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Rozdział 1

Wstęp

1.1 Wprowadzenie

Jeśli zdefiniujemy pojęcie robot jako urządzenie mechaniczne zdolne do wykony­
wania automatycznych czynności wspomagających pracę ludzką, to pierwsze wy­
stąpienie robota w literaturze pojawia się w VIII-VII wieku p.n.e. w „Iliadzie” Homera. 

Tam, grecki bóg Hefajstos konstruuje na własny użytek mechanicznych pomocników, wy­
konanych ze złota, którzy wspomagają niepełnosprawnego boskiego kowala. Kilka wieków 
później, około IV wieku p.n.e, grecki filozof Arystoteles w słowach swojej rozprawy „Poli­
tyka”

Jest zaś narzędziem ponad narzędzia każdy sługa. Gdyby bowiem każde narzę­
dzie mogło spełniać swoje zadania według rozkazu albo i uprzedzając go, jak to 
podobno robiły posągi Dedala lub trójnogi Hefajstosa, które, jak mówi poeta, 
same się zjawiają na zebranie bogów, gdyby tak czółenka tkackie same tkały, 
a pałeczki od gitary same grały, to ani budowniczowie nie potrzebowaliby po­
mocników, ani panowie niewolników.

tłum. L. Piotrowicz
mówi, jak dobrze byłoby mieć w pobliżu kilka robotów. Około II-I wieku p.n.e. powstają 
w starożytnej Grecji pierwsze konstrukcje automatów, głównie zegarów napędzanych wo­
dą lub powietrzem, poruszające figurkami, służące celom rozrywkowym. W tym samym 
czasie, również w antycznych Chinach powstają podobne konstrukcje. Jedna z pierwszych 
książek „Book of Ingenious Devices” opisująca wiele mechanicznych automatów powstała 
w 850r. w Persji i została napisana po arabsku. Niestety, wraz z upadkiem starożytnych 
cywilizacji wiele z tych pomysłów nie zostało rozwiniętych. Ponowne zainteresowanie te­
matem odżywa w okresie renesansu. Autorem pierwszego projektu robota był Leonardo da 
Vinci, którego szkice zostały odnalezione w latach pięćdziesiątych ubiegłego stulecia. Od 
tego czasu, w całej Europie zaczynają powstawać różne konstrukcje robotyczne, głównie 
w celach rozrywkowych. W okresie II wojny światowej inżynierowie automatycy skupiają 
się wokół zastosowań militarnych, powstają wówczas między innymi skomplikowane ma­
szyny szyfrujące i deszyfrujące. Po wojnie, rozwój techniki sprzyja rozwojowi robotyki. 
W roku 1954 powstaje pierwsze programowalne ramię robotyczne, a rok później pierw­
szy, elektronicznie sterowany, robot mobilny. Dziś robotyka przenika wiele aspektów życia 
człowieka, od robotów przemysłowych wspomagających pracę fabryk, poprzez na przykład 
roboty inspekcyjne, społeczne czy rozrywkowe, aż po roboty eksplorujące kosmos.

Robotem trzeciej generacji nazywamy maszynę wyposażoną w zdolności interpretacji 
i wnioskowania niezbędnych do rozpoznania i wykonania zadania poprzez inteligentne 
powiązanie percepcji i działania [43]. Zgodnie z terminologią Międzynarodowej Federacji
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Teorii Maszyn i Mechanizmów (ang. International Federation for the Theory of Machines 
and Mechanisms - IFToMM) [16], stopień swobody (ang. Degree of Freedom - DOF) 
układu mechanicznego to liczba niezależnych współrzędnych uogólnionych potrzebnych 
do pełnego opisania konfiguracji układu w każdej chwili czasu. Biorąc pod uwagę liczbę 
stopni swobody n, w odniesieniu do liczby napędów (sterowań) m układy robotyczne 
można podzielić na trzy grupy [4]

• układy w pełni napędzane, n = m,

• układy z redundancją napędów, n < m,

• układy z deficytem napędów, n > m.

Reprezentantem pierwszej grupy może być na przykład robotyczny manipulator prze­
mysłowy. W skład drugiej grupy wchodzą między innymi wielonapędowe kołowe roboty 
mobilne [23]. Układy z deficytem napędów, należące do trzeciej grupy, stanowią obiekt 
badań w niniejszej rozprawie. Rozwiązanie zadań takich jak planowanie ruchu, planowanie 
trajektorii, czy śledzenie trajektorii w klasie układów z deficytem napędów jest trudne. 
Niemniej jednak, wykorzystując charakterystyczne konstrukcje tych układów oraz używa­
jąc specyficznych algorytmów staje się to możliwe.

Przyjrzyjmy się bliżej klasie układów z deficytem napędów. Zgodnie z definicją zawar­
tą w [29], układem z deficytem napędów (ang. underacutated system) nazywamy układ 
robotyczny, w którym wymiar przestrzeni stanu przewyższa wymiar przestrzeni sterowań. 
W świetle tej definicji bardzo dużo układów robotycznych zawiera się w grupie układów 
z deficytem napędów. Wymienić można tutaj dla przykładu dynamikę wszelkiego rodza­
ju platform mobilnych (kołowych, nawodnych, podwodnych, latających, balansujących), 
dynamikę manipulatorów z pasywnymi przegubami lub elastycznymi ramionami, roboty 
kroczące w fazie lotu, układy, gdzie przyczyną deficytu napędów jest uszkodzenie silnika, 
roboty kosmiczne oraz wiele innych. Zainteresowanie i praca nad algorytmami dedyko­
wanymi takim układom przyczynia się do uzyskania rozwiązania problemów, takich jak 
na przykład stabilizacja i sterowanie statków nawodnych i podwodnych, helikopterów, 
poduszkowców, satelit i innych. Napędy zazwyczaj są stosunkowo ciężkie i drogie, jeśli 
możliwe jest sterowanie układem z mniejszą liczbą silników, to przynosi to wymierne ko­
rzyści. Specyficzne algorytmy sterowania mogą okazać się przydatne w przypadku awarii 
napędu. Dla przykładu, jeśli na statku kosmicznym doszło do awarii napędu wieloprzegu- 
bowego manipulatora w momencie kiedy ramie było rozłożone, to jedynym sposobem na 
zamknięcie ładowni było odrzucenie całego ramienia w przestrzeń kosmiczną. Jeśli taki 
uszkodzony manipulator potraktujemy jako układ z deficytem napędów, możemy użyć 
odpowiedniego algorytmu, przy pomocy którego uda się złożyć manipulator i bezpiecznie 
wrócić na Ziemię.

W chwili obecnej, nie istnieje uniwersalny algorytm sterowania dla klasy układów 
z deficytem napędów. Niemniej jednak, od lat powstają różnego rodzaju algorytmy dedy­
kowane konkretnym układom. Problem stabilizacji odwróconego wahadła był w obszarze 
zainteresowań już na początku XX wieku [50]. Również współcześnie ten temat jest obiek­
tem badań naukowych [10,29,32,47]. Algorytmy sterowania manipulatorami z pasywnymi 
przegubami przedstawione są między innymi w [14,30,39], a planowanie ruchu takich ukła­
dów opisane jest w [25,33,34,37]. Przegląd układów manipulatorów z pasywnymi przegu­
bami oraz dedykowanych algorytmów zawierają prace [9,48]. Planowanie ruchu platform 
mobilnych przedstawia wiele pozycji literaturowych, między innymi [11,31,38,42].

W niniejszej rozprawie będziemy starali się rozwiązać zadanie planowania ruchu ukła­
dów robotycznych z deficytem napędów. Poprzez zadanie planowania ruchu rozumiemy 
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znalezienie funkcji sterujących, które podane na układ przeprowadzą go z określonego 
punktu początkowego do zadanego punktu końcowego, w określonym czasie. Algorytm 
rozwiązujący zadanie planowania ruchu, jest algorytmem działającym w otwartej pętli 
sprzężenia zwrotnego. Uzyskane funkcje sterujące podane na układ nie będą uwzględniały 
niedokładności modelowania ani zakłóceń występujących podczas ruchu. Niemniej jednak, 
otrzymywane rozwiązania mogą stanowić dobry materiał referencyjny dla algorytmów ste­
rowania, które z kolei mogą pracować w zamkniętej pętli sprzężenia zwrotnego. W pracy 
wyprowadzimy algorytm planowania ruchu dla układów robotycznych z deficytem napę­
dów. Ze względu na różnoraką specyfikę takich układów, bardzo często zachodzi potrzeba 
uzyskania konkretnej jakości rozwiązania zadania planowania ruchu. Z tego powodu wpro­
wadzimy dwa algorytmy planowania ruchu z zadaniami dodatkowymi: algorytm egalitar­
ny i algorytm z priorytetowaniem zadań. Ruch układu pod wpływem funkcji sterujących 
otrzymanych w wyniku działania takich algorytmów będzie nie tylko realizował zadanie 
planowania ruchu, lecz także uwzględniał zestaw zadań dodatkowych. Idee działania algo­
rytmu egalitarnego i algorytmu z priorytetowaniem zadań są komplementarne. Pierwszy 
z nich traktuje wszystkie zadania składowe równorzędnie. Drugi, szereguje zadania składo­
we ze względu na ich stopień ważności. Podamy także definicje kilku zadań dodatkowych. 
Przedstawimy zadanie ograniczania energii sterowania, minimalizacji wartości zmiennych 
stanu, zadanie unikania przeszkód oraz kilka modyfikacji tych zadań.

Do konstrukcji algorytmu planowania ruchu będziemy korzystać z metody kontynuacji 
(homotopii). Przykłady zastosowań tej metody w robotyce są przedstawione w pracy [54], 
a algorytmy rozwiązujące problemy planowania ruchu układów robotycznych, korzystające 
z metody kontynuacji można znaleźć w pracach [7,41,53]. Z metody kontynuacji wywodzi 
się także idea endogenicznej przestrzeni konfiguracyjnej [55], która ujednolica metodolo­
gie dotyczące manipulatorów robotycznych i układów mobilnych. Oryginalnie, metoda ta 
była dedykowana algorytmom planowania ruchu kinematyki manipulatorów mobilnych, 
w których nie występuje dryf w układzie sterowania. Zastosowanie metody endogenicznej 
przestrzeni konfiguracyjnej do układów z dryfem zostało przedstawione w [57], a pierwszy 
wynik użycia tej metody do planowania manipulatorów z pasywnym przegubem zawie­
ra [37]. Konstrukcja algorytmu z priorytetowaniem zadań łączy ze sobą metodę endoge­
nicznej przestrzeni konfiguracyjnej z koncepcją algorytmu jakobianu pseudoodwrotnego 
z projekcją [6,27], która pierwotnie była przeznaczona dla holonomicznych manipulatorów 
redundantnych. Podobne podejścia stosowane są także w [1,26], gdzie redundancja ma­
nipulatorów jest wykorzystywana do realizacji zadań dodatkowych. Algorytm egalitarny 
również korzysta z metody endogenicznej przestrzeni konfiguracyjnej i jest rozszerzeniem 
oryginalnego algorytmu planowania ruchu przedstawionego w [55] do realizacji zadania 
planowania ruchu z zadaniami dodatkowymi. Jak wspomnieliśmy, zastosowanie metody 
endogenicznej przestrzeni konfiguracyjnej pozwala wykorzystywać koncepcje oryginalnie 
stworzone dla manipulatorów do zadań z innymi układami robotycznymi, w tym z ukła­
dami robotycznymi z deficytem napędów. Fakt ten będziemy wykorzystywać przy definicji 
zadań dodatkowych. Zadanie dodatkowe dotyczące ograniczania zmiennych przegubowych 
przedstawione w [24] posłuży nam do zdefiniowania zadania dodatkowego ograniczające­
go energię sterowania i minimalizującego wartości zmiennych stanu układu z deficytem 
napędów. Zadanie planowania ruchu z ograniczeniami na zmienne stanu i sterowania roz­
wiązuje także algorytm jakobianu zaburzonego, którego zastosowanie do manipulatorów 
mobilnych zawiera [18], a zastosowanie do układów z deficytem napędów przedstawiono 
w pracach [33,34], Inne zastosowanie algorytmu planowania ruchu do ograniczania poślizgu 
robota mobilnego zawarto w [61], Do definicji zadania unikania przeszkód (osobliwości) 
wykorzystamy podejście pola potencjału [21], a także zadanie unikania przeszkód przez 
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manipulator stacjonarny zdefiniowane w [22] i zadanie unikania osobliwości manipulatora 
wprowadzone w [60]. Pierwsza próba użycia algorytmu planowania ruchu korzystające­
go z metody endogenicznej przestrzeni konfiguracyjnej z unikaniem przeszkód pojawiła 
się w [56]. Wyprowadzane algorytmy będą algorytmami planowania ruchu z uwzględ­
nieniem stanu układu nominalnego. Dodatkowo, zbadamy podejście planowania ruchu 
z uwzględnieniem stanu układu rzeczywistego przedstawione w pracy [19]. Wykorzystanie 
tej koncepcji pozwoli na uzyskanie algorytmu planowania ruchu przy niepełnej znajomości 
modelu.

Przedmiotem pracy jest wyprowadzenie algorytmu planowania ruchu w oparciu o me­
todę endogenicznej przestrzeni konfiguracyjnej dla układów robotycznych z deficytem na­
pędów. Algorytm umożliwia rozwiązanie zadania planowania ruchu z zestawem zadań 
dodatkowych. Jego efektywność zilustrujemy wynikami symulacji komputerowych. Głów­
nym celem pracy jest wykazanie następującej tezy

Stosując metodę endogenicznej przestrzeni konfiguracyjnej 
można skonstruować algorytm planowania ruchu układów 

robotycznych z deficytem napędów, realizujący różne zadania 
dodatkowe.

Dalsza część rozdziału 1 zawiera wprowadzenie do układów z deficytem napędów. 
Omówimy różnicę pomiędzy układem holonomicznym a nieholonomicznym, objaśnimy 
mechanizm powstawania ograniczeń nieholonomicznych oraz omówimy ich wpływ na mo­
delowanie układów. Często do układów z deficytem napędów stosuje się częściowo lineary- 
zujące sprzężenie zwrotne, które opisujemy w podrozdziale 1.2.2. Następnie, przedstawia­
my afiniczny układ sterowania z funkcją wyjścia, a pod koniec rozdziału przeprowadzamy 
krótką dyskusję na temat sterowalności układów nieliniowych.
Rozdział 2 przedstawia wyprowadzenie teoretyczne algorytmu planowania. Na począt­
ku wprowadzimy preliminaria dotyczące endogenicznej przestrzeni konfiguracyjnej. Dalej 
zdefiniujemy algorytm realizujący zadanie właściwego planowania ruchu. Następnie omó­
wimy dwa sposoby dodania zadań dodatkowych do zadania planowania. Pierwszy z nich 
polega na rozszerzeniu jakobianu i funkcji błędu, a drugi opiera się na definicji pseudo- 
odwrotności z projekcją. W pierwszym przypadku zadanie główne i zadania dodatkowe 
są traktowane równorzędnie. W drugim przypadku zadania są uszeregowane zgodnie z ich 
priorytetami. Dalsza część tego rozdziału zawiera definicje zadań dodatkowych. Zdefiniu­
jemy następujące zadania dodatkowe: zadanie minimalizacji energii sterowania, zadanie 
minimalizacji wartości zmiennych stanu oraz zadanie unikania przeszkód. Rozdział kończy 
omówienie algorytmu planowania ruchu przy niepełnej znajomości modelu.
Aspekty implementacyjne algorytmu planowanie ruchu zostały omówione w rozdziale 3. 
W celu przeprowadzenia obliczeń numerycznych proponujemy reprezentację funkcji ste­
rujących poprzez zestaw funkcji bazowych oraz definiujemy dyskretną wersję algorytmu. 
Ponadto, przedstawiamy sposób rozwiązania zadania planowania ruchu bez parametrycz­
nej reprezentacji funkcji sterujących.
Rozdział 4 przedstawia symulacyjne wyniki badań efektywności algorytmu. Pierwszy pod­
rozdział zawiera symulacje planowania ruchu statku wraz z dodatkowym zadaniem mini­
malizacji energii sterowania. Kolejne wyniki przedstawiają planowanie ruchu robota balan­
sującego z równoczesną minimalizacją zmiennej stanu (zmiennej odpowiadającej odchyle­
niu korpusu robota od osi pionowej) i ograniczaniem energii sterowania. Trzecia symulacja 
dotyczy planowania ruchu poduszkowca omijającego przeszkody. W podrozdziale 4.2 do­
konujemy porównania metody algorytmu egalitarnego i algorytmu z priorytetowaniem 
zadań. W podrozdziale 4.3, można znaleźć wyniki planowania ruchu przy niepełnej zna­
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jomości modelu. Podrozdział 4.4 zawiera wyniki symulacji przy nieskończeniewymiarowej 
reprezentacji funkcji sterujących. Ostatni podrozdział zawiera symulacje wykorzystujące 
zadanie ograniczania zmiennych stanu do realizacji zadania reprodukcji trajektorii.
Rozdział 5 został poświęcony analizie otrzymanych wyników i podsumowaniu pracy.
Dbając o przejrzystość wywodów, część materiału została zawarta w dodatkach. W dodat­
ku A przedstawiamy wyprowadzenia wybranych własności operatora projekcji. Dodatek 
B zawiera definicje skończeniewymiarowych odwzorowań końcowych, jakobianów, błędów 
oraz projekcji niezbędnych do implementacji numerycznej przedstawianych algorytmów. 
Dodatek C zawiera pięć modeli układów robotycznych z deficytem napędów. Znajdują się 
tam trzy układy platform mobilnych: statek-kontenerowiec, robot balansujący i poduszko­
wiec, a także dwa manipulatory z pasywnym przegubem: układ nieplanarnego i planarnego 
dwuwahadła.

Niniejsza rozprawa jest efektem badań finansowanych częściowo przez Fundację na 
rzecz Nauki Polskiej, Politechnikę Wrocławską w ramach grantów statutowych oraz Mi­
nisterstwo Nauki i Szkolnictwa Wyższego ze środków na naukę w latach 2010-2012 jako 
projekt promotorski.

1.2 Układy robotyczne z ograniczeniami
Dynamika układu robotycznego definiuje zależność pomiędzy siłami zewnętrznymi dzia­
łającymi na układ a uogólnionymi współrzędnymi położenia, prędkości i przyspieszenia. 
Niech q G IRa będzie wektorem współrzędnych uogólnionych. Następnie, wprowadźmy 
funkcję Lagrange’a £(q, g) [58] jako różnicę energii kinetycznej i potencjalnej układu

£(?,?) = K{q,q) - V(q).

Zasada Najmniejszego Działania Hamiltona prowadzi do uzyskania równań dynamiki 
układu w postaci równań Eulera-Lagrange’a [58]

d d£(q, q) d£(g, g)
di dq dq ' 1 7

gdzie A jest wektorem sił niepotencjalnych działających na układ, w skład których wcho­
dzą oddziaływania sterujące, opory ruchu itp. Równania (1.1) można zapisać w postaci 
układu równań różniczkowych drugiego rzędu

d2C^g) d2£(g,g) _ q) _ 
dq2 dqdq dg

Energia kinetyczna układu przyjmuje postać formy kwadratowej z dodatniookreśloną i sy­
metryczną macierzą formy

K(q,q) = |gTM(g)g,

Uwzględniając postać energii kinetycznej w (1.2) otrzymujemy równania

M{q)q + C(q, q)q + D(q) = W, (1.3)

które definiują ogólną postać równań dynamiki układu robotycznego, w których

• M(q) jest symetryczną i dodatniookreśloną macierzą inercji,

• C(q, g)q jest wektorem zawierającym oddziaływania odśrodkowe i Coriolisa,
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• D(q) = jest wektorem sił grawitacji.

Jak wspomnieliśmy wektor J7 zawiera siły działające na układ. Niech wektor Z = B{q)r — 
f(q, q, i), wówczas funkcja f(q, q, t) oznacza wszystkie siły uogólnione działające na układ 
poza oddziaływaniem sterującym. Wprowadzając wektor F(q, q) = C(q, q)q + D(q) + 
f(q,q,t) zawierający, w zależności od robota, siły odśrodkowe, Coriolisa, wyporu, hy- 
dro/aerodynamiczne, potencjalne, w tym grawitacji itp., ogólne równania dynamiki (1.3) 
przyjmują bardziej zwięzłą postać

M(qy)q + F(q,q) = B(q)r, (1-4)

gdzie B(q} jest macierzą sterowania, a r € JRm jest wektorem sygnałów sterujących.
Ruch układu robotycznego opisanego przez (1.4) może odbywać się w dowolnych kie­

runkach. Często, ze względu na charakter i specyficzną budowę układu robotycznego, na 
ruch nakłada się ograniczenia, zwane w mechanice analitycznej więzami. Ograniczenia ta­
kie mogą zostać wyrażone zarówno przy pomocy współrzędnych uogólnionych, jak i przy 
pomocy kolejnych pochodnych tych współrzędnych [44]

h [t,q,q,q = 0, j = l,2,.... (1-5)

W zależności od rzędu pochodnej występującej w ograniczeniach (1.5) wyróżniamy 
kilka postaci ograniczeń. Jeśli ograniczają one możliwe konfiguracje układu (1.4) wów­
czas nazywamy je ograniczeniami położeniowymi lub geometrycznymi. Takie ograniczenia 
można przedstawić w postaci

^o(q) = 0, h: IRn —> IR1, (1-6)

Postać ograniczeń (1.6) może zostać wykorzystana do wyeliminowania z (1.4) pewnych 
współrzędnych zależnych. Poza ograniczeniami położeniowymi wprowadźmy ograniczenia 
pierwszego i drugiego rzędu. Ograniczenia pierwszego rzędu to ograniczenia nałożone na 
współrzędne uogólnione oraz na prędkości uogólnione układu (1.4)

^i(q> ?) = 0, : IR1, l < n,

które pochodzą od kinematyki układu. Ograniczenia drugiego rzędu to ograniczenia nało­
żone nie tylko na współrzędne uogólnione i prędkości uogólnione, ale także na uogólnione 
przyspieszenia układu (1.4)

/i2(ę,9,9) = 0, hi: ]Rn —> IR1, l < n, (1-7)

które mają swoje korzenie w dynamice układu. Jeśli ograniczenia pierwszego rzędu mogą 
zostać scałkowane (można je przedstawić za pomocą różniczki po czasie z funkcji współ­
rzędnych uogólnionych <7) to wówczas są to ograniczenia holonomiczne pierwszego rzędu. 
W przeciwnym razie ograniczenia są ograniczeniami nieholonomicznymi [13,40]. Często 
ograniczenia nieholonomiczne pierwszego rzędu są przedstawiane w postaci ograniczeń 
fazowych Pfaffa

A(g)ę = 0, rankyl(g) = l, (1-8)
gdzie 4(Xn(ę) jest macierzą Pfaffa. Ograniczenia w postaci Pffaffa (1.8) są holonomiczne 
jeśli istnieje odwzorowanie h: ]Rn —> IR1 takie, że (1.8) są równoważne = 0 [58]. 
Formalnie, ten warunek może być zapisany następująco: istnieje pewna macierz Q(,q)ixi, 
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det Q{q) 0, taka że Q(q)A{q} = Podobnie, ograniczenia drugiego rzędu są ograni­
czeniami nieholonomicznymi drugiego rzędu jeśli nie mogą zostać scałkowane (nie można 
ich przedstawić, za pomocą różniczki po czasie z funkcji współrzędnych uogólnionych 
q i prędkości uogólnionych q). W przeciwnym przypadku będą ograniczeniami holono- 
micznymi [13,40]. W celu określenia, czy ograniczenia nieholonomiczne w modelowanym 
układzie są pierwszego czy drugiego rzędu albo, być może, są ograniczeniami holono- 
micznymi, zostały sformułowane warunki częściowej i pełnej całkowalności ograniczeń. 
Warunki całkowalności dedykowane specyficznym układom można znaleźć w [29,32,59], 
natomiast w [39] przedstawiono warunki całkowalności ograniczeń nieholonomicznych nie­
zależne od modelu. Wykorzystując wprowadzone definicje ograniczeń możemy zdefiniować 
dwa rodzaje układów. Jeżeli ograniczenia w układzie (1.4) są holonomiczne to układ jest 
układem holonomicznym. Jeżeli ograniczenia są nieholonomiczne wówczas układ jest 
układem nieholonomicznym [10,15].

Definicja 1.1 (Układ z deficytem napędów) Układem z deficytem napędów będzie­
my nazywali nieholonomiczny układ robotyczny z ograniczeniami drugiego rzędu, w którym 
liczba napędów jest mniejsza od liczby stopni swobody.

1.2.1 Modelowanie układów z deficytem napędów
Załóżmy, że w układzie występuje deficyt napędów, zatem m < n. Dodatkowo, podzielmy 
wektor współrzędnych q = (ga,qb), Qa G Qb € dRn~m. Niech qa będą aktywnymi 
stopniami swobody, a gb pasywnymi. Wówczas, równanie dynamiki (1.4) możemy zapisać 
w postaci

M^g) Mofc(g)l (qa\ (Fa{q,q)\ = F 1 ,
Mbb(g)^ \qb) yF^g q)), j0(n k '

M(ę) F(q,q) B(q)
Ostatnie l = n — m równań z (1.9) stanowi zestaw ograniczeń nieholonomicznych drugiego 
rzędu postaci (1.7), które powinne być spełnione podczas ruchu układu.

1.2.2 Częściowo linearyzujące sprzężenie zwrotne
Dla całej klasy układów robotycznych z deficytem napędów można zdefiniować sprzę­
żenie zwrotne linearyzujące aktywne stopnie swobody (ang. collocated) [48]. Wynika to 
z założenia, że macierz inercji układu jest dodatnio określona i symetryczna. Ponadto, 
dla części układów możemy zdefiniować także sprzężenie zwrotne linearyzujące pasywne 
stopnie swobody (ang. noncollocated) [48].

Sprzężenie zwrotne linearyzujące aktywne stopnie swobody Częściowo lineary­
zujące sprzężenie zwrotne linearyzujące współrzędne ga może być utożsamiane z lineary- 
zacją wejściowo-wyjściową dynamiki (1.9), z funkcją wyjścia równą

ya = qa € IRm.

Funkcja wyjścia ya jest powiązana z sygnałami wejściowymi poprzez aktywne współrzędne 
uogólnione. Rozważmy zatem linearyzację wejściowo-wyjściową dla układu z deficytem 
napędów. Przyjrzyjmy się ostatnim n — m równaniom z (1.9)

[M^g) (1-10)
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Można z nich wyznaczyć qb, które po wstawieniu do m pierwszych równań (1.9) i zamianie 
qa = ua, gdzie ua jest nowym sterowaniem, definiuje częściowo linearyzujące sprzężenie 
zwrotne

r = B'1^ ^Maa^ - ua + Fa(q,q) - Mab(^Ma\q)Fb(q,q)) .

Stosując powyższe sprzężenie zwrotne do dynamiki (1.9) otrzymujemy częściowo zlineary­
zowany układ

f ja —
= -Mbb{q\M2b{q)ua + Fb(q,q)).

Sprzężenie zwrotne linearyzujące pasywne stopnie swobody Częściowo lineary­
zujące sprzężenie zwrotne linearyzujące współrzędne qb polega na wyznaczeniu linearyzacji 
wejściowo-wyjściowej dynamiki (1.9) z funkcją wyjścia

yb = qbGlRn-m, (1.11)

korespondującą z pasywnymi stopniami swobody, które nie są bezpośrednio zależne od 
funkcji sterującej. Takie sprzężenie zwrotne może zostać wyznaczone przy założeniu, że 
układ linearyzowany jest silnie sprzężony inercyjnie.

Definicja 1.2 (Silne sprzężenie inercyjne [46]) Układ (1.9) jest silnie sprzężony 
inercyjnie wtedy i tylko wtedy, gdy

rankMab(ę) = n — m, G IRn.

Należy dodać, że własność silnego sprzężenia inercyjnego zakłada, że m n — m, czyli 
liczba pasywnych zmiennych stanu nie może przewyższać liczby aktywnych zmiennych. 
Przy założeniu silnego sprzężenia inercyjnego możemy wyznaczyć pseudoodwrotność pod- 
macierzy M^b

{M2b)* = Mab

Korzystając z powyższej definicji możemy z (1.10) wyznaczyć qa, następnie, podobnie jak 
poprzednio, wstawiając do (1.9) i zamieniając qb = ub, otrzymujemy częściowo linearyzu­
jące sprzężenie zwrotne linearyzujące pasywne współrzędne uogólnione

t = B~\q) ((Mab(q) - ub
+Fa(q,q) - Maa(qXM^*^ .

Po zastosowaniu sterowania do układu (1.9) otrzymujemy układ

f qa = -(Mj6)#(g)(Mb6(ę)ub + Fb(q, g)),

w którym pasywne stopnie swobody zostały zlinearyzowane i odsprzężone od reszty ukła­
du, a pierwsze równanie, opisujące ruch aktywnych zmiennych, reprezentuje tutaj dyna­
mikę wewnętrzną układu, korespondującą z równaniem wyjścia (1.11).
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1.2.3 Afiniczny układ sterowania z funkcją wyjścia
Niezależnie od tego, czy dynamika układu robotycznego z deficytem napędów zostanie 
poddana częściowo linearyzującemu sprzężeniu zwrotnemu, czy też pozostanie w orygi­
nalnej formie (1.9), można ją przekształcić w standardowy sposób do układu równań róż­
niczkowych pierwszego rzędu. Dokonując zamiany zmiennych stanu x — (xi,x2,rr3, z4) = 
(go, Qb, Qa, Qb\ x € lR2n, otrzymujemy afiniczny układ sterowania

m
ż(i) = /(x(i)) +

i=l 

y = k(xW,
(1-12)

który dodatkowo wyposażyliśmy w funkcję wyjścia. Dla dynamiki (1.9) dryf i macierz 
sterujących pól wektorowych w (1.12) są równe

fW
I 373 I 
\XiJ 

M~\x)F{x)

_ 0nxm

= M^),- ••,<U4

Stosując częściowo linearyzujące sprzężenie zwrotne, pola wektorowe w układzie (1.12) 
przyjmują postać

Umxl 
y-M^wFbWj

71X771

An 

Mbb\X)MM.
= M^),- •

dla zlinearyzowanych współrzędnych qa oraz

\y4 y 
-(Mx)*(x)Fb(x) 

\ Omxl /

= bKa:),---,^^)]
Im

dla zlinearyzowanych współrzędnych qb.
Układ postaci (1.12), opisujący dynamikę układu robotycznego z deficytem napędów 

będzie przedmiotem badań w niniejszej rozprawie.

1.2.4 Sterowalność układów z deficytem napędów
Przyjrzyjmy się zagadnieniu sterowalności układów robotycznych z deficytem napędów. 
Własności osiągalności i sterowalności są najważniejszymi własnościami układów stero­
wania. Osiągalność i sterowalność są równoważne dla układów liniowych. W układach 
nieliniowych, do których należą układy robotyczne z deficytem napędów, osiągalność nie 
zawsze implikuje sterowalność.

Niech Ctraj(T) oznacza zbiór par (a;(t), u(i)) będących trajektoriami sterowanymi ukła­
du (1.12) zdefiniowanymi na horyzoncie czasowym [0, T], Ponadto, niech FX0(T) oznacza 
zbiór stanów osiągalnych, które mogą zostać osiągnięte przez trajektorie Ctraj(P) układu 
(1.12) zapoczątkowane w xq, zdefiniowany jako [5]

= {^(T) | e CtrajCH, z(0) = m0},
— U ^xo^-

te[o,T]
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Załóżmy, że prędkości w chwili t = 0 są zerowe, a więc stan Zo = (Qo, Qo) = (ęoi 0) jest 
stanem spoczynkowym, ponadto załóżmy, że zachodzi zależność /(x0) = 0.

Definicja 1.3 (Osiągalność [5]) Układ (1.12) jest osiągalny ze stanu x0 jeżeli, dla każ­
dego zbioru sterowań U 9 u() istnieje T > 0, takie że int(7Łro(^7')) 0 dla każdego
t E (0,T],

Definicja 1.4 (Sterowalność [5]) Układ (1-12) jest sterowalny ze stanu x0 jeżeli, dla 
każdego x E lR2n istnieje T > 0 oraz (x(i),u(t)) E CtrajCO, takie że z(0) = Xo oraz 
x(T") = x.

Definicja 1.5 (Lokalna sterowalność w krótkim czasie [5]) Układ (1-12) jest lo­
kalnie sterowalny w krótkim czasie (ang. Small-Time Local Controllability - STLCJ ze 
stanu xq jeżeli istnieje T > 0, takie że xq G int(RXo(^i)) dla każdego t E (0, T]

Rysunek 1.1 przedstawia graficzną interpretację własności osiągalności i sterowalności 
układów. Dotychczas nie zostały opracowane warunki konieczne i wystarczające sterowal­
ności układów nieliniowych. Istnieją jedynie warunki wystarczające sterowalności dedyko­
wane specyficznym układom. Jedną z możliwości sprawdzenia, czy dany układ nieliniowy 
jest sterowalny, polega na zbadaniu sterowalności przybliżenia liniowego

ż = Afyz + B(t)u,
= d(f(x{t))+G^  ̂ =

tego układu, wokół trajektorii x(t), wygenerowanej przez sterowanie u0(t) takiej, że x(0) = 
a?o i x(T) = Xd- Jeżeli można wykazać, że przybliżenie liniowe jest sterowalne, to wówczas 
dla każdego stanu x bliskiego Xd istnieje sterowanie u^t), które przeprowadza układ z x0 
do z w czasie T, zatem uzyskujemy lokalną sterowalność. Jeśli x0 i u0 odpowiadają punk­
towi równowagi /(z0) + G{xo}uo = 0, wówczas powyższe sprowadza się do wyznaczania 
sterowalności przybliżenia liniowego wokół punktu równowagi (xq, u0). Samo testowanie 
sterowalności układu liniowego opiera się na sprawdzeniu rzędu macierzy Kalmana, Hautu- 
sa lub Grama. W bezdryfowych układach sterowania, podobnie jak w układach liniowych, 
osiągalność implikuje sterowalność układu. Osiągalność, a zarazem sterowalność układu 
bezdryfowego testujemy warunkiem rzędu algebry Liego (ang. Lie Algebra Rank Condi- 
tion - LARC). W ogólnych układach afinicznych występuje dryf i spełnienie warunku 
rzędu algebry Liego zapewnia jedynie osiągalność układu. Aby sprawdzić sterowalność 
układu afinicznego należy skorzystać z warunków wprowadzonych w [3,52], W tym ce­
lu, dla każdego nawiasu Liego v (pól f, g^,..., g^ oznaczmy przez J°(v), ^(u),..., Jm(v)

Rysunek 1.1 Interpretacja własności osiągalności i sterowalności. Od lewej: brak osiągal­
ności, osiągalność bez sterowalności, lokalna sterowalność
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liczbę wystąpień w v odpowiednio pól wektorowych f (x), g^),... ,gm(x). Niech wektor 
0 = (^o, #1, • • •, będzie dopuszczalnym wektorem wag, którego elementy są liczbami 
całkowitymi dodatnimi oraz Oi dla każdego i = 1,..., m. Stopień 0(v) nawiasu Liego 
v zdefiniujemy jako 0(u) = Wówczas, jeżeli dla każdego nawiasu Liego v, ta­
kiego że 5°(v) jest nieparzyste, a ^(u),..., dm(v) są parzyste istnieje dopuszczalny wektor 
wag 0, taki że v jest 0-neutralizowalny w punkcie a?o (może zostać zapisany jako liniowa 
kombinacja nawiasów o niższym stopniu 0(u)), to system jest lokalnie sterowalny w krót­
kim czasie z punktu xq- Istnieje wiele dedykowanych sposobów sprawdzania sterowalności. 
Na przykład, w pracy [51] przedstawiono test sterowalności dla układu afinicznego z dry- 
fem, z jednym wejściem. Z kolei w [8] opracowano metodę sprawdzenia sterowalności dla 
układów z deficytem napędów, w których n — m = 1. Dotychczasowe wyniki dotyczą­
ce sterowalności układów nieliniowych zawsze zakładają, że stan początkowy jest stanem 
równowagi (zerowe prędkości) oraz że dryf zanika w t = 0. Kwestia sterowalności układów, 
w których nie zachodzą takie zależności jest wciąż otwarta.



Rozdział 2

Planowanie ruchu układów z deficytem 
napędów

Zadanie planowania ruchu polega na znalezieniu takich funkcji sterujących u^t), 
które przeprowadzą układ (1.12) z pewnego położenia początkowego do zadanej 
pozycji końcowej w trakcie założonego horyzontu czasowego. Tak sformułowane zadanie 

jest równoważne zadaniu sterowania w otwartej pętli sprzężenia zwrotnego. Trajektorie 
układu znalezione przez algorytm planowania ruchu mogą następnie posłużyć jako funkcje 
referencyjne dla algorytmów sterowania w układzie zamkniętym.

W niniejszym rozdziale przedstawimy metodę endogenicznej przestrzeni konfigura­
cyjnej i algorytm planowania ruchu. Następnie omówimy dwie modyfikacje algorytmu 
planowania ruchu umożliwiające realizację dodatkowych zadań oraz podamy szczegółowe 
definicje zadań dodatkowych. W ostatnim podrozdziale zbadamy modyfikację algorytmu 
do rozwiązania zadania planowania ruchu przy niepełnej znajomości modelu.

2.1 Endogeniczna przestrzeń konfiguracyjna
Konfiguracją endogeniczną układu (1.12) nazwiemy dozwolone funkcje sterujące it(-) G U 
zdefiniowane na przedziale czasu [0, T] [55]. Endogeniczna przestrzeń konfiguracyjna W = 
^2,m[0, T] jest zbiorem funkcji całkowalnych z kwadratem tworzących przestrzeń Hilberta 
z iloczynem skalarnym

(“i(-)>u2(-))w = / di, R(t) = RT(t) > 0
Jo

oraz odpowiadającą mu normą

dt.
Jo

2.1.1 Odwzorowanie końcowe i jakobian układu robotycznego 
z deficytem napędów

Zdefiniujmy <Ar0,t(«(-)) jako strumień układu (1.12) przy sterowaniu u(-), wyznaczony 
w chwili t i zainicjowany warunkiem początkowym rc(O) = xQ. Tak więc, każdej konfiguracji 
endogenicznej E U odpowiada trajektoria stanu x(t) = </’Xo,t('u(-)) oraz odpowiadająca 
jej trajektoria wyjścia układu y(t) = k{x{t)).
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Odwzorowanie końcowe

Odwzorowaniem końcowym nazwiemy funkcję przekształcającą przestrzeń endogeniczną 
w przestrzeń zadaniową układu. Wyznacza ono końcowe położenie wyjścia y(T) układu 
robotycznego (112) w zależności od zadanej konfiguracji endogenicznej u(-) e W

kxo>t-. U —> Słr, Kz0,t(u(S)) = y(T) = (2-1)

Stosując analogię do robotów manipulacyjnych możemy zauważyć, że odwzorowanie koń­
cowe odpowiada kinematyce manipulatora.

Jakobian

Podążając dalej za analogią zaczerpniętą z dziedziny manipulatorów robotycznych zde­
finiujmy jakobian układu (1.12), który pozwala określić jak zmieni się wartość wyjścia 
y(T) układu (1.12) w zależności od niewielkich przyrostów funkcji sterującej u(t) więc 
Jx0,t(u('))'■ U —» IRr. Podobnie, jak w przypadku manipulatorów, gdzie jakobian jest 
pochodną kinematyki, wyznaczymy jakobian różniczkując odwzorowanie końcowe (2.1)

d 
da

KXOtT{u^ + av^
a=0

9fe(^(T)) d 
dx da (2-2)

a=0

Korzystając z (1.12), wyliczmy pochodną strumienia

di da ^oM) + «4)) = 
a=0

+ au(-)) =
a=0

d 
da

(/(^o/A) + ««(•))) + G^xo,t(u^ + av(-)))(«(i) + av(t))) 
a=0

d(/(a;(i)) + G(x(t))u(i)) d 
dx da <Px01t(w(-) + av(-)) + G{x(t))v(t).

a=0
(2-3)

Następnie, wprowadzając oznaczenie ^(i) = V>x0,t{u^+av(-)) i warunek początkowy
a=0

£(0) = 0, otrzymujemy wariacyjny układ stowarzyszony z układem (1.12) będący zarazem 
przybliżeniem liniowym układu (1.12) wzdłuż pary sterowanie-trajektoria (u(i), a;(i))

e = A(i)e + B(i)v, 
c = c(t)e.

(2-4)

Zgodnie z (2.3) macierze A(t) i B(i) są równe 

a(/Mt)) + gmom)) + G(z(t))«(f))
-------------- &-------------- ■ B<() =---------------

a macierz C(t) = ^g^- Rozwiązanie równania liniowego (2.4) przy warunku £(0) = 0 
można wyrazić przez [45]

(2-5)
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gdzie $(t, s) jest macierzą tranzycji [45] stanu układu (2.4) i może zostać wyznaczona 
z równania różniczkowego

= A(t)^(t, s), $(3, ») = /».
cy l

Wstawiając rozwiązanie (2.5) do (2.2) można zapisać ostateczną postać jakobianu układu 
robotycznego z deficytem napędów i z funkcją wyjścia (1.12)

= C(T) [^T, s)B(s)v(s) ds. (2.6)
Jo

Konfiguracja endogeniczna u(-) € U jest regularna, gdy jakobian Ao.t^G)): U —> IRr jest 
suriekcją. Pozostałe konfiguracje są konfiguracjami osobliwymi.

Pseudoodwrotność jakobianu

Jak wspomnieliśmy, jakobian przekształca prędkości n(-) G U z przestrzeni endogenicznej 
w prędkości 77 G IRr w przestrzeni zadaniowej. Tak więc, słuszne jest równanie jakobianowe

= C(T) [^T, s)B(s)v(s) ds = T). (2.7)
Jo

W regularnych konfiguracjach endogenicznych można rozwiązać powyższe równanie ze 
względu na zmienną u(-), co sprowadza się do wyznaczenia przekształcenia odwrotnego 
do JX0)7’(u(-))v(-). W tym celu użyjmy metody najmniejszych kwadratów polegającej na 
minimalizacji normy £2-

1 rT min- / dt'
O 2 Jo

i [ dt + AtC(T) / ^(T, dt = 0,
2 Jo Jo

otrzymujemy relację
n(t) = -BT(t)$T(T, t)CT(T)A, (2.8)

która wstawiona do (2.7) pozwala wyznaczyć mnożniki Lagrange’a
. r^i . _ J

A = -(C(T) / $(T,S)B(S)BT(t)®V,f)d<>CT(T)) >/= 
\ Jo /

Wstawiając powyższy wynik do (2.8) otrzymujemy zależność 

n(t) = BT(t)TT(T,t)CT(T)G“^

przy zachowanych ograniczeniach równościowych (2.7). Korzystając z metody mnożników 
Lagrange’a, wprowadźmy lagranżian

£(v(-),A) = ^ [ vT(t)n(t) dt + AT fc(T) / £(T, t)B(t)v(t) dt - 77 Y
2 Jo \ Jo /

gdzie A jest wektorem mnożników Lagrange’a. Przyrównując różniczkę lagranżianu do zera

D£(v(-), A)w(-) = Y £(v(-) + aiw(-), A) = 
da

a=0 

Vw(-),
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która określa pseudoodwrotność (odwrotność Moore’a-Penrose’a) jakobianu

W = BT(i)$T(T, i)CT(T)G-1>r(u(-))7?, (2.9)

gdzie
GX0,t(u(-)) = C(T) f<S)B(S)BT(S)$T(T,S) ds Ct(T) 

Jo
jest macierzą Grama układu (2.4), która w zależności od układu, pełni rolę macierzy 
zręczności lub mobilności. Macierz Grama może posłużyć do wyznaczenia konfiguracji 
regularnych. Konfiguracja u(-) € U jest regularna wtedy i tylko wtedy, gdy macierz Grama 
jest pełnego rzędu rankGSOir(ri(-)) = r. W regularnych konfiguracjach endogenicznych 
istnieje pseudoodwrotność (2.9) i układ sterowania (1.12) jest lokalnie sterowalny. Łatwo 
można pokazać, że pseudoodwrotność jakobianu spełnia zależność <Zc0,t(w(-))^* t(u(')) = 
Ir.

Jakobian dołączony

Do definicji algorytmów planowania ruchu niezbędny będzie także jakobian dołączony [55]

Jakobian dołączony przekształca przestrzeń dualną do przestrzeni zadaniowej (IR7")* = lRr 
w dualną przestrzeń konfiguracyjną (U)* = U zgodnie z wyrażeniem

(2-10)

gdzie y E IRr i u(-) € U. Możemy zatem, korzystając z (2.10), podać definicję jakobianu
dołączonego

(0 = BT(i)*T(r,t)cT(r),. (2.11)
Jakobian dołączony (2.11), podobnie jak pseudoodwrotność jakobianu (2.9) posłużą do 
wyprowadzenia algorytmu planowania ruchu.

Dzięki zastosowaniu metody endogenicznej przestrzeni konfiguracyjnej możliwe staje 
się zastosowanie podejścia znanego z manipulatorów robotycznych do innych układów, 
w tym układów robotycznych z deficytem napędów. W następnych rozdziałach pokażemy, 
jak skonstruować algorytmy planowania ruchu.

2.2 Zadanie planowania ruchu
Zadanie planowania ruchu polega na znalezieniu funkcji sterującej u(-) E U, która prze­
prowadzi układ (1.12) z położenia z(0) = x0 do zadanego punktu w przestrzeni zadaniowej 
y(T) = yd, w zadanym czasie T. Tak postawione zadanie chcemy rozwiązać algorytmem 
jakobianowym wyprowadzonym przy użyciu metody kontynuacji [54,55]. W tym celu wy- 
bierzmy krzywą u^(-) w endogenicznej przestrzeni konfiguracyjnej parametryzowaną przez

E IR i przechodzącą przez konfigurację (sterowanie) początkowe u0(-) G U- Następnie, 
wyznaczmy błąd wzdłuż tej krzywej

= KXo>t(u^(-)) - yd. (2.12)

Załóżmy, że błąd (2.12) będzie malał wykładniczo ze współczynnikiem 7 > 0

= -7eW- (2.13)
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Podstawiając (2.12) do (2.13) otrzymujemy równanie Ważewskiego-Dawidenki [28,55]

- xd) = = -?e(?9), (2.14)

Do rozwiązania powyższego równania wykorzystamy odwrotność (2.9) jakobianu, a roz­
wiązanie uzyskamy jako granicę lim^_>oou^(-) rozwiązania równania różniczkowego

= -7 )) («)■ (2-15)

Otrzymana trajektoria jest poszukiwaną funkcją sterującą rozwiązującą zadanie
planowania ruchu.

Do wyznaczenia rozwiązania (2.14) można także użyć pseudoodwrotności z projekcją 
[55,58], wówczas równanie (2.15) przyjmie postać

= -7 (-CtW-))^)) (0 + (f). (2.16)

gdzie
= idw - (2.17)

jest rzutowaniem (projekcją) endogenicznej przestrzeni konfiguracyjnej U na jądro jako­
bianu ker JI0)t(tz(-)), a id^ jest odwzorowaniem identycznościowym. Symbol ^(-j € U 
pojawiający się w (2.16) oznacza dowolny element w endogenicznej przestrzeni konfigu­
racyjnej i może zostać wykorzystany do rozwiązania zadań dodatkowych.

W pracy będziemy rozważać algorytmy planowania ruchu z zadaniami dodatkowy­
mi. Takie algorytmy poza realizacją zadania głównego, którym jest właściwe planowanie 
ruchu, będą realizować zestaw zadań dodatkowych. Przez termin zadanie dodatkowe bę­
dziemy rozumieli zadanie, które będzie wykonywane obok właściwego planowania ruchu 
i będzie wpływać na jakość rozwiązania algorytmu planowania. Wśród zadań dodatkowych 
można wymienić między innymi: minimalizację energii sterowania, śledzenie trajektorii 
stanu czy wyjścia, unikanie przeszkód, itp. Wyprowadzimy dwa algorytmy planowania ru­
chu z zadaniami dodatkowymi: algorytm egalitarny i algorytm z priorytetowaniem zadań. 
Pierwszy z nich, algorytm egalitarny, będzie traktował wszystkie zadania równorzędnie. 
Odmiennie, algorytm z priorytetowaniem zadań będzie szeregował zadania ze względu na 
ich stopień ważności. Wprowadźmy terminologię systematyzującą zagadnienia związane 
z zadaniem głównym i zadaniami dodatkowymi. Niech S = (Ą, S2,..., Sz) oznacza zbiór 
zadań, gdzie Si jest zadaniem właściwego planowania ruchu, a pozostałe z — \ zadań pełni 
rolę zadań dodatkowych.

Z wyprowadzeń algorytmu planowania ruchu (2.15) wynika, że dla zapisania algorytmu 
należy zdefiniować kolejno cztery elementy:

• odwzorowanie zadaniowe KXq^{u{^),

• jakobian JXo,T(u(-)),

• pseudoodwrotność jakobianu

• błąd zadania e.

Podobnie, aby zdefiniować zadanie dodatkowe będziemy potrzebowali wyżej wymienio­
nych elementów. Wówczas każde zadanie można opisać następująco Si = ^KXOtr, Śx0,t,
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2 .2.1 Egalitarny algorytm planowania ruchu

Rozważmy konstrukcję algorytmu realizującego zadanie planowania ruchu z zestawem 
zadań dodatkowych. Wszystkie zadania, zarówno zadanie główne (planowanie ruchu) jak 
i zadania dodatkowe będą wykonywane równorzędnie. Załóżmy, że dysponujemy zestawem 
S = (Si, S2,. • •, Sz) zadań, dla których zostały wyznaczone cztery wspomniane wcześniej 
elementy. Niech błąd dla całego zadania planowania będzie zdefiniowany przez

e(^) =
2e(?9)

Zakładając eksponencjalną zbieżność błędu do zera ^e(?7) = —ye(i?), 7 G IR, zapiszmy 
równanie Ważewskiego-Dawidenki

W<(-))^ = (2.18)

gdzie jest operatorem blokowym złożonym z jakobianów dla odpowiednich
zadań

ZJx0,t{u^

(2.19)

Stosując prawostronną odwrotność jakobianu (2.19) możemy rozwiązać równanie (2.18) 
otrzymując układ dynamiczny

= -7 (j*w, (2.20)

gdzie ^^(^(■j) Jest odwrotnością (2.19) daną wzorem

Vx0,?(«(•)) 
2Jx0,t(u^

ZJx0,tW)

a Gx0,t(«(-)) = Jxo,r('w(-))Jxo,r(u(’)) jest macierzą Grama i J£oT(u(-)) oznacza jakobian 
dołączony (2.11) jakobianu blokowego (2.19). Aby umożliwić dobranie wpływu poszcze­
gólnych zadań dodatkowych na rozwiązanie algorytmu należy wprowadzić następujące 
skalowanie błędu

= -7 (OlW)) (i), (2.21)

gdzie E = blokdiag{Wri}, i = 1,2,..., z jest blokowodiagonalną macierzą wag k, a r, = 
dim(5<x01T) jest wymiarem przestrzeni zadaniowej ?-tego zadania.

Funkcję sterującą realizującą zadanie główne równorzędnie z zadaniami dodatkowymi 
uzyskujemy jako granicę lim^oo u^(-) rozwiązania równania (2.20) lub (2.21).
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2 .2.2 Algorytm planowania ruchu z priorytetowaniem zadań
Załóżmy, że zadania w zbiorze S zostały uszeregowane ze względu na ich stopień ważności, 
w taki sposób, że zadanie Si ma wyższy priorytet niż zadanie Si+i. Wyprowadzimy algo­
rytm jakobianowy pozwalający na realizowanie z zadań i respektującego ich priorytety. 
Niech Ti Q IR oznacza wymiar przestrzeni zadaniowej ż-tego zadania. Wówczas *e(tf) G 1RP 
jest błędem zdefiniowanym dla zadania o indeksie i. Na podstawie (2.13) i (2.14) możemy 
zapisać równanie dla i-tego zadania przy sterowaniu

Z = 1.2,...,z. (2.22)

Równanie (2.22) może zostać rozwiązane algorytmem jakobianu pseudoodwrotnego z pro­
jekcją (2.16)

= -’7 (t) + W, (2.23)

gdzie
= idu ~ ^^(^(^^^(^(O)

jest rzutowaniem na jądro jakobianu, ker^^(^('j). Dla dwóch dowolnych zadań, za­
łóżmy dla Si oraz S%, funkcja sterująca u^(t) musi być taka sama, zatem z (2.23) wynika 
zależność

- *7 (ĄjWW)) W + (t) =

- *7 (0 + W- (2-24)

• ■#Korzystając z własności idempotentności i symetrii rzutowania oraz anihilacji rCu^-)) 

(«,?(•))> 
= 0,

(patrz dodatek A) oraz mnożąc obustronnie (2.24) przez ^^^(^(O) otrzymujemy

- *7 W + W =
(KMM W. (2.25)

Ostatecznie, wstawiając (2.25) do (2.23), otrzymujemy algorytm dla dwóch zadań

= -’7 W - S (‘P..,rM'))^^ (<)
+ (t).

Powtarzając powyższy tok rozumowania oraz kładąc ^(O = 0, możemy napisać algorytm 
jakobianu pseudoodwrotnego z projekcją dla z zadań z priotytetowaniem [36]

z /i—1 \ \
£*7 II(i), (2.26)
i=l \J=0 / /

du^t) _ 
dd

gdzie ^ao/r^G)) = idu- Podobnie, jak to miało miejsce w poprzednich rozdziałach, 
rozwiązanie zadania planowania za pomocą algorytmu z priorytetowaniem otrzymuje się 
wyznaczając granicę lim#.^ «#(•) rozwiązania równania (2.26).
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2.3 Różne zadania dodatkowe
W niniejszym podrozdziale przedstawimy kilka zadań dodatkowych, które mogą być wy­
konywane poza głównym zadaniem planowania ruchu. W zależności od użytego algorytmu 
zadania dodatkowe mogą być równorzędne lub mieć niższy priorytet od zadania głównego. 
W kolejnych podrozdziałach wyprowadzimy cztery kluczowe składniki Si = (jKXOtT, jx0,r, 
• -U-^x0 t- ty dla różnych zadań dodatkowych.

2.3.1 Zadanie minimalizacji energii sterowania
W celu zdefiniowania zadania minimalizacji energii sterowania wybierzmy odwzorowanie 
zadaniowe

1 rTKXOiT-U -> IR, Kxo,= - j ur(t)a(dt, (2.27)

które wyznacza całkowitą, ważoną energię sterowania zużytą w czasie trwania ruchu, 
a cr(t) = diag{cr1(ń),... , crm(t)}, > 0 jest diagonalną macierzą wag. Mając zdefinio­
wane odwzorowanie zadaniowe możemy wyznaczyć jakobian JXQ^{tyty : U -> IR, który 
w tym przypadku określa wartości zmian kryterium (2.27) w zależności od zmian sterowań

Jakobian wyznaczymy różniczkując (2.27)

'WMOM') = KXOiT{u^ + av(ty) = J «T(t)<r(t)v(t) dt.

a=0 ®
(2.28)

Podobnie, jak w podrozdziale 2.1.1 korzystając z metody najmniejszych kwadratów i me­
tody mnożników Lagrange’a, wyznaczmy przekształcenie odwrotne do (2.28). Równanie
jakobianowe

= [ uT(t)cr(t)v(t) dt = rj, 
Jo

r/ e IR, (2.29)

definiuje ograniczenia równościowe, przy zachowaniu których będziemy minimalizować 
normę, min^.) | fJuT(t)v(t) dt. Lagranżian dla zadania minimalizacji energii sterowania 
jest równy

\ rT / rT \
A) = - vT(t)v(t) dt + A ( / u7(t)cr(t)u(t) dt — 77 1 . (2.30)

2 Jo \Jo J

Następnie, wyliczając różniczkę (2.30) i przyrównując ją do zera

RtWY A)w(-) = £(v(-) + A) =
da 

CE—0

[ uT(t)w(t) dt + A / uT(t)cr(t)w(t) dt = 0, 
o Jo

Vw(-),

otrzymujemy zależność
v(t) = —A<r(t)u(t), (2.31)

przy pomocy której wyznaczamy mnożnik Lagrange’a z (2.29) równy

lk(-M<-
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Ostatecznie, wstawiając mnożnik Lagrange’a do (2.31) otrzymujemy pseudoodwrotność 
jakobianu dla zadania minimalizacji energii sterowania

4,r«-)) W -

Ostatnim elementem jest błąd dla bieżącego zadania, który jest równy odwzorowaniu 
zadaniowemu

1 fT 
e = KXOtT{u(-}) = - di.

Jo
Zadanie przedstawione powyżej użyte w algorytmie planowania ruchu jako zadanie do­
datkowe pozwoli znaleźć funkcje sterujące cechujące się minimalnym zużyciem energii 
sterowania.

2.3.2 Zadanie minimalizacji wartości zmiennych stanu
Zadanie dodatkowe minimalizujące wartości zmiennych stanu utrzymuje część lub wszyst­
kie zmienne stanu w pobliżu wartości zerowej. Podobnie jak w definicji poprzedniego 
zadania, zapiszmy odwzorowanie zadaniowe

KXq^‘- —
1 r

= 2 J zT(t)fi(t)z(t) (2.32)

gdzie 5(t) = diag{<$i(t),..., <J2n(t)}, > 0 jest diagonalną macierzą wag, a x(t) =
^^^(“(O)- Operator jakobianu J2;0)t(u(-)) dla zadania minimalizacji zmiennych
stanu uzyskamy różniczkując (2.32)

JXo,tW)v^ =
d 

da
KXOtT(u^ + av^

d 
da

a=0

+ av(-))fi(i)9O2;Oit(u(-) + av^ dt.

Korzystając z obliczeń (2.3) wyznaczymy pochodną strumienia ipXOit(u(-y), postać jako­
bianu możemy wówczas zapisać jako

= f a?T(t)5(t)/$(i, s)B(s)v(s) ds dt = [ a;T(t)<y(t)Ja.Oit(u(-))v(-) dt, 
Jo Jo Jo

gdzie Jx0,t(M(’))w(') jest jakobianem (2.6) układu robotycznego z deficytem napędów (1.12) 
bez funkcji wyjścia (C(t) = I2n). Przystąpmy teraz do wyznaczenia pseudoodwrotności 

Chcąc zminimalizować min^.) j JoVT(t)u(t) dt przy ograniczeniach równościo­
wych zdefiniowanych przez równanie jakobianowe

/ mT(t)^(i) [£(t, s)B(s)v(s) ds dt =
Jo Jo

/ J a;T(t)5(t)$(t, s) dt B(s)n(s) ds = rj, 

zapiszmy lagranżian

77 G IR (2.33)

£(v(-),A) = - / uT(s)v(s) ds + A [ [ / zT(t)<y(t)$(t, s) dt B(s)v(s) ds — 77 
J Jo \Jo Js
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i wyznaczmy jego pochodną

W),M)==^ £(v(-) + aw(-), A) =
a=0

T pT pT/ vT(s)w(s) ds + A [ / rrT(t)<5(i)$(t, s) di B(s)w(s) ds.
J 0 J 0 J s

Przyrównując różniczkę lagranżianu do zera

/ vT(s)w(s) ds + A / f xręt)6di B(s)w(s) ds =
Jo Jo Js

J ^T(s) + A J xr (11)8(1?) $(t, s) di B(s)^ w(s) ds = 0, Vw(-),

otrzymujemy zależność

v(s) = — ABt(s) f $T(t, s)<J(i)x(i) di = —Aa^i^-))^). (2.34)
J s

Wstawiając (2.34) do (2.33) wyznaczamy mnożnik Lagrange’a równy A = — ||ax(u0)(.)||ż > 

przy pomocy którego wyznaczamy odwrotność jakobianu dla zadania minimalizacji war­
tości stanu

JLtW) : IR U, W =
Pozostaje teraz wprowadzić błąd, który dla zadania minimalizacji zmiennych stanu wy­
bieramy jako

e = KXQtT(u(-)) = zT(i)£(i)z(i) di.

Uogólnienie zadania minimalizacji wartości zmiennych stanu na zadanie 
minimalizacji wartości zmiennych zadaniowych

Modyfikując elementy składowe w powyższych wyprowadzeniach można przekształcić al­
gorytm minimalizujący wartości zmiennych stanu w algorytm minimalizujący wartości 
zmiennych zadaniowych. Odwzorowanie końcowe wybieramy jako

KXo,T: U IR, KXQtT(u(-)) = | yT(t)5(t)y(t) dt = | A;T(m(ń))5(ń)A;(m(ń)) di,

5(i) = diag{5i(ń),... ,5r(t)}, ó,(t) > 0 jest diagonalną macierzą wag, a x(t) = fPzo.tM’))- 
Jakobian, wyliczony poprzez zróżniczkowanie odwzorowania końcowego, przyjmuje postać 

JXo,t(u(-))v(-) = [ yT(t)5(t)C(t)/&(i, s)B(s>(s) ds di = [ yT(i)5(i)Ja:o,t(u(-))v(-) di, 
JO Jo Jo

gdzie Ja:0,t(w(-))f(•) jest jakobianem (2.6) układu robotycznego (1.12) z deficytem na­
pędów, z funkcją wyjścia. Stosując podobne wyliczenia, jak dla zadania minimalizacji 
wartości zmiennych stanu, definiujemy pseudoodwrotność jakobianu

■ IR W = \\a*(u(^^

gdzie ^(^(^(s) = B^s)/^7^, s)CT(t)<J(t)z(t) di oraz równanie błędu

e = KXOtT(u(-)) = yT(t)5(t)y(t) di.
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Alternatywny wariant algorytmu minimalizacji wartości zmiennych stanu

W poprzednich wyprowadzeniach odwzorowanie końcowe przyjmuje wartości liczbowe, 
a odpowiadający mu jakobian i pseudoodwrotność jakobianu są wektorami. Przyjrzyj­
my się teraz przypadkowi, w którym zdefiniujemy odwzorowanie końcowe jako wektor 
KXOjt'- W —> IR2n, którego elementy będą odpowiadać kolejnym współrzędnym stanu

^01T,i («(•))

^0,7,2 («(•))
/ dć\

1 Jo x22^ dt
2 :

\£ X2n W dV

Wprowadzając macierz M, = e^e^, gdzie e^ E IR2n jest i-tym wersorem, możemy zapisać 
x2 = zTMia;. Dla tak określonego zadania jakobian przyjmie postać

rT(t)M! 
zT(t)M2

zT(t)M2n

di =

/ diag^^t), x2(t\di> 
Jo

gdzie jest jakobianem (2.6) układu robotycznego z deficytem napędów (1-12)
bez funkcji wyjścia (C(t) = I2n). Pseudoodwrotność jakobianu dla zmodyfikowanego za­
dania minimalizacji wartości zmiennych stanu definiujemy jako

gdzie ^(u(-))(s) = s)diag{a;1(t), z2(t),..., z2n(t)} dt. Błąd definiujemy jak
poprzednio, za pośrednictwem odwzorowania końcowego

/ £^i(<) di\

\foX2n^ dV

Tak zdefiniowane zadanie można również zmodyfikować, aby minimalizowało wartości 
zmiennych w przestrzeni zadaniowej.

Modyfikacja zadania minimalizacji wartości zmiennych stanu do realizacji 
zadania śledzenia trajektorii

Dokonując niewielkich modyfikacji w definicjach zadań dodatkowych przedstawionych 
w tym podrozdziale można uzyskać zadanie, które będzie starało się utrzymywać wybra­
ne lub wszystkie zmienne stanu w okolicach zadanej trajektorii odniesienia. Przedstawmy 
teraz niezbędne przekształcenia poprzednich wyprowadzeń w celu uzyskania zadania śle­
dzenia trajektorii odniesienia. Rozpoczniemy od zdefiniowania odwzorowania końcowego

KXq,t- U IR, - xd^J5(t)(z(t) - xd(t^ dt, (2.35)
./n
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gdzie x(t) = ^.tM')), xd(t) jest pożądaną trajektorią, a 5(t) = diag{Ą(t),..., 52n(t)}, 
6i(t) > 0 jest diagonalną macierzą wag. Różniczkując (2.35) uzyskujemy jakobian

JX0,t{u^v^ =

f{x^ - xd(i))T5(i) f$(i,s)B(s)u(s) ds di = /(x(i) - xd(t^T5(t)SX0j(u(-^ di, 
Jo Jo Jo

(2.36)

gdzie Jz0,t(u(’)M‘) jest jakobianem (2.6) układu robotycznego z deficytem napędów (1.12) 
bez funkcji wyjścia (C(i) = Ąn)- Następnie, przeprowadzając wyliczenia podobne do 
(2.33)-(2.34) wyznaczamy pseudoodwrotność jakobianu (2.36)

(0 - || ^(u^))^ (2’37)

gdzie atraj(u(-))W — BT(i)J’tT$T(s, t)5(i)(a;(s) — ^d(s)) ds. Ostatnim, czwartym elemen­
tem niezbędnym do zdefiniowania algorytmu śledzenia trajektorii jest błąd, który w tym 
przypadku definiujemy jako

e = KXo^u^ = J [ {x^ - z^))^)^) ~ xd^ di. (2.38) 
* Jo

Zamieniając definicję wyrażenia {x{t) — xd(t^ na (y(i)-r/d(i)), modyfikując 5(t) i wstawia­
jąc odpowiednią macierz C'(t) = do jakobianu JL0,t(u(‘)M-)> otrzymujemy zadanie 
śledzenia trajektorii we współrzędnych zadaniowych.

2.3.3 Zadanie unikania przeszkód (osobliwości) w przestrzeni 
zadaniowej i w przestrzeni stanu

Do opisu zadania unikania przeszkód będzie nam potrzebna funkcja opisująca rozmiesz­
czenie, rozmiar i kształt przeszkód. Zakładamy, że funkcja przeszkód będzie przyjmo­
wała wartości liczbowe h: lRr —> IR. Tę funkcję należy wybrać tak, aby jej wartość na 
obszarach wolnych od przeszkód była bliska zeru i przyjmowała bardzo duże wartości 
w miejscach występowania przeszkód oraz była funkcją dodatnią. Funkcję taką można 
utożsamiać z rozkładem natężenia pola grawitacyjnego (potencjalnego), a ruch ma się 
odbywać w sposób minimalizujący wypadkową siłę tego pola [21]. Alternatywnie, powyż­
szą funkcję można traktować jako ukształtowanie terenu i zapewniać ruch minimalizujący 
wysokość nad poziomem morza. Przytoczone przykłady interpretacji przedstawione są dla 
płaszczyzny dwuwymiarowej, nic nie stoi jednak na przeszkodzie, aby definiowane tutaj 
zadanie unikania przeszkód było określone w przestrzeni wielowymiarowej.

Jedną z możliwych funkcji przeszkód zdefiniujemy w języku teorii pola grawitacyjnego 
(potencjalnego). Funkcja przeszkód będzie opisywać przeszkody okrągłe, czyli przeszko­
dy, które mogą być utożsamiane z wielowymiarową kulą, której oddziaływanie na robota 
zwiększa się wraz ze zmniejszaniem odległości od jej środka. Niech o oznacza liczbę prze­
szkód, a Oi = oznacza z-tą przeszkodę, gdzie jest wagą (promieniem) prze­
szkody a yj G IRr jest położeniem przeszkody we współrzędnych zadaniowych. Wówczas, 
funkcja przeszkód wyraża się przez

O

lly-ydl2’
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a jej przykładowy wykres, dla przestrzeni dwuwymiarowej, przedstawia rysunek 2.1. Czę­
sto przydaje się możliwość ograniczenia obszaru ruchu. Chcemy, aby ruch odbywał się 
wewnątrz wielowymiarowego prostopadłościanu. Korzystając z funkcji eksponencjalnych, 
zdefiniujemy funkcję przeszkód, która będzie przyjmowała wartości bliskie zeru wewnątrz 
prostopadłościanu i przyjmowała duże wartości w pozostałych obszarach lRr. Składa­
jąc funkcje pojedynczych zmiennych w jedną wspólną funkcję, możemy utworzyć funkcję 
ograniczającą obszar ruchu do wielowymiarowego obszaru prostopadłościennego

h(y) = ||(exp((y1 - yj2 ~ y2), • • ■ , exp((yr - yCr)2 - y2J) ||2,

gdzie yc & !Rr są współrzędnymi środka prostopadłościanu, a yr G IRr są połowami dłu­
gości boków prostopadłościanu wzdłuż każdej współrzędnej zadaniowej. Przykład funkcji 
ograniczającej ruch w przestrzeni R2 ilustruje rysunek 2.2. Jeszcze inną funkcją przeszkód 
może być funkcja reprezentująca przeszkodę w kształcie podkowy, którą możemy zapisać 
jako

A(y) = expH||y||2-B2)2>^^

Rysunek 2.1 Przykładowa funkcja przeszkód okrągłych

Rysunek 2.2 Przykładowa funkcja przeszkód ograniczająca obszar ruchu
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gdzie R jest promieniem przeszkody, a przy pomocy wersora ej możemy zdefiniować, 
w którym miejscu przeszkoda ma być otwarta. Rysunek 2.3 pokazuje przykładowy wykres 
powyższej funkcji.

Rysunek 2.3 Przykładowa funkcja przeszkody w kształcie podkowy

Przyjrzyjmy się teraz, jak przy pomocy funkcji przeszkód h(y) zdefiniować odwzo­
rowanie końcowe, jakobian i inne elementy potrzebne do zapisania algorytmu unikania 
przeszkód. Jako odwzorowanie końcowe wybierzemy wartość funkcji przeszkód wzdłuż 
trajektorii y(t) — fc(x(t)) wyznaczonej w całym okresie trwania ruchu

K^tM IR, KX0,tW) = ^J = /i(fc(z(t))) dt. (2.39)

Korzystając z wyliczeń pochodnej strumienia (2.3), poprzez różniczkowanie (2.39) uzy­
skujemy jakobian Ja:o,T'(u(-)) ■ U IR

= VKXOtT(u^v{-)
d 

da
d 1 r

KXo>T{u{-)+av^ = 2 / dt =
a=0 a=0 $

Jo Oy Jq

ds dt = y dt, (2.40)

gdzie Jest jakobianem (2.6) układu robotycznego (1-12) z deficytem napędów
i z funkcją wyjścia. Jakobian (2.40) definiuje zależność pomiędzy zmianami sterowania 
u(-) € U a zmianami wartości funkcji przeszkód wzdłuż trajektorii y(t). Wyznaczmy 
pseudoodwrotność jakobianu dla zadania unikania przeszkód. Niech równanie jakobianowe

dt = 77, 77 € IR, (2.41)
Jo °y

będzie definiowało ograniczenia równościowe, przy respektowaniu których będziemy wy­
znaczać min | JÓvT(t)v(t) dt. W celu minimalizacji użyjemy metody mnożników Lagran- 

«(•) 2
ge’a, co wiąże się ze zdefiniowaniem lagranżianu

f [ —[$(t, s)B(s)v(s) ds dt — 77 
\Jo Jo
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i wyznaczeniu jego punktu stacjonarnego poprzez przyrównanie pochodnej do zera

D£(v(-), A)w(-) = £(y(/) + A) =da a=0
'T(s)w(s) ds + A / C(t) [ $(t, s)B(s)w(s) ds di = 0.

Jo oy Jo

Stosując podobne przekształcenia jak w (2.33), dotyczące zmiany granic całkowania, uzy­
skujemy równość

v(s) = -ABt(s) / $T(t, s)CT(t) f di = -Aa«))(s), (2.42)
Js \ oy J

która po podstawieniu do (2.41), pozwala wyznaczyć mnożnik Lagrange’a równy A = 
~ MłOCliF’ Eliminacja mnożników Lagrange’a A w (2.42) prowadzi do uzyskania pseu- 
doodwrotności jakobianu (2.40)

iw-jjour
Podobnie jak to miało miejsce w definicjach poprzednich zadań, także tutaj wybieramy 
funkcję błędu równą odwzorowaniu końcowemu

e = J fi(y(i)) di = j h(A:(a;(t))) dt.

Parametry, takie jak m,, y*, yc, R, itp. pojawiające się w definicjach funkcji przeszkód 
h(y) można uzależnić od czasu t, co spowoduje, że uzyskamy zadanie omijające ruchome 
przeszkody.

Jeśli w powyższych wyprowadzeniach założymy, że funkcja wyjścia układu (1.12) jest 
odwzorowaniem identycznościowym y(t) = k(x(t)) = x(t') możemy zdefiniować funkcje 
przeszkód równe h(y) — h^k^)) = hęx), które mają zastosowanie w zadaniu omijania 
przeszkód w przestrzeni stanu. Jeśli teraz wybierzemy funkcję przeszkód h(x), która będzie 
przyjmowała wartości zerowe w obszarach wolnych od osobliwości oraz duże wartości 
w miejscach występowania osobliwości, otrzymamy zadanie unikania osobliwości.

Przedstawioną tutaj ideologię można wykorzystać także do konstrukcji zadania, które 
będzie wymuszało, aby układ przejeżdżał przez wybrane punkty. Można to zrobić, definiu­
jąc funkcję przeszkód w taki sposób, aby przyjmowała wartości bliskie zeru w wybranych 
punktach oraz odpowiednio wysokie wartości w pozostałym obszarze ruchu.
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2.4 Planowanie przy niepełnej znajomości modelu
Algorytmy planowania ruchu robotów przedstawione w powyższych podrozdziałach dzia­
łają w otwartej pętli sprzężenia zwrotnego. Ponadto, poszukiwane funkcje sterujące są 
wyznaczane na podstawie odpowiedzi nominalnego układu robotycznego. Zastosowanie 
wyznaczonych funkcji sterujących do układu rzeczywistego może skutkować stosunkowo 
dużą wartością błędu pomiędzy punktem zadanym y^, a faktycznymi wartościami współ­
rzędnych zadaniowych y(T) w układzie rzeczywistym. Sposobem na poprawienie takiego 
stanu rzeczy jest użycie algorytmu planowania ruchu z uwzględnieniem stanu układu 
rzeczywistego [19]. Zaadaptowanie tej metody pozwoli na planowanie ruchu pomimo nie­
pełnej znajomości parametrów modelu. Taka strategia będzie wyznaczała dla każdego iJ 
poprawkę funkcji sterującej korzystając z wartości błędu zmierzonego na podstawie odpo­
wiedzi układu rzeczywistego, oraz z pseudoodwrotności jakobianu wyznaczonej z modelu 
nominalnego.

Załóżmy, że układ (1.12) reprezentuje układ rzeczywisty, natomiast układ

J(t) = + G(x(t))u(t),
[y = k^. }

będzie reprezentował układ nominalny, w którym wartości parametrów obiektu (takie jak 
masa, długość itp.) różnią się od parametrów w układzie rzeczywistym (1.12). W celu 
zmodyfikowania algorytmu (2.15) w taki sposób, aby mógł planować ruch przy niepełnej 
znajomości modelu zaproponujmy następującą formułę wyznaczenia sterowania

= -7 (?*>.,(■)«’’)) W- (2.44)

Jak wspomnieliśmy, wartość błędu będzie wyznaczana z układu rzeczywistego, a więc błąd 
e(?9) będzie zdefiniowany zgodnie z (2.12). Zmianie ulegnie natomiast definicja jakobianu

gdzie
G^uG)) = C(T) [ $(T,S)B(S)Bt(S)8t(T,S) dsCT(T) 

Jo
jest macierzą Grama. Macierze A(i), B(t) i C(t) są macierzami przybliżenia liniowego 
układu nominalnego (2.43) wyznaczonymi wzdłuż pary sterowanie-trajektoria (u(t),a;(t)) 
układu rzeczywistego (1-12) i są zdefiniowane następująco

A(*) = fl(f(£(b)+G(£(dMb) 
dx

x(t)=x(t)

B(t) = GW))
x(t)=x(i)

dx
£(t)=x(t)

Macierz $(t, s) jest macierzą tranzycji stanu przybliżenia liniowego układu (2.43) i można 
ją wyznaczyć z rozwiązania równania

^^ = A(tW,s), $(s,s) = Z2n.



Rozdział 3

Aspekty implementacyjne

W celu umożliwienia implementacji komputerowej algorytmu planowania ruchu 
układów robotycznych z deficytem napędów korzystającego z metody endoge- 
nicznej przestrzeni konfiguracyjnej niezbędne są dwie rzeczy: parametryczna reprezentacja 

funkcji sterujących oraz numeryczna metoda rozwiązania równania algorytmu. W pierw­
szej kolejności zajmiemy się reprezentacją konfiguracji endogenicznych. Dążąc do zreduko­
wania czasu obliczeń wprowadzimy skończeniewymiarową, parametryczną reprezentację 
wykorzystującą bazę funkcji ortogonalnych. W dalszej części tego rozdziału omówimy 
dyskretną metodę uzyskania rozwiązywania algorytmu planowania ruchu. Pod koniec roz­
działu przedstawimy podejście, które pozwoli uzyskać rozwiązanie zadania planowania 
ruchu bez konieczności wprowadzania parametrycznej reprezentacji funkcji sterujących.

3.1 Parametryczna reprezentacja konfiguracji 
endogenicznej

Jak wspomnieliśmy w rozdziale 2.1, konfiguracje endogeniczne u(-) EU są funkcjami klasy 
Lz można je zatem przedstawić w postaci nieskończonego szeregu funkcji ortogonalnych. 
Z powodów obliczeniowych wprowadźmy parametryczną reprezentację funkcji sterujących 
w postaci skończonego (o liczności k) szeregu funkcji ortogonalnych

k

Ui^c,^ = i — 1,2,... ,m, (3.1)
i=j

gdzie € IR jest współczynnikiem stojącym przy j-tej funkcji bazowej w ż-tym ste­
rowaniu, a jest j-tą funkcją bazową. Zestawiając współczynniki w wektor c = 
(ci,i> Ci,2, • • •, Ci,*, C2,i, • ■ •, Cm,k) £ JRmk, a funkcje bazowe ^(t) w macierz

0,...,0
0,..., O’ 
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reprezentację (3.1) można zapisać w postaci

u(c, i) = ^(tjc. (3-2)

Parametryczna reprezentacja (3.1) konfiguracji endogenicznych definiuje skończeniewy- 
miarową endogeniczną przestrzeń konfiguracyjną U =JRkm. W konsekwencji, ^wszystkie 
odwzorowania końcowe KXo<t- W -> jakobiany Jxo,t(c) = Jx0,t{u{c, •)): U —> lRr 
i odpowiadające im pseudoodwrotności jakobianów J* T(c) = •)): IRT —> U
stają się skończeniewymiarowe. Wszystkie definicje skończeniewymiarowych elementów, 
zarówno dla właściwego zadania planowania ruchu jak i dla zadań dodatkowych opisa­
nych w podrozdziale 2.3, zostały zebrane w dodatku B.

3.1.1 Ortogonalne funkcje bazowe
Do wyrażenia funkcji sterujących przy pomocy parametryzacji (3.1) można wykorzystać 
różne szeregi funkcji ortogonalnych. W [17] do rozwiązania zadania planowania ruchu 
manipulatora mobilnego zaproponowano reprezentację w postaci funkcji harmonicznych 
(szereg Fouriera), a także kilka szeregów funkcji wielomianowych, takich jak wielomiany 
Legendre’a, Gegenbauera, Czebyszewa, a także funkcje Haara. W niniejszej pracy, w symu­
lacjach będziemy wykorzystywać dwie wybrane bazy funkcji ortogonalnych: bazę Fouriera 
i bazę Laguerre’a.

Baza Fouriera

Element o indeksie i bazy Fouriera ma postać

{1 dla i = 0,
sin dla i = 1,3,5,...,
cos (|wt) dla i = 2,4, 6,...,

2%

a dowolna funkcja może zostać przybliżona w tej bazie poprzez odpowiedni dobór współ­
czynników a = (ao,..., afc)

k
fF^^a^f). (3.3)

»=o
Baza Fouriera jest ortogonalna na przedziale [0, T], a kilka kolejnych elementów bazy 
wykreślono na rysunku 3.1.

Baza Laguerre’a

Elementy bazy wielomianów Laguerre’a mogą zostać wyznaczone korzystając z formuły 
Rodriguesa [19]

w = w-w •
Aby zapewnić ortogonalność bazy Laguerre’a, niezbędne jest przemnożenie powyższych 
elementów przez pewien czynnik

Li(f) = exp(-t/2)/i(t).
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Ostatecznie, dowolna funkcja może zostać przybliżona przez skończony szereg wykorzy­
stujący wielomiany Laguerre’a z odpowiednimi współczynnikami a = (ai,..., ak)

k

i=l
(3.4)

Baza Laguerre’a ma większy obszar ortogonalności [0, oo) niż baza Fouriera. W razie 
potrzeby można przeskalować czas, aby zmienić tempo zbieżności elementów bazy. Kilka 
pierwszych elementów bazy Laguerre’a pokazano na rysunku 3.1.

^•(t) L^t)

Rysunek 3.1 Kilka pierwszych elementów bazy Fouriera - strona lewa, bazy Laguerre’a 
- strona prawa

3.2 Dyskretna wersja algorytmu planowania ruchu

Do wyznaczenia rozwiązania równania różniczkowego definiującego algorytm planowania 
ruchu (2.15) lub algorytmy z zadaniami dodatkowymi (2.20) i (2.26) można stosować 
różne schematy obliczeniowe, spośród których wykorzystamy metodę Eulera. W tym celu 
definiujemy równania różnicowe będące odpowiednikami ciągłych równań różniczkowych. 
Wersja dyskretna podstawowego algorytm planowania ruchu może zostać wyrażona przez

«ł+iW - Mt) = -7 U*,r(M-)W)) (t), V = 1,2,3,.... (3-5)

Korzystając z parametrycznej reprezentacji (3.1), możemy uzyskać dyskretną i parame­
tryczną wersję algorytmu planowania ruchu

+1) =

W podobny sposób, możemy zdefiniować dyskretne i parametryczne wersje wszystkich 
algorytmów planowania ruchu wyprowadzonych w rozdziale 2.
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3.3 Nieparametryczna reprezentacja konfiguracji 
endogenicznej

Istnieje także możliwość uzyskania rozwiązania zadania planowania ruchu bez wprowa­
dzania parametrycznej, skończeniewymiarowej reprezentacji funkcji sterujących. Takie 
podejście jest związane ze wzrostem czasu obliczeń, jednak z drugiej strony uzyskiwa­
ne rozwiązania (przebieg funkcji sterującej) nie są zależne od wyboru bazy.

Przyjrzyjmy się dokładniej algorytmowi planowaniu ruchu wyrażonego przez (2.15). 
W tym podejściu również będziemy korzystali z metody Eulera, co prowadzi do dyskret­
nej wersji algorytmu (3.5). Każda kolejna iteracja algorytmu wyznaczy kolejną funkcję 
sterującą według wzoru

^+i(i) = - 7 W-

Zgodnie z (2.9), do wyznaczenia pseudoodwrotności jakobianu /^t(w(-)) niezbędna jest 
macierz W zadaniu właściwego planowania ruchu zawsze pierwszy argument ma­
cierzy $(T,i) jest stały. Można to wykorzystać przy wyznaczaniu tej macierzy. W każ­
dym kroku i? wyznaczamy trajektorie x(t) i $(i) rozwiązując dwa równania różniczkowe 
o wspólnej zmiennej niezależnej t

dt

=-nw), 
at

gdzie [45]. Następnie, uaktualniamy sterowanie

W*) = - y (^X,r(^())e W) (i) =

MO ~7BT(t)$T(t)CT(T) ( C(T) [ ¥(s)B(s)BT(s)¥T(s) dsCT(T) ) (^(T)) - yd\ 
\ Jo /

Ostatecznie, sprawdzamy warunek stopu ||e(ń?)|| = ||k(x(Ty) — = ^(^o,tM-))) -
yd|| emax i w przypadku jego niespełnienia rozpoczynamy całą procedurę od początku. 
Warunkiem początkowym algorytmu są początkowe funkcje sterujące u^=0(i).



Rozdział 4

Przykłady numeryczne

W niniejszym rozdziale przedstawimy symulacyjne rozwiązania zadania planowa­
nia ruchu układów robotycznych z deficytem napędów. Wszystkie wyniki zostały 
uzyskane przy pomocy programu MATHEMATICA. Pokażemy wyniki działania algorytmu 

z różnymi zadaniami dodatkowymi, dokonamy także porównania algorytmu egalitarnego 
z algorytmem z priorytetowaniem. Zaprezentujemy również wyniki symulacji algorytmu 
planowania ruchu przy niepełnej znajomości modelu. Ponadto, rozwiążemy zadanie plano­
wanie ruchu przy nieparametrycznej reprezentacji funkcji sterujących, oraz wykorzystamy 
zadanie dodatkowe ograniczające wartości zmiennych stanu do uzyskania rozwiązania za­
dania reprodukcji trajektorii. Wszelkie modele użyte w bieżącym rozdziale zostały opisane 
w dodatku C. Dla każdej symulacji będziemy podawać parametry algorytmu, dla zaosz­
czędzenia miejsca wytłumaczmy teraz zastosowane oznaczenia

• xq = z(0) - stan początkowy,

• yd - zadana wartość wyjścia,

• T - czas trwania ruchu,

• 7 - wektor współczynników zbieżności,

• E - macierz skalująca błąd przy algorytmie egalitarnym,

• ^(i) - macierz funkcji bazowych reprezentacji sterowania,

• c(0) - początkowy wektor współczynników sterowań.

Jakość rozwiązań symulacyjnych uzyskiwanych przez algorytmy planowania ruchu za­
leży w sposób istotny od doboru parametrów algorytmu. Poniżej opiszemy wpływ tych 
parametrów na pracę algorytmu i podamy kilka praktycznych wskazówek pomagających 
w doborze ich wartości.

Dobór liczby k elementów bazy funkcji ortogonalnych

W celu omówienia kwestii liczby elementów bazy wróćmy raz jeszcze do analogii po­
między podejściem endogenicznej przestrzeni konfiguracyjnej a metodologią zaczerpniętą 
z teorii manipulatorów stacjonarnych. Zgodnie z [27], redundancja manipulatora może zo­
stać wykorzystana do realizacji zadań dodatkowych. Liczba km użytych funkcji bazowych 
w podejściu endogenicznym odgrywa rolę analogiczną do liczby zmiennych przegubowych 
w teorii manipulatorów. Zatem, aby realizować zadanie planowania ruchu z zadaniami 



38 4. Przykłady numeryczne

dodatkowymi, liczba km użytych funkcji bazowych musi być co najmniej równa sumie 
wymiarów przestrzeni zadaniowych wszystkich zadań. Taką zależność możemy opisać na­
stępująco

Z 
km 

»=i

gdzie Ti = dim^t?) jest wymiarem przestrzeni zadaniowej i-tego zadania. Użycie większej 
liczby elementów bazy pozwala uzyskać mniejsze błędy zadań, oraz niejednokrotnie powo­
duje zmniejszenie liczby kroków potrzebnych do otrzymania rozwiązania. Wpływ liczby 
funkcji bazowych przedstawimy w symulacji zamieszczonej w podrozdziale 4.1.2. Zwięk­
szenie liczby km pozwala często uniknąć problemów numerycznych podczas wyznaczania 
pseudoodwrotności jakobianu. Podejście przedstawione w podrozdziale 3.3, w którym nie 
parametryzujemy funkcji sterującej pozwala na uzyskanie „nieskończonej” redundancji, co 
powinno skutkować poprawą uzyskiwanych wyników.

Dobór współczynnika zbieżności 7

Zgodnie z formułą (2.13), współczynnik 7 jest odpowiedzialny za szybkość zbieżności 
błędu e do zera. Nietrudno zauważyć, że przy metodzie Eulera rozwiązywania równania 
różniczkowego algorytmu, współczynnik 7 wpływa także na długość kroku algorytmu. 
Zbyt niska wartość współczynnika powoduje zbyt wolną zbieżność algorytmu, który staje 
się niepraktyczny. Z drugiej strony, zbyt duża wartość sprawia, że otrzymanie rozwią­
zania z zadaną dokładnością będzie niemożliwe. Dobór wartości 7 powinien być zatem 
uzależniony od dynamiki równania algorytmu (2.15), która zależy od dynamiki układu 
robotycznego i od wybranej odwrotności jakobianu. Badania symulacyjne pokazują [37], 
że możliwe jest również uzależnienie współczynnika od kroku 7(7?); umiejętne dobranie tej 
zależności pozwala uzyskać szybszą zbieżność algorytmu niż przy użyciu stałej wartości 
7. Jeżeli potraktujemy parametr 7 jako długość kroku w algorytmie gradientowym, to 
zwykle przyjmuje się wartości 0 < 7 < 1. Niemniej jednak, w zależności od konkretnego 
zadania, przyjęcie wartości 7 > 1 niejednokrotnie przynosi lepsze rezultaty. W algorytmie 
z priorytetowaniem zadań współczynnik 7 = (71,..., yz) jest wektorem, w którym kolejne 
współrzędne 7, odpowiadają kolejnym zadaniom Si- W takim przypadku, dobór 74 określa 
wpływ poszczególnych zadań składowych na rozwiązanie uzyskane za pomocą algorytmu 
z priorytetowaniem.

Dobór sterowania początkowego

Od przedstawianych tutaj algorytmów planowania ruchu możemy oczekiwać jedynie lokal­
nej zbieżności. Uzyskanie rozwiązania zadania zależy od doboru początkowego sterowania. 
W przypadku parametrycznej reprezentacji funkcji sterującej, sterowanie początkowe za- 
dajemy poprzez parametry sterowania u^ott) = T(t)c(?7=0). Natomiast w przypadku, 
gdy nie korzystamy z parametrycznej reprezentacji, początkowe sterowanie definiujemy 
jako arbitralnie wybraną funkcję u^=o(i) = Uo(t)- Badania symulacyjne wskazują, że nie­
umiejętne dobranie sterowania początkowego może być przyczyną nie uzyskania rozwią­
zania zadania planowania ruchu. Zwykle, wybranie początkowego sterowania w sposób, 
który umożliwi ruch układu w kierunku od pierwszego kroku pozwala szybciej otrzy­
mać zadowalające rozwiązanie. Niemniej jednak, jak pokażemy w symulacji (podrozdział 
4.1.3), wybranie początkowego sterowania, które jest niezgodne z tą regułą także pozwala 
uzyskać rozwiązanie.
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Czas trwania ruchu

Jeżeli stawiane zadanie planowania ruchu nie definiuje w jakim czasie ma zostać zreali­
zowany ruch układu, należy dobrać taki okres czasu T, który nie będzie wymuszał zbyt 
dużych lub zbyt małych prędkości układu. Horyzont czasowy T powinien zatem być uza­
leżniony od dynamiki układu robotycznego i od zasięgu ruchu ||A:(mo) — y<J|.

4.1 Symulacyjne wyniki planowania ruchu wybranych 
układów z różnymi zadaniami dodatkowymi

W pierwszym podrozdziale przeprowadzimy symulacje algorytmu planowania ruchu dla 
wybranych układów robotycznych z deficytem napędów z różnymi zadaniami dodatkowy­
mi.

4.1.1 Minimalizacja energii sterowania przy planowaniu ruchu 
statku

Jako pierwszy wynik zaprezentujemy planowanie ruchu statku (patrz dodatek C.l). Przed­
stawimy wyniki działania dwóch algorytmów. Pierwszy składać się będzie tylko z głównego 
zadania (planowania ruchu), a drugi będzie zawierał zadanie główne, właściwe planowa­
nie ruchu i zadanie dodatkowe, o niższym priorytecie, polegające na minimalizacji ener­
gii sterowania. Pozwoli to zaobserwować wpływ drugiego zadania na uzyskiwane wyniki. 
Planowanie odbywa się w przestrzeni zadaniowej y = (n, e,^), a jako punkt końcowy 
wybraliśmy współrzędne ya = (20000,20000, —tt/2), które znajdują się stosunkowo dale­
ko od zadanego punktu początkowego z0 = e, u, v, r) = (0,0,0,4, 0,0) (oznaczenia 
wyjaśniono w dodatku C). Czas symulacji wynosi T = 7000, a współczynnik zbieżności 
pierwszego zadania h' = 0.1. Wyznaczane funkcje sterujące będą reprezentowane przez 
skończony szereg Fouriera (3.3) dla k — 10, a początkowy wektor współczynników stero­
wania jest równy c(0) = (300000,0ixlo, 0.01,0ixio)- Jak wspomnieliśmy, przeprowadzimy 
dwie symulacje, pierwszą bez drugiego zadania, gdzie = 0 i drugą z dodatkowym 
zadaniem minimalizacji energii sterowania, ze współczynnikiem = 0.1. Macierz wag 
wybraliśmy równą er = Im, co znaczy, że oba sterowania mają być minimalizowane w tym 
samym stopniu. Warunkiem stopu w obu algorytmach jest zmniejszenie się normy błędu 
głównego zadania poniżej wartości H^H C 1, przy czym należy zaznaczyć, że błąd orien­
tacji spadał znacznie poniżej tej wartości. Ponadto, kąt skrętu steru statku nie powinien 
przekraczać wartości |u2| 10° podczas trwania ruchu. Wyniki symulacji zostały pokaza­
ne na rysunkach 4.1-4.5. Na rysunku 4.1 przedstawiliśmy ścieżkę ruchu i zaznaczyliśmy 
sylwetkę statku w odstępie co 1000 jednostek czasu. Z rysunków 4.3 i 4.4 wynika, że al­
gorytm w obu badanych przypadkach prawidłowo rozwiązał zadanie planowania ruchu. 
Na rysunku 4.2 zostały przedstawione funkcje sterujące. Algorytm uwzględniający dru­
gie zadanie wyznaczył ruch charakteryzujący się mniejszą energią sterowania. Ponadto, 
sterowanie odpowiadające kątowi steru w przypadku z zadaniem dodatkowym nie prze­
kracza wartości granicznych (linia przerywana), w przeciwieństwie do funkcji sterującej 
wyznaczonej przez algorytm przy 27 = 0. Prędkość zbiegania się algorytmu rozwiązują­
cego właściwe planowanie ruchu i algorytmu rozwiązującego zadanie planowania ruchu 
z zadaniem dodatkowym jest podobna co pokazuje rysunek 4.5. Inne wyniki działania 
algorytmu planowania ruchu statku mogą zostać znalezione w [35,36]. Z przedstawionej 
symulacji wynika, że proponowany algorytm pomyślnie rozwiązuje zadanie planowania ru­
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chu wraz z jednoczesnym minimalizowaniem energii sterowania. Ponadto pokazaliśmy, że 
zadany punkt docelowy yd = (20000, 20000, — tt/2) może być znacznie odległy od punktu 
początkowego y0 = k{x0) = (0,0,0), i czas ruchu może być bardzo długi.

Rysunek 4.1 Ścieżka ruchu statku

t t

Rysunek 4.2 Przebiegi funkcji sterujących

Rysunek 4.3 Trajektorie zmiennych stanu (położenia)



4.1. Symulacyjne wyniki planowania ruchu wybranych układów... 41

Rysunek 4.4 Trajektorie zmiennych stanu (prędkości)

Rysunek 4.5 Zbieżność algorytmów (błąd właściwego planowania ruchu)

4.1.2 Minimalizacja wartości zmiennych stanu przy planowaniu 
ruchu robota balansującego

W kolejnej symulacji przedstawimy planowanie ruchu przy obecności zadania dodatko­
wego polegającego na minimalizacji wartości zmiennej stanu. Modelem testowym będzie 
robot balansujący opisany w dodatku C.2. Dla takiego robota zaproponujemy algorytm 
planowania ruchu utworzony z trzech zadań [38]. Pierwsze zadanie, główne, to zadanie 
planowania ruchu. Drugim zadaniem będzie utrzymywanie zmiennej odpowiedzialnej za 
wychylenie korpusu robota w pobliżu wartości zerowej, tak aby robot utrzymywał pozy­
cję pionową. Trzecie zadanie będzie polegało na minimalizacji energii sterowania. Każde 
kolejne zadanie ma niższy priorytet od poprzedniego. Dodatkowo, pokażemy tutaj wpływ 
liczby funkcji bazowych reprezentujących sygnały sterujące na wartości błędów zadanio­
wych. W tym celu, przedstawimy wyniki symulacji dla dwóch różnych wymiarów wektora 
współczynników dimc = 34 i dimc = 42. Chcemy, aby algorytm wyznaczył sterowanie, 
które zapewni ruch robota od stanu spoczynkowego (zerowe prędkości i wahadło w pionie) 
zapoczątkowany w punkcie (0,0) z orientacją 9 = 0 do stanu spoczynkowego w punkcie 
xd = (??i) ^2,93,x, y, 9, a) = (0,0,0,1,1,7r/4,0) (patrz dodatek C) w czasie T = 2. Obli­
czenia wykonywane są do momentu uzyskania wartości normy błędu pierwszego zadania 
||1e|| 10~5. Dodatkowo, żądamy aby kąt wychylenia korpusu robota balansującego nie
przekraczał |ct| < 20° ~ 0.35, a energia sterowania była możliwie najmniejsza. Do utwo­
rzenia algorytmu realizującego przedstawione zadania wybraliśmy macierz wag dla algo­
rytmu minimalizacji zmiennych stanu 5 = diag{0, 0, 0,0, 0,0,1}, co oznacza minimalizację 
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tylko ostatniej zmiennej stanu a oraz macierz wag cr = Im, prowadzącą do równorzędnego 
traktowania obu sterowań. Współczynnik zbieżności dla trzech kolejnych zadań wynosi 
7 = (0.1,0.1,0.5). Każda z dwóch funkcji sterujących jest reprezentowana przez skończo­
ny szereg wielomianów Laguerre’a (3.4) przy k = 17 w pierwszym przypadku oraz k = 21 
w drugim. Początkowe wartości wektora współczynników c(0) = (0.1,0ixi6,0.1,0ixie) 
i c(o) = (0.1,01X2o> 0.1,0ix2o)- Seria rysunków 4.6-4.10 przedstawia efekty symulacji. 
W obu badanych przypadkach uzyskane ścieżki ruchu robota są do siebie podobne (ry­
sunek 4.6). Analizując trajektorie robota przedstawione na rysunkach 4.7 i 4.8 możemy 
zauważyć, że dla różnych ilości funkcji bazowych, zadanie właściwego planowania ruchu 
jest zrealizowane pomyślnie. Wszystkie współrzędne stanu osiągają zadane położenie Xd 
w zadanym czasie T. Istotne różnice pomiędzy rozpatrywanymi przykładami pojawiają się 
w jakości rozwiązania drugiego i trzeciego zadania dodatkowego. W przypadku z mniej­
szym wymiarem wektora współczynników sterowania, zmienna a(t) odpowiedzialna za 
wychylenie korpusu robota przekracza dozwoloną wartość (linia kreskowo-kropkowana na 
rysunku 4.7), w drugim przypadku przebieg a(t) zawiera się w ustalonych granicach. 
Ponadto, użyta energia sterowania jest mniejsza dla algorytmu z większą liczbą funkcji 
bazowych, co można zaobserwować na rysunkach 4.9 oraz 4.10. Można zatem wyciągnąć

Rysunek 4.6 Ścieżka ruchu robota balansującego

Rysunek 4.7 Trajektorie zmiennych stanu (położenia)
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wniosek, że dzięki zwiększeniu wymiaru reprezentacji funkcji sterujących algorytm ma do 
dyspozycji bardziej różnorodne funkcje, co przekłada się na wzrost efektywności otrzymy­
wanych rozwiązań. Dodatkowo, takie zwiększenie swobody zazwyczaj sprzyja zmniejszeniu 
liczby kroków algorytmu, co widać na rysunku 4.10. Mankamentem takiego rozwiązania 
jest zwiększenie nakładów obliczeniowych dla pojedynczego kroku algorytmu. Na uwagę 
zasługuje także fakt, że tutaj realizujemy aż trzy zadania jednocześnie.

Rysunek 4.8 Trajektorie zmiennych stanu (prędkości)

t

Rysunek 4.9 Przebiegi funkcji sterujących

Rysunek 4.10 Zbieżność algorytmu (dim c = 34 - strona lewa, dim c = 42 - strona prawa)
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4.1.3 Planowanie ruchu poduszkowca z unikaniem przeszkód

Ostatnim zadaniem analizowanym w tym rozdziale będzie planowanie ruchu modelu po­
duszkowca z unikaniem przeszkód. Szczegóły dotyczące modelu testowego zamieściliśmy 
w dodatku C.3. Zadanie będzie polegało na znalezieniu funkcji sterującej, która przepro­
wadzi robota z punktu początkowego do zadanego punktu końcowego, tak aby ścieżka 
ruchu nie kolidowała z przeszkodami. Do rozwiązania tego zadania użyjemy algoryt­
mu z priorytetowaniem zadań. Rozmieszczenie przeszkód przedstawiliśmy na rysunku 
4.11. Obszar ruchu jest obszarem kwadratowym ograniczonym funkcjami x = y = 15, 
x = y = —15, a na środku znajduje się przeszkoda w kształcie podkowy. W czasie 
T = 0 robot stoi w punkcie otoczonym przeszkodą i jest zwrócony tyłem do „wyjścia” 
podkowy. Punkt zadany, znajduje się przed robotem, lecz jest przesłonięty przeszkodą. 
Zarówno w punkcie początkowym jak i w zadanym założyliśmy zerowe prędkości. Może­
my zatem napisać x0 = (x,y,0,u,v,r) = (0,0,7r/2,0,0,0) oraz Xd = (0,10,7r/2,0,0,0), 
oznaczenia wg dodatku C. Czas ruchu wynosi T = 20. Funkcje sterujące reprezentujemy 
w postaci skończonego szeregu Fouriera (3.3) dla k = 28, a początkowe współczynniki ste­
rowania c(0) = (0.15,0iX28,0.15,0ix2s)- Należy zwrócić uwagę, że początkowe sterowanie 
odpowiada ruchowi w kierunku kolizyjnym. Nie jest tutaj konieczne „wskazanie” kierunku 
wyjazdu z przeszkody. Szybkość zbieżności obu błędów algorytmu reguluje współczynnik 
7 = (0.1,2), a obliczenia są prowadzone do momentu uzyskania wartości błędu pierwszego 
zadania || 1e|| 10-5. Główne zadanie, właściwe planowanie ruchu, jest realizowane z zada­
ną dokładnością, co można zaobserwować na rysunku 4.12. Wszystkie współrzędne stanu 
osiągają zadane wartości. Ścieżka ruchu została przedstawiona na rysunku 4.11; ruch po­
duszkowca odbywa się w sposób niekolidujący z przeszkodami. Sylwetka robota została 
zaznaczona w odstępach co 2 jednostki czasu. Rysunek 4.13 przedstawia przebieg funkcji 
sterujących i zbieżność algorytmu. Wartość odwzorowania końcowego zadania drugiego 
osiąga wartość rzędu 10~2, tak więc uzyskany ruch jest bezkolizyjny.

Rysunek 4.11 Rozmieszczenie przeszkód oraz ścieżka ruchu robota
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Rysunek 4.12 Trajektorie zmiennych stanu

Rysunek 4.13 Przebiegi funkcji sterujących - strona lewa, zbieżność algorytmu - strona 
prawa

4.2 Porównanie algorytmu egalitarnego z algorytmem 
z priorytetowaniem

W bieżącym rozdziale przeprowadzimy porównanie efektywności dwóch algorytmów reali­
zujących zadania dodatkowe. Porównamy algorytm egalitarny, wprowadzony w rozdziale 
2.2.1, i algorytm z priorytetowaniem zadań, z rozdziału 2.2.2. Dla uproszczenia zapisów 
przyjmijmy oznaczenie (-)p dla obiektów związanych z algorytmem z priorytetowaniem 
zadań, (-)e dla obiektów związanych z algorytmem egalitarnym oraz (•)& dla obiektów 
związanych z algorytmem bez żadnych dodatkowych zadań. Modelem testowym będzie 
poduszkowiec (dodatek C.3). Przeprowadzimy porównanie obu algorytmów z kilkoma ze­
stawami zadań dodatkowych, które oznaczymy kolejno

• Si - właściwe planowanie ruchu (zadnie główne),

• S2 - zadanie ograniczenia energii sterowania,

• S3 - zadanie ograniczenia wybranej zmiennej stanu: prędkości poprzecznej (u —> 0),

• Są - zadanie omijania przeszkód w dwuwymiarowej przestrzeni położeń robota.

a symulacje będą przeprowadzone dla następujących zestawów zadań: tylko Ą, Si i S2, Si 
i S^ oraz Si i S4. Większość współczynników symulacji pozostaje niezmienna dla wszyst­
kich obliczeń. Punkt startowy wybraliśmy jako x0 = (0,0, 0,0, 0,0), a punkt docelowy 
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yd — Xd = (5,5,7r, 0,0,0) ma zostać osiągnięty w czasie ruchu T = 5. Funkcjami ba­
zowymi są elementy szeregu Fouriera (3.3) dla k = 6, a początkowy wektor sterowań 
c(0) = (0.1,01x6,0.001,01x6)- W symulacji ograniczenia energii sterowania wybraliśmy 
macierz wag równą a — Im, czyli oba sterowania traktujemy równorzędnie. Macierz 
wag w algorytmie ograniczenia wartości zmiennej stanu wybrano tak, aby minimalizo­
wać zmienną u(t) (prędkość poprzeczną, dodatek C), zatem 5 — diag{0,0,0,0,1,0}. 
W algorytmie omijania przeszkód obszar ruchu wraz z przeszkodami ilustruje rysunek 
4.14. W zadaniach rozwiązywanych algorytmem egalitarnym współczynnik zbieżności jest 
równy 7 = 0.2. Taką samą wartość wybraliśmy dla współczynnika zbieżności zadania 
głównego w algorytmie z priorytetowaniem ^7 = 0.2. Dla kolejnych zadań dodatkowych 
współczynniki przyjmują wartości ^7 = 2, — 8, = 2. W algorytmie egalitarnym
wpływ poszczególnych zadań definiują macierze skalujące błąd, które dobieramy nastę­
pująco E = blokdiag{Zri, 0.0025Zr2} dla zestawu Si i S2, E = blokdiag{/ri,0.1/r3} dla 
zestawu Si i S3 oraz E = blokdiag{0.04/ri, 0.003Zr4} dla zestawu Si i S4. Żądamy, aby błąd 
algorytmu właściwego planowania ruchu był poniżej wartości H^H 10~5. W kolejnych 
podrozdziałach przedstawimy wyniki poszczególnych symulacji, z których wyciągniemy 
szereg wniosków.

Rysunek 4.14 Rozmieszczenie przeszkód

4.2.1 Wyniki symulacji zadania Si

Seria rysunków 4.15-4.17 przedstawia wyniki symulacji planowania ruchu złożonego tylko 
z zadania właściwego planowania ruchu poduszkowca. Ścieżkę ruchu robota zamieściliśmy 
na rysunku 4.15, na którym także zaznaczyliśmy sylwetkę modelu w chwilach odległych 
o 0.5 jednostki czasu. Przebiegi funkcji sterujących zostały przedstawione na rysunku 4.17. 
Z rysunku 4.16 ilustrującego trajektorie stanu można wywnioskować, że zadanie plano­
wania ruchu zostało rozwiązanie prawidłowo. Rysunek 4.17 przedstawia także zbieżność 
algorytmu. Można zauważyć, że algorytm potrzebuje nieco powyżej 60 kroków do rozwią­
zania tego zadania. Przedstawione tutaj wyniki będą stanowiły materiał do porównań.



4.2. Porównanie algorytmu egalitarnego z algorytmem z priorytetowaniem 47

Rysunek 4.15 Ścieżka ruchu poduszkowca (tylko Si)

Rysunek 4.16 Trajektorie zmiennych stanu (tylko SJ

Rysunek 4.17 Przebiegi funkcji sterujących - strona lewa, zbieżność algorytmu - strona 
prawa (tylko



48 4. Przykłady numeryczne

4.2.2 Wyniki symulacji zadań Si i S%

Kolejny zestaw składa się z dwóch zadań, zadania właściwego planowania ruchu i dodat­
kowego zadania minimalizacji energii sterowania. Będzie on rozwiązywany przy pomocy 
dwóch algorytmów, algorytmu egalitarnego i z priorytetowaniem zadań. Wyniki uzyskane 
w symulacjach ilustrują rysunki 4.18-4.22. Oba algorytmy poprawnie rozwiązują pierwsze 
zadanie, co można zaobserwować na rysunkach 4.20 i 4.21. Niemniej jednak, ścieżki ru­
chu robota nieco się różnią (rysunek 4.18). Istotne różnice w wynikach uzyskanych z obu 
algorytmów pojawiają się w rozwiązaniu zadania dodatkowego. Na rysunku 4.19, oprócz 
funkcji sterujących wyznaczonych przez oba algorytmy, zamieściliśmy także funkcje wy­
znaczone przez algorytm rozwiązujący zadanie Si. Można zauważyć, że zarówno algorytm 
egalitarny, jak i algorytm z priorytetowaniem zadań wyznaczyły sterowanie o mniejszej 
energii niż wyznaczone w podrozdziale 4.2.1. Fakt ten można także zaobserwować na wy­
kresie zbieżności błędu 2e zamieszczonym na rysunku 4.22. Z tego samego rysunku można 
wywnioskować, że algorytm z priorytetowaniem uzyskał mniejszą energię sterowania niż 
algorytm egalitarny. Z drugiej strony, algorytm egalitarny potrzebował około 20 kroków 
mniej na poprawne rozwiązanie postawionego zadania.

x

Rysunek 4.18 Ścieżka ruchu poduszkowca (Ą i S2)

Rysunek 4.19 Przebiegi funkcji sterujących (Si i S2)
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Rysunek 4.20 Trajektorie zmiennych stanu - położenia (Si i S2)

Rysunek 4.22 Zbieżność algorytmu (Si i S2)
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4.2.3 Wyniki symulacji zadań Si i
Zestaw zadań składający się z zadań Si i S3 ma na celu, poza właściwym zadaniem plano­
wania ruchu polegającym na osiągnięciu stanu Xd w czasie T, zminimalizowanie wybranej 
zmiennej stanu. W tym przypadku chcemy, aby zmienna stanu, v(t) - prędkość poprzecz­
na, przyjmowała wartości bliskie zeru. W praktyce oznacza to, że poduszkowiec pod wpły­
wem wyznaczonych sterowań nie powinien poruszać się bokiem. Z rysunków 4.25 i 4.26 
można wnioskować, że zadanie planowania ruchu zostało rozwiązane poprawnie przez oba 
algorytmy. Obserwując ścieżki ruchu pokazane na rysunku 4.23 i trajektorie z rysunków 
4.25 i 4.26 można wywnioskować, że robot na początku zmienia orientację wykorzystując 
prędkość obrotową r(t), następnie porusza się po prostej z prędkością wzdłużną uff) i na 
końcu znowu zmienia orientację. Fakt minimalizacji zmiennej v(t) widać także na rysunku 
4.26. Podobne przebiegi funkcji sterujących przedstawione na rysunku 4.24 sugerują, że 
oba algorytmy wyznaczyły podobne ruchy. Tak postawione zadanie planowania okazało 
się stosunkowo trudne do rozwiązania przez oba algorytmy, widać to w niemonotonicznych 
przebiegach zbieżności algorytmów na rysunku 4.27. Przyczyną uzyskiwanych przebiegów 
zbieżności jest kwestia doboru współczynnika 7, którego wybór w tym miejscu był kom-

Rysunek 4.23 Ścieżka ruchu poduszkowca (Si i S3)

Rysunek 4.24 Przebiegi funkcji sterujących (Si i S3)
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Rysunek 4.25 Trajektorie zmiennych stanu - położenia (Si i S3)

Rysunek 4.26 Trajektorie zmiennych stanu - prędkości (Si i S3)

Rysunek 4.27 Zbieżność algorytmu (Si i S3)

promisem pomiędzy długością kroku i szybkością zbieżności. Oba algorytmy osiągnęły 
podobny poziom błędu zadania ||3e|| i w obu przypadkach uzyskaliśmy rozwiązanie po 
ponad 1000 kroków algorytmu.

4.2.4 Wyniki symulacji zadań Si i Są

Ostatnie dwie symulacje dotyczą zadania planowania ruchu z omijaniem przeszkód. Po­
dobnie jak poprzednio, uzyskamy rozwiązanie zadania przy pomocy algorytmu egalitar­
nego i algorytmu z priorytetowaniem zadań. Obszar ruchu ograniczyliśmy kwadratem, 
którego boki stanowią funkcje x = y = 6.5 oraz x = y — —1.5, a wewnątrz umieściliśmy 
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dwie koliste przeszkody o środkach w punktach (1.5,1.5) i (3.5,3.5). Rysunki 4.28-4.33 
obrazują uzyskane wyniki symulacji. Ścieżka ruchu robota mobilnego jest przedstawiona 
na rysunku 4.28, zaznaczyliśmy tam także przeszkody oraz sylwetkę poduszkowca w od-

Rysunek 4.28 Ścieżka ruchu poduszkowca (Si i S4)

Rysunek 4.29 Przebiegi funkcji sterujących (Si i S4)

Rysunek 4.30 Trajektorie zmiennych stanu - położenia (Si i S4)
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Rysunek 4.31 Trajektorie zmiennych stanu - prędkości (Ą i S4)

&

Rysunek 4.33 Przebieg funkcji przeszkód h(x) wzdłuż trajektorii x(t)

stępie co 0.5 jednostki czasu. Widać, że algorytmy wyznaczyły różne ścieżki. Kolejny 
rysunek 4.29 przedstawia funkcje sterujące. Z rysunków 4.30 i 4.31 wynika, że zadanie 
właściwego planowania ruchu zostało rozwiązane poprawnie. Na rysunku 4.33 przedsta­
wiliśmy przebieg funkcji przeszkód h(x) wzdłuż trajektorii x(i). Na podstawie tego wykre­
su można stwierdzić, jak blisko przeszkód przebiega wyznaczona trajektoria; im większa 
wartość funkcji h(x), tym robot znajduje się bliżej przeszkody. Wykorzystując analogię 
funkcji przeszkód do ukształtowania terenu wykres przedstawia wysokość wzdłuż trajek­
torii. W tym przypadku lepiej wypada algorytm z priorytetowaniem, niemniej jednak 
algorytm egalitarny także zapewnia omijanie przeszkód. Rysunek 4.32 prezentuje zbież­
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ność algorytmów. W symulacji nie zatrzymywaliśmy pracy algorytmu, po zmniejszeniu 
się błędu zadania głównego poniżej zadanej wartości, ale pozwoliliśmy na dalszy spadek 
błędu zadania omijania przeszkód. W efekcie, zarówno algorytm egalitarny jak i algorytm 
z priorytetowaniem uzyskały zbliżone wartości odwzorowania końcowego zadania Są.

4.2.5 Podsumowanie
W poprzednich podrozdziałach przedstawiliśmy rozwiązania trzech różnych zestawów za­
dań, z których każde zostało uzyskane algorytmem egalitarnym i algorytmem z priory­
tetowaniem zadań. W tabeli 4.1 zestawiliśmy wartości odwzorowań końcowych (błędów 
zadaniowych). Odwzorowanie końcowe może tutaj pełnić rolę miary jakości, im mniejsza 
jego wartość, tym lepiej algorytm rozwiązuje dane zadanie. Jak się można było spodziewać, 
algorytmy dedykowane poszczególnym zadaniom rozwiązały je zdecydowanie lepiej niż po­
zostałe. Korzystając z wartości zawartych w tabeli, podsumujmy porównanie algorytmu 
egalitarnego z algorytmem z priorytetowaniem. Zadanie planowania ruchu z ogranicze­
niem energii sterowania lepiej rozwiązał algorytm z priorytetowaniem; wartość odwzoro­
wania jest mniejsza niż w przypadku algorytmu egalitarnego. Z drugiej strony, algorytm 
egalitarny potrzebował mniejszej liczby kroków do rozwiązania postawionego zadania. 
Rozwiązanie zadania planowania ruchu z jednoczesną minimalizacją zmiennej stanu wy­
znaczone przez algorytm egalitarny charakteryzuje się mniejszą wartością odwzorowania 
końcowego niż w przypadku algorytmu z priorytetowaniem. Dodatkowo, algorytm zna­
lazł rozwiązanie w mniejszej liczbie kroków. Ostatnie zadanie, polegające na znalezieniu 
funkcji sterującej, która przeprowadzi poduszkowiec do punktu końcowego z omijaniem 
przeszkód, zdecydowanie lepiej rozwiązał algorytm z priorytetowaniem. Zarówno wartość 
odwzorowania końcowego jak i liczba potrzebnych kroków jest mniejsza niż w przypadku 
algorytmu egalitarnego. Reasumując, w powyższym porównaniu trudno o jednoznacz­
ne wskazanie, który algorytm jest lepszy. Oba algorytmy poprawnie rozwiązują zadanie 
planowania ruchu, a różnice między uzyskiwanymi wynikami nie są duże. Istotną róż­
nicę stanowi natomiast sposób działania obu algorytmów. Algorytm egalitarny traktuje 
wszystkie zadania jako równorzędne, z tego powodu możliwe są dwa wyniki: albo uzyska­
my poprawne rozwiązanie wszystkich zadań składowych, albo nie uzyskamy go w ogóle. 
Nieco inaczej działa algorytm z priorytetowaniem zadań. Tutaj rozwiązanie zadania o niż­
szym priorytecie nie wpływa na rozwiązanie zadania o wyższym. Można zatem uzyskać 
rozwiązanie jednego (lub kilku) zadań o wyższym priorytecie i jednocześnie nie rozwiązać 
zadań o niższym priorytecie. Wybór algorytmu powinien być uzależniony od konkretnego 
zestawu zadań, oraz od tego, czy uznajemy zadania za równorzędne, czy też uszeregowane 
zgodnie z priorytetami.

Tabela. 4.1 Zestawienie wartości odwzorowań końcowych dla porównywanych algorytmów

Algorytm
Odwzorowanie końcowe

^max2KX0,t ^x0,T
Są

Są i S2
Są i S2
Są i S3
Są1S3 
Są i Są 
Są i Są

Egalitarny 
Priorytety 
Egalitarny 
Priorytety 
Egalitarny 
Priorytety

27.3386
16.7266
9.71420

50.3382
46.9494
57.2724

159.608

8.62341
6.91150
8.13275
0.00205591
0.00315783

18.8452
3.30677

23.8764
168.287

11647.9
30063.9
19051.0

1.95060
0.640784

63 
65
80 

1252 
1626
4641 

903
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4.3 Planowanie przy niepełnej znajomości modelu

W niniejszym podrozdziale zajmiemy się badaniem algorytmu planowania zdefiniowane­
go równaniem (2.44). Taki sposób rozwiązania zadania planowania ruchu pozwala na 
uwzględnienie odchyłek pomiędzy rzeczywistymi parametrami obiektu a parametrami 
układu nominalnego. Jak zostało to szerzej opisane w rozdziale 2.4, algorytm wyzna­
cza kolejne poprawki funkcji sterującej w oparciu o strukturę układu nominalnego oraz, 
w przeciwieństwie do pozostałych algorytmów przedstawianych w tej pracy, uwzględnia 
stan układu rzeczywistego. Wyniki symulacji, które przedstawiamy poniżej, prezentują 
rozwiązanie zadania planowania ruchu nieplanarnego dwuwahadła RR (wahadło Furuty) 
przy niepełnej znajomości modelu. Model tego manipulatora wyprowadziliśmy w dodatku 
C.4. Zakładamy, że wartość każdego parametru modelu zostaje zaburzona w następujący 
sposób

a = a + ea.

W symulacjach przyjęliśmy, że współczynnik e przyjmuje wartości e G {0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6}. Wraz ze wzrostem współczynnika e, układ nominalny coraz bardziej róż­
ni się od układu rzeczywistego. Zadanie planowania ruchu polega na znalezieniu funkcji 
sterującej, która wykona manewr „podrzutu” wahadła ze stabilnego punktu równowagi 
Zo = (0,7T, 0, 0) do niestabilnego punktu równowagi yd — Xd = (0, 0,0,0). Punkt Xd chce- 
my osiągnąć w czasie ruchu T = 2 z dokładnością 10~5. Funkcje sterujące reprezentujemy 
przy pomocy skończonego szeregu Fouriera (3.3) przy k = 8, początkowy wektor sterowań 
c(0) = (0.1,0ix8), a współczynnik zbieżności 7 = 0.1. Wyniki symulacji przedstawiono na 
rysunkach 4.34-4.36. Na rysunkach 4.34 i 4.35 linią ciągłą zaznaczyliśmy elementy zwią­
zane z wartościami parametru 0 e 0.5, natomiast linią przerywaną zaznaczony jest 
przypadek e = 0.6. Widać (rysunki 4.34 i 4.35), że do wartości e = 0.5 zadanie planowania 
ruchu jest rozwiązywane prawidłowo, dopiero po przekroczeniu tej wartości otrzymanie 
poprawnego rozwiązania staje się niemożliwe. Fakt ten można także zauważyć na rysunku 
4.36. Tylko przypadek e = 0.6 nie uzyskał zadanej wartości błędu ||e||. Przedstawione wy­
niki pokazują efektywność algorytmu planowania ruchu z uwzględnieniem stanu układu 
rzeczywistego, który poradził sobie z zadaniem planowania ruchu przy niepełnej znajomo­
ści modelu. Nawet w przypadku, gdy wszystkie wartości parametrów układu nominalnego 
znacznie (o 50%) różniły się od parametrów rzeczywistych, algorytm rozwiązał zadanie 
planowania ruchu z zadaną dokładnością.

Rysunek 4.34 Rzut ścieżki ruchu końca efektora na siatkę walca o promieniu - strona 
lewa, przebiegi funkcji sterującej - strona prawa
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Rysunek 4.35 Trajektorie zmiennych stanu

Rysunek 4.36 Zbieżność algorytmu

4.4 Planowanie ruchu przy nieparametrycznej 
reprezentacji konfiguracji endogenicznej

Zajmijmy się teraz rozwiązaniem zadania planowania ruchu przy nieparametrycznej repre­
zentacji konfiguracji endogenicznych. Oznacza to, że będziemy bezpośrednio rozwiązywać 
równanie (2.15) korzystając z postaci odwrotności jakobianu (2.9), bez wprowadzania pa­
rametrycznej reprezentacji funkcji (3.1). Praca algorytmu polega na iteracyjnym rozwią­
zywaniu równania (3.5), do momentu uzyskania zadanej wartości błędu planowania ruchu. 
Jako model testowy wybraliśmy planarne dwuwahadło, na ruch którego nie wpływa siła 
grawitacji (patrz dodatek C.5). Chcemy zaplanować ruch pomiędzy punktem spoczyn­
kowym x0 = (0,0,0,0), a punktem spoczynkowym yd = xd = (0, rr/2,0,0). Ruch ma 
trwać T = 3, a punkt docelowy xd ma zostać osiągnięty z dokładnością 10-5. Współczyn­
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nik zbieżności jest równy 7 = 0.01, a początkową funkcję sterującą wybraliśmy równą 
Uo^t) = —0.1. Funkcję sterującą uzyskaną w wyniku zastosowania algorytmu przedsta­
wia rysunek 4.37. W odróżnieniu od poprzednich wyników, gdzie funkcje sterujące były 
reprezentowane przez bazy ortogonalne, przebieg z rysunku przyjmuje odmienny kształt. 
Ścieżkę ruchu końca efektora w przestrzeni zadaniowej pokazano na rysunku 4.37. Sylwet­
ka manipulatora na tym rysunku została wyznaczona w odstępie co 0.5 jednostki czasu. 
Wykresy trajektorii zmiennych stanu 4.38 potwierdzają poprawność rozwiązania zadania 
planowania ruchu, a zbieżność algorytmu ilustruje rysunek 4.39.

Rysunek 4.37 Przebieg funkcji sterującej - strona lewa, ścieżka ruchu końca efektora wraz 
z sylwetką manipulatora - strona prawa

Rysunek 4.38 Trajektorie zmiennych stanu

Rysunek 4.39 Zbieżność algorytmu



58 4. Przykłady numeryczne

4.5 Wykorzystanie zadania ograniczania stanu do 
reprodukcji trajektorii

Ostatnie wyniki symulacji będą dotyczyły zadania reprodukcji trajektorii. Przez zadanie 
reprodukcji trajektorii rozumiemy znalezienie funkcji sterującej, która będzie wpływać 
na układ robotyczny w taki sposób, aby robot początkowo znajdujący się na zadanej 
trajektorii, poruszał się wzdłuż tej trajektorii przez zadany czas T. Zadaniem głównym 
dotychczasowych algorytmów było zadanie planowania ruchu. Żądaliśmy, aby w końcowej 
chwili T układ znajdował się w zadanym położeniu yd- W tym podrozdziale, zadaniem 
głównym i jedynym będzie zadanie odtwarzania trajektorii wprowadzone pod koniec roz­
działu 2.3.2. Poszukiwaną funkcję sterującą, realizującą zadanie odtwarzania trajektorii, 
otrzymamy wyznaczając granicę lim,?_>00u^(-) rozwiązania równania różniczkowego (2.15) 
z pseudoodwrotnością jakobianu (2.37) i błędem (2.38). Tak zdefiniowane zadanie rozwią- 
żemy dla dwuwahadła z pasywnym drugim przegubem, opisanego w dodatku C.5. Prze­
prowadzimy symulacje dla zadania reprodukcji trajektorii, zarówno we współrzędnych 
stanu, jak i we współrzędnych zadaniowych.

4.5.1 Reprodukcja trajektorii zmiennych stanu

Aby uzyskać trajektorię osiągalną przez układ dwuwahadła, podamy na jego wejście 
pewną funkcję sterującą u*^. Następnie, trajektoria x{t) uzyskana z układu będzie 
trajektorią zadaną dla naszego zadania. Jako funkcję sterującą wybierzmy wielomian 
u*(i) = 1.5(3t — 4t2 + i3) określony na czasie trwania ruchu T = 3. Poszukiwane funkcje 
będą reprezentowane poprzez skończony szereg Fouriera (3.3) dla k = 20, a początkowy 
wektor sterowań c(0) = (l,0łX2o)- Współczynnik zbieżności jest równy 7 = 0.05, a ob­
liczenia będą prowadzone do momentu uzyskania wartości błędu reprodukcji trajektorii 
||e|| 10-6. Rysunki 4.40-4.42 pokazują wyniki symulacji. Chwilowy błąd reprodukcji
trajektorii x(t) — Xd(t) w najgorszym przypadku nieznacznie przekracza wartość 0.003 
(rysunek 4.40). Portrety fazowe ruchu przedstawiliśmy na rysunku 4.41, zaznaczyliśmy 
tam zarówno ruch zadany, jak i otrzymany za pomocą algorytmu. Jak się można było 
spodziewać, otrzymana funkcja sterująca przybliża zadaną funkcję u*(i) (rysunek 4.42). 
Przyczyną niemonotonicznej zbieżności algorytmu jest dobór parametru 7, którego war­
tość zapewnia tutaj wystarczająco mały krok przy akceptowalnej prędkości zbieżności. 
Rozwiązanie zadania uzyskujemy po niespełna 9000 krokach algorytmu.

Rysunek 4.40 Przebiegi błędu reprodukcji trajektorii we współrzędnych stanu
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Rysunek 4.41 Portrety fazowe ruchu

Rysunek 4.42 Przebieg funkcji sterującej - strona lewa, zbieżność algorytmu - strona 
prawa

4.5.2 Reprodukcja trajektorii zmiennych zadaniowych

W tym podrozdziale rozwiążemy zadanie podobne do poprzedniego, lecz trajektoria za­
dana będzie określona w przestrzeni zadaniowej. Podobnie jak poprzednio, osiągalną (do­
puszczalną) trajektorię zadaną otrzymamy poprzez podanie sterowania u^t) na układ 
dwuwahadła, a następnie wyznaczymy przebieg funkcji wyjścia y(t), która będzie tra­
jektorią zadaną yd(t)- Wybierzmy u*(t) = — 2(4.5t — 4.5t2 + i3). Funkcje sterujące będą 
reprezentowane dokładnie tak, jak w poprzednim podrozdziale, a początkowy wektor ste­
rowań c(0) — (0, —0.1,0ixi9)- Pozostałe parametry algorytmu są identyczne z poprzednią 
symulacją. Błąd reprodukcji trajektorii przedstawiono na rysunku 4.43. Widać, że nie 
przekracza on wartości 0.005. Ponadto na rysunku 4.43 przedstawiliśmy ścieżkę ruchu 
końca efektora w przestrzeni zadaniowej. Funkcję sterującą i zbieżność algorytmu prezen­
tuje rysunek 4.44. Uzyskana funkcja sterująca przybliża funkcję u*(i). Zadaną dokładność 
rozwiązania uzyskujemy po około 10000 krokach.
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Rysunek 4.43 Przebieg błędu reprodukcji trajektorii we współrzędnych zadaniowych - 
strona lewa, ścieżka ruchu końca efektora - strona prawa

d

Rysunek 4.44 Przebieg funkcji sterującej - strona lewa, zbieżność algorytmu - strona 
prawa

Zarówno w przestrzeni stanu, jak i w przestrzeni zadaniowej, uzyskaliśmy pozytywne 
wyniki działania algorytmu reprodukcji trajektorii. Otrzymane funkcje sterujące prowadzą 
robota wzdłuż zadanej trajektorii podczas trwania ruchu. Wartości błędów zadania repro­
dukcji przyjmują akceptowalne wartości, które mogą zostać jeszcze bardziej zmniejszone 
przez rozszerzenie bazy funkcji ortogonalnych. Przebieg poszukiwanej funkcji u*(i) jest 
przybliżany przez otrzymaną funkcję sterującą przy pomocy wybranej bazy. Wyznaczenie 
pojedynczego kroku algorytmu reprodukcji trajektorii wymaga większych nakładów obli­
czeniowych niż ma to miejsce w algorytmie planowania ruchu, z tego względu rozwiązanie 
zadania reprodukcji jest bardziej pracochłonne.



Rozdział 5

Podsumowanie

W pracy rozważyliśmy zagadnienie planowania ruchu układów robotycznych z de­
ficytem napędów. Tytułem wstępu wprowadziliśmy pojęcia związane z mode­
lowaniem tego typu układów. Następnie, przedstawiliśmy wyprowadzenie algorytmu pla­

nowania ruchu skonstruowanego w oparciu o metodę endogenicznej przestrzeni konfigura­
cyjnej. Do budowy algorytmu niezbędnym było zdefiniowanie odwzorowania końcowego 
i jakobianu układu robotycznego z deficytem napędów. W dalszej części zaproponowali­
śmy dwa algorytmy realizujące, wraz z właściwym zadaniem planowania ruchu, zestaw 
zadań dodatkowych: algorytm egalitarny i algorytm z priorytetowaniem zadań. Algoryt­
my te różnią się wpływem zadań dodatkowych na uzyskiwane rozwiązanie. W algorytmie 
egalitarnym zadania dodatkowe są równorzędne z zadaniem właściwego planowania ruchu, 
natomiast w algorytmie z priorytetowaniem zadań zadania dodatkowe są uszeregowane 
według priorytetów. W rozprawie zostały rozważone trzy typy zadań dodatkowych: za­
danie minimalizacji energii sterowania, zadanie minimalizacji zmiennych stanu i zadanie 
unikania kolizji z przeszkodami. Przy definiowaniu zadań dodatkowych podajemy róż­
ne możliwości modyfikacji ich definicji, co pozwala na rozwiązanie zróżnicowanych zadań 
planowania ruchu. Oryginalny algorytm planowania ruchu wyprowadzony w pracy jest 
algorytmem planowania ruchu z uwzględnieniem stanu układu nominalnego, który pra­
cuje w otwartej pętli sprzężenia zwrotnego. Sposobem na uniknięcie tej niedogodności 
może być algorytm planowania ruchu z uwzględnieniem stanu układu rzeczywistego [19]. 
W pracy zbadaliśmy działanie takiego algorytmu co pozwoliło rozwiązać zadanie planowa­
nia ruchu przy niepełnej znajomości modelu. Wyprowadzenia teoretyczne przeprowadza­
my w funkcyjnej przestrzeni endogenicznej. Na potrzeby obliczeń numerycznych została 
wprowadzona parametryczna reprezentacja funkcji sterujących. W rozprawie proponuje­
my także rozwiązanie zadania planowania ruchu przy nieparametrycznej reprezentacji. 
Wydaje się, że jak dotąd nie próbowano takiego podejścia.

Wśród zalet przedstawionych algorytmów planowania ruchu należy wymieć to, że 
w klasie układów afinicznych, algorytm jest niezależny od typu modelu. Jak wskazywa­
liśmy we Wstępie, często spotyka się w literaturze algorytmy dedykowane specyficznym 
układom z deficytem napędów. Wyprowadzenie prezentowanych algorytmów nie opiera 
się na szczególnych własnościach modelu, z wyjątkiem założenia nieosobliwości konfigu­
racji endogenicznych, tj. sterowalności przybliżenia liniowego układu wokół trajektorii, 
co w przypadku braku kryteriów sterowalności wydaje się być sensownym założeniem. 
Korzystanie z metody endogenicznej przestrzeni konfiguracyjnej umożliwia nam stoso­
wanie metodologii wyprowadzonych dla manipulatorów stacjonarnych do rozwiązywania 
problemów dotyczących innych modeli robotycznych. Wreszcie, uwzględnienie zadań do­
datkowych, które są realizowane wraz z właściwym zadaniem planowania ruchu umożliwia 



62 5. Podsumowanie

uzyskiwanie pożądanych jakości rozwiązań. Poza zaprezentowanymi zadaniami dodatko­
wymi można definiować inne, jak na przykład zadanie minimalizujące poślizg w kołowych 
robotach mobilnych poprzez minimalizację normy /0 ||A(q)q||2 di, gdzie A(q) oznacza ma­
cierz Pfaffa i wiele innych. Dodanie dodatkowych zadań minimalizujących sterowanie oraz 
zmienne stanu sprawia, że możliwa staje się implementacja algorytmu na układach rze­
czywistych. Można bowiem uwzględnić w algorytmie skończone zakresy ruchu i skończone 
wartości prędkości poruszania się układów. Ponadto, użycie algorytmu planującego ruch 
przy niepełnej znajomości modelu umożliwia uzyskanie zadowalających wyników bez ko­
nieczności dokładnej identyfikacji parametrów robota.

Oczywiście, prezentowane algorytmy nie są wolne od wad. Zasadniczym problemem 
jest ich lokalność. Uzyskanie poprawnego rozwiązania w znacznym stopniu zależy od wy­
boru wartości początkowych wektora c0, w przypadku algorytmów z bazą w endogenicz- 
nej przestrzeni konfiguracyjnej oraz od początkowej funkcji sterującej u0 w algorytmach 
z nieparametryczną reprezentacją sterowań. Uzyskanie rozwiązania zależy także od wybo­
ru zadań dodatkowych. W przypadku algorytmu egalitarnego wpływ zadań dodatkowych 
na rozwiązanie zadania głównego jest duży. Inaczej wygląda sytuacja w przypadku algo­
rytmu z priorytetowaniem. Tutaj możliwe jest uzyskanie rozwiązania zadania lub zadań 
o wyższych priorytetach kosztem zadań o niższych priorytetach.

Efektywność wyprowadzanych w pracy algorytmów poddaliśmy badaniom symulacyj­
nym. Pierwsze trzy symulacje prezentują w działaniu kolejno trzy rodzaje zadań dodat­
kowych. W uzyskiwanych wynikach można zauważyć, jak zadania dodatkowe modyfikują 
rozwiązanie zadania planowania ruchu. Następna grupa symulacji dostarczyła materiał do 
porównania działania algorytmu egalitarnego i algorytmu z priorytetowaniem zadań. Ana­
lizując otrzymane wyniki, trudno jednoznacznie wskazać, który z dwóch algorytmów daje 
lepsze rozwiązanie. W ogólności, wyniki otrzymywane przy zastosowaniu obu algorytmów 
są zbliżone. Różnicę między algorytmem egalitarnym a algorytmem z priorytetowaniem 
zadań widać w sposobie działania algorytmów. W algorytmie egalitarnym błędy zadań 
składowych charakteryzują się podobną zbieżnością. Oznacza to, że algorytm poszukuje 
funkcję sterującą realizującą zadanie właściwego planowania ruchu i jednocześnie modyfi­
kuje tę funkcję w sposób uwzględniający zadania dodatkowe. W algorytmie z priorytetami 
rozwiązanie głównego zadania, właściwego planowania ruchu, jest uzyskiwane po stosun­
kowo małej liczbie kroków algorytmu. Następnie, w kolejnych krokach, funkcja sterująca 
jest modyfikowana w celu rozwiązania zadań dodatkowych o niższych priorytetach. W ko­
lejnych wynikach symulacji przedstawiamy działanie algorytmu planowania ruchu przy 
niepełnej znajomości modelu. Obliczenia numeryczne pokazują, że możliwe jest uzyskanie 
poprawnych rozwiązań, nawet gdy parametry modelu różnią się o 50% od parametrów 
rzeczywistych. W symulacjach przeprowadzanych przy nieparametrycznej reprezentacji 
przestrzeni endogenicznej pokazujemy, że możliwe jest rozwiązanie zadania planowania 
ruchu bez użycia funkcji bazowych. Dzięki temu, charakter otrzymywanych funkcji ste­
rujących jest niezależny od wybory bazy. Z drugiej strony, takie rozwiązanie komplikuje 
obliczenia. W przypadku parametrycznej reprezentacji należy w każdym kroku algorytmu 
wyznaczyć odpowiedź układu robotycznego na bieżące sterowanie, a następnie wyznaczyć 
odwrotność jakobianu, który w tym przypadku jest macierzą. W przypadku nieparame­
trycznej reprezentacji, oprócz wyznaczenia odpowiedzi układu należy również wyznaczyć 
trajektorię macierzy tranzycji $2nx2n(T, i), a przy wyznaczaniu pseudoodwrotności trze­
ba całkować funkcje macierzowe. Ostatnie symulacje przedstawiają wyniki pracy algo­
rytmu zadania reprodukcji trajektorii. Jeśli skonstruujemy algorytm planowania ruchu 
(2.15), z pseudoodwrotnością jakobianu (2.37) i błędem zadania (2.38) z podrozdziału 
2.3.2 otrzymamy algorytm reprodukcji trajektorii. Obserwując otrzymane wyniki można



Dodatek A

Wybrane własności

Przytoczmy aksjomaty odwrotności Moore’a-Penrose’a [2], które zostaną wykorzystane 
w dowodach. Niech A będzie danym operatorem, A+ jego odwrotnością, a A* operatorem 
sprzężonym. Wówczas zachodzą cztery własności

AA+A = A, A+AA+ = A+, (A+A)* = A+A, (AAp* = AA+.

Rzutowanie P na jądro jakobianu J jest zdefiniowane jako

P = ich - J#J, (A.l)

gdzie id^ jest identycznością w U, a J# oznacza pseudoodwrotność J.

A.l Idempotentność rzutowania P
Własność idempotentności definiujemy następująco

PP = P. (A.2)

Przyjrzyjmy się lewej stronie równania (A.2)

PP = (idw - P J) (ich - P p = idw - 2pJ + P^P^ = id^/ - Pj = P, 
j

co potwierdza słuszność (A.2).

A.2 Symetria rzutowania P
W przestrzeni Hilberta U zachodzi równość U* — gdzie U* jest przestrzenią dualną do 
U. Symetria rzutowania wyraża się przez

P* = P.

Rozwijając lewą stronę powyższej zależności

P* = ich. - (Pp* = idu -PJ=P

stwierdzamy, że rzutowanie (A.l) jest symetryczne.
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A.3 Anihilacja J#
Sprawdźmy, czy słuszna jest równość

PJ* = 0, (A.3)

Rozwijając
PJ* = (idw - J*J) J* = J*- ^J^ = 0, 

j*
udowadniamy równość (A.3).



Dodatek B

Parametryczne definicje funkcji
— / \ V / \ 7# / \ ~

xq,1 \ J) xq,i v /’ x^l v "

W tym dodatku zebraliśmy parametryczne reprezentacje elementów składowych algoryt­
mów dla zadania właściwego planowania ruchu i innych zadań dodatkowych wprowadzo­
nych w rozdziale 2.3. Na końcu definiujemy także parametryczną wersję projekcji (2.17).

Stosując parametryczną reprezentację funkcji sterujących (3.2) uzyskujemy skończe- 
niewymiarową endogeniczną przestrzeń konfiguracyjną W. W konsekwencji, otrzymujemy 
parametryczne wersje elementów potrzebnych do zdefiniowania algorytmu. Niezależnie od 
typu zadania, skończeniewymiarowa odwrotność jakobianu jest odwrotnością Moore’a- 
Penrose’a, którą w obszarach wolnych od osobliwości definiujemy wzorem

^,r(c) — /^,t(w(c>’)) — ^xo,t(c)JXo,t(c)^

B.l Właściwe planowanie ruchu

Odwzorowanie końcowe

^o,t(c) = KXOtT(u(c, •)) = k(ipxoJ\u(c, •))) = y(T)

Jakobian

X0,t(c) = •)) = C(T) sjE^)^) ds
Jo

(B.l)

Błąd

e = ^0,r(c) - yd
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B.2 Zadanie minimalizacji energii sterowania
Odwzorowanie końcowe

T
= KXo,T(u{c, ■)) = | di =

o
T

dic= |ctQ(T)c, 

o______
~Qm~

Jakobian
Xo,t(c) = Jzo.t^c, •)) = ctQ(T),

Błąd
e = ^0,r(c)

B.3 Zadanie minimalizacji wartości zmiennych stanu 
(wyjścia)

Odwzorowanie końcowe

KX0,t(c) = KXOit^c, | ®T(i)^(t)x(t) di = | •))5(i)^Oit(u(c, •)) di

Jakobian

^0,r(c) = JX0,T{.u{c, ■)) = [ zT(i)5(i) [$(i, s)B(s)^(s) ds di = [ xT(i)5(i)J:iOit(c) di 
JO JO JO

gdzie jIO,t(c) jest parametryczną wersją jakobianu (2.6) układu robotycznego z deficytem 
napędów bez funkcji wyjścia (1.12) zdefiniowaną przez (B.l) przy założeniu C(i) = /2n-

Błąd
e = ^^(c)

B.4 Zadanie unikania przeszkód (osobliwości) 
w przestrzeni zadaniowej i w przestrzeni stanu

Odwzorowanie końcowe

KXo,t(c) = KXOtT(u(c, •)) = ^ y /i(y(i)) di =

h(A:(a;(t))) di = | / h^k^^c, ■)))) di. 
o z Jn



Dodatek C

Modele układów z deficytem napędów

W bieżącym dodatku wprowadzimy modele układów robotycznych z deficytem napędów 
używanych w pracy. Wszystkie modele są układami nieholonomicznymi. Pojawiające się 
w nich ograniczenia nieholonomiczne mają swoje źródło w dynamice tych układów, zatem 
takie ograniczenia są reprezentowane przez równania różniczkowe drugiego rzędu. Wśród 
przedstawionych układów znajdują się trzy układy mobilne: statek, robot balansujący 
i poduszkowiec oraz dwa manipulatory stacjonarne z pasywnym przegubem.

C.l Statek (kontenerowiec)
Jako pierwszy układ robotyczny z deficytem napędów rozważmy model statku kontenerow­
ca [11]. Schematyczna ilustracja modelu jest przedstawiona na rysunku C.l. Oznaczmy

Rysunek C.l Statek (kontenerowiec)

przez 77 = (n, e, </>) G IR3 wektor położenia i orientacji, gdzie n i e oznaczają pozycję 
„Północ-Wschód”, a </> jest azymutem mierzonym od północy. Niech wektor v = (u, v, r) G 
IR3 będzie wektorem prędkości w ciele, gdzie u jest prędkością wzdłużną, v jest prędko­
ścią poprzeczną, a r jest prędkością obrotową wokół osi pionowej. Statek jest wyposażony 
w ster, który umożliwia zmianę orientacji statku i w pędnik zapewniający zmianę pręd­
kości statku. Zapiszmy kinematykę statku

cos 0 — sin </> 0 
77 = R^u, R{</>) = sin0 

0
COS 0 

o
0
1
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gdzie jest macierzą rotacji wokół osi Z. Dynamikę układu znormalizujemy zgodnie 
z systemem „Prime” opisanego przez SNAME - ang. The Society of Naval Architects 
and Marinę. To podejście używa aktualnej prędkości statku U = Cu2 + v2, długości 
statku L, jednostki czasu L/U, oraz jednostki masy If^pL6 (p oznacza gęstość wody) jako 
zmiennych normalizujących [11]. Dynamikę wyrażoną w układzie ciała możemy zapisać 
jako

M (yju + = B^u, (0.1)

gdzie M(y) jest symetryczną i dodatniookreśloną macierzą inercji, a NfiĄu może zawierać 
elementy związane z siłami odśrodkowymi, Coriolisa, efektami hydrodynamicznymi, itp. 
B(z^) jest macierzą sterowania, a u G IR2 jest wektorem sterowania, gdzie Ui jest siłą ciągu 
pędnika i u2 jest kątem skrętu steru. Zgodnie z [11], zdefiniujmy macierze N^) 
i B^u) jako

=

B{^ =

U2 
0 
o 

--X'w\u/U\

0 
L(m'+m') 
—

0

0
0 

l2^+J'Ą 
u2

U 
0
0

-2(l-td) 
PU2L2

0 
0

U, -N'v 
U

-L{m'+m'y)v/U

+m';Ę)u/U) 
U-LN^
U

0

0

Numeryczne wartości współczynników pojawiających się w powyższych równaniach zosta­
ły zawarte w tabeli C.l. Elementy m', m'x i my są bezwymiarowe i mają związek z masą 
statku i z efektem masy związanej. Symbole J'z oznaczają znormalizowane momenty 
bezwładności statku oraz momenty masy związanej. Wielkości X'uu, Yf, Yf, Yf, Ny, Nx 
i Ng są bezwymiarowymi współczynnikami efektów hydrodynamicznych, td jest współ­
czynnikiem siły ciągu pędnika, p oznacza gęstość wody, a L jest długością statku.

Tabela. C.l Wartości współczynników dynamiki statku

m! = 0.00792
I'z = 0.000456
Y^ = -0.0116
N'v = -0.0038545 
td = 0.175

mx = 0.000238
J'z = 0.000419
Yf = 0.00242
Nx = -0.00222 

p = 1000 [kg/m3

my = 0.007049 
X'uu - -0.0004226

Y' = -0.002578
N# = 0.00126
L — 175 [m]

Definiując nowy wektor stanu x = (xi,x2) — G IR6, dynamikę statku (C.l) 
możemy wyrazić układem równań

jxi = R(xi3)x2,

[±2 = M~1(i/)(B(x2)u - N{x2)x2f
(C.2)

gdzie Zi3 oznacza trzecią współrzędną Xi (kąt orientacji </>). Funkcję wyjścia wybierzemy 
następująco

y = k(xj = x1=T], (C.3) 
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gdzie y G IR3 jest wektorem współrzędnych zadaniowych. Równania (C.2) i (C.3) definiują 
afiniczny układ sterowania z dryfem i funkcją wyjścia (1.12)

i = /(x) + G(x)u, 
y = h(x) = xlf

(C.4)

gdzie

/(*) / R(z13)z2 A
\M~1{x2)N{x2)x2j '

G{x) =
03x2

Układ robotyczny (C.4) jest obiektem badań symulacyjnych algorytmu planowania ruchu 
z ograniczaniem funkcji sterującej przedstawionych w rozdziale 4.1.1. Inne wyniki zasto­
sowania algorytmu planowania ruchu do przedstawionego modelu statku można znaleźć 
w [35,36].

C.2 Robot balansujący
Drugim robotem z deficytem napędów jest robot balansujący. Konstrukcja robota składa 
się z dwóch, niezależnie napędzanych, ułożonych współosiowo kół dołączonych do korpusu 
oraz odwróconego wahadła połączonego z tym korpusem. Schemat robota zawiera rysunek 
C.2. Zgodnie z oznaczeniami na rysunku C.2 x i y oznaczają pozycję punktu odniesienia

Rysunek C.2 Robot balansujący

umieszczonego w środku osi kół, 0 jest orientacją robota, a jest kątem wychylenia wahadła, 
26 jest rozstawem kół, l oznacza długość wahadła, a R reprezentuje promień koła. Symbole 
mo, mw, mk odnoszą się odpowiednio do masy osi, wahadła (korpusu) i koła.

Korzystając z prac [20,38] wyprowadźmy kinematykę i dynamikę robota balansującego. 
Zdefiniujmy wektory q = (x, y, 9, a} G IR4 i y = (?7i, 772, ^3) € jR3, gdzie 771 i 772 są 
prędkościami liniowymi kół, a ?73 odpowiada liniowej prędkości wychylania się wahadła. 
Kinematykę wyrażającą toczenie się kół opisuje układ

<i = F\qyn, (C.5)

gdzie
cos g3 cos ę3 cos ę3
sinę3 sin <73 sinę3 

1 1 n
~b b
0 0 I

L rt J
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Dynamikę robota balansującego możemy wyrazić przez

M(qyf) 4- N(q, 77) = Bt, (C.6)

gdzie M(q^ = [Mij] jest symetryczną i dodatniookreśloną macierzą inercji, której elementy 
są zdefiniowane następująco

, , . , 4mQ , Z2 sin2 a. , R\
= M22 = ——I- mp(l 4----- 77—) + mw(8 + -jy),

o O o
, r 2ma mpl2 sin2 a + mwR2
M12 = mp + —------------------ ,

, , . cos aAĄ3 — ^23 — mp + 4mw + ma 4------- —---- ,n 
2lmp cos a l2mv

M33 = mp + 4mw + ma-\----------------- 1-
A li

Wektor N(q, G IR3 zawiera składniki związane z siłami odśrodkowymi, Coriolisa oraz 
grawitacji, a jego elementy definiujemy jako

lmpT]l sin a Zttip(2772 4-773X772 — 771) sina 2l2mp(r]2 — 771)773 sin a cos a
1 = R? P PR

lmpr/l sin a lmp(2ri\ 4- 773) (772 — 771) sina 2l2mp(r]2 — 771)773 sin a cos a
N2 = + + PR

lmp(ri2 ~ ^iY^R + Z cos a) sina lmpr]l sin a lmpg sin a
N3 = ^2 R

Macierz
B^ (2x2)   2A;m I2

82 (1X2)] R [01x2
(C.7)

jest macierzą sterowania, której podmacierz jest odwracalna. Oznaczenie km pojawia­
jące się w (C.7) jest stałą silników, a wektor sygnałów sterujących r G IR2 w (C.6) odnosi 
się do prądów w silnikach.

C.2.1 Częściowo linearyzujące sprzężenie zwrotne robota balan­
sującego

Zgodnie z wywodem w rozdziale 1.2.2, częściowo linearyzujące sprzężenie zwrotne dla 
robota balansującego przyjmuje postać

T = B^' Mn
Mi2

M12
M22

Po jego zastosowaniu do (C.6) dynamikę robota można wyrazić jako

771 = Ui

r]2 = u2

t)3 = — M2s)u — N3.
(C.8)

Nowy wektor sterowania u G IR2 ma teraz znaczenie liniowych przyspieszeń obu kół.
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Łącząc równania (C.5) i (C.8) otrzymujemy afiniczny układ sterowania z dryfem 

x = f(x) + G{x}u,

gdzie x = (77, q) G IR7 jest nowym wektorem stanu, a elementy i G(x) są następujące 

= (0, 0, F^,

1 0
0 1

——M3/M23

04x2

Na potrzeby obliczeń numerycznych przyjęliśmy parametry robota balansującego przed­
stawione w tabeli C.2. W wynikach symulacyjnych w rozdziale 4.1.2 przeprowadzamy 
obliczenia algorytmu planowania ruchu dla całego stanu x. Nie ma zatem potrzeby defi­
niowania funkcji wyjścia, która byłaby w tym przypadku identycznościowa y = k(x) = x. 
Algorytm zaproponowany w wyżej wymienionym rozdziale rozwiązuje zadanie planowa­
nia ruchu wraz z jednoczesnym utrzymywaniem wahadła w pionie i minimalizacją energii 
sterowania. Dodatkowe wyniki ilustrujące działanie algorytmu planowania ruchu robota 
balansującego złożonego z trzech zadań zawiera praca [38].

Tabela. C.2 Parametry robota balansującego

mk = 1 mo = 10 l = 1.5 km = 2.6
mw = 5 R = 0.12 b = 0.3 g = 9.81

C.3 Poduszkowiec
Kolejnym przykładem układu robotycznego z deficytem napędów jest poduszkowiec (patrz 
rysunek C.3). Załóżmy, że model posiada dwa pędniki. Pierwszy będzie umożliwiał ruch 
do przodu (i do tyłu), a drugi będzie zapewniał ruch obrotowy wokół osi Z. Charakter

Rysunek C.3 Poduszkowiec

sygnałów sterujących jest podobny jak w dwukołowym robocie mobilnym. Główną ce­
chą odróżniającą ten model od modelu kołowego robota jest fakt, że poduszkowiec może 
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swobodnie poruszać się poprzecznie do osi wzdłużnej robota, nawet w przypadku, gdy 
ten stopień swobody nie jest bezpośrednio napędzany. Podobnie jak w modelu statku [11] 
kinematykę i dynamikę platformy mobilnej z deficytem napędów opisują równania [10,31]

'r^R^y,

M^i) + N^y = t,

gdzie R{9) jest macierzą obrotu wokół osi Z o kąt 9, M(rf) stanowi macierz inercji, macierz 
N^y) zawiera elementy związane z efektami odśrodkowymi, Coriolisa, tłumieniem hydro­
dynamicznym, aerodynamicznym, itp. a wektor r = (ru,0,rr) jest wektorem sterowań. 
Wektor y = (z, y, 0) określa współrzędne położenia i orientacji, a y = (u, u, r) zawiera 
odpowiednio prędkość wzdłużną, poprzeczną i obrotową. Dla uproszczenia, przyjmijmy, 
że układ jest symetryczny względem każdej osi, a pędniki umieszczone są w środku masy. 
Ponadto, niech macierz inercji będzie diagonalna i równa macierzy jednostkowej. Osta­
tecznie, pominiemy także efekt tłumienia hydro-/aerodynamicznego. Powyższe założenia 
upraszczające nie wpływają na istotne cechy zachowania modelu nieliniowego [10,31]. Po 
powyższych przekształceniach dynamika poduszkowca przyjmuje postać

u = vr + tu,

v = — nr,
r = rr,

gdzie jest momentem sterującym prędkością wzdłużną, a Tr momentem sterującym 
prędkością obrotową wokół osi Z. Wprowadzając nowy wektor stanu x = (77, y) € IR6 
możemy zapisać kinematykę i dynamikę poduszkowca w postaci afinicznego układu ste­
rowania

x — f(x) -I- G{x}u,

gdzie

=
/ R{x13)x2\ 

vr 
—ur

, : G(x) =

03x2

1 0
0 0 , u = (ru, rr

0 > 0 1

a Z13 jest trzecią współrzędną wektora 77. Układ poduszkowca jest obiektem testowym 
dla algorytmu planowania ruchu z unikaniem przeszkód przedstawionym w podrozdziale 
4.1.3. Model stanowi także obiekt badań porównawczych algorytmu egalitarnego oraz 
algorytmu z priorytetowaniem opisanych w rozdziale 4.2. Podobnie, jak w przypadku 
robota balansującego, nie definiujemy funkcji wyjścia, ponieważ będziemy planowali ruch 
całego układu, więc y = k(x) = x.

C.4 Nieplanarne dwuwahadło RR
Jednym z modeli stacjonarnych robotów z deficytem napędów jest nieplanarny manipula­
tor RR. Pracę nad tym modelem zapoczątkował Furuta [12]; na jego cześć model nazywa 
się także wahadłem Furuty. Manipulator (rysunek C.4) składa się z napędzanego przegubu 
obrotowego, który porusza ramieniem w płaszczyźnie poziomej. Do końca ramienia, przez 
kolejny przegub obrotowy dołączone jest wahadło, w taki sposób, aby jego ruch odby­
wał się w płaszczyźnie pionowej. Pierwszy przegub jest przegubem aktywnym, natomiast
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Rysunek C.4 Nieplanarne dwuwahadło RR (Wahadło Furuty)

drugi, przegubem pasywnym. Dynamikę manipulatora RR opisuje formuła

M(q)q + C(q, q)q + D(q) = ( Q (C.9)

gdzie q E IR2 są współrzędnymi przegubowymi, macierz M(q) jest symetryczną i dodat­
nio określoną macierzą inercji, C(q, q) jest macierzą sił odśrodkowych i Coriolisa, DRR 
jest wektorem sił potencjalnych, a u jest momentem sterującym w pierwszym przegu­
bie. Załóżmy, że opory tarcia są pomijalnie małe. Oznaczmy przez Zx całkowitą długość 
ramienia, R odległość do środka masy wahadła. Niech m2 jest masą wahadła, R ozna­
cza bezwładność ramienia, a R oznacza inercję wahadła wokół środka masy. Wówczas 
elementy pojawiające się w dynamice (C.9) definiujemy następująco [10]

R +m2Rl + l%sin2 q2) 
m2RR cosq2

rn^RR cosę2 
R +

^7772/2 sin(2g2)72
sin(2ę2)ęi

—m2RR sin q2 92 + sin(2g2)ęi 
0

0
-m2gR sin q2

Następnie, wprowadzając nowy wektor stanu x = (q,q), otrzymujemy afiniczny układ 
sterowania z dryfem

i — f(x) + GRRu,

gdzie

G{x) =

M^ =

^,9) =

Kinematykę manipulatora możemy zapisać jako

R cos Xi — R sin xi sin x2
R sin Xi + R cos Xi sin X2

R COS X2
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Planowanie ruchu będzie odbywało się w przestrzeni stanu, więc y = k{x) = x. Wprowa­
dzony model jest obiektem badań algorytmu planowania ruchu przy niepełnej znajomości 
modelu przedstawionych w rozdziale 4.3. Do obliczeń numerycznych przyjęliśmy wartości 
parametrów modelu zebranych w tabeli C.3 [10]. Dodatkowe wyniki działania algorytmu 
planowania ruchu opartego na metodzie endogenicznej przestrzeni konfiguracyjnej waha­
dła Furuty przy pełnej znajomości modelu zostały opisane w [32].

Tabela. C.3 Parametry nieplanarnego dwuwahadła RR 

h =0.215 Zi =1.7510-2 mi =5.3810“2
l2 =0.113 I2 =1.9810-4 g =9.81

C.5 Planarne dwuwahadło RR
Ostatnim modelem, z którego korzystamy w rozprawie jest manipulator planarny typu 
RR. Jest to układ planarnego dwuwahadła (rysunek C.5), w którym pierwszy przegub 
obrotowy jest napędzany, a drugi, również obrotowy, jest przegubem pasywnym. W li-

Rysunek C.5 Planarne dwuwahadło RR

teraturze taki układ jest często nazywany Pendubotem [49]. Niech q = (91,92) € dR2 
będą współrzędnymi przegubowymi, mi, m2 masami odpowiednio pierwszego i drugiego 
ramienia, Z^ l2 długościami ramion, lci, lc2 odległościami do środka masy ramion, a g 
przyspieszeniem ziemskim. Wówczas dynamikę manipulatora RR możemy wyrazić przez

^(9)9 + C(q, 9)9 + D(q) = P (C.10)

gdzie M(q) jest macierzą inercji, C(q, 9) macierzą Coriolisa, a D{q} wektorem grawitacji 
i są zdefiniowane następująco
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Parametry ki,..., k^ są stałymi modelu i są równe

ki. =mil2C1 + m2Zi, 
k^ =m2lilC2, 
ks —m2lc2.

ki
ki —m-ilci + m2Zi,

C.5.1 Częściowo linearyzujące sprzężenie zwrotne dwuwahadła 
RR

Stosując do dynamiki (C.10) częściowo linearyzujące sprzężenie zwrotne

r =
C22(q,q)] q + + [Cn^,^ C12(q, ?)] Q + A(?)

i wprowadzając nowe zmienne stanu x = (7, q) otrzymujemy częściowo zlinearyzowany 
afiniczny układ sterowania z dryfem

x = f(x) + G^u,

gdzie

G22] M22 — D22M22

/ 0 \ 
0
1

\—M21M22 J

Kinematykę manipulatora opisuje zależność

= Zi cos Xi + Z2 cosGei + x2)\ 
li sin zi + Z2 sin(a?i 4- m2) I '

Funkcją wyjścia jest identycznością y = k^x) = x, zatem będziemy planować ruch w prze­
strzeni stanu układu. Nowe sterowanie u uzyskane w wyniku częściowo linearyzującego 
sprzężenia zwrotnego ma znaczenie przyspieszenia w napędzanym przegubie. Przedsta­
wiony model posłużył do uzyskania wyników symulacyjnych algorytmu planowania ruchu, 
w którym korzystaliśmy z nieparametrycznej reprezentacji funkcji sterującej (rozdział 4.4) 
oraz do rozwiązania problemu odtwarzania trajektorii (rozdział 4.5), zarówno we współ­
rzędnych stanu jak i we współrzędnych zadaniowych. Do uzyskania wyników obliczeń 
numerycznych niezbędne są wartości parametrów manipulatora, które zawarliśmy w ta­
beli C.4. Dodatkowe wyniki symulacyjne kilku algorytmów planowania, zastosowanych do 
powyższego modelu można znaleźć w pracach [32-34,37].

Tabela. C.4 Wartości parametrów manipulatora planarnego RR

II
 II p 0
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