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Rozdziat 1

Wstep

1.1 Wprowadzenie

esli zdefiniujemy pojecie robot jako urzadzenie mechaniczne zdolne do wykony-

wania automatycznych czynnoéci wspomagajacych prace ludzka, to pierwsze wy-
stapienie robota w literaturze pojawia sie¢ w VIII-VII wieku p.n.e. w ,lliadzie” Homera.
Tam, grecki bog Hefajstos konstruuje na wtasny uzytek mechanicznych pomocnikéw, wy-
konanych ze zlota, ktérzy wspomagajg niepelnosprawnego boskiego kowala. Kilka wiekow
po6zniej, okoto IV wieku p.n.e, grecki filozof Arystoteles w stowach swojej rozprawy ,,Poli-
tyka” ‘
Jest zas narzedziem ponad narzedzia kazdy stuga. Gdyby bowiem kazde narze-
dzie mogto spetniaé swoje zadania wedtug rozkazu albo i uprzedzajgc go, jak to
podobno robity posqgi Dedala lub tréjnogi Hefajstosa, ktdre, jak mdowi poeta,
same sie zjawiajq na zebranie bogow, gdyby tak czotenka tkackie same tkaty,
a pateczki od gitary same graty, to ani budowniczowie nie potrzebowaliby po-

mocnikow, ani panowie niewolnikdw. . .
ttum. L. Piotrowicz

méwi, jak dobrze byloby mie¢ w poblizu kilka robotéw. Okoto II-I wieku p.n.e. powstaja
w starozytnej Grecji pierwsze konstrukcje automatéw, gtéwnie zegaréw napedzanych wo-
da lub powietrzem, poruszajace figurkami, stuzace celom rozrywkowym. W tym samym
czasie, rowniez w antycznych Chinach powstaja podobne konstrukcje. Jedna z pierwszych
ksiazek ,,Book of Ingenious Devices” opisujgca wiele mechanicznych automatéw powstala
w 850r. w Persji i zostala napisana po arabsku. Niestety, wraz z upadkiem starozytnych
cywilizacji wiele z tych pomystéw nie zostato rozwinietych. Ponowne zainteresowanie te-
matem odzywa w okresie renesansu. Autorem pierwszego projektu robota byl Leonardo da
Vinci, ktérego szkice zostaly odnalezione w latach pieé¢dziesiatych ubiegltego stulecia. Od
tego czasu, w calej Europie zaczynaja powstawacé rézne konstrukcje robotyczne, gléwnie
w celach rozrywkowych. W okresie II wojny swiatowej inzynierowie automatycy skupiaja
sie wokoét zastosowan militarnych, powstaja woéwczas miedzy innymi skomplikowane ma-
szyny szyfrujace i deszyfrujace. Po wojnie, rozw6j techniki sprzyja rozwojowi robotyki.
W roku 1954 powstaje pierwsze programowalne ramie robotyczne, a rok péZniej pierw-
szy, elektronicznie sterowany, robot mobilny. Dzi§ robotyka przenika wiele aspektéw zycia
cztowieka, od robotéw przemystowych wspomagajacych prace fabryk, poprzez na przyktad
roboty inspekcyjne, spoteczne czy rozrywkowe, az po roboty eksplorujgce kosmos.
Robotem trzeciej generacji nazywamy maszyne wyposazong w zdolnosci interpretacji
i wnioskowania niezbednych do rozpoznania i wykonania zadania poprzez inteligentne
powiazanie percepcji i dzialania [43]. Zgodnie z terminologia Miedzynarodowej Federacji
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Teorii Maszyn i Mechanizméw (ang. International Federation for the Theory of Machines
and Mechanisms — IFToMM) [16], stopiei swobody (ang. Degree of Freedom — DOF)
uktadu mechanicznego to liczba niezaleznych wspoétrzednych uogélnionych potrzebnych
do pelnego opisania konfiguracji uktadu w kazdej chwili czasu. Biorac pod uwage liczbe
stopni swobody n, w odniesieniu do liczby napedéw (sterowarn) m uklady robotyczne
mozna podzieli¢ na trzy grupy [4]

e uklady w pelni napedzane, n = m,
e uklady z redundancjg napedéw, n < m,

e uklady z deficytem napedéw, n > m.

Reprezentantem pierwszej grupy moze by¢ na przyklad robotyczny manipulator prze-
mystowy. W sktad drugiej grupy wchodza miedzy innymi wielonapedowe kolowe roboty
mobilne [23]. Uklady z deficytem napedéw, nalezace do trzeciej grupy, stanowig obiekt
badan w niniejszej rozprawie. Rozwiazanie zadan takich jak planowanie ruchu, planowanie
trajektorii, czy $ledzenie trajektorii w klasie ukladéw z deficytem napedéw jest trudne.
Niemniej jednak, wykorzystujac charakterystyczne konstrukcje tych uktadéw oraz uzywa-
jac specyficznych algorytmoéw staje si¢ to mozliwe.

Przyjrzyjmy sie blizej klasie ukladéw z deficytem napedéw. Zgodnie z definicjg zawar-
tag w [29], ukladem z deficytem napedéw (ang. underacutated system) nazywamy uklad
robotyczny, w ktérym wymiar przestrzeni stanu przewyzsza wymiar przestrzeni sterowan.
W s$wietle tej definicji bardzo duzo uktadéw robotycznych zawiera si¢ w grupie uktadow
z deficytem napedéw. Wymieni¢ mozna tutaj dla przyktadu dynamike wszelkiego rodza-
ju platform mobilnych (kotowych, nawodnych, podwodnych, latajacych, balansujacych),
dynamike manipulatoréw z pasywnymi przegubami lub elastycznymi ramionami, roboty
kroczace w fazie lotu, uktady, gdzie przyczyna deficytu napedéw jest uszkodzenie silnika,
roboty kosmiczne oraz wiele innych. Zainteresowanie i praca nad algorytmami dedyko-
wanymi takim ukladom przyczynia si¢ do uzyskania rozwigzania probleméw, takich jak
na przyktad stabilizacja i sterowanie statkéw nawodnych i podwodnych, helikopterow,
poduszkowcow, satelit i innych. Napedy zazwyczaj sa stosunkowo ciezkie i drogie, jesli
mozliwe jest sterowanie ukladem z mniejszg liczba silnikéw, to przynosi to wymierne ko-
rzy$ci. Specyficzne algorytmy sterowania mogg okazaé si¢ przydatne w przypadku awarii
napedu. Dla przyktadu, jesli na statku kosmicznym doszto do awarii napedu wieloprzegu-
bowego manipulatora w momencie kiedy ramie byto roztozone, to jedynym sposobem na
zamkniecie tadowni bylo odrzucenie calego ramienia w przestrzenn kosmiczng. Jesli taki
uszkodzony manipulator potraktujemy jako uklad z deficytem napedéw, mozemy uzy¢c
odpowiedniego algorytmu, przy pomocy ktérego uda sie ztozy¢ manipulator i bezpiecznie
wréci¢ na Ziemie.

W chwili obecnej, nie istnieje uniwersalny algorytm sterowania dla klasy ukladow
z deficytem naped6éw. Niemniej jednak, od lat powstajg réznego rodzaju algorytmy dedy-
kowane konkretnym ukladom. Problem stabilizacji odwroconego wahadta byl w obszarze
zainteresowarni juz na poczatku XX wieku [50]. Réwniez wspolczesnie ten temat jest obiek-
tem badan naukowych [10,29,32,47]. Algorytmy sterowania manipulatorami z pasywnymi
przegubami przedstawione sa miedzy innymi w [14,30,39], a planowanie ruchu takich ukla-
d6w opisane jest w [25,33,34,37]. Przeglad ukladéw manipulatoréw z pasywnymi przegu-
bami oraz dedykowanych algorytméw zawieraja prace [9,48]. Planowanie ruchu platform
mobilnych przedstawia wiele pozycji literaturowych, migdzy innymi (11,31, 38,42].

W niniejszej rozprawie bedziemy starali si¢ rozwiaza¢ zadanie planowania ruchu ukla-
déw robotycznych z deficytem napedéw. Poprzez zadanie planowania ruchu rozumiemy
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znalezienie funkcji sterujacych, ktére podane na uktad przeprowadzg go z okreslonego
punktu poczatkowego do zadanego punktu koncowego, w okreslonym czasie. Algorytm
rozwigzujacy zadanie planowania ruchu, jest algorytmem dzialajacym w otwartej petli
sprzezenia zwrotnego. Uzyskane funkcje sterujace podane na uklad nie bedg uwzglednialy
niedoktadnogci modelowania ani zaklécen wystepujacych podczas ruchu. Niemniej jednak,
otrzymywane rozwigzania moga stanowi¢ dobry material referencyjny dla algorytmow ste-
rowania, ktore z kolei moga pracowaé¢ w zamknietej petli sprzezenia zwrotnego. W pracy
wyprowadzimy algorytm planowania ruchu.dla uktadéw robotycznych z deficytem nape-
déw. Ze wzgledu na réznoraks specyfike takich uktadéw, bardzo czesto zachodzi potrzeba
uzyskania konkretnej jakosci rozwigzania zadania planowania ruchu. Z tego powodu wpro-
wadzimy dwa algorytmy planowania ruchu z zadaniami dodatkowymi: algorytm egalitar-
ny i algorytm z priorytetowaniem zadan. Ruch uktadu pod wplywem funkcji sterujacych
otrzymanych w wyniku dziatania takich algorytméw bedzie nie tylko realizowal zadanie
planowania ruchu, lecz takze uwzgledniat zestaw zadan dodatkowych. Idee dziatania algo-
rytmu egalitarnego i algorytmu z priorytetowaniem zadain sa komplementarne. Pierwszy
z nich traktuje wszystkie zadania sktadowe réwnorzednie. Drugi, szereguje zadania sktado-
we ze wzgledu na ich stopien waznosci. Podamy takze definicje kilku zadari dodatkowych.
Przedstawimy zadanie ograniczania energii sterowania, minimalizacji warto$ci zmiennych
stanu, zadanie unikania przeszkoéd oraz kilka modyfikacji tych zadan.

Do konstrukeji algorytmu planowania ruchu bedziemy korzystaé¢ z metody kontynuacji
(homotopii). Przyktady zastosowan tej metody w robotyce sa przedstawione w pracy [54],
a algorytmy rozwigzujace problemy planowania ruchu uktadéw robotycznych, korzystajace
z metody kontynuacji mozna znalezé w pracach [7,41,53]. Z metody kontynuacji wywodzi
sie takze idea endogenicznej przestrzeni konfiguracyjnej [55], ktora ujednolica metodolo-
gie dotyczace manipulatoréw robotycznych i uktadéw mobilnych. Oryginalnie, metoda ta
byta dedykowana algorytmom planowania ruchu kinematyki manipulatoréw mobilnych,
w ktoérych nie wystepuje dryf w ukladzie sterowania. Zastosowanie metody endogeniczne;j
przestrzeni konfiguracyjnej do ukladéw z dryfem zostato przedstawione w [57], a pierwszy
wynik uzycia tej metody do planowania manipulatoréw z pasywnym przegubem zawie-
ra [37]. Konstrukcja algorytmu z priorytetowaniem zadari taczy ze sobg metode endoge-
nicznej przestrzeni konfiguracyjnej z koncepcja algorytmu jakobianu pseudoodwrotnego
z projekcja [6,27], ktora pierwotnie byla przeznaczona dla holonomicznych manipulatoréw
redundantnych. Podobne podejécia stosowane sa takze w [1,26], gdzie redundancja ma-
nipulatoréw jest wykorzystywana do realizacji zadan dodatkowych. Algorytm egalitarny
réwniez korzysta z metody endogenicznej przestrzeni konfiguracyjnej i jest rozszerzeniem
oryginalnego algorytmu planowania ruchu przedstawionego w [55] do realizacji zadania
planowania ruchu z zadaniami dodatkowymi. Jak wspomnieliSmy, zastosowanie metody
endogenicznej przestrzeni konfiguracyjnej pozwala wykorzystywaé¢ koncepcje oryginalnie
stworzone dla manipulatoréw do zadan z innymi ukladami robotycznymi, w tym z ukla-
dami robotycznymi z deficytem napedéw. Fakt ten bedziemy wykorzystywaé przy definicji
zadan dodatkowych. Zadanie dodatkowe dotyczace ograniczania zmiennych przegubowych
przedstawione w [24] postuzy nam do zdefiniowania zadania dodatkowego ograniczajace-
go energie sterowania i minimalizujacego wartosci zmiennych stanu uktadu z deficytem
napedéw. Zadanie planowania ruchu z ograniczeniami na zmienne stanu i sterowania roz-
wigzuje takze algorytm jakobianu zaburzonego, ktérego zastosowanie do manipulatoréw
mobilnych zawiera [18], a zastosowanie do uktadéw z deficytem napedéw przedstawiono
w pracach [33,34]. Inne zastosowanie algorytmu planowania ruchu do ograniczania poslizgu
robota mobilnego zawarto w [61]. Do definicji zadania unikania przeszkod (osobliwoéci)
wykorzystamy podejscie pola potencjatu [21], a takze zadanie unikania przeszkéd przez
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manipulator stacjonarny zdefiniowane w [22] i zadanie unikania osobliwo$ci manipulatora
wprowadzone w [60]. Pierwsza proba uzycia algorytmu planowania ruchu korzystajace-
go z metody endogenicznej przestrzeni konfiguracyjnej z unikaniem przeszkéd pojawita
sie w [56]. Wyprowadzane algorytmy beda algorytmami planowania ruchu z uwzgled-
nieniem stanu ukladu nominalnego. Dodatkowo, zbadamy podejscie planowania ruchu
z uwzglednieniem stanu ukladu rzeczywistego przedstawione w pracy [19]. Wykorzystanie
tej koncepcji pozwoli na uzyskanie algorytmu planowania ruchu przy niepeinej znajomoéci
modelu.

Przedmiotem pracy jest wyprowadzenie algorytmu planowania ruchu w oparciu o me-
tode endogenicznej przestrzeni konfiguracyjnej dla uktadéw robotycznych z deficytem na-
pedéw. Algorytm umozliwia rozwigzanie zadania planowania ruchu z zestawem zadan
dodatkowych. Jego efektywnosé zilustrujemy wynikami symulacji komputerowych. Glow-
nym celem pracy jest wykazanie nastepujacej tezy

Stosujgc metode endogenicznej przestrzeni konfiguracyjnej
mozna skonstruowaé algorytm planowania ruchu uktadow
robotycznych z deficytem napedoéw, realizujgcy rozne zadania
dodatkowe.

Dalsza cze$¢ rozdzialu 1 zawiera wprowadzenie do ukladéw z deficytem napedow.
Omoéwimy réznice pomiedzy ukladem holonomicznym a nieholonomicznym, obja$nimy
mechanizm powstawania ograniczen nieholonomicznych oraz oméwimy ich wptyw na mo-
delowanie ukladow. Czesto do uktadéw z deficytem napedéw stosuje sie czesciowo lineary-
zujace sprzezenie zwrotne, ktére opisujemy w podrozdziale 1.2.2. Nastepnie, przedstawia-
my afiniczny ukltad sterowania z funkcja wyjscia, a pod koniec rozdzialu przeprowadzamy
krotka dyskusje na temat sterowalnosci uktadéw nieliniowych.

Rozdzial 2 przedstawia wyprowadzenie teoretyczne algorytmu planowania. Na poczat-
ku wprowadzimy preliminaria dotyczace endogenicznej przestrzeni konfiguracyjnej. Dalej
zdefiniujemy algorytm realizujacy zadanie wlasciwego planowania ruchu. Nastepnie omo-
wimy dwa sposoby dodania zadan dodatkowych do zadania planowania. Pierwszy z nich
polega na rozszerzeniu jakobianu i funkcji bledu, a drugi opiera si¢ na definicji pseudo-
odwrotnosci z projekcja. W pierwszym przypadku zadanie gléwne i zadania dodatkowe
sg traktowane rébwnorzednie. W drugim przypadku zadania sg uszeregowane zgodnie z ich
priorytetami. Dalsza czeéé tego rozdzialu zawiera definicje zadan dodatkowych. Zdefiniu-
jemy nastepujace zadania dodatkowe: zadanie minimalizacji energii sterowania, zadanie
minimalizacji warto$ci zmiennych stanu oraz zadanie unikania przeszkéd. Rozdzial konczy
omoéwienie algorytmu planowania ruchu przy niepelnej znajomosci modelu.

Aspekty implementacyjne algorytmu planowanie ruchu zostaly oméwione w rozdziale 3.
W celu przeprowadzenia obliczeri numerycznych proponujemy reprezentacje funkcji ste-
rujacych poprzez zestaw funkcji bazowych oraz definiujemy dyskretng wersje algorytmu.
Ponadto, przedstawiamy sposéb rozwigzania zadania planowania ruchu bez parametrycz-
nej reprezentacji funkcji sterujacych.

Rozdzial 4 przedstawia symulacyjne wyniki badan efektywnosci algorytmu. Pierwszy pod-
rozdzial zawiera symulacje planowania ruchu statku wraz z dodatkowym zadaniem mini-
malizacji energii sterowania. Kolejne wyniki przedstawiaja planowanie ruchu robota balan-
sujacego z rownoczesng minimalizacja zmiennej stanu (zmiennej odpowiadajacej odchyle-
niu korpusu robota od osi pionowej) i ograniczaniem energii sterowania. Trzecia symulacja
dotyczy planowania ruchu poduszkowca omijajacego przeszkody. W podrozdziale 4.2 do-
konujemy poréwnania metody algorytmu egalitarnego i algorytmu z priorytetowaniem
zadan. W podrozdziale 4.3, mozna znalez¢ wyniki planowania ruchu przy niepelnej zna-
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jomosci modelu. Podrozdziat 4.4 zawiera wyniki symulacji przy nieskonczeniewymiarowej
reprezentacji funkcji sterujacych. Ostatni podrozdzial zawiera symulacje wykorzystujace
zadanie ograniczania zmiennych stanu do realizacji zadania reprodukcji trajektorii.
Rozdzial 5 zostal po§wiecony analizie otrzymanych wynikéw i podsumowaniu pracy.
Dbajac o przejrzystoéé wywoddw, czesé materiatu zostala zawarta w dodatkach. W dodat-
ku A przedstawiamy wyprowadzenia wybranych wtasnosci operatora projekcji. Dodatek
B zawiera definicje skoniczeniewymiarowych odwzorowan koricowych, jakobianéw, bledow
oraz projekcji niezbednych do implementacji numerycznej przedstawianych algorytmoéw.
Dodatek C zawiera pie¢ modeli uktadéw robotycznych z deficytem napedéw. Znajduja sie
tam trzy uklady platform mobilnych: statek—kontenerowiec, robot balansujgcy i poduszko-
wiec, a takze dwa manipulatory z pasywnym przegubem: uktad nieplanarnego i planarnego

dwuwahadta.
Niniejsza rozprawa jest efektem badan finansowanych cze$ciowo przez Fundacje na

rzecz Nauki Polskiej, Politechnike Wroctawsks w ramach grantéw statutowych oraz Mi-
nisterstwo Nauki i Szkolnictwa Wyzszego ze srodkéw na nauke w latach 2010-2012 jako

projekt promotorski.

1.2 Uklady robotyczne z ograniczeniami

Dynamika ukladu robotycznego definiuje zalezno§é pomiedzy sitami zewnetrznymi dzia-
tajacymi na uktad a uogélnionymi wspoéirzednymi potozenia, predkosci i przyspieszenia.
Niech ¢ € IR™ bedzie wektorem wspoélrzednych uogélnionych. Nastepnie, wprowadzmy
funkcje Lagrange’a L(q, ¢) [58] jako réznice energii kinetycznej i potencjalnej uktadu

L(q,q) = K(g,4) — V(q).

Zasada Najmniejszego Dziatania Hamiltona prowadzi do uzyskania réwnan dynamiki
ukladu w postaci réwnari Eulera-Lagrange’a [58]

d 0L(q,q) OL(g,q)
dt~ 8¢  0q =5 -

gdzie F jest wektorem sit niepotencjalnych dzialajacych na uklad, w sktad ktoérych wcho-
dza oddzialywania sterujace, opory ruchu itp. Réwnania (1.1) mozna zapisaé¢ w postaci
uktadu réwnan rézniczkowych drugiego rzedu

PL(q,q) .. 0°L(g,4). 0OL(q,q)
8¢ 11T 9e8; 1 " oq =7 (12

Energia kinetyczna ukladu przyjmuje postac¢ formy kwadratowej z dodatniookreslong i sy-
metryczng macierzg formy

K(g,d) = =" M(g)d,

2
Uwzgledniajac postaé energii kinetycznej w (1.2) otrzymujemy réwnania
M(q)i+ C(q,9)d + D(q) = F, (1.3)

ktore definiuja ogdlng postaé réwnari dynamiki uktadu robotycznego, w ktérych
e M(q) jest symetryczng i dodatniookreslong macierza inercj,

e C(q,q)q jest wektorem zawierajacym oddzialywania odérodkowe i Coriolisa,
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e D(q) = ﬂ%ﬂ jest wektorem sit grawitacji.

Jak wspomnieliémy wektor F zawiera sily dzialajace na ukltad. Niech wektor 7 = B(q)7—
f(q,4,t), wowczas funkcja f(q, ¢,t) oznacza wszystkie sity uogélnione dzialajace na uktad
poza oddzialywaniem sterujacym. Wprowadzajac wektor F(q,q) = C(q,4)¢ + D(q) +
f(q,q,t) zawierajacy, w zaleznosci od robota, sity odsrodkowe, Coriolisa, wyporu, hy-
dro/aerodynamiczne, potencjalne, w tym grawitacji itp., ogélne ré6wnania dynamiki (1.3)
przyjmujg bardziej zwiezla postaé

M(q)G + F(q,q) = B(q)T, (1.4)

gdzie B(q) jest macierza sterowania, a 7 € IR™ jest wektorem sygnaléw sterujacych.

Ruch uktadu robotycznego opisanego przez (1.4) moze odbywaé sie w dowolnych kie-
runkach. Czesto, ze wzgledu na charakter i specyficzng budowe uktadu robotycznego, na
ruch naklada sie ograniczenia, zwane w mechanice analitycznej wiezami. Ograniczenia ta-
kie mogg zosta¢ wyrazone zaréwno przy pomocy wspoirzednych uogélnionych, jak i przy
pomocy kolejnych pochodnych tych wspoétrzednych [44]

)
h(t,q,q,...,é)=o, i=1,2,.... (1.5)

W zaleznosci od rzedu pochodnej wystepujacej w ograniczeniach (1.5) wyrézniamy
kilka postaci ograniczeri. Jedli ograniczaja one mozliwe konfiguracje ukladu (1.4) wow-
czas nazywamy je ograniczeniami polozeniowymi lub geometrycznymi. Takie ograniczenia
mozna przedstawi¢ w postaci

ho(q) =0, h:R"— R, Il<n. (1.6)

Postaé ograniczeri (1.6) moze zostaé wykorzystana do wyeliminowania z (1.4) pewnych
wsp6trzednych zaleznych. Poza ograniczeniami polozeniowymi wprowadZzmy ograniczenia
pierwszego i drugiego rzedu. Ograniczenia pierwszego rzedu to ograniczenia nalozone na
wspoélrzedne uogélnione oraz na predkosci uogdlnione uktadu (1.4)

hi(g,q) =0, hi: R* - R, l <n,

ktore pochodza od kinematyki ukladu. Ograniczenia drugiego rzedu to ograniczenia nato-
zone nie tylko na wspélrzedne uogblnione i predkosci uogoélnione, ale takze na uogblnione
przyspieszenia ukladu (1.4)

ha(g,4,4) =0, hi: R" — R, I <n, (1.7)

ktore maja swoje korzenie w dynamice uktadu. Jesli ograniczenia pierwszego rzedu moga
zostaé scatkowane (mozna je przedstawi¢ za pomoca rézniczki po czasie z funkcji wspot-
rzednych uogblnionych ¢) to wéwczas sa to ograniczenia holonomiczne pierwszego rzedu.
W przeciwnym razie ograniczenia sg ograniczeniami nieholonomicznymi [13,40]. Czesto
ograniczenia nieholonomiczne pierwszego rzedu sa przedstawiane w postaci ograniczen
fazowych Pfaffa

A(g)g=0,  rankA(q) =1, (1.8)
gdzie Aixn(q) jest macierza Pfaffa. Ograniczenia w postaci Pffaffa (1.8) sa holonomiczne
jesli istnieje odwzorowanie h(q), h: IR™ — IR' takie, ze (1.8) sa réwnowazne h(q) = 0 [58].
Formalnie, ten warunek moze by¢ zapisany nastepujaco: istnieje pewna macierz Q(q)ix,
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det Q(q) # 0, taka ze Q(q)A(g) = %%l. Podobnie, ograniczenia drugiego rzedu sg ograni-
czeniami nieholonomicznymi drugiego rzedu jesli nie mogg zostaé¢ scatkowane (nie mozna
ich przedstawié¢, za pomocg rézniczki po czasie z funkcji wspoélrzednych uogélnionych
q i predkosci uogdélnionych ¢). W przeciwnym przypadku beds ograniczeniami holono-
micznymi [13,40]. W celu okreslenia, czy ograniczenia nieholonomiczne w modelowanym
ukladzie sg pierwszego czy drugiego rzedu albo, by¢é moze, sa ograniczeniami holono-
micznymi, zostaly sformulowane warunki czesciowej i pelnej catkowalnosdci ograniczen.
Warunki catkowalnosci dedykowane specyficznym ukladom mozna znalezé w [29, 32, 59|,
natomiast w [39] przedstawiono warunki catkowalnosci ograniczen nieholonomicznych nie-
zalezne od modelu. Wykorzystujac wprowadzone definicje ograniczenn mozemy zdefiniowaé
dwa rodzaje ukladéw. Jezeli ograniczenia w uktadzie (1.4) sa holonomiczne to uklad jest
uktadem holonomicznym. Jezeli ograniczenia sg nieholonomiczne woéwczas uktad jest
uktadem nieholonomicznym [10,15].

Definicja 1.1 (Uktlad z deficytem napedéw) Uktadem z deficytem napeddw bedzie-
my nazywali nieholonomiczny uktad robotyczny z ograniczeniami drugiego rzedu, w ktorym
liczba napedow jest mniejsza od liczby stopni swobody.

1.2.1 Modelowanie uktadéw z deficytem napedoéow

Zalozmy, ze w uktadzie wystepuje deficyt napedéw, zatem m < n. Dodatkowo, podzielmy
wektor wspotrzednych ¢ = (¢a, ), 9o € R™, g» € IR™ ™. Niech ¢, beda aktywnymi
stopniami swobody, a g, pasywnymi. Wéwczas, rownanie dynamiki (1.4) mozemy zapisaé

w postaci ) |
b el @) Geg) =l ] ao

M(a) F(g.4) B(q)
Ostatnie [ = n—m réwnan z (1.9) stanowi zestaw ograniczeri nieholonomicznych drugiego
rzedu postaci (1.7), ktére powinne by¢ spetnione podczas ruchu uktadu.

1.2.2 Czesciowo linearyzujace sprzezenie zwrotne

Dla calej klasy uktadéw robotycznych z deficytem napedéw mozna zdefiniowaé sprze-
zenie zwrotne linearyzujace aktywne stopnie swobody (ang. collocated) [48]. Wynika to
z zalozenia, ze macierz inercji uktadu jest dodatnio okreslona i symetryczna. Ponadto,
dla czesci ukladéw mozemy zdefiniowaé takze sprzezenie zwrotne linearyzujace pasywne
stopnie swobody (ang. noncollocated) [48].

Sprzezenie zwrotne linearyzujace aktywne stopnie swobody Czesciowo lineary-
zujace sprzezenie zwrotne linearyzujace wspoétrzedne g, moze byé¢ utozsamiane z lineary-
zacjg wejsciowo—wyjsciows dynamiki (1.9), z funkcja wyjscia rowna

Yo = ga € IR™.

Funkcja wyjscia y, jest powigzana z sygnalami wejsciowymi poprzez aktywne wspolrzedne
uogoélnione. Rozwazmy zatem linearyzacje wejsciowo—wyjsciows dla uktadu z deficytem
napedéw. Przyjrzyjmy sie ostatnim n — m réwnaniom z (1.9)

50 M) (&) + Fa.d) =0 (110
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Mozna z nich wyznaczy¢ gy, ktore po wstawieniu do m pierwszych réwnan (1.9) i zamianie
ja = Uq, gdzie u, jest nowym sterowaniem, definiuje czgsciowo linearyzujace sprzezenie
zwrotne

T = Ba.—l(q) ((Maa(q) - Mab(Q)erbl(Q)Mc-tl;J(q)) Ug + Fa((L Q) - Mab(Q)Mb_bl(q)Fb(Q) Q)) .

Stosujac powyzsze sprzezenie zwrotne do dynamiki (1.9) otrzymujemy czesciowo zlineary-
zowany uklad

Ja = Ua,
{ab — M} (@) (M (a)ua + Fo(g, ).

Sprzezenie zwrotne linearyzujace pasywne stopnie swobody Czesciowo lineary-
zujace sprzezenie zwrotne linearyzujace wspotrzedne g, polega na wyznaczeniu linearyzacji
wejsciowo-wyjsciowej dynamiki (1.9) z funkcja wyjscia

Yo =q € R"™, (1.11)

korespondujaca z pasywnymi stopniami swobody, ktére nie sa bezposrednio zalezne od
funkcji sterujacej. Takie sprzezenie zwrotne moze zosta¢ wyznaczone przy zalozeniu, ze
uklad linearyzowany jest silnie sprzezony inercyjnie.

Definicja 1.2 (Silne sprzezenie inercyjne [46]) Uktad (1.9) jest silnie sprzezony
inercyjnie wtedy 1 tylko wtedy, gdy

rankMy,(q) = n —m,Vq € R"™.

Nalezy doda¢, ze wlasnos¢ silnego sprzezenia inercyjnego zaklada, ze m > n — m, czyli
liczba pasywnych zmiennych stanu nie moze przewyzszaé liczby aktywnych zmiennych.
Przy zalozeniu silnego sprzezenia inercyjnego mozemy wyznaczy¢ pseudoodwrotno$é¢ pod-
macierzy M,
# -1
(ME)" = Mgy (MJ,Maw) ™ .

Korzystajac z powyzszej definicji mozemy z (1.10) wyznaczy¢ §,, nastepnie, podobnie jak
poprzednio, wstawiajac do (1.9) i zamieniajac ¢y = up, otrzymujemy czesciowo linearyzu-
jace sprzezenie zwrotne linearyzujace pasywne wspolrzedne uogoélnione

7= B74(q) (May(q) — Maa(@) (M) # () Mis(q)) us
+Fa(q,4) — Maa(q) (M) #(q) Fo(q,4)) -

Po zastosowaniu sterowania do uktadu (1.9) otrzymujemy uktad

Go = _(M;;))#(q)(Mbb(q)ub o Fb(Qa q))a
b = Up,

w ktoérym pasywne stopnie swobody zostaly zlinearyzowane i odsprzezone od reszty ukta-
du, a pierwsze réwnanie, opisujace ruch aktywnych zmiennych, reprezentuje tutaj dyna-
mike wewnetrzng ukladu, korespondujaca z réwnaniem wyjscia (1.11).
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1.2.3 Afiniczny uklad sterowania z funkcja wyjscia

Niezaleznie od tego, czy dynamika ukladu robotycznego z deficytem napedéw zostanie
poddana czesciowo linearyzujacemu sprzezeniu zwrotnemu, czy tez pozostanie w orygi-
nalnej formie (1.9), mozna ja przeksztalci¢ w standardowy sposéb do uktadu réwnan réz-
niczkowych pierwszego rzedu. Dokonujac zamiany zmiennych stanu z = (21, z2, Z3,24) =
(9as @b, da, @), T € IR*™, otrzymujemy afiniczny uklad sterowania

2(t) = f(z(t)) + G(z®)u(t) = f(z(?) + é gi(w(®))us(2), (1.12)
y = k(z()),

ktéry dodatkowo wyposazylismy w funkcje wyjscia. Dla dynamiki (1.9) dryf i macierz
sterujacych p6l wektorowych w (1.12) sg réwne

= ()

0
o G@) = | gy | = 91@), - gm(2)].
M-Na2)F(z) [M (z)B (33)]

Stosujac czesciowo linearyzujace sprzezenie zwrotne, pola wektorowe w ukladzie (1.12)
przyjmujg postaé

o Onscm
f(z) = g:i? ) G(z) = ) Im - = [g1(2),- .., gm ()],
— M (z) Fy(z) — My, (z) My (2)

dla zlinearyzowanych wspélrzednych ¢, oraz

ey -
f(z) = —<Mazf?x>m<x> . Glo)= —(MJZ,)TM;@) = [01(2),. -, gm(3)],

dla zlinearyzowanych wspétrzednych gp.
Uktad postaci (1.12), opisujacy dynamike uktadu robotycznego z deficytem napedéw

bedzie przedmiotem badari w niniejszej rozprawie.

1.2.4 Sterowalno$¢ uktadow z deficytem napedow

Przyjrzyjmy sie zagadnieniu sterowalnosci uktadéw robotycznych z deficytem napedow.
Wtasnosci osiggalnosci i sterowalnosci sa najwazniejszymi wlasnosciami uktadéw stero-
wania. Osiagalnosé i sterowalno$é¢ sa réwnowazne dla uktadéw liniowych. W uktadach
nieliniowych, do ktérych nalezg uklady robotyczne z deficytem napedéw, osiggalnosé nie
zawsze implikuje sterowalnosc.

Niech Ciaj(7T") oznacza zbiér par (z(t), u(t)) bedacych trajektoriami sterowanymi ukla-
du (1.12) zdefiniowanymi na horyzoncie czasowym [0, 7]. Ponadto, niech R,,(T) oznacza
zbiér stanéw osiggalnych, ktére moga zostaé osiggniete przez trajektorie Cia;i(7") ukladu
(1.12) zapoczatkowane w zo, zdefiniowany jako [5]

Rao(T) = {2(T) | (z(t), u(t)) € Cuaj(T), z(0) = zo},
Rxo(<T> = U Rzo(t)-

te[0,T)
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Zalozmy, ze predkoéci w chwili ¢ = 0 sa zerowe, a wiec stan zo = (qo, do) = (qo,0) jest
stanem spoczynkowym, ponadto zalézmy, ze zachodzi zaleznos¢ f(zo) = 0.

Definicja 1.3 (Osiagalnos$é [5]) Uktad (1.12) jest osiagalny ze stanu o jezeli, dla kaz-
dego zbioru sterowars U > u(-) istnieje T > 0, takie Ze int(R,(<T)) # 0 dla kazdego
t € (0,7).

Definicja 1.4 (Sterowalnos$é [5]) Uktad (1.12) jest sterowalny ze stanu zo jezeli, dla
kazdego = € IR?™ istnieje T > 0 oraz (z(t),u(t)) € Ciaj(T), takie ze z(0) = zo oraz
(1) =%.

Definicja 1.5 (Lokalna sterowalno$¢ w krotkim czasie [5]) Uktad (1.12) jest lo-
kalnie sterowalny w krotkim czasie (ang. Small-Time Local Controllability — STLC) ze
stanu o jezeli istnieje T' > 0, takie zZe xo € int(R4,(<t)) dla kazdego t € (0,T]

Rysunek 1.1 przedstawia graficzng interpretacje wtasnosci osiggalnodci i sterowalnosci
uktadow. Dotychczas nie zostaly opracowane warunki konieczne i wystarczajace sterowal-
no$ci uktadéw nieliniowych. Istnieja jedynie warunki wystarczajace sterowalnosci dedyko-
wane specyficznym ukladom. Jedng z mozliwosci sprawdzenia, czy dany uklad nieliniowy
jest sterowalny, polega na zbadaniu sterowalno$ci przyblizenia liniowego

z = A(t)z + B(t)v,
A(t) = 3(f(ﬂv(t))Jrgv'm(%(t))ucﬁ))7 B(t) = G(z(t)),

tego uktadu, wokot trajektorii z(t), wygenerowanej przez sterowanie uo(t) takiej, ze z(0) =
zo 1 z(T) = z4. Jezeli mozna wykazaé, ze przyblizenie liniowe jest sterowalne, to wéwczas
dla kazdego stanu z bliskiego z4 istnieje sterowanie u(t), ktére przeprowadza uklad z zo
do z w czasie T', zatem uzyskujemy lokalna sterowalnosé. Jesli zg i up odpowiadaja punk-
towi rownowagi f(zo) + G(zo)ug = 0, wowczas powyzsze sprowadza si¢ do wyznaczania
sterowalnosci przyblizenia liniowego wokét punktu réwnowagi (zo, up). Samo testowanie
sterowalnosci uktadu liniowego opiera si¢ na sprawdzeniu rzedu macierzy Kalmana, Hautu-
sa lub Grama. W bezdryfowych uktadach sterowania, podobnie jak w uktadach liniowych,
osiggalnos¢ implikuje sterowalno$é ukladu. Osiagalnosé, a zarazem sterowalno$é¢ ukltadu
bezdryfowego testujemy warunkiem rzedu algebry Liego (ang. Lie Algebra Rank Condi-
tion — LARC). W ogoélnych uktadach afinicznych wystepuje dryf i spelnienie warunku
rzedu algebry Liego zapewnia jedynie osiagalnoéé¢ ukitadu. Aby sprawdzi¢ sterowalnosé
uktadu afinicznego nalezy skorzysta¢ z warunkéw wprowadzonych w [3,52]. W tym ce-
lu, dla kazdego nawiasu Liego v (p6l f, g1, .., gm) 0znaczmy przez §°(v), 8 (v),...,6™(v)

To

Rao(<T)

Rao(<T) Rao(<T)

Rysunek 1.1 Interpretacja wiasnosci osiggalnosci i sterowalnosci. Od lewej: brak osiggal-
nosci, osiggalno$¢ bez sterowalnosci, lokalna sterowalnosé
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liczbe wystapiert w v odpowiednio pél wektorowych f(z), g1(z), ..., gm(z). Niech wektor
0 = (00,6, ...,0,) bedzie dopuszczalnym wektorem wag, ktérego elementy sg liczbami
catkowitymi dodatnimi oraz 0; > 6, dla kazdego ¢ = 1, ..., m. Stopien ©(v) nawiasu Liego
v zdefiniujemy jako ©(v) = Y 1~ 6;0"(v). Wowezas, jezeli dla kazdego nawiasu Liego v, ta-
kiego ze §°(v) jest nieparzyste, a §*(v), ..., d™(v) sg parzyste istnieje dopuszczalny wektor
wag 0, taki ze v jest ©-neutralizowalny w punkcie zg (moze zostaé¢ zapisany jako liniowa
kombinacja nawiaséw o nizszym stopniu ©(v)), to system jest lokalnie sterowalny w krot-
kim czasie z punktu z,. Istnieje wiele dedykowanych sposobéw sprawdzania sterowalnogci.
Na przyklad, w pracy [51] przedstawiono test sterowalnosci dla ukladu afinicznego z dry-
fem, z jednym wejsciem. Z kolei w [8] opracowano metode sprawdzenia sterowalnosci dla
uktadéw z deficytem napedéw, w ktérych n — m = 1. Dotychczasowe wyniki dotycza-
ce sterowalnoéci uktadéw nieliniowych zawsze zakladaja, ze stan poczatkowy jest stanem
réwnowagi (zerowe predkosci) oraz ze dryf zanika w ¢ = 0. Kwestia sterowalnoéci uktadéw,
w ktoérych nie zachodza takie zaleznosci jest wciaz otwarta.



Rozdzial 2

Planowanie ruchu ukladéw z deficytem
napedow

adanie planowania ruchu polega na znalezieniu takich funkcji sterujacych wu(t),

ktore przeprowadzg uktad (1.12) z pewnego polozenia poczatkowego do zadanej
pozycji koncowej w trakcie zatozonego horyzontu czasowego. Tak sformutowane zadanie
jest réownowazne zadaniu sterowania w otwartej petli sprzezenia zwrotnego. Trajektorie
uktadu znalezione przez algorytm planowania ruchu mogg nastepnie postuzy¢ jako funkcje
referencyjne dla algorytmoéw sterowania w uktadzie zamknietym.

W niniejszym rozdziale przedstawimy metode endogenicznej przestrzeni konfigura-
cyjnej i algorytm planowania ruchu. Nastepnie oméwimy dwie modyfikacje algorytmu
planowania ruchu umozliwiajace realizacje dodatkowych zadan oraz podamy szczegdlowe
definicje zadan dodatkowych. W ostatnim podrozdziale zbadamy modyfikacje algorytmu
do rozwiazania zadania planowania ruchu przy niepelnej znajomosci modelu.

2.1 Endogeniczna przestrzen konfiguracyjna

Konfiguracja endogeniczng uktadu (1.12) nazwiemy dozwolone funkcje sterujace u(-) € U
zdefiniowane na przedziale czasu [0, 7| [55]. Endogeniczna przestrzen konfiguracyjna U =
Ly [0, T] jest zbiorem funkeji catkowalnych z kwadratem tworzacych przestrzeni Hilberta

z iloczynem skalarnym

T

(), = [IOROuE & RE =R >0

0

oraz odpowiadajgcg mu norma,
r T
lu()I1Z = / T RE)u() dt

2.1.1 Odwzorowanie kornicowe i jakobian ukladu robotycznego

z deficytem napedéw
Zdefiniujmy g, +(u(-)) jako strumien uktadu (1.12) przy sterowaniu wu(-), wyznaczony
w chwili ¢ i zainicjowany warunkiem poczatkowym z(0) = zo. Tak wiec, kazdej konfiguracji
endogenicznej u(-) € U odpowiada trajektoria stanu x(t) = 4, (u(-)) oraz odpowiadajaca
jej trajektoria wyjscia uktadu y(t) = k(z(t)).
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Odwzorowanie koricowe

Odwzorowaniem koricowym nazwiemy funkcje przeksztalcajaca przestrzen endogeniczng
w przestrzen zadaniows ukladu. Wyznacza ono konicowe potozenie wyjscia y(7") ukladu
robotycznego (1.12) w zaleznosci od zadanej konfiguracji endogenicznej u(-) € U

Kopr:U — IR, Koor(u(-) = y(T) = k(pae,r(u())), (2.1)

Stosujac analogie do robotéw manipulacyjnych mozemy zauwazy¢, ze odwzorowanie kori-
cowe odpowiada kinematyce manipulatora.

Jakobian

Podazajac dalej za analogig zaczerpnieta z dziedziny manipulatoréw robotycznych zde-
finiujmy jakobian ukladu (1.12), ktéry pozwala okresli¢ jak zmieni si¢ wartos¢ wyjscia
y(T) ukladu (1.12) w zaleznosci od niewielkich przyrostéw funkcji sterujacej u(t) wiec
Jzo,r(u()): U — IR". Podobnie, jak w przypadku manipulatoréw, gdzie jakobian jest
pochodng kinematyki, wyznaczymy jakobian rézniczkujac odwzorowanie koncowe (2.1)

Joor(W()0() = DKy (u(-))v(-) = 8% Ko, n(u() + () =
@% Pz (u(-) +av()). (2.2)

Korzystajac z (1.12), wyliczmy pochodng strumienia

d

a‘ﬂzo,t(u(') +av(’)) =

a=0

dad
dt do
d

Pras(u() + () =

a=0

—1 (f(@rop(u(:) + av())) + G(@ao,t(ul") + 0w () (u(t) + av(t))) =

da
a=0

O(f(z(t)) + G(z(t))u(?)) d
oz da

Pao,t(u(:) + av()) + G(z(t))v(?). (2.3)

a=0

Nastepnie, wprowadzajac oznaczenie &(t) = di ©Vaot(u(+)+av(-)) 1 warunek poczatkowy

(0

a=0

£(0) = 0, otrzymujemy wariacyjny uktad stowarzyszony z uktadem (1.12) bedacy zarazem
przyblizeniem liniowym uktadu (1.12) wzdluz pary sterowanie-trajektoria (u(t), z(t))

€ = A(t)¢ + B(t)v,
{c — (). (24)
Zgodnie z (2.3) macierze A(t) i B(t) sg réwne
A < AE®) +OEOW®) g HUEE) + G _

oz ' Ou

a macierz C(t) = %%ED. Rozwiazanie rownania liniowego (2.4) przy warunku £(0) = 0
mozna wyrazi¢ przez [45]

ﬂﬂ:A@@@MW@N& (2.5)
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gdzie ®(t,s) jest macierza tranzycji [45] stanu ukladu (2.4) i moze zostaé wyznaczona
z rOéwnania roézniczkowego

Q%?_S) =A@)®(t,s),  ®(s,5) = Ion.

Wstawiajac rozwigzanie (2.5) do (2.2) mozna zapisaé ostateczng postaé jakobianu uktadu
robotycznego z deficytem napedéw i z funkcja wyjscia (1.12)

Joor(u())u(-) = C(T) /0 ®(T, 5)B(s)v(s) ds. (2.6)

Konfiguracja endogeniczna u(-) € U jest regularna, gdy jakobian J, r(u(:)): U — IR" jest
suriekcja. Pozostale konfiguracje sa konfiguracjami osobliwymi.

Pseudoodwrotnosé jakobianu

Jak wspomnieliémy, jakobian przeksztalca predkosci v(-) € U z przestrzeni endogenicznej
w predkosci n € IR" w przestrzeni zadaniowej. Tak wiec, stuszne jest réwnanie jakobianowe

T (u(-))0() = C(T) / B(T, 5)B(s)v(s) ds = . (2.7)

W regularnych konfiguracjach endogenicznych mozna rozwigzaé powyzsze réwnanie ze
wzgledu na zmienng v(-), co sprowadza si¢ do wyznaczenia przeksztalcenia odwrotnego
do Jgor(u(-))v(-). W tym celu uzyjmy metody najmniejszych kwadratéw polegajacej na
minimalizacji normy Ls. '

1 [T
min— [ v (¢)v(t) dt,
ning [ (000

przy zachowanych ograniczeniach réwnosciowych (2.7). Korzystajac z metody mnoznikéw
Lagrange’a, wprowadZzmy lagranzian

T ¢
L(v(-),A) = %/O’UT(t)v(t) dt + AT <C(T) /0 ®(T,t)B(t)v(t) dt — n) :

gdzie A jest wektorem mnoznikéw Lagrange’a. Przyréwnujac rézniczke lagranzianu do zera

DLE(), () = | L) +aw(), ) =

a=0

%/o::ﬂ-(t)w(t) dt + \TC(T) /()%(T, t)B(t)w(t) dt =0, Yw(-),

otrzymujemy relacje
v(t) = =BT (t)®"(T,t)CT(T) ), (2.8)

ktora wstawiona do (2.7) pozwala wyznaczy¢ mnozniki Lagrange’a
T -1
A== (c@) [T, 9BEET 00T, ds ) ) 1= ~GZlr(uIn
0

Wstawiajac powyzszy wynik do (2.8) otrzymujemy zaleznosé

v(t) = BT(£)®T(T, ¢)CT(T) G r (u())n,
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ktora okresla pseudoodwrotnosé (odwrotno$é Moore’a—Penrose’a) jakobianu
o) Bty (A @) () = BT (T, 0CT (DG (), (29)
gdzie ,
Gao,r(u(+)) = C(T) / ®(T,s)B(s)BT(s)®" (T, s) ds C'(T)
0

jest macierzg Grama ukladu (2.4), ktéra w zaleznosci od uktadu, peini role¢ macierzy
zreczno$ci lub mobilnogci. Macierz Grama moze postuzy¢ do wyznaczenia konfiguracji
regularnych. Konfiguracja u(-) € U jest regularna wtedy i tylko wtedy, gdy macierz Grama
jest pelnego rzedu rankGg, r(u(-)) = r. W regularnych konfiguracjach endogenicznych
istnieje pseudoodwrotnosé (2.9) i uktad sterowania (1.12) jest lokalnie sterowalny. Latwo
mozna pokazaé, ze pseudoodwrotnosé jakobianu spelnia zaleznosé¢ Jy, r(u( ))ij) 7)) =
L.,

Jakobian doltaczony

Do definicji algorytméw planowania ruchu niezbedny bedzie takze jakobian dotaczony [55]
Jaor(u(-)): ()" = (U)".

Jakobian dotaczony przeksztalca przestrzen dualng do przestrzeni zadaniowej (IR")* = IR"
w dualng przestrzen konfiguracyjna (U)* = U zgodnie z wyrazeniem

(T2 @())n,0())yy =" Tz (u())u(), (2.10)

gdzie n € ™ i v(-) € U. Mozemy zatem, korzystajac z (2.10), poda¢ definicje jakobianu
dotaczonego

(Jao,r(u(-))n) (2) = BT ()27 (T, £)CT(T)n. (2.11)
Jakobian dotaczony (2.11), podobnie jak pseudoodwrotno$¢ jakobianu (2.9) postuza do
wyprowadzenia algorytmu planowania ruchu.

Dzieki zastosowaniu metody endogenicznej przestrzeni konfiguracyjnej mozliwe staje
sie zastosowanie podejscia znanego z manipulatoréw robotycznych do innych uktadéw,
w tym ukladéw robotycznych z deficytem napedéw. W nastepnych rozdziatach pokazemy,
jak skonstruowaé algorytmy planowania ruchu.

2.2 Zadanie planowania ruchu

Zadanie planowania ruchu polega na znalezieniu funkcji sterujacej u(-) € U, ktoéra prze-
prowadzi uktad (1.12) z potozenia z(0) = z do zadanego punktu w przestrzeni zadaniowe;
y(T') = yq4, w zadanym czasie T'. Tak postawione zadanie chcemy rozwiazaé algorytmem
jakobianowym wyprowadzonym przy uzyciu metody kontynuacji [54,55]. W tym celu wy-
bierzmy krzywa us(-) w endogenicznej przestrzeni konfiguracyjnej parametryzowang przez
Y € IR i przechodzaca przez konfiguracje (sterowanie) poczatkowe ug(-) € U. Nastepnie,
wyznaczmy blad wzdluz tej krzywej

e(9) = Kao,r(us(?)) = ya- (2.12)
Zalozmy, ze blad (2.12) bedzie malal wykladniczo ze wspoélczynnikiem v > 0
de(?)

0 = —ve(¥). (2.13)
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Podstawiajac (2.12) do (2.13) otrzymujemy réwnanie Wazewskiego—Dawidenki [28,55]
d
35

Do rozwigzania powyzszego réwnania wykorzystamy odwrotnoéé (2.9) jakobianu, a roz-

wigzanie uzyskamy jako granice limy_,, uy(-) rozwigzania réwnania rézniczkowego

Kaz () = 4) = Jaor(ua() 50() = ~7e(9), (2.14)

d’u19 t
Woll) — oy (72 2o )e®)) . (2.15)
Otrzymana trajektoria wuy_,oo(t) jest poszukiwang funkcjg sterujacg rozwiazujacq zadanie

planowania ruchu.
Do wyznaczenia rozwiazania (2.14) mozna takze uzy¢ pseudoodwrotno$ci z projekcja

[55,58], wowczas réwnanie (2.15) przyjmie postaé

W) o (2o De(®)) O+ (Prar oD @), (216)
gdzie

Pro,r(u(-)) = idy = T2 2 () Jao,r(u(-)) (2.17)
jest rzutowaniem (projekcja) endogenicznej przestrzeni konfiguracyjnej U na jadro jako-
bianu ker Jg,+(u(-)), a idy jest odwzorowaniem identycznosciowym. Symbol py(-) € U
pojawiajacy sie w (2.16) oznacza dowolny element w endogenicznej przestrzeni konfigu-
racyjnej i moze zostaé wykorzystany do rozwigzania zadan dodatkowych.

W pracy bedziemy rozwazaé¢ algorytmy planowania ruchu z zadaniami dodatkowy-
mi. Takie algorytmy poza realizacjg zadania gtéwnego, ktérym jest wlasciwe planowanie
ruchu, beda realizowaé zestaw zadan dodatkowych. Przez termin zadanie dodatkowe be-
dziemy rozumieli zadanie, ktére bedzie wykonywane obok wlasciwego planowania ruchu
i bedzie wptywaé na jakosé rozwiazania algorytmu planowania. Wéréd zadan dodatkowych
mozna wymieni¢ miedzy innymi: minimalizacje energii sterowania, $ledzenie trajektorii
stanu czy wyjscia, unikanie przeszkod, itp. Wyprowadzimy dwa algorytmy planowania ru-
chu z zadaniami dodatkowymi: algorytm egalitarny i algorytm z priorytetowaniem zadan.
Pierwszy z nich, algorytm egalitarny, bedzie traktowal wszystkie zadania réwnorzednie.
Odmiennie, algorytm z priorytetowaniem zadan bedzie szeregowal zadania ze wzgledu na
ich stopienn waznosci. Wprowadzmy terminologie systematyzujaca zagadnienia zwigzane
z zadaniem gléwnym i zadaniami dodatkowymi. Niech S = (S, Ss,...,S,) oznacza zbiér
zadan, gdzie Sy jest zadaniem wlasciwego planowania ruchu, a pozostalte z — 1 zadan pelni
role zadan dodatkowych.

Z wyprowadzen algorytmu planowania ruchu (2.15) wynika, ze dla zapisania algorytmu
nalezy zdefiniowaé kolejno cztery elementy:

e odwzorowanie zadaniowe K, 7(u(+)),
e jakobian J;, r(u(+)),
e pseudoodwrotnosé jakobianu Jﬁ)T(u(-)),

e blad zadania e.

Podobnie, aby zdefiniowa¢ zadanie dodatkowe bedziemy potrzebowali wyzej wymienio-
nych elementéw. Wowczas kazde zadanie mozna opisaé¢ nastepujaco S; = (Ko7, Tz,

Z‘]zo,T’ Ze)'
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2.2.1 Egalitarny algorytm planowania ruchu

Rozwazmy konstrukcje algorytmu realizujacego zadanie planowania ruchu z zestawem
zadan dodatkowych. Wszystkie zadania, zaréwno zadanie gtéwne (planowanie ruchu) jak
i zadania dodatkowe bedg wykonywane réwnorzednie. Zal6zmy, ze dysponujemy zestawem
S = (51,9,...,S5,) zadan, dla ktérych zostaly wyznaczone cztery wspomniane wczesnie;
elementy. Niech blad dla calego zadania planowania bedzie zdefiniowany przez

Zakladajac eksponencjalng zbiezno$é bledu do zera %6(19) = —ve(?), v € IR, zapiszmy
réwnanie Wazewskiego-Dawidenki

Jaor(9() =35~ = —7e(?), (2.18)

gdzie J;, 7(u(-)) jest operatorem blokowym zlozonym z jakobianéw dla odpowiednich
zadan
Jao,r(u(:)

)
Jao.r(u()) = zD'T(u( ! (2.19)

szo,T(u('))

Stosujac prawostronng odwrotnosé jakobianu (2.19) mozemy rozwigza¢ réwnanie (2.18)
otrzymujac uktad dynamiczny

duy(t)
dd

= = (% 2(ws(Ne(®) @), (2:20)

gdzie Jfo,T(“ﬂ(')) jest odwrotnoscia (2.19) dang wzorem

*

Zmo,T(U(J)
32 (s ()n = Iz (u(-)) Gy (u(-))n = ,,-(,,T:(u(-)) Gopr(u(-))m,

T oo (u())

a Ggo,r(u(")) = Jao,r(u(-))I5, r(u(-)) jest macierza Grama i J; ,(u(-)) oznacza jakobian
dotaczony (2.11) jakobianu blokowego (2.19). Aby umozliwi¢ dobranie wplywu poszcze-
golnych zadan dodatkowych na rozwiagzanie algorytmu nalezy wprowadzi¢ nastepujace
skalowanie btedu

d?ﬂ(t) = — (T wa()Ee)) (), (2.21)

gdzie E = blokdiag{%I,,}, i = 1,2,..., z jest blokowodiagonalna macierzg wag %, a r; =
dim(*K ;, 1) jest wymiarem przestrzeni zadaniowej i-tego zadania.

Funkcje sterujaca realizujaca zadanie gtéowne réwnorzednie z zadaniami dodatkowymi
uzyskujemy jako granice limy_,o, ug(-) rozwigzania réwnania (2.20) lub (2.21).
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2.2.2 Algorytm planowania ruchu z priorytetowaniem zadan

Zalézmy, ze zadania w zbiorze S zostaly uszeregowane ze wzgledu na ich stopieri waznosci,
w taki sposob, ze zadanie S; ma wyzszy priorytet niz zadanie S;,;. Wyprowadzimy algo-
rytm jakobianowy pozwalajacy na realizowanie z zadan i respektujacego ich priorytety.
Niech r; € IR oznacza wymiar przestrzeni zadaniowej i-tego zadania. Woéwczas () € R"™
jest bledem zdefiniowanym dla zadania o indeksie . Na podstawie (2.13) i (2.14) mozemy
zapisa¢ réwnanie dla i-tego zadania przy sterowaniu wuy(-)

%ze(ﬁ) = ’szo,T( Uy ))dUﬁ( )? i = la 27 sy R (222)

Réwnanie (2.22) moze zostaé rozwigzane algorytmem jakobianu pseudoodwrotnego z pro-
jekcja (2.16)

d?ﬁ(t) = Y (Uﬁ),T(uﬁ('))%(ﬂ)> () + (Paoyr(us(-))us()) (8), (2.23)

gdzie

i : iy i

Paor(ws(+)) = idy — Ty 7(us(+)) T ao,r (ws(+))
jest rzutowaniem na jadro jakobianu, ker 7., r(us(-)). Dla dwéch dowolnych zadan, za-
l6zmy dla S; oraz Sy, funkcja sterujaca ug(t) musi byé taka sama, zatem z (2.23) wynika

zaleznosé

=y (Y r(us(:))e(®)) () + (Pao,r(ua(-)) o) (8) =
=%y (V2 2(us()%(®)) (¢) + (Paor(wa(-)s()) (). (220

Korzystajac z wlasnosci idempotentnosci i symetrii rzutowania oraz anihilacji ?]ﬁ)T(qu(-))

Pao.r(s(-)) Pao,r (w9 () = Paor(s()),  Pror(us(-)) = Pagrl(ua(-)),
Pogr(ws ()T p(us(-)) =0,

(patrz dodatek A) oraz mnozac obustronnie (2.24) przez P, r(ug(-)) otrzymujemy

— % (lPxo,T(w('))%ffo,T(uﬁ('))me(ﬂ)) (£) + (Pao.r(t(-))Pao (o () g () (£) =
(*Pao,r(us () () (). (2.25)

Ostatecznie, wstawiajac (2.25) do (2.23), otrzymujemy algorytm dla dwéch zadan

dzﬁé)— 7 (Y 2 (wo())e®) ) () = 2 (Panr(ua ()T 2 (ua (1)) ) (1)
+ (*Paor (s (+))Paor(us () %) (2).

Powtarzajac powyzszy tok rozumowania oraz ktadac “u,(-) = 0, mozemy napisaé algorytm
jakobianu pseudoodwrotnego z projekcja dla z zadan z priotytetowaniem [36]

du# (Z g (H "Paor(us(:) ) iz (s ))ie(ﬁ)> (®), (2.26)

gdzie °Py, r(ug(-)) = idy. Podobnie, jak to mialo miejsce w poprzednich rozdziatach,
rozwigzanie zadania planowania za pomoca algorytmu z priorytetowaniem otrzymuje sie
wyznaczajac granice limyg_,., ug(-) rozwigzania réwnania (2.26).
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2.3 Robzne zadania dodatkowe

W niniejszym podrozdziale przedstawimy kilka zadan dodatkowych, ktére moga by¢ wy-
konywane poza gtéwnym zadaniem planowania ruchu. W zaleznosci od uzytego algorytmu
zadania dodatkowe mogg by¢ rownorzedne lub mieé nizszy priorytet od zadania gtéwnego.
W kolejnych podrozdziatach wyprowadzimy cztery kluczowe skladniki S; = (*Ky, 7, Tzo.1)

iy# ) dla réznych zadan dodatkowych.

0,1

2.3.1 Zadanie minimalizacji energii sterowania

W celu zdefiniowania zadania minimalizacji energii sterowania wybierzmy odwzorowanie
zadaniowe

N
Kpr:U = B, Kepr(u() =5 /0 uT(t)o(t)u(t) dt, (2.27)

ktére wyznacza calkowita, wazona energie sterowania zuzyta w czasie trwania ruchu,
a o(t) = diag{o1(t),...,om(t)}, oi(t) > 0 jest diagonalng macierza wag. Majac zdefinio-
wane odwzorowanie zadaniowe mozemy wyznaczy¢ jakobian Jy, r(u(-)): U — IR, ktory
w tym przypadku okresla wartosci zmian kryterium (2.27) w zaleznosci od zmian sterowan
u(+). Jakobian wyznaczymy rozniczkujac (2.27)

T

Koo r(u(s) + av()) = /uT(t)or(t)v(t) dt.

0

(2.28)

Podobnie, jak w podrozdziale 2.1.1 korzystajac z metody najmniejszych kwadratéw i me-

tody mnoznikéw Lagrange’a, wyznaczmy przeksztalcenie odwrotne do (2.28). Réwnanie
jakobianowe

2o, (u(:))v(+) = DEgo,r(u(-))v() = %

a=0

T
Joor(u())u() = / TBow(t)dt=n, neR, (2.20)
0
definiuje ograniczenia réwnosciowe, przy zachowaniu ktérych bedziemy minimalizowaé

norme, miny(.) 3 foiq)T(t)v(t) dt. Lagranzian dla zadania minimalizacji energii sterowania
jest réwny

T 7
L(v(:),\) = %/OUT(t)v(t) dt + A (/0 u' (t)o(t)u(t) dt — 77) : (2.30)

Nastepnie, wyliczajac rézniczke (2.30) i przyrownujac ja do zera

DL(v(-), Nw(") = Lv(:) +ow(),A) =

a=0

e
do
T T
/ o7 (w(t) dt + A / T(Howlt) dt =0,  Vu(),
0 0
otrzymujemy zaleznosé¢
v(t) = = Ao (t)u(t), (2.31)
przy pomocy ktorej wyznaczamy mnoznik Lagrange’a z (2.29) réwny

U

A= e OuOTE
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Ostatecznie, wstawiajac mnoznik Lagrange’a do (2.31) otrzymujemy pseudoodwrotnoéé
jakobianu dla zadania minimalizacji energii sterowania

 _pin, ‘o _ o))
FErwe): R=u, (@) @) OO

Ostatnim elementem jest blad dla biezacego zadania, ktéry jest réwny odwzorowaniu
zadaniowemu

e = Kgr(u() = %/OUT(t)a(t)u(t) dt.

Zadanie przedstawione powyzej uzyte w algorytmie planowania ruchu jako zadanie do-
datkowe pozwoli znalez¢ funkcje sterujace cechujace sie minimalnym zuzyciem energii

sterowania.

2.3.2 Zadanie minimalizacji wartosci zmiennych stanu

Zadanie dodatkowe minimalizujgce wartoéci zmiennych stanu utrzymuje czeéé lub wszyst-
kie zmienne stanu w poblizu wartoéci zerowej. Podobnie jak w definicji poprzedniego

zadania, zapiszmy odwzorowanie zadaniowe

S (g
Keor:U = R, Kepr(u()) =3 /0 2T (£)6(8)z(t) dt, (2.32)

gdzie 0(t) = diag{d1(t),...,d2.(t)}, 0;(t) > O jest diagonalng macierza wag, a z(t) =
Va0t (u(-)). Operator jakobianu Jy, r(u(-)): U — IR, dla zadania minimalizacji zmiennych
stanu uzyskamy rézniczkujac (2.32)

d

Jao 2 (u(:))0(") = DKaor(u(-)v() = 3=|  Kaoir(ul(’) +av()) =

a=0

= _0; ] Phaala) + Q)5 o) + () .

Korzystajac z obliczen (2.3) wyznaczymy pochodng strumienia g, ;(u(-)), postaé¢ jako-
bianu mozemy woéwczas zapisaé jako

iy t i
Jaor(u())0() = / =" (£)8(t) / D(t, 5)B(s)v(s) ds dt = / 2 (£)8(8)Jao e(u(-))v (") dt,
0 0 0
gdzie Jz,:(u(-))v(-) jest jakobianem (2.6) uktadu robotycznego z deficytem napedéw (1.12)
bez funkcji wyjécia (C(t) = I,). Przystagpmy teraz do wyznaczenia pseudoodwrotnosci

Jzo,r(u(+)). Cheae zminimalizowaé min, . 3 foj;}T(t)U(t) d¢ przy ograniczeniach réwnoécio-
wych zdefiniowanych przez réwnanie jakobianowe

T t
Jzo,r(u(:))v(:) = /OxT(t)d(t)/Oq)(t, s)B(s)v(s) ds dt =
/qj/Y;ST(t)é(t)CD(t, s) dt B(s)v(s) ds =7, nelR (2.33)

zapiszmy lagranzian

L), ) = % /0 WT(s)u(s) ds + A < /0 TZZT(t)d(t)Q(t, 2t Bls)i(s) ds = n)
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i wyznaczmy jego pochodna

L(v(:) +ow(-),A) =

a=0

/ v (s)w(s ds+)\// )6(£)®(t, 5) dt B(s)w(s) ds.

Przyréwnujac rézniczke lagranzianu do zera

/ v’ (s)w( ds+A// )6(t)®(¢,s) dt B(s)w(s) ds =
/0 ( (s) + )\/s T(@)6(t)®(t, s) dt B(s)) w(s) ds =0, Vw(-),

otrzymujemy zaleznosé

T
v(s) = —)\BT(s)/ ®T(t,5)6(t)z(t) dt = —Aag(u(-))(s). (2.34)
Wstawiajac (2.34) do (2.33) wyznaczamy mnoznik Lagrange’a réwny A = —m,

przy pomocy ktérego wyznaczamy odwrotno$¢ jakobianu dla zadania minimalizacji war-

tosci stanu
ag(u(-))(?)

Thaw(): R=U (hrletn) O = ErsTsEmn

Pozostaje teraz wprowadzi¢ blad, ktéry dla zadania minimalizacji zmiennych stanu wy-
bieramy jako

T
e=K@ﬂMﬁ=%A£%wwdﬂ&

Uogolnienie zadania minimalizacji wartosci zmiennych stanu na zadanie
minimalizacji warto$ci zmiennych zadaniowych

Modyfikujac elementy sktadowe w powyzszych wyprowadzeniach mozna przeksztalci¢ al-
gorytm minimalizujacy wartosci zmiennych stanu w algorytm minimalizujacy wartoéci
zmiennych zadaniowych. Odwzorowanie koricowe wybieramy jako

KaaiU > By Kayalu()) = 5 [ 57 O5000) &t = 5 [ K7 0)60)k ) dt,

6(t) = diag{61(t),...,6-(t)}, 0s(t) > O jest diagonalng macierza wag, a z(t) = @gzo¢(u(-)).
Jakobian, wyliczony poprzez zrézniczkowanie odwzorowania koricowego, przyjmuje postaé¢

oo, (u(-))v() =/0yT(t)5(t)C(t)/O‘1>(t,S)B(S)U(S) ds dt=/0yT(t)5(t)-Uzo,t(U(-))v(-) dt,

gdzie Jg,:(u(-))v(-) jest jakobianem (2.6) ukladu robotycznego (1.12) z deficytem na-
pedéw, z funkcjg wyjscia. Stosujac podobne wyliczenia, jak dla zadania minimalizacji
wartoéci zmiennych stanu, definiujemy pseudoodwrotnoéé jakobianu

Ihrlwo(): Rstd, (TalwOn) 0 = 2,
gdzie oy (u())(s) = BT (s) [J@T(t,s)CT (£)5(t

€= KIO,T(U(')) =

) dt oraz réwnanie btedu

(t
T
A@%mmmwa

T v
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Alternatywny wariant algorytmu minimalizacji warto$ci zmiennych stanu

W poprzednich wyprowadzeniach odwzorowanie koricowe przyjmuje wartosci liczbowe,
a odpowiadajacy mu jakobian i pseudoodwrotno$é¢ jakobianu sa wektorami. Przyjrzyj-
my sie teraz przypadkowi, w ktérym zdefiniujemy odwzorowanie konicowe jako wektor
Kupor: U — IR?, ktorego elementy beda odpowiadaé kolejnym wspoirzednym stanu

Koo 1 (u()) O

Ko r2(u(- x%
KIO,T(U(')) Lo T,E( ( )) " % 0 (t) dt
Kao,12n(u(:)) fOT z3,(t) dt

Wprowadzajac macierz M; = e;e/, gdzie e; € IR* jest i-tym wersorem, mozemy zapisaé
z2 = z"M;z. Dla tak okreslonego zadania jakobian przyjmie postaé

CIZT(t)Ml

T | zT(t)M,
T )0) = [ “f Tan e (u()Yo(-) dt =
$T(t)M2n

T
/o. diag{z1(t), z2(t), . .., Zan(t) }aze,e(u(-))v(-) dt,

gdzie Ju, +(u(-))v(-) jest jakobianem (2.6) uktadu robotycznego z deficytem napedéw (1.12)
bez funkcji wyjscia (C(t) = Io,). Pseudoodwrotnosé jakobianu dla zmodyfikowanego za-
dania minimalizacji wartosci zmiennych stanu definiujemy jako

T# 1(ue(-)): R = U, (Jﬁ;p(uﬁ('))n) (t)= ﬂ‘gg(”()—)))z%gn

gdzie B(u(-))(s) = BT(s) [T ®(¢, s)diag{z1(t), 22(t), .. ., Ton(t)} dt. Blad definiujemy jak
poprzednio, za posrednictwem odwzorowania koricowego

i
fQI‘ z2(t) dt

2(t) dt
= Kepalu() = | 0

S a2, ) dt

Tak zdefiniowane zadanie mozna réwniez zmodyfikowaé, aby minimalizowalo wartosci
zmiennych w przestrzeni zadaniowe;.

Modyfikacja zadania minimalizacji wartosci zmiennych stanu do realizacji
zadania Sledzenia trajektorii

Dokonujgc niewielkich modyfikacji w definicjach zadari dodatkowych przedstawionych
w tym podrozdziale mozna uzyskaé¢ zadanie, ktore bedzie starato sie utrzymywaé wybra-
ne lub wszystkie zmienne stanu w okolicach zadanej trajektorii odniesienia. Przedstawmy
teraz niezbedne przeksztalcenia poprzednich wyprowadzen w celu uzyskania zadania $le-
dzenia trajektorii odniesienia. Rozpoczniemy od zdefiniowania odwzorowania koncowego

Kapaitl > By Kegrlu() = 5 [ (@) = 2a®)T50)(a(0) ~ 2alt)) dt, (235
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gdzie z(t) = g +(u(*)), za(t) jest pozadang trajektoria, a 0(t) = diag{di(t),...,d2n(t)},
8;(t) > 0 jest diagonalng macierzg wag. Rozniczkujac (2.35) uzyskujemy jakobian

Jao,r(u(:)J0(:) =
T

/ (2(t) - za(t)) TS t)/ (t, 5)B(s)v(s) ds dt = /0 (2(2) — 2a(£))T8(E)Tag 2 (u(-))0(-) dt,
(2.36)

gdzie J, ¢ (u(-))v(-) jest jakobianem (2.6) uktadu robotycznego z deficytem napedow (1.12)
bez funkcji wyjscia (C(t) = I»,). Nastepnie, przeprowadzajac wyliczenia podobne do
(2.33)-(2.34) wyznaczamy pseudoodwrotnosé¢ jakobianu (2.36)

Qi (U()®)
llra (u(-)) (IllZe ™

gdzie aurai(u(-))(t) = BT(t)ftTCIJT(s, t)0(t)(z(s) — z4(s)) ds. Ostatnim, czwartym elemen-
tem niezbednym do zdefiniowania algorytmu $ledzenia trajektorii jest btad, ktéry w tym
przypadku definiujemy jako

T a(wo(): R, (Jh o)) () = (2:37)

1 /7T
e = Koor(u(')) =5 /(«’C(t) — 24(t))6(t)(2(t) — a(t)) dt. (2.38)
0
Zamieniajac definicje wyrazenia (z(t)—zq4(t)) na (y(t) —ya(t)), modyfikujac 6(¢) i wstawia-
jac odpowiednig macierz C(t) = M do jakobianu Jg, ¢ (u(-))v(-), otrzymujemy zadanie
$ledzenia trajektorii we Wspolrzegdnych zadaniowych.

2.3.3 Zadanie unikania przeszkéd (osobliwosci) w przestrzeni
zadaniowej i w przestrzeni stanu

Do opisu zadania unikania przeszkéd bedzie nam potrzebna funkcja opisujaca rozmiesz-
czenie, rozmiar i ksztalt przeszkod. Zakltadamy, ze funkcja przeszkéd bedzie przyjmo-
wata wartosci liczbowe h: IR™ — IR. Te funkcje nalezy wybraé tak, aby jej warto$é na
obszarach wolnych od przeszkéd byla bliska zeru i przyjmowala bardzo duze wartosci
w miejscach wystepowania przeszkod oraz byla funkcja dodatnia. Funkcje taka mozna
utozsamiaé z rozkladem natezenia pola grawitacyjnego (potencjalnego), a ruch ma sie
odbywaé w spos6b minimalizujacy wypadkowa sile tego pola [21]. Alternatywnie, powyz-
szg funkcje mozna traktowac jako uksztaltowanie terenu i zapewniaé¢ ruch minimalizujacy
wysoko$¢ nad poziomem morza. Przytoczone przyklady interpretacji przedstawione sg dla
ptaszczyzny dwuwymiarowej, nic nie stoi jednak na przeszkodzie, aby definiowane tutaj
zadanie unikania przeszkoéd bylo okreslone w przestrzeni wielowymiarowe;j.

Jedna z mozliwych funkeji przeszkod zdefiniujemy w jezyku teorii pola grawitacyjnego
(potencjalnego). Funkcja przeszkéd bedzie opisywaé przeszkody okragle, czyli przeszko-
dy, ktére moga by¢ utozsamiane z wielowymiarowa kula, ktérej oddzialywanie na robota
zwieksza si¢ wraz ze zmniejszaniem odlegtosci od jej §rodka. Niech o oznacza liczbe prze-
szkod, a O; = (my,y;) oznacza i-ta przeszkode, gdzie m; jest waga (promieniem) prze-
szkody a y; € IR" jest polozeniem przeszkody we wspoélrzednych zadaniowych. Woéwczas,
funkcja przeszkdéd wyraza si¢ przez

o
m;
3 =) =,
; ly — will?
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a jej przyktadowy wykres, dla przestrzeni dwuwymiarowej, przedstawia rysunek 2.1. Cze-
sto przydaje si¢ mozliwo§¢ ograniczenia obszaru ruchu. Chcemy, aby ruch odbywal sie
wewnatrz wielowymiarowego prostopadioscianu. Korzystajgc z funkcji eksponencjalnych,
zdefiniujemy funkcje przeszkod, ktéra bedzie przyjmowala wartosci bliskie zeru wewnatrz
prostopadloscianu i przyjmowala duze wartosci w pozostalych obszarach IR". Sklada-
jac funkcje pojedynczych zmiennych w jedng wspoélna funkcje, mozemy utworzyé funkcje
ograniczajacg obszar ruchu do wielowymiarowego obszaru prostopadtosciennego

h(y) = Il ( exp((yl - yc1)2 - y72-1)’ sy eXp((yr = yCr)2 - yf,)) ”2a

gdzie y. € IR" s3 wspolrzednymi $rodka prostopadloscianu, a y, € IR" sa polowami diu-
gosci bokéw prostopadioscianu wzdtuz kazdej wspolrzednej zadaniowej. Przyktad funkcji
ograniczajacej ruch w przestrzeni R? ilustruje rysunek 2.2. Jeszcze inng funkcja przeszkod
moze by¢ funkcja reprezentujaca przeszkode w ksztalcie podkowy, ktéra mozemy zapisaé

jako

h(y) = exp(=(llyll* — B*)*)lly — Rei?,

Rysunek 2.2 Przykladowa funkcja przeszkod ograniczajgca obszar ruchu
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gdzie R jest promieniem przeszkody, a przy pomocy wersora e; mozemy zdefiniowac,
w ktérym miejscu przeszkoda ma by¢ otwarta. Rysunek 2.3 pokazuje przyktadowy wykres
powyzszej funkeji.

Rysunek 2.3 Przykladowa funkcja przeszkody w ksztalcie podkowy

Przyjrzyjmy sie teraz, jak przy pomocy funkcji przeszkéd h(y) zdefiniowaé odwzo-
rowanie koficowe, jakobian i inne elementy potrzebne do zapisania algorytmu unikania
przeszkoéd. Jako odwzorowanie koricowe wybierzemy wartos¢ funkcji przeszkoéd wzdiuz
trajektorii y(¢) = k(z(t)) wyznaczonej w calym okresie trwania ruchu

T A &
Kl = B, Keyr(u() = 3 / A(y(0) de = 3 / h(k(z() dt.  (2.39)

Korzystajac z wyliczen pochodnej strumienia (2.3), poprzez rézniczkowanie (2.39) uzy-
skujemy jakobian Jy, r(u(-)): U — IR

Keor(u)ao() = 2| 5 [ hu(e) dt =

a=0

T t x
/0 mahg”;t))c(t)/o@(t, s)B(s)v(s) ds dt = /0 Q%Jzo,t(u(-))v() dt, (2.40)

Jao,r(u())0() = DEoor(u(-))v() = %

a=0

gdzie Jg, +(u(-))v(-) jest jakobianem (2.6) uktadu robotycznego (1.12) z deficytem napedow
i z funkcja wyjscia. Jakobian (2.40) definiuje zalezno$¢ pomiedzy zmianami sterowania
u(-) € U a zmianami wartoéci funkcji przeszkéd wzdiluz trajektorii y(t). Wyznaczmy
pseudoodwrotnoéé jakobianu dla zadania unikania przeszkéd. Niech réwnanie jakobianowe

Foa)) = [ 29w ae=n, ner e

bedzie definiowalo ograniczenia réwnosciowe, przy respektowaniu ktorych bedziemy wy-
znaczaé rn(1§1 : fozi)T(t)v(t) dt. W celu minimalizacji uzyjemy metody mnoznikéw Lagran-
P

ge’a, co wigze sie ze zdefiniowaniem lagranzianu

£ON =5 [V E(6) a5+ ( [ L) (a4 5)8(s)u(s) ds i - n) ,
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i wyznaczeniu jego punktu stacjonarnego poprzez przyréwnanie pochodnej do zera

DL(), () = | L) +aw(), 3) =
a=0

/O ST (Shule) dat X /0 3hg’;t)) ®) / (t, 8)B(s)w(s) ds dt = 0.

Stosujac podobne przeksztalcenia jak w (2.33), dotyczace zmiany granic catkowania, uzy-
skujemy réwnosé

o(s) = —ABT(s) / BT (2, 5)CT (1) (%g,;@)) Aa(u()(s),  (242)

ktora po podstawieniu do (2.41), pozwala wyznaczy¢ mnoznik Lagrange’a réwny \ =
—-m Eliminacja mnoznikéw Lagrange’a A w (2.42) prowadzi do uzyskania pseu-
u

doodwrotnosci jakobianu (2.40)

T a): Rty (o) 0 = T2

Podobnie jak to mialo miejsce w definicjach poprzednich zadan, takze tutaj wybieramy
funkcje btedu réwna odwzorowaniu koncowemu

e = Koy r(u()) = ;/ h(y(t)) d /hk(a:

Parametry, takie jak m;, v;, v, R, itp. pojawiajace sie w definicjach funkcji przeszkod
h(y) mozna uzalezni¢ od czasu t, co spowoduje, ze uzyskamy zadanie omijajace ruchome
przeszkody.

Jesli w powyzszych wyprowadzeniach zatozymy, ze funkcja wyjscia uktadu (1.12) jest
odwzorowaniem identycznosciowym y(t) = k(z(t)) = z(t) mozemy zdefiniowaé funkcje
przeszkod réowne h(y) = h(k(z)) = h(z), ktére majg zastosowanie w zadaniu omijania
przeszkéd w przestrzeni stanu. Jesli teraz wybierzemy funkcje przeszkod h(x), ktora bedzie
przyjmowata warto$ci zerowe w obszarach wolnych od osobliwosci oraz duze wartosci
w miejscach wystepowania osobliwosci, otrzymamy zadanie unikania osobliwosci.

Przedstawiong tutaj ideologie mozna wykorzysta¢ takze do konstrukeji zadania, ktére
bedzie wymuszalo, aby uktad przejezdzal przez wybrane punkty. Mozna to zrobié¢, definiu-
jac funkcje przeszkéd w taki sposéb, aby przyjmowata wartosci bliskie zeru w wybranych
punktach oraz odpowiednio wysokie wartosci w pozostalym obszarze ruchu.
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2.4 Planowanie przy niepelnej znajomosci modelu

Algorytmy planowania ruchu robotéw przedstawione w powyzszych podrozdzialach dzia-
laja w otwartej petli sprzezenia zwrotnego. Ponadto, poszukiwane funkcje sterujace sa
wyznaczane na podstawie odpowiedzi nominalnego uktadu robotycznego. Zastosowanie
wyznaczonych funkcji sterujacych do uktadu rzeczywistego moze skutkowaé stosunkowo
duzg wartoécig bledu pomiedzy punktem zadanym y,, a faktycznymi wartosciami wspol-
rzednych zadaniowych y(7') w ukladzie rzeczywistym. Sposobem na poprawienie takiego
stanu rzeczy jest uzycie algorytmu planowania ruchu z uwzglednieniem stanu uktadu
rzeczywistego [19]. Zaadaptowanie tej metody pozwoli na planowanie ruchu pomimo nie-
pelnej znajomosci parametréw modelu. Taka strategia bedzie wyznaczata dla kazdego
poprawke funkcji sterujacej korzystajac z wartosci btedu zmierzonego na podstawie odpo-
wiedzi ukladu rzeczywistego, oraz z pseudoodwrotnosci jakobianu wyznaczonej z modelu
nominalnego.
Zal6zmy, ze uklad (1.12) reprezentuje uklad rzeczywisty, natomiast uktad

{ab( )= f(af( )) + G(E(t))ult),

)

KE0) (2.43)

bedzie reprezentowal uklad nominalny, w ktérym wartosci parametréw obiektu (takie jak
masa, dlugosé itp.) réznig sie od parametréow w ukladzie rzeczywistym (1.12). W celu
zmodyfikowania algorytmu (2.15) w taki sposob, aby mégt planowaé ruch przy niepeine;j
znajomosci modelu zaproponujmy nastepujaca formule wyznaczenia sterowania

Qo) — oy (T rlwa(De®)) (1) (2:44)

Jak wspomnieliémy, warto$¢ bledu bedzie wyznaczana z uktadu rzeczywistego, a wiec btad
e(¥) bedzie zdefiniowany zgodnie z (2.12). Zmianie ulegnie natomiast definicja jakobianu

(72 2(u()n) (&) = BT @87 (T, )T (N7 Lr (w())n,

"3)

gdzie
Gaor(u()) = C(T) /O &(T, 5)B(s)BT(s)®"(T, s) dsCT(T)

jest macierzg Grama. Macierze K(t), g(t) i E(t) sa macierzami przyblizenia liniowego
uktadu nominalnego (2.43) wyznaczonymi wzdluz pary sterowanie-trajektoria (u(t), z(t))
uktadu rzeczywistego (1.12) i sg zdefiniowane nastepujaco

A(t) = 2EOHCEG)

)

Z(t)=x(t)

, (t) — Ok(Z(t)) 1: t
Z(t)=xz(t) Z(t)=x(t)

(t) = G@E(t))

Macierz :I;(t, s) jest macierzg tranzycji stanu przyblizenia liniowego uktadu (2.43) i mozna
ja wyznaczy¢ z rozwigzania réwnania
8% (t, s)
ot

=A@R)B(t,s),  B(s,s) = L.



Rozdzial 3

Aspekty implementacyjne

W celu umozliwienia implementacji komputerowej algorytmu planowania ruchu
ukladéw robotycznych z deficytem napedéw korzystajacego z metody endoge-
nicznej przestrzeni konfiguracyjnej niezbedne sa dwie rzeczy: parametryczna reprezentacja
funkcji sterujacych oraz numeryczna metoda rozwigzania réwnania algorytmu. W pierw-
szej kolejnosci zajmiemy sie reprezentacja konfiguracji endogenicznych. Dazac do zreduko-
wania czasu obliczeri wprowadzimy skonczeniewymiarowa, parametryczng reprezentacje
wykorzystujaca baze funkcji ortogonalnych. W dalszej czesci tego rozdzialu oméwimy
dyskretng metode uzyskania rozwiazywania algorytmu planowania ruchu. Pod koniec roz-
dziatu przedstawimy podejécie, ktére pozwoli uzyskaé rozwigzanie zadania planowania
ruchu bez koniecznosci wprowadzania parametrycznej reprezentacji funkeji sterujgcych.

3.1 Parametryczna reprezentacja konfiguracji
endogeniczne]j

Jak wspomnieliémy w rozdziale 2.1, konfiguracje endogeniczne u(-) € U sa funkcjami klasy
L, mozna je zatem przedstawi¢ w postaci nieskoriczonego szeregu funkeji ortogonalnych.
Z powodéw obliczeniowych wprowadZmy parametryczng reprezentacje funkeji sterujacych
w postaci skoriczonego (o licznosci k) szeregu funkcji ortogonalnych

k
'Uq;(C, t) = Zci,jz,bj(t), ¢ = 1, 2, ves M, (31)

§=7

gdzie ¢;; € IR jest wspblczynnikiem stojacym przy j-tej funkcji bazowej w i-tym ste-

rowaniu, a 1;(t) jest j-ta funkcja bazows. Zestawiajac wspoélczynniki w wektor ¢ =

(€11,€12,++1Clk Catys---sCmpi) € IR™ a funkcje bazowe v(t) w macierz
() 0 0
oI R A
0 0 U, (1)
[W1(t), ¥2(t), ..., Ye(t)] [o,...,0] {0,...,0}
[0,...,0] [1(2), a(t), ..., ¥x(t)] --- 0,...,0

[0,...,0] 0,...,0] S ORI ORRN0)
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reprezentacje (3.1) mozna zapisa¢ w postaci
ufe;t) = Y(t)e. (3.2)

Parametryczna reprezentacja (3.1) konfiguracji endogenicznych definiuje skonczeniewy-
miarows endogeniczng przestrzen konfiguracyjna U =~]ka. W konsekwencji, wszystkie
odwzorowania koiicowe K., r: U — IR", jakobiany Jy,7(c) = Jyor(u(e,)): U — IR
i odpowiadajace im pseudoodwrotnosci jakobianow :];’iT(c) = ij) rule,)): BT — u
stajg sie skonczeniewymiarowe. Wszystkie definicje skonczeniewymiarowych elementéw,
zaréwno dla wlasciwego zadania planowania ruchu jak i dla zadan dodatkowych opisa-
nych w podrozdziale 2.3, zostaly zebrane w dodatku B.

3.1.1 Ortogonalne funkcje bazowe

Do wyrazenia funkcji sterujacych przy pomocy parametryzacji (3.1) mozna wykorzystac
rézne szeregi funkcji ortogonalnych. W [17] do rozwiazania zadania planowania ruchu
manipulatora mobilnego zaproponowano reprezentacje w postaci funkcji harmonicznych
(szereg Fouriera), a takze kilka szeregéw funkcji wielomianowych, takich jak wielomiany
Legendre’a, Gegenbauera, Czebyszewa, a takze funkcje Haara. W niniejszej pracy, w symu-
lacjach bedziemy wykorzystywa¢ dwie wybrane bazy funkcji ortogonalnych: baze Fouriera
i baze Laguerre’a.

Baza Fouriera

Element o indeksie ¢ bazy Fouriera ma postac

1 dla 7 = 0,
Fi(t) = sin((i;—l)wt) dlai=1,3,5,..., w=2%,
cos (fwt) dini="246,:..;

a dowolna funkcja moze zostaé przyblizona w tej bazie poprzez odpowiedni dobér wspél-
czynnikéw a = (ao, . . ., ak)

k
fr(t) = Z a;Fy(t). (3.3)

Baza Fouriera jest ortogonalna na przedziale (0,7, a kilka kolejnych elementéw bazy
wykreslono na rysunku 3.1.

Baza Laguerre’a

Elementy bazy wielomianéw Laguerre’a moga zosta¢ wyznaczone korzystajac z formuty
Rodriguesa [19)

_ exp(t) d' i
Wt) = —5—g5 (exp(—t)t*).
Aby zapewni¢ ortogonalno$é bazy Laguerre’a, niezbedne jest przemnozenie powyzszych
elementéw przez pewien czynnik

Li(t) = exp(—t/2)li(t).
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Ostatecznie, dowolna funkcja moze zostaé¢ przyblizona przez skoriczony szereg wykorzy-
stujgcy wielomiany Laguerre’a z odpowiednimi wspoétczynnikami a = (ay, .. ., ax)

k
fi(t) = ZaiLi(t)- (3.4)

Baza Laguerre’a ma wiekszy obszar ortogonalnosci [0, c0) niz baza Fouriera. W razie
potrzeby mozna przeskalowaé czas, aby zmienié¢ tempo zbieznosci elementéw bazy. Kilka
pierwszych elementéw bazy Laguerre’a pokazano na rysunku 3.1.

Fi(v)
1.0

0.5

Rysunek 3.1 Kilka pierwszych elementéw bazy Fouriera — strona lewa, bazy Laguerre’a
— strona prawa

3.2 Dyskretna wersja algorytmu planowania ruchu

Do wyznaczenia rozwigzania réwnania rézniczkowego definiujacego algorytm planowania
ruchu (2.15) lub algorytmy z zadaniami dodatkowymi (2.20) i (2.26) mozna stosowaé
roézne schematy obliczeniowe, sposréd ktérych wykorzystamy metode Eulera. W tym celu
definiujemy réwnania réznicowe bedace odpowiednikami cigglych réwnan rézniczkowych.
Wersja dyskretna podstawowego algorytm planowania ruchu moze zostaé wyrazona przez

o1 (t) — us(t) = — (ij),T(uﬁ(-))ew)) ®), 9=123,.... (3.5)

Korzystajac z parametrycznej reprezentacji (3.1), mozemy uzyskaé dyskretng i parame-
tryczng wersje algorytmu planowania ruchu

o(® + 1) = c(9) = 1T p(c(9))e(®).

W podobny sposob, mozemy zdefiniowaé dyskretne i parametryczne wersje wszystkich
algorytmoéw planowania ruchu wyprowadzonych w rozdziale 2.
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3.3 Nieparametryczna reprezentacja konfiguracji
endogenicznej

Istnieje takze mozliwo$é uzyskania rozwigzania zadania planowania ruchu bez wprowa-
dzania parametrycznej, skonczeniewymiarowej reprezentacji funkcji sterujacych. Takie
podejscie jest zwigzane ze wzrostem czasu obliczen, jednak z drugiej strony uzyskiwa-
ne rozwigzania (przebieg funkcji sterujacej) nie sa zalezne od wyboru bazy.

Przyjrzyjmy sie dokladniej algorytmowi planowaniu ruchu wyrazonego przez (2.15).
W tym podejsciu réwniez bedziemy korzystali z metody Eulera, co prowadzi do dyskret-
nej wersji algorytmu (3.5). Kazda kolejna iteracja algorytmu wyznaczy kolejng funkcje
sterujaca wedlug wzoru

wosa(t) = us(t) — v (JE 2 (wa()e(®)) ¢),

Zgodnie z (2.9), do wyznaczenia pseudoodwrotnosci jakobianu Jj’s r(u(+)) niezbedna jest
macierz ®(T,t). W zadaniu wlasciwego planowania ruchu zawsze pierwszy argument ma-
cierzy ®(T,t) jest staly. Mozna to wykorzysta¢ przy wyznaczaniu tej macierzy. W kaz-
dym kroku ¢ wyznaczamy trajektorie z(t) i ®(¢) rozwiazujac dwa réwnania rézniczkowe
o wspolnej zmiennej niezaleznej ¢

di(f) = f(z(t)) + G(z(t))us(t),
do@) _ =
— = —TOAW),

gdzie ®(t) = ®(7,t) [45]. Nastepnie, uaktualniamy sterowanie

ugs1(t) = ua(t) = v (V2 2(ua())e(®) ) (¢) =
T

us(t) — BT ()T ()CT(T) (cm JECLOLCIHe dsch)_ (Ka(T) - va).

Ostatecznie, sprawdzamy warunek stopu |le(?)|| = ||k(z(T)) — vall = [|k(@zo,r(u(:))) —
Yall < emax 1 W przypadku jego niespelnienia rozpoczynamy cala procedure od poczatku.
Warunkiem poczatkowym algorytmu sg poczatkowe funkcje sterujace ugy—o(t).
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Przyklady numeryczne

W niniejszym rozdziale przedstawimy symulacyjne rozwigzania zadania planowa-
nia ruchu uktadéw robotycznych z deficytem napeddéw. Wszystkie wyniki zostaty
uzyskane przy pomocy programu MATHEMATICA. Pokazemy wyniki dzialania algorytmu
z réznymi zadaniami dodatkowymi, dokonamy takze poréwnania algorytmu egalitarnego
z algorytmem z priorytetowaniem. Zaprezentujemy réwniez wyniki symulacji algorytmu
planowania ruchu przy niepelnej znajomosci modelu. Ponadto, rozwiazemy zadanie plano-
wanie ruchu przy nieparametrycznej reprezentacji funkeji sterujacych, oraz wykorzystamy
zadanie dodatkowe ograniczajgce wartosci zmiennych stanu do uzyskania rozwigzania za-
dania reprodukcji trajektorii. Wszelkie modele uzyte w biezacym rozdziale zostaly opisane
w dodatku C. Dla kazdej symulacji bedziemy podawaé parametry algorytmu, dla zaosz-
czedzenia miejsca wytlumaczmy teraz zastosowane oznaczenia

e x5 = z(0) — stan poczatkowy,

e 1, — zadana warto§é wyjscia,

e T — czas trwania ruchu,

e v — wektor wspélczynnikéw zbieznosci,

e [ — macierz skalujgca blad przy algorytmie egalitarnym,

U(t) — macierz funkeji bazowych reprezentacji sterowania,

e ¢(0) — poczatkowy wektor wspolczynnikéw sterowan.

Jakos¢ rozwiazan symulacyjnych uzyskiwanych przez algorytmy planowania ruchu za-
lezy w sposob istotny od doboru parametréw algorytmu. Ponizej opiszemy wplyw tych
parametréow na prace algorytmu i podamy kilka praktycznych wskazéwek pomagajacych

w doborze ich wartosci.

Dobér liczby k elementéw bazy funkcji ortogonalnych

W celu oméwienia kwestii liczby elementéw bazy wréémy raz jeszcze do analogii po-
miedzy podejSciem endogenicznej przestrzeni konfiguracyjnej a metodologia zaczerpnieta
z teorii manipulatoréw stacjonarnych. Zgodnie z [27], redundancja manipulatora moze zo-
sta¢ wykorzystana do realizacji zadan dodatkowych. Liczba km uzytych funkeji bazowych
w podejéciu endogenicznym odgrywa role analogiczng do liczby zmiennych przegubowych
w teorii manipulatoréw. Zatem, aby realizowa¢ zadanie planowania ruchu z zadaniami
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dodatkowymi, liczba km uzytych funkcji bazowych musi byé co najmniej réwna sumie
wymiaréw przestrzeni zadaniowych wszystkich zadan. Taka zalezno$¢ mozemy opisaé na-

stepujaco

z

km > Zﬁ,

i=1

gdzie r; = dim %e(49) jest wymiarem przestrzeni zadaniowej i-tego zadania. Uzycie wiekszej
liczby elementéw bazy pozwala uzyskaé¢ mniejsze bledy zadan, oraz niejednokrotnie powo-
duje zmniejszenie liczby krokéw potrzebnych do otrzymania rozwigzania. Wpltyw liczby
funkeji bazowych przedstawimy w symulacji zamieszczonej w podrozdziale 4.1.2. Zwiek-
szenie liczby km pozwala czesto uniknaé probleméw numerycznych podczas wyznaczania
pseudoodwrotnosci jakobianu. Podejécie przedstawione w podrozdziale 3.3, w ktérym nie
parametryzujemy funkcji sterujacej pozwala na uzyskanie ,nieskornczonej” redundancji, co
powinno skutkowaé poprawg uzyskiwanych wynikéw.

Doboér wspoétczynnika zbieznos$ci y

Zgodnie z formulg (2.13), wspoélczynnik <y jest odpowiedzialny za szybkos$é zbieznosci
btedu e do zera. Nietrudno zauwazy¢, ze przy metodzie Eulera rozwigzywania réwnania
rozniczkowego algorytmu, wspolczynnik v wplywa takze na dlugo$é kroku algorytmu.
Zbyt niska warto$é wspolezynnika powoduje zbyt wolng zbieznos$é algorytmu, ktory staje
sie niepraktyczny. Z drugiej strony, zbyt duza warto$¢ sprawia, ze otrzymanie rozwia-
zania z zadang dokladnoscia bedzie niemozliwe. Dobér wartosci v powinien by¢ zatem
uzalezniony od dynamiki réwnania algorytmu (2.15), ktéra zalezy od dynamiki uktadu
robotycznego i od wybranej odwrotnosci jakobianu. Badania symulacyjne pokazuja [37],
ze mozliwe jest réwniez uzaleznienie wspotczynnika od kroku (19); umiejetne dobranie tej
zalezno$ci pozwala uzyskaé szybsza zbieznosé algorytmu niz przy uzyciu statej wartosci
7. Jezeli potraktujemy parametr v jako dlugo§é kroku w algorytmie gradientowym, to
zwykle przyjmuje sie wartoéci 0 < v < 1. Niemnie]j jednak, w zaleznosci od konkretnego
zadania, przyjecie wartosci v > 1 niejednokrotnie przynosi lepsze rezultaty. W algorytmie
z priorytetowaniem zadan wspo6lczynnik v = (71, ...,7,) jest wektorem, w ktorym kolejne
wspolrzedne v; odpowiadaja kolejnym zadaniom S;. W takim przypadku, dobér «; okresla
wplyw poszczegblnych zadan sktadowych na rozwigzanie uzyskane za pomoca algorytmu
z priorytetowaniem.

Dobor sterowania poczatkowego

Od przedstawianych tutaj algorytmoéw planowania ruchu mozemy oczekiwac jedynie lokal-
nej zbieznosci. Uzyskanie rozwiazania zadania zalezy od doboru poczatkowego sterowania.
W przypadku parametrycznej reprezentacji funkcji sterujgcej, sterowanie poczatkowe za-
dajemy poprzez parametry sterowania uy—o(t) = ¥(t)c(9=0). Natomiast w przypadku,
gdy nie korzystamy z parametrycznej reprezentacji, poczatkowe sterowanie definiujemy
jako arbitralnie wybrang funkcje ug—o(t) = uo(t). Badania symulacyjne wskazujg, Ze nie-
umiejetne dobranie sterowania poczatkowego moze byé przyczyna nie uzyskania rozwig-
zania zadania planowania ruchu. Zwykle, wybranie poczatkowego sterowania w sposéb,
ktory umozliwi ruch uktadu w kierunku y; od pierwszego kroku pozwala szybciej otrzy-
mac¢ zadowalajace rozwigzanie. Niemniej jednak, jak pokazemy w symulacji (podrozdziat
4.1.3), wybranie poczatkowego sterowania, ktére jest niezgodne z tg reguly takze pozwala
uzyska¢ rozwigzanie.
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Czas trwania ruchu

Jezeli stawiane zadanie planowania ruchu nie definiuje w jakim czasie ma zostaé zreali-
zowany ruch uktadu, nalezy dobraé taki okres czasu 7', ktéry nie bedzie wymuszat zbyt
duzych lub zbyt malych predkosci uktadu. Horyzont czasowy 7" powinien zatem by¢ uza-
lezniony od dynamiki uktadu robotycznego i od zasiegu ruchu ||k(zo) — yall.

4.1 Symulacyjne wyniki planowania ruchu wybranych
uktadoéw z r6znymi zadaniami dodatkowymi

W pierwszym podrozdziale przeprowadzimy symulacje algorytmu planowania ruchu dla
wybranych uktadéw robotycznych z deficytem napedéw z r6znymi zadaniami dodatkowy-

mil.

4.1.1 Minimalizacja energii sterowania przy planowaniu ruchu
statku

Jako pierwszy wynik zaprezentujemy planowanie ruchu statku (patrz dodatek C.1). Przed-
stawimy wyniki dzialania dwéch algorytméw. Pierwszy skladacé sie bedzie tylko z gtéwnego
zadania (planowania ruchu), a drugi bedzie zawieral zadanie gléwne, wlasciwe planowa-
nie ruchu i zadanie dodatkowe, o nizszym priorytecie, polegajace na minimalizacji ener-
gii sterowania. Pozwoli to zaobserwowaé wplyw drugiego zadania na uzyskiwane wyniki.
Planowanie odbywa si¢ w przestrzeni zadaniowej y = (n,e, ), a jako punkt koncowy
wybraliSmy wspolrzedne y4 = (20000, 20000, —7/2), ktore znajduja sie stosunkowo dale-
ko od zadanego punktu poczatkowego zo = (n, e, 9, u,v,r) = (0,0,0,4,0,0) (oznaczenia
wyjasniono w dodatku C). Czas symulacji wynosi 7" = 7000, a wspolczynnik zbieznosci
pierwszego zadania Yy = 0.1. Wyznaczane funkcje sterujace beda reprezentowane przez
skonczony szereg Fouriera (3.3) dla k = 10, a poczatkowy wektor wsp6lczynnikéw stero-
wania jest rowny c(0) = (300000, 0;x10, 0.01,01x10). Jak wspomnieli§my, przeprowadzimy
dwie symulacje, pierwsza bez drugiego zadania, gdzie 2y = 0 i drugg z dodatkowym
zadaniem minimalizacji energii sterowania, ze wspolczynnikiem %y = 0.1. Macierz wag
wybraliSmy réwna o = I,,,, co znaczy, ze oba sterowania majg by¢ minimalizowane w tym
samym stopniu. Warunkiem stopu w obu algorytmach jest zmniejszenie si¢ normy bledu
glownego zadania ponizej wartosci ||’e|| < 1, przy czym nalezy zaznaczyé, ze blad orien-
tacji spadal znacznie ponizej tej wartosci. Ponadto, kat skretu steru statku nie powinien
przekraczaé wartosci |uz| < 10° podczas trwania ruchu. Wyniki symulacji zostaly pokaza-
ne na rysunkach 4.1-4.5. Na rysunku 4.1 przedstawiliémy $ciezke ruchu i zaznaczyliémy
sylwetke statku w odstepie co 1000 jednostek czasu. Z rysunkéw 4.3 i 4.4 wynika, ze al-
gorytm w obu badanych przypadkach prawidtowo rozwiazal zadanie planowania ruchu.
Na rysunku 4.2 zostaly przedstawione funkcje sterujace. Algorytm uwzgledniajacy dru-
gie zadanie wyznaczy! ruch charakteryzujacy sie mniejsza energia sterowania. Ponadto,
sterowanie uy odpowiadajace katowi steru w przypadku z zadaniem dodatkowym nie prze-
kracza wartosci granicznych (linia przerywana), w przeciwieristwie do funkcji sterujacej
wyznaczone] przez algorytm przy 2y = 0. Predkoéé zbiegania sie algorytmu rozwiazuja-
cego wlasciwe planowanie ruchu i algorytmu rozwiazujacego zadanie planowania ruchu
z zadaniem dodatkowym jest podobna co pokazuje rysunek 4.5. Inne wyniki dzialania
algorytmu planowania ruchu statku moga zostaé znalezione w [35, 36]. Z przedstawionej
symulacji wynika, ze proponowany algorytm pomys$lnie rozwigzuje zadanie planowania ru-
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chu wraz z jednoczesnym minimalizowaniem energii sterowania. Ponadto pokazali$my, ze
zadany punkt docelowy y4 = (20000, 20000, —7/2) moze by¢ znacznie odlegly od punktu
poczatkowego yo = k(zo) = (0,0,0), i czas ruchu moze by¢ bardzo dtugi.
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= 10000 1
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5000 1
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Rysunek 4.1 Sciezka ruchu statku

310000 ; ' i , : : : o2f T RORSARRISANAN
300000
290000: & A ~ R
'§ 280000 F- . . - X ]
270000 F ' s :
260000 - = L m—y=0 ]
E ; . — 72=0.1
250000 . ] H p i ] ; A . i i i i i i .
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
t t
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Rysunek 4.3 Trajektorie zmiennych stanu (potozenia)
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Rysunek 4.4 Trajektorie zmiennych stanu (predkosci)
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Rysunek 4.5 Zbieznosé algorytmoéw (blad wlasciwego planowania ruchu)

4.1.2 Minimalizacja wartosci zmiennych stanu przy planowaniu
ruchu robota balansujacego

W kolejnej symulacji przedstawimy planowanie ruchu przy obecnosci zadania dodatko-
wego polegajgcego na minimalizacji wartosci zmiennej stanu. Modelem testowym bedzie
robot balansujacy opisany w dodatku C.2. Dla takiego robota zaproponujemy algorytm
planowania ruchu utworzony z trzech zadan [38]. Pierwsze zadanie, gltéwne, to zadanie
planowania ruchu. Drugim zadaniem bedzie utrzymywanie zmiennej odpowiedzialnej za
wychylenie korpusu robota w poblizu wartosci zerowej, tak aby robot utrzymywal pozy-
cje pionows. Trzecie zadanie bedzie polegalo na minimalizacji energii sterowania. Kazde
kolejne zadanie ma nizszy priorytet od poprzedniego. Dodatkowo, pokazemy tutaj wptyw
liczby funkcji bazowych reprezentujacych sygnaly sterujace na wartosci btedéw zadanio-
wych. W tym celu, przedstawimy wyniki symulacji dla dwoéch réznych wymiaréw wektora
wspolczynnikow dimc = 34 i dim ¢ = 42. Chcemy, aby algorytm wyznaczy! sterowanie,
ktore zapewni ruch robota od stanu spoczynkowego (zerowe predkosci i wahadlo w pionie)
zapoczatkowany w punkcie (0,0) z orientacjg # = 0 do stanu spoczynkowego w punkcie
za = (M1, M2, M3, 2,9,0,a) = (0,0,0,1,1,7/4,0) (patrz dodatek C) w czasie T' = 2. Obli-
czenia wykonywane sa do momentu uzyskania wartosci normy bledu pierwszego zadania
el < 107°. Dodatkowo, zadamy aby kat wychylenia korpusu robota balansujacego nie
przekraczal |a| < 20° & 0.35, a energia sterowania byta mozliwie najmniejsza. Do utwo-
rzenia algorytmu realizujgcego przedstawione zadania wybraliSmy macierz wag dla algo-
rytmu minimalizacji zmiennych stanu 6 = diag{0, 0, 0,0, 0,0, 1}, co oznacza minimalizacje
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tylko ostatniej zmiennej stanu o oraz macierz wag o = I, prowadzacg do réwnorzednego
traktowania obu sterowan. Wspolczynnik zbieznosci dla trzech kolejnych zadan wynosi
~v=(0.1,0.1,0.5). Kazda z dwoch funkcji sterujacych jest reprezentowana przez skoriczo-
ny szereg wielomianéw Laguerre’a (3.4) przy k = 17 w pierwszym przypadku oraz k = 21
w drugim. Poczatkowe wartosci wektora wspoétczynnikéw c(0) = (0.1,0;1x16,0.1,01x16)
i ¢(0) = (0.1,01x20,0.1,01x20). Seria rysunkéw 4.6-4.10 przedstawia efekty symulacji.
W obu badanych przypadkach uzyskane $ciezki ruchu robota sa do siebie podobne (ry-
sunek 4.6). Analizujac trajektorie robota przedstawione na rysunkach 4.7 i 4.8 mozemy
zauwazyé, ze dla réznych ilosci funkcji bazowych, zadanie wtasciwego planowania ruchu
jest zrealizowane pomyslnie. Wszystkie wspoélrzedne stanu osiagaja zadane polozenie z4
w zadanym czasie T'. Istotne réznice pomiedzy rozpatrywanymi przykladami pojawiaja sie
w jakoéci rozwigzania drugiego i trzeciego zadania dodatkowego. W przypadku z mniej-
szym wymiarem wektora wspolczynnikéw sterowania, zmienna a(t) odpowiedzialna za
wychylenie korpusu robota przekracza dozwolong wartos¢ (linia kreskowo-kropkowana na
rysunku 4.7), w drugim przypadku przebieg a(t) zawiera si¢ w ustalonych granicach.
Ponadto, uzyta energia sterowania jest mniejsza dla algorytmu z wieksza liczbag funkeji
bazowych, co mozna zaobserwowaé na rysunkach 4.9 oraz 4.10. Mozna zatem wyciagnaé¢
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Rysunek 4.7 Trajektorie zmiennych stanu (polozenia)
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wniosek, ze dzieki zwiekszeniu wymiaru reprezentacji funkcji sterujacych algorytm ma do
dyspozycji bardziej ré6znorodne funkcje, co przektada sie na wzrost efektywnosci otrzymy-
wanych rozwigzan. Dodatkowo, takie zwiekszenie swobody zazwyczaj sprzyja zmniejszeniu
liczby krokéw algorytmu, co widaé na rysunku 4.10. Mankamentem takiego rozwigzania
jest zwiekszenie nakladéw obliczeniowych dla pojedynczego kroku algorytmu. Na uwage
zashuguje takze fakt, ze tutaj realizujemy az trzy zadania jednoczesnie.
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Rysunek 4.8 Trajektorie zmiennych stanu (predkosci)
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Rysunek 4.10 Zbiezno$¢ algorytmu (dim ¢ = 34 — strona lewa, dim ¢ = 42 — strona prawa)
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4.1.3 Planowanie ruchu poduszkowca z unikaniem przeszkoéd

Ostatnim zadaniem analizowanym w tym rozdziale bedzie planowanie ruchu modelu po-
duszkowca z unikaniem przeszkod. Szczegély dotyczace modelu testowego zamiesciliSmy
w dodatku C.3. Zadanie bedzie polegalo na znalezieniu funkcji sterujacej, ktéra przepro-
wadzi robota z punktu poczatkowego do zadanego punktu koncowego, tak aby Sciezka
ruchu nie kolidowala z przeszkodami. Do rozwigzania tego zadania uzyjemy algoryt-
mu z priorytetowaniem zadan. Rozmieszczenie przeszkéd przedstawiliSmy na rysunku
4.11. Obszar ruchu jest obszarem kwadratowym ograniczonym funkcjami z = y = 15,
r = y = —15, a na $rodku znajduje si¢ przeszkoda w ksztalcie podkowy. W czasie
T = 0 robot stoi w punkcie otoczonym przeszkoda i jest zwrécony tylem do ,wyjécia”
podkowy. Punkt zadany, znajduje si¢ przed robotem, lecz jest przestoniety przeszkods.
Zaréwno w punkcie poczatkowym jak i w zadanym zalozyliSmy zerowe predkosci. Moze-
my zatem napisaé¢ zo = (z,,6,u,v,7) = (0,0,7/2,0,0,0) oraz z4 = (0,10,7/2,0,0,0),
oznaczenia wg dodatku C. Czas ruchu wynosi 7' = 20. Funkcje sterujace reprezentujemy
w postaci skoriczonego szeregu Fouriera (3.3) dla k£ = 28, a poczatkowe wspoélczynniki ste-
rowania c(0) = (0.15, 01x2s, 0.15, 01x28). Nalezy zwrdci¢ uwage, ze poczatkowe sterowanie
odpowiada ruchowi w kierunku kolizyjnym. Nie jest tutaj konieczne ,wskazanie” kierunku
wyjazdu z przeszkody. Szybkosé zbieznosci obu bledéw algorytmu reguluje wspoétczynnik
v = (0.1, 2), a obliczenia sg prowadzone do momentu uzyskania wartosci bledu pierwszego
zadania ||’e|| < 107°. Gl6wne zadanie, wlasciwe planowanie ruchu, jest realizowane z zada-
ng dokladnoscia, co mozna zaobserwowa¢ na rysunku 4.12. Wszystkie wspoétrzedne stanu
osiggajg zadane wartoéci. Sciezka ruchu zostata przedstawiona na rysunku 4.11; ruch po-
duszkowca odbywa sie w sposob niekolidujacy z przeszkodami. Sylwetka robota zostata
zaznaczona w odstepach co 2 jednostki czasu. Rysunek 4.13 przedstawia przebieg funkcji
sterujacych i zbieznosé¢ algorytmu. Warto$¢ odwzorowania konicowego zadania drugiego
osiaga warto$é rzedu 1072, tak wiec uzyskany ruch jest bezkolizyjny.

15F ]

10 15

Rysunek 4.11 Rozmieszczenie przeszkéd oraz $ciezka ruchu robota
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Rysunek 4.13 Przebiegi funkcji sterujacych — strona lewa, zbieznosé algorytmu — strona
prawa

4.2 Por6ownanie algorytmu egalitarnego z algorytmem
z priorytetowaniem

W biezacym rozdziale przeprowadzimy poréwnanie efektywnosci dwoch algorytméw reali-
zujacych zadania dodatkowe. Poréwnamy algorytm egalitarny, wprowadzony w rozdziale
2.2.1, i algorytm z priorytetowaniem zadan, z rozdziatu 2.2.2. Dla uproszczenia zapiséw
przyjmijmy oznaczenie (-), dla obiektéw zwigzanych z algorytmem z priorytetowaniem
zadan, (-). dla obiektéw zwigzanych z algorytmem egalitarnym oraz (-), dla obiektoéw
zwigzanych z algorytmem bez zadnych dodatkowych zadan. Modelem testowym bedzie
poduszkowiec (dodatek C.3). Przeprowadzimy poréwnanie obu algorytméw z kilkoma ze-
stawami zadan dodatkowych, ktére oznaczymy kolejno

e S; - wlasciwe planowanie ruchu (zadnie gléwne),

e S, - zadanie ograniczenia energii sterowania,

e S3 - zadanie ograniczenia wybranej zmiennej stanu: predkosci poprzecznej (v — 0),
e S, - zadanie omijania przeszkéd w dwuwymiarowej przestrzeni potozen robota.

a symulacje beda przeprowadzone dla nastepujacych zestawow zadan: tylko Sy, S11Ss, S;
1S3 oraz Sy 1 .S;. Wigkszosé wspolczynnikéw symulacji pozostaje niezmienna dla wszyst-
kich obliczenn. Punkt startowy wybraliémy jako zo = (0,0,0,0,0,0), a punkt docelowy
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ya = zq4 = (5,5,7,0,0,0) ma zosta¢ osiagniety w czasie ruchu 7" = 5. Funkcjami ba-
zowymi sy elementy szeregu Fouriera (3.3) dla k = 6, a poczatkowy wektor sterowarn
¢(0) = (0.1,01x6,0.001,0;%6). W symulacji ograniczenia energii sterowania wybraliSmy
macierz wag réowng o = I, czyli oba sterowania traktujemy réwnorzednie. Macierz
wag w algorytmie ograniczenia warto$ci zmiennej stanu wybrano tak, aby minimalizo-
waé zmienng v(t) (predkos¢é poprzeczng, dodatek C), zatem 6 = diag{0,0,0,0,1,0}.
W algorytmie omijania przeszkéd obszar ruchu wraz z przeszkodami ilustruje rysunek
4.14. W zadaniach rozwigzywanych algorytmem egalitarnym wspoétczynnik zbieznosci jest
rowny v = 0.2. Taka sama warto$¢ wybraliSmy dla wspélczynnika zbieznosci zadania
gléwnego w algorytmie z priorytetowaniem *y = 0.2. Dla kolejnych zadari dodatkowych
wspbélezynniki przyjmuja wartoéci 2y = 2, ¥y = 8, &y = 2. W algorytmie egalitarnym
wplyw poszczegélnych zadan definiujg macierze skalujace blad, ktére dobieramy naste-
pujaco E = blokdiag{I,,0.0025I,,} dla zestawu S; i S;, E = blokdiag{I,,,0.11,,} dla
zestawu S i S5 oraz E = blokdiag{0.041,,,0.0031,,} dla zestawu S; i Sy. Zadamy, aby btad
algorytmu wlagciwego planowania ruchu byl ponizej wartosci ||e|| < 107°. W kolejnych
podrozdzialach przedstawimy wyniki poszczegélnych symulacji, z ktérych wyciggniemy
szereg wnioskow.

Rysunek 4.14 Rozmieszczenie przeszkod

4.2.1 Wyniki symulacji zadania S;

Seria rysunkow 4.15-4.17 przedstawia wyniki symulacji planowania ruchu zlozonego tylko
z zadania wlasciwego planowania ruchu poduszkowca. Sciezke ruchu robota zamiescili$my
na rysunku 4.15, na ktorym takze zaznaczyliémy sylwetke modelu w chwilach odlegltych
0 0.5 jednostki czasu. Przebiegi funkc;ji sterujacych zostaly przedstawione na rysunku 4.17.
Z rysunku 4.16 ilustrujacego trajektorie stanu mozna wywnioskowac, ze zadanie plano-
wania ruchu zostalo rozwigzanie prawidlowo. Rysunek 4.17 przedstawia takze zbieznosé
algorytmu. Mozna zauwazy¢, ze algorytm potrzebuje nieco powyzej 60 krokéw do rozwig-
zania tego zadania. Przedstawione tutaj wyniki bedg stanowity materiat do poréwnan.
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Rysunek 4.15 Sciezka ruchu poduszkowea (tylko Si)
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Rysunek 4.17 Przebiegi funkcji sterujacych — strona lewa, zbieznoéé¢ algorytmu — strona
prawa (tylko Si)
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4.2.2 Wyniki symulacji zadan S; i Sy

Kolejny zestaw sktada sie¢ z dwoch zadain, zadania wlasciwego planowania ruchu i dodat-
kowego zadania minimalizacji energii sterowania. Bedzie on rozwigzywany przy pomocy
dwéch algorytméw, algorytmu egalitarnego i z priorytetowaniem zadan. Wyniki uzyskane
w symulacjach ilustruja rysunki 4.18-4.22. Oba algorytmy poprawnie rozwigzujg pierwsze
zadanie, co mozna zaobserwowaé na rysunkach 4.20 i 4.21. Niemniej jednak, $ciezki ru-
chu robota nieco sie réznig (rysunek 4.18). Istotne réznice w wynikach uzyskanych z obu
algorytméw pojawiaja sie w rozwigzaniu zadania dodatkowego. Na rysunku 4.19, oprécz
funkcji sterujgcych wyznaczonych przez oba algorytmy, zamiesciliSmy takze funkcje wy-
znaczone przez algorytm rozwigzujacy zadanie S;. Mozna zauwazy¢, ze zaréwno algorytm
egalitarny, jak i algorytm z priorytetowaniem zadan wyznaczyly sterowanie o mniejszej
energii niz wyznaczone w podrozdziale 4.2.1. Fakt ten mozna takze zaobserwowac na wy-
kresie zbieznosci bledu % zamieszczonym na rysunku 4.22. Z tego samego rysunku mozna
wywnioskowaé, ze algorytm z priorytetowaniem uzyskal mniejszg energie sterowania niz
algorytm egalitarny. Z drugiej strony, algorytm egalitarny potrzebowal okoto 20 krokéw
mniej na poprawne rozwiazanie postawionego zadania.
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Rysunek 4.19 Przebiegi funkcji sterujacych (S7 i Ss)
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4.2.3 Wyniki symulacji zadan S; i S3

Zestaw zadan skladajacy sie z zadan S; i S3 ma na celu, poza wlasciwym zadaniem plano-
wania ruchu polegajacym na osiagnieciu stanu x4 w czasie 7', zminimalizowanie wybranej
zmiennej stanu. W tym przypadku chcemy, aby zmienna stanu, v(t) — predkosé poprzecz-
na, przyjmowala wartosci bliskie zeru. W praktyce oznacza to, ze poduszkowiec pod wpty-
wem wyznaczonych sterowan nie powinien poruszaé si¢ bokiem. Z rysunkéw 4.25 i 4.26
mozna wnioskowaé, ze zadanie planowania ruchu zostalo rozwiazane poprawnie przez oba
algorytmy. Obserwujac $ciezki ruchu pokazane na rysunku 4.23 i trajektorie z rysunkéw
4.25 i 4.26 mozna wywnioskowacé, ze robot na poczatku zmienia orientacje wykorzystujac
predko$¢ obrotowa r(t), nastepnie porusza si¢ po prostej z predkoscig wzdtuzng u(t) i na
koricu znowu zmienia orientacje. Fakt minimalizacji zmiennej v(t) widaé takze na rysunku
4.26. Podobne przebiegi funkcji sterujacych przedstawione na rysunku 4.24 sugeruja, ze
oba algorytmy wyznaczyly podobne ruchy. Tak postawione zadanie planowania okazalo
sie stosunkowo trudne do rozwigzania przez oba algorytmy, widaé¢ to w niemonotonicznych
przebiegach zbieznosci algorytméw na rysunku 4.27. Przyczyna uzyskiwanych przebiegow
zbieznodci jest kwestia doboru wspoétczynnika v, ktérego wybér w tym miejscu byt kom-
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Rysunek 4.23 Sciezka ruchu poduszkowca (S i Ss)
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Rysunek 4.24 Przebiegi funkcji sterujacych (S i S3)
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Rysunek 4.27 Zbieznos¢ algorytmu (S i S3)

promisem pomiedzy dtugoscia kroku i szybkoscig zbieznosci. Oba algorytmy osiagnety
podobny poziom bledu zadania ||%|| i w obu przypadkach uzyskaliémy rozwiazanie po
ponad 1000 krokéw algorytmu.

4.2.4 Wyniki symulacji zadan S; i Sy

Ostatnie dwie symulacje dotycza zadania planowania ruchu z omijaniem przeszkéd. Po-
dobnie jak poprzednio, uzyskamy rozwiazanie zadania przy pomocy algorytmu egalitar-
nego i algorytmu z priorytetowaniem zadan. Obszar ruchu ograniczyliémy kwadratem,
ktorego boki stanowia funkcje x = y = 6.5 oraz x = y = —1.5, a wewnatrz umieéciliSmy
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dwie koliste przeszkody o $rodkach w punktach (1.5,1.5) i (3.5,3.5). Rysunki 4.28-4.33
obrazujg uzyskane wyniki symulacji. Sciezka ruchu robota mobilnego jest przedstawiona
na rysunku 4.28, zaznaczyliSmy tam takze przeszkody oraz sylwetke poduszkowca w od-

6 o sm—— (X,)')p 7
i . (x:)’)e 1

Rysunek 4.30 Trajektorie zmiennych stanu — polozenia (S; i Sy)
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Rysunek 4.32 Zbieznosé¢ algorytmu (S7 i Sy)
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Rysunek 4.33 Przebieg funkeji przeszkod h(z) wzdluz trajektorii x(t)

stepie co 0.5 jednostki czasu. Widaé, ze algorytmy wyznaczyly rézne Sciezki. Kolejny
rysunek 4.29 przedstawia funkcje sterujace. Z rysunkéw 4.30 i 4.31 wynika, ze zadanie
wlasciwego planowania ruchu zostalo rozwigzane poprawnie. Na rysunku 4.33 przedsta-
wiliémy przebieg funkeji przeszkoéd h(z) wzdluz trajektorii z(t). Na podstawie tego wykre-
su mozna stwierdzi¢, jak blisko przeszkoéd przebiega wyznaczona trajektoria; im wieksza
wartos¢ funkcji h(z), tym robot znajduje sie blizej przeszkody. Wykorzystujac analogie
funkcji przeszkéd do uksztaltowania terenu wykres przedstawia wysokosé wzdtuz trajek-
torii. W tym przypadku lepiej wypada algorytm z priorytetowaniem, niemniej jednak
algorytm egalitarny takze zapewnia omijanie przeszkéd. Rysunek 4.32 prezentuje zbiez-
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no$é algorytméw. W symulacji nie zatrzymywaliémy pracy algorytmu, po zmniejszeniu
sie bledu zadania gléwnego ponizej zadanej wartoéci, ale pozwoliliémy na dalszy spadek
bledu zadania omijania przeszkod. W efekcie, zaréwno algorytm egalitarny jak i algorytm
z priorytetowaniem uzyskaty zblizone wartosci odwzorowania koricowego zadania Sy.

4.2.5 Podsumowanie

W poprzednich podrozdzialach przedstawiliSmy rozwigzania trzech réznych zestawow za-
dan, z ktérych kazde zostalo uzyskane algorytmem egalitarnym i algorytmem z priory-
tetowaniem zadani. W tabeli 4.1 zestawiliémy wartosci odwzorowar koricowych (bledow
zadaniowych). Odwzorowanie konicowe moze tutaj peini¢ role miary jakosci, im mniejsza
jego wartosé, tym lepiej algorytm rozwigzuje dane zadanie. Jak si¢ mozna byto spodziewac,
algorytmy dedykowane poszczeg6lnym zadaniom rozwigzaly je zdecydowanie lepiej niz po-
zostale. Korzystajac z wartosci zawartych w tabeli, podsumujmy poréwnanie algorytmu
egalitarnego z algorytmem z priorytetowaniem. Zadanie planowania ruchu z ogranicze-
niem energii sterowania lepiej rozwigzal algorytm z priorytetowaniem; warto§¢ odwzoro-
wania jest mniejsza niz w przypadku algorytmu egalitarnego. Z drugiej strony, algorytm
egalitarny potrzebowal mniejszej liczby krokéw do rozwigzania postawionego zadania.
Rozwigzanie zadania planowania ruchu z jednoczesng minimalizacja zmiennej stanu wy-
znaczone przez algorytm egalitarny charakteryzuje si¢ mniejszg wartoscig odwzorowania
koricowego niz w przypadku algorytmu z priorytetowaniem. Dodatkowo, algorytm zna-
lazl rozwigzanie w mniejszej liczbie krokéw. Ostatnie zadanie, polegajace na znalezieniu
funkeji sterujacej, ktora przeprowadzi poduszkowiec do punktu koricowego z omijaniem
przeszkod, zdecydowanie lepiej rozwigzal algorytm z priorytetowaniem. Zaréwno wartosé
odwzorowania koricowego jak i liczba potrzebnych krokéw jest mniejsza niz w przypadku
algorytmu egalitarnego. Reasumujac, w powyzszym poréwnaniu trudno o jednoznacz-
ne wskazanie, ktory algorytm jest lepszy. Oba algorytmy poprawnie rozwiazuja zadanie
planowania ruchu, a réznice miedzy uzyskiwanymi wynikami nie sg duze. Istotng réz-
nice stanowi natomiast sposéb dziatania obu algorytméw. Algorytm egalitarny traktuje
wszystkie zadania jako réwnorzedne. z tego powodu mozliwe sa dwa wyniki: albo uzyska-
my poprawne rozwiazanie wszystkich zadan sktadowych, albo nie uzyskamy go w ogéle.
Nieco inaczej dziala algorytm z priorytetowaniem zadan. Tutaj rozwigzanie zadania o niz-
szym priorytecie nie wpltywa na rozwigzanie zadania o wyzszym. Mozna zatem uzyskaé
rozwigzanie jednego (lub kilku) zadan o wyzszym priorytecie i jednoczesnie nie rozwiazaé
zadan o nizszym priorytecie. Wybér algorytmu powinien by¢ uzalezniony od konkretnego
zestawu zadan, oraz od tego, czy uznajemy zadania za rownorzedne, czy tez uszeregowane
zgodnie z priorytetami.

Tabela. 4.1 Zestawienie wartosci odwzorowan koricowych dla poréwnywanych algorytméw

Odwzorowanie koricowe

Algorytm Koo | K zo.T | K zo.1 Omax

S1 27.3386 8.62341 23.8764 63
S11 8, | Egalitarny | 16.7266 6.91150 168.287 65
S11Ss | Priorytety 9.71420 | 8.13275 11647.9 80
S; 1S3 | Egalitarny | 50.3382 0.00205591 | 30063.9 1252
S11 83 | Priorytety | 46.9494 0.00315783 | 19051.0 1626
S1184 | Egalitarny | 57.2724 18.8452 1.95060 | 4641
S11.Sy | Priorytety | 159.608 3.30677 0.640784 | 903
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4.3 Planowanie przy niepelnej znajomosci modelu

W niniejszym podrozdziale zajmiemy sie badaniem algorytmu planowania zdefiniowane-
go réwnaniem (2.44). Taki sposéb rozwigzania zadania planowania ruchu pozwala na
uwzglednienie odchylek pomiedzy rzeczywistymi parametrami obiektu a parametrami
uktadu nominalnego. Jak zostalo to szerzej opisane w rozdziale 2.4, algorytm wyzna-
cza kolejne poprawki funkeji sterujacej w oparciu o strukture uktadu nominalnego oraz,
w przeciwienstwie do pozostalych algorytméw przedstawianych w tej pracy, uwzglednia
stan ukladu rzeczywistego. Wyniki symulacji, ktére przedstawiamy ponizej, prezentuja
rozwiazanie zadania planowania ruchu nieplanarnego dwuwahadla RR (wahadlo Furuty)
przy niepelnej znajomosci modelu. Model tego manipulatora wyprowadziliémy w dodatku
C.4. Zakladamy, ze warto$¢ kazdego parametru modelu zostaje zaburzona w nastepujacy

spos6b
a=a+e€a.

W symulacjach przyjelismy, ze wspolczynnik e przyjmuje wartosci € € {0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6}. Wraz ze wzrostem wspoélczynnika €, uktad nominalny coraz bardziej réz-
ni sie od ukladu rzeczywistego. Zadanie planowania ruchu polega na znalezieniu funkcji
sterujacej, ktéra wykona manewr ,podrzutu” wahadla ze stabilnego punktu réwnowagi
zo = (0,7,0,0) do niestabilnego punktu réwnowagi ys = z4 = (0,0, 0,0). Punkt z4 chce-
my osiggnaé¢ w czasie ruchu 7' = 2 z doktadnoscig 10~°. Funkcje sterujace reprezentujemy
przy pomocy skoriczonego szeregu Fouriera (3.3) przy k = 8, poczatkowy wektor sterowan
¢(0) = (0.1, 01xs), a wspo6lczynnik zbieznosci vy = 0.1. Wyniki symulacji przedstawiono na
rysunkach 4.34-4.36. Na rysunkach 4.34 i 4.35 linig ciggla zaznaczyliSmy elementy zwia-
zane z warto$ciami parametru 0 < € < 0.5, natomiast linig przerywang zaznaczony jest
przypadek ¢ = 0.6. Wida¢ (rysunki 4.34 i 4.35), ze do wartosci € = 0.5 zadanie planowania
ruchu jest rozwiazywane prawidtowo, dopiero po przekroczeniu tej wartosci otrzymanie
poprawnego rozwigzania staje sie niemozliwe. Fakt ten mozna takze zauwazy¢ na rysunku
4.36. Tylko przypadek e = 0.6 nie uzyskal zadanej wartosci btedu ||e||. Przedstawione wy-
niki pokazujg efektywnosé algorytmu planowania ruchu z uwzglednieniem stanu uktadu
rzeczywistego, ktoéry poradzil sobie z zadaniem planowania ruchu przy niepelnej znajomo-
$ci modelu. Nawet w przypadku, gdy wszystkie wartosci parametréw uktadu nominalnego
znacznie (o 50%) roznily sie od parametréw rzeczywistych, algorytm rozwiazal zadanie
planowania ruchu z zadana doktadnoscia.

Rysunek 4.34 Rzut $ciezki ruchu konca efektora na siatke walca o promieniu /; — strona
lewa, przebiegi funkcji sterujacej — strona prawa
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Rysunek 4.35 Trajektorie zmiennych stanu
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Rysunek 4.36 Zbiezno$¢ algorytmu

4.4 Planowanie ruchu przy nieparametrycznej
reprezentacji konfiguracji endogeniczne;]

Zajmijmy si¢ teraz rozwigzaniem zadania planowania ruchu przy nieparametrycznej repre-
zentacji konfiguracji endogenicznych. Oznacza to, ze bedziemy bezposrednio rozwigzywaé
réwnanie (2.15) korzystajac z postaci odwrotnosci jakobianu (2.9), bez wprowadzania pa-
rametrycznej reprezentacji funkcji (3.1). Praca algorytmu polega na iteracyjnym rozwig-
zywaniu rownania (3.5), do momentu uzyskania zadanej wartosci bledu planowania ruchu.
Jako model testowy wybraliSmy planarne dwuwahadlo, na ruch ktérego nie wptywa sita
grawitacji (patrz dodatek C.5). Chcemy zaplanowaé ruch pomiedzy punktem spoczyn-
kowym zo = (0,0,0,0), a punktem spoczynkowym y; = z4 = (0,7/2,0,0). Ruch ma
trwa¢ T = 3, a punkt docelowy x4 ma zosta¢ osiggniety z dokladnoscia 10~°. Wspoétezyn-
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nik zbieznosci jest rowny v = 0.01, a poczatkows funkcje sterujacg wybraliémy réwng
up(t) = —0.1. Funkcje sterujaca uzyskanag w wyniku zastosowania algorytmu przedsta-
wia rysunek 4.37. W odréznieniu od poprzednich wynikéw, gdzie funkcje sterujace byly
reprezentowane przez bazy ortogonalne, przebieg z rysunku przyjmuje odmienny ksztalt.
Sciezke ruchu korica efektora w przestrzeni zadaniowej pokazano na rysunku 4.37. Sylwet-
ka manipulatora na tym rysunku zostala wyznaczona w odstepie co 0.5 jednostki czasu.
Wykresy trajektorii zmiennych stanu 4.38 potwierdzaja poprawnos$¢ rozwiazania zadania
planowania ruchu, a zbiezno$¢ algorytmu ilustruje rysunek 4.39.
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Rysunek 4.37 Przebieg funkcji sterujacej — strona lewa, §ciezka ruchu korica efektora wraz
z sylwetka manipulatora — strona prawa
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Rysunek 4.38 Trajektorie zmiennych stanu
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Rysunek 4.39 Zbieznosé algorytmu
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4.5 Wykorzystanie zadania ograniczania stanu do
reprodukcji trajektorii

Ostatnie wyniki symulacji beda dotyczyly zadania reprodukcji trajektorii. Przez zadanie
reprodukcji trajektorii rozumiemy znalezienie funkcji sterujacej, ktéra bedzie wplywaé
na uklad robotyczny w taki sposéb, aby robot poczatkowo znajdujacy sie na zadanej
trajektorii, poruszal sie wzdluz tej trajektorii przez zadany czas T'. Zadaniem gléwnym
dotychczasowych algorytméw bylto zadanie planowania ruchu. Zadalismy, aby w konicowej
chwili T' uklad znajdowal sie w zadanym polozeniu yq. W tym podrozdziale, zadaniem
glownym i jedynym bedzie zadanie odtwarzania trajektorii wprowadzone pod koniec roz-
dzialu 2.3.2. Poszukiwang funkcje sterujaca, realizujaca zadanie odtwarzania trajektorii,
otrzymamy wyznaczajac granice limy_, ug(-) rozwiazania réwnania rézniczkowego (2.15)
z pseudoodwrotnoécig jakobianu (2.37) i btedem (2.38). Tak zdefiniowane zadanie rozwia-
zemy dla dwuwahadla z pasywnym drugim przegubem, opisanego w dodatku C.5. Prze-
prowadzimy symulacje dla zadania reprodukcji trajektorii, zar6wno we wspoéirzednych
stanu, jak i we wspéirzednych zadaniowych.

4.5.1 Reprodukcja trajektorii zmiennych stanu

Aby uzyska¢ trajektorie osiagalna przez ukilad dwuwahadla, podamy na jego wejscie
pewng funkcje sterujaca u*(t). Nastepnie, trajektoria z(t) uzyskana z ukladu bedzie
trajektorig zadang dla naszego zadania. Jako funkcje sterujgca wybierzmy wielomian
u*(t) = 1.5(3t — 4t? + t*) okreslony na czasie trwania ruchu 7' = 3. Poszukiwane funkcje
beds reprezentowane poprzez skoniczony szereg Fouriera (3.3) dla k = 20, a poczatkowy
wektor sterowari ¢(0) = (1,01x20). Wspolczynnik zbieznosci jest rowny v = 0.05, a ob-
liczenia bedg prowadzone do momentu uzyskania wartoéci bledu reprodukeji trajektorii
llell < 1078 Rysunki 4.40-4.42 pokazuja wyniki symulacji. Chwilowy blad reprodukcji
trajektorii z(t) — z4(t) w najgorszym przypadku nieznacznie przekracza wartos¢ 0.003
(rysunek 4.40). Portrety fazowe ruchu przedstawiliSmy na rysunku 4.41, zaznaczyliSmy
tam zar6wno ruch zadany, jak i otrzymany za pomocs algorytmu. Jak sie mozna byto
spodziewaé, otrzymana funkcja sterujaca przybliza zadana funkcje u*(¢) (rysunek 4.42).
Przyczyna niemonotonicznej zbieznosci algorytmu jest dobér parametru vy, ktérego war-
tos¢ zapewnia tutaj wystarczajaco maly krok przy akceptowalnej predkosci zbieznogci.
Rozwigzanie zadania uzyskujemy po niespeina 9000 krokach algorytmu.
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Rysunek 4.40 Przebiegi bledu reprodukeji trajektorii we wspotrzednych stanu
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Rysunek 4.42 Przebieg funkcji sterujacej — strona lewa, zbieznosé algorytmu — strona
prawa

4.5.2 Reprodukcja trajektorii zmiennych zadaniowych

W tym podrozdziale rozwigzemy zadanie podobne do poprzedniego, lecz trajektoria za-
dana bedzie okreslona w przestrzeni zadaniowej. Podobnie jak poprzednio, osiggalng (do-
puszczalng) trajektorie zadang otrzymamy poprzez podanie sterowania u*(¢) na uktad
dwuwahadla, a nastepnie wyznaczymy przebieg funkcji wyjscia y(t), ktéra bedzie tra-
jektoria zadang y4(t). Wybierzmy u*(t) = —2(4.5¢ — 4.5t* + t3). Funkcje sterujace bedg
reprezentowane doktadnie tak, jak w poprzednim podrozdziale, a poczatkowy wektor ste-
rowan ¢(0) = (0,—0.1,0;x19). Pozostale parametry algorytmu sa identyczne z poprzednig
symulacja. Blad reprodukcji trajektorii przedstawiono na rysunku 4.43. Widaé, ze nie
przekracza on wartosci 0.005. Ponadto na rysunku 4.43 przedstawiliSmy $ciezke ruchu
korica efektora w przestrzeni zadaniowej. Funkcje sterujaca i zbieznosé algorytmu prezen-
tuje rysunek 4.44. Uzyskana funkcja sterujaca przybliza funkcje u*(t). Zadana doktadnosé
rozwigzania uzyskujemy po okoto 10000 krokach.
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Rysunek 4.43 Przebieg btedu reprodukcji trajektorii we wspoéirzednych zadaniowych —
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Rysunek 4.44 Przebieg funkcji sterujacej — strona lewa, zbieznoéé¢ algorytmu — strona
prawa

Zar6wno w przestrzeni stanu, jak i w przestrzeni zadaniowej, uzyskaliSémy pozytywne
wyniki dziatania algorytmu reprodukcji trajektorii. Otrzymane funkcje sterujace prowadza
robota wzdluz zadanej trajektorii podczas trwania ruchu. Wartosci bledéw zadania repro-
dukcji przyjmuja akceptowalne wartosci, ktére mogg zosta¢ jeszcze bardziej zmniejszone
przez rozszerzenie bazy funkcji ortogonalnych. Przebieg poszukiwanej funkeji w*(t) jest
przyblizany przez otrzymana funkcje sterujaca przy pomocy wybranej bazy. Wyznaczenie
pojedynczego kroku algorytmu reprodukcji trajektorii wymaga wiekszych naktadéw obli-
czeniowych niz ma to miejsce w algorytmie planowania ruchu, z tego wzgledu rozwigzanie
zadania reprodukcji jest bardziej pracochtonne.



Rozdzial 5

Podsumowanie

pracy rozwazyliSmy zagadnienie planowania ruchu ukladéw robotycznych z de-
ficytem napedéw. Tytulem wstepu wprowadziliSmy pojecia zwiazane z mode-
lowaniem tego typu ukladéw. Nastepnie, przedstawiliémy wyprowadzenie algorytmu pla-
nowania ruchu skonstruowanego w oparciu o metode endogenicznej przestrzeni konfigura-
cyjnej. Do budowy algorytmu niezbednym bylo zdefiniowanie odwzorowania koricowego
i jakobianu ukladu robotycznego z deficytem napedéw. W dalszej czesci zaproponowali-
$my dwa algorytmy realizujace, wraz z wlasciwym zadaniem planowania ruchu, zestaw
zadan dodatkowych: algorytm egalitarny i algorytm z priorytetowaniem zadan. Algoryt-
my te réznig sie wpltywem zadan dodatkowych na uzyskiwane rozwigzanie. W algorytmie
egalitarnym zadania dodatkowe sg rownorzedne z zadaniem wlasciwego planowania ruchu,
natomiast w algorytmie z priorytetowaniem zadan zadania dodatkowe sg uszeregowane
wedlug priorytetow. W rozprawie zostaly rozwazone trzy typy zadan dodatkowych: za-
danie minimalizacji energii sterowania, zadanie minimalizacji zmiennych stanu i zadanie
unikania kolizji z przeszkodami. Przy definiowaniu zadar dodatkowych podajemy roz-
ne mozliwosci modyfikacji ich definicji, co pozwala na rozwiazanie zréznicowanych zadan
planowania ruchu. Oryginalny algorytm planowania ruchu wyprowadzony w pracy jest
algorytmem planowania ruchu z uwzglednieniem stanu uktadu nominalnego, ktéry pra-
cuje w otwartej petli sprzezenia zwrotnego. Sposobem na unikniecie tej niedogodnosci
moze byé algorytm planowania ruchu z uwzglednieniem stanu uktadu rzeczywistego [19].
W pracy zbadaliSmy dzialanie takiego algorytmu co pozwolito rozwiazac¢ zadanie planowa-
nia ruchu przy niepelnej znajomosci modelu. Wyprowadzenia teoretyczne przeprowadza-
my w funkcyjnej przestrzeni endogenicznej. Na potrzeby obliczen numerycznych zostata
wprowadzona parametryczna reprezentacja funkcji sterujacych. W rozprawie proponuje-
my takze rozwigzanie zadania planowania ruchu przy nieparametrycznej reprezentacji.
Wydaje sie, ze jak dotad nie prébowano takiego podejscia.
Wsrod zalet przedstawionych algorytméw planowania ruchu nalezy wymieé to, ze
w klasie uktadéw afinicznych, algorytm jest niezalezny od typu modelu. Jak wskazywa-
lismy we Wstepie, czesto spotyka sie w literaturze algorytmy dedykowane specyficznym
uktadom z deficytem napedéw. Wyprowadzenie prezentowanych algorytméw nie opiera
sie na szczeg6lnych wlasnosciach modelu, z wyjatkiem zalozenia nieosobliwosci konfigu-
racji endogenicznych, tj. sterowalnosci przyblizenia liniowego ukladu wokoél trajektorii,
co w przypadku braku kryteriéw sterowalnosci wydaje si¢ by¢ sensownym zalozeniem.
Korzystanie z metody endogenicznej przestrzeni konfiguracyjnej umozliwia nam stoso-
wanie metodologii wyprowadzonych dla manipulatoréw stacjonarnych do rozwigzywania
probleméw dotyczacych innych modeli robotycznych. Wreszcie, uwzglednienie zadan do-
datkowych, ktore sg realizowane wraz z wlasciwym zadaniem planowania ruchu umozliwia
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uzyskiwanie pozadanych jakosci rozwiazan. Poza zaprezentowanymi zadaniami dodatko-
wymi mozna definiowaé inne, jak na przyklad zadanie minimalizujgce poslizg w kotowych
robotach mobilnych poprzez minimalizacje normy foTllA(q)c]”2 dt, gdzie A(q) oznacza ma-
cierz Pfaffa i wiele innych. Dodanie dodatkowych zadan minimalizujacych sterowanie oraz
zmienne stanu sprawia, ze mozliwa staje si¢ implementacja algorytmu na uktadach rze-
czywistych. Mozna bowiem uwzglednié¢ w algorytmie skoriczone zakresy ruchu i skoiiczone
wartosci predkosci poruszania sie uktadéw. Ponadto, uzycie algorytmu planujacego ruch
przy niepelnej znajomosci modelu umozliwia uzyskanie zadowalajacych wynikéw bez ko-
nieczno$ci doktadnej identyfikacji parametréw robota.

Oczywiscie, prezentowane algorytmy nie sa wolne od wad. Zasadniczym problemem
jest ich lokalnosé. Uzyskanie poprawnego rozwigzania w znacznym stopniu zalezy od wy-
boru wartosci poczatkowych wektora cg, w przypadku algorytméw z baza w endogenicz-
nej przestrzeni konfiguracyjnej oraz od poczatkowej funkcji sterujacej ug w algorytmach
z nieparametryczng reprezentacja sterowan. Uzyskanie rozwigzania zalezy takze od wybo-
ru zadan dodatkowych. W przypadku algorytmu egalitarnego wplyw zadan dodatkowych
na rozwigzanie zadania glownego jest duzy. Inaczej wyglada sytuacja w przypadku algo-
rytmu z priorytetowaniem. Tutaj mozliwe jest uzyskanie rozwigzania zadania lub zadan
o wyzszych priorytetach kosztem zadan o nizszych priorytetach.

Efektywnos$¢ wyprowadzanych w pracy algorytméw poddaliSmy badaniom symulacyj-
nym. Pierwsze trzy symulacje prezentuja w dziataniu kolejno trzy rodzaje zadan dodat-
kowych. W uzyskiwanych wynikach mozna zauwazy¢, jak zadania dodatkowe modyfikuja
rozwigzanie zadania planowania ruchu. Nastepna grupa symulacji dostarczyta materiat do
poréwnania dzialania algorytmu egalitarnego i algorytmu z priorytetowaniem zadain. Ana-
lizujac otrzymane wyniki, trudno jednoznacznie wskazaé, ktéry z dwoch algorytmoéw daje
lepsze rozwigzanie. W ogdélnosci, wyniki otrzymywane przy zastosowaniu obu algorytmoéw
sg zblizone. Roznice miedzy algorytmem egalitarnym a algorytmem z priorytetowaniem
zadan wida¢ w sposobie dziatania algorytméw. W algorytmie egalitarnym bledy zadan
sktadowych charakteryzuja sie podobna zbieznoscig. Oznacza to, ze algorytm poszukuje
funkcje sterujaca realizujaca zadanie wiasciwego planowania ruchu i jednoczesnie modyfi-
kuje te funkcje w spos6b uwzgledniajacy zadania dodatkowe. W algorytmie z priorytetami
rozwigzanie gtéwnego zadania, wlasciwego planowania ruchu, jest uzyskiwane po stosun-
kowo malej liczbie krokéw algorytmu. Nastepnie, w kolejnych krokach, funkcja sterujaca
jest modyfikowana w celu rozwiazania zadan dodatkowych o nizszych priorytetach. W ko-
lejnych wynikach symulacji przedstawiamy dzialanie algorytmu planowania ruchu przy
niepelnej znajomos$ci modelu. Obliczenia numeryczne pokazuja, ze mozliwe jest uzyskanie
poprawnych rozwiazan, nawet gdy parametry modelu r6znig sie o 50% od parametrow
rzeczywistych. W symulacjach przeprowadzanych przy nieparametrycznej reprezentacji
przestrzeni endogenicznej pokazujemy, ze mozliwe jest rozwigzanie zadania planowania
ruchu bez uzycia funkeji bazowych. Dzieki temu, charakter otrzymywanych funkcji ste-
rujacych jest niezalezny od wybory bazy. Z drugiej strony, takie rozwigzanie komplikuje
obliczenia. W przypadku parametrycznej reprezentacji nalezy w kazdym kroku algorytmu
wyznaczy¢ odpowiedz uktadu robotycznego na biezace sterowanie, a nastepnie wyznaczy¢
odwrotno$¢ jakobianu, ktéry w tym przypadku jest macierza. W przypadku nieparame-
trycznej reprezentacji, oprocz wyznaczenia odpowiedzi ukladu nalezy réwniez wyznaczy¢
trajektorie macierzy tranzycji ®o,x0n(T, 1), a przy wyznaczaniu pseudoodwrotnosei trze-
ba catkowaé¢ funkcje macierzowe. Ostatnie symulacje przedstawiaja wyniki pracy algo-
rytmu zadania reprodukcji trajektorii. Jesli skonstruujemy algorytm planowania ruchu
(2.15), z pseudoodwrotnoscia jakobianu (2.37) i bledem zadania (2.38) z podrozdziatu
2.3.2 otrzymamy algorytm reprodukeji trajektorii. Obserwujac otrzymane wyniki mozna



Dodatek A

Wybrane wlasnosci

Przytoczmy aksjomaty odwrotnosci Moore’a-Penrose’a [2], ktore zostang wykorzystane
w dowodach. Niech A bedzie danym operatorem, A* jego odwrotnoscia, a A* operatorem
sprzezonym. Woéwczas zachodza cztery wlasnosci

AATA = A, ATAAT = AT, (ATA)* = AT A, (AAT)* = AAT.
Rzutowanie P na jadro jakobianu J jest zdefiniowane jako
P =idy — J*J, (A.1)

gdzie idy jest identycznoscia w U, a J# oznacza pseudoodwrotnosé J.

A.1 Idempotentnos$é rzutowania P
Wtasnosé idempotentnosci definiujemy nastepujaco

PP =F. (A.2)
Przyjrzyjmy sie lewej stronie réwnania (A.2)

PP = (idy — J*J) (idy — J#J) = idy — 2J%J + J# JJ# ] =idy — J*J = P,
J

co potwierdza stusznosé (A.2).

A.2 Symetria rzutowania P

W przestrzeni Hilberta U zachodzi rownosé U* = U, gdzie U* jest przestrzenig dualng do
U. Symetria rzutowania wyraza sie przez

P =R
Rozwijajac lewa strone powyzszej zaleznosci
P* =idy. — (J*J) =idy — J#¥J =P

stwierdzamy, ze rzutowanie (A.1) jest symetryczne.
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A.3 Anihilacja J*

Sprawdzmy, czy stuszna jest réwnosé

PJ* =0, (A.3)
Rozwijajac
# o (id, — JHET) J# — J# _ HETTH —
P.J _(1du J J)J J J J#J 0,
J

udowadniamy réwnos$é (A.3).



Dodatek B

Parametryczne definicje funkcji

~

K:co,T<C>a J:UO,T<C>7 Jjg,T@)v €

W tym dodatku zebraliSmy parametryczne reprezentacje elementéw sktadowych algoryt-
moéw dla zadania wlasciwego planowania ruchu i innych zadan dodatkowych wprowadzo-
nych w rozdziale 2.3. Na koricu definiujemy takze parametryczng wersje projekcji (2.17).

Stosujac parametryczna reprezentacje funkcji sterujacych (3.2) uzyskujemy skoricze-
niewymiarowa endogeniczna przestrzen konfiguracyjna u.w konsekwencji, otrzymujemy
parametryczne wersje elementéw potrzebnych do zdefiniowania algorytmu. Niezaleznie od
typu zadania, skoriczeniewymiarowa odwrotno$é jakobianu jest odwrotnoécia Moore’a-
Penrose’a, ktérg w obszarach wolnych od osobliwosci definiujemy wzorem

Zo,

T 2(0) = 72 2ule, ) = Too(@) (T @ T2(0))

B.1 W1lasciwe planowanie ruchu

Odwzorowanie koncowe

Koz (€) = Kaor(ule, ) = k(0m,r(ulc, ) = y(T)

Jakobian
_ T

Jig o€} = Jggrlttfe; <)) = C(T) /o O(T, 5)B(s)¥(s) ds (B.1)

Btlad

€= }?zo,T(c) — Yd
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B.2 Zadanie minimalizacji energii sterowania

Odwzorowanie koncowe

T
I?zO,T(c) = Kpyrlulc, ) = %/(\Il(t)c)Ta(t)\I/(t)c dt =

0

T
%J /\IIT(t)a(t)\Il(t) dte— %CTQ(T)C,
\() > 4
Q1)
Jelkobian )
JZO,T(C) == Jzo,T(u(C’ )) = CTQ(T))
Blad

€= Kquy1(c)

B.3 Zadanie minimalizacji wartosci zmiennych stanu
(wyjscia)
Odwzorowanie koricowe
~ 1 (7 1 /7
Rap(6) = Kana(ule) = 5 [ 27 06(0)2(t) dt = 5 [ o1,lulc))5(0pmnetulc,)) e
0
Jakobian

e 45 t T .
oo () = oo, ) = /O =T (0)5(t) /0 B(t, 5)B(s)U(s) ds dt = /0 2T (£)5(6) T 4() dt

gdzie jxo,t(c) jest parametryczng wersjg jakobianu (2.6) ukladu robotycznego z deficytem
napedéw bez funkeji wyjscia (1.12) zdefiniowana przez (B.1) przy zalozeniu C(t) = Io,.

Blad

g = Kxo,T(C)

B.4 Zadanie unikania przeszkod (osobliwosci)
w przestrzeni zadaniowej i w przestrzeni stanu

Odwzorowanie koncowe

Ray(6) = Kaor(ule ) = 5 [ hu(0) de =

1

3| MEGO) dt =3 [ hlkpuatule, ) dt.



Dodatek C

Modele uktadéw z deficytem napedow

W biezgcym dodatku wprowadzimy modele uktadéw robotycznych z deficytem napedéw
uzywanych w pracy. Wszystkie modele sg uktadami nieholonomicznymi. Pojawiajace sie
w nich ograniczenia nieholonomiczne maja swoje zrédlo w dynamice tych uktadéw, zatem
takie ograniczenia sg reprezentowane przez réwnania rézniczkowe drugiego rzedu. Wsréd
przedstawionych ukladéw znajduja sie trzy uklady mobilne: statek, robot balansujacy
i poduszkowiec oraz dwa manipulatory stacjonarne z pasywnym przegubem.

C.1 Statek (kontenerowiec)

Jako pierwszy uktad robotyczny z deficytem napedéw rozwazmy model statku kontenerow-
ca [11]. Schematyczna ilustracja modelu jest przedstawiona na rysunku C.1. Oznaczmy

A7

Vh’

Rysunek C.1 Statek (kontenerowiec)

przez n = (n,e,¢) € IR® wektor polozenia i orientacji, gdzie n i e oznaczaja pozycje
,PoInoc-Wschod”, a ¢ jest azymutem mierzonym od péinocy. Niech wektor v = (u,v,r) €
IR? bedzie wektorem predkosci w ciele, gdzie u jest predkosciag wzdluzng, v jest predko-
Scig poprzeczng, a r jest predkoscig obrotowa woké! osi pionowej. Statek jest wyposazony
w ster, ktory umozliwia zmiane orientacji statku i w pednik zapewniajgcy zmiane pred-
kosci statku. Zapiszmy kinematyke statku

cos¢p —sing 0

n=R(¢)v, R(¢)= |sing cos¢ O,
0 0 1



72 C. Modele ukladéw z deficytem napedéw

gdzie R(¢) jest macierzg rotacji wokoét osi Z. Dynamike uktadu znormalizujemy zgodnie
z systemem ,Prime” opisanego przez SNAME - ang. The Society of Naval Architects
and Marine. To podejscie uzywa aktualnej predkosci statku U = +u? + v?, dlugosci
statku L, jednostki czasu L /U, oraz jednostki masy 1/2pL3 (p oznacza gestosé wody) jako
zmiennych normalizujacych [11]. Dynamike wyrazong w ukltadzie ciala mozemy zapisa¢
jako

M(v)v + N(v)v = B(v)u, (C.1)

gdzie M (v) jest symetryczna i dodatniookreslong macierzg inercji, a N (v)v moze zawiera¢
elementy zwigzane z silami odsrodkowymi, Coriolisa, efektami hydrodynamicznymi, itp.
B(v) jest macierzg sterowania, a u € IR? jest wektorem sterowania, gdzie u, jest sila ciggu
pednika i u, jest katem skretu steru. Zgodnie z [11], zdefiniujmy macierze M (v), N(v)
i B(v) jako

[ L(m/+m7) 0 0
U2
Mp)=| o Hmgm oo |,
0 0 L2(IL+JL)
L U?
[ =Xl |u/U 0 —L(m'+my)v/U
U v/ _ U m[/ m' u
N(v) = 0 _Uyu LYy +( U+ 2)u/U)
0o = ~LN;
L U U
r2(1—tq) 0
. pU2L2
Bv)=| 0 Y
0 N}

Numeryczne wartosci wspoélczynnikéw pojawiajacych si¢ w powyzszych réwnaniach zosta-
ly zawarte w tabeli C.1. Elementy m', m;, i m,, sa bezwymiarowe i majg zwiazek z masa
statku i z efektem masy zwiazanej. Symbole I, J, oznaczaja znormalizowane momenty
bezwladnogci statku oraz momenty masy zwigzanej. Wielkosci X,,,, Yy, Y/, Yy, N, , N]
1 Nj sg bezwymiarowymi wspoélczynnikami efektéw hydrodynamicznych. tg4 jest wspol-
czynnikiem sity ciggu pednika, p oznacza gesto$¢ wody, a L jest dlugoscia statku.

Tabela. C.1 Wartosci wsp6lczynnikéw dynamiki statku

m’ = 0.00792 ml, = 0.000238 ml = 0.007049

I’ = 0.000456 J. = 0.000419 X!, = —0.0004226
Y! = —0.0116 Y! = 0.00242 Y] = —0.002578
N/ = —0.0038545 | N! = —0.00222 N} = 0.00126
ty=0.175 p =1000 kg/m® | L =175[m]

Definiujac nowy wektor stanu z = (z1,2z2) = (n,v) € IR®, dynamike statku (C.1)
mozemy wyrazi¢ uktadem réwnan

&1 = R(z13)2,
{I'z = M~(v)(B(z2)u — N(z2)z2), (C.2)

gdzie x5 oznacza trzecig wspoélrzedna z; (kat orientacji ¢). Funkcje wyjscia wybierzemy
nastepujaco
y=k(z) =z, =1, (C.3)
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gdzie y € IR? jest wektorem wspoétrzednych zadaniowych. Réwnania (C.2) i (C.3) definiuja
afiniczny uklad sterowania z dryfem i funkcjg wyjscia (1.12)

fizte e

gdzie

_ R(xls)xz o O3x2
fle) = (M‘l(xg)N(xQ)mz G = pr-12,) Bza) |
Uklad robotyczny (C.4) jest obiektem badan symulacyjnych algorytmu planowania ruchu
z ograniczaniem funkcji sterujacej przedstawionych w rozdziale 4.1.1. Inne wyniki zasto-

sowania algorytmu planowania ruchu do przedstawionego modelu statku mozna znalezé
w [35,36].

C.2 Robot balansujacy

Drugim robotem z deficytem napedéw jest robot balansujacy. Konstrukcja robota sktada
sie z dwoch, niezaleznie napedzanych, utozonych wspétosiowo két dotaczonych do korpusu
oraz odwréconego wahadta potagczonego z tym korpusem. Schemat robota zawiera rysunek
C.2. Zgodnie z oznaczeniami na rysunku C.2 z i y oznaczaja pozycje punktu odniesienia

Rysunek C.2 Robot balansujacy

umieszczonego w Srodku osi kot, 4 jest orientacjg robota, o jest katem wychylenia wahadta,
2b jest rozstawem kol, [ oznacza dlugosé wahadla, a R reprezentuje promien kota. Symbole
Mo, My, My 0dnoszg sie odpowiednio do masy osi, wahadta (korpusu) i kola.

Korzystajac z prac [20,38] wyprowadzmy kinematyke i dynamike robota balansujacego.
Zdefiniujmy wektory ¢ = (z,y,0,a) € R*in = (m,m,n3) € IR gdzie n; i 2 sg
predkosciami liniowymi kél, a 73 odpowiada liniowej predkosci wychylania sie wahadta.
Kinematyke wyrazajaca toczenie sie k6l opisuje uktad

¢ = F(q)n, (C.5)

gdzie
COSq3 COSQ3 COS(3

sin sin sin
F(q) — 33 q3 OQ3

b
B
R

0

O o=
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Dynamike robota balansujacego mozemy wyraziC przez
M(q)n+ N(q,n) = Br, (C.6)

gdzie M(q) = [M;;] jest symetryczng i dodatniookreslong macierzg inercji, ktérej elementy
sg zdefiniowane nastepujaco

4dm, ?sin? a R?

M1 = My = +mp(l+ b2 )+mw(8—|—§),

2m,  myl?sin® a + my, R?
M12 =myp + 3 - b2 )

l
M13 :Mzgzmp+4mw+ma+$,
2lmycosa  1*m

M3z = my + 4my, +mg + ”R Rz”.

Wektor N(q,n) € IR® zawiera skladniki zwigzane z sitami od$rodkowymi, Coriolisa oraz
grawitacji, a jego elementy definiujemy jako

_Impn3sina lmy(2mp +73) (2 —m)sina  21*my,(nz — mi)nssinacosa

= R? 2 »R :
_Impnisina | Imp(2m +13)(n2 — m) sina | 20%my(n2 — m)nssinacosa
A Z " bR !
Ne = Imp(nz —m)*(R+lcosa)sina  Imynisina  lmygsina
T bR R? R
Macierz L
B, (2><2):| 2km |: I :|
B = = — , C.7
[Bz (1x2) R [O1x2 (&)

jest macierzg sterowania, ktoérej podmacierz B; jest odwracalna. Oznaczenie k,, pojawia-
jace sie w (C.7) jest stala silnikéw, a wektor sygnaléw sterujacych 7 € IR? w (C.6) odnosi
sie do pradéw w silnikach.

C.2.1 Czesciowo linearyzujace sprzezenie zwrotne robota balan-

sujacego

Zgodnie z wywodem w rozdziale 1.2.2, czesciowo linearyzujace sprzezenie zwrotne dla
robota balansujgcego przyjmuje postaé

T
My, M M M M N.
_ p-1 11 12| 13 -1 13 _ 13 -1 1
T=5 (([Mm Mzz] (Mzs) Mss <M23) ) u <M23> Mg N + (N2>> '
Po jego zastosowaniu do (C.6) dynamike robota mozna wyrazi¢ jako

hm=1U
= g (C.8)
Mg = —Mgg' (Mys, Mas)u — Mz' Ns.

Nowy wektor sterowania u € IR? ma teraz znaczenie liniowych przyspieszeri obu kot.
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Laczac réwnania (C.5) i (C.8) otrzymujemy afiniczny uktad sterowania z dryfem
z = f(z) + G(z)u,
gdzie z = (1, q) € IR” jest nowym wektorem stanu, a elementy f(z) i G(z) sa nastepujace

f(z) = (0,0, —Mz'Na, F(g)n)",

1 0
0 1
Gla) = —Mz' Mz —Mg3 Moy
O4x2

Na potrzeby obliczeri numerycznych przyjeliSmy parametry robota balansujacego przed-
stawione w tabeli C.2. W wynikach symulacyjnych w rozdziale 4.1.2 przeprowadzamy
obliczenia algorytmu planowania ruchu dla calego stanu z. Nie ma zatem potrzeby defi-
niowania funkcji wyjscia, ktéra bylaby w tym przypadku identycznosciowa y = k(z) = z.
Algorytm zaproponowany w wyzej wymienionym rozdziale rozwigzuje zadanie planowa-
nia ruchu wraz z jednoczesnym utrzymywaniem wahadla w pionie i minimalizacja energii
sterowania. Dodatkowe wyniki ilustrujgce dzialanie algorytmu planowania ruchu robota
balansujacego ztozonego z trzech zadan zawiera praca [38].

Tabela. C.2 Parametry robota balansujacego

mr =1 | my, =10 I =15 | k7= 2.6
my=5| R=012|b=03| ¢g=9381

C.3 Poduszkowiec

Kolejnym przyktadem uktadu robotycznego z deficytem napedéw jest poduszkowiec (patrz
rysunek C.3). Zalézmy, ze model posiada dwa pedniki. Pierwszy bedzie umozliwiat ruch
do przodu (i do tytu), a drugi bedzie zapewnial ruch obrotowy wokét osi Z. Charakter

Rysunek C.3 Poduszkowiec

sygnaléw sterujacych jest podobny jak w dwukolowym robocie mobilnym. Gléwna ce-
chg odroézniajgca ten model od modelu kolowego robota jest fakt, ze poduszkowiec moze
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swobodnie poruszaé sie poprzecznie do osi wzdluznej robota, nawet w przypadku, gdy
ten stopiert swobody nie jest bezposrednio napedzany. Podobnie jak w modelu statku [11]
kinematyke i dynamike platformy mobilnej z deficytem napedéw opisuja réwnania [10,31]

1= R(0)v,
M)+ N =T,

gdzie R(0) jest macierza obrotu wokot osi Z o kat 6, M (n) stanowi macierz inercji, macierz
N(v) zawiera elementy zwiagzane z efektami od$rodkowymi, Coriolisa, ttumieniem hydro-
dynamicznym, aerodynamicznym, itp. a wektor 7 = (7,0, 7,) jest wektorem sterowari.
Wektor n = (z,y,0) okresla wspo6lrzedne potozenia i orientacji, a v = (u,v,r) zawiera
odpowiednio predko$é¢ wzdluzna, poprzeczng i obrotows. Dla uproszczenia, przyjmijmy,
ze uklad jest symetryczny wzgledem kazdej osi, a pedniki umieszczone sa w §rodku masy.
Ponadto, niech macierz inercji bedzie diagonalna i réwna macierzy jednostkowej. Osta-
tecznie, pominiemy takze efekt thumienia hydro-/aerodynamicznego. Powyzsze zalozenia
upraszczajace nie wplywaja na istotne cechy zachowania modelu nieliniowego [10,31]. Po
powyzszych przeksztalceniach dynamika poduszkowca przyjmuje postac

U= VT + Ty,
v = —ur,

7;:7_'”

gdzie 7, jest momentem sterujacym predkosciag wzdluzng, a 7. momentem sterujacym
predkoscia obrotowa wokot osi Z. Wprowadzajac nowy wektor stanu z = (n,v) € IR®
mozemy zapisa¢ kinematyke i dynamike poduszkowca w postaci afinicznego uktadu ste-
rowania

z = f(z) + G(z)u,

gdzie
R(z13) T2 O3x2
ur 10
f(.’E) = —ur ) G(CE) - 0 0 ) U= (Tua T’I‘)y
0 01

a w3 jest trzeciag wspolrzedna wektora 7. Uklad poduszkowca jest obiektem testowym
dla algorytmu planowania ruchu z unikaniem przeszkéd przedstawionym w podrozdziale
4.1.3. Model stanowi takze obiekt badan poréwnawczych algorytmu egalitarnego oraz
algorytmu z priorytetowaniem opisanych w rozdziale 4.2. Podobnie, jak w przypadku
robota balansujacego, nie definiujemy funkcji wyjscia, poniewaz bedziemy planowali ruch
catego uktadu, wiec y = k(z) = z.

C.4 Nieplanarne dwuwahadlo RR

Jednym z modeli stacjonarnych robotéw z deficytem napedéw jest nieplanarny manipula-
tor RR. Prace nad tym modelem zapoczatkowal Furuta [12]; na jego cze$¢ model nazywa
sie takze wahadtem Furuty. Manipulator (rysunek C.4) sklada sie z napedzanego przegubu
obrotowego, ktéry porusza ramieniem w plaszczyznie poziomej. Do korica ramienia, przez
kolejny przegub obrotowy dolaczone jest wahadlo, w taki sposob, aby jego ruch odby-
wal sie w plaszczyZnie pionowej. Pierwszy przegub jest przegubem aktywnym, natomiast



C.4. Nieplanarne dwuwahadlo RR 77

Rysunek C.4 Nieplanarne dwuwahadto RR (Wahadlo Furuty)

drugi, przegubem pasywnym. Dynamike manipulatora RR opisuje formuta
M(g)§ + C(g,4)d + D(q) = (0> ; (C.9)

gdzie ¢ € IR? sa wspolrzednymi przegubowymi, macierz M (q) jest symetryczng i dodat-
nio okreslong macierza inercji, C(q, ) jest macierzg sitl odérodkowych i Coriolisa, D(q)
jest wektorem sit potencjalnych, a u jest momentem sterujagcym w pierwszym przegu-
bie. Zal6zmy, ze opory tarcia sg pomijalnie mate. Oznaczmy przez [, catkowity dlugosé
ramienia, I, odlegto$é do srodka masy wahadta. Niech my jest masa wahadla, I; ozna-
cza bezwladnos$é ramienia, a I, oznacza inercje wahadla wokoét srodka masy. Woéwcezas
elementy pojawiajace si¢ w dynamice (C.9) definiujemy nastepujaco [10]

I +ma(12 + 2sin? ¢3) malilzcosge
Mig)= malyls cos I 2 |
2012 COS @2 2 1+ Maly
Clg,4) = [ %mzlg sin(2g2)d2  —malilasings go + %m2lg sin(2g2) g1
’ —5mal3sin(2g2) ¢y 0 '

0
D(q) = (—mgglg sin q2> ’

Nastepnie, wprowadzajgc nowy wektor stanu z = (g,¢), otrzymujemy afiniczny uklad
sterowania z dryfem

z = f(z) + G(z)u,
gdzie

I3 0

(@) o)) e ()

Kinematyke manipulatora mozemy zapisa¢ jako

;1 coszy — Iy sin z sin zo
K(z) = | lysinzy + lacos z; sin xy
5 COS Zo
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Planowanie ruchu bedzie odbywalo sie w przestrzeni stanu, wiec y = k(z) = x. Wprowa-
dzony model jest obiektem badan algorytmu planowania ruchu przy niepeinej znajomosci
modelu przedstawionych w rozdziale 4.3. Do obliczeri numerycznych przyjelismy wartosci
parametréw modelu zebranych w tabeli C.3 [10]. Dodatkowe wyniki dziatania algorytmu
planowania ruchu opartego na metodzie endogeniczne]j przestrzeni konfiguracyjnej waha-
dla Furuty przy pelnej znajomosci modelu zostaly opisane w [32].

Tabela. C.3 Parametry nieplanarnego dwuwahadta RR

I =0.215 | I; =1.75102 | m; =5.3810~2
[y =0.113 | I =1.981074 g =9.81

C.5 Planarne dwuwahadlo RR

Ostatnim modelem, z ktérego korzystamy w rozprawie jest manipulator planarny typu
RR. Jest to uklad planarnego dwuwahadla (rysunek C.5), w ktérym pierwszy przegub
obrotowy jest napedzany, a drugi, rowniez obrotowy, jest przegubem pasywnym. W li-

A

Rysunek C.5 Planarne dwuwahadlo RR

teraturze taki uklad jest czesto nazywany Pendubotem [49]. Niech ¢ = (q1,q2) € IR?
beda wspoétrzednymi przegubowymi, my, me masami odpowiednio pierwszego i drugiego
ramienia, l;, lo dlugosciami ramion, [, l» odleglosciami do érodka masy ramion, a g
przyspieszeniem ziemskim. Wéwczas dynamike manipulatora RR mozemy wyrazié¢ przez

M(q)G+ C(q,4)+ D(q) = (g) , (C.10)

gdzie M (q) jest macierza inercji, C(q, ¢) macierza Coriolisa, a D(q) wektorem grawitacji
i sa zdefiniowane nastepujaco

_ |k1 4 ko +2kscosqa Ky + kzcosqy
M(q) o I: kz + k3 COS @2 k2 ’
. _ | —ksgasings —kagasing, — k3gy sin gy
C(q: q) - |: k341 sin Q2 0 )

kyg cos g1 + ksgcos(q1 + ¢2)
D = .
(@) < ksg cos(q1 + g2)
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Parametry k1, ..., ks sg stalymi modelu i sa réwne
kl :mllgl + m2l%, kz :mzli,
ks =malilea, ky =male + maly,
ks =malea.

C.5.1 Czesciowo linearyzujace sprzezenie zwrotne dwuwahadla
RR

Stosujac do dynamiki (C.10) cze$ciowo linearyzujace sprzezenie zwrotne

T = (Mu1(g) — Mia(q) M35 (9) M5 (q))u
— Mia@)Mz' @)([Car(a, ) Caala,0)] 4+ Da(@)) + [Cu(0,@) Calg,0)] 4+ Da(a)

i wprowadzajac nowe zmienne stanu x = (g, ) otrzymujemy czeSciowo zlinearyzowany
afiniczny uktad sterowania z dryfem

z = f(z) + G(z)u,

gdzie
T3 0
Ty 0
fz) = 0 , G(z) = 1
— [Can Caz] My (iz) — Dy M3} — M M5!

Kinematyke manipulatora opisuje zaleznosé

_ (licoszy + Iy cos(z1 + 22)
K(z) = <l1 sinzy + lpsin(z; + z3) )

Funkcjg wyjécia jest identycznoscig y = k(z) = z, zatem bedziemy planowaé ruch w prze-
strzeni stanu uktadu. Nowe sterowanie u uzyskane w wyniku czesciowo linearyzujacego
sprzezenia zwrotnego ma znaczenie przyspieszenia w napedzanym przegubie. Przedsta-
wiony model postuzyl do uzyskania wynikéw symulacyjnych algorytmu planowania ruchu,
w ktérym korzystali$émy z nieparametrycznej reprezentacji funkcji sterujacej (rozdziat 4.4)
oraz do rozwigzania problemu odtwarzania trajektorii (rozdziat 4.5), zar6wno we wsp6l-
rzednych stanu jak i we wspolrzednych zadaniowych. Do uzyskania wynikéw obliczer
numerycznych niezbedne sg wartosci parametréw manipulatora, ktére zawarliSmy w ta-
beli C.4. Dodatkowe wyniki symulacyjne kilku algorytméw planowania, zastosowanych do
powyzszego modelu mozna znalezé w pracach [32-34, 37].

Tabela. C.4 Wartosci parametréw manipulatora planarnego RR

ll =0.5 lcl :ll ma =1 g =0
lz =0.5 lcg :lg mo =0.5
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