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Institute of Mathematics and Informatics

Wroc law University of Technology

KGHM Polska Miedź
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Introduction.

For the last several years, the nature of operational risk has become a field of intensive studies

due to its growing importance as against market and credit risk. Appropriate defining and quantifying

operational risk is a hard task, thus suitable regulatory is still in development. Although The New Basel

Accord gives the methodology for managing banking operational risk, the corporate risk seems not to

be recognized enough. Here in the thesis we make an attempt to put some insight into operational risk

measurement in the non-financial corporation. The objective is to apply suitable results from insurance

ruin theory to build a framework for measuring corporate operational risk and finding required capital

charge.

In the second Chapter, a brief description of banking operational risk regulatory and methodological

proposals for risk measurement is presented. The detailed discussion on the topic can be found in

consultative documents by Basel Committee (i.e. [2], [3], [4]) and review papers by Pezier ([36], [37]).

Refined analysis with exploiting Extreme Value Theory techniques are presented in papers by Embrechts

with others 2004–2006 ([17], [18], [11], [32]). We focus on the differences between a bank and commodity-

branch corporation in the field of operational risk management. We introduce also a motivation to apply

ruin theory methods to operational risk measurement.

The next Chapter is devoted to some aspects of commodity market risk measurement with em-

phasizing such differences from banking methodology as time horizon for decisions, managers activity

and different risk measures. The correlation-based, analytical approach to Revenues at Risk (RaR) and

Earnings at Risk (EaR) measures calculation is proposed instead of Monte Carlo simulation methods.

Chapters 3, 4 and 5 consist of wide studies of ruin probability estimates with the distinction for

finite and infinite time horizon methods. Basic aspects of insurance risk theory are presented and several

ruin probability approximations are described. They are numerically compared with each other and

illustrated as a functions of capital and (in the finite horizon case) time horizon. Moreover, we propose

two promising, new approximations. Chapters 3–5 are based on earlier papers by Burnecki, Místa, Weron

([9], [7]) and Chapter 15 in [12].

Next, in the Chapter 6 we consider more complicated model of risk process, allowing for diffusion

component. Numerically tractable formula for ruin probability is found in the case of losses distribution

with Laplace transform being rational function. Moreover, an analytic result is given when the claim size

is described by mixture of exponentials distribution, being of high importance when modelling operational

risk (cf. Chapter 1). The general ideas and parts of the Chapter are heavily borrowed from papers by

Jacobsen ([25], [26], [27]).
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Finally, in the last Chapter, based on Otto & Místa [30], we deal with setting appropriate level of

capital charge for operational risk with possible risk transfer through insurance. By inverting various

approximations of ruin probability we arrive at suitable capital charge with predetermined level of such

probability. In the case of operational risk modelling in non-financial corporation , this approach seems

to be a proper alternative to high confidence level Value at Risk (V aR) measure.



CHAPTER 1

Banking operational risk established, corporate risk

measurement as a new challenge.

1.1. The New Accord (Basel II)

The short brief of the history of risk management regulatory takes us back to the 1988, when the

Basel Accord (Basel I) was established. The document was concerning the minimal capital requirements

against credit risk with one standardized approach, namely Cooke ratio. Next, in 1996, in amendment

to Basel I, the necessary regulatory for managing market risk appeared, i.e. internal models, netting

and finally Value at Risk measure. Consequently, for the next years we came to the term operational

risk. In 1999 Basel Committee on Banking Supervision published the first consultative paper on the New

Accord (Basel II), introducing definition of operational risk and submitting some proposals of measuring

methods and suitable regulatory. Until now several consultative papers on the New Basel Capital Accord

appeared but the full implementation of Basel II is not expected before 2007.

First of all, the New Accord brings more flexibility and risk sensitivity in the structure of three-pillar

framework: minimal capital requirements (Pillar 1), supervisory review of capital adequacy (Pillar 2) and

public disclosure (Pillar 3). Pillar 1 sets out the minimum capital requirements (Cook Ratio, McDonough

Ratio) to 8%:

(1.1)
total amount of capital

risk-weighted assets
≥ 8%,

resulting in the definition of minimum regulatory capital (MRC):

(1.2) MRC
def= 8% of risk-weighted assets.

Due to New Accord, the most accurately describing definition of operational risk can be formulated

in the following way.

Definition 1.1.1. Operational risk is the risk of (direct or indirect) losses resulting from inadequate

or failed internal processes and procedures, people and systems, or external events.

It should be remarked that this definition includes legal risk, but excludes strategic and reputational

risk.

Let us denote by Cop the capital charge for operational risk. It was initially feared that the Basel II

proposals would reduce the capital requirements for credit and market risks by 20% on average. However,

still growing risks such as fraud, terrorism, technology failures and trade settlements errors, may leave

the banking industry more exposed to operational risk than ever before. This led the Basel Committee to

propose a new tranche of capital charges for operational risk equal to 20% of purely credit and market risk

6



1.2. RISK MEASUREMENT METHODS FOR OPERATIONAL RISK 7

minimum capital requirements. After further studies on how much of the economic capital the banking

industry allocates to operational risk, and in response to other industry concerns, the Basel Committee

proposed to reduce the operational risk minimum regulatory capital figure from 20% down to 12% of

MRC. Finally we should notice that it is not uncommon to find that Cop > Cmr (Cmr being market risk

capital charge).

1.2. Risk measurement methods for operational risk

In the New Accord documents, the Committee proposes three different approaches to operational

risk measurement:

• Basic Indicator Approach (BIA),

• Standardized Approach (SA),

• Advanced Measurement Approach (AMA).

The first and the most crude, but simple approach relies just on taking capital charge on operational

risk (say Cbiaop ) as some percentage of average annual gross income:

(1.3) Cbiaop = αGI,

where Gross Income (GI) means average annual gross income over the previous three years and

α = 15% is an indicator set by the Committee based on Collective Investment Schemes (CIS).

The Standardized Approach, similar to BIA and also simple, takes into account indicators on the

level of each business line:

(1.4) Csaop =
8∑
i=1

βiGIi,

with βi ∈ [12%, 18%], 3-year averaging and 8 business lines specified by Committee:

Table 1.1. Business lines and corresponding indicator’s levels.

Corporate finance (18%)

Payment & Settlement (18%)

Trading & sales (18%)

Agency Services (15%)

Retail banking (12%)

Asset management (12%)

Commercial banking(15%)

Retail brokerage (12%)

From our point of view, the most interesting and refined is the latter approach, considering more

sophisticated methods of risk measurement - Advanced Measurement Approach (AMA). On the one hand,

there has been a lot of critique put on the naive, linear approaches (BIA and SA), but on the other, the

AMA approach is with no doubt more demanding (for detailed critique see i.e. Pezier [36],[37]). Involving
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advanced methods we encounter the serious problem of estimating very rare events (having probability

less than 0.1%).

Generally, with the Advanced Measurement Approach, the Basel Committee allows banks to use

their internally generated risk estimates after meeting qualitative and quantitative standards. Also the

risk mitigation via insurance is possible ( 20% of Cop) and incorporation of risk diversification benefits

is allowed. Although AMA leads directly to Loss Distribution Approach (LDA), the Committee “is not

specifying the approach or distributional assumptions used to generate the operational risk measures for

regulatory capital purposes.” Except LDA, the Committee also considers the Scorecard Approaches and

Internal Measurement Approaches (similar to Basel II model for Credit Risk):

(1.5) Cimaop =
8∑
i=1

7∑
k=1

γikES
ik,

with ESik being expected aggregated loss for business line i and risk type k, γik scaling factors and the

specified 7 loss types:

Table 1.2. Classified 7 risk/loss types.

Internal fraud

External fraud

Employment practices and workplace safety

Clients, products & business practices

Damage to physical assets

Business disruption and system failures

Execution, delivery & process management

We omit the detailed discussion on all approaches presented above as it is not a part of further analysis

here, but we focus on the Loss Distribution Approach as the most refined and challenging method. We

refer interested Reader to regulatory and consultative papers by Basel Committee ([2], [3], [4]), moreover

the constructive review of Basel proposals can be found in papers by Pezier ([36], [37]).

1.3. Loss Distribution Approach

The Loss Distribution Approach tends to identify the one year loss distribution in each business line

/ loss type cell (i, k) and then to find the appropriate risk measure on the basis of total one year loss

distribution including all cells. This leads to modelling each cell variable as a compound variable:

(1.6) Si,kt =
Ni,k

t∑
l=1

Xi,k
l ,

with N i,k
t being some counting process (measuring frequency of losses) in time t for cell (i, k) and Xi,k

l

corresponding variables describing severity of losses in cell (i, k). We should notice here for the first time

the similarity to the actuarial theory and collective risk models in insurance. The severity variables X can
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also be modelled with the most popular (nonnegative) distributions in insurance (exponential, gamma,

lognormal, Pareto) and Nt can be counting process like Poisson, binomial, negative binomial or one of

more complex point processes (see i.e. Burnecki & Weron Chapter 14 in [12]).

All in all, the total one year loss in year t is then given by

(1.7) St =
8∑
i=1

7∑
k=1

Si,kt =
8∑
i=1

7∑
k=1

Ni,k
t∑
l=1

Xi,k
l .

Now what has to be done is to choose and calibrate the distribution of Si,kt for each cell, finding

possible correlations between cells and specifying risk measure gα at confidence level α close to 1. The

total operational loss capital charge should be found on the basis of gα(Si,kt ) calculated for each cell.

Going further into details of Basel II proposals, we find the risk measure to be popular Value at Risk

at a very high confidence level α = 99.9% or even higher (99.95% − 99.97%). The distribution chosen

should be based on internal data and models, external data and expert opinions and period taken into

consideration equal to one year. Finally, the total capital charge Cop should be found as a sum of V aRs

with possible reduction due to correlation effects:

(1.8) Cop =
∑
i,k

V aRα(Li,k).

Loss Distribution Approach in such a form, although being refined enough, still encounters very seri-

ous difficulties in implementation. For the first, such high confidence level causes distribution estimation

very difficult if possible, due to obvious lack of data. In solving these problems, Extreme Value Theory

(EVT) enters and such methods as Peaks Over Threshold (POT). The POT method focuses on that

realizations of variables X, that exceed some threshold u: Y = max(X − u, 0). Distribution of Y , called

conditional excess distribution, is formulated in the following way:

(1.9) Fu(y) = P (X − u ≤ y|X > u), 0 ≤ y ≤ xF − u,

where xF ≤ ∞ is the right endpoint of the original distribution F of variable X. To handle the difficulties

of estimation of Fu (due to lack of data in that region), the EVT comes with strong, limiting result given

in the theorem of Picands (1975), Belkam and de Haan (1974).

Theorem 1.3.1. For every ξ ∈ R distribution F belongs to Maximal Domain of Attraction of Gen-

eralized Extreme Value (GEV) distribution if and only if

(1.10) lim
u↗xF

sup
0<x<xF−u

|Fu(x)−Gξ,σ(x)| = 0,

with Gξ,σ being Generalized Pareto Distribution (GPD) given by df

Gξ,σ(y) =


1−

(
1 + ξ

σy
)−1/ξ

, ξ 6= 0

1− exp(−y/σ), ξ = 0,

with y ∈ [0, xF − u] for ξ ≥ 0, y ∈
[
0,−σ

ξ

]
for ξ < 0 and some positive σ, depending on the value of

threshold level u.
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The above result gives us the analytical form of conditional excess distribution and makes the mod-

elling and estimation of total loss distribution much easier and clearer in a variety of possible single-loss

distributions. The GEV family of distributions contains three standard classes, namely Fréchet, Gumbel

and Weibull, and thus it includes almost all popular insurance and financial distributions like Pareto,

Loggamma, Exponential-like, Weibull-like, Beta, Gamma, Normal and Lognormal. The theorem 1.3.1

in more extended form likewise the proof of it can be found in Embrechts, Klüppelberg, Mikosch [16].

For more details on the EVT and GEV, GPD distributions with application to operational risk mea-

surement we refer Reader to papers by Embrechts, Kaufmann, Samorodnitsky (2004) ([17], [18]) and

Chavez-Demoulin, Embrechts, Neslehova (2006) ([17], [18]).

However, some properties of data like non-stationarity, dependence and inhomogeneity still remain

the serious problem and make the use of multivariate extreme value theory and copulas necessary. Finally,

choosing V aR as a risk measure may lead to wrong conclusions because of lack of subadditivity in the

presence of dependent variables, whereas other risk measures require finite mean. All observed difficulties

cause the need for more refined analysis to be done and more complicated models to be applied. We refer

reader to [17] and [18] for more details on applying EVT and POT methodology, and lately the infinite

mean models, in measuring banking operational risk.

1.4. Motivation to model operational risk with ruin theory

Returning to main objective of the thesis – the operational risk modelling in non-financial corporation,

we have to emphasize, that Basel II proposals refer predominantly to operational risk in banking industry.

The whole classification with business lines and risk types and alike suggestion to consider one-year risk,

relates to banking specification and does not capture individual features of non-financial corporations. In

corporation and especially in commodity-branch corporation, the horizon of planning and the horizon of

making decisions is much longer than one year. Due to natural, several year cycles in commodity markets

and often the expensive, long-term investments, also the risk management decisions should encompass at

least a few-year horizon. Thus the operational risk policy should be adapted to such a situation, likewise

the market risk management and hedging in corporations differs from the banking V aR-based, short term

risk management.

As we said before, the Loss Distribution Approach to operational risk modelling seems to be dual to

actuarial models in insurance, widely exploiting the sums of random variables, what results in studying

compound distributions. The most popular in insurance is the classical risk model with the variety of

extensions and generalizations. The definition and many properties of it will be widely described in

following chapters, now let us just focus on the similarities to LDA. The classical insurance risk model

for the reserve of company is given by equation

(1.11) Rt = u+ ct−
Nt∑
i=1

Xi,

where u is assumed to be an initial capital, c – premium paid to insurer in time unit and Xi – losses

that happen in random moments modelled by jumps of counting process Nt. In LDA we focus only on
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the total loss St, modelled by random sum of the same type and finding the appropriate quantile to apply

the V aR method. We have to remark here, that according to theorem of combining compound Poisson

risks (see Panjer & Willmot [34]), the sum of the form (1.7) can be reformulated again as a
∑Ñt

i=1 X̃i with

other Poisson counting process Ñt and the distribution of X̃i being a mixture of original distributions.

The aim of LDA is to find on the basis of the model, the capital charge Cop for the next year. Our

proposal is to exploit the insurance risk model in a longer time horizon (at least several years) and use the

probability of ruin as a risk measure instead of V aR. In such a representation, c would model every year

capital charge Cop (we will call it operational reserves in next chapters) and u would be arbitrary amount

of capital that should never be exceeded under threat of bankruptcy (ruin). It could be for instance

the economic capital reduced by Cop or yearly net profit assumed in budget for next few years. Quite

well developed actuarial methods of ruin probability estimation and finding the suitable level of premium

results in promising proposals of finding the appropriate level of capital charge on operational risk in

non-financial corporation. Furthermore, the variety of generalizations of insurance risk model allow to

make the modelling closer to real life. These could be for instance taking c(t) instead of ct, randomizing

ct or making Nt much more complex. There are also models allowing to add the diffusion component.

The proposed approach, although having the same basis as LDA with V aR, is substantially different

in the way the modelling with random variable is different from modelling with stochastic process. Instead

of finding a quantile of estimated variable, the problem extends to finding first the probability of ruin

(first passage of the stochastic process problem) and then to invert it in order to find the required capital

charge.



CHAPTER 2

Market risk management in corporation. Hedging as a key tool.

2.1. Setting up the problem

On the contrary to new regulations and freshly developing methodology in the field of operational

risk measurement, the market risk seems to be quite well recognized. There is a variety of publications

considering market risk measurement, modelling risk factors and methods of reducing the danger of

market risk. For last several years, hedging and financial engineering has become even a separate part of

science and papers on new interesting financial instruments are still published at very high intensity. The

field of market risk measurement is so wide that we do not intent here to make any brief or summary but

just to show some aspects, that could be interesting for risk manager in his practice. First, we would like

to emphasize again the difference between banking market risk measurement and non-financial, corporate

methodology. In the previous chapter we noticed the difference in the time horizon to be considered, the

other issue is the market activity.

The exposure of bank to market risk relates always to a set of portfolios. So every asset in each

portfolio will be a risk factor for a bank. The portfolio theory comes then with methodologies of managing

such risks, and many types of financial instruments and derivatives become necessary. The important

issue is that portfolio manager can always decide to increase or reduce his exposure to risk by taking any

(long or short) position on the market. Taking now the producer of metal, oil, gas or any commodity as

an example of non-financial corporation, the situation looks different. The firm is also exposed to high

risks resulting from changing prices of commodities and currencies, however it has to be viewed as already

having natural long position. The scope of risk manager in such a firm is to hedge some part of commodity

that is to be sold, to minimize the volatility of cash flows and potential future earnings, likewise to possibly

ensure reasonable, minimal price of production sale covering company’s costs. That obliges the manager

to take only short positions on the market, otherwise his activity would be a speculation, not hedging.

The corporation being consumer not producer of commodities exposed to market risk has similar but

opposite situation. All of these differences from banking industry cause not only the activity of risk

managers to be specified in other way, but also the applied risk measures to be different. When the most

popular risk measure exploited in banks is V aR (Value at Risk - value of portfolio exposed to loss), the

measures used in non-financial corporations are RaR (Revenues at Risk), EaR (Earnings at Risk) and

CFaR (Cash Flow at Risk). When V aR in bank should be calculated once a day, week or month with

such a short time horizon, RaR, EaR and CFaR in corporation should be prepared for quarter, year,

three-year horizon or even longer.

12



2.1. SETTING UP THE PROBLEM 13

As it was stated before, we focus on non-financial corporation acting in the field of commodities

as an example. The first thing to be done to work out the system of risk measurement, is to set the

main risk factors and establish the map of exposure to classify which field of activity is exposed to risk

that corporation is willing to measure and manage. Then, the most adequate stochastic model should

be chosen to each risk factor with determining all possible correlations. Next, according to the most

popular methodology there is a need for building the stochastic system that calibrates the models and

applies Monte Carlo simulations of each risk factor, to finally compute all the risk measures on that

basis. This standard approach seems to be very accurate and correct from methodological point of view,

however in practice risk managers encounter computational problems. As simulations have to be done in

quite a long time horizon, in order to obtain reasonable effects, it does require a great number of Monte

Carlo simulations of possibly several, dependent stochastic processes describing risk factors. Next, a lot

of calculations has to be done to obtain the revenues and earnings at each time point in the future and

at the desired level of probability α. Especially if the portfolio of hedging positions is complicated and

consists of several thousands of instruments.

Thus, making some necessary assumptions and simplifications, we would like to propose an analytical

approach to calculate RaR or EaR measures referring to simple example, that can be however extended

to more general situations. The approach exploits some aspects of portfolio theory with correlation-based

calculations of total risk exposure (see RiskMetrics methodology), that can be illustrated by following

simple formula for V aR of the sum of two dependent portfolios X1 and X2:

(2.1) V aR(X1 +X2) =
√
V aR(X1)2 + V aR(X2)2 + 2V aR(X1)V aR(X2)ρX1,X2 .

Let us consider the producer of some commodity Xt, that is denominated and quoted in foreign

currency. Its plans of production are established for next several years. Assume only two main sources

of risk: the commodity price Xt and foreign currency rate of exchange Yt. In fact, other market risks can

be often neglected due to its little importance comparing to Xt and Yt. The corporation has hedged its

production and possesses portfolio of commodity ”sell forward” contracts on Xt and portfolio of currency

”sell forwards”. All contracts are monthly settled, as that is exactly the basis of production sell. In fact,

hedging portfolio can contain much more complicated derivative instruments (including options), if only

there is a possibility of obtaining linear form of portfolio payout around its desired level of quantile in

each settlement month in the future.

Once the models of risk factors are chosen and calibration is done properly, the problem of analytical

determining of RaR and EaR measures leads to finding the distribution (in fact the quantiles and mean)

of revenues from sale of commodity in time t, reduced by settlement results from hedging portfolios in

time t, all valued in domestic currency. To find the distribution of earnings we need only to include costs,

that we assume do not depend on risk factors.

For convenience purpose, let USD be the foreign currency with PLN being domestic one. Then Xt

is USD price of commodity and XtYt is its PLN value. We propose the following steps in reaching the

final target.
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RaR algorithm

For every t starting from 0 to the end of time horizon for our analysis:

(1) First, compute the desired statistics (mean and quantiles of level α) for revenues from sell of

commodity Xt valued in PLN.

(2) Second, compute the statistics for PLN value of settlement result from commodity hedging

portfolio.

(3) Then, obtain the summary statistics in PLN (revenues from Xt + hedging of Xt + premiums

paid and received for commodity options) as a sum of results from point (1) and (2), corrected

by including obvious negative (close to -1) correlation between revenues Xt valued in PLN and

hedging Xt valued in PLN.

(4) Next, compute the statistics for settlement resulting from currency hedging portfolio.

(5) Now calculate the main outcome – total statistics for revenues from Xt reduced by result of

currency and commodity hedging portfolios. It will be found by summing values obtained in

points (3) and (4) with necessary correction by correlation between (3) (revenues from Xt +

hedging of Xt) and (4) (hedging of Yt).

(6) Finally, as a supplement we can compute the statistics for the whole hedging portfolio as a sum

of values calculated in points (2) and (4), corrected by correlation between commodity portfolio

and currency portfolio.

Proceeding this way allows to skip the calculation of redundant correlations, searching only for

necessary ones. Moreover, beyond the final result, we receive the future distribution of separate portfolios

and revenues, what can be very useful in examining the structure of risk exposure.

2.2. Modelling risk factors

2.2.1. Schwartz commodity model. According to the best practices in commodity market, we

decide to model the commodity price by geometric Ornstein-Uhlenbeck process (Schwartz mean-reverting

commodity model):

(2.2) dXt = η

(
σ2

2η
+ log(k)− log(Xt)

)
Xtdt+ σXtdWt,

with k being mean reversion level, η - speed of mean reversion, σ -volatility and Wt standard Wiener

process.

Thus the price of commodity has the feature of returning to some long-term mean level and the

variance stabilizing with time flow. The model seems to be widely exploited in the commodity market,

moreover its expected value in time often indicates similarity to commodity forward curve.

Straightforward from the model we find the distribution of Xt to be lognormal

log(Xt)
d= N(µt,X , σ2

t,X)

with parameters

µt,X = log(Xt0) exp(−η(t− t0)) + log(k)(1− exp(−η(t− t0))), σ2
t,X =

σ2 exp(−η(t− t0))
2η

.
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Calculating the mean, variance and α-quantile of Xt comes directly as

E(Xt) = exp

(
µt,X +

σ2
t,X

2

)
,

Var(Xt) = exp(2µt,X + σ2
t,X)(exp(σ2

t,X)− 1),(2.3)

Qα(Xt) = exp
(
µt,X + σt,XΦ−1(α)

)
,

with Φ−1(α) denoting the inverse of standard normal distribution function.

2.2.2. Calibration of Schwartz model. To calibrate the Schwartz model, we need to transform

Geometric Ornstein-Uhlenbeck process to Arithmetic one by working with logarithms of price Xt (say

X̃t = log(Xt)). Then the equation takes a form:

(2.4) dX̃t = η
(
log(k)− X̃t

)
dt+ σdWt.

There are two basic methods for calibrating the Arithmetic Ornstein-Uhlenbeck process parameters:

the method of moments and maximum likelihood method. The first is quite crude, however it gives

reasonable outcomes. The second, more refined, requires three-dimensional optimization of likelihood

function, possibly driving to serious numerical problems, but it seems to effect with more reliable results.

Moreover, according to paper by José Carlos Garcia Franco ([10]), we can reduce the dimension of

optimization needed. Given n + 1 observations x = (xt0 , . . . , xtn) of logarithms of prices in time points

ti, the log-likelihood function corresponding to conditional density of xti (with constant terms omitted)

can be found as:

(2.5)

L(x) = −n log
(
σ2

2η

)
−

n∑
i=1

log
(
1− e−2η(ti−ti−1)

)
− 2η
σ2

n∑
i=1

(xti − log(k)− (xti−1 − log(k))e−η(ti−ti−1))2

1− e−2η(ti−ti−1)
.

In his paper, exploiting some elementary analytical manipulations of the first order conditions of

MLE, author finds convenient relations between MLE estimators ( ˆlog(k), η̂ and σ̂):

ˆlog(k)(η̂) =
n∑
i=1

xti − xti−1e
−η̂(ti−ti−1)

1 + e−η̂(ti−ti−1)

(
n∑
i=1

1− e−η̂(ti−ti−1)

1 + e−η̂(ti−ti−1)

)−1

,(2.6)

σ̂(η̂, ˆlog(k)) =

√√√√2η̂
n

n∑
i=1

(xti − ˆlog(k)− (xti−1 − ˆlog(k))e−η̂(ti−ti−1))2

1− e−2η̂(ti−ti−1)
.(2.7)

Now, substituting ˆlog(k)(η̂) and σ̂(η̂, ˆlog(k)) directly into the likelihood function and maximizing

with respect to η̂ yields the desired, numerically tractable one-dimensional optimization problem.

Finally, it is worth to notice, that correction of the historical data of commodity price by adjusting

it with the PPI inflation, yields more reliable estimates from economic point of view and definitely helps

to avoid numerical exceptional difficulties in the case of unexpected, large price movements.
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2.2.3. Geometric Brownian Motion for currency price. For modelling currency price we sim-

ply put the Geometric Brownian Motion, commonly identified with Black-Scholes model for option price

valuation.

(2.8) dYt = µYtdt+ σYtdWt,

with drift parameter µ and volatility σ.

Analogously, distribution of Yt is lognormal

log Yt
d= N(µt,Y , σ2

t,Y ).

with parameters

µt,Y = log(Yt0) + (µ− 1
2
σ2)(t− t0), σ2

t,Y = σ2(t− t0).

We leave calibration of currency model to subjective decision of any interested reader, the methods

are quite standard and require calculating historical trend and standard deviation of logarithmic returns

from currency price data. To obtain volatility closer to current market, one may apply exponentially

weighted standard deviation. Drift can be also fitted to current market currency forward curve.

Formulas for mean, variance and α-quantile of Yt are same as in (2.3).

2.3. How to calculate the RaR measure

based on analytical correlations approach Having chosen the risk factor models and estimated its

parameters, we can formulate the main theorem of this chapter, introducing the analytical correlations

approach to RaR measure calculation.

Theorem 2.3.1. The RaR algorithm proposed in section (2.1) can be realized by an analytical cor-

relations approach exploiting formula (2.1).

Proof. Proceeding with the first step of RaR calculations we search for statistics of revenues from

sale valued in PLN. Denote by βt the amount of commodity planned for sale in moment t. Thus, the

revenue from sale in time t is given by βtXtYt. Define the value of commodity in PLN by Ut = XtYt.

Assuming independence Xt of Yt, the expected value of revenues in time t results in

(2.9) βtE(Ut) = βtE(Xt)E(Yt) = βt exp

(
µt,X + µt,Y +

σ2
t,X + σ2

t,Y

2

)
.

For further calculations purpose it is important to observe, that Ut has again lognormal distribution

of the form

(2.10) logUt
d= N(µt,U , σ2

t,U ) = N(µt,X + µt,Y , σ
2
t,X + σ2

t,Y ).

Observe by (2.10) that the desired quantile of level α for the revenues reads βtQα(Ut) and

(2.11) βtQα(Ut) = βt exp
(
µt,X + µt,Y +

√
σ2
t,X + σ2

t,Y Φ−1(α)
)
.

In this way, the first step of RaR algorithm is finished.
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Next, statistics for the hedging portfolio need to be found. For this purpose, define the commodity

hedging portfolio settlement result in moment t as a variable

(2.12) HX
t

def= γtYt(Kt −Xt),

with γt denoting suitable quantity and Kt – the average level of price hedged (strike).

Finding quantile Qα(HX
t ) appears not to be so straightforward, sinceHX

t can be viewed as a difference

between two dependent, lognormal variables γtKtYt and γtXtYt, and as such, it does not have a closed

form analytical distribution. However we can make an attempt to find it via numerical integration. First,

omitting constant factor γt, we realize the joint distribution of the pair (Ut, Vt)
def= (XtYt,KtYt) to be

2-dimensional lognormal distribution:

(2.13) (log(Ut), log(Vt))
d= N(µt,U , µt,V , σ2

t,U , σ
2
t,V , ρt,UV ),

with ρt,UV meaning correlation coefficient between normal variables (log(Vt), log(Ut)), (µt,U , σ2
t,U )

given by (2.10), and (µt,V = µt,Y + log(Kt), σ2
t,V = σ2

t,Y ). Then, corresponding 2-dimensional lognormal

density reads

(2.14)

g(u, v) =

1

2πσt,Uσt,V uv
√

1−ρ2t,UV

exp
[

−1
2(1−ρ2t,UV )

((
log u−µt,U

σt,U

)2

+
(

log v−µt,V

σt,V

)2

− 2ρt,UV (log u−µt,U )(log v−µt,V )
σt,Uσt,V

)]
.

Therefore, putting q = Qα(HX
t )

γt
and omitting t-indexation for convenience purpose, yields

(2.15)
P
(
HX

t < Qα(HX
t )
)

= P

(
Vt − Ut <

Qα(HX
t )

γt

)
= P (Vt < Ut + q) =

∫∞
max{0,−q}

∫ q+u
0 g(u, v)dvdu

=
∫∞
max{0,−q}

∫ q+u
0

1

2πσU σV uv
√

1−ρ2
UV

exp

[
−1

2(1−ρ2
UV

)

(
( log u−µU

σU
)2 + ( log v−µV

σV
)2 − 2ρUV (log u−µU )(log v−µV )

σU σV

)]
dvdu

=
∫∞
max{0,−q}

∫ log(q+u)−µV
σV

−∞
1

2πσU u
√

1−ρ2
UV

exp

[
−1

2(1−ρ2
UV

)

(
( log u−µU

σU
)2 + z2 − 2ρUV (log u−µU )z

σU

)]
dzdu

=
∫∞

log(max{0,−q})−µU
σU

∫ log(q+exp(µU +σU y))−µV
σV

−∞
1

2π
√

1−ρ2
UV

exp

[
−1

2(1−ρ2
UV

)

(
y2 + z2 − 2ρUV yz

)]
dzdy

=
∫∞

log(max{0,−q})−µU
σU

∫ log(q+exp(µU +σU y))−µV
σV

−∞
1

2π
√

1−ρ2
UV

exp

(
−−y2

2
− (z−ρUV y)2

2(1−ρ2
UV

)

)
dzdy

=
∫∞

log(max{0,−q})−µU
σU

1√
2π

exp
(
−−y2

2

)
Φ

(
log(q+exp(µU +σU y))−µV −ρUV σV y

σV

√
1−ρ2

UV

)
dzdy.

The last term does not have analytical solution, however it can be computed via numerical integration

with little care needed when cutting bounds of infinite integration (lower bound tends to−∞ when q ↗ 0).

The only unknown parameter in (2.15) left to find, is correlation coefficient ρUV . In order to figure it out,

we have to search for correlation between Ut and Vt and that is essentially correlation ρXY,Y between
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XtYt and Yt. Independence Xt of Yt and elementary algebra yields

Cov(XtYt, Yt) = E(Xt)Var(Yt)

and Var(XtYt) = Var(Xt)(E(Yt))2 + Var(Yt)(E(Xt))2 + Var(Xt)Var(Yt).

Thus, involving (2.3) obtains

(2.16)

ρXY,Y =
E(Xt)√

Var(Xt)
Var(Yt)

(E(Yt))2 + (E(Xt))2 + Var(Xt)
=

exp
(
µt,X + σ2

t,X

2

)√
exp(σ2

t,Y )− 1√
exp(2µt,X + σ2

t,X)(exp(σ2
t,X + σ2

t,Y )− 1)
.

The desired correlation coefficient ρUV arises after suitable transformation of ρXY,Y , complying the

relation between correlation of original variables and correlation between log-variables. Thus

(2.17) ρUV =
log
(
1 + ρXY,Y

√
(exp(σ2

t,U )− 1)(exp(σ2
t,V )− 1)

)
σt,Uσt,V

.

Finally, finding the desired quantile Qα(HX
t ) requires inverting (2.15) equal to α. It can be done for

instance with any optimization method without special difficulties. The end of step (2) of RaR algorithm,

comes with obvious formula for E(HX
t )

(2.18) E(HX
t ) = γtE(Yt)(Kt − E(Xt)).

Next step (3) of algorithm reads to find E(βtUt +HX
t ) and Qα(βtUt +HX

t ). The first is trivial and

approximation of the second follows from applying suitable version of (2.1):

(2.19)

Qα(βtUt +HX
t ) ≈ E(βtUt +HX

t ) + p(HX
t )

±
√

(Qα(βtUt)− E(βtUt))2 + (Qα(HX
t )− E(HX

t ))2 + 2(Qα(βtUt)− E(βtUt))(Qα(HX
t )− E(HX

t ))ρUH ,

with p(HX
t ) denoting PLN value of premiums paid for options settling in moment t, the sign ± before

square root depending on level α of the quantile (upper/lower) and ρUH being correlation coefficient

between variables βtUt and HX
t . Introducing auxiliary variable φ =

√
Var(Yt)

Var(XtYt)
and again omitting

t-indexation, it can be found in the following way:

(2.20)

ρUH = corr(βtUt,HX
t ) = corr(XtYt, (Kt −Xt)Yt) = Cov(XY,(K−X)Y )√

Var(XY )Var((K−X)Y )
= KCov(Y,XY )−Var(XY )√

Var(XY )Var(KY−XY )

= KCov(Y,XY )−Var(XY )√
K2Var(Y )+Var(XY )−2KCov(Y,XY )

√
Var(XY )

√
Var(Y )√
Var(Y )

= KρXY,Y −
√

Var(XY )/Var(Y )√
K2+

Var(XY )
Var(Y ) −2K

ρXY,Y

√
Var(XY )Var(Y )
Var(Y )

=
KρXY,Y − 1

φ√
K2+ 1

φ2−2KρXY,Y
1
φ

= φKρXY,Y −1√
1−ρ2XY,Y +(Kφ−ρXY,Y )2

.

Putting now (2.20) into (2.19) yields the finish of point (3).
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Obtaining step (4) – the mean and quantiles for currency hedging HY
t

def= δt(Lt − Yt) is obvious and

reads:
E(HY

t ) = δt(Lt − E(Yt)),

Qα(HY
t ) = δt(Lt −Q1−α(Y )).(2.21)

To approach the main target – calculation of statistics for revenues reduced by hedging, we apply

the same methodology and results obtained so far. Thus

(2.22) E(βtUt +HX
t +HY

t ) = βtE(Xt)E(Yt) + γt(Kt − E(Xt))E(Yt) + δt(Lt − E(Yt)),

and
(2.23)

Qα(βtUt +HX
t +HY

t ) ≈ E(βtUt +HX
t +HY

t ) + p(HX
t ) + p(HY

t )

±
√

(Qα(βtUt +HX
t )− E(βtUt +HX

t ))2 + (Qα(HY
t )− E(HY

t ))2 + 2(Qα(βtUt +HX
t )− E(βtUt +HX

t ))(Qα(HY
t )− E(HY

t ))ρUHH .

Same as before, the only unknown parameter to be found is ρUHH , being the correlation coefficient be-

tween βtUt+HX
t and HY

t . And that is essentially the same as −ρUHY with ρUHY
def= corr(βtUt+HX

t , Y ).

To calculate ρUHY , first we need to introduce auxiliary corelation coefficient ρHY
def= corr(HX

t , Y ). Cal-

culation of ρHY follows by:

(2.24)

ρHY = KVar(Y )−Cov(XY,Y )√
Var(KY−XY )Var(Y )

= KVar(Y )−Cov(XY,Y )√
K2Var(Y )+Var(XY )−2KCov(Y,XY )

√
Var(Y )

√
Var(XY )√
Var(XY )

=
KVar(Y )√

Var(XY )Var(Y )
−ρXY,Y√

K2 Var(Y )
Var(XY )+1−2KρXY,Y

√
Var(Y )√

Var(XY )
+ρ2XY,Y −ρ2XY,Y

= Kφ−ρXY,Y√
1−ρ2XY,Y +(Kφ−ρXY,Y )2

.

Finally, correlation coefficient ρUHY can be directly found as:

(2.25)

ρUHY = Cov(βXY,Y )+Cov(HX
t ,Y )√

Var(βXY+γ(KY−XY ))Var(Y )
=

Cov(βXY,Y )+Cov(γKY−γXY+ Kγ2

β−γ Y−
Kγ2

β−γ Y,Y )

β−γ
γ

√
Var(γXY+ Kγ2

β−γ Y )Var(Y )

=
Cov(βXY,Y )+Cov(HX

t (K′=− Kγ
β−γ ),Y )+Cov((γK+ Kγ2

β−γ )Y,Y )

β−γ
γ

√
Var(HX

t (K′=− Kγ
β−γ ))Var(Y )

= γ
β−γ ρHY (K ′) +

Cov(βXY,Y )+ βγK
β−γ Var(Y )

β−γ
γ

√
Var(HX

t (K′))Var(Y )

= γ
β−γ ρHY (K ′) + βγ(β−γ)ρXY,Y

√
Var(XY )+βγ2K

√
Var(Y )

(β−γ)2
√

Var(HX
t (K′))

= γ
β−γ ρHY (K ′)

+ βγ(β−γ)ρXY,Y

√
Var(XY )+βγ2K

√
Var(Y )

(β−γ)2γ
√

Var(XY )
√

1−ρ2XY,Y +(K′φ−ρXY,Y )2
= γ

β−γ
K′φ−ρXY,Y√

1−ρ2XY,Y +(K′φ−ρXY,Y )2
+ β(β−γ)ρXY,Y +βγKφ

(β−γ)2
√

1−ρ2XY,Y +(K′φ−ρXY,Y )2

= γ(β−γ)(K′φ−ρXY,Y )+β(β−γ)ρXY,Y +βγKφ

(β−γ)2
√

1−ρ2XY,Y +(K′φ−ρXY,Y )2
= (β−γ)2ρXY,Y +γφ((β−γ)K′+βK)

(β−γ)2
√

1−ρ2XY,Y +(K′φ−ρXY,Y )2
= (β−γ)2ρXY,Y +γφ(βK−γK)

(β−γ)2
√

1−ρ2XY,Y +( Kγφ
β−γ +ρXY,Y )2

= (β−γ)ρXY,Y +γφK√
(β−γ)2(1−ρ2XY,Y )+(Kγφ+ρXY,Y (β−γ))2

.

The final result of (2.23) comes with applying −ρUHY instead of ρUHH . Remark, that point (5) of

RaR algorithm can be calculated in the same way, if only applying ρHY found in (2.24). That yields to

quantifying the separate risk exposure of hedging portfolio alone.
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Especially important and useful with taking hedging decisions is lower quantile Qα(βtUt+HX
t +HY

t )

with α = 0.05 or α = 0.01, as leading directly to RaR measure:

(2.26) RaRαt
def= E(βtUt +HX

t +HY
t )−Qα(βtUt +HX

t +HY
t )

It tells the managers how big is the exposure to market risk, i.e. how much the corporation is risking

by not hedging totally its revenues. On the RaR basis, the corporation is able to decide whether to

hedge some additional part of revenues or not. Either some system of strategic limits could be introduced

exploiting RaR measure. �

Finally, it is worth to mention, that RaR can be also defined as the value of revenues exposed to risk

with respect to revenues predetermined in the budget:

(2.27) RaRB,αt
def= βtX

B
t Y

B
t +HXB

t +HY B

t −Qα(βtUt +HX
t +HY

t )

Involving RaRB,αt in taking hedging decisions could be however not effective due to possible mismatch

of budget prices to the current market situation.



CHAPTER 3

Some basic aspects of actuarial risk theory.

3.1. Collective risk model and ruin probabilities

In examining the nature of the risk associated with a portfolio of business, it is often of interest

to assess how the portfolio of the corporation may be expected to perform over an extended period of

time. One approach concerns the use of ruin theory (Panjer & Willmot [34]). Similarly as in the case

of operational risk management in banking, the compound Poisson distributions can be used to model

corporate operational risk and in particular, ruin theory should be applied. Ruin theory is concerned

with the excess of the income (with respect to a portfolio of business) over the outgo, or claims paid.

This quantity, referred to as insurer’s surplus, varies in time. Specifically, ruin is said to occur if the

insurer’s surplus reaches a specified lower bound, e.g. minus the initial capital. One measure of risk is

the probability of such an event, clearly reflecting the volatility inherent in the business. In addition, it

can serve as a useful tool in long range planning for the use of insurer’s funds.

We start with a definition of a classical risk model (see e.g. Grandell [21], and Rolski et al. [38]).

Definition 3.1.1. Let (Ω,F ,P) be a probability space carrying Poisson process {Nt}t≥0 with intensity

λ, and sequence {Xk}∞k=1 of independent, positive, identically distributed random variables, with mean

µ and variance σ2. Furthermore, we assume that {Xk} and {Nt} are independent. The classical risk

process {Rt}t≥0 is given by

(3.1) Rt = u+ ct−
Nt∑
i=1

Xi,

where c is some positive constant and u is nonnegative.

This is the standard mathematical model for insurance risk. The initial capital is u, the Poisson

process Nt describes the number of claims in (0, t] interval and claim severities are random, given by

sequence {Xk}∞k=1 with mean value µ and variance σ2, independent of Nt. To cover its liability, the

insurance company receives premium at a constant rate c, per unit time, where c = (1 + θ)λµ and θ > 0

is often called the relative safety loading. The loading has to be positive, otherwise c would be less than

λµ and thus with probability 1 the risk business would become negative in infinite time.

For mathematical purposes, it is sometimes more convenient to work with a claim surplus process

process process {St}t≥0 (see e.g. Asmussen [1]), namely

St = u−Rt =
Nt∑
i=1

Xi − ct.

21
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To introduce the term ruin probability, i.e. the probability that the risk process drops below zero,

first define the time to ruin as

(3.2) τ(u) = inf{t ≥ 0 : Rt < 0} = inf{t ≥ 0 : St > u}.

Let

L = sup
0≤t<∞

{St} and LT = sup
0≤t≤T

{St}.

Definition 3.1.2. The ruin probability in finite time T is given by

ψ(u, T ) = P(τ(u) ≤ T ) = P(LT > u)

and ruin probability in infinite time is defined as

(3.3) ψ(u) = P(τ(u) <∞) = P(L > u).

We also note that obviously ψ(u, T ) < ψ(u). However, the infinite time ruin probability may be

sometimes also relevant for the finite time case.

In the sequel we assume c = 1, but it is not a restrictive assumption. Following Asmussen [1], let

c 6= 1 and define R̃t = R t
c
. Then relations between ruin probabilities ψ(u), ψ(u, T ) for the process Rt

and ψ̃(u), ψ̃(u, T ) for the process R̃t are given by equations:

ψ(u) = ψ̃(u), ψ(u, T ) = ψ̃(u, Tc).

3.2. Adjustment coefficient

In financial and actuarial mathematics there’s a distinction between light- and heavy-tailed distri-

butions (see, e.g. Embrechts et al. [16]). Distribution FX(x) is said to be light-tailed, if there exist

constants a > 0, b > 0 such that FX(x) = 1− FX(x) ≤ ae−bx or, equivalently, if there exist z > 0, such

that MX(z) < ∞, where MX(z) is the moment generating function. Distribution FX(x) is said to be

heavy-tailed, if for all a > 0, b > 0 FX(x) > ae−bx, or, equivalently, if ∀z > 0 MX(z) = ∞.

The main claim size distributions to be studied are presented in Table 1.

Adjustment coefficient (called also the Lundberg exponent) plays a key role in calculating the ruin

probability in the case of light-tailed claims.

Definition 3.2.1. Let γ = supzMX(z) <∞ and let R be a positive solution of the equation

(3.4) 1 + (1 + θ)µR = MX(R), R < γ.

If there exists a non-zero solution to the above equation, we call such R an adjustment coefficient.

Analytical solution to equation (3.4) exists only for few claim distributions. However, it is quite easy

to obtain a numerical solution. The coefficient R satisfies the inequality

(3.5) R <
2θµ
µ(2)

,
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Table 3.1. Claim size distributions

Light-tailed distributions

name parameters pdf

exponential β > 0 fX(x) = βe−βx, x ≥ 0

gamma α > 0, β > 0 fX(x) = βα

Γ(α)x
α−1e−βx, x ≥ 0

Weibull c > 0, τ ≥ 1 fX(x) = cτxτ−1e−cx
τ

, x ≥ 0

mixed exp’s βi > 0,
n∑
i=1

ai = 1 fX(x) =
n∑
i=1

(aiβie−βix), x ≥ 0

Heavy-tailed distributions

name parameters pdf

Weibull c > 0, 0 < τ < 1 fX(x) = cτxτ−1e−cx
τ

, x ≥ 0

lognormal µ ∈ R σ > 0 fX(x) = 1√
2πσx

e−
(log(x)−µ)2

2σ2 , x ≥ 0

loggamma α > 0, β > 0 fX(x) = βα(log(x))α−1

xβ+1Γ(α)
, x ≥ 1

Pareto α > 0, ν > 0 fX(x) = α
ν+x

(
ν

ν+x

)α
, x ≥ 0

Burr α > 0, ν > 0, τ > 0 fX(x) = ατναxτ−1

(ν+xτ )α+1 , x ≥ 0

where µ(2) = EX2
i (cf. [1]). Let D(z) = 1 + (1 + θ)µz −MX(z). Thus, the adjustment coefficient R > 0

satisfies the equation D(R) = 0. In order to get the solution one may use the Newton-Raphson formula

(3.6) Rj+1 = Rj −
D(Rj)
D′(Rj)

,

with the initial condition R0 = 2θµ
µ(2) , where D′(z) = (1 + θ)µ−MX(z)′.

Moreover, if it is possible to calculate the third raw moment µ(3), we can obtain a sharper bound

than (3.5) (see [34]):

R <
12µθ

3µ(2) +
√

9(µ(2))2 + 24µµ(3)θ
,

and use it as a initial condition in (3.6).

We note that most of the methods of estimating the ruin probability discussed in the next chapters

require only the existence of first two or three moments of the claim size distribution, and some of them

also the existence of the moment generating function.

Now, let us we consider the aggregate loss process St with c = 1. Put ξ(u) = Sτ(u) − u, where τ(u)

is the time to ruin defined by (3.2). The following statement presents a general formula for the ruin

probability in infinite time (see e.g. Asmussen [1]).

Proposition 3.2.1. Let us assume that for some R > 0 the process
{
eRSt

}
t≥0

is a martingale and

St → −∞ a.s. on {τ(u) = ∞}. Then

(3.7) ψ(u) =
e−Ru

E(eRξ(u)| τ(u) <∞)
.

For the classical risk model the foregoing assumptions hold and R is the adjustment coefficient.



CHAPTER 4

Ruin probability in finite time horizon.

From a practical point of view, ψ(u, T ), where T is related to the planning horizon of the company,

may perhaps sometimes be regarded as more interesting than ψ(u). Most insurance managers will closely

follow the development of the risk business and increase the premium or the if the risk business behaves

badly. The planning horizon may be thought of as the sum of the following: the time until the risk

business is found to behave “badly”, the time until the management reacts and the time until a decision

of a premium increase takes effect. Therefore, in non-life insurance, it may be natural to regard T

equal to four or five years as reasonable (Grandell [21]). Analogously, applying actuarial methodology to

operational risk management in the corporation within five year planning horizon, ψ(u, T ) would be a very

interesting tool providing useful risk measurement, essential for taking accurate management decisions

and establishing required level of operational capital charge.

We also note that the situation in infinite time is markedly different from the finite horizon case as

the ruin probability in finite time can always be computed directly using Monte Carlo simulations. It

is worth to remark that generalizations of the classical risk process which are studied in Čižek, Härdle

and Weron [12], Chapter 14, where the occurrence of the claims is described by point processes other

than the Poisson process (i.e., non-homogeneous, mixed Poisson and Cox processes) do not alter the ruin

probability in infinite time. This stems from the following fact ([12], Chapter 14).

Fact 4.0.1. Consider a risk process R̃t driven by a Cox process Ñt with the intensity process λ̃(t),

namely

R̃t = u+ (1 + θ)µ
∫ t

0

λ̃(s)ds−
Ñt∑
i=1

Xi.

Define now Λt =
∫ t
0
λ(s)ds and Rt = R̃(Λ−1

t ). Then the point process Nt = Ñ(Λ−1
t ) is a standard Poisson

process, and therefore,

ψ̃(u) = P(inf
t≥0
{R̃t} < 0) = P(inf

t≥0
{Rt} < 0) = ψ(u).

The time scale defined by Λ−1
t is called the operational time scale. It naturally affects the time to

ruin, hence the finite time ruin probability, but not the ultimate ruin probability.

The ruin probabilities in infinite and finite time can only be calculated for a few special cases of the

claim amount distribution. Thus, finding a reliable approximation, especially in the ultimate case, when

the Monte Carlo method can not be utilized, is really important from a practical point of view.

In this section, first the exact ruin probabilities in finite time are discussed, then the most important

approximations of the finite time ruin probability are presented and illustrated. One new approximation,

namely Finite De Vylder approximation, is proposed.

24



4.1. EXACT RUIN PROBABILITIES IN FINITE TIME 25

To illustrate and compare approximations in this and the next sections, we use the PCS (Property

Claim Services) catastrophe data (for details, introduction and the estimations see [12], Chapter 13).

The data describes losses resulting from natural catastrophic events in USA that occurred between 1990

and 1999. This data set was used to obtain the parameters of the discussed distributions.

4.1. Exact ruin probabilities in finite time

We are now interested in the probability that the company’s capital as defined by (3.1) remains non-

negative for a finite period T rather than permanently. We assume that the number of losses process Nt is

a Poisson process with rate λ, and consequently, the total claims (aggregate loss) process is a compound

Poisson process. Premiums are payable at rate c per unit time. We recall that the intensity of the process

Nt is irrelevant in the infinite time case provided that it is compensated by the premium.

In contrast to the infinite time case there is no general formula for the ruin probability like the

Pollaczek–Khinchin one given in the next chapter by (5.11). In the literature one can only find a partial

integro-differential equation which satisfies the probability of non-ruin, see [34]. An explicit result is

merely known for the exponential losses, and even is this case a numerical integration is needed [1].

4.1.1. Exponential loss amounts. First, in order to simplify the formulae, let us assume that

losses have the exponential distribution with β = 1 and the amount of premium is c = 1. Then

(4.1) ψ(u, T ) = λ exp {−(1− λ)u} − 1
π

∫ π

0

f1(x)f2(x)
f3(x)

dx,

where

f1(x) = λ exp
{

2
√
λT cosx− (1 + λ)T + u

(√
λ cosx− 1

)}
,

f2(x) = cos
(
u
√
λ sinx

)
− cos

(
u
√
λ sinx+ 2x

)
, and f3(x) = 1 + λ− 2

√
λ cosx.

Now, notice that the case β 6= 1 is easily reduced to β = 1, using the formula:

(4.2) ψλ,β(u, T ) = ψλ
β ,1

(βu, βT ).

Moreover, the assumption c = 1 is not restrictive since we have

(4.3) ψλ,c(u, T ) = ψλ/c,1(u, cT ).

As an example, Table 4.1 shows the exact values of the ruin probability for exponential claims with

β = 6.3789 · 10−9 (see Chapter 13 in [12]) with respect to the initial capital u and the time horizon

T . The relative safety loading θ equals 30%. Compare to Table 15.2 in [12], Chapter 15, to see that

the values converge to those calculated in infinite case as T is getting larger. The speed of convergence

decreases as the initial capital u grows.
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Table 4.1. The ruin probability for exponential claims with β = 6.3789 · 10−9 and

θ = 0.3 (u in USD billion).

u 0 1 2 3 4 5

ψ(u, 1) 0.757164 0.147954 0.025005 0.003605 0.000443 0.000047

ψ(u, 2) 0.766264 0.168728 0.035478 0.007012 0.001286 0.000218

ψ(u, 5) 0.769098 0.176127 0.040220 0.009138 0.002060 0.000459

ψ(u, 10) 0.769229 0.176497 0.040495 0.009290 0.002131 0.000489

ψ(u, 20) 0.769231 0.176503 0.040499 0.009293 0.002132 0.000489

Table 4.2. Monte Carlo results (50 x 10000 simulations) for mixture of two exponentials

claims with β1 = 3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584 and θ = 0.3 (u in USD

billion).

u 0 1 5 10 20 50

ψ(u, 1) 0.672550 0.428150 0.188930 0.063938 0.006164 0.000002

ψ(u, 2) 0.718254 0.501066 0.256266 0.105022 0.015388 0.000030

ψ(u, 5) 0.753696 0.560426 0.323848 0.159034 0.035828 0.000230

ψ(u, 10) 0.765412 0.580786 0.350084 0.184438 0.049828 0.000726

ψ(u, 20) 0.769364 0.587826 0.359778 0.194262 0.056466 0.001244

4.2. Approximations of the ruin probability in finite time

In this section, we present 5 different approximations. We illustrate them on a common claim

size distribution example, namely the mixture of two exponentials claims with β1 = 3.5900 · 10−10,

β2 = 7.5088 · 10−9 and a = 0.0584 (see Chapter 13 in [12]). Numerical comparison of the approximations

is given in Section 4.3.

4.2.1. Monte Carlo method. The ruin probability in finite time can always be approximated by

means of Monte Carlo simulations. Table 4.2 shows the output for mixture of two exponentials claims

with β1, β2, a, with respect to the initial capital u and the time horizon T . The relative safety loading

θ is set to 30%. For the Monte Carlo method purposes we generated 50 x 10000 simulations. We see

that the values approach those calculated in infinite case as T increases, cf. Table 15.2 in [12]. We note

that the Monte Carlo method will be used as a reference method when comparing different finite time

approximations in Section 4.3.

4.2.2. Segerdahl normal approximation. The following result due to Segerdahl [39] is said to

be a time-dependent version of the Cramér–Lundberg approximation given by (5.5).

(4.4) ψS(u, T ) = C exp(−Ru)Φ
(
T − umL

ωL
√
u

)
,



4.2. APPROXIMATIONS OF THE RUIN PROBABILITY IN FINITE TIME 27

where C = θµ/ {M ′
X(R)− µ(1 + θ)}, mL = C {λM ′

X(R)− 1}−1 and ω2
L = λM ′′

X(R)m3
L.

This method requires existence of the adjustment coefficient. This implies that only light-tailed

distributions can be used. Numerical evidence shows that the Segerdahl approximation gives the best

results for huge values of the initial capital u, see [1].

4.2.3. Diffusion approximation. The idea of the diffusion approximation is first to approximate

the claim surplus process St by a Brownian motion with drift (arithmetic Brownian motion) by matching

the first two moments, and next, to note that such an approximation implies that the first passage

probabilities are close. The first passage probability serves as the ruin probability.

The diffusion approximation is given by:

(4.5) ψD(u, T ) = IG

(
Tµ2

c

σ2
c

;−1;
u|µc|
σ2
c

)
,

where µc = λθµ, σc = λµ(2), and IG(·; ζ;u) denotes the distribution function of the passage time of

the Brownian motion with unit variance and drift ζ from the level 0 to the level u > 0 (often referred

to as the inverse Gaussian distribution function), namely IG(x; ζ;u) = 1− Φ (u/
√
x− ζ

√
x) + exp (2ζu)

·Φ (−u/
√
x− ζ

√
x), see [1]. We also note that in order to apply this approximation we need the existence

of the second moment of the claim size distribution.

4.2.4. Corrected diffusion approximation. The idea presented above of the diffusion approxi-

mation ignores the presence of jumps in the risk process (the Brownian motion with drift is skip-free)

and the value Sτ(u) − u in the moment of ruin. The corrected diffusion approximation takes this and

other deficits into consideration [1]. Under the assumption that c = 1, cf. relation (4.3), we have

(4.6) ψCD(u, t) = IG

(
Tδ1
u2

+
δ2
u

;−Ru
2

; 1 +
δ2
u

)
,

where R is the adjustment coefficient, δ1 = λM ′′
X(γ0), δ2 = M ′′′

X (γ0)/ {3M ′′
X(γ0)}, and γ0 satisfies the

equation: κ′(γ0) = 0, where κ(s) = λ {MX(s)− 1} − s.

Similarly as in the Segerdahl approximation, the method requires existence of the moment generating

function, so we can use it only for light-tailed distributions.

4.2.5. Finite time De Vylder approximation. Let us recall the idea of the De Vylder approx-

imation in infinite time: we replace the claim surplus process with the one with θ = θ̄, λ = λ̄ and

exponential claims with parameter β̄, fitting first three moments, see the next chapter. Here, the idea is

the same. First, we compute

β̄ =
3µ(2)

µ(3)
, λ̄ =

9λµ(2)3

2µ(3)2
, and θ̄ =

2µµ(3)

3µ(2)2
θ.

Next, we employ relations (4.2) and (4.3) and finally use the exact, exponential case formula presented

in Section 4.1.1. Obviously, the method gives the exact result in the exponential case. For other claim

distributions, the first three moments have to exist in order to apply the approximation.
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Summarizing methods presented above, Table 4.3 shows which approximation can be used for each

claim size distribution. Moreover, the necessary assumptions on the distribution parameters are presented.

Table 4.3. Survey of approximations with an indication when they can be applied

Distribution Exp. Gamma Weibull Mix.Exp. Lognormal Pareto Burr

Method

Monte Carlo + + + + + + +

Segerdahl + + – + – – –

Diffusion + + + + + α > 2 ατ > 2

Corr. diff. + + – + – – –

Fin. De Vylder + + + + + α > 3 ατ > 3

4.3. Numerical comparison of the finite time approximations

Now, we illustrate all 5 approximations presented in Section 4.2. We consider three claim amount

distributions which were best fitted to the catastrophe data in Chapter 13 in[12], namely the mixture

of two exponentials, log-normal and Pareto distributions. The parameters of the distributions are: β1 =

3.5900 · 10−10, β2 = 7.5088 · 10−9, a = 0.0584 (mixture), µ = 18.3806, σ = 1.1052 (log-normal), and

α = 3.4081, λ = 4.4767 · 108 (Pareto). The ruin probability will be depicted as a function of u, ranging

from USD 0 to 30 billion, with fixed T = 10 or with fixed value of u = 20 billion USD and varying T

from 0 to 20 years. The relative safety loading is set to 30%. Figures have the same form of output. In

the left panel, the exact ruin probability values obtained via Monte Carlo simulations are presented. The

right panel describes the relative error with respect to the exact values. We also note that for the Monte

Carlo method purposes we generated 50 x 10000 simulations.
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Figure 4.1. The exact ruin probability obtained via Monte Carlo simulations (left

panel), the relative error of the approximations (right panel). The Segerdahl (short-

dashed blue line), diffusion (dotted red line), corrected diffusion (solid black line) and

finite time De Vylder (long-dashed green line) approximations. The mixture of two

exponentials case with T fixed and u varying.
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First, we consider the mixture of two exponentials case. As we can see in Figures 4.1 and 4.2 the

diffusion approximation almost for all values of u and T gives highly incorrect results. Segerdahl and

corrected diffusion approximations yield similar error, which visibly decreases when the time horizon gets

bigger. The finite time De Vylder method is a unanimous winner and always gives the error below 10%.
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Figure 4.2. The exact ruin probability obtained via Monte Carlo simulations (left

panel), the relative error of the approximations (right panel). The Segerdahl (short-

dashed blue line), diffusion (dotted red line), corrected diffusion (solid black line) and

finite time De Vylder (long-dashed green line) approximations. The mixture of two

exponentials case with u fixed and T varying.

In the case of log-normally distributed claims, we can only apply two approximations: diffusion and

finite time De Vylder ones, cf. Table 4.3. Figures 4.3 and 4.4 depict the exact ruin probability values

obtained via Monte Carlo simulations and the relative error with respect to the exact values. Again, the

finite time De Vylder approximation works much better than the diffusion one.
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Figure 4.3. The exact ruin probability obtained via Monte Carlo simulations (left

panel), the relative error of the approximations (right panel). Diffusion (dotted red

line) and finite time De Vylder (long-dashed green line) approximations. The log-normal

case with T fixed and u varying.
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Figure 4.4. The exact ruin probability obtained via Monte Carlo simulations (left

panel), the relative error of the approximations (right panel). Diffusion (dotted red

line) and finite time De Vylder (long-dashed green line) approximations. The log-normal

case with u fixed and T varying.

Finally, we take into consideration the Pareto claim size distribution. Figures 4.5 and 4.6 depict the

exact ruin probability values and the relative error with respect to the exact values for the diffusion and

finite time De Vylder approximations. We see that now we cannot claim which approximation is better.

The error strongly depends on the values of u and T . We may only suspect that a combination of the

two methods could give interesting results.
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Figure 4.5. The exact ruin probability obtained via Monte Carlo simulations (left

panel), the relative error of the approximations (right panel). Diffusion (dotted red

line) and finite time De Vylder (long-dashed green line) approximations. The Pareto

case with T fixed and u varying.

For more detailed analysis on the ruin approximations in finite time, see Chapter 15 in [12].
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Figure 4.6. The exact ruin probability obtained via Monte Carlo simulations (left

panel), the relative error of the approximations (right panel). Diffusion (dotted red

line) and finite time De Vylder (long-dashed green line) approximations. The Pareto

case with u fixed and T varying.



CHAPTER 5

Infinite horizon.

Let us now switch to the infinite time horizon management. Studying infinite horizon approximations

we start from conclusions of Grandell [22]. In his paper, Grandell demonstrates that between possible

simple approximations of ruin probabilities in infinite time the most successful is the De Vylder approxi-

mation, which is based on the idea to replace the risk process with the one with exponentially distributed

claims and ensuring that the first three moments coincide.

First, we introduce in Section 5.2 a modification to the De Vylder approximation by changing the

exponential to the gamma distribution and fitting first three moments. This modification is promising

and works in many cases even better than the original method. Second, in contrast to the above paper,

we drop here the assumption ’simple’ and show in Section 5.4 that approximation based on the Pollaczek-

Khinchin formula gives the best results. Moreover, it works for all possible distributions of claims and

can be chosen as the reference method, see Section 5.5.

When the claim size distribution is exponential (or closely related), simple analytic results for the ruin

probability in infinite time may be possible, see Section 5.1. For more general claim amount distributions,

e.g. heavy-tailed, the Laplace transform technique does not work and one may need some estimates. In

this section we will present 12 different well-known and not so well-known approximations. Numerical

comparison of the approximations is given in Section 5.4. We also note that new approximations have

been recently proposed in the literature, see e.g. Lima et al. [29] and Usábel [42], but as they work for

specific classes of distributions and are far from computational simplicity, we will not consider them.

5.1. Exact ruin probabilities

Now, we are going to present a collection of basic exact results on the ruin probability in infinite

time.

5.1.1. No initial capital. When u = 0 it is easy to obtain the exact formula

ψ(u) =
1

1 + θ
.

For more details see e.g. Grandell [21]. Notice that the formula depends only on θ, regardless of the

claim size distribution.

Exponential claims. The explicit, easy to calculate formula exists for exponential claims, namely

(5.1) ψ(u) =
1

1 + θ
e
−θβu
1+θ .

Gamma claims. It was shown by Grandell and Segerdahl [20] that for the gamma claim distribution

with mean 1 and α ≤ 1

32
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(5.2) ψ(u) =
θ(1− R

α )e−Ru

1 + (1 + θ)R− (1 + θ)(1− R
α )

+
αθsin(απ)

π
· I,

where

I =
∫ ∞

0

xαe−(x+1)αu dx

[xα (1 + α(1 + θ)(x+ 1))− cos(απ)]2 + sin2(απ)
.

The integral I has to be calculated numerically, but with some care near 0 it can be done precisely.

We notice that the assumption on the mean is no restriction since for claims X with arbitrary mean µ

we have that ψX(u) = ψX
µ

(uµ ). As the gamma distribution is closed under scale changes we obtain that

ψG(α,β)(u) = ψG(α,α)(
βu
α ) and we can now calculate the exact ruin probability via equation (5.2).

Mixture of n exponentials claims. For the claim size distribution being a mixture of n exponen-

tials with the parameters β1 < · · · < βn and weights a1, . . . , an, using the Laplace transform inversion,

one may obtain an exact formula of the form (Dufresne and Gerber, [15]):

(5.3) ψ(u) =
n∑
k=1

Cke
−rku,

with r1, r2, . . . , rn being the n positive solutions to the equation

(1 + θ)µ =
n∑
j=1

aj
βj − r

,

with 0 < r1 = R < β1 < r2 < β2 < · · · < rn < βn.

The coefficients Ck are given by the formula

Ck =
1
rk

∑n
j=1

aj

βj−rk
− µ∑n

j=1
aj

(βj−rk)2
.

In the case of mixture of two exponentials claim amounts (n = 2) a simple analytic result is given

(Panjer & Willmot [34]):

(5.4) ψ(u) =
1

(1 + θ)(r2 − r1)
{(ρ− r1) exp(−r1u) + (r2 − ρ) exp(−r2u)} ,

where

r1 =
ρ+ θ(β1 + β2)−

[
{ρ+ θ(β1 + β2)}2 − 4β1β2θ(1 + θ)

]1/2
2(1 + θ)

,

r2 =
ρ+ θ(β1 + β2) +

[
{ρ+ θ(β1 + β2)}2 − 4β1β2θ(1 + θ)

]1/2
2(1 + θ)

and

ρ = β1(1− p) + β2p, p =
a1β

−1
1

a1β
−1
1 + a2β

−1
2

.
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5.2. A survey of approximations

5.2.1. Cramér–Lundberg approximation. The following approximation holds.

(5.5) ψCL(u) = Ce−Ru,

where C = θµ
M ′

X(R)−µ(1+θ) .

For the proof we refer to Grandell [21]. The classical Cramér–Lundberg approximation yields quite

accurate results, however we must remember that in order to use it the adjustment coefficient has to

exist, therefore merely the light-tailed distributions can be taken into consideration.

For exponential claims formula (5.5) yields the exact result.

5.2.2. Exponential approximation. This approximation was proposed and derived by De Vylder

[14].

ΨE(u) = exp

(
−1− 2µθu− µ(2)√

(µ(2))2 + (4/3)θµµ(3)

)
.

5.2.3. Lundberg approximation. The following formula, called a Lundberg approximation, comes

from Grandell [22].

ΨL(u) =
[
1 +

(
θu− µ(2)

2µ

)
4θµ2µ(3)

3(µ(2))3

]
e
−2µθu

µ(2) .

5.2.4. Beekman–Bowers approximation. The Beekman–Bowers approximation uses the follow-

ing representation of the ruin probability.

ψ(u) = P(M > u) = P(M > 0)P(M > u|M > 0).

The idea of the approximation is to replace the conditional probability 1 − P(M > u|M > 0) with a

gamma distribution function G(u) by fitting first two moments (see Grandell, [22]). This leads to

(5.6) ΨBB(u) =
1

1 + θ
(1−G(u)),

where the parameters α, β of G are given by

α =
(1 + ( 4µµ(3)

3(µ(2))2
− 1)θ)

1 + θ
, β =

2µθ

µ(2) +
(

4µµ(3)

3µ(2) − µ(2)
)
θ
.

The Beekman–Bowers approximation gives rather accurate results, in the exponential case it becomes

the exact formula. It can be used for distributions with finite first three moments which is always true for

exponential, gamma, lognormal, truncated normal and Weibull distributions. For loggamma distribution

we have to set β > 3, for Pareto α > 3, and for Burr ατ > 3.

5.2.5. Renyi approximation. The Renyi approximation is based on a classical result about

p-thinning, Renyi’s theorem (see [22]). It may be also derived from (5.6) when we replace the gamma

distribution function G with an exponential one, matching only the first moment. It could be regarded

as a simplified version of the Beekman–Bowers approximation.

ΨR(u) =
1

1 + θ
e
− 2µθu

µ(2)(1+θ) .
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5.2.6. De Vylder approximation. The idea of this approximation is to replace the risk process

with the one with θ = θ̄, λ = λ̄ and exponential claims with parameter β̄, fitting first three moments (De

Vylder [14]).

Let

β̄ =
3µ(2)

µ(3)
, λ̄ =

9λµ(2)3

2µ(3)2
, and θ̄ =

2µµ(3)

3µ(2)2
θ.

Then the De Vylder’s approximation is given by

ΨDV (u) =
1

1 + θ̄
e−

θ̄β̄u
1+θ̄ .

Obviously, in the exponential case the method gives the exact result. For other claim distributions

in order to apply the approximation, similarly as in the Beekman–Bowers approximation, the first three

moments have to exist.

5.2.7. 4-moment gamma De Vylder approximation. Following [7] we now introduce 4-moment

gamma approximation based on the De Vylder’s idea to replace the risk process with another one for

which the expression for ψ(u) is explicit. We fit the four moments in order to calculate the parameters of

the new process with gamma distributed claims and apply the exact formula for the ruin probability in

this case which is given in [20]. The risk process with gamma claims is determined by the four parameters

(λ̄, θ̄, µ̄, µ̄(2)). Since

E(St) = −θλµt,

E(S2
t ) = λµ(2)t+ (θλµt)2,

E(S3
t ) = λµ(3)t− 3(λµ(2)t)(θλµt)− (θλµt)2,

E(S4
t ) = λµ(4)t− 4(λµ(3)t)(θλµt) + 3(λµ(2)t)2 + 6(λµ(2)t)(θλµt)2 + (θλµt)4

and for the gamma distribution

µ̄(3) =
µ̄(2)

µ̄
(2µ̄(2) − µ̄2), µ̄(4) =

µ̄(2)

µ̄2
(2µ̄(2) − µ̄2)(3µ̄(2) − 2µ̄2),

the parameters (λ̄, θ̄, µ̄, µ̄(2)) must satisfy the equations

θλµ = θ̄λ̄µ̄,

λµ(2) = λ̄µ̄(2),

λµ(3) = λ̄
µ̄(2)

µ̄2
(2µ̄(2) − µ̄2),

λµ(4) = λ̄
µ̄(2)

µ̄2
(2µ̄(2) − µ̄2)(3µ̄(2) − 2µ̄2).
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Hence

λ̄ =
λ(µ(3))2(µ(2))3

(µ(2)µ(4) − 2(µ(3))2)(2µ(2)µ(4) − 3(µ(3))2)
,

θ̄ =
θµ(2(µ(3))2 − µ(2)µ(4))

(µ(2))2µ(3)
,

µ̄ =
3(µ(3))2 − 2µ(2)µ(4)

µ(2)µ(3)
,

µ̄(2) =
(µ(2)µ(4) − 2(µ(3))2)(2µ(2)µ(4) − 3(µ(3))2)

(µ(2)µ(3))2
.

We also need to assume that µ(2)µ(4) < 3
2 (µ(3))2 to ensure that µ̄, µ̄(2) > 0 and µ̄(2) > µ̄2. In case this

assumption can not be fulfilled, we simply set µ̄ = µ and do not calculate the fourth moment. This case

leads to

(5.7) λ̄ =
2λ(µ(2))2

µ(µ(3) + µ(2)µ)
, θ̄ =

θµ(µ(3) + µ(2)µ)
2(µ(2))2

, µ̄ = µ, µ̄(2) =
µ(µ(3) + µ(2)µ)

2µ(2)
.

All in all, we get the approximation

(5.8) ψ4MG(u) =
θ̄(1− R

ᾱ )e−
β̄R
ᾱ u

1 + (1 + θ̄)R− (1 + θ̄)(1− R
ᾱ )

+
ᾱθ̄ sin(ᾱπ)

π
· I,

where

I =
∫ ∞

0

xᾱe−(x+1)β̄u dx[
xᾱ
(
1 + ᾱ(1 + θ̄)(x+ 1)

)
− cos(ᾱπ)

]2 + sin2(ᾱπ)
,

R is the adjustment coefficient for the gamma distribution and (ᾱ, β̄) are given by ᾱ = µ̄2

µ̄(2)−µ̄2 , β̄ =
µ̄

µ̄(2)−µ̄2 .

In the exponential and gamma case this method gives the exact results. For other claim distributions

in order to apply the approximation, the first four (or three) moments have to exist. In Section 5.4 will

show that it gives a slight correction to the De Vylder approximation, which is said in Grandell [22] to

be the best among simple approximations.

5.2.8. Heavy traffic approximation. The term ’heavy traffic’ comes from queuing theory. In risk

theory it means that on the average the premiums exceed only slightly the expected claims. It implies

that safety loading θ is positive and small. Asmussen [1] suggests the following approximation.

ψHT (u) = exp
(
−2θµu
µ(2)

)
.

This method requires the existence of the first two moments of the claim size distribution, so we assume:

β > 2 for the loggamma case, α > 2 for the Pareto case, and ατ > 2 for the Burr case.
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5.2.9. Light traffic approximation. As for heavy traffic, the term ’light traffic’ comes from queu-

ing theory, but has an obvious interpretation also in risk theory, namely, on the average, the premiums

are much larger than the expected claims. It implies that the safety loading θ is positive and large. We

may obtain the following asymptotic formula.

ψLT (u) = λ

∫ ∞

u

F̄X(x)dx.

In risk theory heavy traffic is most often argued to be the typical case rather than light traffic. However,

light traffic is of some interest as a complement to heavy traffic, as well as it is needed for the interpolation

approximation to be studied in the next point.

5.2.10. Heavy-light traffic approximation. The idea is to combine heavy and light approxima-

tions:

ψHLT (u) =
θ

1 + θ
ψLT

(
θu

1 + θ

)
+

1
(1 + θ)2

ψHT (u),

see [1]. The particular features of this approximation is that it is exact for the exponential distribution

and asymptotically correct both in light and heavy traffic.

5.2.11. Heavy-tailed claims approximation. First, let us introduce the class of subexponential

distributions S (see e.g. Embrechts et al., [16]), namely

S =

{
F : lim

x→∞

F ∗2(x)
F (x)

= 2

}
≡
{
F : lim

x→∞

F ∗n(x)
F (x)

= n; n ≥ 2
}
.

The class contains lognormal and Weibull (for τ < 1) distributions. Moreover, all distributions

with a regularly varying tail (e.g. loggamma, Pareto and Burr distributions) are subexponential. For

subexponential distributions we can formulate the following approximation of the ruin probability. If

F ∈ S, then the asymptotic formula for large u is given by

(5.9) ψHTC(u) =
1
θµ

(
µ−

∫ u

0

F (x)dx
)
,

see [1]. This method can be used for Weibull, lognormal, loggamma, Pareto and Burr distributions.

5.2.12. Computer approximation via the Pollaczek–Khinchin formula. This time we use

the representation (3.3) of the ruin probability and the decomposition of the maximum M as a sum of

ladder heights. Let L1 be the value that process {St} reaches for the first time above the zero level. Next,

let L2 be the value which is obtained for the first time above the level L1; L3, L4, . . . are defined in the

same way. The values Lk are called ladder heights. Since the process {St} has stationary and independent

increments, {Lk}∞k=1 is the sequence of independent and identically distributed variables. One may show

that the number of ladder heights K to the moment of ruin is given by a geometric distribution with

parameters p = 1
1+θ and q = θ

1+θ . Thus, random variable M may be expressed by

M =
K∑
i=1

Li,
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This implies that random variable M has a compound geometric distribution given by the distribution

function

FM (x) =
θ

1 + θ

∞∑
n=0

G∗n(x),

where G is the defective density

g(x) =
1

µ(1 + θ)
FX(x) =

1
1 + θ

b0(x)

and the density

(5.10) b0(x) =
FX(x)
µ

.

The above fact together with the representation (3.3) leads to the Pollaczek–Khinchin formula for

the ruin probability:

(5.11) ψ(u) = P(M > u) =
θ

1 + θ

∞∑
n=0

(
1

1 + θ

)n
B∗n0 (u),

where B0 is the tail of the distribution function corresponding to the density b0 and B∗00 (u) ≡ I{u≥0}.

One can use the formula to derive explicit solutions for a number of claim amount distributions, see

e.g. [1] or [34]. If it is not possible, this formula can be applied directly to calculate the ruin probability.

It incorporates an infinite sum, hence we use the Monte Carlo method. From (5.11) the ruin probability

ψ(u) = EZ, where Z = 1(M > u), may be generated as follows.

SIMULATION ALGORITHM

(1) Generate a random variable K from the geometric distribution with the parameters p = 1
1+θ

and q = θ
1+θ .

(2) Generate random variables X1, X2, · · · , XK from the density b0(x).

(3) Calculate M = X1 +X2 + · · ·+XK .

(4) If M > u, let Z = 1, otherwise let Z = 0.

The main problem seems to be simulating random variables from the density b0(x).

Proposition 5.2.1. The density b0(x) has a closed form only for four of the considered distributions,

namely

(i) for exponential claims, b0(x) is the density of the same exponential distribution,

(ii) for mixture of exponentials claims, b0(x) is the density of the mixture of exponential distribution

with the weights
(

a1
β1∑n

i=1(
ai
βi

)
, · · · ,

an
βn∑n

i=1(
ai
βi

)

)
,

(iii) for Pareto claims, b0(x) is the density of the Pareto distribution with the parameters α− 1 and

ν,

(iv) for Burr claims, b0(x) is the density of the transformed beta distribution.

Proof. (i) For exponential claims

FX(x) = e−βx, µ =
1
β
,
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thus

b0(x) = βFX(x) = βe−βx,

which yields again the exponential distribution, with parameter β.

(ii) For mixture of exponentials claims

FX(x) =
n∑
i=1

(aie−βix), µ =
a1

β1
+ · · ·+ an

βn
,

hence

b0(x) =
1

a1
β1

+ · · ·+ an

βn

FX(x) =
a1

a1
β1

+ · · ·+ an

βn

FX1(x) + · · ·+ an
a1
β1

+ · · ·+ an

βn

FXn
(x)

=
a1
β1

a1
β1

+ · · ·+ an

βn

β1FX1(x) + · · ·+
an

βn

a1
β1

+ · · ·+ an

βn

βnFXn
(x)

=
a1
β1

a1
β1

+ · · ·+ an

βn

fX1(x) + · · ·+
an

βn

a1
β1

+ · · ·+ an

βn

fXn
(x),

which is again a mixture of exponential distributions, with the weights
(

a1
β1∑n

i=1(
ai
βi

)
, · · · ,

an
βn∑n

i=1(
ai
βi

)

)
.

(iii) For Pareto claims

FX(x) =
(

ν

ν + x

)α
, µ =

ν

α− 1
, α > 1,

so

b0(x) =
α− 1
ν

FX(x) =
α− 1
ν

(
ν

ν + x

)α
=
α− 1
ν + x

(
ν

ν + x

)α−1

,

which again gives the Pareto distribution with parameters (α− 1, ν).

(iv) For Burr claims

FX(x) =
(

ν

ν + xτ

)α
, µ = ν

1
τ

Γ
(
α− 1

τ

)
Γ
(
1 + 1

τ

)
Γ(α)

, ατ > 1,

therefore

b0(x) =
Γ(α)

ν
1
τ Γ
(
α− 1

τ

)
Γ
(
1 + 1

τ

) ( ν

ν + xτ

)α
,

Let us put

a = α− 1
τ
, b =

1
τ
, c = τ, d = ν.

Then

b0(x) =
Γ(a+ b)

dbΓ(a)Γ(1 + b)

(
d

d+ xc

)a+b
=

Γ(a+ b)da

Γ(a)bΓ(b)(d+ xc)a+b

=
Γ(a+ b)cdaxcb−1

Γ(a)Γ(b)(d+ xc)a+b
.

The foregoing formula represents the density from the transformed beta distribution with parameters a,

b, c and d. This distribution comes as a quotient of two variables from generalized gamma distribution

with corresponding parameters (for details see [34]). �
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For other distributions treated in this paper in order to generate random variables Xk we use for-

mula (5.10) and controlled, numerical integration. The described above computer approximation via the

Pollaczek–Khinchin formula will be called in short the Pollaczek–Khinchin approximation. We note that

the approximation works for all considered distributions of claims.

5.3. Summary of the approximations

Table 5.1 shows which approximation can be used for a particular choice of a claim size distribution.

Moreover, the necessary assumptions on the distribution parameters are included.

Table 5.1. Survey of approximations with an indication when they can be applied

distribution → Exp. Gamma Weibull Mix.Exp. Lognormal Loggamma Pareto Burr

method ↓

Cramér-Lundberg + + – + – – – –

Exponential + + + + + β > 3 α > 3 ατ > 3

Lundberg + + + + + β > 3 α > 3 ατ > 3

Beekman–Bowers + + + + + β > 3 α > 3 ατ > 3

Renyi + + + + + β > 2 α > 2 ατ > 2

De Vylder + + + + + β > 3 α > 3 ατ > 3

4-m. gamma De Vylder + + + + + β > 3 α > 3 ατ > 3

Heavy Traffic + + + + + β > 2 α > 2 ατ > 2

Light Traffic + + + + + + + +

Heavy-Light Traffic + + + + + β > 2 α > 2 ατ > 2

Heavy-tailed – – 0 < τ < 1 – – + + +

Pollaczek–Khinchin + + + + + + + +

5.4. Numerical comparison of the methods

We now aim to compare all 12 approximations presented in the preceding section in few cases of loss

amount distribution. To this end we consider the ruin probability as a function of the initial capital u.

In order to show the relative errors of the methods we compare results of the approximations with the

exact values, which can be done in the exponential, gamma and mixture of exponentials case, partially

in the lognormal case, or the results obtained via the Pollaczek–Khinchin formula, which we feel, and

justify it numerically, can be the reference method. For the Monte Carlo method purposes we generate

100 blocks of 100000 simulations.

For the exponential case Cramér-Lundberg, Renyi, Beekman–Bowers, De Vylder and 4-moment

gamma De Vylder approximations yield the exact result given by formula (5.1). We will usually as-

sume that the mean of the claim distribution is equal to 1 and θ = 0.1.

In the gamma case we can obtain exact values via formula (5.2) and use them in order to compare

all methods except heavy-tailed and 4-moment gamma De Vylder approximations, which yield the exact

result. When α = 0.01 and β = 0.01, see Figure 5.1, all approximations except the heavy, light (disastrous

results) and heavy-light traffic, give the relative error less than 3%.
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Figure 5.1. Illustration of the ruin probability (a) and the relative error (b) of the

approximations. The gamma case with α = 0.01, β = 0.01, θ = 0.1 and u ≤ 1000.

When the claim distribution is a mixture of three exponentials, see Figure 5.2, Cramér–Lundberg,

De Vylder 4-moment gamma De Vylder and exponential approximations give quite accurate results,

Beekman–Bowers and Lundberg approximations are just acceptable.
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Figure 5.2. Illustration of the ruin probability (a) and the relative error (b) of the

approximations. The mixture of three exponentials case with β1 = 0.014631, β2 =

0.190206, β3 = 5.514588, weight a1 = 0.0039793, a2 = 0.1078392, a3 = 0.8881815,

θ = 0.1 and u ≤ 1000.

Since there are no exact methods for other considered distributions, we are going to calculate the

relative errors with respect to the most accurate method. From Figure 5.1-5.2 the possible candidates

are Cramér–Lundberg, De Vylder, 4-moment gamma De Vylder and Pollaczek–Khinchin approxima-

tions. However, we must notice that the Cramér–Lundberg approximation works only for light-tailed

distributions, hence we have to decide between both De Vylder and Pollaczek–Khinchin approximations.

To this end we take into consideration a mixture of three exponential distributions and a lognormal

distribution. For simple analytic results in the former case see Section 5.2. In the latter case, with
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Table 5.2. Comparison of De Vylder, 4-moment gamma De Vylder and Pollaczek–

Khinchin approximations under mixture of three exponentials and lognormal distribu-

tions. Relative errors in (%).

mixture of three exponentials lognormal

θ u Ψ(u) EPK EDV E3MGDV u Ψ(u) EPK EDV E3MGDV

0.05 10 0.8897 0.0151 -3.2089 -1.6062 100 0.55074 -0.0182 -20.6159 -19.2468

0.10 10 0.7993 -0.0281 -5.4247 -2.6773 100 0.34395 0.0087 -19.4825 -18.4852

0.15 10 0.7242 -0.0320 -6.9981 -3.4102 100 0.23573 -0.02545 -14.2281 -13.6088

0.20 10 0.6611 0.0075 -8.1485 -3.8859 100 0.17309 0.0983 -8.0883 -7.8052

0.25 10 0.6073 -0.00280 -8.9791 -4.1874 100 0.13384 0.0448 -2.0547 -2.0622

0.30 10 0.5610 -0.0366 -9.5811 -4.3583 100 0.10765 0.21367 3.5300 3.2606

1.00 10 0.2634 -0.0566 -10.6644 -2.9803 100 0.02535 0.0789 41.7278 39.6726

0.05 100 0.7144 -0,0018 0.3737 0.2967 1000 0.04199 2.6530 55.0917 53.1769

0.10 100 0.5393 -0.0170 1.1125 0.6082 1000 0.01099 4.0218 85.5323 87.9436

0.15 100 0.4247 -0.0590 1.9143 0.8429 1000 0.00574 3.92334 79.6690 87.7003

0.20 100 0.3455 0.0179 2.7120 1.0304 1000 0.00384 2.7917 68.6979 81.0365

0.25 100 0.2886 0.0237 3.3784 1.1019 1000 0.00288 3.2431 59.1632 74.5937

0.30 100 0.2461 0.0264 3.9862 1.1418 1000 0.00230 3.3304 51.8174 69.5435

1.00 100 0.0724 -0.2033 7.2086 -0.0773 1000 0.00060 6.3000 19.8233 46.7283

0.05 1000 0.1149 -0.0159 0.0087 -0.0087 10000 0.00008 2.5000 -99.9996 -99.999

0.10 1000 0.0210 -0.2071 -0.9429 0.0190 10000 0.00004 -9.5000 -100.0000 -100.0000

0.15 1000 0.0054 -0.7574 -3.7000 -0.2889 10000 0.00002 27.0000 -100.0000 -100.0000

0.20 1000 0.0018 -3.5056 -8.4000 -1.3167 10000 0.00002 -15.0000 -100.0000 -100.0000

0.25 1000 0.0007 0.2714 -10.5714 1.4343 10000 0.00001 50.0000 -100.0000 -100.0000

0.30 1000 0.0003 7.7333 -8.8700 9.7900 10000 0.00001 22.0000 -100.0000 -100.0000

1.00 1000 0.0000 – – – 10000 0.00000 – – –

a choice of specific parameters, exact values of the ruin probability can be computed using numerical

inversion of Laplace transform technics, see Wikstad [43], Thorin & Wikstad [41]. Let us now compare

the three approximations. In Table 5.2 the exact and approximated values, and relative errors are shown

with respect to u and θ with the distribution parameters like in [20], cf. Figure 5.2 and 5.3.

It is easy to notice that De Vylder and 4-moment gamma De Vylder are no match for the Pollaczek–

Khinchin approximation, see the boldfaced results. This and Figure 5.1-5.2 justify the thesis that the

Pollaczek–Khinchin approximation can be chosen as the reference method. Moreover, it is worth noting

that in the light-tailed cases the 4-moment gamma De Vylder approximation gives much more accurate

results than the original method. Henceforth we will compare the methods with respect to the values

obtained via the Pollaczek–Khinchin formula.

5.5. Pollaczek–Khinchin approximation as the reference method

In the lognormal case, see Figure 5.3, the situation is very interesting. All methods give the error

greater then 50%. The lognormal case is quite important as often loss data appear to have the lognormal



5.5. POLLACZEK–KHINCHIN APPROXIMATION AS THE REFERENCE METHOD 43

distribution. Thus we may say that using the Pollaczek–Khinchin approximation is essential when dealing

with real-life data.
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Figure 5.3. Illustration of the ruin probability (a) and the relative error (b) of the

approximations (with respect to the Pollaczek–Khinchin approximation). The lognormal

case with µ = −1.62 i σ = 1.8, θ = 0.1 and u ≤ 1000.
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Figure 5.4. Illustration of the ruin probability (a) and the relative error (b) of the

approximations (with respect to the Pollaczek–Khinchin approximation). The Pareto

case with α = 3.1, ν = 2.1, θ = 0.01 and u ≤ 1000.

For the Pareto distributed claims, see Figure 5.4, all methods produce the error up to about 20%,

light traffic and heavy-tailed approximations show a total lack of accuracy. The parameters of the Pareto

distribution imply that the first three moments still exist. In the cases when it is not true, only a few

approximations remain useful.

Finally, we claim, that the approximation via the Pollaczek–Khinchin formula is the best method for

calculating the ruin probability in infinite time:

• Only two of 12 considered approximations work for all distributions, namely Pollaczek–Khinchin

and light traffic. From Figure 5.1-5.2 it is clear that the former is much better.
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• Figure 5.1-5.2 demonstrate that among all presented approximations which work for the light-

and heavy-tailed distributions only De Vylder, 4-moment gamma De Vylder and Pollaczek–

Khinchin behave well.

• In Table 5.2 the exact and approximated values of the three approximations, and relative errors

with respect to u and θ are shown. It is easy to notice that both De Vylder approximations

are no match for the Pollaczek–Khinchin approximation, see the boldfaced results. This and

Figure 5.1-5.2 justify the thesis that the Pollaczek–Khinchin approximation can be chosen as

the reference method

• The Pollaczek–Khinchin approximation gives the most accurate results, even for the class of

heavy-tailed distributions like lognormal. We also note that in each case for the Monte Carlo

method purposes we generated 100 blocks of 100000 simulations and the variance within the

results derived from the blocks was always relatively small.

More detailed analysis and a wider variety of loss distributions studied can be found in [12], Chapter

15, and in papers by Burnecki, Místa and Weron ([9], [7]).



CHAPTER 6

Diffusion model with losses given by mixture of exponentials.

This chapter is devoted to an extension of classical risk process to more general form, i.e. risk

process that, between jumps, follows Brownion motion Bt with drift. An easy to compute formula for

ruin probability when the Laplace transform of the claim size distribution is a rational function, is given.

Moreover, for the mixture of exponentials an analytic formula is found in details. The general ideas and

some parts of the proof are heavily borrowed from the papers by Jacobsen ([25], [26], [27]).

Let (Ω,F ,Ft,Px) be a probability space with filtration Ft and with Markov state space E. The set

of measurable and bounded functions f : E → R equipped with a supremum norm is a Banach space.

For all t ∈ R+ define the contracting semigroup of operators

Ptf(x) = Exf(xt) .

The first derivative of Pt in t = 0 is called the infinitesimal generator

Af = lim
t↘0

Ptf − f

t
.

Dynkin formula gives

Ptf − f =
∫ t

0

APsf ds =
∫ t

0

PsAf ds.

For the risk process of the form:

(6.1) Rt = R0 + βt+ σBt −
Nt∑
n=1

Xn,

the infinitesimal generator is given by

(6.2) Af(x) = βf ′(x) +
1
2
σ2f ′′(x) + λ

∫ ∞

0

FX(dy)(f(x− y)− f(x)).

Lemma 6.0.1. Let f : R → R be a bounded function with f ∈ C2B2(R+) – twice continuously

differentiable with up to second derivative bounded on R+. Then, by Itô’s formula and the martingale

representation, we get the following formula

(6.3) f(Rτ∧t) = f(R0) +
∫ τ∧t

0

Af(Rs) ds+Mt,

for M being Ft-martingale starting from zero (M0 ≡ 0).

45
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For the proof involving martingale representations and suitable version of Itô’s formula, we refer

reader to [27], or to any book devoted to martingale theory.

6.1. Laplace transform of claims being rational function

Let us distinguish now between the ruin caused by a jump and ruin by continuity. Denote the

corresponding sets of events by:

Aj = {Rτ < 0, τ <∞} , and Ac = {Rτ = 0, τ <∞} .

Then the ruin probability of the risk process given by (6.1) starting from R0 has the form

(6.4) PR0(τ <∞) = PR0(Aj) + PR0(Ac).

We will need also the following notation: for z ∈ C let q(z) = φ(z) − λ = βz + 1
2σ

2z2 − λ, where

φ(z) = βz + 1
2σ

2z2 is a polynomial of degree ≤ 2 associated with the scaled Brownian motion with drift

that risk process follows between jumps caused by claims occurrences.

The further important assumption we require is that the Laplace transform LX of the distribution

of claims is a rational function, i.e.

(6.5) LX(ν) = E exp(−νX) =
PX(ν)
QX(ν)

with ν ≥ 0 and PX , QX being the polynomials with no common complex roots and the leading coefficient

for QX equal to 1. It follows that if the degree of QX is m, P has to be of degree ≤ m. However, we

need PX(z) and QX(z) for all z ∈ C, the extension of LX to L̄X(z) = PX(z)
QX(z) leads to E exp(−zX), that is

only guaranteed for z with Re(z) > −ε and ε small enough. This implies that all the m roots of QX(z)

satisfy Re(z) < 0.

In order to state the proposition, we need the following two versions of the Cramèr-Lundberg equation:

(6.6) QX(γ) = −PX(γ)
λ

βγ + 1
2σ

2γ2 − λ

and the modified version

(6.7) QX(γ)(βγ +
1
2
σ2γ2 − λ) = −λPX(γ).

Proposition 6.1.1. For R0 > 0, ruin probability PR0(τ <∞) = 1 if and only if

(6.8) β ≤ λEX .

Proof. Since now, to simplify the notation, we denote the ruin probability PR0(τ <∞) shortly by

Pruin. By (6.1),

(6.9)
Rt −R0

t
= β +

σBt
t
− 1
t

Nt∑
n=1

Xn.
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It is clear, that the second term on the right side converges to 0 a.s., and the term with the sum to λEX.

Thus Rt → −∞ PR0 −a.s. if β < λEX and Rt → +∞ PR0 −a.s. if β > λEX. So the sharp inequality in

(6.8) implies ruin probability Pruin equal to 1, and also if (6.8) does not hold, there’s nonzero probability,

that drift of Rt goes to ∞ before any claim has arrived, so Pruin < 1. For equality in (6.8) we may

consider risk process with β − ε instead of β and the result comes from taking ε↘ 0. �

Note, that γ = 0 is always the solution to the Cramèr-Lundberg equations (6.6), (6.7). We will show,

that Pruin < 1, implies that equation (6.7) has exactly m+ 1 solutions with Re(γ) < 0. The next result

is a slight modification of Theorem 1 in [27].

Proposition 6.1.2. Let us consider the risk process Rt in the form of (6.1) with Laplace transform

of claim size distribution being a rational function

LX(ν) =
PX(ν)
QX(ν)

, degree(Q) = m.

(i) If Pruin < 1, then the Cramèr-Lundberg equation (6.7) has precisely m+1 solutions (γl)1≤l≤m+1

with Re(γl) < 0,

(ii) γl : Re(γl) < 0 is a solution to (6.6) if and only if γl is a solution to the modified Cramèr-

Lundberg equation (6.7) with q(γl) = βγl + 1
2σ

2γ2
l − λ 6= 0,

(iii) If (γ̃k)1≤k≤m are any m of the (m + 1) solutions to (6.6) with Re(γ̃k) < 0 and these solutions

are distinct with q(γ̃k) = βγ̃k + 1
2σ

2γ̃2
k − λ 6= 0, it holds for all R0 > 0 that

(6.10)
m∑
k=1

rk
λ

q(γ̃k)
PR0(Ac)−

(
m∑
k=1

rk

)
PR0(Aj) =

m∑
k=1

rk
λ exp(γ̃kR0)

q(γ̃k)
,

with rk given by

(6.11) rk = − PX(γ̃k)
γ̃k
∏
k′ 6=k(γ̃k − γ̃k′)

,

(iv) If Pruin < 1 and all the solutions (γl)1≤l≤m+1 to (6.6) with Re(γl) < 0 are distinct and q(γl) 6=

0, using (6.10) twice with, say, (γ̃k)1≤k≤m = (γ1, . . . , γm−1, γm+s), s = {0, 1}, we obtain a

system of 2 linear equations with unknowns PR0(Aj) and PR0(Ac), that can be solved uniquely

provided matrix of coefficients is non-singular.

Proof. We proceed to discuss (iii), as (ii) and (iv) seems to be obvious. Let (γ1, . . . , γm) be m

distinct roots of equation (6.6) and consider f : R → R of the form

f(x) =


∑m
k=1 ck exp(γkx) x ≥ 0

K x < 0,
(6.12)

where

(6.13) ck =
λrk
q(γk)

, K = −
m∑
k=1

rk,
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and rk as in (6.11) above.

Next we aim to show

(6.14) Af(x) = 0, x ≥ 0.

Then consequently by (6.3), for any t ≥ 0 holds

(6.15) ER0 [f(Rτ ); τ ≤ t] + ER0 [f(Rt); τ > t] = f(R0).

The limit

(6.16) lim
t→∞

ER0 [f(Rt); τ > t] = 0,

for Pruin = 1 is obvious since f is bounded. If Pruin < 1 by Proposition (6.1.1) limt→∞Rt = ∞ a.s.,

which together with Re(γk) < 0 and definition of f implies that limt→∞ f(Rt) = 0. Now (6.16) follows

by dominated convergence. Clearly letting t→∞ in (6.3) yields

ER0 [f(Rτ ); τ <∞] = f(R0),

that is the same as

ER0

[
m∑
k=1

ck; Rτ = 0

]
+ ER0 [K; Rτ < 0] =

m∑
k=1

ck exp(γkR0),

and at this part (iii) will be proven if only we can show (6.14) with f, ck, K as in (6.12), (6.13). Writing

out (6.14):

Af(x) =
m∑
k=1

ck(βγk + σ2γ2
k)e

γkx + λ

∫ x

0

FX(dy)
m∑
k=1

cke
γk(x−y) + λK

∫ ∞

x

FX(dy)

− λ

∫ x

0

m∑
k=1

cke
γkxFX(dy)

=
m∑
k=1

ckq(γk)eγkx + λ

[∫ x

0

FX(dy)
m∑
k=1

cke
γk(x−y) +K

∫ ∞

x

FX(dy)

]

= λ

[
m∑
k=1

rke
γkx +

∫ x

0

FX(dy)
m∑
k=1

cke
γk(x−y) +K

∫ ∞

x

FX(dy)

]
= 0.

With x = 0, the above takes the form
∑m
k=1 rk +K and is equal to 0 by definition of K.

Let x > 0, we have to show

m∑
k=1

[
rk exp(γkx) +

∫ x

0

FX(dy)ck exp(γk(x− y))
]

+K(1− FX(x)) = 0,

and because all Re(γk) < 0, it holds if and only if it holds for the Laplace transform. Multiplying by

e−νx for ν ≥ 0 and integrating from 0 to ∞ we get

m∑
k=1

[
rk

∫ ∞

0

e(γk−ν)xdx+
∫ ∞

0

e−(ν−γk)xdx

∫ x

0

cke
−γkyFX(dy)− rk

∫ ∞

0

e−νxdx

∫ ∞

x

FX(dy)
]

= 0.
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Using some elementary calculations for Laplace transforms, we arrive at

m∑
k=1

[
rk

(
1

ν − γk
− 1
ν

(1− LX(ν))
)

+ ck
LX(ν)
ν − γk

]
= 0,

and further

LX(ν) =

∑m
k=1 rk

(
1
ν −

1
ν−γk

)
∑m
k=1

(
ck

1
ν−γk

+ rk
1
ν

) =
−
∏m
k=1(ν − γk)

∑m
k=1

rkγk

ν(ν−γk)∏m
k=1(ν − γk)

∑m
k=1

ckν+rk(ν−γk)
ν(ν−γk)

=
−
∑m
k=1 rkγkπk(ν)∑m

k=1(ckν + rk(ν − γk))πk(ν)
, where πk(ν) =

∏
k′ 6=k

(ν − γk′).(6.17)

Lemma 6.1.1. Suppose S is a polynomial of degree ≤ m − 1 and γ1, . . . , γm are complex, distinct

numbers. Then for z ∈ C

(6.18) S(z) =
m∑
k=1

S(γk)
πk(γk)

πk(z).

Continuing with (6.17), inserting rk = − PX(γk)
γkπk(γk) and using lemma 6.1.1 we identify the numerator

as PX(ν). Therefore

LX(ν) =

∑m
k=1

PX(γk)
πk(γk) πk(ν)∑m

k=1

(
ckν − PX(γk)(ν−γk)

γkπk(γk)

)
πk(ν)

=
PX(ν)

ν
∑m
k=1

[(
λ

q(γk) + 1
)
−PX(γk)
γkπk(γk)πk(ν)

]
+
∑m
k=1

PX(γk)
πk(γk) πk(ν)

,

and by Cramèr-Lundberg equation (6.7), λ
q(γk) + 1 = PX(γk)−QX(γk)

PX(γk) , so we finally arrive at

LX(ν) =
PX(ν)

−ν
∑m
k=1 (PX(γk)−QX(γk))

πk(ν)
γkπk(γk) + PX(ν)

=
PX(ν)

QX(ν)−PX(ν)
ν + PX(ν)

=
PX(ν)
QX(ν)

.

The latter comes with lemma (6.1.1) applied with polynomial S of the form S(z) = QX(z)−PX(z)
z (degree

of S ≤ m− 1 since z = 0 is always the root to Q− P ). That completes the proof of (iii).

We proceed with the proof of (i). Remind both sides of Cramèr-Lundberg equation (6.7) are poly-

nomials and the left side of (6.7), let us denote it by Sl, is a polynomial of degree m + 2. Similarly Sr
is of degree ≤ m− 1. As two roots to q(γ) are γ± = 1

σ2 (−β ±
√
β2 + 2λσ2), we conclude Sl has exactly

m+ 1 roots with Re(γ) < 0.

Let us recall now Rouché theorem from complex function theory (see e.g. [24]).

Fact 6.1.1. (Rouché Theorem) Consider functions f and g on compact set U ⊆ C, let ∂U be a

curve bounding U . Assume f, g : U → C are analytical on U and following inequality holds

(6.19) |f(z)| > |g(z)| , for z ∈ ∂U.

Then f and f + g has the same number of roots on U .
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Returning to proof of (i), let ρ > 0 be given and 0 < ε < ρ be small enough to ensure q(z) 6= 0 for

|z| ≤ ε and L̄X(z) to exist. Consider the open set Uρ,ε given by the interior of the curve (boundary):

∂U = {z : |z| = ρ, Re(z) < 0} ∪ {z : z = iy, y ∈ R, ε ≤ |y| ≤ ρ, } ∪ {z : |z| = ε, Re(z) < 0} .

Take f ≡ Sl, g ≡ −Sr. To imply the claim in (i) by Rouché theorem, it is sufficient to show

|−Sr| < |Sl| for z ∈ ∂U , ρ large enough and ε small enough.

Now we have to show

(6.20) |−λPX(z)| <
∣∣∣∣QX(z)(βz +

1
2
σ2z2 − λ)

∣∣∣∣ .
• For |z| = ρ with ρ sufficiently large (6.20) holds as degree(Sl) > degree(Sr),

• for z = iy with |y| ≥ ε, since q(z) 6= 0 (6.20) is equivalent to∣∣L̄X(iy)
∣∣ ∣∣∣∣ λ

βiy − 1
2σ

2y2 − λ

∣∣∣∣ < 1.

The first term on the left side is ≤ 1 and λ < |βiy− 1
2σ

2y2−λ| =
√

1
4σ

4y4 + β2y2 + λσ2y2 + λ2

holds since y 6= 0.

• We are left with the case |z| = ε, Re(z) < 0. Since for ε sufficiently small PX(z) 6= 0, inequality

(6.20) is equivalent to

(6.21)
∣∣∣∣ λ

βz + 1
2σ

2z2 − λ

∣∣∣∣ < 1∣∣L̄X(z)
∣∣ .

Consider following functions, being sides of above inequality, gl(z) = λ
βz+ 1

2σ
2z2−λ and gr(z) =

1

|L̄X(z)| . Both are analytical near 0 with gl(0) = 1, gr(0) = 1. For z = x + iy close to 0, using

Taylor expansion, we arrive at

|g(z)|2 = g2(0) + 2xg(0)g′(0) + y2(g′(0)2 − g(0)g′′(0)) + o(x) + o(y2).

Now, inequality (6.21) holds for x, y 6= 0 small enough, if following two inequalities hold

xg′l(0) < xg′r(0) and y2(g′2l (0)− g′′l (0)) < y2(g′2r (0)− g′′r (0)),

and equivalently

g′l(0) > g′r(0) and g′2l (0)− g′′l (0) < g′2r (0)− g′′r (0).

Since g′r(0) = EX, g′′r (0) = −(EX2 − 2(EX)2), then

g′2r (0)− g′′r (0) = VarX > 0.

Differentiating gl, we come to g′l(0) = β
λ and g′′l (0) = λσ2+2β2

λ2 , so

g′2l (0)− g′′l (0) = −λσ
2 + β2

λ2
< 0.

Finally

g′2l (0)− g′′l (0) < g′2r (0)− g′′r (0) and g′l(0) > g′r(0),

since β > λEX comes with proposition (6.1.1). The latter ends the proof of (i).

�
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6.2. Mixture of exponentials claims

Next we aim to focus on mixture of exponential distributions as a key distribution in further consid-

erations. Mixture of m exponential distribution, say given by FX(ν) =
∑m
i=1 ai(1 − exp(−δiν)), surely

belongs to family of distributions with Laplace transform being a rational function, as

LX(ν) =
m∑
i=1

ai
δi

δi + ν
=

∑m
i=1 aiδi

∏
j 6=i(δj + ν)∏m

j=1(δj + ν)
=
PX(ν)
QX(ν)

is well defined for ν > −mini=1,...,m{δi} and PX , QX are polynomials respectively of degree m and

≤ m− 1. In this case the modified Cramèr-Lundberg equation (6.7) takes a form:

(6.22)
m∏
j=1

(δj + γ)(βγ +
1
2
σ2γ2 − λ) = −λ

m∑
i=1

aiδi
∏
j 6=i

(δj + γ).

Solving above equation amounts to finding the zeros of a polynomial of degree m + 1 with γ = 0

always a root. It can always be computed with no special difficulties. At this moment we are ready to

state the main theorem that gives exact formulas for ruin probability in discussed case.

Theorem 6.2.1. Let us consider the risk process Rt in the form of (6.1) with claim sizes following

mixture of m exponential distributions FX with parameters (a1, . . . , am) and (δ1, . . . , δm). To ensure

Pruin < 1 assume drift coefficient β < λ
∑m
i=1

ai

δi
. Then

(i) the Cramèr-Lundberg equation (6.22) has precisely m+1 solutions (γk)1≤k≤m+1 with Re(γk) <

0,

(ii) If all the solutions (γk)1≤k≤m+1 to (6.22) with Re(γk) < 0 are distinct and q(γk) = βγk +
1
2σ

2γ2
k − λ 6= 0, then for all R0 > 0

(6.23) Pruin =
Σ(1)
m Σ(3)

m+1 − Σ(1)
m+1Σ

(3)
m − Σ(3)

m Σ(2)
m+1 + Σ(3)

m+1Σ
(2)
m

Σ(1)
m Σ(2)

m+1 − Σ(1)
m+1Σ

(2)
m

,

with Σ(1)
l ,Σ(2)

l ,Σ(3)
l given by:

(6.24) Σ(1)
l =

∑
k 6=l

rk, Σ(2)
l =

∑
k 6=l

λrk
q(γk)

, Σ(3)
l =

∑
k 6=l

λrk exp(γkR0)
q(γk)

.

and

(6.25) rk = −
∑m
i=1 aiδi

∏
j 6=i(δj + γk)

γk
∏
k′ 6=k(γk − γk′)

.

Proof. The first part (i) of Theorem follows directly from (i) of Proposition 6.1.2 and Proposition

6.1.1. To arrive at (ii) one needs to use (iii) and (iv) of Proposition 6.1.2, let’s say, for (γ1, . . . , γm) and

(γ1, . . . , γm−1, γm+1) being appropriate solutions to equation (6.22) to obtain a system of 2 equations:∑
k 6=m

λrk
q(γk)

PR0(Ac)−
∑
k 6=m

rk PR0(Aj) =
∑
k 6=m

λrk exp(γkR0)
q(γk)∑

k 6=m+1

λrk
q(γk)

PR0(Ac)−
∑

k 6=m+1

rk PR0(Aj) =
∑

k 6=m+1

λrk exp(γkR0)
q(γk)
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with rk as in (6.25). Setting notation (6.24), after some elementary algebra we arrive at

PR0(Ac) =
Σ(1)
m Σ(3)

m+1 − Σ(1)
m+1Σ

(3)
m

Σ(1)
m Σ(2)

m+1 − Σ(1)
m+1Σ

(2)
m

PR0(Aj) =
−Σ(3)

m Σ(2)
m+1 + Σ(3)

m+1Σ
(2)
m

Σ(1)
m Σ(2)

m+1 − Σ(1)
m+1Σ

(2)
m

and finally

Pruin = PR0(Ac) + PR0(Aj) =
Σ(1)
m Σ(3)

m+1 − Σ(1)
m+1Σ

(3)
m − Σ(3)

m Σ(2)
m+1 + Σ(3)

m+1Σ
(2)
m

Σ(1)
m Σ(2)

m+1 − Σ(1)
m+1Σ

(2)
m

.

That completes the proof of Theorem 6.2.1. �

Finally, let us emphasize the results obtained here in this chapter are important for operational risk

modelling. First, modelling operational risk process by classical model with diffusion component allows

to fit the model closer to real life situations. For the second, as it was noticed in Chapter 1, mixtures

of distributions are naturally exploited distributions in operational risk modelling. Hence any analytical

solution in this field is of significant importance.



CHAPTER 7

Building operational reserves.

7.1. Introduction

In this chapter, setting the appropriate level of capital charge c for operational risk is considered

in a broader context of business decisions, concerning also risk transfer through insurance. The ideas

are taken and reformulated from insurance risk theory. For detailed discussion on setting the level of

insurance premium in the environment of insurance risk process with reinsurance and rate of return on

capital, see Otto and Místa [30].

At first, the simple version of the problem is solved to illustrate the idea of the chapter. Let us

consider our model of an operational risk process based on (3.1) describing capital assets or profit of a

company exposed to operational losses, in the basic form:

Rt = u+ ct− St, t ≥ 0,

where Rt denotes the current capital at time t, u = R0 stands for critical level of capital, that should

never be exceeded under threat of bankruptcy, c is the amount of operational capital charge to cover one

year losses, and St is the aggregate loss process – amount of loss outlays over the period (0, t]. Let us

assume that increments of the aggregate loss process St+h − St are for any t, h > 0 normally distributed

N(µh, σ2h) and mutually independent.

In this case the probability of ruin is an exponential function of the initial capital:

ψ(u) = exp(−Ru), u ≥ 0,

where the adjustment coefficient R exists for c > µ, and equals then 2(c − µ)σ−2. The above formula

can be easily inverted to render the operational reserves c for a given critical capital or profit u and

predetermined level ψ of ruin probability:

c = µ+
− log(ψ)

2u
σ2.

Given the safety standard ψ, the larger the expected budget gain (or critical level of capital) u of the

company is, the lower reserves c it does need to cover the operational risk.

Throughout the rest of chapter, the above simplistic assumptions on the risk process can be dropped.

It is shown there how to invert various approximate formulas for the ruin probability in order to calculate

necessary capital charge for the whole business as well as to decompose it into individual business risks

lines. Finally, an extension of the decision problem by allowing for additional insurance is considered.

We assume that we typically have at our disposal incomplete information on the distribution of the

aggregate loss, and this incomplete information set consists of cumulants of order 1, 2, 3, and possibly

53
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4. The rationale is that sensible empirical investigation of frequency and severity distributions could be

done only separately for sub-portfolios (business lines) of homogeneous risks. Cumulants for the whole

business are then obtained just by summing up figures over the collection of sub-portfolios, provided that

sub-portfolios are mutually independent. Both the quantile of the current year loss and the probability

of ruin in the long run will be approximated by formulas based on cumulants of the one-year aggregate

loss W .

7.2. Ruin probability criterion

Presuming long-run horizon for operational reserves calculation we widely exploit the ruin theory.

Our aim is now to obtain such a level of operational capital charge c needed to cover each year the

aggregate loss W , which results from a profit u presumed in budget (or other critical level of capital, that

cannot be lost) and accepted level of ruin probability ψ. This is done by inverting various approximate

formulae for the probability of ruin. Information requirements of different methods are emphasized. For

details on the variety of approximations look for in previous chapters.

7.2.1. Approximation based on Lundberg inequality. This is a simplest (and crude) approx-

imation method, simply assuming replacement of the true function ψ(u) by:

ψLi (u) = e−Ru.

At first we obtain the approximation R(Li) of the desired level of the adjustment coefficient R:

R(Li) =
− lnψ
u

.

In the next step we make use of the definition of the adjustment coefficient for the portfolio:

E
(
eRW

)
= eRc(W ),

to obtain directly the reserve amount formula:

c(W ) = R−1 ln
{
E
(
eRW

)}
= R−1CW (R) ,

where CW denotes the cumulant generating function and c(W ) the yearly capital charge enough to cover

each year loss W . The result is well known as the exponential premium formula in insurance. It possesses

several desirable properties – not only that it is derivable from ruin theory. First of all, by the virtue of

properties of the cumulant generating function, it is additive for independent risks. So there is no need to

distinguish between marginal and basic reserves for individual risk lines. The formula can be practically

applied once we replace the adjustment coefficient R by its approximation R(Li).

Under certain conditions we could rely on truncating higher order terms in the expansion of the

cumulant generating function:

(7.1) c (W ) =
1
R
CW (R) = µW +

1
2!
Rσ2

W +
1
3!
R2µ3,W +

1
4!
R3c4,W + ...,
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and use for the purpose of individual risk line pricing the formula (where higher order terms are truncated

as well):

(7.2) c (X) =
1
R
CX (R) = µX +

1
2!
Rσ2

X +
1
3!
R2µ3,X +

1
4!
R3c4,X + ...

Some insight into the nature of the long-run criteria for capital charge calculation could be gained by

re-arrangement of the formula (7.1). At first we could express the u level in units of standard deviation

of the aggregate loss: U = uσ−1
W . Now the adjustment coefficient could be expressed as:

R =
− lnψ
UσW

,

and reserve formula (7.1) as:

(7.3) c (W ) = µW + σW

{
1
2!
− lnψ
U

+
1
3!

(
− lnψ
U

)2

γW +
1
4!

(
− lnψ
U

)3

γ2,W + ...

}
where in the brackets appear only unit-less figures, that form together the pricing formula for the stan-

dardized risk (W − µW )σ−1
W . Let us notice that the contribution of higher order terms in the expansion

is neglectible when u is large enough. The above phenomenon could be interpreted as a result of risk

diversification in time (as opposed to cross-sectional risk diversification). Provided the profit capital is

large, the ruin (if it happens at all) will rather appear as a result of aggregation of poor results over many

periods of time. However, given the skewness and kurtosis of one-year increment of the risk process,

the sum of increments over n periods has skewness of order n−
1
2 , kurtosis of order n−1 etc. Hence the

larger the critical capital, the smaller importance of the difference between the distribution of the yearly

increment and the normal distribution. In a way this is how the diversification of risk in time works (as

opposed to cross-sectional diversification). In the case of a cross-sectional diversification the assumption

of mutual independency of risks plays the crucial role. Analogously, diversification of risk in time works

effectively when subsequent increments of the risk process are independent.

7.2.2. “Zero” approximation. The “zero” approximation is a kind of naive approximation, as-

suming replacement of the function ψ(u) by:

ψ0 (u) = (1 + θ)−1 exp (−Ru) ,

where θ denotes the relative security loading, which means that (1 + θ) = c(W )

E(W )
. The “zero” approx-

imation is applicable to the case of Poisson loss arrivals (as opposed to Lundberg inequality, which is

applicable under more general assumptions). Relying on “zero” approximation leads to the system of

two equations:

c (W ) = R−1CW (R)

R = 1
u ln E(W )

ψc(W ) .

The system could be solved by assuming at first:

R(0) =
− lnψ
u

,
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and next by executing iterations:

c(n) (W ) = 1
R(n−1)CW

(
R(n−1)

)
R(n) = 1

u ln E(W )
ψc(n)(W )

,

that under reasonable circumstances converge quite quickly to the solution R(0) = lim
n→∞

R(n), which

allows applying formula (7.1) for the whole portfolio and formula (7.2) for individual risks, provided the

coefficient R is replaced by its approximation R(0).

7.2.3. Cramér–Lundberg approximation. Operational reserve calculation could also be based

on the Cramér-Lundberg approximation. In this case the problem can be reduced also to the system of

equations (three this time):

c (W ) = R−1CW (R)

R =
1
u

{
− lnψ + ln

µY θ

M ′
Y (R)− µY (1 + θ)

}
(1 + θ) =

c (W )
E(W )

.

where M ′
Y (·) and µY denote respectively the first order derivative of the moment generating function

and the expectation of the severity distribution. Solution of the system in respect of unknowns c (W ), θ

and R requires now a bit more complex calculations. Obtained result R(CL) could be used then to replace

R in formulas (7.1) and (7.2). The method is applicable to the case of Poisson loss arrivals. Moreover,

severity distribution has to be known in this case. It can be expected that the method will produce

accurate results for large u.

7.2.4. Beekman–Bowers approximation. This method is often recommended as the one which

produces relatively accurate approximations, especially for moderate amounts of u. The problem consists

in solving the system of three equations:

ψ = (1 + θ)−1 {1−Gα,β (u)}
α

β
= (1 + θ)

m2,Y

2θm1,Y

α (α+ 1)
β2

= (1 + θ)

{
m3,Y

3θm1,Y
+ 2

(
m2,Y

2θm1,Y

)2
}
,

where Gα,β denotes the cdf of the gamma distribution with parameters (α, β), and mk,Y denotes the

raw moment of order k of the severity distribution. Last two equations arise from equating moments of

the gamma distribution to conditional moments of the maximal loss distribution (provided the maximal

loss is positive). Solving this system of equation is a bit cumbersome, as it involves multiple numerical

evaluations of the cdf of the gamma distribution. The admissible solution exists provided m3,Ym1,Y >

m2
2,Y , that is always satisfied for arbitrary severity distribution with support on the positive part of the

axis. Denoting the solution for the unknown θ by θBB , we can write the latter as a function:

θBB = θBB (u, ψ,m1,Y ,m2,Y ,m2,Y ) ,



7.2. RUIN PROBABILITY CRITERION 57

and obtain the reserve c(W ) from the equation:

cBB (W ) = (1 + θBB) E(W ).

Formally, application of the method requires only moments of first three orders of the severity distribution

to be finite. However, the problem arises when we wish to price individual risks (or business line risks).

Then we have to know the moment generating function of the severity distribution, and it should obey

conditions for adjustment coefficient to exist. If this is a case, we can replace the coefficient θ of the

equation:

MY (R) = 1 + (1 + θ)m1,YR

by its approximation θBB , and thus obtain the approximation R(BB) of the adjustment coefficient R. It

allows calculating capital charge according to formulas (7.1) and (7.2). It is easy to verify that there is

no danger of contradiction, as both formulas for cBB (W ) produce the same result (1 + θBB) E(W ) =

R−1
(BB)CW (R(BB)).

7.2.5. Diffusion approximation. This approximation method requires the scarcest information.

It suffices to know the first two moments of the increment of the risk process, to invert the formula:

ψD(u) = exp
(
−R(D)u

)
,

where:

R(D) = 2 {c(W )− µW }σ−2
W ,

in order to obtain the reserve:

cD(W ) = µW +
σ2
W

2
− logψ
u

,

that again is easily decomposable for individual risks. The formula is equivalent to the exponential

formula (7.1), where all terms except the first two are omitted.

7.2.6. De Vylder approximation. The method requires information on moments of the first three

orders of the increment of the risk process. According to the method, ruin probability could be expressed

as:

ψdV (u) =
1

1 +R(D)ρ
exp

(
−

R(D)u

1 +R(D)ρ

)
,

where for simplicity the abbreviated notation ρ
def= 1

3σW γW is used. Setting ψdV (u) equal to ψ and

rearranging the equation we obtain another form of it:

{
− logψ − log

(
1 +R(D)ρ

)} (
1 +R(D)ρ

)
= R(D)u

that can be solved numerically in respect of R(D), to yield as a result formula:

cdV (W ) = µW +
σ2
W

2
R(D),

which again is directly decomposable.
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When the analytic solution is needed, we can make some further simplifications. Namely, the equation

entangling the unknown coefficient R(D) could be transformed to a simplified form on the basis of the

following approximation:(
1 +R(D)ρ

)
log
(
1 +R(D)ρ

)
=

=
(
1 +R(D)ρ

){
R(D)ρ−

1
2
(
R(D)ρ

)2 +
1
3
(
R(D)ρ

)3 − . . .

}
≈ R(D)ρ.

Provided the error of omission of higher order terms is small, we obtain the approximation:

R(D) ≈
− logψ

u+ ρ(logψ + 1)
.

The error of the above solution is small, provided u is several times greater than the product

ρ |logψ + 1|. Under this condition we obtain the explicit (approximated) formula:

cdV ∗(W ) = µW +
σ2
W

2

{
− logψ

u+ ρ(logψ + 1)

}
,

where the star symbolizes the simplification made. Applying now the method of linear approximation of

marginal cost cdV ∗ (W +X)− cdV ∗ (W ) (see Otto [33] for details) yields the result:

cdV ∗(X) = µX +
− logψ {u+ 2ρ(logψ + 1)}

2 {u+ ρ (logψ + 1)}2
σ2
X +

logψ(logψ + 1)
6 {u+ ρ (logψ + 1)}2

µ3,X .

The reader can verify that the formula cdV ∗(·) is additive for independent risks, and so it can serve

for marginal as well as for basic valuation.

7.2.7. Subexponential approximation. This method applies to the classical model (Poisson loss

arrivals) with thick-tailed severity distribution. More precisely, when the severity cdf FY possesses the

finite expectation µY , then the integrated tail distribution cdf FL1 (interpreted as the cdf of the variable

L1, being the “ladder height” of the claim surplus process) is defined as follows:

1− FL1(x) =
1
µY

∫ ∞

x

{1− FY (y)}dy.

Assuming now that the latter distribution is subexponential (see Section 5.2), we could obtain (applying

the Pollaczek-Khinchin formula) the approximation, which should work for large values of critical capital:

cS(W ) = µW

[
1 +

1
ψ
{1− FL1(u)}

]
.

The extended study of consequences of thick-tailed severity distributions can be found in Embrechts et

al. [16].

All approximation methods presented in this section are more or less standard, and more detailed

information on them can be found in any actuarial textbook, as for example in Bowers et al. [5]. More

advanced analysis can be found in a book by Asmussen [1] and numerical comparison of this and other

approximations are given in Čižek, Härdle and R.Weron, Chapter 15 by Burnecki, Místa and A.Weron.
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7.3. Ruin probability criterion and the insurance

In this section operational reserves calculation is considered under predetermined ruin probability,

with cession of some part of risk to insurance company included. At first an example involving the so

called insurance with self retention limit is presented.

Example 1 We assume, that the aggregate loss W has a compound Poisson distribution with ex-

pected number of claims λW = 1000, and with severity distribution being truncated-Pareto distribution

with with cdf given for y > 0 by the formula:

FY (y) =

 1−
(
1 + y

ν

)−α when y < M0

1 when y > M0

and parameters (α, ν,M0) = (2.5, 1.5, 500).

Variable W is subdivided into retained part WM and ceded part WM , that given the subdivision

parameter M ∈ (0,M0] have a form:

WM = YM,1 + ...+ YM,N ,

WM = YM,1 + ...+ YM,N .

We assume also that the excess of each loss over the limit M ∈ (0,M0] is ceded to the insurer using

premium pricing reflected by the formula:

c(I)
(
WM

)
= (1 + θ0) E

(
WM

)
+ θ1V ar

(
WM

)
.

The problem lies in choosing such a value of the retention limit M and critical capital u, which

minimize the total own operational reserves and premium paid to insurer, under predetermined values

of parameters (ψ, θ0, θ1). The problem could be solved with application of the De Vylder and Beekman–

Bowers approximation methods, however allowing for insurance leads to numerical solutions.

Solution.

Now, the discrete-time version of the risk process is assumed:

Rn = u+
{
c− c(I)

(
WM

)}
t−

n∑
i=1

WM,i.

where all events are assumed to be observed once a year, and notations are obviously adapted.

The problem takes a form of minimization of the capital charge c under restrictions, which in the

case of De Vylder method take a form:

ψ =
(
1 +R(D)ρ

)−1 exp
{
−R(D)u

(
1 +R(D)ρ

)−1
}
,

R(D) = 2
(
c− c(I)

(
WM

))
σ−2 (WM ) ,

ρ = 1
3µ3 (WM )σ−2 (WM ) ,
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and in the version based on the Beekman–Bowers approximation method take a form:

c− c(I)
(
WM

)
= (1 + θ) E (WM ) ,

ψ = (1 + θ)−1 (1−Gα,β (u)) ,

αβ−1 = (1 + θ) E
(
Y 2
M

)
{2θE (YM )}−1

,

α (α+ 1)β−2 = (1 + θ)

 E
(
Y 3
M

)
3θE (YM )

+ 2

(
E
(
Y 2
M

)
2θE (YM )

)2
 .

The first step to solve it is to express moments of first three orders of variables YM and YM as

functions of parameters (α, ν,M0) and the real variable M . Expected value of the truncated-Pareto

variable with parameters (α, ν,M) equals by definition:

M∫
0

y
ανα

(ν + y)α+1 dy +M {1− F (M)} =

1+ M
ν∫

1

(x− 1)
αν

xα+1
dx+M

(
1 +

M

ν

)−α
=

= αν

1+ M
ν∫

1

(
x−α − x−α−1

)
dx+M

(
1 +

M

ν

)−α
that, after integration and reordering of components produces the following formula:

m1 =
ν

α− 1

{
1−

(
1 +

M

ν

)1−α
}
.

Similar calculations made for moments of higher order yield the recursive equation:

mk,α =
ν

α− 1

{
αmk−1,α−1 − (α− 1)mk−1,α −Mk−1

(
1 +

M

ν

)1−α
}
,

k = 2, 3, ...

where the symbol mK,A means for A > 0 just the moment of order K of the truncated-Pareto variable

with parameters (A, ν,M). No matter whether A is positive or not, in order to start the recursion we

take:

m1,A =


ν

A−1

{
1−

(
1 + M

ν

)1−A
}

when A 6= 1

ν ln
(
1 + M

ν

)
when A = 1

The above formulas could serve to calculate raw moments as well of the variable YM as the variable

Y , provided we replace M by M0. Having calculated moments for both variables YM and Y already, we

make use of the relation:

(7.4) E(Y k) =
k∑
j=0

 k

j

E
(
Y k−jM Y

j

M

)
,

to calculate moments of the variable YM . In the above formula we read Y 0
M and Y

0

M as equal one

with probability one. Mixed moments appearing on the RHS of formula (7.4) can be calculated easily as

positive values of the variable YM happen only when YM = M . So mixed moments equal simply:

E
(
Y mMY

n

M

)
= MmE

(
Y
n

M

)
for arbitrary m,n > 0.
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Table 7.1. Minimization of operational reserves c with respect to choice of capital u

and retention limit M . Basic characteristics of the variable W : µW = 999.8, σW = 74.2,

γW = 0.779, γ2,W = 2.654

Variants of minimization

problems

Method of ap-

prox. of the

ruin probability

Retention

limit M

Critical

capita

level u

Loading

c−µW
µW

V.1: (basic)
BB 184.2 416.6 4.17%

dV 185.2 416.3 4.16%

V.2: ψ = 2.5%
BB 150.1 463.3 4.65%

dV 156.3 461.7 4.63%

V.3: θ0 = 50%
BB 126.1 406.2 4.13%

dV 127.1 406.0 4.13%

V.4: θ1 = 0.25%
BB 139.7 409.0 4.13%

dV 140.5 408.8 4.13%

V.5: (no insurance)
BB 500.0 442.9 4.25%

dV 500.0 442.7 4.25%

The second step is to express cumulants of both variables WM and WM as a product of the param-

eter λW and respective raw moments of variables YM and YM . All these characteristics are functions of

parameters (α, ν, λW ) and the decision variable M .

Interpretation of solutions obtained in Example 1

Results of numerical optimization are reported in Table 7.1. In the basic variant of the problem,

parameters has been set on the level (ψ, θ0, θ1) = ( 5%, 100%, 0.5%). Variants 2, 3 and 4 differ from the

basic variant by the value of one of parameters (ψ, θ0, θ1). Results could be summarized as follows:

(i) Insurance results in operational reserve reduction (compare variant 5 with variant 1), the need

for high critical capital level is also reduced.

(ii) Comparison of variants 2 and 1 shows that increasing safety (reduction of parameter ψ from

5% to 2.5%) results in significant growth of capital charge needed. This effect is caused as

well by increase of critical level of capital, as by increase of costs of insurance, because of

reduced retention limit. It is also worthwhile to notice that predetermining ψ = 2.5% results

in significant diversification of results obtained by two methods of approximation. In the case

when ψ = 5% the difference is neglectible.

(iii) Results obtained invariants 3 and 4 show that the optimal level of insurance is quite sensitive

to changes of parameters reflecting costs of insurance policy.

In a general case, i.e. other then truncated-Pareto severity distribution, the only difference in solving

the problem, is the calculation of the moments of this distribution as well as of the truncated distribution.
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7.4. Final remarks

It should be noted that all presented models, including risk participation of insurers, lead only to

a modification of the distribution of the increment of the risk process. Still the mutual independence

of subsequent increments and their identical distribution is preserved. There are also models where

decisions concerning capital charge and insurance depend on current size of the company’s capital. In

general, models of this type need the stochastic control technique to be applied. Nevertheless, models

presented in this chapter preserve simplicity, and allow just to have insight on long-run consequences of

some decision rules, provided they remain unchanged for a long time. This insight is worthwhile despite

the fact that in reality decisions are undertaken on the basis of the current situation, and no fixed strategy

remains unchanged under changing conditions of the environment. On the other hand, it is always a good

idea to have some reference point, when consequences of decisions motivated by current circumstances

have to be evaluated.
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