przy pomocy metody homotopii mozna rozwia-
za¢ odwrotne zadanie kinematyki dla uktadéw nieholonomicznych speliajacych warunek
Strong Bracket Generating Condition [49]. Réwnolegle Wen i wsp6ipracownicy prowadzili
prace nad wykorzystaniem tej metody do planowania ruchu manipulatoréw redundant-
nych [41], a takze platform mobilnych [15,16]. W poézniejszym czasie pojawily sie prace
dotyczace planowania ruchu samochodu kinematycznego [14] i cial toczacych sie [3,11].
Doglebne rozwazania na temat zastosowania metody homotopii do planowania ruchu ro-
botéw pojawily sie w [13,14]. Korzystajac z idei homotopii rozwinela si¢ takze metoda
endogenicznej przestrzeni konfiguracyjnej [34,35,57], ktéra umozliwia zastosowanie pojec
teorii manipulatoréw stacjonarnych do robotéw mobilnych.

W niniejszej pracy zaadaptujemy metode homotopii do rozwigzania zadania plano-
wania, a takze reprodukeji trajektorii ukladéw robotycznych. Zadanie planowania tra-
jektorii mozemy sformulowaé nastepujaco: majac dany afiniczny uklad sterowania, wy-
znaczy¢ funkcje sterujaca, przy pomocy ktoérej uktad bedzie poruszal si¢ wzdluz zadanej
trajektorii [27]. Rozwigzanie zadania planowania trajektorii wymaga pewnego rodzaju
inwersji ukladu sterowania, a dokladniej, inwersji odwzorowania wejSciowo—wyj$ciowego
dla okreslonego stanu poczatkowego. W przypadku, gdy to odwzorowanie jest iniektyw-
ne (roznowartosciowe), system taki nazywamy lewostronnie odwracalnym. Natomiast, gdy
odwzorowanie jest suriektywne nazywa si¢ go prawostronnie odwracalnym. Ta ostatnia ce-
cha nazywana jest takze reprodukowalnoscia funkcjonalng [9]. W literaturze istnieje wiele
pozycji koncentrujacych sie na inwersji ukladéw sterowania, zaréwno liniowych [44] jak
i nieliniowych [45]. Nalezy podkresli¢, ze jesli uklad jest rozniczkowo plaski [33] i znamy
trajektorie wyjscia, to problem planowania trajektorii jest latwo rozwigzywalny. Obszerny
przeglad teorii i algorytméw odwracania ukladéw sterowania zawiera praca [36].

Zakladajac funkcjonalna reprodukowalnosé, w rozprawie zaproponowane zostang algo-
rytmy funkcjonalnej reprodukcji stanu i wyjécia afinicznego ukladu sterowania. Algorytmy
te polegaja na rozwigzaniu pewnego réwnania rézniczkowego czastkowego drugiego rze-
du, w wyniku czego otrzymujemy jednoparametrows rodzine sterowar. Nastepnie, przy
parametrze dazacym do +oo otrzymujemy sterowanie bedace rozwigzaniem zadania re-
produkcji trajektorii. Algorytmy te maja zastosowanie do afinicznych ukladéw sterowania,
ktore w szczegdlnosci moga reprezentowaé kinematyke nieholonomicznego robota mobilne-
go lub dynamike manipulatora badz robota mobilnego. Ze wzgledu na przejscie graniczne,
algorytmy majg charakter asymptotyczny. Zastosowanie metody homotopii do rozwigza-
nia zadania reprodukcji trajektorii stanu mozna znalezé w [55], natomiast do zadania
reprodukeji trajektorii wyjscia w pozycji [21].



Biorac pod uwage powyzsze rozwazania autorka pracy stawia teze:

Jest mozliwe nowe sformulowanie zadania aproksymacji algorytmoéw jakobia-
nowych i jego rozwigzanie metodami rachunku wariacyjnego dla redundant-
nych manipulatoréw przemystowych. Dodatkowo, korzystajac z metody ho-
motopii, mozna skonstruowaé algorytm reprodukecji trajektorii stanu i wyjscia
robota.

Praca sklada sie z 6 rozdzialéw. Rozdzial pierwszy zawiera wprowadzenie w tematyke
pracy. W tej czesci zawarty jest takze przeglad literatury. W rozdziale drugim przedstawio-
ny zostal problem aproksymacji algorytméw planowania ruchu robotéw, w odniesieniu do
algorytmu typu jakobianu rozszerzonego aproksymujacego algorytm typu jakobianu pseu-
doodwrotnego i podano dwie metody jego rozwigzania. Pierwsza metoda wykorzystuje
metody rachunku wariacyjnego. Zadanie aproksymacji algorytmoéw pochodzi od Robertsa
i Maciejewskiego. Autorzy ci zdefiniowali miare odleglosci jakobianu pseudoodwrotnego
1 odwrotnosci typu jakobianu rozszerzonego. Wowczas, zadanie aproksymacji sprowadza
sie do zadania znalezienia funkcji rozszerzajacej minimalizujacej przyjeta miare. W roz-
winieciu idei wymienionych autoréw zostal opracowany nowy algorytm aproksymacyjny,
oparty na naturalnym rozszerzeniu odwrotnosci jakobianu rozszerzonego jak i jakobianu
pseudoodwrotnego do pewnych macierzy kwadratowych. W tym wypadku, zadanie aprok-
symacji jest rozwiazywane poprzez skonstruowanie miary odlegtosci rozszerzonych macie-
rzy, a nastepnie jej minimalizacji ze wzgledu na funkcje rozszerzajaca. Wyprowadzone
zostalo takze drugie kryterium, ktérego minimalizacja pozwala wyznaczy¢ funkcje rozsze-
rzajaca. W tym podejsciu, funkcjonal btedu aproksymacji jest miara odleglosci miedzy
dwiema dystrybucjami/kodystrybucjami w pewnym obszarze przestrzeni konfiguracyjnej.
To kryterium stuzy do poréwnania wynikéw uzyskanych metoda wariacyjna i metoda geo-
metryczng. Druga z tych metod korzysta z geometrii rézniczkowej. Zadanie aproksymacji
algorytmow zostalo sformutowane jako zadanie aproksymacji kodystrybucji stowarzyszo-
nych z odwrotno$ciami jakobianu pseudoodwrotnego i rozszerzonego. W ostatniej czesci
rozdzialu zostaly opisane dwie metody rozwiazywania zadan wariacyjnych. Jest to kla-
syczna metoda Eulera-Lagrange’a oraz metoda Ritza, ktéra jest metoda bezposrednia.
Pozwalaja one na obliczy¢ funkcje rozszerzajaca minimalizujaca odpowiedni funkcjonat
bledu aproksymacji. Inny rodzaj algorytmoéw aproksymujacych omawia rozdzial trzeci.
Opisuje on zastosowanie metody homotopii do rozwigzania zadania reprodukeji trajekto-
rii stanu lub wyjscia robota. Otrzymane za pomoca wyprowadzonych algorytméw funkcje
sterujace sg aproksymacja funkcji sterujacych realizujacych zadana trajektori¢. Rozdzial
czwarty zawiera przyklady obliczenn numerycznych dla zadania aproksymacji algorytmu
jakobianu pseudoodwrotnego przez algorytm jakobianu rozszerzonego. Symulacje zostaly
wykonane dla redundantnych manipulatoréw stacjonarnych: prostego manipulatora 3R
bez konfiguracji osobliwych, manipulatora typu TTR i manipulatora przemystowego —
POLYCRANK o 7 stopniach swobody. W omawianym rozdziale pojawil si¢ rowniez przy-
klad syntezy algorytméw aproksymacyjnych dla robota mobilnego — monocykla. Rozdziat
zawiera poréwnanie metody wariacyjnej i metody geometrycznej. Na koniec oméwione sa
aspekty obliczeniowe. Przyklady rozwiazania zadania reprodukeji trajektorii stanu i za-
dania reprodukcji trajektorii wyjscia przedstawione sa w rozdziale piatym. Efektywnosé
dziatania algorytmoéw zostata pokazana dla modeli: podwdjnego integratora, kinematyki
monocykla, dynamiki lyzwiarza Czaplygina oraz kinematyki kuli kinematycznej. Prace
podsumowuje rozdzial szosty, w ktorym takze nakreslono kierunki dalszych badan.

Badania prowadzone w tej pracy byty wsparte ze sSrodkéw Fundacji na rzecz Nauki Pol-
skiej, Politechniki Wroctawskiej w ramach grantéw statutowych oraz ze srodkéw MNiSzW
na nauke w latach 2010-2012 jako projekt promotorski.






Rozdziat 2

Aproksymacja jakobianowych
algorytmoéw kinematyki odwrotnej

W tym rozdziale bedziemy rozwazaé problem syntezy jakobianowych algorytméw kine-
matyki odwrotnej. Celem bedzie zdefiniowanie algorytmu typu jakobianu rozszerzonego
aproksymujacego algorytm typu jakobianu pseudoodwrotnego. Przedstawimy dwa podej-
$cia: pierwszy korzystajacy z rachunku wariacyjnego, drugi z geometrii rézniczkowej. Dla
metod wariacyjnych wyprowadzone zostana dwa kryteria aproksymacji zalezne od funkcji
rozszerzajacej. Rozwazymy réwniez rézne sposoby reprezentacji kinematyki, we wspol-
rzednych zadaniowych i bez wspoélrzednych, za pomoca odwzorowania w SE(3).

2.1 Preliminaria

Kinematyka manipulatora o n stopniach swobody zdefiniowana jest jako przeksztalcenie
K: R" — SE(3), Y =K(z) = [Rg”) T(x)} , (2.1)

przyporzadkowujace kazdej konfiguracji przegubowej z € IR™ odpowiednig pozycje i orien-
tacje korica efektora. Pozycja i orientacja naleza do specjalnej grupy euklidesowej pozwa-
lajacej opisaé ruch ciata sztywnego SFE(3) = SO(3) x IR?, gdzie SO(3) jest grupa obrotéw.
Przy zadanej kinematyce manipulatora (2.1) i pozycji efektora w przestrzeni zadaniowej
Y, € SE(3), odwrotne zadanie kinematyki polega na znalezieniu konfiguracji z4, dla ktorej

K(:L‘d) = ¥jg.

Uzywajac wspolrzednych przegubowych x i wybierajac pewien ukiad wspoélrzednych za-
daniowych otrzymujemy reprezentacje kinematyki we wspolrzednych

k: IR" — IR™, y=k(z) = (k(z),..., kn(z)7, (2.2)

transformujaca przestrzen konfiguracyjna manipulatora x € IR™ w przestrzen zadaniowa
y € IR™. Niech J(z) = 31;(;) oznacza jakobian analityczny manipulatora. Konfiguracja
x jest regularna jesli jakobian J(z) jest suriekcja, w przeciwnym przypadku konfiguracja
jest osobliwa. Majac dang kinematyke (2.2) i zadana konfiguracje konca efektora moze-
my zdefiniowa¢ odwrotne zadanie kinematyki: wyznaczy¢ konfiguracje przegubowa x4, dla
ktorej k(zq) = yq. Do rozwiazania odwrotnego zadania kinematyki bedziemy postugiwa-

li sie algorytmem jakobianowym, ktérego wyprowadzenie korzysta z metody homotopii.
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Majac dang konfiguracje poczatkows zo, wybieramy gladka krzywa z(t) w przestrzeni
konfiguracyjnej przechodzaca przez o, w taki sposéb, by blad w przestrzeni zadaniowej
e(t) = k(z(t)) — ya wzdluz tej krzywej zanikal eksponencjalnie ze wspolczynnikiem v > 0,

é(t) = J(a()(t) = —ve(t). (2.3)
Rézniczkujac powyzsze rownanie otrzymujemy réwnanie Wazewskiego-Dawidenki
dx(t
T2 = —(h(a(0) - va) (2.4)

Zalozmy, ze J#(z) € IR™™ jest prawostronng odwrotnoscig jakobianu tzn. J(z)J#(x) =
I,,. Ostatecznie, jakobianowy algorytm kinematyki odwrotnej jest zdefiniowany przez
uktad dynamiczny

&(t) = —yJ*(x(t))e(t), (2.5)
ktorego trajektoria prowadzi do rozwigzania xg = lim;_, 1, z(t). Zauwazmy, ze kazdy algo-
rytm oparty na prawostronnej odwrotnosci jakobianu bedzie posiadal taks sama zbieznosé
bledu, zalezna od ~y. Jednakze, zbieznos¢ w przestrzeni konfiguracyjnej manipulatora, wy-
razona przez (2.5), bedzie rézna, w zaleznosci od obranego algorytmu.

Jakobianowe algorytmy kinematyki odwrotnej najczesciej opieraja sie na dwoch rodza-
jach odwrotnosci jakobianu: pseudoodwrotnosci i odwrotnosci typu jakobianu rozszerzo-
nego. Pseudoodwrotno$é¢ jakobianu opisuje rozwiazanie odwrotnego zadania kinematyki
uktadu

y=J(z)z
spelniajace warunek minimalizacji formy kwadratowej [59]

X(x) = -;-a:T:c (2.6)

Aby wyznaczy¢ pseudoodwrotnosé, nalezy rozwiaza¢ zadanie optymalizacji funkcji (2.6)
z ograniczeniami réwnosciowymi. Po rozwiazaniu tego zadania otrzymujemy pseudoodw-

rotno$é jakobianu
JP#(z) = JT(z) (J(z)J T (z)) . (2.7)

Alternatywnie, stosuje si¢ odwrotnosé typu jakobianu rozszerzonego zdefiniowang w na-
stepujacy sposob. Majac dana kinematyke w postaci (2.2), wybieramy odwzorowanie roz-
szerzajace

h: R" — IR?, h(z) = (h1(z),..., hs(z)), s=n-—m. (2.8)
Korzystajac z (2.8), mozemy zdefiniowa¢ kinematyke rozszerzong
l=(k,h): R" — IR", 7= l(z),
bedaca przeksztalceniem przestrzeni IR™ w IR™ oraz jakobian rozszerzony

j(x):alT(fz.

Ostatecznie, odwrotno$¢ typu jakobianu rozszerzonego przyjmuje postaé

JE#(z) = JY(x) (2.9)

m pierwszych kolumn
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i jest prawostronna odwrotnoscia jakobianu
J(z) T () = I,
jednoczesnie spelniajaca warunek anihilacji

Oh(z)
o —— JE#(z) = 0.

Kazdy z wyzej wymienionych algorytméw posiada swoiste zalety:

e Algorytm typu jakobianu pseudoodwrotnego charakteryzuje sie szybka zbieznoscia
i lokalng minimalizacja predkosci w przegubach w trakcie ruchu.

e Algorytm typu jakobianu rozszerzonego jest powtarzalny, tzn. przeksztatca zamknie-
te krzywe w przestrzeni zadaniowej w zamkniete krzywe w przestrzeni konfiguracyj-
nej.

Idea aproksymacji jakobianu pseudoodwrotnego przez jakobian rozszerzony pozwala stwo-
rzy¢ nowy algorytm jakobianowy charakteryzujacy si¢ zaletami obu algorytmoéw sktado-
wych. Klasyczne sformulowanie zadania aproksymacji sprowadza sie do problemu opty-
malizacji, ktory moze zostaé rozwigzane za pomocg metod rachunku wariacyjnego. Alter-
natywnie, kolumny macierzy definiujacej odwrotnosci jakobianéw (2.7) i (2.9) w réwnaniu
(2.5) moga by¢ potraktowane jako pola wektorowe w IR". Z kazdym z tych algorytméw
mozna wiec stowarzyszy¢ dystrybucje

DF‘ = Spancoc(mn) {']lp#(m), J2P#(x)7 se 49 in#('x)} )
Dy = spangeem { PH(2), JP#(0), ..., JE#(@) }.

W kazdej konfiguracji x € IR™ powyzsze dystrybucje definiuja m-wymiarowa przestrzen
liniowa dopuszczalnych kierunkéw ruchu. Dystrybucja jest catkowalna, jesli przez kazdy
punkt z przechodzi m—wymiarowa rozmaitos$¢, ktorej przestrzen styczna jest zdefiniowa-
na przez ta dystrybucje. W ogélnym przypadku, dystrybucja Dp nie jest catkowalna,
w przeciwienstwie do Dg, ktéra posiada ta ceche dzigki wlasnosci anihilacji. Twierdzenie
Frobeniusa orzeka, ze dystrybucja jest calkowalna, jesli jest inwolutywna, co oznacza ze
nawias Liego dowolnych pél wektorowych z dystrybucji nalezy do tej dystrybucji. Catko-
walno$é stowarzyszonych dystrybucji zapewnia powtarzalnos¢ algorytmu jakobianowego.
1-formy rozniczkowe anihilujgce powyzsze dystrybucje definiuja pare kodystrybucji

Dp = spange gy {1 (), W (2),..., ()},
Dj = Spange gny {dh1(z), dha(z), . . ., dhs(z)},

gdzie Qi(at)Jf#(:c) = 0, dla kazdego i = 1,...,sij = 1,...,m. Z definicji dystrybu-
cji i (2.7) wynika, ze 1-formy rozpinajace Dp anihiluja jakobian transponowany JT(z).
Opis algorytmoéw jakobianowych za pomoca dystrybucji lub kodystrybucji jest réwnowaz-
ny. Jednakze, dla niskiego stopnia redundancji s, efektywniejsze moze by¢ zastosowanie
kodystrybuc;ji.
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2.2 Metoda wariacyjna

2.2.1 Funkcjonal bledu Robertsa i Maciejewskiego

W tym podrozdziale zostanie przedstawione zadanie aproksymacji zdefiniowane przez R.
Robertsa i A. Maciejewskiego w [38,39]. W tych pracach, autorzy przedstawili sposéb
umozliwiajacy zbudowanie powtarzalnego algorytmu kinematyki odwrotnej, przypomina-
jacy w dzialaniu inny algorytm, np. algorytm jakobianu pseudoodwrotnego.

Rozwazmy prawostronng odwrotno$¢ G(z) jakobianu J(z) dla uktadu (2.2)

z = G(x)y.

Roberts i Maciejewski w [39] zauwazyli, ze kazda prawostronng odwrotnos¢ jakobianu
mozemy przedstawié jako

G(z) = [g1(x), ..., gm(z)] = JP#(2) + K(2)W ' (z), (2.10)

gdzie JP#(x) jest pseudoodwrotnodcig jakobianu bez osobliwosci, K(z) jest macierza
n x s o ortonormalnych kolumnach, KT(z)K(x) = I, rozpinajaca jadro jakobianu,
J(z)K(z) = 0, a W(z) jest macierza, ktorej kolumnami sa odpowiednie wektory, kto-
re w spos6b jednoznaczny definiuja G(x). Dobierajac W(z) w taki sposéb, aby dystry-
bucja rozpieta przez kolumny macierzy G(z) byla inwolutywna otrzymamy powtarzalna
odwrotno$é [43]. Korzystajac z (2.10) latwo pokazaé, ze

Ng(z) = JT(2)W (z) — K(z)

jest macierza o wlasnosci NJ(z)G(z) = 0, co oznacza ze wiersze Nl (z) sa 1-formami
anihilujacymi G(z). Wynika stad, ze dystrybucja rozpieta przez kolumny G(z) jest in-
wolutywna wtedy i tylko wtedy, gdy nawiasy Liego [g;, 9;] = (%%) gi — (29;-) g; kolumn
macierzy G(z) spelniaja warunek

N&(2)lgig;] (z) =0, 1<i<j<m. (2.11)

7Z faktu, ze kolumny macierzy G(z) zaleza od elementéow macierzy W (z) wynika, ze aby
wyznaczy¢ macierz W(z) nalezy rozwiaza¢ uklad réwnan rézniczkowych czastkowych
(2.11). Poniewaz odwrotno$ci posiadajacych ceche powtarzalnodci jest nieskoriczenie duzo,
mozliwe jest wybranie takiej, ktora bedzie zapewniala spelnienie dodatkowych warunkéw.
Jednym z mozliwych warunkéw jest minimalizacja odlegtoéci miedzy pewng zadang od-
wrotnodcig G4(z) a powtarzalng odwrotnoscia G(x) (na przyktad, spelniajaca réwnania
(2.11)). Wowczas, miarg odlegtosci bedzie

/Q 1Go(z) — Ca(@)|% da, (2.12)

gdzie ||[M||p = \/tr(MMT) jest norma Frobeniusa, a Q jest obszarem aproksymacji z za-
lozenia ztozonym z konfiguracji regularnych. Réwnanie (2.12) jest miarg odlegtosci miedzy
dwiema odwrotnosciami. Korzystajac z (2.10) mamy

1G(z) = Ga(2)llF = | K(2)(Wr(z) = Wa())" ||

Poniewaz kolumny macierzy K (z) sa wektorami o dtugosci jednostkowej, kryterium opty-
malizacji sprowadza sie do funkcjonatu

/ 1G,(z) — Cu(@) |2 dz = / | (Wi() - Wa(a)) |13 da. (2.13)
Q Q
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W praktyce, rozwigzanie czastkowych rownan rézniczkowych (2.11) moze by¢ niemoz-
liwe, co czyni problem nierozwiazalnym. Z tego powodu, w celu uzyskania rozwigzania
od razu wybieramy G,(z) w postaci zapewniajacej powtarzalnosé. Wtasnos¢ ta posiada
odwrotno$é typu jakobianu rozszerzonego

Gy(x) = JP*(z) = [z’%(j] )

, (2.14)

m pierwszych kolumn

gdzie é}é—(fl jest macierza Jacobiego odwzorowania rozszerzajacego h(z). Zalozmy, ze

D
=N
S
S
Il

JP#(z) + K(2)W] (), (2.15)
Gr(z) = JP#(z) + K(z)W. (z). (2.16)

Poniewaz chcemy, zeby G,.(x) bylo odwrotnoscia typu jakobianu rozszerzonego to

J(x)G'r(x) = Ima (217)
ag(;) G,(z) =0. (2.18)

Warunek (2.17) jest spelniony automatycznie, poniewaz J(z)JF#(z) = I, i J(z)K(z) =
0. Z (2.18) mamy
Oh(z)

Geln) = ag—g)JP#(x) + —(9—33—K($)WT(I) =10.

Zatem
Wi = - (B2k@) Bire)

co podstawiajac do (2.16) otrzymujemy

Grlo) = 17 (0) - K(o) (B k(@) Z2 ).
Z drugiej strony, z (2.15) mozemy wyliczy¢
JP#(z) = Ga(z) — K(z)W] (z).

Woéwcezas

K (x) (%ﬁlx(x)) i 8}5(9:‘”)1((9;)% (2).

K(@)W] ()

Ostatecznie, zaleznosé pozwalajaca wyznaczy¢ nam powtarzalny jakobian wyraza sie po-

przez
Gy(z) = Gule) - K(a) (%”K(x)) P )
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zatem roznica

Go(z) — Ga(z) = —K () (agix)f((x)> i a';f) Ga(). (2.19)

Wstawiajac (2.19) do (2.13) otrzymujemy kryterium optymalizacji

[16:6) - Gu@l ez = [ H(%m))—la’g—?@(x) 2

F

dz. (2.20)

Na potrzeby pracy przyjmijmy, ze odwrotnoscia G4(z) nie posiadajaca wlasnosci powta-
rzalnoéci jest jakobian pseudoodwrotny JFP#(z), zalézmy takze, ze stopieri redundancji
manipulatora jest rowny s. Wtedy, zadanie aproksymacji polega na znalezieniu odwzoro-
wania rozszerzajacego minimalizujacego blad aproksymacji

E(h) = /Q 1P# (@) — JP#(@)|% de,

gdzie Q C IR" jest zawarte w regionie konfiguracji regularnych. Dla tak postawionego
zadania, z wzoru (2.20) wynika, ze blad aproksymacji jest rowny

E(h) =
/Q tr((a};—SE)K(xO_lQ%x)JP#JP#T(x) <ai£)>T (agf)f((x))—v dz. (2.21)

Aby otrzymaé¢ optymalna funkcje rozszerzajaca, minimalizujaca funkcjonal (2.21), nalezy
rozwigza¢ uktad nieliniowych czastkowych réwnan rézniczkowych, wynikajacych z réwna-
nia Eulera-Lagrange’a. Rozwigzanie takiego ukladu réwnan jest bardzo trudne, a w przy-
padku realistycznych manipulatoréw przemystowych wrecz niemozliwe.

2.2.2 Interpretacja

Przyjrzyjmy sie dokladniej matematycznej interpretacji aproksymacji algorytméw. W tym
celu zdefiniujmy dwa algorytmy kinematyki odwrotnej

i(t) = X(z(t)) = X(z(t))a(z(t)), (2.22)
y(t) =Y (y(t)) =Y (y(t))a(y(?)), o

gdzie X(z) = [X1(z),..., Xn(2)] 1 Y(y) = [Yi(v),...,Ym(y)] sa odwrotnosciami jako-

bianu, blad w przestrzeni zadaniowej a(z) = k(z) — y4, a yq jest zadanym polozeniem
i orientacja efektora. Obliczmy roznice trajektorii w przestrzeni konfiguracyjnej

z(t) — y(t) = z(0) — y(0) + /0 (X (z(w) = Y(y(u))) du. (2.23)
Aby wyznaczy¢ powyzsza réznice rozpiszmy

X(z) -Y(y) = X(z)a(z) - Y(y)aly) =
(X(z) =Y (z))a(z) + (Y(z) = Y(y)a(y) + Y (z)(a(z) — a(y)).
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Korzystajac z lematu Hadamarda [18] mamy
@)~ 10 = [ as+ (=00 = [ Dilto+ (1 -t dile ).
Stad
(@) = Y@aty) = [ DY (tz+ (1 - D)ay) duta — ), (2.22)
V(e (en) = ) = Yite) /0 "Da(tz + (1 - t)y) di(z — ). (2.25)
Zalosmy, 7e 2(0) = y(0). Podstawiajac (2.24) i (2.25) do (2.23) otrzymujemy
o) ~3(0) = [ (X(@(w) - ¥ (sw)alolu) du+

/ / DY (sz(u) + (1 — s)y(w))a(y(w)) ds(z(w) — y(u)) du+
/0 Y (2(u)) / Da(sz(u) + (1 - s)y(w)) ds(e(w) — y(w)) du.

Dalej
() - vl < / I (w))a(z(w)] dut
/0 [ IDY (s2(0) + (1 = spy(u)a(u)] dslle) = y(u)] du+
1Y @@l | IDa(se(w) + (1 = ) dsllew) -y du.
Rozwazmy

I(X (2(w) = Y (z(u))a(z@)|* = o' (z)(X(z) - ¥ ()" (X (2) - Y (z))a(z) =
tr (X (z) - Y(2))a(z)" (X(z) = Y (2)a(z) = [|(X(z) - Y (z)a(2) ]|} <
IX(2) = Y @) Fle(@)llF = 1X () = Y (@) |Elle)]1%,

gdzie || - || jest norma euklidesowa. Majac roznice wzdtuz krzywej lezacej w obszarze Q
bedacym zwartym podzbiorem /R", mozemy napisaé

/O | (X (2w) = Y (2(w))) alew) ] du <
dz X(z rlla(z)|| dz.
[16x@) - Y@@ de < [ 1X@) ~ Y @llella@)]
Zalozmy, ze nieréwnosci

le(@)]| < a, [DY(z)a(z)| <d, [[Da(z)|<c [Y(z)|<b
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sq spelione w Q. Wowczas
y(@)| <

l=(2)
/IIX )||Fdx+d/ lz(u) — y(u)]| du+bc/ 2 (u) — y(u)| du =

/ux >||pdx+7/ le(e) — y(w)] du,
v =d+be

Na podstawie nier6wnosci Gronwalla [18] mozemy napisac
la() = yOl < o [ 1X(@) = Y @)l dwexp(yt).

Zatem, jesli dla skonczonych ¢ miara odlegtosci dwoch odwrotnoéci jakobianu fQ | X (x) —
Y (z)||r dz, jest mala to takze réznica trajektorii w przestrzeni konfiguracyjnej jest mata.
Wobec powyzszego mozemy sformulowaé nastepujace twierdzenie.

Twierdzenie 2.2.1 Niech X (z) i Y (z) oznaczajg odwrotnosci jakobiandw, a x(t), y(t)
trajektorie w przestrzeni konfiguracyjnej wyznaczone przez odpowiednie jakobianowe algo-
rytmy kinematyki odwrotnej (2.22). Wowczas, dla pewnych liczb a,y > 0 prawdziwa jest
nierownosc

lo(t) - y®l| < a / 1X(z) - Y (@)llr dzexp(rt).

2.2.3 Funkcjonatl btedu I
Kinematyka we wspoélrzednych

Aby rozwigzaé zadanie aproksymacji przy pomocy funkcjonatu btedu (2.21) zdefiniowa-
nego przez Robertsa i Maciejewskiego, nalezy rozwiazaé¢ uktad nieliniowych czastkowych
rownan rozniczkowych. Rozwigzanie tak okreslonego uktadu réwnan jest zadaniem bar-
dzo trudnym, nawet dla manipulatora o kilku stopniach swobody. W przypadku bardzie;
skomplikowanych manipulatoréw rozwiazanie zadania optymalizacji staje sie wrecz nie-
mozliwe, biorac pod uwage nie tylko metody analityczne, ale takze dostepne metody
numeryczne. Dlatego, w niniejszym rozdziale pracy zaproponujemy modyfikacje metody
Robertsa i Maciejewskiego, ktéra prowadzi do sformutowania nowego bledu aproksymacji.

Funkcjonal btedu I opiera si¢ na naturalnym zanurzeniu macierzy odwrotnosci jako-
bianu JF#(x) i JP#(z) w pare macierzy wymiaru n x n, ktére pozwala zdefiniowaé nowy
blad aproksymacji [53,56]. Zauwazmy, ze poza konfiguracjami osobliwymi JE#(z) jest
zawarty w odwrotnosci jakobianu rozszerzonego

Br(a) = [@] = [/P*(z) Q)] (2.26)

oz

gdzie Q(z) jest pewng macierza dopelniajaca wymiaru n x (n —m). Podobnie, dla J7#(z)
mozna zaproponowaé zanurzenie

B = |0y = e K@), (2.27)
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gdzie kolumny K(z) rozpinaja jadro jakobianu (J(z)K(z) = 0), jednoczesnie sg orto-
gonalne K'(z)K(z) = I;, s = n — m. Niech Q C IR" oznacza podzbiér konfiguracji
regularnych manipulatora, wowczas za pomoca (2.26) i (2.27) mozemy zdefiniowaé blad
aproksymacji jako miare odleglogci miedzy JX#(z) i JE#(z) odniesiona do macierzy E;(z)

— /Q | B (@) Ba(x) =~ Tn|3m(z) da, (2.28)

gdzie m(z) = /det(J (x)) jest funkcja manipulowalnosci konfiguracji z, a m(z)dz
pelni role formy oby@tosm Podstawiajadc (2.26) i (2.27) do (2.28) otrzymujemy

£.(h) :/Q

2

J(2) " (@) J@K @) | g =
[%ﬂﬂ#(x) oK )] e e =

K ([«f(ww”#m b loee) ]
Q 2o jP# ()  BEK(z) - I,

@) ~ T J@E@E) ]
x{ %EZJP#(QJ) h_(z)K( ) — I] )m(x) dz.

Po przeksztalceniach, btad aproksymacji przyjmuje postac

.
E(h) = /Q tr (agf)ro(x) (Q%f—)) - 2@6(%);((:6) = 18> m(z) dz, (2.29)

gdzie

P(z) = JP#(z)JP#T(z) + K(2) K" (x) = (JT(a:)J(ac) - K(:J:)KT(QJ))—1

Kinematyka wyrazona w SFE(3)

Niech kinematyka manipulatora bedzie przeksztalceniem postaci (2.1). Wowezas, odwrot-
ne zadanie kinematyki sprowadza sie do znalezienia konfiguracji przegubowej x4, dla ktore;j
koniec efektora przyjmuje zadane polozenie i orientacje Yy € SE(3), tak ze K(zq) = Y.

Ry Ty
0 1
cyjnej. Wowcezas, mozemy zdefiniowaé btad w postaci

Zalozmy, ze Y, = € SE(3), a z(t) jest trajektoria w przestrzeni konfigura-

E(t) = (log (R(z(t))R}), T(z(t)) —Tu) = (Er(t), e2(t)), (2.30)
gdzie logarytm macierzy obrotu log R = 5;% (R RT) za$ 0 < ¢ < 7 spelnia réwnanie
1+2cos¢ = tr R. Blad (2.30) nalezy do algebry Liego se(3) = so(3) x IR®, grupy SE(3).

0 —7Vs3 (%)
Stosujac standardowy izomorfizm v — [v] = | v3 0 —v;| miedzy IR® i algebra
—Us U1 0

Liego so(3), mozemy przedstawi¢ blad orientacji za pomoca wektora e; € IR®, w taki
sposob; ze Ei(t) = [ei(t)]. Wowcezas, blad (2.30) bedzie réwnowazny wektorowi bledu
e = (e],es)T € IRS. Réwnowaznie do (2.3) mozemy zdefiniowaé reprezentacje bledu dla
kinematyki wyrazonej w SE(3).
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Lemat 2.2.2 Ewolucja bledu w przestrzeni zadaniowej jest opisana réwnaniem roznicz-
kowym

(t) = [P a(a(t) 0} ["R(””‘t”} #(8) = Iual@O)E() = —re(t),  (2.31)

0 L] |Jr((®)
gdzie
o, 1 . 1 sin ¢(t) o (412
Piolt) = 1o~ 3 0]+ (505 + o=y ) [ OF, @3
le1(t)] = log (R(z(t))Ry) , 1+2cosg(t) = tr (R(z(t))Ry) ,
@) = [Jr(@), ., Jan(@)] ) ns(@)] = agif)RT(a:), Tolz) = 8?;”). (2.33)
0

Indeks dolny d w réwnaniach (2.31) i (2.32) oznacza zalezno$¢ od zadanej macierzy rotacji
Ry, indeksy R i T odnosza sie¢ odpowiednio do rotacji i translacji.

Dowéd Z definicji R(z(t)) R} = exp E4(t), tak wigc

(35 050 (B1(0) ) exp () = Ra0) ] (RG@)R])T = RO a(0). 23

Korzystajac z formuly Hausdorffa [42] mozemy stwierdzi¢, ze lewa strona powyzszego row-
nania jest réwna [Py !(x(t))é1(t)] dla Py(z(t)) okreslonego przez (2.32). Z drugiej strony,
rozpisujac prawg strong réwnania (2.34) otrzymujemy

)R @0 =Y “m D R (@)i(e) = {Z JRi(w(t))i”i(t)} = [n(=(®)()]

jak zdefiniowano w (2.33). Ostatecznie, otrzymalismy gorny blok rownania (2.31). Dzieki

postaci bledu ey (2.30), wyprowadzenie dolnego bloku jest trywialne.
O

Nalezy zauwazy¢, ze Jpq(x) jest rodzajem jakobianu geometrycznego manipulato-
ra. Majac dany jakobian (2.31), mozemy obliczy¢ jakobian pseudoodwrotny J,@f(m) =
Jira(@) (Jma(z) Jire(x)) ™ oraz zdefiniowaé odpowiedni algorytm kinematyki odwrotnej.
Pomimo tego, ze jakobian Jj4(x) zalezy od pozadanej rotacji Ry, algorytmy jakobia-
nu pseudoodwrotnego i jakobianu rozszerzonego sa od niej niezalezne. Niech Jrr(z) =
[JR(x)]

Jr(z) |

Twierdzenie 2.2.3 Uktad dynamiczny zwigzany z jakobianem pseudoodwrotnym J A}Zf(a:)
przyjmugje postac

: P

T = ~7JR#(1:)67

gdzie Jhit (z) oznacza pseudoodwrotnosé Jrr(z).
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Dowéd Z (2.31) mamy

O A PO}

Nastepnie, za pomoca powyzszej tozsamosci mozemy obliczyé

et o(0) = TRl (s o)™ = st ety [F5 @ 2],
Ale jako ze
P = s+ 1o g ) LS00 e

zobacz [43], oraz [v]w = v x w, otrzymujemy P;l(t)ei(t) = ei(t), zatem Ji7(z)e =
JhE(z)e.

Podobne wnioskowanie mozemy zastosowa¢ w odniesieniu do algorytmu jakobianu
rozszerzonego. Zaczynamy od obrania przeksztalcenia rozszerzajacego h: IR™ — IR™ S,
Wtedy, odwrotno$é jakobianu rozszerzonego (2.9)

Joealzy ™
JEH (@) = [ beas )]
ox

6 pierwszych kolumn

definiuje uktad dynamiczny (2.5) odpowiadajacy algorytmowi typu jakobianu rozszerzo-
nego. Przez analogie do Lematu 2.2.3 mozemy powiedzie¢, ze

Twierdzenie 2.2.4 Uktad dynamiczny zwigzany z odwrotnoscig jakobianu rozszerzonego
Jﬁf(m) przyjmuje postac

& = —vJpt (2)e, (2.35)
gdzie Jg#(x) jest jakobianem rozszerzonym stowarzyszonym z Jrr(z).

a

Dowo6d Bez straty na ogolnosci, mozemy zalozyé, ze jakobian rozszerzony przyjmuje
postaé [58]

E# & -1
oy () = . (6h(§)>—1 h(z) Wi (=),
ox ozl

gdzie z = (z'7, J:QT)T € RS x IR % i

Is
Wa(z) = Jua(z) [_ <%(7)> - 6{’;(?)} -

Niech
I
W(z) = Jrr(z) | <6h(z )‘1 Oh(z)
ox ozl
A zatem
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Lecz ;

zatem przywolujac tozsamosé Pd“lel = e, otrzymujemy uktad dynamiczny opisany réw-
naniem (2.35).

O

Reasumujgc Lematy 2.2.3 i 2.2.4, blad aproksymacji dla przypadku, kiedy kinematyka
jest opisana w SF(3) mozemy zdefiniowa¢ analogicznie do (2.29).

Niech kinematyka manipulatora bedzie opisana rownaniem (2.1) i niech przeksztalcenie
rozszerzajace h(z) okresla zadanie aproksymacji algorytmu jakobianu pseudoodwrotnego
przez algorytm jakobianu rozszerzonego. Funkcjonat bledu dla tego problemu przybiera
nastepujaca postaé

.
&(h) = /Q tr <8h(m)PRT(x) (ah(x)> —28];(;)KRT(33)—IS> mer(z) dv,  (2.36)

ox ox
gdzie
Prr(z) = Jpit (2)Jpit " (@) + Krr(z) Kgr(2),
kolumny macierzy Kgrr(z) stanowia ortogonalna baze jadra jakobianu Jgp(z), natomiast
mgr(z) = \/det (Jrr(z)Jgr(z)). Catkowanie w (2.36) odbywa si¢ w podzbiorze regular-

nych konfiguracji manipulatora, w ktérym Jg# (z) jest poprawnie zdefiniowane.

2.2.4 Funkcjonal btedu II

Alternatywne sformulowanie zadania aproksymacji polega na zdefiniowaniu bledu aprok-
symacji przy pomocy kodystrybucji okreslajacych odwrotnosci jakobianéw. Funkcjonal
btedu II postuzy nam do celéw poréwnawczych jakosci aproksymacji algorytmoéw otrzy-
manych metoda wariacyjna i metoda geometryczna.

Zauwazmy, ze kazdy element kodystrybucji Di = spangesgny {dh1 (), . . ., dhs(z)}
okresla ta sama odwrotno$¢ jakobianu rozszerzonego, dlatego mozemy definiowaé¢ od-
wrotno$¢ przez pochodna Dh(z) odwzorowan rozszerzajacych kinematyke. Wowcezas, blad
aproksymacji moze by¢ zdefiniowany jako

£3(h) = / IDh(z) - Q(2)|1% da, (2.37)
Q
gdzie
ohi(z) .. Oh(z) dhy ()
oz On dh
Dh@=| : . & |=|"®|
Bhs(z) . Ohs(x) :
oz Oxn dhs(x)

natomiast wiersze macierzy {2 sa utworzone przez 1-formy ; anihilujace jakobian trans-
ponowany, ;J(z) = 0. Q oznacza podzbiér IR", na ktérym aproksymujemy. Funkcjonal
bledu (2.37) powinien by¢ minimalizowany ze wzgledu na funkcje rozszerzajace, w ten
sposob zadanie aproksymacji sprowadza si¢ do pewnego problemu rachunku wariacyjne-

go.
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2.3 Metoda geometryczna

W metodzie geometrycznej, zadanie aproksymacji polega na skonstruowaniu catkowalnej
kodystrybucji, ktora pokrywa sie z zadana kodystrybucja na pewnym obszarze przestrze-
ni konfiguracyjnej i wzdtuz okreslonych kierunkéw w IR™ [54,56]. Innymi stowy, szukamy
kodystrybucji Dy skojarzonej z odwrotnoscia typu jakobianu rozszerzonego, ktora aprok-
symuje kodystrybucje D# zwiazana z jakobianem pseudoodwrotnym. W tym celu, zde-
finiujmy w przestrzeni IR" foliacje z s—wymiarowymi lis§¢émi F,, parametryzowang przez
a € IR™ i z zerowym lisciem odniesienia Fjy. Jak tatwo zauwazy¢, wymiar liSci jest rowny
stopniowi redundancji kinematyki. Z foliacja zwiazana jest homotopia ®;: IR" — IR" dla
t € [0, 1], taka ze ®; = idgn, o: IR" — Ep, adlat,s € IR mamy ®;0P, = ®,. Homotopia
®, zachowuje strukture foliacji w tym sensie, ze kazdy lis¢ E, jest odwzorowany w lig¢
®,(E,) C Ey. Homotopia definiuje pole wektorowe w IR"

d(I)t (.’1:)
dt ’

t=1

X(z) = (2.38)

ktore okresla charakterystyczny kierunek w IR™. Co wiecej, latwo pokazaé, ze pole wekto-
rowe (2.38) spelnia nastepujaca tozsamosé

/ d®y(z)
dt

w wyniku czego, homotopia ®;(z) moze by¢ traktowana jako strumien pola wektorowego
X (z)/t, parametryzowanego czasem.

Nastepnie, wybierzmy specjalne wspolrzedne x = (y,z) € IR", w taki sposob, ze
z € IR* zmienia si¢ wzdluz liscia a y € IR™ jest stale na kazdym z liéci. Dla tak wybranych
wspolrzednych, li§¢ odniesienia jest zdefiniowany jako Ey = {(0,z)|z € IR®}, a zatem
®o(y, z) = (0, z). Zaldzmy, ze na lisciu E, 1-formy rozpinajace D sa wyrazone za pomoca
wspolrzednych (y, z), w taki sposob, ze €; ‘ B, = dz;, podczas gdy generatory kodystrybucji
D3 przyjmuja postaé

= X (D(z)) , (2.39)

0= 3 By(@)dhy(a), (2.40)

gdzie 1 = 1,...,s 1 B(z) = [By(z)] # 0 jest macierzg funkcji gtadkich. Zdefiniujmy
teraz zadanie aproksymacji jakobianu pseudoodwrotnego przez odwrotno$é¢ typu jako-
bianu rozszerzonego w nastepujacy sposob. Znalez¢é odwzorowanie rozszerzajace h(z) =
(hi(z), ha(z), ..., hs(z)), takie ze h(z,0) = z, a kodystrybucje D i Dy pokrywaja si¢ na
lisciach foliacji { E,}

mEa = QilEa = dz (2.41)
i zgadzaja sie wzdluz pola wektorowego X (z)
Qi(z) X (z) = Qu(z) X (2), (2.42)
dla kazdego 7 = 1, ..., s. Zauwazmy, ze
z) =Y By(z)dh ZZBU d 3 Bi;(z %) g 2,
J=1 =1 k=1 j=1 I=1

co w rezultacie daje

DR AR

j=1 i=1
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W konsekwencji, formuta (2.41) jest rownoznaczna z

B(z )a’;(z) =1 (2.43)

Dalej, podstawiajac z = ®(y, 2), Fi(z) = Q;(z)X(z) i korzystajac z zaleznosci (2.39)
i (2.40), réownanie (2.42) mozemy zapisa¢ w postaci

(I)t Y,z Z Bu (I)t Y,z dh‘] ((Dt(y’ z)) X ((Dt(y> Z)) =

tZ Bij (®4(y, 2)) dhy (P4(y, 2)) % -

tZBH 0.y, o 22

i wywnioskowad, ze

dh o ®y(y, z
B (2(y,2) T2 @y y,2), (2.44)
gdzie F(z) = (Fi(z),..., Fs(z)). Po podstawieniu H(t,y,z) = h(®(y, 2)) i niezbednych
przeksztalceniach z wykorzystamem rownarni (2.43) i (2.44) otrzymujemy uktad s roéwnan
rozniczkowych, czastkowych parametryzowanych wspélrzedna y

aH(ta Y, Z) _ aH(t7 Y, Z) 3 ((Dt(yv Z))
ot 0z ot

dla 7 = 1,...,s. Do rozwigzania tego ukladu mozemy zastosowa¢ metode charaktery-
styk [5]. Latwo zauwazy¢, ze H(t,y, 2(t)) = const wzdluz rozwigzania z(t) rownania cha-
rakterystycznego

=0,

dz(t F(P4(y, 2
d(t) =P :fy ) 2(0) = 2. (2.45)
Wiedzac o tym i korzystajac z wlasnosci homotopii ®,(z) i z zalozenia, ze na liciu od-
niesienia h(0, z) = z, dostajemy

H(1,y,2(1)) = h((®1(y, 2))) = h(y, 2) = H(0,y,2(0))

h (®o(y, 2(0))) = h(0, 20) = 20,

zatem h(y, z) = 2.
Ostatnia zaleznos$¢ oznacza tyle, ze aby wyznaczy¢ funkcje rozszerzajaca h(z), musimy
rozwigzaé nastepujace rownanie

Z(l) = &= ¢(17 Y, h(yv Z)) — ¢(1’y, Zo),

gdzie ¢(t,y, 20) jest strumieniem uktadu (2.45). Aby rozwiazaé¢ to zadanie, mozemy po-
stuzy¢ sie catkowaniem wstecznym réwnania charakterystycznego (2.45) dla zadanego y,
a nastepnie odzyska¢ oryginalng zmienng z.

Zauwazmy, ze warunki (2.41) i (2.42) implikuja pokrywanie si¢ kodystrybucji Dp i D
na lisciu E, i wzdluz trajektorii ®,(z) pola wektorowego (2.38) taczacego ten lis¢ z lisciem
odniesienia Fy. Otrzymane podzbiory przestrzeni konfiguracyjnej

= J{®: (Ba) It € [0,1]}

sg nazywane stronicami.
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2.4 Metody rozwiazania

2.4.1 Metoda posrednia — rachunek wariacyjny

Zagadnieniem wariacyjnym nazywamy problem wyznaczenia wartosci ekstremalnych funk-
cjonatu [17]. W niniejszym podrozdziale przedstawimy warunek konieczny istnienia ekstre-
mum funkcjonatu zaleznego od funkeji rozszerzajacej h(x) i zastosujemy go do rozwiazania
zadania aproksymacji algorytmoéw.

Dla kompletnosci, przytoczmy sposob rozwigzania zadania wariacyjnego o pochodnych
czastkowych z [17]. Rozpatrzmy funkcjonal

J(h(}) = /QL(Q:I, w5 s By LT ) Py« 5 5 3.l ) DB 55588, (2.46)

gdzie L(-) jest funkcja Lagrange’a, h = h(zy,...,z,), natomiast h,, oznacza pochodna
czastkowa pierwszego rzedu po z;. Obliczmy wariacje tego funkcjonatu zakladajac, ze
obszar caltkowania Q nie ulega zmianie. Niech

R*(z1,...,%0) = h(zy,...,2,) +en(zy, ..., 2,) + O(?),

wowczas przez wariacje funkcjonatu (2.46) rozumiemy czes¢ liniowa ze wzgledu na € z r6z-
nicy

J(h*) — J(h).
W dalszej czesci wywodu dla uproszczenia zapisu uznajmy, ze h(z) = h(zq,...,z,), n(x) =
n(zy,...,2,), a de =~ dz;...dz,. Obliczajac powyzsza roznice otrzymamy

J(h) = J(h) = /Q (L (2, h(2) + €n(z), hay () + ENr (@), -, B (2) + €M ()

—L(z,h(x), hey (), ..., he, (2))] dxze/ Lyn(z +ZLhzknl‘k } dz + O(e?).

Ostatecznie
T =g¢ / [Lhn +2Lh%nzk } dz (2.47)
Q
jest wariacja funkcjonaltu (2.46). Przyjmujac, ze

%) OLp,,
Lpey ey (2) = Er (Lha,n(z)) = R n(z)

i podstawiajac do rownania (2.47) dostaniemy

"9
5J:e/Q [Lh—za—“thk} dx—i—e/z (L, n(z)) da.
k=1 k

Calka

“\ 0
E/ Z — (Lhrkn(x)) de = /Lh2177(3:) dzy...den—. ..+ (=1)"Ly, n(z) dz; . ..d2y 4
Q r

k= 7 Oz
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na mocy wzoru Greena. Jezeli przyjmiemy, ze 7(z) zeruje si¢ na brzegu I' obszaru Q, to
calka ta réwna sie zeru.Tym samym, wzor dla wariacji sprowadza si¢ do

SN,
0J = 5/ Ly — E =—Lp,, | n(z) dz.
Q ( i Ok )

7 warunku koniecznego istnienia ekstremum funkcjonatu 6J = 0 dla wszystkich funkeji
n(z), wynika, ze funkcja podcatkowa réwniez musi zanikac¢

Z, 8
L= B—ML,L% =0. (2.48)
k=1

Rownanie (2.48) stanowi warunek konieczny na rozwiazanie zadania wariacyjnego i jest
nazywane rownaniem Eulera-Lagrange’a dla tego zagadnienia.

W przypadku, kiedy stopien redundancji s > 1, h(z) = (hi(x),...,hs(x)), nalezy
rozwigzaé uklad rownan Eulera-Lagrange’a

0 OL
Lh _Zaxkc?% a

dlaz=1,...,5

Wyznaczenie minimalnego bledu aproksymacji sprowadza si¢ do rozwiazania zadania
wariacyjnego (2.29) dla przypadku kinematyki we wspolrzednych, badz (2.36) dla kinema-
tyki wyrazonej w SFE(3). Korzystajac z rachunku wariacyjnego oraz zakladajac, ze btad
jest calka funkcji Lagrange’a L(z, ah( )) mozemy napisa¢ rownanie Eulera—Lagrange’a

0 oL

dla i = 1,...,s. Specyficzna postaé¢ tego réwnania wyprowadzonego dla (2.29) i (2.36)
jest nastepujaca

tr% (m1’2(x)P1’2(x)————8}gim)> - tr—%C (ml’z(x)Kil’z(m)) =
- - 2 1,2 52}%‘(53) =~ 0 (m1’2(x)P1;2(:1:)) Ohi(z)
Z <Z m! (:L')ka' (1‘) 0,01, + ; 83:T L a.’L‘k -

r=1 \k=1
a(m1’2<x>K:;2(x>)> 0

oz,
dlai=1,...,s, prawy, gorny indeks odnosi si¢ odpowiednio: 1 i réwnania (2.29) oraz 2 do
(2.36). Dla kazdego ¢ = 1,...,s, warunki optymalnosci (2.49) sprowadzaja sie r6wnania
[53]
Ah; = divK;, (2.50)

gdzie A jest operatorem Laplace’a, A = ZJ =1 a—;g, a operator div oznacza dywergencje

div Ki(z) = 337, %;j—l. Réwnanie rozniczkowe (2.50) znane jest jako réwnanie Poissona.

Z tego wynika, ze aby wyznaczy¢ optymalne odwzorowanie rozszerzajace h(z), nalezy
rozwiaza¢ uklad liniowych, eliptycznych réwnan rézniczkowych czastkowych.
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W celu wyznaczenia minimalnego ,,Funkcjonatu bledu II”, latwo sprawdzié¢ z (2.37), ze

(@ha) ) @) - @) = - (D) 22

j=1 Jj=1
(2.51)
dlai=1,...,s. Stad, warunki optymalno$ci przyjmuja posta¢ réwnan Eulera-Lagrange’a
Ah;i(z) = div Q4(z), (2.52)

gdzie A jest operatorem Laplace’a, a operator div oznacza dywergencje. Czastkowe row-
nanie rézniczkowe (2.52) jest rownaniem Poissona. W przypadku, gdy prawa strona row-
nania (2.52) jest réwna zero, jego rozwigzaniem sg funkcje harmoniczne. W rzeczywistych
przypadkach uktadéw robotycznych, nie jesteSmy w stanie rozwigza¢ réwnania Poissona,
nawet korzystajac z metod numerycznych. Dlatego, aby otrzymacé rozwiazanie konieczne
jest zastosowanie metod bezposrednich rachunku wariacyjnego, np. metody Ritza, patrz
podrozdzial 2.4.2.

2.4.2 Metoda bezposrednia — metoda Ritza

Podstawa metod bezposrednich jest wykorzystanie tzw. minimalizujacych ciagéw funkc;ji.
Jedna z najbardziej znanych metod jest metoda Ritza [17]. Dla uproszczenia wywodu,
przyjmijmy stopienn redundancji s = 1. Zalézmy, ze poszukujemy minimum funkcjonatu

J(h(-)), (2.53)

okreslonego na pewnej rozmaitosci bedacej obszarem catkowania w /R". Wezmy pod uwage
pewien ciag funkcji bazowych b(z) = (by(x), ba(), ..., ), taki ze

h(z) = aybi(z) + agba(z) + ... = a"b(z)

spelnia warunki brzegowe tego funkcjonalu. Zadanie polega na znalezieniu wspoélczynni-
kow a; dla ktorych wartosé funkcjonatu (2.53) jest najmniejsza.
Tak wiec, dzieki sparametryzowanej postaci h(z), minimalizacja btedu aproksymacji

)
£1a(h) = /Q tr (3?,;)@2( >(5’g—?) 220 1) u) m'2(z) da,

gdzie prawy gorny indeks 1 odpowiada (2.29) i 2 analogicznie (2.36), ze wzgledu na para-
metry a;, sprowadza si¢ do minimalizacji formy kwadratowe;j

E12(a) = a"M2q — 26" N2 4+ d'2, (2.54)

gdzie

-
M2 = [ B@pizg) (%(z)) m12(g) de,
N1.2 :f 6b(x)K12 (x) dz, (2.55)

d*? f m1 2(z)1, dx
Roézniczkujac rownanie (2.54) i przyréwnujac do zera otrzymujemy

OF(a)

e 2M*2q — 2N2 =0, (2.56)
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Pod warunkiem, ze macierz M2 jest nieosobliwa, optymalne odwzorowanie rozszerzajace

kinematyke jest réwne
h(z) = a*Tb(z), (2.57)
gdzie
a”* = (]\/[1,2)—1 N2
Aby, zastosowa¢ metode Ritza do rozwiazania zadania aproksymacji (2.37), zakladamy,
ze odwzorowanie rozszerzajace kinematyke, dla stopnia redundancji s = 1, ma posta¢
h(z) = a"b(z), gdzie b(z) = [bi(z), ..., by(x)] jest wektorem funkcji bazowychia € IRP jest
wektorem parametréw. Podstawiajac h(x) do réwnania (2.37) otrzymujemy blad w postaci
formy kwadratowe;
Es(a) =a"Ma—2a"N + Q, (2.58)
gdzie
oz
N = f@ Q%%ZQT(z) dz, (2.59)
Q = [(QT(2)Q(z) da.

Rozniczkujac E3(a) wzgledem a i przyrownujac do zera mamy

=
M =IQM -6%%2) dz,

2Ma — 2N = 0. (2.60)

Naturalnie, btad (2.58) osiaga minimum globalne dla a* = M~!N.
Powyzsze wzory mozna analogicznie rozszerzy¢ na przypadek wyzszego stopnia redun-
dancji, t.j. dla s > 1.



Rozdzial 3

Zastosowanie metody homotopii do
zadania reprodukcji trajektorii uktadéw
robotycznych

Ciekawym przykladem zastosowania algorytméw aproksymacyjnych sg algorytmy opar-
te na metodzie homotopii. W rozdziale zostana przedstawione algorytmy dedykowane
zadaniom planowania trajektorii stanu [55] i wyjécia [21], oparte na metodzie homoto-
pii. Wychodzac z metody homotopii, dla kazdego z tych zadan wyprowadzone zostanie
réwnanie rozniczkowe czastkowe, ktorego rozwiazaniem jest rodzina jednoparametrowych
funkcji sterujacych. W tej rodzinie, przy parametrze dazacym do nieskoriczonosci, zawarte
jest rozwigzanie zadania planowania trajektorii.

Zalozmy, ze kinematyka nieholonomicznego robota mobilnego lub dynamika mani-
pulatora badZ robota mobilnego jest przedstawiona jest za pomoca afinicznego ukladu
sterowania z funkcja wyjscia

{dv = f(z) + G(z)u = f(z) + 31_, gi(z)w; (3.1)

y = w(x) = (w1(x), ws(z), ..., wn(x)),

gdzie x € IR™ sg zmiennymi stanu, u € IR" jest wektorem sterowan i y € IR™ sa zmien-
nymi wyjsciowymi. Zakladamy, ze system (3.1) jest kwadratowy, w tym sensie, ze liczba
zmiennych wyjscia jest rowna liczbie sterowan, m = r. Niech dopuszczalne funkcje steru-
jace u naleza do pewnej przestrzeni U funkeji okreslonych na przedziale czasu [0, 7] oraz
przyjmujacych wartosci w IR". Wszystkie pola wektorowe i funkcje ukladu (3.1) sa gtad-
kie. Majac dany stan poczatkowy zg i funkcje sterujaca u(t) mozemy wyliczy¢ trajektorie
stanu z(t) = @g,(u(+)) i trajektori¢ wyjscia y(t) = w(z(t)) ukladu sterowania (3.1).
Odwzorowanie wejscie-wyjscie uktadu (3.1), przy ustalonym zy, moze by¢ zdefiniowane
jako
Fag: U =Y, Fao(u(-)) () = y(2). (32)

Trajektorie wyjscia y(-) € YV bedziemy nazywac reprodukowalng w xo wtedy, gdy istnieje
funkcja sterujaca u(-) € U, taka ze y(-) = Fy,(u(-)). Wyznaczmy odwzorowanie koricowe
ukladu (3.1) w chwili ¢ jako

Faop: U — R, Faot(u(+)) = y(t) = w(z(t)).

Dla ograniczonych funkcji sterujacych wyposazonych w topologie L,, p > 2 odwzorowanie
koncowe jest klasy C! [47]. Pochodna tego odwzorowania mozemy wyznaczy¢, postugujac
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sie przyblizeniem liniowym ukladu (3.1) wzdtuz pary sterowanie-trajektoria (u(t),z(t)),
w nastepujacy sposob

DFeu(u( o) = | Fruelul?) +00() = 2| wpaoa(ul) + av()) =

P i edu) o) (33)
gdzie M;I_(QZ = C(t). W celu wyznaczenia adg|a=0‘on,t(u(')) zrézniczkujmy to wyrazenie
wzgledem ¢
<2 ) ol = = ﬁ%,t(u(-) +au()) =
L (F(Praa(l) + @00) + Glprga(u) + ()0 + av(t))) =
UED L ) +an() + ZEDO LN () 1 av() + Glain) =
W) + Salu®) 41y, u() + av()) + Glali)o®. (3.4

Niech A(t) = a(f(z(t))gi(x(t))“(t)), B(t) = G(z(t)). Zdefiniujmy zmienng pomocnicza &(t) =

% a=0g010‘t(u(-) + av(-)). Wowczas, réwnanie (3.4) mozemy zapisaé jako nastepujace li-
niowe réwnanie rézniczkowe, bedace przyblizeniem liniowym uktadu (3.1) wzdluz pary

sterowanie-trajektoria (u(t), z(t))
E(t) = A(E() + B(t)v(t), (3.5)

z warunkiem poczatkowym £(0) = 0. Uktad (3.5) nazywa sie ukladem wariacyjnym sto-
warzyszonym z (3.1). Postugujac sie teoria liniowych réwnan rézniczkowych otrzymujemy
ogblne rozwiazanie rownania (3.5)

d

£(t) = Dpgo t(u(:))v(-) = o Gaot(u(:) + av(-)) = /0 ®(t,s)B(s)v(s) ds, (3.6)

a=0

gdzie ®(t, s) jest macierza fundamentalna uktadu (3.1) spelniajacq réwnanie %@(t, gli=
A(t)®(t,s) z warunkiem poczatkowym ®(s, s) = I,,. Ostatecznie, podstawiajac rozwigza-
nie (3.6) do (3.3) otrzymujemy

DF s tlu(: o) = C(t)/0 (¢, 5)B(s)v(s) ds.

Dla uktadu sterowania (3.1) i odwzorowania wejscie-wyjécie (3.2) sformutujmy zadanie
reprodukcji trajektorii wyjscia w nastepujacy sposéb. Majac dang trajektorie wyjsciows,
yd(t), reprodukowalng w o, znalez¢ funkcje sterujaca uy(t), taka ze Fuy(ug(+))(t) = ya(t).
Przyjmujac, ze wyjsciem sg wszystkie zmienne stanu w analogiczny sposéb mozemy zde-
finiowaé zadanie reprodukeji stanu [55].
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Zalozmy, ze dopuszczalne funkcje sterujace sa gladkie, klasy C*°. W takim razie, mo-
zemy znalez¢ rozwigzanie zadania reprodukeji trajektorii wnioskujac w sposéb charakte-
rystyczny dla metody homotopii. Wybieramy gladka krzywa ug(-) € U, 6 € IR, ze zbioru
dopuszczalnych funkeji sterujacych przechodzaca przez ug(-). Niech yy(t) oznacza trajek-
torie wyjscia uktadu (3.1) odpowiadajaca funkcji sterujacej ug(t). Nastepnie, dla zadanej
trajektorii yq(¢) zdefiniujmy funkcje bledu

e(t,0) = yo(t) — ya(t) = w(Pzot(ue(*))) — yalt). (3.7)

Naszym zadaniem bedzie wyznaczenie sterowania wuy(t), dla ktoérego blad e(t,6) bedzie
zbiegal do zera ze wspolczynnikiem o > 0. Podazajac za idea metody homotopii zdefi-
niujmy funkcje homotopii jako

t,0 Oe(t,0

H{t,0) = delt,9) + ae(t,0) — ge0) + ae(t,0) | exp(—v0) (3.8)

ot ot
gdzie wspolezynnik zbieznosci v > 0, ¢ € [0, 7], parametr homotopii 6 € IR i e(t,0) ozna-
cza blad dla sterowania poczatkowego u(t,0) = ug(t). Gdy przyréwnamy odwzorowanie

(3.8) do zera
H(t,0) =0

wowezas, tatwo wywnioskowad, ze dla @ = 0 rownanie (3.8) jest spelnione automatycznie,
a dla 0 dazacej do +oo rownanie staje si¢ rownaniem bledu

Oe(t, 0)

5% + ae(t,0) = 0. (3.9)

Zadamy, aby blad zbiegal eksponencjalnie do zera, co jest spelnione, gdyz rozwigzanie

(3.9) jest rowne
e(t,0) = e(t,0) exp(—at).

Roéwnanie H(t,0) = 0 okresla rodzing probleméw planowania trajektorii parametryzowa-
nych przez . Jesli mozemy rozwigza¢ problem dla danego 6, wtedy dazac z parametrem
do nieskonczonosci bedziemy w stanie rozwiazaé nasz oryginalny problem. Zr6zniczkujmy
teraz wzgledem 6 tozsamosé H(t,0) =0

d%e(t, 0) i de(t, ) (8e(t,0)

5190 a— 5 + ae(t, 0)) exp(—v0) = 0. (3.10)

Korzystajac z tego, ze

?—(i(gt’i) + ae(t,0) = (Qe—(gt’—ol + ae(t,O)) exp(—~0),

i robigc odpowiednie podstawienie do (3.10), otrzymujemy nastepujace rownanie btedu

d%e(t,0) 1 de(t,0)  Oe(t,0)

5160 a5y T3 + avye(t,0) = 0. (3.11)

W celu wyznaczenia rownania na sterowanie ug(t), konieczne jest wyznaczenie ponizszych
elementow positkujac sie rownaniem (3.7)
e(t, 0)
ot

= Co(t) (f (wo(1)) + Glzo(t))uo(t)) — Ja(t),
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e(t,0) Opaop(ue(')) _
gdzie macierz Cy(t) jest wyznaczana wzdtuz trajektorii zy(t) oraz

go(t) = 2msle) _ pp () 20

Nastepnie postugujac sie (3.5) otrzymujemy

d%e(t,0)
otoo

= Cy(t)&a(t) + Co(t)Ep(t) =

CoB)Ealt) + Colt) Aa()Ea(t) + Colt) Bo(t) 242

o0

gdzie Ay(t) i By(t) muszg by¢ liczone wzdtuz trajektorii zg(t).
Po zastgpieniu odpowiednich elementéw w (3.11), dostajemy rézniczkowo—caltkowe
roéwnanie na sterowanie u(t, 0)

Vo) 2480 L ar0160() + 2 Colt) (F (walt)) + Glaa(®)ult, ) =

a0
V(9a(t) — ae(t,0)), (3.12)
gdzie macierze My(t) = Cy(t) + Co(t) (aln + Ag(t)), No(t) = Co(t) By (2).

Ostatecznie, rézniczkujac réwnanie (3.12) wzgledem ¢ i odwolujac sie do (3.5) otrzy-
mujemy nastepujace czastkowe réwnanie rézniczkowe na sterowanie

9?u(t,0)
otol

Bu(t, §)

+ (Ng(t) + Mo(t) By (t)) 6“((;0’ 6) - 7N9(t)T + v My (t) By (t)u(t, 0)

+ Mp(t)E(t) + Mo(t) Ap(t)€o(t) = v( — Mp(t) f(zo(t)) + fla + afia). (3.13)

Np(2)

Roéwnanie (3.13) bedziemy nazywaé réwnaniem reprodukeji trajektorii uktadu (3.1), ktore
razem z afinicznym ukladem sterowania i ukladem wariacyjnym stowarzyszonym z (3.1)

o(t) = f(zo(t)) + G(q(t))ua(t) o1
§o(t) = Ap(t)6o(t) + Bo(t) 55" :

tworzy uktad reprodukcji trajektorii [21]. Warunki poczatkowe i brzegowe dla tego ukladu
sq przyjete jako
z¢(0) = zo, &(0) =0, u(t,0) = uo(t),

podczas gdy u(0,0) jest rozwiazaniem liniowego réwnania roézniczkowego otrzymanego
z (3.12)

du(0,0 .
NGO N (0)u(0,0) = 7~ C(0)f(an) + 5a(0) - alw(zo) — 1a0)).
gdzie C(0) = Q“Aafﬁ, N(0) = C(0)G(zo). Uktad reprodukcji trajektorii, utworzony przez
rownania (3.13) i (3.14), bedziemy rozwiazywaé przy zalozeniu, ze macierz Ny(t) jest
odwracalna.



Rozdziat 4

Przyktady numeryczne —
aproksymacja algorytmow kinematyki
odwrotne]

W rozdziale zostang przedstawione wyniki obliczen numerycznych dla zadania aproksyma-
¢ji jakobianowych algorytmoéw kinematyki odwrotnej. Pokazemy przyktady zaréwno dla
metody wariacyjnej jak i dla metody geometrycznej. Dla metody wariacyjnej rozwazymy
funkcjonaty btedu I'i II. Modelami testowymi beda manipulatory i robot mobilny. Wér6d
wynikow symulacji dla manipulatoréw przedstawimy przypadki, w ktérych kinematyka
robota bedzie wyrazona za pomoca wspotrzednych [56], a takze bez wspolrzednych [22],
za pomocy specjalnej grupy euklidesowej SF(3). Rozdzial koriczy poréwnanie metody
opartej na geometrii rozniczkowej oraz podejscia wariacyjnego.

W rozdziale pokazemy takze, ze wszystkie wyprowadzone metody aproksymacji algo-
rytmow jakobianowych mozna zastosowaé do rzeczywistego manipulatora przemystowego.
Wybierzemy manipulator POLYCRANK, w ktoérym polozenie i orientacje efektora okre-
slamy w szeSciowymiarowej przestrzeni, a jego stopien redundancji wynosi 1.

4.1 Manipulator POLYCRANK

Manipulator POLYCRANK, przedstawiony na rysunku 4.1, jest robotem o 7 stopniach
swobody skonstruowanym na wydziale Mechanicznym, Energetyki i Lotnictwa Politech-
niki Warszawskiej. Manipulator ten ma praktycznie nieograniczone zakresy obrotéw na
przegubach i izotropowe wlasnosci kinematyczne i dynamiczne [30, 31].

Parametry Denavita—Hartenberga robota sa zawarte w tabeli 4.1. Parametr 6; oznacza
polozenie i-tego przegubu, natomiast x; to polozenie i-tego silnika. Parametry geome-
tryczne POLYCRANKa dane sa nastepujaco: I; = 0.2975[m], lo = 0.18[m] , I3 = 1.552[m],

Korzystajac z parametréw Denavita—Hartenberga, tabela 4.1, otrzymujemy kinematy-
ke manipulatora wyrazong w SE(3)

C3C7 — CS3S7 —CgC7S83 — C3S57 5356 llcl -+ l202 + lﬁCg + 83(1484 4 1585)

K(z) = $3C7 + C6C387  CoCrC3 — 8387 —C386 1181 + lasa + 63 — c3(l484 + I555)
SeS7 C7S¢6 Ce l3 -1 l4C4 + l5C5 ’
0 0 0 1

(4.1)
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Rysunek 4.1: Manipulator POLYCRANK

Tabela. 4.1: Parametry Denavita—Hartenberga dla manipulatora POLYCRANK

e & [ & | & |
1 T 0 l1 0
2 To — T1 0 Iy 0
3 Tg—Ba+ 5 l3 0 -
4 a3+ & 0 ly 0
5 Ty — Ty 0 ls 0
6 Ty — Te+ 35 lg 0 2
7 T7 + 12'" 0 0 0

gdzie s; = sinz; oraz ¢; = cosz;. Odpowiednio, jakobian geometryczny manipulatora
przyjmuje postac

ste) = 5]

0 0 0 0 0 C3 S3S56
0 0 0 0 0 S3 —C3S¢
0 0 1 0 0 0 Co
'—l181 —l282 —l653 + C3(l454 + 1585) l4C4S3 l5CsS3 0 0
l101 l202 1663 = S3(l434 + l585) —-146364 —l563C5 0 0
L 0 0 0 -—1484 —l5S5 0 0 ]
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Niech kinematyka wyrazona za pomoca wspolrzednych okresla polozenie korica efek-
tora w przestrzeni kartezjanskiej i jego orientacje wyrazona przez katy ZXZ Eulera

l1 cos xy + ly cos Ty + g cos 3 + sin x3(ly sin x4 + 5 sin z5)
lysinxy + lp sin @y + lg sin x3 — cos z3(l4 sin x4 + 15 sin z5)
I3+ 14 cosxy + l5 cos s
T3
T
T7

Obliczmy jakobian manipulatora

J(z) = a’;i” -
——llsl —1282 (l45‘4 + 1585)03 = 1683 l483C4 l58305 0 0—‘
1161 1202 (1484 + l5$5)$3 + lﬁcg —l4C3C4 —~l5C3C5 0 0
0 0 0 —1484 —1585 00
0 0 1 0 0 00
0 0 0 0 0 10
L0 0 0 0 0 0 1]

Manipulator POLYCRANK znajduje sie w konfiguracjach osobliwych dla wartosci zmien-
nych przegubowych réwnych z5 = jm lub 29 — 21 =Im, j,1 =0,£1,. ...

4.2 Metoda wariacyjna — Funkcjonal btedu I dla kine-
matyki we wspolrzednych

4.2.1 Manipulator 3R bez konfiguracji osobliwych

Manipulator jest planarnym manipulatorem o 3 stopniach swobody [53], przedstawionym
na rysunku 4.2, skonstruowanym w Zaktadzie Podstaw Cybernetyki i Robotyki Politechni-
ki Wroctawskiej, wedlug projektu dra inz. K. Mianowskiego z Politechniki Warszawskiej,
tworcy robota POLYCRANK.

Rysunek 4.2: Manipulator
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Niech zmienne przegubowe okreslone beda przez (zi, 2, x3), a dwie zmienne zadaniowe
(y1, y2) okreslaja pozycje wozka Wy w ukladzie kartezjanskim zwigzanym z podstaws.
Zmienna przegubowa x; jest poruszana bezposrednio za pomoca silnika M;, podobnie
zmienna x3 jest zalezna wytacznie od silnika Mj. Pozycja W5 wzdluz prowadnicy P» zale-
zy od wspoélrzednej z3 oraz kata obrotu kota zebatego 2. Kat ten jest zadawany poprzez
przekladnie, ktorej przelozenie jest modyfikowane zmienng z,. Kinematyka manipulatora
jest opisana przez réwnania y; = c1x; oraz ya = fo(xa) + cszs, gdzie ¢; 1 ¢z sa stalymi
a funkcja fo(x2) = ng‘%, dla parametru a = "5; ry, 73 i [ sq odpowiednio promie-
niami i dlugoscia tworzacej stozka $cigtego bedacego elementem przektadni. Zmieniajac
wspblrzedne ¢ = c121, ¢2 = ¢33, g3 = le-fz(:zrz) i powracajgc do pierwotnej notacji ¢ = =,
otrzymujemy
k(z) = (21, T2 + 2123).

Po dokonaniu stosownych obliczeri obliczamy jakobian

o210 ]

macierz manipulowalnosci

M(x)=J(z>JT<x>={1 s }

generator jadra jakobianu
1

— (0
\/1+x§(

oraz manipulowalnoéé¢ m(z) = /1 + z2.

Naszym zadaniem jest znalezienie takiej funkcji rozszerzajacej h(x), ktora bedzie mi-
nimalizowala funkcjonal bledu I. Dla przyktadu poréwnamy rozwiazanie otrzymane przy
uzyciu metody Maciejewskiego i Robertsa, z rownaniem bledu (2.21), z funkcjonalem
bledu I zadanym réwnaniem (2.29).

Kiz) = -1 l)T

Metoda Robertsa i Maciejewskiego

Dla uproszczenia obliczen zalézmy, ze h(z) = z3f(z1), f(z1) # 0. Rozwiazanie zadania
aproksymacji prowadzi do nastepujacego réwnania Eulera-Lagrange’a dla funkcjonalu
(2.21)

2 (f?(xl) +4(1+22) <9§g’i—1))2 ~ ) (mf{ﬁl) 1+ xf)difi?))) ~0.

Analityczne rozwigzanie powyzszego rownania mozemy otrzymac korzystajac z programu

MATHEMATICA

Giy1+at : (4.3)
(wlm + sinh™(z;) + 02)1/3
gdzie C; i Cy oznaczaja stale catkowania. Optymalna funkcja rozszerzajaca przybiera

postaé [56]
Civ/1+ 22
h(z) = 3 d 1 — (4.4)
(:cn/l + % + sinh™}(z;) + Cz>

f(il?l) =
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Na potrzeby pdzniejszego poréwnania rozwinmy mianownik (4.3) w szereg Taylora wokot
z1 = 0. Po podstawieniu C = Cy = 1 otrzymujemy

f(ar) = (1 - §x1) J1+22,

a co za tym idzie, aproksymujaca funkcja rozszerzajaca jest rowna

2
h(z1,z3) = 3 <1 - §x1) \/1+ 22 (4.5)

Funkcjonatl btedu I

Teraz naszym celem jest wyznaczenie funkeji rozszerzajacej h(z) minimalizujacej funk-
cjonal bledu (2.29). Zadanie rozwiazemy, tak jak poprzednio, odwolujac si¢ do réwnania
Eulera—Lagrange’a. Aby méc to zrobi¢, powinni$émy najpierw wyliczy¢

1+ l‘% —T3 —T1T3
P(:c) - 1 — 3 1+z%+z§+ﬁ :zm:g—z:cj
1+ 33% 1+ 1+z7
— 2,23 xlzg—zxf{ 1+2a2+a?a?
1+a? 143

Po dokonaniu odpowiednich podstawieni, rownanie Eulera-Lagrange’a (2.49) przybiera
nastepujaca postac

T 0h(a) | 1+ ad+ad+al ha)
b 0a? (1 + z2)3/2 oz’
1+ 222 + 2222 82h(z) 2z3  0%h(z) 2z1z3  O0%h(z)

(1+22)32  Qx? (14 22)1/20x10x5 (1 + 22)1/2 0x10x;3
2z, (22 — 22) 82h(x) 3z1z3  Oh(x) N 2zirs — x5 0h(z) 0. (46)
(1+22)3/2 Ozy0xs  (1+22)3/2 8z, = (1+23)%2 Ozz

Zaloézmy warunki brzegowe h(zq,z2,0) = 0 i, tak jak w poprzednim przykladzie, h(z) =
z3f(z1). Przy takich zalozeniach réwnanie (4.6) redukuje si¢ do réwnania rézniczkowego
zwyczajnego drugiego rzedu

d?f(z;) 2z3 df(z;) 222-1

_ = 0. 4.
da? 1422 dz +(1+$%)2f($1) 4 )

Podobnie jak wyzej, korzystajac z programu MATHEMATICA otrzymujemy rozwiazanie

analityczne (4.7)
f(z1) = (azy + b)4/1 + 23,

gdzie a i b sg stalymi calkowania [56]. W rezultacie, optymalna funkcja rozszerzajaca jest

rowna
hap(z) = z3(az; + b)y/1 + 23 (4.8)

Poréwnujac rozwigzania (4.5) i (4.8) mozna zauwazy¢, ze pomimo réznych postaci funk-
cjonaléw bledu, otrzymane funkcje rozszerzajace sa sobie rowne dlaa=11b = —%.
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4.2.2 Manipulator TTR

Kolejnym przykltadem jest planarny manipulator o 3 stopniach swobody przedstawiony
na rysunku 4.3. Jego kinematyka jest opisana réwnaniem

4

X2

I i

x ,I
Rysunek 4.3: Manipulator TTR

k(z) = (z2+ lcoszs, z1+Isinzs).

Jakobian manipulatora, macierz manipulowalnosci, generator jadra jakobianu oraz funkcja
manipulowalno$ci sa odpowiednio réwne
0 1 —Isinzs I+ 1%sin?z3 —I%sinz;coszs
= M(z) = .
J(z) [l 0 lcoszs ] ! (2) —%?sinzzcoszz [+ [2cos?zs

K(x):\/l_lrlz(—lcosa:g,, [ sin x3, 1)T, m(z) = V1 + 2.

Ponownie, naszym zadaniem jest znalezienie jednej funkcji rozszerzajacej h(z), ktora be-
dzie minimalizowala btad aproksymacji (2.29). Do tego celu wykorzystamy rowniez row-
nanie Eulera-Lagrange’a. Korzystajac z rownania (2.49), po stosownych obliczeniach na-
dajemy temu réwnaniu postaé

trz% <R(z)af5§f)) =0,

gdzie R(z) = m(z)P(z). Niech dlugo$¢ ramienia | = 1, wtedy wspoélczynniki macierzy
R(z) sa rowne

7—cos(2z3) coszzsinzy _ cosag
\/5 4 2 2
R(l‘) — Y= | coszgsinzg  7+cos(2x3) sin 3
D) 2 1
__coszj sin z3 3
2 2 2

Ze wzgledu na trudno$ci obliczeniowe, zalézmy arbitralnie, ze h(z) = h(xa, z3). W tym
wypadku macierz R(z) redukuje sie do

\/5 74cos(2x3 sinzg

4 2

sinzg3 3 '
2 2

Riz)= -
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Rysunek 4.4: Optymalna funkcja rozszerzajaca

Numeryczne rozwigzanie zadania przy warunkach brzegowych h(zo, —2) = x5, h(—2,23) =
x3, h(z9,2) = —x9, h(2,23) = —x3, otrzymane przy pomocy pakietu PDE toolbox progra-
mu MATLAB jest przedstawione na rysunku 4.4. Na potrzeby dalszych obliczen, aprok-
symujmy otrzymane rozwigzanie wielomianem trzeciego stopnia

h(zs, x3) =
3.5760 - 10723 — 8.2205 - 10823 + 1.6717 - 10™°x3x3 + 1.5522 - 10 2z923
+1.4597 - 107222 — 4.0394 - 10™°22 — 5.0074 - 10~ 223 — 1.5981 - 10~ 'z,
+7.4522 - 10783 + 2.8858 - 107°,

ktore jest przedstawione na rysunku 4.5.

Rysunek 4.5: Aproksymowana funkcja rozszerzajaca
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Majac analityczng postaé¢ funkceji rozszerzajacej, mozemy wyliczy¢ jakobian rozszerzony
0 1 —sinzs
Jy= |1 0 coszz |,
0 jao(z) Jaa(z)
gdzie
jao(x) = 1.0728 - 107122 + 3.3434 - 10 %2573 + 1.5522 - 10223 + 2.9194 - 10™°x,
—~5.0074-10"'z3 — 1.5981 - 1071,
jaz(x) = —2.4660 - 107522 + 1.6717 - 107523 + 3.1044 - 10 %zo23 — 8.0788 - 10 °z;3
—5.0074 - 10712y + 7.4522 - 107

i odpowiednig odwrotnos¢ typu jakobianu rozszerzonego.

Dla tak przygotowanych danych poréwnajmy rozwiazania zadania odwrotnej kinema-
tyki otrzymane za pomoca algorytmu typu jakobianu pseudoodwrotnego i typu jakobianu
rozszerzonego. Zadanie polega na osiagnieciu przez koniec efektora manipulatora punktu
y = (0, 2) w przestrzeni zadaniowe]j. Konfiguracja poczatkowa zo = (0, 1, 0), co odpowia-
da polozeniu yg = (2, 0) w przestrzeni zadaniowej. Rysunek 4.6 przedstawia Sciezki konca
efektora dla algorytmu typu jakobianu pseudoodwrotnego i dla algorytmu typu jakobia-
nu rozszerzonego. Poréwnanie trajektorii wspoélrzednych przegubowych jest zobrazowane
na rysunku 4.7. Latwo zauwazy¢, ze oba algorytmy rozwiazaly z powodzeniem zadanie
kinematyki odwrotnej, a wygenerowane trajektorie przegubowe sa bardzo bliskie siebie.
Mozna jednak oczekiwaé, ze dla niektérych zadan réznica w otrzymywanych trajekto-
riach moze by¢ duzo wieksza, poniewaz otrzymana funkcja rozszerzajaca jest optymalna
w sensie érednim na pewnym, zalozonym obszarze.

2 2
B S N S - 18}
14 et NG e s i R 14k
1.2 1.2
N 9 SO |
0.8} SRR - S i SR S B 1Y | I—
0.6+ R e : e 06} -
DA e fncemsinass i : J 0.4b -
0.2} . it . : . eesed 0.2} o ; E
oo ots 1 1j5 2 o0 0?5 1 115 2
Yy Yy

Rysunek 4.6: Sciezka w przestrzeni zadaniowej otrzymana za pomocg algorytmu
jakobianu pseudoodwrotnego (z lewej) i jakobianu rozszerzonego (z prawej)

Kolejna symulacja bedzie mialta na celu sprawdzenie powtarzalnosci algorytmu. Wybierz-
my cztery punkty w przestrzeni zadaniowej A(0, 1), B(0, 2), C(1, 2) i D(1, 1). Zadanie
bedzie polegalo na ruchu efektora pomiedzy tymi czterema punktami tworzac krzywa
zamknieta. Innymi stowy moéwiac, zaczynamy ruch od punktu A i wracamy do niego
przechodzac przez punkty B, C' oraz D. W kazdym kroku punktem poczatkowym jest
rozwigzanie otrzymane z poprzedniego kroku. Wyniki symulacji dla jakobianu pseudo-
odwrotnego i jakobianu rozszerzonego zawarte sa w tabeli 4.2. Jak wida¢, algorytm typu
jakobianu rozszerzonego jest powtarzalny, w przeciwieristwie do algorytmu typu jakobianu
pseudoodwrotnego.
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Rysunek 4.7: Trajektorie przegubowe

Tabela. 4.2: Sprawdzenie powtarzalnosci

Algorytm Jakobian rozszerzony

Az 0 0 1.5708
B zif 0 0 1.5708
C =z |[1.9633 0.0007 0.0367
D z3 |0.9633 0.0007 0.0367
A x4y 0 0 1.5708
Algorytm | Jakobian pseudoodwrotny
Az 0 0 1.5708
Bz 1 0 1.5708
C  xy | 11132 0.5379  1.0904
D x3; | 02804 0.3056 0.8032
A x4 | 0.0603 —0.3420 1.2217

20
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4.2.3 Manipulator POLYCRANK

Badania symulacyjne przeprowadzono dla kinematyki manipulatora POLYCRANK wy-
razonej we wspolrzednych formula (4.2). Poniewaz stopieri redundancji robota s = 1,
naszym zadaniem jest znalezienie jednej funkcji rozszerzajacej h(z), ktoéra bedzie mi-
nimalizowala funkcjonal btedu &£;(h) okreslony réwnaniem (2.29). Zadanie rozwiazemy
metoda Ritza. Zalézmy, ze funkcja rozszerzajaca jest funkcja liniowa h(z) = a'z, a € IR,
natomiast aproksymacja bedzie przeprowadzona na obszarze

Q={xER7‘O.001§x1§§ 4000l Sz <m0z <, 0001<x4<g
g+0.001§x5 ™ —0.001, 0001<x5<§ o<x7<7r} (4.9)

Optymalna funkcja rozszerzajaca jest réwna
h(z) = —0.016516x1 — 0.01984522 + 0.023433z3 — 0.037846z4 + 0.037855z5,  (4.10)

a odpowiednia wartoé¢ funkcjonatu btedu & (h) = 0.763599. Za pomoca funkcji rozszerza-
jacej (4.10) mozemy zdefiniowa¢ odpowiedni jakobian rozszerzony i zdefiniowaé algorytm
typu jakobianu rozszerzonego. Obliczenia przeprowadZzmy dla trzech réznych zadan. We
wszystkich symulacjach v = 3 a czas symulacji tyax = 5. W tabeli 4.3 zostaly zebrane kon-
figuracje poczatkowe i punkty zadane w przestrzeni zadaniowej dla odpowiednich zadan.
Na rysunkach 4.8, 4.9, 4.10 zostaly przedstawione rozwiazania zadan. Przebiegi normy

Tabela. 4.3: Dane potrzebne do obliczen

Konfiguracja poczatkowa Punkt konicowy
Zadanie 1 | zo = (0.15, 3, 1, 1.5, 3, 0.3, 3) = (0.25, 0.65, 1.7, %, %, %)
Zadanie 2 | zo = (1, 1.7, 0.2, 1.5, 3, 0.5, 3) =(0.21, 061,17, 3, %, %)
Zadanie 3 | zo = (1.5, 2, 3, 0.4, 2, 0.5, 0.5) = (0.21, 051, 1.5, %, %, £)

predkosci przegubowych w czasie pokazane sa na rysunkach 4.11, 4.12 i 4.13, gdzie, dla
poréwnania, wykreslono réwniez przebiegi normy predkosci dla pewnej wybranej losowo,
nieoptymalnej funkcji rozszerzajacej. W tabeli 4.4 zebrano wartosci kryteriow

VI llzp () — zp(0)| dt
VI lzp(0)]2 dt
_ VIl sl d
JI=lae@lzde

bedacych miara jakosci aproksymacji. Odpowiadaja one $redniej, wzglednej réznicy tra-
jektorii oraz $redniej, wzglednej réznicy predkosci w przegubach otrzymanych z obu algo-
rytméw na calym przedziale czasu symulacji.

51 = , (4.11)

(4.12)
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Rysunek 4.8: Rozwiazanie zadania 1
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Rysunek 4.9: Rozwiagzanie zadania 2
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Rysunek 4.10: Rozwiazanie zadania 3
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Rysunek 4.11: Normy predkosci przegubowych dla zadania 1
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Rysunek 4.12: Normy predkosci przegubowych dla zadania 2
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Rysunek 4.13: Normy predkosci przegubowych dla zadania 3

Tabela. 4.4: Wartosci miar jakosci aproksymacji dla zadan 1, 21 3

Jakobian rozszerzony optymalny Jakobian rozszerzony nieoptymalny
01 0o 01 0o
Zadanie 1 0.07235 0.44217 0.23003 0.80258
Zadanie 2 0.00566 0.06068 0.30564 0.53602
Zadanie 3 0.05162 0.67504 0.11714 1.07615
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Analizujac rysunki dochodzimy do wniosku, ze zadanie aproksymacji zostalo pomysl-
nie rozwigzane. Wynikowy algorytm typu jakobianu rozszerzonego jest rozsadng aprok-
symacja algorytmu typu jakobianu pseudoodwrotnego. Poniewaz aproksymacja odbywa
sie na pewnym obszarze, otrzymana funkcja rozszerzajaca, a co za tym idzie jakobian
rozszerzony, jest optymalna w sensie §rednim. Jak wida¢ na rysunku 4.11, generowane
grednie wartosci predkosci przegubowych w trakcie ruchu sa wieksze od tych otrzyma-
nych z algorytmu jakobianu typu pseudoodwrotnego, nie mniej jednak lepsze od wyniku
uzyskanego dla losowo wybranej funkcji rozszerzajacej. Fakt, ze w niektérych przypad-
kach (por. rysunek 4.13) norma predkosci przegubowych dla jakobianu rozszerzonego jest
mniejsza od otrzymanej za pomoca jakobianu pseudoodwrotnego, wynika z tego, ze ten
- ostatni dostarcza rozwigzanie bedace minimum lokalnym. Zdarzaja sie takze przypadki,
w ktorych rozwigzanie algorytmu typu jakobianu rozszerzonego moze byé bardzo podobne
lub by¢ wrecz identyczne z rozwiazaniem algorytmu typu jakobianu pseudoodwrotnego,
rysunek 4.9.

Aby zbada¢ wlasno$¢ powtarzalnosci otrzymanych algorytméw, przeprowadzono na-
stepujace doswiadczenie. Wybrano trzy punkty w przestrzeni zadaniowej robota A =
(0.35532, 0.203727, 1.53401, 0.5, 0.5, 3), B = (0.21, 0.51, 1.7, , %, %) oraz punkt C' =
(0.48, 0.22, 1.51, 1, 1, 2). Rozwiazywanym zadaniem jest przeprowadzenie konca efektora
manipulatora z punktu A pomiedzy punktami B, C' z powrotem do punktu A, tworzac
krzywa zamknieta w przestrzeni zadaniowej. Dla przejrzystosci wynikéw, zakreslamy te
krzywa dwa razy. Wyniki obliczenn zawarte sa w tabeli 4.5. Na ich podstawie mozna wy-
ciggna¢ wniosek, ze algorytm kinematyki odwrotnej oparty na jakobianie rozszerzonym
posiada wlasnos¢ powtarzalnosci w przeciwienstwie do algorytmu typu jakobianu pseu-
doodwrotnego. Dodatkowo, rysunki 4.14-4.16 przedstawiaja graficzne potwierdzenie tej
tezy.

Tabela. 4.5: Sprawdzenie powtarzalnosci

Algorytm Jakobian rozszerzony

Az 0.5 3 0.5 0.5 3 0.5 3
Bz 0.657333  2.72992 1.5708 —0.126507 1.63786 1.0472 1.0472
C  zop | —0.0045703 2.41081 1 0.935985  2.59736 1 2

A oz 0.5 3 0.5 0.5 3 0.5 3

B myy 0.657333  2.72992 1.5708 —0.126507 1.63786 1.0472 1.0472
C x5y | —0.0045703 2.41081 1 0.935985  2.59736 1 2
A ey 0.5 3 0.5 0.5 3 0.5 3
Algorytm Jakobian pseudoodwrotny

Az 0.5 3 0.5 0.5 3 0.5 3
Bz 0.771934  2.88152 1.5708 0.0700009 1.64341 1.0472 1.0472
C oy 0.226379  2.70766 1 1.10556 2.3619 1 2

A oz 0.739445  2.92491 0.5 0.701542 2.63884 0.5 3
Bz 0.894524  3.02032 1.5708 0.269479  1.60972 1.0472 1.0472
C x5y 0.358629  2.85292 1 1.23451  2.20494 1 2

A ey 0.895779  2.80957 0.5 0.923094 2.36852 0.5 3
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Rysunek 4.14: Sprawdzenie powtarzalnoéci dla algorytméw typu jakobianu
rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawe;j)

X5
3.0F

2.8¢
2.6

2.4

Rysunek 4.15: Sprawdzenie powtarzalnosci dla algorytmoéw typu jakobianu
rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawe;j)
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Rysunek 4.16: Sprawdzenie powtarzalnosci dla algorytméw typu jakobianu
rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)

4.3 Metoda wariacyjna — Funkcjonal bledu I dla kine-
matyki w SE(3)

4.3.1 Podmanipulator stanfordzki

Dla ilustracji konstrukeji algorytmu jakobianu rozszerzonego dla kinematyki zdefiniowane;j
jako odwzorowanie w SE(3), rozwiazemy odwrotne zadanie kinematyki dla redundantnego
nadgarstka bedacego zmodyfikowanym manipulatorem stanfordzkim o czterech stopniach
swobody, przedstawionego na rysunku 4.17.

L
CD%
a5 Zy, 24, Zs
R
X g
Z
q: T\
oz TN
X
X

Rysunek 4.17: Redundantny nadgarstek
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Orientacja nadgarstka w przestrzeni jest okreslona za pomocg macierzy rotacji

—c45183 + c1(cac3cy — S284) 18354 — C1(CaS2 + C2C384) €351 + €1C283
R(z) = C3C482 + €284 CoC4 — C35284 5983 ,
51(8284 — Cac3cy) — €1€483  C€48182 + Sa(cac3sy + €183) €103 — €25183

gdzie z = (z1,...,24) Oraz s; i ¢; oznaczaja odpowiednio sin; i cos z;.

Naszym celem jest wyznaczenie funkcji rozszerzajacej, ktéra bedzie minimalizowata
funkcjonal bledu &, okreslony réwnaniem (2.36). W tym celu réwniez postuzymy sie me-
toda Ritza, oméwiong w podrozdziale 2.4.2. Zal6zmy dwie postacie funkcji rozszerzajacej

e liniowa hy(z) = a1z1 + axzs + azxs + a4y,

e kwadratowg ho(x) = a121 +asxs + a3x3 + a4T4 + a5T1T2 + aeT1T3 + a7T1T4 + agTox3+
aAgToly + a10T3T4 + 0:1133% + aua:% + a13z§ + 014333.

Nieosobliwy obszar w przestrzeni konfiguracyjnej wybierzmy jako
i T 7 T s
_ 1R4}__< < 001<z<Z o0o<az<i -T< <_},
Q {xe g =l= g SR gr =B =y =
Po dokonaniu optymalizacji otrzymaliémy optymalng liniowa funkcje rozszerzajaca

hi(xz) = —0.454353z; — 0.237304z, 4 0.23151623 + 0.464759x4

i kwadratows posta¢ optymalnej funkcji rozszerzajacej

ho(z) = —0.46179z; + 0.13658z5 — 0.15069z3 + 0.46637z4 + 0.036012; 22—
0.09928z1z3 — 0.00057x1x4 + 0.00524x5923 + 0.09756x524 — 0.03657x324—
0.01898z7 — 0.24783z3 + 0.25060z3 + 0.01804z].

Wartoéé funkcjonatu bledu dla przypadku liniowego jest rowna &(hi) = 10.0521, nato-
miast dla funkcji kwadratowej € (hs) = 5.38958 [22]. Postugujac sie powyzszymi funkcjami
rozszerzajacymi zbudowano algorytmy typu jakobianu rozszerzonego oznaczone odpowied-
nio JZ#(z) dla funkcji liniowej i J; #(z) dla funkcji kwadratowe;.

Zachowanie algorytméw kinematyki odwrotnej korzystajacych z otrzymanych jako-
bianéw rozszerzonych, w poréwnaniu do algorytmu jakobianu pseudoodwrotnego zostata
przedstawiona na rysunkach 4.18-4.20. W tabeli 4.6 zebrano warto$ci miar jakosci aprok-
symacji (4.11) i (4.12). Rysunek 4.20 przedstawia kwadrat normy predkosci chwilowych
w czasie dla wszystkich algorytméw. W obliczeniach przyjeto odpowiednio:

e Zadanie 1: konfiguracja poczatkowa z(0) = (0, 5, 7, 0), orientacja zadana
1 _¥2 1
Ry=| 1 £ 1
2 2 ’
2 0 ¥

ktéra odpowiada katom RPY (%, %, 0) w reprezentacji Roll-Pitch—Yaw. Wspotczyn-

nik zbieznosci algorytmu v = 2 i czas symulacji ¢y = 12.

e Zadanie 2: konfiguracja poczatkowa z(0) = (—%, %, 0.2, —%), orientacja zadana
w katach Roll-Pitch-Yaw RPY (7, I, %). Wspotczynnik zbieznosci algorytmu v =
0.6 i czas symulacji tymax = 12.
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Rysunek 4.19: Rozwiazanie zadania 2
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Tabela. 4.6: Wartosci miar jakosci aproksymacji dla zadan 11 2

Jakobian rozszerzony J; " Jakobian rozszerzony J;
61 62 51 52
Zadanie 1 0.09415 0.14098 0.03319 0.10536
Zadanie 2 0.50389 0.61421 0.42605 0.41112
Il 2 Il 2

2.0F —— X1 E 2.5}
----- x .
2E 20\’| Sa— X\ E
R Xp
B A\ X
’ . X,
1.0} A\ g
1.0* )
93 0.5¢
) " ~ t t
0.5 1.0 1.5 2.0 4 6 8

Rysunek 4.20: Normy predkosci przegubowych dla zadania 1 (z lewej) i 2 (z prawej)

Jako$¢ aproksymacji dla algorytmu typu jakobianu rozszerzonego JQE #(:L") z kwadratowa
funkcjg rozszerzajaca jest lepsza niz dla przypadku algorytmu typu jakobianu rozszerzo-
nego JIE#(.??) z liniowa funkcja rozszerzajaca (por. rysunki 4.18-4.20 oraz tabela 4.6).
Jedli jednak zalezy nam tylko na minimalizacji predkosci ruchu, w wigkszosci przypadkow
oba algorytmy JE#(z) i JS #(z) daja zadowalajaca aproksymacje algorytmu jakobianu
pseudoodwrotnego JF#(z), co widaé na rysunku 4.20.

W celu sprawdzenia powtarzalno$ci nowo otrzymanych algorytmoéw zazadalismy, aby
koniec efektora przemieszczal sie pomiedzy trzema konfiguracjami w przestrzeni zada-
niowej A = RPY (%, %,0), B = RPY(§, 1,0), C = RPY(3, 7, §). Ustalone pozycje
przegubowe otrzymane przez wszystkie algorytmy zawarte sa w tabeli 4.7.

Tabela. 4.7: Sprawdzenie powtarzalnosci

Algorytm Jakobian rozszerzony J; " (z)
A ) 0 1.5708 1.0472 0
Bz | 0.0969 0.8614 0.7194 —0.1041
C  xop |0.5227 0.2999 1.0676 —0.1480
A my | 0 15708 1.0472 0

Algorytm Jakobian rozszerzony J, 7 ()

A x 0 1.5708 1.0472 0
Bz ] 0.1779 0.9376 0.6690 —0.2031
C  xy |0.5734 0.3087 1.0191 —0.1656
A 3y 0 1.5708 1.0472 0

Algorytm | Jakobian pseudoodwrotny J¥#(x)
Zo 0 1.5708 1.0472 0

zip | 0.1580 0.9177 0.6809 —0.1776
zor | 0.6558 0.3260 0.9409 —0.1965
zzr | 0.1833 1.6756 1.0568 —0.2109

Qo
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4.3.2 Manipulator POLYCRANK

PrzejdZzmy teraz do odwrotnego zadania kinematyki, w ktérym bedziemy rozpatrywac nie
tylko orientacje, ale takze polozenie konca efektora. Jako przyktad do obliczen wykorzy-
stamy manipulator POLYCRANK, oméwiony w podrozdziale 4.1. Korzystajac z parame-
trow Denavita—Hartenberga, tabela 4.1, otrzymujemy kinematyke manipulatora wyrazona
w SFE(3) (4.1). Poniewaz stopien redundancji manipulatora s = 1, szukamy jednej funkcji
rozszerzajacej hy(z), ktora bedzie minimalizowala blad aproksymacji £;(h) dany réwna-
niem (2.36). Korzystajac z metody Ritza, zalozylismy liniowa postaé funkeji h(z) = a'z,
a € IR". Obszar catkowania jest okreslony przez (4.9). W wyniku obliczeri wykonanych
zgodnie z rownaniami (2.56) i (2.57), optymalna funkcja rozszerzajaca przyjmuje postac

hi(z) = —0.0131792; — 0.014623z5 + 0.021448z3 — 0.033563x4 + 0.033571z5, (4.13)

przy wartosci funkcjonatu E;(hy) = 0.489715. Funkcja (4.13) okresla jakobian rozszerzony
JE#(z) i algorytm jakobianu rozszerzonego (2.35).

Wyniki obliczen numerycznych dla algorytméw typu jakobianu rozszerzonego i jakobia-
nu pseudoodwrotnego zostaly pokazane na rysunku 4.21. Na rysunku 4.22 przedstawiono
poréwnanie normy predkosci przegubowych w trakcie trwania ruchu dla obu algorytmow.
Do obliczen numerycznych przyjeto nastepujace dane: konfiguracja poczatkowa z(0) =

—-1/2 0 +/3/2
(0.15, 3, 1, 1.5, 3, 0.3, 3), zadane orientacja korica efektora R; = 0 -1 0
Vv3/2 0 1/2
i polozenie Ty = (0.25, 0.65, 1.7), wspotczynnik zbieznosci v = 3 i czas symulacji tpax = 5.

Teraz, zawezmy obszar catkowania do podzbioru konfiguracji wynikajacych z rozwia-
zania algorytmu typu jakobianu pseudoodwrotnego w zadaniu 1. W efekcie otrzymamy
zadanie optymalizacji na mniejszym obszarze, a minimalna funkcja rozszerzajaca i odpo-
wiednio jakobian rozszerzony beda dedykowane ruchowi z zadania 1. Spodziewamy sie,
ze tak otrzymany jakobian rozszerzony zwréci rozwigzanie blizsze rozwiazaniu uzyskane-
go przy pomocy algorytmu jakobianu pseudoodwrotnego, jednak w taki sposéb tracimy
na ogo6lnosci (zadanie aproksymacji algorytméw staje sie zalezne od ruchu, ktéry chcemy
uzyskac). Zal6zmy, ze nowy obszar catkowania jest rowny

Q= {x = R7‘0.1 <3, <1.1,21<7,<31,09 <z <17 02<z, <14
14< 25 <31,02< w6 <12 1.4<z; <3}

Dla tak obranego obszaru optymalna liniowa funkcja rozszerzajaca minimalizujaca funk-
cjonal btedu (2.36) przybiera postac

ho(x) = —0.07471962; — 0.06341962, — 0.00144952z3 — 0.0812601x4 + 0.08957365.

Rysunek 4.24 przedstawia poréwnanie rozwigzan (dla danych z zadania 1) dostarczonych
przez algorytmy typu jakobianu pseudoodwrotnego i jakobianu rozszerzonego z funkcja
rozszerzajaca ho(z). Dodatkowo, na rysunku 4.23 wykreslono kwadraty norm predkosci
przegubowych wygenerowanych przez oba algorytmy. Jak widaé, §rednie predkosci prze-
gubowe otrzymane z algorytmu typu jakobianu rozszerzonego sa teraz blizsze srednim
predkosciom wygenerowanym przez algorytm typu jakobianu pseudoodwrotnego niz te
otrzymane dla algorytmu korzystajacego z (4.13). Na potwierdzenie powyzszej obserwa-
cji, w tabeli 4.8 zebrano warto$ci miar jakosci aproksymacji (4.11) i (4.12), za$ na rysun-
kach 4.25 i 4.26 widnieja przebiegi predkosci przegubowych w czasie dla obu algorytmow
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Rysunek 4.21: Rozwigzanie zadania 1 dla algorytméw typu jakobianu pseudoodwrotnego
i jakobianu rozszerzonego JL%
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jakobianu rozszerzonego. Oczywiscie, aproksymacja nie gwarantuje, ze otrzymany opty-
malny algorytm typu jakobianu rozszerzonego bedzie zwracal rozwigzania mieszczace si¢
w zalozonych przedzialach zmiennych przegubowych. Wynika to z faktu iz rozwigzania
generowane przez oba algorytmy w ogolnosci réznig sie ze wzgledu na posiadanie badz
nieposiadanie wlasnosci powtarzalnosci.

Tabela. 4.8: Wartosci miar jakosci aproksymacji

Jakobian rozszerzony J; 7 Jakobian rozszerzony Jy "
01 2 01 d2
Zadanie 1 0.03092 0.36787 0.09801 0.12950
Il 2
250
XE
20080 e Xp
A
H\
150 F
100 F
50r
02 04 0.6 0.8 o

Rysunek 4.22: Normy predkosci przegubowych dla odwrotnosci JF# i JlE #

Ilxd] 2
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XE

150 N eemem-- xP

100}

50}

; - "
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Rysunek 4.23: Normy predkosci przegubowych dla odwrotnoéci JX# i JQE #
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Rysunek 4.24: Rozwigzanie zadania 2 dla algorytmu typu jakobianu pseudoodwrotnego
i jakobianu rozszerzonego J;’
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Rysunek 4.25: Przebiegi predkosci przegubowych w czasie dla JF# i J[ # (zadanie 1)
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Rysunek 4.26: Przebiegi predkosci przegubowych w czasie dla JP# i J7# (zadanie 2)
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4.4 Metoda wariacyjna — Funkcjonal bledu II
4.4.1 Manipulator POLYCRANK

Przyjrzyjmy sie teraz zadaniu aproksymacji okreslonemu przez funkcjonat bledu (2.37)
i zastosujmy go dla manipulatora o 7 stopniach swobody POLYCRANK. Kinematyka
robota jest zdefiniowana réwnaniem (4.2). Stopien redundancji robota s = 1, zatem szu-
kamy funkcji rozszerzajacej h(z), minimalizujacej funkcjonal bledu £(h). Niech funkcja
rozszerzajaca bedzie funkcja liniowa h(z) = a'z, a € IR7, natomiast obszar calkowania
bedzie réwny

Q:{xeR7‘0.001 < gg, g+0.001§m2§7r,0§x3§7r, 0.001 < 24 < g-

g+0.001gx5§w—0.001,0.001gxﬁg g- O§x7§7r}.

Dla tak zalozonych danych optymalna funkcja rozszerzajaca przybiera postaé
h(z) = —0.195322z; — 0.2918z5 — 0.504088z4 + 0.5042565.

Za pomocq tak zdefiniowanej funkcji rozszerzajacej mozemy zdefiniowaé jakobian roz-
szerzony oraz zdefiniowaé algorytm typu jakobianu rozszerzonego. Obliczenia przeprowa-
dzono dla dwoch zadan. Zadanie pierwsze jest opisane warunkiem poczatkowym zy =
(0.3, 1.6, 1.2, 1, 2, 0.5, 0.5) i warunkiem koricowym yg = (0.21, 0.51, 1.5, Z, %, §). Nato-
miast, drugie zadanie: zo = (1, 1.7, 0.2, 1.5, 3, 0.5, 3) i ya = (0.21, 0.61, 1.7, §, %, %).
Pozostale parametry potrzebne do obliczen byty takie same dla obu zadan i byly réwne:
wspoélezynnik zbieznosei v = 3, czas symulacji tmax = 5.

Rozwigzania powyzszych zadan zostaly przedstawione na rysunkach 4.27 i 4.28. Rysun-
ki 4.29 i 4.30 przedstawiaja przebiegi normy predkosci przegubowych w czasie. Natomiast

tabela 4.9 zawiera wartosci miar jakodci aproksymacji (4.11) i (4.12).

Tabela. 4.9: Wartosci miar jakosci aproksymacji

Jakobian rozszerzony J; 7
51 (52
Zadanie 1 0.07037 0.18430
Zadanie 2 0.16762 0.25195

Analizujac wyniki wida¢, ze zadanie aproksymacji zostalo rozwigzane poprawnie. Roz-
wigzania otrzymane dzieki algorytmowi jakobianu rozszerzonego sg bliskie rozwigzaniom
algorytmu jakobianu pseudoodwrotnego. Takze wartosci norm predkosci przegubowych
rozwigzan obu algorytmoéw sa do siebie zblizone.

W celu sprawdzenia powtarzalnosci otrzymanego algorytmu typu jakobianu rozszerzo-
nego, wyznaczono trzy punkty w przestrzeni zadaniowej A = (0.21, 0.51, 1.7, %, 2, %),
B = (0.48,0.22,1.51, 1,1, 2) i C = (0.36, 0.20, 1.53, 0.5, 0.5, 3). Zadanie polega na za-
kresleniu przez koniec efektora krzywej zamknietej zawartej pomiedzy tymi punktami.
Rozwigzanie zadania przez algorytm jakobianu pseudoodwrotnego i jakobianu rozszerzo-
nego zawierajg rysunki 4.31-4.33, z ktoérych mozna wywnioskowaé, ze algorytm typu ja-
kobianu rozszerzonego zachowuje ceche powtarzalnosci, w przeciwienistwie do algorytmu
typu jakobianu pseudoodwrotnego.
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Rysunek 4.27: Rozwiazanie zadania 1 dla algorytméw typu jakobianu pseudoodwrotnego
i jakobianu rozszerzonego
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Rysunek 4.28: Rozwigzanie zadania 2 dla algorytméw typu jakobianu pseudoodwrotnego
i jakobianu rozszerzonego
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Rysunek 4.29: Normy predkosci przegubowych w zadaniu 1 dla jakobianéw J Pe | JE#
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Rysunek 4.30: Normy predkosci przegubowych w zadaniu 2 dla jakobianéw J PE  JEF

Rysunek 4.31: Sprawdzenie powtarzalnoéci dla algorytméw typu jakobianu
rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)
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Rysunek 4.32: Sprawdzenie powtarzalnosci dla algorytméw typu jakobianu
rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej)

Rysunek 4.33: Sprawdzenie powtarzalnoéci dla algorytméw typu jakobianu
rozszerzonego (z lewej) 1 jakobianu pseudoodwrotnego (z prawej)



64 4. Przyklady numeryczne — aproksymacja algorytmow. ..

4.4.2 Monocykl

Rozwigzmy zadanie z bledem aproksymacji (2.37) dla robota mobilnego. Obliczenia nu-
meryczne przeprowadzimy dla kinematyki monocykla. Schemat robota z odpowiednimi
oznaczeniami przedstawia rysunek 4.34.

Rysunek 4.34: Monocykl

Niech z = (z;, zo, x3) okresla pozycje i orientacje monocykla poruszajacego si¢ po plasz-
czy#znie. Kinematyka monocykla jest zdefiniowana za pomoca ukladu sterowania

1 coszy 0 "

. . 1

Ty | = |sinxzg O (u ) .
i3 0 1 .

gdzie sterowania u; 1 uy maja znaczenie predkodci liniowej i katowej robota. Niech horyzont
czasowy symulacji bedzie tynax = T = 27, a sterowania przyjma postac

U1 (t) = /\10 -+ )\11 Sil’lt,
’LLQ(t) = /\20 + /\21 Sint, (414)

tak, ze wektor wspotczynnikéw funkeji sterujacych A = (Ao, A1, Ao Aa1) € IRY.
Zalozmy, ze warunki poczatkowe zo = 0. Wtedy, kinematyka monocykla podlegajacego
sterowaniu (4.14) jest nastepujaca [56]
Kzo,T(A) = (:L‘l)\(T), xz)\(T), £C3,\(T)), (4.15)

gdzie

t t
() = / (Ao + A1 sins) coszay ds,  zar(t) = / (A10 + A11 sin 8) sin 3y, ds,
0 0

t
Ta(t) = / (A20 + A21 sin s) ds = Agot + A1 (1 — cost).
0

Majac dana kinematyke (4.15), obliczamy jakobian

0K yo,r(N)

']JPO,T()\) = a/\

= [Ji;(M)], (4.16)
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gdzie
T T
Juu(\) = / coszax(s) ds, Ji2(A) = / sin s cos 3y (s) ds,
0 . 0
Jis(A) = —/ (A0 + A1 sin s) sinzzy(s)s ds,
OT
Juu(A) = —/ (Ao + A1 sin s) sin sy (s)(1 — cost) ds,
TO T
Ja(N) = / sinzay(s) ds, Jaa(A) = / sin s sin z3)(s) ds,
0 ., 0
Jaz(A) = —~/ (Ao + Aq18in s) cos z3x(s)s ds,
0

T
Jog(N) = / (Ao + Aq1sins) cos zzx(s)(1 — cost) ds,
0 .
ng()\) = 0, J32(/\) = 0, J33()\) = 27T', J34()\) = 0.
Taka posta¢ Jakobianu (4.16) pozwala na wyznaczenie jego pseudoodwrotnosci jako
TP = T3 2(A) (Jaor (NI, 7(N))

Poniewaz s = 1, kodystrybucja anihilujaca (4.17) jest wyrazona przez 1-forme Q()\) =
(w1(A), wa(A), ws(A), wa(A)), ktorej sktadnikami sg

- (4.17)

~ Ju(N) Jaa(N) = Ji2(N) Jaa(N)
AN = N ) =TTy 2N =L
J12(A) Ja1(A) = J11(A) Jaz(N)

)

Latwo zauwazy¢, ze wi(\) 1 wy(A) sa dobrze okreslone, gdy Aip # 0.

Jestedmy teraz gotowi, aby zdefiniowa¢ zadanie aproksymacji: znalez¢é funkcje rozsze-
rzajaca h(x) minimalizujaca funkcjonal bledu okreslony réwnaniem (2.37). Niech obszar
catkowania bedzie rowny

Q={re R"04 <A <25 —05< A1 €25, =05 < Ay < 2.5, 0.5 < Ay <25}

Zaktadajac liniowa postaé¢ funkcji rozszerzajacej h(A\) = a'\, a nastepnie postugujac sie
metoda Ritza, otrzymaliémy nastepujacy wynik

Rozpatrzmy dwa zadania kinematyki odwrotnej o ré6znych punktach poczatkowych. Waru-
nek poczatkowy dla zadania 1 jest réwny zo = (5, 0, §), natomiast dla 2 2o = (-5, 5, 7).
Pozostale parametry potrzebne do obliczen sg takie same dla obu przypadkéw. Sa to: czas
symulacji tyax = 1T = 27, wspdlczynnik zbieznosci algorytmu v = 0.1, wspoélczynniki ste-
rowan poczatkowych \g = (0.5, —0.25, 0.3, —0.25) i zadany punkt konicowy w przestrzeni
zadaniowe]j yq = (1, 0, —%).

Sciezki (z7, xo) w przestrzeni zadaniowej bedace rozwigzaniem zadan kinematyki od-
wrotnej zostaly przestawione na rysunkach: 4.35 dla zadania 1 oraz 4.37 dla zadania 2.
Na rysunkach pokazano zaréwno rozwiazania dla algorytmu typu jakobianu rozszerzone-
go, jak i dla algorytmu typu jakobianu pseudoodwrotnego. Rysunki 4.36 i 4.38 pokazuja
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sterowania wygenerowane w kolejnych krokach przez oba algorytmy. Powyzsze zadania
zostaly réwniez rozwigzane w artykule [56], przy zastosowaniu metody geometrycznej.

Poréwnujac powyzsze wyniki z wynikami zawartymi w artykule, mozna zauwazy¢, ze
Sciezka w przestrzeni zadaniowej zadania 1 uzyskana za pomoca metody geometrycznej
jest blizsza rozwigzaniu algorytmu pseudoodwrotnego niz $ciezka otrzymana metoda wa-
riacyjng. Z drugiej strony, poréwnujac wyniki otrzymane dla zadania 2 widaé, ze bardziej
dokladna jest metoda wariacyjna, metoda geometryczna zwrécila Sciezke znacznie odlegla
od $ciezki algorytmu typu jakobianu pseudoodwrotnego. Zaréwno w pierwszym, jak i w
drugim przypadku metoda wariacyjna zwraca Sciezki odlegle od Sciezek algorytmu typu

jakobianu pseudoodwrotnego, ale o podobnym charakterze.

X2
3.0f
2.5¢
2.0F

X1

s

=

1 2 3

Rysunek 4.35: Sciezka w przestrzeni zadaniowej dla algorytméw typu jakobianu
rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej) — zadanie 1
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Rysunek 4.36: Sterowania A dla algorytméw typu jakobianu rozszerzonego (z lewej)

i jakobianu pseudoodwrotnego (z prawej) — zadanie 1
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Rysunek 4.37: Sciezka w przestrzeni zadaniowej dla algorytméw typu jakobianu
rozszerzonego (z lewej) i jakobianu pseudoodwrotnego (z prawej) — zadanie 2
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Rysunek 4.38: Sterowania \ dla algorytmoéw typu jakobianu rozszerzonego (z lewej)

i jakobianu pseudoodwrotnego (z prawej) — zadanie 2
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4.5 Metoda geometryczna

W niniejszym podrozdziale przedstawimy wyniki obliczen dla metody geometrycznej opi-
sanej w podrozdziale 2.3. Metoda ta postuzy nam takze do poréwnan z metoda wariacyjna.

4.5.1 Manipulator POLYCRANK

Wybierzmy w przestrzeni przegubowej manipulatora obszar konfiguracji nieosobliwych Q
i zdefiniujmy jego foliacje, ktorej liéémi sa proste rownolegle do osi wspolrzednych z4 [54]

Egpea={a1+a} x {az +b} X {as} x R x {5 + c} x {ae} x {ar},
parametryzowana przez o € IR® i zalezng od parametréow a,b,c # 0, a # b, ktorych
rola jest umieszczenie liscia odniesienia Eqpc0 = {a} x {b} x {0} x IR x {c} x {0} x {0}

odpowiednio daleko od konfiguracji osobliwych. Wtedy, homotopia moze by¢ zdefiniowana
jako

®y(x) =tz + (1—t)(a, b, ¢, 4, ¢, 0)T =
(t(zy — a) + a, t(z2 — b) + b, t(zs — ¢) + ¢, tzg, tz7)' . (4.18)

Na tej podstawie obliczamy pole wektorowe (2.38)

Iy —a
Io — b

Ao, (z) Es

Xz} = . = 0
t=1 Iy —C

L

L7

1-forma anihilujaca jakobian transponowany, a jednoczesnie zgodna z foliacja jest naste-
pujaca [54]

Q- _l4 sin(zs — x4) sin(z3 — x2) Ilysin(zs — x4) sin(zz — x1) 0. 1 l4Sin z4
N lisinzssin(zy — 1) ' losinzssin(zy —x1) 7 lgsinzs '
(419)

Laczac te 1-forme z polem wektorowym (4.18) otrzymujemy

1 — a) e 111415554531(1'2 - b) + lllgl484821(115 e C)
l1l5l585521

lolyl
F(o) = @)X (z) = ~ 2aleosssel ,
gdzie s;; = sin(x; — x;). Nastepnie, wprowadzmy nowe wspoélrzedne z = (y, z), takie ze
z = z4 zmienia sie wzdluz lisci oraz y; = z;, ¢ = 1,2,3 1 Y43 = Ti4q dla ¢ = 1,2,3
sa poprzeczne do lidci. Podazajac za procedura opisana w rozdziale 2.3, wyznaczamy
rownanie charakterystyczne (2.45)

dz(t) _ ly(yr — a) sin(t(ys — ¢) + ¢ — 2) sin(tys — t(y2 — b) — b)
dt Lisin(t(ya — ¢) +¢)sin(t(y2 — b) + b —t(y1 — a) — a)
la(ya —c)sinz  lu(y2 — b) sin(t(ya — ¢) + c — 2) sin(tys — t(y1 — a) — a)
lssin(t(ya —c) +¢)  lasin(t(ya —c) +¢)sin(t(ya —b) +b—t(ys —a) —a)

(4.20)
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Niech ¢(t,y, 20) oznacza strumieni (4.20). Funkcja rozszerzajaca h(z) = h(y, z) okre-
slajaca odwrotnos¢ jakobianu rozszerzonego spelnia naste¢pujace rownanie

= o(1,9,h(y, 2))

i moze by¢ obliczona numerycznie. Tak otrzymana odwrotno$é¢ jakobianu rozszerzonego
zastosujmy do rozwiazania dwoch zadan kinematyki odwrotnej dla POLYCRANKa. Kon-
figuracja poczatkowa dla zadania 1 wynosi zg = (0.8, 3, Z 5 0 1,2 2 %) natomiast punkt
zadany w przestrzeni zadaniowej yq = (0.30,0.51,1.60, %, %, %). Analogicznie, drugie za-

danie opisane jest przez o = (1,7, 7, %,2,%,%) oraz yg = (—0.38,0.65,1.40, 7, T, T). Lis¢

,3a
7r 3

odniesienia ustalono zakladajaca =5 ib=c=-F

Rozwigzania obu zadan zostaly zobrazowane na rysunkach 4.39 i 4.40. Rysunek 4.41
przedstawia kwadrat normy predkosci przegubowych ||Z(¢)||* w zaleznosci od czasu dla
algorytméw typu jakobianu rozszerzonego i jakobianu pseudoodwrotnego, odpowiednio
dla obu zadan.

Z rysunkéw mozna wywnioskowaé, iz oba zadania zostaly rozwiazane poprawnie. Co
wiecej, rozwiazania sa bliskie rozwigzaniu wynikajacemu z zastosowania algorytmu ja-
kobianu pseudoodwrotnego. Wida¢, ze w przypadku zadania 2 otrzymane rozwigzanie
jest nieznacznie dalsze od rozwigzania jakobianu pseudoodwrotnego niz ma to miejsce
w przypadku zadania 1. Takze roznice otrzymanych predkosci $rednich obu algorytmoéw
w przypadku 2 sa wieksze. Aby wyttumaczy¢ te roéznice, na rysunku 4.42 przedstawio-
ne sa dwie stronice w przestrzeni konfiguracyjnej POLYCRANKa przechodzace przez
liscie poczatkowej E, i konicowej Ejs konfiguracji przegubowej, odpowiednio dla zadania
pierwszego i drugiego. Widac, ze trajektorie przegubowe otrzymane dzieki algorytmowi
jakobianu rozszerzonego nie leza na stronicach przechodzacych przez E,. W przypad-
ku gdy trajektoria nalezataby do liscia, aproksymacja bylaby idealna. Intuicyjnie mo-
zemy stwierdzi¢, ze im trajektoria znajduje sie blizej liScia, tym lepsza otrzymujemy
aproksymacje. Biorac pod uwage zmienno$¢ 2 jako miare ,bliskosci”, mozemy obliczy¢
przyrost AQ = Q(z(0)) — Q(x(tmax)). Zakladajac, ze tmax = 10, dla zadania pierwszego
[|AQ]| = 0.490325, natomiast dla zadania drugiego ||AS2|| = 0.755177.

Wiadomo, ze poprzez swoja postaé algorytmy bazujace na jakobianie pseudoodwro-
tnym lokalnie minimalizujg predkosci w przegubach w trakcie ruchu. Aby sprawdzié¢ efek-
tywnos¢ jakobianu aproksymujacego, na rysunku 4.41 pokazano, ze kwadraty normy pred-
kosci przegubowych otrzymanych za pomocg obu algorytméw sg sobie bliskie. Dodatkowo,
w tabeli 4.10 zebrano wartos$ci miar jakosci aproksymacji (4.11) i (4.12) przy tmax = 10.

Tabela. 4.10: Wartosci miar jakosci aproksymacji

Metoda geometryczna
41 da
Zadanie 1 0.00975 0.05157
Zadanie 2 0.02987 0.15749
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Rysunek 4.41: Kwadrat normy predkosci przegubowych dla zadania 1 (z lewej) i 2
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Rysunek 4.42: Stronice i trajektorie przegubowe dla zadania 1 (z lewej) i 2 (z prawe;j)
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4.6 Poréwnanie metody geometrycznej i wariacyjnej

W niniejszym podrozdziale poréwnamy rozwiazania otrzymane dzieki metodzie geome-
trycznej i wariacyjnej z funkcjonalem bledu opisanym réwnaniem (2.37). Rozwigzemy trzy
rézne zadania kinematyki odwrotnej dla manipulatora POLYCRANK, kazde za pomoca
obu wspomnianych metod. Wyprowadzenie algorytmu metoda geometryczna i wszelkie
zalozenia sq takie same jak w podrozdziale 4.5.1. Dla metody wariacyjnej zalozyliSmy
obszar catkowania réwny

Q:{z€R7’0.001§x1§§ 2 +0.001 <@, < 7,0 < 2 <, 0001 < 4

§+0001<x5<7r—0001 0001<x6<§ 0< 7

|/\ l\3|>¥

Bt

Otrzymana za pomoca metody Ritza (2.60) optymalna, kwadratowa funkcja rozszerzajaca
przybiera postaé

h(z) = 0.860096z;, — 0.2936292% — 8.55278z5 — 0.475787z x> + 0.48592473
— 3.26389x5 — 1.0484371 3 + 1.73457z973 + 3.136614 + 0.35413271 24
+ 0.584715x9xy + 11.1985x5 + 1.34538x 125 + 2.221062525
— 1.60976z425 — 4.09794%.

Dla wyznaczonej funkcji rozszerzajacej budujemy odpowiedni jakobian rozszerzony oraz
algorytm typu jakobianu rozszerzonego.

Rozwigzujemy trzy zadania, ktorych odpowiednio punkty poczatkowe i zadane punkty
koricowe w przestrzeni zadaniowej zebrane sa w tabeli 4.11.

Tabela. 4.11: Dane potrzebne do obliczen

Konfiguracja poczadtkowa Punkt koncowy
Zadanie 1 zo=(L,mm3% 2§ %) yq = (—0.38, 0.64, 1.40, m, T, 7)
Zadanie 2 zo=(1,mm% 2 %, %) ya = (—0.38, 0.56, 1.54, 7, £, 7)
Zadanie 3 = (0.2, m, %,03, £40.001, %, %) | va = (0.54, 0.07, 1.42, 0.1, , 3)

Rozwigzania powyzszych zadan zostaly pokazane na rysunkach 4.43, 4.44, 4.45. Rysunki
4.46, 4.47 i 4.48 przedstawiaja normy predkoéci w czasie ||(¢)||?, natomiast rysunki 4.49,
4.50 1 4.51 obrazuja przebiegi predkosci przegubowych z(t). W tabeli 4.12 zostaly zebrane
wartoéci miar jakosci aproksymacji (4.11) i (4.12) przy tmax = 10.

Tabela. 4.12: Wartosci miar jakosci aproksymacji

Metoda wariacyjna Metoda geometryczna

01 P 01 0o
Zadanie 1 0.08859 0.42052 0.02987 0.15749
Zadanie 2 0.00847 0.11291 0.02202 0.12887
Zadanie 3 0.06308 0.69200 0.04123 0.90550
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Analizujac wyniki mozna zaobserwowaé, ze zaréwno algorytm uzyskany metoda geome-
tryczna, jak i algorytm otrzymany za pomoca metody wariacyjnej zadowalajaco rozwiaza-
ly rozwazane zadania. Co wiecej, otrzymane rozwiazania sg bliskie rozwiazaniu otrzyma-
nym za pomocg algorytmu typu jakobianu pseudoodwrotnego. Jednakze, jakos¢ aproksy-
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Rysunek 4.43: Rozwigzanie zadania 1
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macji otrzymanej za pomocg metody geometrycznej zalezy od zmiennosci 1-formy (4.19)
w obrebie stronic w przestrzeni konfiguracyjnej. W metodzie geometrycznej, funkcja roz-
szerzajaca obliczana jest numerycznie tylko w konfiguracjach wygenerowanych przez al-
gorytm kinematyki odwrotnej. Inaczej jest w metodzie wariacyjnej, gdzie uzyskuje sie
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Rysunek 4.44: Rozwigzanie zadania 2
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analityczng postaé¢ funkcji rozszerzajacej na pewnym obszarze przestrzeni konfiguracyj-
nej. Zaleta stosowania metody geometrycznej jest stosunkowo krétki czas obliczeni, z dru-
giej jednak strony, funkcja rozszerzajaca, jest zalezna od zadania. Z tego powodu, musi
by¢ ona wyliczana kazdorazowo dla kolejnego zadania. Obliczenia dla metody wariacyjne;
sa bardziej czasochlonne, lecz raz wyznaczona optymalna funkcja rozszerzajaca pozwala
rozwiazaé wiele zadan, niezaleznie od ich postaci.

X
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Rysunek 4.45: Rozwigzanie zadania 3
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Rysunek 4.51: Predkosci przegubowe otrzymane dla zadania 3
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4.7 Aspekty obliczeniowe

Przytoczmy kilka spostrzezen zwigzanych z implementacja metod aproksymacji algoryt-
moéw jakobianowych. Wszystkie obliczenia numeryczne zostaly przeprowadzone w progra-
mie MATHEMATICA.

W obliczeniach odnoszacych sie do metody Ritza, postaé¢ funkcji rozszerzajacej byla
wybierana w klasie funkcji liniowych, kwadratowych i 3-stopnia. Uzyskane wyniki wska-
zujg na to, iz jakos¢ aproksymacji stosunkowo nieznacznie wzrasta wraz ze wzrostem
stopnia wielomianu. Z drugiej strony, zwiekszenie stopnia wielomianu wigze si¢ z istotnie
wiekszym nakladem obliczeniowym. Dla manipulatora POLYCRANK (o n = 7 stopniach
swobody) liczba wspolczynnikéw a € IRP dla liniowe]j funkcji rozszerzajacej jest rowna
p = 7, dla kwadratowej p = 35, a w przypadku funkcji wielomianowej trzeciego stopnia
wynosi p = 120. Zgodnie z (2.55), (2.59), wyznaczenie optymalnych wartosci wspotczyn-
nikéw polega na obliczeniu macierzy wymiaru p X p i wektora p x 1, ktérych elementami
sg calki n—krotne. W zwiazku z tym, czas obliczenn w przypadku funkcji liniowej jest na-
wet pietnastokrotnie krotszy niz dla funkeji kwadratowej. Reasumujac, biorac pod uwage
nieznaczng poprawe jakosci aproksymacji wraz ze wzrostem stopnia wielomianu i znacz-
ny wzrost czasu obliczen w zaleznosci od p jest racjonalne, zeby w tych przypadkach,
reprezentowaé¢ funkcje rozszerzajaca za pomoca wielomianu pierwszego stopnia.

Przeprowadzone badania poréwnawcze aproksymacji algorytméw jakobianowych dla
kinematyki w SE(3) i dla kinematyki wyrazonej we wspoirzednych wykazuja, ze z punk-
tu widzenia jako$ci aproksymacji obie reprezentacje kinematyki daja zblizone wyniki.
Jednakze, czas potrzebny na otrzymanie optymalnej funkeji rozszerzajacej w przypadku
kinematyki w SFE(3) jest okoto dwa razy krétszy niz w przypadku kinematyki we wspot-
rzednych. Daje to preferencje reprezentacji kinematyki bez wspoétrzednych.

Poréwnujgc efektywnosé aproksymacji otrzymanej metoda geometryczng i metodg wa-
riacyjng mozna doj$¢ do w wniosku, ze obie metody daja zadowalajace wyniki. Jednak-
ze, jakos¢ aproksymacji uzyskanej metoda geometryczng zalezy od zmiennosci 1-formy
w obrebie stronic w przestrzeni stanu. W metodzie geometrycznej, funkcja rozszerzaja-
ca obliczana jest numerycznie tylko w konfiguracjach wygenerowanych przez algorytm
kinematyki odwrotnej. Inaczej jest w metodzie wariacyjnej, gdzie uzyskuje si¢ analitycz-
ng postac funkcji rozszerzajacej na pewnym obszarze przestrzeni konfiguracyjnej. Badania
wykazaly, ze w przypadku manipulatora POLYCRANK|, czas potrzebny na obliczenia me-
todg wariacyjna byl od pieciu razy (dla liniowej funkcji rozszerzajacej) do szesédziesieciu
razy (dla kwadratowej funkcji rozszerzajacej) dtuzy niz dla metody geometrycznej. Zale-
ta zastosowania metody geometrycznej jest stosunkowo krétki czas obliczen, ale w tym
przypadku funkcja rozszerzajgca musi by¢ wyliczana dla kazdego zadania indywidualnie.
Wariacyjne zadanie optymalizacji jest bardziej czasochlonne obliczeniowo, jednak otrzy-
mana funkcja rozszerzajaca moze by¢ zastosowana do wielu réznych zadan, niezaleznie od
punktu poczatkowego i docelowego.






Rozdziat 5

Przyklady numeryczne — zadanie
reprodukcji trajektorii

5.1 Zadanie reprodukcji trajektorii stanu

W tym podrozdziale przedstawimy wyniki obliczeni numerycznych dla afinicznych uktadéw
sterowania. Dla uproszczenia przyjmiemy zalozenie BT (t)B(t) = I,,, ktore jest spelnione
w modelach uzytych do obliczen, ale takze, na przyktad, w przypadku samochodu kine-
matycznego. W rozdziale zawarte sa przyklady reprodukcji trajektorii stanu i wyjscia.
Obliczenia numeryczne bedziemy przeprowadza¢ na modelach podwdéjnego integratora,
kinematyki monocykla, dynamiki tyzwiarza Czaplygina i kuli kinematyczne;j.

5.1.1 Podwodjny integrator
Zacznijmy od bardzo prostego przykladu. Podwdjny integrator jest ukladem liniowym,
opisanym réwnaniem
fi== - T+ 0 = Az + Bu
100 1] 4
co oznacza, ze niezaleznie od 6 i t, Ag(t) = A i By(t) = B. Korzystajac z tej obserwacji

i z faktu, ze BT B = 1, uzyskujemy réwnanie reprodukeji (3.13) w nastepujacej postaci [55]

?u(t, 0) i Oul(t,0) L Au(t, 0)

50 a—ps s + ayu(t, 0) = y(Za(t) + ada(t)),

z warunkami brzegowymi u(t,0) = ug(t) i u(0,6) bedacym rozwigzaniem réwnania

ou(0, 8)
o0

Rozwigzanie powyzszego zagadnienia brzegowego prowadzi do wyznaczenia funkcji steru-
jacej, pod wplywem ktorej jest realizowana zadana trajektoria. Zgodnie z ideg metody
homotopii, rozwigzanie zadania oryginalnego otrzymuje si¢ dla # — +o0. Dla przyktadu,
wybierzmy trajektorie zadana w postaci cykloidy zq1(t) = t — sint, zg(t) = 1 — cost.
Naszym zadaniem jest wyznaczenie sterowania reprodukujacego te¢ trajektorig. W imple-
mentacji numerycznej wspolczynniki w funkeji homotopii wynosza odpowiednio: a = 1,
v = 0.2, czas obliczen tna.x = 20, warunek poczatkowy x(0) = (0, 0), sterowanie po-
czatkowe u(t,0) = 0.2. Przeprowadzono obliczenia dla réznych wartosci wspotczynnika
. Otrzymane wyniki sg zgodne z oczekiwaniem, ze dla wiekszych wartoéci 6, uzyskana

+ yu(0, 0) = v42(0).
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trajektoria ruchu jest blizsza zadanej. Na rysunku 5.1 przedstawiono $ciezke wyliczong
i zadang dla dwoch réznych wartoscei 0, natomiast na rysunkach 5.2 i 5.3 pokazano roz-
wigzanie rownania reprodukcji i otrzymana funkcja sterujaca.

X2:Xoq
2F gmmmmma. ~, \\ //,—— '-~\\
1 3
) 4 R\ \\':
L Y L L " XI ’xld
5 10 15 20
_l E
of _ wyliczona 0=10
e zadana
X2:X2q
2 .
] kL
. . . X1 X
; 5 10 15 =1a
~1F —_— wyliczona 0=40
_2 C
—— zadana

Rysunek 5.1: Wyliczona i zadana Sciezka ruchu dla podwoéjnego integratora
przy 8 =101 6 = 40
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-0.5+¢
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Rysunek 5.3: Rozwigzanie réownania reprodukcji i otrzymane sterowanie dla 6 = 40
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5.1.2 Monocykl

Kolejnym przyktadem, dla ktérego rozwiazemy zadanie reprodukeji trajektorii stanu jest
model kinematyki monocykla poruszajacego sie bez poslizgu bocznego. Model monocykla
pojawil sie w podrozdziale 4.4.2, dla kompletnosci, przypomnijmy réwnanie kinematyki

T1 = Uj COS T3
jf?g = U Sil’l.’Eg

T3 = Uz,

gdzie x1, x5 sa wspolrzednymi polozenia, z3 jest orientacje robota, natomiast sterowania
uy 1 up oznaczajg odpowiednio predkoéé¢ wzdluzng i katowa.
Teraz, przy zadanym (u(t),z(t)), wyznaczmy macierze przyblizenia liniowego dla po-
wyzszego modelu
0 0 —uy(t)sinzs(t)
A(t)= 10 0 wuy(t)coszs(t)
00

oraz

Jak tatwo zauwazy¢, warunek BT (t)B(t) = I, jest spelniony. Korzystajac z niego oraz po
wyliczeniu

_ 0 0 —uy(t)sinzs(t) — uq(t)usa(t) cos z3(t)
A(t) = |0 0 u(t)coszs(t) — us(t)ua(t)sinzs(t) |,
00 0

. (—uz(t) sinzz(t) 0
B(t) = | us(t)coszs(t) 0O
0 0

i dokonaniu odpowiednich podstawien w (3.13), otrzymujemy réwnanie reprodukeji tra-
jektorii monocykla [55]

9u(t,0) a atuy(t,0)us(t,H) 8u(t,9)+ Ou(t,0)
500 0 a 90 o

oy {By a—lul(t,j)ug(tﬁ)] u(t,0) = [cos xé(t,ﬁ) sin x?)(t, 0) (I)J
) ) 1 [ D~ 00026000

Warunek brzegowy u(t,0) = ug(t), a warunek poczatkowy (0, 0) jest rozwigzaniem linio-
wego rownania rézniczkowego

du(0, 0)
a0

+7u(0,8) = v {Cosxf'(o) Si”é”’(o) (ﬂ £4(0).

Podobnie jak w poprzednim przykladzie, rozwigzujemy zadanie reprodukeji z warunkiem
brzegowym, dla trajektorii zq;(t) = sint, x4 = 1 — cost, x43(t) = t definiujacej okrag
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o $rodku w punkcie (z1, z3) = (0, 1) i promieniu 1. W poprzednim przykladzie poka-
zaliSmy wplyw wspolczynnika 6 na jakosé otrzymywanych wynikéw. Dla kompletnosci,
przedstawimy wyniki obliczen dla réznych wartosci wspoélczynnika a. Pozostale parame-
try sa nastepujace: v = 1, czas symulacji tmax = 30, € = 100, warunek poczatkowy
21(0) = 0, 22(0) = 0, z3(0) = 0 oraz u(¢,0) = u1(¢,0) = 1. Na rysunku 5.4 pokazalismy
wyliczong i zadang Sciezke robota na plaszczyznie dla dwoch wartosci parametru a = 50
i a = 1500. Uzyskane wyniki pokazuja, ze wzrost a zwigksza predkosé zbieznosci wyliczo-
nej Sciezki ruchu do $ciezki zadanej. Rozwiazanie réwnania reprodukcji oraz otrzymane
sterowanie dla réznych a przedstawiaja rysunki 5.5 — 5.8.

X)Xa X2 X2

wyliczona
a=1500
====  zadana

wyliczona
a=50
====  zadana

o . ) f -
1.0 -05 0.5 1ot 1.0 -05 0.5 10 X

Rysunek 5.4: Wyliczona i zadana $ciezka ruchu dla monocykla
przy a = 501 6 = 1500

L L s L L Lt — L
5 10 15 20 25 30 s 10 15 20 25 30

o

Rysunek 5.6: Otrzymane sterowanie dla monocykla przy a = 50
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Rysunek 5.7: Rozwigzanie réwnania reprodukcji dla monocykla przy o = 1500

b
0 5 10 15 20 25 30

Rysunek 5.8: Otrzymane sterowanie dla monocykla przy a = 1500
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5.1.3 Lyzwiarz Czaplygina

Ponizszy przyklad obrazuje rozwiazanie zadania reprodukcji trajektorii stanu dla uktadu
z dynamiky. Rysunek 5.9 przedstawia tyzwiarza Czaplygina [8], ktérego réwnanie dyna-
miki jest okreslone przez afiniczny uklad sterowania z dryfem

T T4 COS T3 0 0

To T4Sin T3 0 0 ”

dy | = Ts +10 0 < 1) = f(z) + G(z)u. (5.1)
‘ Uo

Ty COS T3 10

Ts 0 0 1

W uktadzie (5.1) wspoélrzedne 1, xo, z3 oznaczaja odpowiednio polozenie oraz orienta-
cje lyzwiarza, x4 jest predkoscia liniowa a x5 okrefla predko$¢ katowa, ui 1 ug to sily
zewnetrzne dzialajace na tyzwiarza.

Rysunek 5.9: Lyzwiarz Czaplygina

Macierze przyblizenia liniowego wzdluz pary sterowanie—trajektoria (u(t),z(t)) sa naste-
pujace

0 0 —mzy(t)sinzs(t) coszz(t) O 00
0 0 x4(t)coszs(t) sinzs(t) O 00
At) = {0 0 0 0o 1], B@t)= |0 0
00 —sinz3(t) 0 0 10
00 0 0 0 01

oraz odpowiednie pochodne wzgledem czasu ¢

0 0 —z4(t)sinzz(t) — x4(t) coszz(t)z3(t) —sinzs(t)xz(t) 0

0 0 24(t)coszs(t) — za(t) sinzs(t)z3(t)  cosza(t)za(t) O
Aty=10 o 0 0 0,

00 —cos z3(t)Z3(t) 0 0

00 0 0 0
B(t) = [0]5x2'

Korzystajac z whasnosci BT (t)B(t) = I, oraz korzystajac z powyzszych obliczen, réwnanie
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reprodukeji trajektorii dla tyzwiarza Czaplygina przyjmuje nastepujaca postac
O*u(t,0) [a —a~?cos(zs)is| du(t,0) Au(t,6) 1 —a3cos(z3)Z3
) b ) t 0 .
3100 J{o a o e "o 1 u(,9)
i4q] [0 0 y(—a7'cos(xs)is —sin(zs)) —ay ya~cos(zs)is] . )
Tisal 10 0 0 0 —ary d
0 0 —a lcos(xs)is —sin(z3) 0 a~?cos(z3)is
+ Yo {0 0 0 0 0 e(t, )
N {7(—0( cos(z3) _g—l COS(Ig)i'3$5):| (5.2)

z nastepujacym warunkiem brzegowym u(t,0) = ug(t) oraz u(0, 8) bedacym rozwigzaniem

24(0) cos z3(0)
u x4(0) sin z3(0)
9 g;,e)ﬂu(o,e):v{g P (1)] £4(0) - coﬁiﬁfﬁm . (53)
0

Rozwigzujac réwnanie reprodukeji (5.2) z warunkiem brzegowym (5.3), przy 0 — +oo

otrzymamy funkcje sterujaca, ktora bedzie generowala zadang trajektorie. Niech trajek-
toria zadana okreslona bedzie jako x4 = exp(—t)(cost —sint) + $(—3 — cos(2t) + 8sint),
Ta2(t) = exp(—t)(cost+sint)+3(2+t—cost(4+sint)), za3(t) =t, zas(t) = exp(—t)(—2+
2expt + exptsint), xq5(t) = 1. Pozostale parametry sg réowne o = 0.4, v = 0.2, czas
symulacji tmax = 20, warunki poczatkowe z(0) = (0, 0, 0, 0, 1) oraz u(¢,0) = (2, 2). Ob-
liczenia wykonano dla dwoch wartosci § = 35 oraz ¢ = 70. Rysunek 5.10 przedstawia
trajektorie tyzwiarza dla dwoch wartosci . Rysunki 5.11, 5.13 ilustruja rozwigzanie réw-
nania reprodukcji, natomiast 5.12 i 5.14 pokazuja otrzymane funkcje sterujace. Przebiegi
poszczegdlnych zmiennych stanu w czasie zostaly ukazane na rysunkach 5.15 oraz 5.16.

X2,Xd2

------- [
.,L
-
P e

W 10

ES
T

— wyliczona 8=35 —— wyliczona 6=70

--=-- zadana ===+ zadana

‘ X1, Xd1 .
-3 -2 -1 0 1 -3

Rysunek 5.10: Trajektoria tyzwiarza Czaplygina dla 8 = 35 (z lewej) oraz dla 6§ = 70
(z prawej)
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Rysunek 5.11: Rozwigzanie réwnania reprodukcji trajektorii dla 6 = 35
Uy

0.0018235

0.0018230 -

0.0018225

0.0018220

- ol
5 10 15 20

Rysunek 5.13: Rozwigzanie réwnania reprodukcji trajektorii dla 6 = 70

u) Uy
2.0 t
1.66 x 107°

1.64 x 107°
1.62 x 1076
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1.6 x 107°

t
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Rysunek 5.14: Otrzymane funkcje sterujace dla 8 = 70
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Analizujac otrzymane wyniki mozemy stwierdzi¢, ze juz przy niewielkich wartosciach
parametru 6 = 70 zadanie reprodukcji trajektorii stanu lyzwiarza Czaplygina zostato
rozwigzane poprawnie. Warto$¢ parametru, dla ktoérego otrzymane funkcje sterujace be-
dg zwracaly trajektorie wystarczajaco bliska trajektorii zadanej, zalezy od modelu, dla
ktorego rozwigzujemy zadanie reprodukeji trajektorii.

X2,Xd2
X1,Xd1 Q.
10 E NS "
I" N,
1 \ N
A i
1
5 10 6f
~1F i
4 e
-2r ‘\ 21 == X&2
~
Lt ; . . -
? 5 10 15 20
X3,Xd3
20
151
10 |
— X
5 -
=T Xa3
: v : ot
5 10 15 20
Xs,Xds
1.035
1.030 f
1.025 F
1.020 f
1.015
- X
1.010 f :
1.005 | T Xds
- ” o .t
5 10 15 20
Rysunek 5.15: Przebiegi zmiennych stanu w czasie dla lyzwiarza przy 6 = 35
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X2,Xd2
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Rysunek 5.16: Przebiegi

zmiennych stanu w czasie dla tyzwiarza przy 6 = 70
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5.2 Zadanie reprodukcji trajektorii wyjscia

Jako ilustracje dzialania algorytmu reprodukcji trajektorii dla afinicznego ukltadu stero-
wania z wyjséciem przedstawimy wyniki obliczert numerycznych dla kuli kinematyczne;j.

5.2.1 Kula kinematyczna

Kinematyka kuli toczacej sie po plaszczyznie wyprowadzona w [8, 28] jest reprezentowana
przez bezdryfowy uklad sterowania

([, [ sinazysinzs  coszs]
To —sinxycosxs sinzs
U
T3 | = 1 0 Y = G(z)u
. Uz (5.4)
Ty 0 1
s — COoS Iy 0 ]
Y= w(m) = (.’131, $2)7

gdzie x; i x5 sa wspdlrzednymi pozycji punktu kontaktu P kuli z podlozem w ukla-
dzie kartezjanskim, z3 i x4 sa wspoélrzednymi sferycznymi tego punktu w uktadzie kuli
a x5 opisuje orientacje kuli wzgledem globalnego uktadu odniesienia XoYpZy,. W efekcie
wspolrzedne stanu sg nastepujace z = (x, v, ¢, 0, 1/)) i reprezentuja pozycje i orienta-
cje kuli w globalnym ukladzie odniesienia. Rysunek 5.17 przedstawia kule kinematyczna
z naniesionymi wspotrzednymi i trzema ukltadami wspoétrzednych: globalnym XY, 2y, kuli
XgYpZp iukladem umieszczonym w punkcie kontaktu XpYpZp. Nalezy tutaj podkreslic,

Rysunek 5.17: Kula kinematyczna

ze rownania (5.4) obowiazuja w przypadku, gdy kula nie toczy sie przez bieguny po6inoc-
ny i potudniowy, zaktadamy wiec, ze 0 < x4 < 7. Obliczmy teraz macierze przyblizenia
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liniowego A(t) i B(t) wzdluz pary sterowanie-trajektoria (u(t), z(t))

Alt) = 8G(3:é12)u(t) _
0 0 0 wuy(t)coszy(t)sinzs(t) wy(t)sinzy(t)coszs(t) — ua(t)sinzs(t)
0 0 0 wu(t)cos a:4(t) cosxs(t) wy(t)sinzy(t)sinzs(t) + ua(t) coszs(t)
00 0 0 ,
00O 0 0
0 0O ul(t) sin .'L‘4(t) 0

sinzy(t)sinzs(t) coszs(t)
—sinzy(t) coszs(t) sinzs(t)

B(t) = G(z(t)) = 1 0
0 1
— cos x4(t) 0

Macierz wyjécia jest stata

10000
C@‘C_bl_ooJ'
Latwo jest sprawdzi¢, ze macierz N (t) = C'B(t) jest odwracalna dla kazdej funkcji steru-
jacej pod warunkiem, ze 0 < x4 < 7.

Bedziemy rozpatrywaé nastepujace zadanie planowania trajektorii dla kuli kinema-
tycznej: majac zadang trajektorie wyjécia na plaszczyznie yq(t), znalezé¢ sterowanie u(t),
ktére bedzie reprodukowato ta trajektorie, z okreslonego punktu poczatkowego .

Korzystajac z odwrotnosci macierzy Ny(t) i rownania (3.13), mozemy wyznaczy¢ row-
nanie reprodukcji trajektorii dla kuli kinematycznej

9%u(t,0) a+ 2ctgxy(t, O)us(t, 0) 2ctgwy(t, O)ui(t,0)] Ou(t,0)
otoh —2cosz4(t, 0)sinz4(t, 0)uy(t, 0) o 00
o Ou(t, 0) " [fy(a+ctgx4(t L O)us(t, )) vyctg za(t, O)uy(t, 9)} ult, 9)
ot —y cosz4(t, O)uy(t,0) oy

sin s t6 cos z5(t,0)

O 0 0 a14 a/15 n 4(t0) _s'n 4(t9) o .
. g t t)), 5.5
+{0 0 o WLOMH ) et | at) + 0iu(e),  (55)

gdzie

aig = ui(t, 0)(crctg za(t, 0) — 2ua(t, 0)) + ctg z4(t, 0)un (2, 6),
1

sin z4(t, 6)

ags = u3(t, 0)(— cos® z4(t, 0) + sin’ z4(t, 6)),

ags = 2cosz4(t, O)uy(t, O)ua(t, 0) + sinzy(t, 0)(auy(t,0) + uy).

ais = (— cosxy(t, 0) sin z4(t, O)uf(t, 0) + aus(t, 0) + us(t, 6)),

Symbol 4 oznacza pochodng po czasie ﬂ“ai’—e). Réwnanie (5.5) razem z réwnaniem kine-
matyki (5.4) i rownaniem wariacyjnym

o(t) = G(zg(t))ug(t)
€o(t) = Ap(t)€s(t) + Bo(t) 248,



5.2. Zadanie reprodukcji trajektorii wyjs$cia 95

definiuje uklad reprodukeji trajektorii wyjscia dla kuli kinematycznej [21]. Uklad ten
powinien byé¢ rozwigzywany przy warunkach poczatkowych x4(0) = zg, &(0) = 0 oraz
warunkach brzegowych u(t,0) = ug(t) i u(0, ) = ug(0) bedacego rozwiazaniem ponizszego
liniowego réwnania rézniczkowego zwyczajnego

sin z5(0) __cosz5(0)

+7u(0,6) =7 Lg;;ggg)) sié‘i”;“(%’ﬂ} (3(0) — a(w(zo)) — yu(0).

du(0,0)
do

Rozwiazmy zadanie reprodukcji trajektorii. Niech zadana trajektoria bedzie okregiem
yar(t) = tgl — cos(tcosl)tgl, ya(t) = sin(tcosl)tgl; warunki poczatkowe z(0) =
(0,0,0 — 1, 0), czas symulacji tmax = 20, v = 1 i warunek poczatkowy na sterowanie
up(t) = (1, 1). Otrzymane rozwiazania numeryczne dla dwéch a: o = 50 i a = 200 oraz
dwoch wartogcei parametru : @ = 5-10% i § = 10° zostaly przedstawione na rysunkach
5.18-5.25. Réwniez w tym przypadku mozna zaobserwowac, ze dla wiekszych wartosci
otrzymane rozwiazanie jest blizsze trajektorii zadanej.

Zauwazmy, ze uklad reprodukeji trajektorii gwarantuje reprodukeje klasy C°. Oznacza
to, ze otrzymane funkcje sterujace sa bliskie rzeczywistym w sensie C°.

XpXg Xy X
r

= wyliczona 0=5e+3 =  wyliczona 0=le+5

zadana - zadana

Rysunek 5.18: Trajektoria punktu kontaktu dla a = 50, 8 = 5 - 10% (z lewej) oraz dla
a =50, 0 = 10° (z prawej)

U
1.0

u,

-0.025
0.8

0.6 -0.030

04 ~0.035 |

o ‘ L v : \/ E v h 20

5 10 15 20

0.2

Rysunek 5.19: Sterowania dla o = 50, 0 = 5 - 103
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U

1.0 u,
0.010
08
0.005 |
0.6
0.4
02 -0.005
. : . o

5 10 15 20

Rysunek 5.20: Sterowania dla o = 50, § = 10°

~ XpXy

wyliczona  0=5¢+3 wyliczona  0=le+5

zadana zadana

3

Rysunek 5.22: Trajektoria punktu kontaktu dla o = 200, § = 5 - 103(z lewej) i dla
a = 200, 0 = 10° (z prawej)
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u, U,
1.0 -0.031 1
0.8 -0.032
0.6 -0.033
0.4 -0.034 +
02 -0.035 -
¢
G T | AP 1t
5 10 15 20 5 10 15 20
Rysunek 5.23: Sterowania dla oo = 200, § = 5 - 103
L]
1.0 u,
0.002
0.8
0.6 0.001
04 .
o ~0.001
_ S il e el — e} -0.002
5 10 15 2

Sterowania dla o = 200, # = 10°

Rysunek 5.24:

Rysunek 5.25: Rozwigzanie réwnania reprodukcji trajektorii dla o = 200, 6 = 10°
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Podsumowanie

W pracy wyprowadzono i przebadano rézne algorytmy aproksymacji algorytméw plano-
wania ruchu robota. W pierwszej czesci, celem zadania aproksymacji bylo otrzymanie
algorytmu typu jakobianu rozszerzonego, aproksymujacego inny algorytm jakobianowy.
Ze wzgledu na pozadane cechy, skupiono si¢ na aproksymacji algorytmu typu jakobia-
nu pseudoodwrotnego. Otrzymane algorytmy posiadaja, oprocz powtarzalnosci, szybka
zbiezno$é 1 wlasnosé minimalizacji predkosci przegubowych w trakcie ruchu, co charak-
teryzuje algorytm typu jakobianu pseudoodwrotnego. Wyprowadzono dwa rézne kryte-
ria aproksymacji oparte na pojeciach rachunku wariacyjnego. Udowodniono, ze pierwsze
z tych kryteriéow moze by¢ stosowane zaréwno do kinematyki wyrazonej we wspolrzed-
nych, jak i opisanej jako odwzorowanie w grupe SFE(3). Podstawa sformulowania zadania
aproksymacji przy pomocy poje¢ rachunku wariacyjnego bylo, w pierwszym przypadku,
zdefiniowanie miary odleglosci pomiedzy dwoma odwrotnosciami jakobianu odwrotnymi.
Natomiast w drugim wypadku, funkcjonal btedu zostal zdefiniowany jako miara odlegtosci
odpowiednich kodystrybucji stowarzyszonych z odwrotnoéciami jakobianéw. Przez mini-
malizacje funkcjonaléw bledu aproksymacji ze wzgledu na funkcje rozszerzajaca otrzy-
muje sie algorytm typu jakobianu rozszerzonego bedacy przyblizeniem algorytmu typu
jakobianu pseudoodwrotnego. Przyjeto, ze we wszystkich przypadkach zadanie aproksy-
macji rozwigzywane jest na zbiorze nieosobliwych konfiguracji robota. Otrzymane zadania
aproksymacji mozna rozwiaza¢ korzystajac z rownania Eulera-Lagrange’a lub z metody
Ritza. Rownanie Eulera—Lagrange’a prowadzi do ukladu liniowych, eliptycznych réwnan
rozniczkowych czastkowych. W przypadku robotéw o wiekszej liczbie stopni swobody ko-
nieczne okazalo sie zastosowanie metody Ritza. W celach poréwnawczych, przedstawiono
podejscie pochodzgce z geometrii rézniczkowej, ktoére jest oparte na aproksymacji kody-
strybucji reprezentujacych odwrotnosci jakobianéw. Celem aproksymacji byto znalezienie
kodystrybucji pokrywajacej sie z dana kodystrybucja na pewnym obszarze przestrzeni
konfiguracyjnej robota.

Wszystkie uzyskane w pracy algorytmy przetestowano w badaniach symulacyjnych.
Badania te pokazaly, ze mozna zbudowaé algorytm typu jakobianu rozszerzonego, ktoé-
ry jest w okreslonym sensie bliski algorytmowi jakobianu pseudoodwrotnego. Wykazano
takze, ze dla metody geometrycznej, jakos¢ aproksymacji zalezy od odlegtosci trajektorii
przegubowej (konfiguracyjnej) od liscia zwiazanego z punktem poczatkowym. Obliczenia
numeryczne pokazaly, ze dla pewnych zadan trajektorie przegubowe generowane przez
algorytm typu jakobianu rozszerzonego otrzymanego metoda wariacyjng moga by¢ sto-
sunkowo odlegle od rozwigzan algorytmu typu jakobianu pseudoodwrotnego. Niemniej
jednak, nawet w najgorszym przypadku, uzyskane trajektorie byly blizsze niz rozwigza-
nia otrzymywane za pomoca nieoptymalnego algorytmu typu jakobianu rozszerzonego.
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Pokazano, ze poniewaz aproksymacje przeprowadza si¢ nad wskazanym obszarem kon-
figuracji i daje ona przyblizenie w sensie srednim, zawezenie tego obszaru w sposéb de-
dykowany konkretnemu zadaniu poprawia jako$¢ aproksymacji. Odbywa sie¢ to jednak
kosztem utraty ogélnosci i uniwersalnosci algorytmu.

W pracy zawarto wnioski dotyczace implementacji przedstawionych algorytmoéw. W
obliczeniach korzystajacych z metody Ritza reprezentacja funkcji rozszerzajacej w postaci
wielomianu pierwszego stopnia okazala si¢ najbardziej efektywna. Sposréd dwoéch repre-
zentacji kinematyki, mniej czasochtonne jest otrzymanie rozwiazywania zadania aproksy-
macji zdefiniowanego dla kinematyki w SE(3). Wreszcie, poréwnujac metode wariacyjna
i geometryczna mozna wywnioskowaé, ze obie metody daja zadowalajace wyniki. Zale-
ta zastosowania metody geometrycznej jest stosunkowo kroétki czas obliczen, ale funkcja
rozszerzajaca musi by¢ wyliczana dla kazdego zadania indywidualnie. Wariacyjne zadanie
optymalizacji jest bardziej czasochlonne obliczeniowo, jednak otrzymana funkcja rozsze-
rzajaca jest bardziej uniwersalna.

W drugiej czesci rozprawy opisano zastosowanie metody homotopii do zadania re-
produkcji trajektorii wyjécia lub stanu ukladu robotycznego. Wyprowadzono réwnanie
reprodukeji dla afinicznego uktadu sterowania z wyjsciem. Réwnanie reprodukcji trajek-
torii jest rownaniem rozniczkowym czastkowym o zmiennej zaleznej bedaca funkcja ste-
rujaca. Poszukiwana funkcja sterujaca, dla ktérej uklad realizuje zadang trajektorie, jest
otrzymywana w granicy przy parametrze § — 4-00. Algorytm przetestowano w badaniach
symulacyjnych. Zgodnie z oczekiwaniem, wraz ze wzrostem wartoéci parametru ¢ wzrasta
doktadnos$é reprodukeji. Jak wykazaly badania, satysfakcjonujace rozwiazanie otrzymuje
sie czesto przy stosunkowo niewielkich wartosciach parametru 6. Warto$¢ tego parametru
zalezy od modelu, dla ktérego rozwiazujemy zadanie reprodukcji trajektorii. Otrzymana
funkcja sterujaca jest przyblizeniem rzeczywistej w sensie C°.

Wyniki otrzymane w pracy stanowia uzasadnienie tezy sformulowanej we Wstepie.

Na podstawie przeprowadzonych badar mozna nakresli¢ kierunki prac na przysztosé.
W dziedzinie aproksymacji algorytméw jakobianowych beda to:

e rozszerzenie metody aproksymacji na inne algorytmy jakobianowe,

e uwzglednienie osobliwosci algorytmicznych w funkcjonale jakosci aproksymaciji,

e rozszerzenie zastosowan metody na manipulatory mobilne i inne ukltady robotyczne,
e opracowanie metody aproksymacji wzdtuz trajektorii,

e usprawnienie obliczen numerycznych dla metod wariacyjnych.

Jezeli chodzi o zastosowanie metody homotopii do rozwigzania zadania reprodukcji tra-
jektorii:

e oslabienie zalozen, przy ktoérych wyprowadzono réwnanie reproduke;ji,

e opracowanie metody reprodukcji w sensie C*, k > 1.
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		Tekst zastępczy





		Nazwa reguły		Status		Opis



		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego



		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany



		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością



		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji



		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy
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		Nazwa reguły		Status		Opis



		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot



		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR



		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki



		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie



		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie
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		Nazwa reguły		Status		Opis



		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L



		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI



		Nagłówki
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