
INFORMATYKA EKONOMICZNA  BUSINESS INFORMATICS  2(24) . 2012	
ISSN 1507-3858

Łukasz D. Sienkiewicz
Wrocław University of Economics
lukasz.sienkiewicz@ue.wroc.pl

SCRUMBAN – THE KANBAN AS AN ADDITION
TO SCRUM SOFTWARE DEVELOPMENT METHOD
IN A NETWORK ORGANIZATION1

Abstract: A large number of press release and scientific publications treat the Scrum as the
best approach to software development. Nevertheless, the original Scrum method is not
sufficient for managing work in Agile environment within a Network Organization. Due to
that, we extended the Scrum-based model [Sienkiewicz, Maciaszek 2011] and the Kanban
approach to make the most of both and find a more sufficient approach for managing software
development in strongly distributed Agile environment (i.e., Network Organization).

Keywords: Scrum, Third Party Service, Network Organization, Scrumban, Kanban, Agile,
Key Performance Indicators, software development.

1. Introduction

Selecting an appropriate approach to systems development is crucial for the success
of the project. This is especially important when firms are working as a Network
Organization, where the environment is turbulent and uncertain.

In this paper, we propose a Scrum-based model with an addition of a few Kanban
artifacts and rules that suit best managing the development of software applications
in Network Organizations:

We propose to include some novel artifacts and rules taken from the Kanban ap-••
proach that help better manage software development and Third Party Services
in Network Organizations.
We consider the usage of the Kanban software development method as an addi-••
tion to the Scrum-based model [Sienkiewicz, Maciaszek 2011] with particular
emphasis to a distributed environment.
We believe that the improvements proposed in this paper will help better

understand the software development method in Network Organizations and will be
the basis for more empirical research.

1  Selected parts of this article were published under nonexclusive copyright in FEDCSIS’2011
proceedings [Sienkiewicz, Maciaszek 2011].

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 73 2012-08-22 08:03:24

74	 Łukasz D. Sienkiewicz

2. Kanban as a software development method

Originally, the idea was designed and used by Toyota to maintain the high rate
of improvements within Lean [Holweg 2007; Womack, Jones, Ross 1991] and Just-
-In-Time [Shingo 1989] production. In general, “The Kanban” is a physical card
used to support non-centralized “pull” production control, which had spread to the
manufacturing industry and then to software development as a tool of the Lean
software development approach.

We assume that the reader is familiar with the Kanban concept in Lean
manufacturing, so in this chapter we will focus only on those elements that are crucial
for implementing Kanban as a software development method.

2.1. Principles of Kanban in software development

Nowadays, the visualization of software development differs a little bit. Instead of
posting task cards on a wall, a commonly seen practice is using whiteboards – called
“Kanban Boards”. Usually it is a whiteboard with drawn columns and plenty of
yellow sticky notes (actually sticky notes have many colors), which are ordered and
placed in the correct column that represent the actual status of a task.

Many authors [Norrmalm 2011; Ikonen 2010; Kniberg, Skarin 2009] identify
only three important practices (i.e., visualize workflow, limit workflow, and manage
workload). In our consideration, we take advantage of the proposal of David
J. Anderson, who identified the five most important principles/properties of the
Kanban method [Anderson 2010]:

Visualize The Workflow – prepare named columns (e.g., draw them on white-••
board) representing all states of the task (e.g., to-do, investigation, development,
testing, done), split the work into single items, submit each item on a card (e.g.,
sticky notes) and put on the board.
Limit Work In Progress (WIP) – assigned to each column, is an explicit limit to ••
how many items (i.e., tasks) may be in each workflow state (i.e., column).
Manage Flow – measure the lead-time and try to adjust the whole flow to be as ••
short/small as possible in order to avoid waste in the entire process.
Make Process Policies Explicit – be sure that all stakeholders have a common ••
explicit understanding of the process policies and are able to build a shared com-
prehension of the process, problems and suggested improvements.
Improve Collaboratively the Process – continuously and incrementally all stake-••
holders should care for and improve the process. Use a scientific approach to
implement continuous, incremental and evolutionary changes of work, workflow
and process.
In the next sections, we will introduce the Scrumban approach with particular

emphasis on the principles of the Kanban software development method, represented
in the artifacts and rules of the Scrum-based model.

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 74 2012-08-22 08:03:24

Scrumban – the Kanban…	 75

3. Scrumban – make the most of both approaches

In Sienkiewicz, Maciaszek [2011], we introduced a Scrum-based model as a holonic
view on the Scrum method used for managing software development in a Network
Organization. In the approach presented here, we specifically include some novel
and exclude some conventional artifacts and rules to make the Scrum software
development method sufficient for work with Third Party Services within a Network
Organization. The presented examples show that our Scrum-based model is a
Scrumban approach, which makes the most of both approaches.

3.1. The Scrum-based model – main assumptions and indicators

The Scrum-based model [Sienkiewicz, Maciaszek 2011] described here, considers
Scrum undertakings and practices placed in “Job/Performer Level”, which are
essential to achieving the goals propagated from “Process Level”. Therefore, we
skip the ancillary roles of managers and stakeholders due to the low importance for
further considerations. These roles are placed at other levels (the term of
“Organizational Levels” introduced in Sienkiewicz, Maciaszek [2011]).

The impact of Third Party Services on the core Scrum roles is essential and
should not be omitted. In our approach, we distinguish between four types of
teamwork, which represent dependency-minimizing layers of holons proposed in
our Scrum-based model. Due to that and for the sake of proper adaptation, we propose
to add another core role excluded from the stakeholders group and involved in the
entire software development process:

The Third Party Service Provider (•• S) – an organization or individual provides
your organization with specialized Third Party Services (e.g., lawyers, account-
ants, coaches, consultants, translators, internal and external service providers,
etc.). This new core role refers to Third Party Services (i.e., Internal and Exter-
nal).
A Network Organization, understood as a network of intercommunicating

elements, leads to an exponential growth of communication paths with the addition
of new elements. Due to that in [Sienkiewicz, Maciaszek 2011] we proposed a simple
three-layer model of a holarchy (as opposed to a network), where the default core
roles (i.e., PO – Product Owner, SM – Scrum Master/s, ST – Scrum Team/s) are
placed in the first two layers and the new core role S (i.e., Third Party Service
provider) is placed in the lower layer.

We believe that highlighting the possible multiplicity of dependencies between
layers of holons (i.e., many kinds of teamwork between Scrum players) and excluding
a new core role S as an entity placed in a separate layer, is crucial for the success of
the Scrum performed in Network Organizations. By highlighting the roles and
dependencies in the software development process, we follow one of the Kanban’s
principles (i.e., “make process policies explicit”). We believe that building a shared

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 75 2012-08-22 08:03:24

76	 Łukasz D. Sienkiewicz

comprehension of a process is possible only when all stakeholders have a common
explicit understanding of the process.

Additionally, in Sienkiewicz, Maciaszek [2011] we proposed to change the
following artifacts because they work better in a Network Organization:

Task-feasibility instead of time-estimation – means that we should skip using ••
formal time-estimates and try to commit only those User Stories that we are able
to deliver before the next demo session. This change helps us to limit commit-
ments which we are not able to provide.
Report Meeting instead of Sprint Review Meeting – because regular Sprint Plan-••
ning sessions involve many resources (i.e., a lot of participants), we propose to
limit participants only to representatives of the customer and the team. In our
opinion, that kind of meeting should be held more frequently than Sprint Review
Meeting (e.g., every week) in order to improve the information flow between the
customer and the team.
Planning on demand instead of Sprint Planning Meeting – because we skip time-••
estimations we can propose to limit the number of Sprint Planning Meetings and
hold them only if really needed (i.e., when the customer needs help from the
team because he or she is not able to prioritize Product Backlog without the ad-
ditional team’s expertise).
The proposed changes arise from the fact that in our approach [Sienkiewicz,

Maciaszek 2011] we adopted a holonic view and highlighted the variety of teamwork
existing between layers of holons.The Scrum-based model and proposed novel
artifacts and rules are good examples of using a scientific approach to implement
continuous, incremental and evolutionary changes of work, workflow and process,
as pointed out in one of the Kanban principles (i.e., “improve collaboratively the
process”).

The original Scrum uses only one metric usually presented as a burn-down chart
(i.e., time-estimation of the amount of remaining work that needs to be done versus
the amount of “User Stories” or tasks that are set as “Done!” in Sprint Backlog). We
propose to use three additional “Key Performance Indicators (KPI)”, which help
better manage software development in a Network Organization:

Reliability – to measure if the team is delivering what they said they would. We ••
compare the difference between the amount of committed Story Points (ci) and
delivered Story Points (di) as shown in Formula (1). The values might be pre-
sented as the percentage of reliability calculated per Sprint (Ri):

 (1)

Productivity – to measure project velocity. We measure the amount of fixed bugs ••
(bi) and newly implemented requirements (si) as shown in Formula (2). The val-
ue of productivity (Pi) should be calculated after each Sprint:

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 76 2012-08-22 08:03:24

Scrumban – the Kanban…	 77

. (2)

Effectiveness – to measure the effectiveness of the testing service. The measure ••
includes the amount of defects delivered to the customer. Based on this KPI, we
can calculate the effectiveness of the internal testing service (as shown in For-
mula (3)), by measuring the ratio between all found defects (ai) and those found
by external S providing complementary testing (ei). This shows the effectiveness
(Ei) of the software development team and the testing services.

. (3)

The introduced KPI-s are crucial to maintaining customer satisfaction. The data
required for those calculations should be collected at the end of each Sprint.

One of the Kanban practices says that we should try to “manage flow” to ensure
that we avoid all possible waste. Therefore, the KPI-s proposed by us may serve as
the metrics that fully cover this Kanban principle. For measuring the flow we can use
equations introduced by the traditional Kanban approach known from process
management; however, we believe that Reliability (1) and Productivity (2) calculated
per-sprint and presented in the timeline are enough for measuring the lead-time.

The Effectiveness (3) proposed as a third metric could be used as one of the
indicators that help limit WIP (i.e., “Work In Progress”) known as another Kanban
practice.

In the next section, we focus on extending our approach by adding Kanban
practices to our Scrum-based model.

3.2. Kanban – as an addition to the Scrum-based model

Analyzing the Scrum-based model in terms of Kanban principles, we noticed that
Kanban’s practices confirmed (more or less) our approach, proposed in Sienkiewicz,
Maciaszek [2011].

We take advantage of the Kanban software development method and look at the
Kanban-board. The whiteboard used in the proper way brings maximum visualization
to managing software development by showing in an easy way the whole flow of
tasks, requirements or user stories. Therefore, we can say that also this Kanban
principle (i.e., “visualize the workflow”) is covered by our Scrumban approach as
well as the traditional approach.

The difference between the whiteboards illustrated in Figure 1 is one row added
in the second board. This one row is crucial for Kanban’s software development
method (i.e., row with WIP).

This one small improvement significantly improves the visibility of the possible
workload of the team in all stages. There is no one clear rule of how to measure WIP
in software development. Due to that, we propose to use The Effectiveness (1) as an

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 77 2012-08-22 08:03:25

78	 Łukasz D. Sienkiewicz

indicator measured at the end of each cycle. We believe that this will help better
adjust the value of WIP for each stage.

Making this small improvement will help avoid bottlenecks in all stages. A
properly set and very visible WIP proposed per stage will decrease the number of
analyzed tasks which stayed too long in the implementation phase. Reaching the
limit of WIP in any of the stages is an alarm to all stakeholders that help is needed
because some obstacles are blocking the whole flow.

Scrum advocates might argue that the traditional Scrum approach has a mechanism
for managing “impediments” (i.e., Impediment Backlog includes a list of obstacles).
We agree with that opinion; however, we also point out that the traditional Scrum
approach says nothing about the limit of “impediments”, which is crucial for
managing software development process in Network Organizations, where a delay
caused by one stakeholder implicates delays in other stakeholders’ schedules.

4. Related Work

In the last 30 years, many approaches have been proposed to software application
development. We distinguish three general life cycle models (i.e., heavyweight,
middleweight and lightweight) which include several different software development
methods (e.g., “Code and Fix” [Guntamukkala, Wen, Tam 2006; Royce 1970],
waterfall model, spiral model, etc.). It is hard to say which model is better than
another due to the fact that different projects require different approaches. On the
basis of the research results and experience [Cocburn 2000; Nandhakumar, Avision
1999; Schwaber 2002; 2004; Lindvall et al. 2002], we can assume that the best choice
for software development projects starting from scratch and executed in a continuously

Figure 1. Example of the Scrum-board and the Kanban-board – similarities and differences

Source: author’s own study.

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 78 2012-08-22 08:03:25

Scrumban – the Kanban…	 79

changing environment is a strongly adaptive methodology known as Agile. By Agile
we understand several prescriptive methods (e.g., Scrum, eXtreme Programming,
ASD, etc.) [Cocburn 2000; Schwaber 2002; 2004].

In our work we wanted to add some novel artifacts and rules to adapt existing
Agile methods to work better in a Networked Organization. We agree with Scrum
advocates that using time-boxed delivery cycles (i.e., Sprints), visualization of the
project scope (e.g., Product Backlog drawn on Scrum-board, Kanban-board),
prescribed roles (e.g., Scrum Master, Product Owner, Scrum Team and proposed
Third Party Service Provider role [Sienkiewicz, Maciaszek 2011]) as well as
following Scrum rules and organizational meetings (e.g., daily meetings, retrospective
meetings) are necessary for the success of a project.

In the literature, a few researchers have already studied the way of adapting the
Agile practices in Virtual Organizations and Virtual teams. Usually, Agile software
development methods are introduced as a set of principles that need to clarify many
different interpretations of Agile Manifesto [Beck et al. 2001]. However, it is very
difficult to determine what exactly Agile methodology is and how it should be
introduced in Network Organizations.

In our research we focus mostly on the main representatives of Agile software
development methodology, and due to the lack of method dedicated to managing
distributed software development in Network Organizations, we have selected one
(i.e., Scrum) as the best representative.

Obviously, we agree with Scrum advocates that following the Agile Manifesto
principles is possible only because Scrum defines precisely the essential roles,
principles and artifacts, which makes the method very prescriptive for managing
software development. In addition to the traditional Scrum, we propose to add a new
role (i.e., Third Party Service provider – S) and some extra rules for adapting Scrum
and Third Party Services to a Network Organization.

An exploratory case study by Hovorka, Larsen [2006] examined the influence of
a Network Organization environment on the ability to develop Agile adoption
practices. The authors “investigate the interactions between network structure, social
information processing, organization similarity (homophily), and absorptive capacity
during the adoption of a large-scale IT system in two network organization
environments” [Hovorka, Larsen 2006]. In this paper, we propose an approach that
is more detailed. We do not limit ourselves to Agile as a set of good practices, and we
propose an analysis that is even more detailed by focusing on one selected method
(i.e., Scrum).

By referring to the Network Organization and Third Party Services, we determine
how they interrelate with a Scrum and Agile environment. The publication by W.
Cellary and W. Picard achieves agility and pro-activity by introducing the model of
Collaborative Network Organization that provided a stimulus for us to reflect on the
Third Party Services Provider role that is simultaneously a part and a whole in a
Network Organization.

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 79 2012-08-22 08:03:25

80	 Łukasz D. Sienkiewicz

5. Conclusion

In this paper we have proposed the “Scrumban” software development method which
combines the Scrum-based model and Kanban principles as one flawlessly working
software development method.The proposed approach is dedicated to Agile
environment with Third Party Services introduced in a Network Organization.

By extending our previous research from Sienkiewicz, Maciaszek [2011], we
highlighted the common parts of Kanban and Scrum-based approaches [Sienkiewicz,
Maciaszek 2011]. Because there is no easy way to adapt pure Scrum or Kanban
software development method to work in a Network Organization, we believe that
the proposed approach can serve to advance research and help find the best
solution.

References

Anderson D.J., Kanban: Successful Evolutionary Change for Your Technology Business, Blue Hole
Press, Sequim 2010.

Beck K., Beedle M., van Bennekum A., Cockburn A., Fowler M., Grenning J. et al., 2001, retrieved
from Manifesto for Agile Software Development: http://agilemanifesto.org/

Cocburn A., Selecting a project’s methodology, IEEE Software 2000, vol. 4 (17), pp. 64–71.
Guntamukkala V., Wen J., Tam M.J., An empirical study of selecting software development life cycle

models, Human Systems Management 2006, vol. 4 (25), pp. 268–278.
Holweg M.,The genealogy of lean production, Journal of Operations Management 2007, vol. 25 (2),

pp. 420–437.
Hovorka D.S., Larsen K.R., Enabling Agile adoption practices through network organization, European

Journal of Information Systems 2006, vol. 15 (2), pp. 159–168.
Ikonen M., Leadership in Kanban software development projects: A quasi-controlled experiment, [in:]

Proceedings of the 1st International Conference on Lean Enterprise Software and Systems (LESS)
2010, 2010, pp. 85–98.

Kniberg H., Skarin M., Kanban and Scrum – Making the Most of Both, 11th edition, Crisp, 2009.
Lindvall M., Basili V., Boehm B., Costra P., Dangle K., Shullm F. et al., Empirical findings in Agile

methods, [in:] Second XP Universe and First Agile Universe Conference on Extreme Programming
and Agile Methods – XP Agile Universe 2002, Springer-Verlag, London 2002, pp. 81–92.

Nandhakumar J., Avision J., The fiction of methodological development. A field study of information
system development, Information Technology and People 1999, vol. 2 (12), pp. 176–191.

Norrmalm T., Achieving Lean Software Development: Implementation of Agile and Lean Practices in
a Manufacturing-Oriented Organization, Stockholm 2011.

Royce W., Managing the development of large software systems, [in:] Proceedings of the 9th Interna-
tional Conference on Software Engineering ICSE ‘87, Los Angeles 1970, pp. 1–9.

Schwaber K., Agile Project Management with Scrum, Microsoft Press, Redmond, Washington 2004.
Schwaber K., Agile Software Development with Scrum, Prentice Hall, Upper Saddle River, New Jersey

2002.
Shingo S., A Study of the Toyota Production System, (Rev. Sub Edition ed.), Productivity Press, 1989.

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 80 2012-08-22 08:03:25

Scrumban – the Kanban…	 81

Sienkiewicz L.D., Maciaszek L.A., Adapting Scrum for Third Party Services and Network Organiza-
tions, [in:] Proceedings of the Federated Conference on Computer Science and Information Sys-
tems, IEEE digital library, Szczecin 2011, pp. 329–336.

Womack J., Jones D., Ros D., The Machine That Changed the World, 1st edition, Harper Perennial,
Rawson Associates, New York 1991.

Scrumban – Kanban jako uzupełnienie metody Scrum
używanej do wytwarzania oprogramowaniA
w organizacji sieciowej

Streszczenie: Duża liczba publikacji naukowych przedstawia metodę Scrum jako najlepsze
podejście do wytwarzania oprogramowania. Jednakże oryginalna metoda Scrum nie jest wy-
starczająca do zarządzania pracą w środowisku Agile’owym wewnątrz organizacji sieciowej.
Z tego powodu przeanalizowaliśmy podejście Kanbanowe i nasz model pracy bazujący na
Scrumie [Sienkiewicz, Maciaszek 2011] w celu wyodrębnienia dobrych praktyk z obu podejść,
co pozwala nam zaproponować podejście lepiej dostosowane do zarządzania wytwarzaniem
oprogramowania w rozproszonym Agile’owym środowisku (tj. w organizacji sieciowej).

Słowa kluczowe: Scrum, usługodawcy wewnętrzni i zewnętrzni, organizacja sieciowa,
Scrumban, Kanban, Agile, kluczowe wskaźniki wydajności, tworzenie oprogramowania.

Informatyka Ekonomiczna 2(24)_Nycz_Księga1.indb 81 2012-08-22 08:03:25

