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1. INTRODUCTION 

 

The age of protection began some 105 years ago, when control apparatus were for 

the first time connected to current and voltage transformers, which reduced the prima-

ry currents and voltages to secondary levels. The secondary currents and voltages 

could be processed to generate TRIP or NO TRIP decisions. 

 

 

 
Fig. 1.1 History of protection technology 

 

The first relays were simple overcurrent and undervoltage apparatus (1905). Both 

were electromagnetic or magnetoelectric in nature and resembled the measuring appa-

ratus. Both were actuated either by r.m.s. values or mean values of rectified signals. 

They had moving parts and their delay was due to the time needed to close the output 

contacts. 

Next step (around 1915) was introduction of inverse time overcurrent relays, either 

thermal, or with rotating discs. Some 5 years later the differential principle was 

adopted, and it was a great step forward in protection of the power system apparatus. 

The differential relays compared two currents. 

From differential relays there was only one step to distance relays (1930), which 

compared currents and voltages, their r.m.s. or mean values. They had the delay which 

IV g. 
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B – inverse time overcurrent relays 
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was a function of the measured impedance U/I. All those relays were magnetoelectric 

or electromagnetic, all had moving parts and we consider them as the first generation 

of protective devices. 

The big change was caused by the invention of transistors (1947). They were intro-

duced to protective relays around 1955. It enabled to build the static devices (without 

moving parts, except the output element) that began the era of second generation of 

protective relays. The static relays had the operational criteria the same as electromag-

netic ones; however, their decisions (to trip or not to trip) were based on the modified 

ways of signal processing. Because of that they offered a number of advantages: 

• improvement of cooperation with CTs and VTs, 

• reduced dimensions and modularity, 

• facilitation of testing, maintenance and repairs, 

• complex operational characteristics, 

• increased speed of operation. 

The third generation of protective devices started with the widespread application 

of inexpensive digital processors and memories (around 1985). The block diagram of 

the digital relay is presented in Fig. 1.2. 

 

 
 

Fig. 1.2 Block diagram of digital relays 

 

Processing of relay input signals is realized in 5 basic stages: 

• input of analog signals, which usually are currents and voltages derived from CTs 

and VTs, enter the antialiasing low pass filters that remove components of high 

frequency which could irreversibly corrupt the digital signals; 

Anti 
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• from the antialiasing filter the signals – still in the analog form – enter the A/D 

converter and at the output of that block they have forms of trains of samples; 

• the digital signals enter the block of initial processing, where they are filtered, or-

thogonalized, etc.; 

• the results of initial processing enter the block of digital measurements, in which 

the signals, their parameters and mutual relations are calculated; 

• the final block generates the final decisions, which are based on adopted criteria 

checked on the ground of digital signal processing.  

One has to remark that the relays of previous generations did not actually measure 

particular signals. Their operations were based on comparators, which only decided, if 

the given quantity was smaller or greater than the operational threshold. In cases of 

digital relays the signals are actually measured and the comparison with the thresholds 

comes afterwards.  

Starting from around 1985 the digital relays became dominant in the offer of manu-

facturers. It is so, because they offer a number of advantages: 

• integration of functions, 

• further reduction of power derived from secondary terminals of CTs and VTs, 

• reduction of secondary cabling, 

• complex algorithms, which process digital signals using values of the samples, 

• increased speed of operation, 

• facility of communication, 

• self testing capabilities. 

The digital processing of signals, and progress in telecommunication enables to en-

ter the era of 4-th generation of protective devices. It is the era of Wide Area Mea-

surement and Protection Systems (WAMPS), which combine sophisticated digital 

processing with the fast and reliable exchange of information via telecommunication 

links.  

The 4-th generation came in timely, because the philosophy of relaying has recent-

ly slightly changed. Previously the principal requirement was to assure reliable and 

fast protection of given power system apparatus. Therefore they were object oriented. 

The relays ought to be: 

• reliable, 

• sensitive, 

• selective, 

• high speed. 

However, nowadays the priorities of relaying slightly changed. The first one is pro-

tection of the power system against developing disturbances, which could lead to 

blackouts. Although the needs to protect given power system component is still fun-

damental, but the relays ought to be system-oriented. Therefore, undesirable tripping 

may be considered as dangerous as the delayed tripping of the fault.  

The 4-th generation has the following properties: 
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• wide area measuring of signals and transfer of the results to the decision making 

points, 

• integration of protection, control, monitoring and measurements, 

• adaptability to the existing conditions, 

• intelligent decisions, estimation of actual conditions and possible consequences.  

All the advantages of 3-rd and 4-th generation of protective devices require effi-

cient digital processing of signals. Both theoretical basics and specific algorithms for 

signal conditioning, calculation of criteria values and decision making are provided in 

the following sections of this book. 
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2. ANALOG PROCESSING AND SAMPLING 

 

An exemplary sampled signal is presented in Fig. 2.1. One may see that the sam-

pling time TS is the time span between two consecutive samples. One may also define 

the sampling frequency fS = 1/TS and the sampling angular frequency ωS = 2π/TS. 
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Fig. 2.1. Sampled signal 

 

While designing the analog processing of the signal one has to decide two things: 

• selection of sampling frequency – in cases of sinusoidal signals it is the number of 

samples within one period of the basic frequency of the signal,  

• cut off frequency of the antialiasing low pass filter. 

If the input signal is a current in transient state caused by the short circuit, it may 

be presented in the form: 
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 (2.1) 

One may observe that the signal consists of the following components: 

 I1 − fundamental frequency component (phasor magnitude), 

 I0 – decaying DC component, 
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 Ik – higher frequency component, 

 Ih – transient oscillatory decaying component.  

The useful information is contained in the fundamental frequency component, and 

sometimes in the selected higher frequency components (2-nd, 3-rd or 5-th). There-

fore, all the other components are to be rejected. Particularly dangerous are very high 

frequency components (Ik and Ih), which have frequencies close to the sampling fre-

quency, because they may cause irreversible corruption of the digital signal. 

Therefore, selection of the sampling frequency fS is a compromise. It must not be 

too low, to enable reproduction of the component which is vital for the relaying deci-

sions. On the other hand it must not be too high, to make unnecessary burden for the 

digital processing. 

Basically, the minimum sampling frequency results from the Shannon-Kotielnikov 

theorem that defines conditions for possibility of signal reconstruction after sampling. 

According to that, there should be at least two samples of the signal taken within the 

period of the signal component that should be represented in digital form without loss 

of information about frequency. 

If the component to be reproduced correctly has the frequency fk1 then the sampling 

frequency ought to be: 

 12 kS ff ≥  (2.2) 

In real installations the sampling frequency is seldom lower than 800 Hz (16 sam-

ples per one period of the fundamental frequency component, 4 samples per one pe-

riod of the 4
th
 harmonic, etc). Contemporary digital protection relays offer sampling 

rates up to several kHz. Special solutions, where higher frequency components are 

used for generating the trip decision, may have sampling rates in the range of many 

hundreds of kHz. 

Before sampling the signal goes through the antialiasing low pass filters that are 

used to pass all the components with frequencies lower than fk1, and to eliminate fre-

quencies higher than that. The cut off frequency of the filter fC ought to meet the fol-

lowing requirements: 

 
3

1
kS

Ck

ff
ff

−
≤<  (2.3) 

This would make all the components with frequencies lower than fk1 pass with the 

minimal distortion, while the components with frequencies greater than that would be 

suppressed. 

The analog input filters are in most cases implemented in form of cascade RC cir-

cuits. Required slope of the transition part of filter spectrum is obtained by choosing 

appropriate filter order, which means that respective number of the first order RC 

four-poles is connected in series. 
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3. FUNDAMENTALS OF SIGNAL PROCESSING 

3.1. APPROXIMATION OF A SIGNAL IN THE DATA WINDOW 

Let us consider a periodic signal containing the fundamental and higher harmonics 

as shown in Fig. 3.1. 

    

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-1.5

-1

-0.5

0

0.5

1

1.5

time τ

fu
c
ti
o
n
 f

t 
t-Tw 

Tw 

 
Fig. 3.1. Example of a periodic signal 

 

On the axis of time τ there is a given moment t. In the time τ ≤ t the signal is 

known (was already recorded), while for τ > t the signal is unknown yet.  

Let in the period between t and t – Tw (where Tw is the so called Data Window, 

DW) the signal is to be approximated by two orthogonal correlating functions fr1(τ) 

and fr2(τ):  

 f(τ) ≈ C1 fr1(τ) + C2fr2(τ), (3.1) 

where: C1 and C2 are coefficients of the approximation.  
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Two functions may be called orthogonal if their product integrated in the data win-

dow is zero: 

 ( ) ( ) 021 =∫
−

τττ dff r

t

Tt

r

w

. (3.2) 

The best approximation is achieved, if the selection of the coefficients is done in 

such a way that the mean square error ε 
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−−= 2

2211  (3.3) 

is minimum. 

To achieve that there are specified the following conditions, which enable calculat-

ing the coefficients C1 and C2: 

0
1

=
dC

dε
    and      0

2

=
dC

dε
. 

It gives two independent equations, which in case of orthogonal functions f1 and f2, 

lead to simple calculation of the coefficients of approximation: 
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Similar formulas may be developed for any number of approximating functions 

which are mutually orthogonal in the data window.  

3.2. FOURIER SERIES 

Approximation of the function f(τ) by the infinite series of sinusoidal / cosinusoidal 

functions being mutually orthogonal is called a Fourier series: 

13



 

 ( ) ( ) ( )[ ]∑
∝

=

++≈
1

0
 sin cos

2 m

wmwm mbma
a

f τωτωτ , (3.6) 

where: 
w

w
T

π
ω

2
= . 

Minimizing the mean square error of approximation in the same way as above, one 

gets the general formulas describing the values of am and bm using the correlating 

functions ( )τωwr mf cos1 =  and ( )τωwr mf sin2 = : 
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3.3. CALCULATION OF PHASORS 

The antialiasing filtering of the input signal removes the oscillatory transient com-

ponents (and the very high frequency harmonics as well) and the signal, which enters 

an A/D converter, consists of the fundamental frequency component, some harmonics 

and the decaying DC component. It may be presented in the following form: 

 ( ) ( ) ( )∑
=
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                   Fundamental 

                      (Phasor)                    DC                     Harmonics 

 

where:  T1 – duration of one period of the fundamental frequency component, 

 ω1 = 2π/T1 – fundamental angular frequency. 

 

Amplitude of the fundamental frequency component f1 may be determined by the 

Fourier coefficients (3.7) and (3.8). It is given by two orthogonal components: sinu-

soidal (lagging) and cosinusoidal (leading). Those components determine the ampli-
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tude and phase of the fundamental component, thus they determine the phasor. Ne-

glecting all other components the fundamental frequency signal can be approximated 

by: 

 ( ) ( ) ( ) ( ) ( )τωβτωβτ 1111111 sinsincoscos FFf += . (3.10) 

Therefore amplitudes of the leading (+) and lagging (-) orthogonal components of 

the fundamental harmonic are:  

 111 cosβFfa == +  (3.11) 

 111 sin βFfb == −  (3.12) 

and the amplitude and phase of the phasor may be calculated as follows: 

 22
1 −+ += ffF , (3.13) 
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In calculation the orthogonal phasor components f+ and f− there are two basic ways 

for selecting the correlating functions. The first one calculates non rotating phasor 

components, while the second calculates the rotating components. 

3.3.1. NON-ROTATING ORTHOGONAL COMPONENTS 

Let the correlating functions are the following: 

( )τω11 cos=rf , ( )τω12 sin=rf . 

Then the orthogonal components are calculated as it was demonstrated by equa-

tions (3.7) and (3.8). 

If in the data window neither the frequency of the phasor nor its amplitude 

changed, and if the period of the phasor is equal to the data window duration, then the 

values of calculated orthogonal components f+ and f− are constant (see Fig. 3.2). 

Therefore, the angle β1 may be defined as the angle of the phasor with respect to the 

function cos(ω1τ).  

However, one must bear in mind that the simple formulas (3.7), (3.8) may be used 

only if the correlating functions fr1 and fr2 are mutually orthogonal. It is so if the dura-

tion of the data window is equal to the period of the calculated phasor: Tw=T1=2π /ω1, 

or if it is equal to the half of the period: Tw=0.5(2π/ω1). In the former case the calcula-

tion of the phasor efficiently rejects higher frequency components and the DC compo-

nent. In the latter case rejection is far from being perfect, and the components corrupt 

the result of phasor calculation. 
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Fig. 3.2. Example of a pure sine signal and its non-rotating orthogonal components 

3.3.2. ROTATING ORTHOGONAL COMPONENTS 

To avoid limitations related to the non-rotating orthogonal components that could 

be calculated only if the correlating functions were orthogonal in the data window 

(this window ought to be equal to one period or half the period of the fundamental 

frequency) one may use the so called rotating orthogonal components. If the correlat-

ing functions are the same in the data windows and are orthogonal in that window for 

at value of t, they ought to be selected as follows: 
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Therefore one gets: 
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Both orthogonal components rotate with the change of time. However, the ampli-

tude of the phasor may be calculated in the same way as before: 

 22
1 −+ += ffF . (3.19) 

The advantage of the rotating orthogonal components is that the correlating func-

tions are mutually orthogonal for any duration of the data window Tw, therefore the 

formulas (3.7) and (3.8) may be applied for any Tw. 

An illustration of the concept for a pure 50Hz sine signal and full-cycle data win-

dow is shown in Fig. 3.3. One can see that the components f+, f− have the same ampli-

tude as the input signal (hidden under the f− curve) and are shifted one by 90 deg. 
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Fig. 3.3. Example of a pure sine signal and its rotating orthogonal components 
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3.4. DIGITAL CALCULATION OF PHASORS 

3.4.1. APPLICATION OF FOURIER SERIES 

The input signal presented as a train of samples is shown in Fig. 3.4. 
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Fig. 3.4. An input signal (50Hz + 20% of the 3rd harmonic) in digital form as a train of samples 

 

The actual moment t may be expressed in the alternative form t = nTS, where: n – 

current number of the sample, TS – sampling period.  

Therefore, the digital form of calculation the Fourier coefficients, which in the con-

tinuous form are given by (3.7) and (3.8), is the following: 
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where: ( ) Sw TpT 1+=  – duration of the data window, 

       ( )1+p  – number of samples in the data window. 
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Therefore, while calculating the non-rotating phasor for duration of the data win-

dow Tw being equal to the period of the phasor T1, the formulas are: 

 ( ) ( ) ( ) +
−=

=







= ∑ 111  cos

2
fTmmf

T

T
na S

n

pnmw

S ω , (3.22) 

 ( ) ( ) ( ) −
−=

=







= ∑ 111  sin

2
fTmmf

T

T
nb S

n

pnmw

S ω . (3.23) 

The formulas (3.22) and (3.23) may also be presented in the recursive form to re-

duce the number of multiplications: 

 ( ) ( ) ( ) ( ) ( )( )[ ]SS

w

S TpnpnfTnnf
T

T
naa 1111 1 cos1 cos 

2
1 ωω −−−−−








+−= , (3.24) 

 ( ) ( ) ( ) ( ) ( )( )[ ]SS

w

S TpnpnfTnnf
T

T
nbb 1111 1 sin1 sin 

2
1 ωω −−−−−








+−= . (3.25) 

As a result the computational burden is greatly reduced. The formulae may even be 

more efficient, if one observes that: 

( ) ( )[ ]SS TpnTn 11 1coscos ωω −−= , 

( ) ( )[ ]SS TpnTn 11 1sinsin ωω −−= . 

Non-rotating phasor components may be calculated in the very efficient form; 

however, as stated before the method may be used only if the duration of the data 

window is equal to the period or a half of the period of the phasor.  

If orthogonal components of a rotating phasor are calculated, then correlating func-

tions are digital forms of formulas (3.17) and (3.18), and for Tw = T1: 

 ( ) ( ) ( ) +
−=

=







+−








= ∑ f

T
Tnmmf

T

T
na

n

pnm

w
S

w

S

2
cos

2
11 ω , (3.26) 

 ( ) ( ) ( ) −
−=

=







+−








= ∑ f

T
Tnmmf

T

T
nb

n

pnm

w
S

w

S

2
sin

2
11 ω . (3.27) 

The rotating phasor components can not be calculated in the recursive form, but 

they may be applied for any duration of the data window. If the duration of the data 

window Tw is not equal to the period of the phasor T1, then the formulas are slightly 

changed:  
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 ( )
( )

( ) ( ) +
−=

=







+−

+
= ∑ f

T
Tnmmf

TTT

T
na

n

pnm

w
S

ww

S

2
cos

2/sin

2
1

1

1 ω
πω

 (3.28) 

 ( )
( )

( ) ( ) −
−=

=







+−

−
= ∑ f

T
Tnmmf

TTT

T
nb

n

pnm

w
S

ww

S

2
sin

2/sin

2
1

1

1 ω
πω

. (3.29) 

The amplitude of the phasor is to be determined by (3.19). An illustration of the 

calculation for the signal from Fig. 3.4 is given in Fig. 3.5. 
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Fig. 3.5. Signal (as in Fig. 3.4), orthogonal components (3.28), (3.29) and amplitude of fundamental 

harmonic 

3.4.1 OTHER METHODS OF CALCULATIONS OF PHASORS 

Calculation of phasors by means of correlation with sine/cosine in the data window 

being equal to the period of the phasor is advantageous, because it rejects the higher 

frequencies and DC components which are present in the input signal and can corrupt 

the results of the phasor calculation. However, it introduces a delay which is equal to 

Tw. If the input signal has none of the corrupting components, simpler and faster me-

thods of calculation may be used. The most common is utilization of the first deriva-

tive: 

 ( ) ( ) −=+= fFf βτωτ 1sin , (3.30) 
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 ( ) ( ) +=+=







fFf βτωτ

ω 1
'

1

cos
1

. (3.31) 

Calculation of the first derivative in a digital form is simple, if the signal between 

the samples (n) and (n−1) is approximated by the straight line segment. Thus one can 

get: 

 ( ) ( ) ( ) ( )[ ] −=+−≈
−+

≈− fTnF
nfnf

nf S βω 5.0sin
2

1
5.0 1  (3.32) 

 ( ) ( ) ( ) ( )[ ] +=+−≈
−−

≈−







fTnF

T

nfnf
nf S

S

βω
ωω

5.0cos
1

5.0
1

1

1

'

1

 (3.33) 

To increase accuracy of the calculation one may introduce a corrective factor: 

 
( ) ( )










−−
=+

2
sin2

1

1 ST

nfnf
f

ω
, (3.34) 

 
( ) ( )










−+
=−

2
cos2

1

1 ST

nfnf
f

ω
. (3.35) 

Alternatively, the fast calculation of the phasor may be based on the time delay:  

 ( ) ( )βω += SnTFnf 1sin , (3.36) 

 ( ) ( )[ ]βω +−=− STknFknf 1sin . (3.37) 

Therefore: 

 ( ) ( ) ( ) ( ) ( )[ ]SSSS kTnTkTnTFknf 1111 sincoscossin ωβωωβω +−+=− . (3.38) 

It may be rewritten in the form: 

 ( ) ( ) ( ) ( )[ ]
( )S

SS
kT

knfkTctgnfnTF
1

11
sin

1
cos

ω
ωβω −−=+ . (3.39) 

Therefore: 

 ( ) ( ) ( ) ( )
( )






−−=+=+

S

SS
kT

knfkTctgnfnTFf
1

11
sin

1
cos

ω
ωβω , (3.40) 

 ( ) ( )nfnTFf S =+=− βω1sin , (3.41) 
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where k is selected arbitrary. The fastest calculation is when k=1, while the simplest 

calculation is for k=π / (2ω1TS).  

In the latter case: 

 ( )knff −−=+ , 

 ( )nff =− . 

An illustration of the calculation using eqs. (3.40) and (3.41) for k=1 is provided in 

Fig. 3.6. One can see that the measurement dynamics is very high, however, the accu-

racy is poor, what results as an effect of presence of the 3
rd
 harmonic. 
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Fig. 3.6. Signal (as in Fig. 3.4), orthogonal components (3.40), (3.41) and amplitude of fundamental 

harmonic 

3.5. NON-PERIODIC INPUT SIGNALS 

3.5.1 CONVOLUTION 

Among non-periodic functions a special place occupies the Dirac’s pulse δ(x): 

 

δ(x) = 0  for   x ≠ 0 
δ(x) = infinity for  x = 0 
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( ) ( )xdxx 1=∫
∝

∝−

δ  

The pulse δ(t−τ) is presented in Fig. 3.7. 

 

 

 

 

 

 

 

 

 
Fig. 3.7. Illustration of the Dirac’s pulse 

 

The Dirac’s pulse has a very interesting property: 

 ( ) ( ) ( )tfdtf =−∫
∝

∝−

ττδτ . (3.42) 

If the Dirac’s pulse enters a linear circuit then so called weighting function h(t−τ) 

appears at the circuit output. Therefore, since the circuit is linear, what implies homo-

genity and additivity, the following steps presented in the Fig. 3.8 are true: 

 

 

 

 

 

 

  ( ) ( )τδτ −tf                              ( ) ( )ττ −thf  

 

   ( ) ( ) ( )tfdtf =−∫
∝

∝−

ττδτ                  ( ) ( ) ( )tydthf =−∫
∝

∝−

τττ  

Fig. 3.8. Processing of the continuous signals 

 

Therefore, if f(t) is the circuit input signal then the output signal y(t) is a convolu-

tion of the function f(τ) and the weighting function h(t−τ). 

One may observe that if: 

   for τ < 0,  f(τ) =0 

and if for t−τ < 0,  h(t−τ) = 0, then: 

τ t 

δ(t−τ) 

δ(t-τ) h(t-τ) 

Linear 

circuit 
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 ( ) ( ) ( ) ( ) ( ) ττττττ dhtfdthfty

tt

∫∫ −=−=
00

. (3.43) 

3.5.2. FOURIER INTEGRAL AND FOURIER TRANSFORM 

Fourier series, being so useful in processing of the periodic signal, must be mod-

ified, if it comes to non-periodic signals. This modification is based on exponential 

representation of sine/cosine functions, and the assumption, that it is a semi periodic 

signal of the period TW being equal to infinity. It leads to the following relation, which 

is a Fourier transform. It is a spectral representation, or a frequency domain represen-

tation of the time domain signal f(τ): 

 ( ) ( ) ττω ωτ defjF j−
∞

∞−
∫=  . (3.44) 

The reversed process called the Inverse Fourier Transform shows how to determine 

the time domain signal f(τ) for the given spectral signal F(jω): 

 ( ) ( ) ωω
π

τ ωτdejFf j 
2

1
∫
∞

∞−








= . (3.45) 

Relations between the time and frequency domain signals are given in any mathe-

matical manual. However, some more frequently used relations are given below. 

( ) ( )

( )

( )

( ) ( )
( ) ( )[ ]
( ) ( )

( ) ( ) ( ) ( )

( ) ( )ωτ

ωωτττ

ωω
τ
τ

ωωτ

ωτ

ω
τ

ω
τ

ωτ

τω

ω

τ

jHh

jHjFdthf

jFj
d

df

jFef

jFetf

a

j
F

a
af

ja
e

jFf

t

j

tj

a

⇒

⇒−

⇒

−⇒

⇒−
















⇒

+
⇒

⇒

∫

−

−

−

0

0

0

0

0

1

1
1
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The spectral representation H(jω) of a weighting function h(τ) is called a Fourier 

domain transfer function. 

3.5.3. LAPLACE TRANSFORM 

The Fourier transform has a limitation, because the time domain function must 

meet the following condition: 

 ( ) <∝∫
∝

∝−

ττ df . 

To avoid it the imaginary operator jω may be replaced by the complex operator s. 

However, it imposes another limitation, because the time domain function f(τ) must be 

zero for τ <0. As a result one gets the Laplace representation of the time domain func-

tion. 

For the majority of the time domain functions, there is a very simple relation be-

tween the Fourier representation and the Laplace representation. It is just by replacing 

the Fourier operator jω by the Laplace operator s. Therefore:  

 ( ) ( ) ττ τ defsF s−
∝

∫=
0

. (3.46) 

It leads to the following basic relations: 

 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )sHh

sHsFdthf

sF
s

df

ssF
d

df

sFetf

sFf

t

t

st

⇒

⇒−








⇒

⇒








⇒−

⇒

∫

∫

−

τ

τττ

ττ

τ
τ

τ

τ

0

0

0

1

0

 

The Laplace function H(s), which is a Laplace transform of the weighting function 

h(τ), is called a Laplace transfer function of the linear continuous system. 
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3.5.4. DISCRETE SIGNALS AND LAURENT’S TRANSFORM 

In cases of continuous non-periodic signals the Dirac’s pulse plays a special role. 

For discrete signals such a role plays the unit pulse, presented in Fig. 3.9. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.9. Illustration of the unit pulse ( )m*δ  

The unit pulse is ( ) 0* =mδ  for 0≠m , and ( ) 1* =mδ  for 0=m . 

A discrete signal is a train of time-shifted pulses: 

 ( ) ( ) ( )mnmfnf
m

−= ∑
∝

∝−=

*δ . (3.47) 

 

 

 

 

 
Fig. 3.10. Processing of a discrete signal 

 

If a train of pulses enters a linear processing block, like in the Fig. 3.6, then the 

output is described by a formula: 

 ( ) ( ) ( )mnhmfny
m

−= ∑
∞

−∞=

, (3.48) 

where: h(m) is a discrete weighting function, being an output of the block if the input 

is a unit pulse δ*(m).  

Equation (3.48) is a discrete convolution of the signals f and h.  

If for m<0 the function f(m)=0 and for n−m<0 the weighting function h(n−m)=0, 

then: 

 ( ) ( ) ( )mnhmfny
n

m

−= ∑
=0

. (3.49) 

1 

0 1  2 3 m samples 

 
-1 -2 

  
f
 
(n) 

y(n) 

Linear 

circuit 
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However, it is possible to convert the discrete function y(n) into an equivalent con-

tinuous function y(t), according to: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )tynTydthfmnhmfTTny S

nTn

m

SS

S

==−≈−= ∫∑
=

τττ
00

. (3.50) 

what gives a link between the sampled signal and the continuous signal. 

The spectrum of the sampled signal f(n) may be described in the following form: 

 ( ) ( ) ( )ωω jmT

m

SemfjF
−

∞

−∞=
∑= . (3.51) 

The spectrum of the output function y(n) becomes: 

 ( ) ( ) ( ) ( ) ( ) ( )ωωω ω
jHjFemnhmfjY

jmT

m

S =−= −
∞

−∞=
∑ . (3.52) 

However, on the ground of continuous representation of a sampled signal (3.50) 

one may present the spectrum of a sampled signal by almost equivalent spectrum of a 

continuous signal: 

 ( ) ( ) ( )ωωω jHjF
T

jY
S









≈

1
. (3.53) 

where: F(jω) and H(jω) are spectra of the continuous input signal and the block conti-

nuous weighting function, respectively.  

Discrete signals may be well represented by the Laurent’s “z” transform: 

 ( ) ( ) ( )mnmfnf
m

−= ∑
∞

−∞=

*δ . 

Thus the Laplace transform of the sampled signal becomes: 

 ( ) ( ) SmsT
n

m

emfsF
−

=
∑=

0

. (3.54) 

Now substituting 

 ze SsT =  

one obtains: 

 ( ) ( ) m
n

m

zmfzF
−

=
∑=

0

 (3.55) 
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and consequently: 

 ( ) ( ) ( ) ( ) ( )zHzFzmnhmfzY
m

n

m

=−= −

=
∑

0

 (3.56) 

Some more often used z-transform relations are as follows: 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )zHnh

zHzFmnhmf

zFzknf

zFznf

zFnf

n

m

k

⇒

⇒−

⇒−

⇒−

⇒

∑
=

−

−

0
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3.6. DISCRETE INTEGRATION AND SIMULATION 

OF TRANSFER FUNCTIONS 

Integration in the time domain is given by the formula: 

 ( ) ( ) ττ dfty

t

∫=
0

. 

In the Laplace domain the integration representation becomes: 

 ( ) ( )sF
s

sY 






=
1

. 

The discrete integration of the sampled signal may be done in several ways. 

 

3.6.1. EULER’S METHOD OF INTEGRATION 

The simplest formula of digital integration is described by: 

 ( ) ( ) ( )11 −+−= nfTnyny S  (3.57) 

Thus the z-transform of (3.57) is: 

 ( ) ( ) ( )zFzTzYzzY S
11 −− += . (3.58) 

Therefore:  

28



 

 ( ) ( )zF
z

zT
zY S












−
=

−

−

1

1

1
. (3.59) 

This enables to present the process of integration in time domain, Laplace domain 

and “z” domain: 

 ( ) ( ) ( )zF
z

zT
sF

s
df S

t












−
⇒







⇒
−

−

∫ 1

1

0
1

1
ττ  (3.60) 

Therefore, the transfer function G(s) may be replaced by the digital form: 

 ( ) ( )xGsG ⇒ , (3.61) 

where: 
1

11
−

−−
=

zT

z
x

S

. 

Graphical illustration of the integration process according to (3.57) is given in Fig. 

3.11. 

 

 

 

 

 

 

  

 

 

 

 

 

 
Fig. 3.11. Graphical representation of the formula (3.57) 

 

The basic Euler’s method may be modified, if in (3.55) f(n) is replaced by f(n-1). 

Then the formula (3.59) becomes:  

 ( ) ( )zF
z

T
zY S 









−
=

−11
. (3.62) 

This method may be graphically presented in Fig. 3.12. 

 

 

 

 

      ττττ  n n-1 n-2 

f(ττττ) 
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Fig. 3.12. Graphical representation of the formula (3.62) 

3.6.2. TRAPEZOIDAL (TUSTIN’S) METHOD OF INTEGRATION 

 

Euler’s method of integration may be interpreted as summation of rectangles, 

which represent the function f(τ) in each sampling period. To improve the accuracy of 

integration one may represent it as a trapezoid, what leads to the formula: 

 ( ) ( ) ( ) ( )[ ]15.01 −++−= nfnfTnyny S , (3.63) 

and, in the Z domain: 

 ( ) )(
1

1
5.0

1

1

zF
z

z
TzY S 









−

+
=

−

−

. (3.64) 

3.6.3. ADAMS – MOULTON FORMULA OF INTEGRATION 

Several alternative, more accurate (but less frequently used) formulas have been 

developed. Among them there is an Adams–Moulton formula of integration, which is 

based on the basic relation: 

 ( ) ( ) ( ) ( ) ( )[ ]2185
12

1 −−−+







+−= nfnfnf
T

nyny
S , (3.65) 

what gives the following z-transform relationship: 

 ( ) ( )zF
z

zzT
zY S










−

−+








=

−

−−

1

21

1

85

12
. (3.66) 

       ττττ  n n-1 n-2 

f(ττττ) 
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The discrete formulas of integration enable to transform a continuous transfer func-

tion Y(s) in Laplace domain into a digital expression, by simple replacement of the 

Laplace integration operator s
−1
 by one of the discrete equivalents: 

 










−

−+








⇒










−

+
⇒

−
⇒

−
⇒

−

−−
−

−

−
−

−
−

−

−
−

1

21
1

1

1
1

1

1

1

1
1

1

85

12

1

1
5.0

1

1

z

zzT
s

z

z
Ts

z

T
s

z

zT
s

S

S

S

S

.  

This process may be illustrated by a very simple example. 

The Laplace domain transfer function of a continuous processing block is given by 

an expression: 

 ( ) ( )
( ) 1

1

1
0

1

0

1 −

−

+
=

+
==

sb

sa

sb

a

SF

sY
sH  

Now, substituting the Euler’s operator of integration:  

 
1

1
1

1 −

−
−

−
⇒

z

zT
s S  

one gets:    ( ) ( )
( ) ( ) 1

11

1
0

−

−

−+
==

zbTb

zTa

zF

zY
zH

S

S
. 

Therefore: 

 ( ) ( ) ( ) ( )[ ]zFzTazYzTb
b

zY SS
1

0
1

1

1

1 −− +−







= . 

Since multiplication by z
−1
 in the z domain corresponds to the delay by one sample 

in the time domain, thus the calculation of y(n) may be done according to the formula:  

 ( ) ( ) ( )11
1

0

1

1 −+−
−

= nf
b

Ta
ny

b

Tb
ny SS . 

Processing of the transfer function by means of integration operators can also be 

seen as a very efficient tool of infinite impulse response digital filters design. 
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4. DIGITAL FILTERS 

4.1. GENERAL CONSIDERATIONS 

Apart from analog antialiasing filtering described in Section 2, the sampled signals 

are also quite frequently subjected to further digital filtering, with the aim to extract 

signal components carrying the information important from the protection task view-

point. The digital filters, which are symbolically presented in Fig. 4.1, are of two 

kinds: Infinite Impulse Response (IIR) filters and Finite Impulse Response (FIR) fil-

ters. The former are units, in which a single pulse at the input f(n) = δ
*
(n) generates 

the output y(n), which lasts for ever. The FIR filters are the ones, in which the single 

pulse at the input generates the output which lasts only as long as the data window 

duration. 

 

 

 
Fig. 4.1. Digital filter 

 

The IIR filters are in fact digital versions of the analog linear filters, which are al-

ways infinite input response in nature. The digital ones process the input signal in the 

following way: 

 ( ) ( ) ( ) ( ) ( ) ( )1...1... 101 −−−−−+−++−= nybrnybnfanfapnfany rp . (4.1) 

Taking the z transform of the (4.1) one yields: 

 ( ) ( ) ( ) h
r

h

h

p

h

h
h zbzYzazFzY −

==

− ∑∑ −=
10

. (4.2) 

Therefore, the transfer function of the filter becomes: 

 ( ) ( )
( )

∑

∑

=

−

=

−

+

==
r

h

h
h

p

h

h
h

zb

za

zF

zY
zH

1

0

1

. (4.3) 

FILTER 

f(n) y(n) 
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Remembering that if one takes the Fourier transform to calculate the spectrum of 

the filter the operator z
−1
 corresponds to exp(-jωTS) and the Fourier transform of the 

filter becomes: 

 ( )
( )

( )∑

∑

=

=

−+

−

=
r

h

Sh

p

h

Sh

Tjhb

Tjha

jH

1

0

exp1

exp

ω

ω
ω . (4.4) 

The FIR filters process the input signal according to: 

 ( ) ( ) ( ) ( )nfanfapnfapy p 01 1... +−++−= , (4.5) 

where, if Tw is a data window duration, and TS is sampling period, ( ) wS TTp =+1 . 

Therefore the transfer function H(z) of such a filter becomes: 

 ( ) k
p

k

k zazH
−

=
∑=

0

 (4.6) 

and the Fourier transform, representing its spectrum, may be expressed in the follow-

ing way: 

 ( ) ( )∑
=

−=
p

k

Sk TjkajH
0

exp ωω . (4.7) 

4.2. INFINITE IMPULSE RESPONSE FILTERS 

All the analog linear filters have infinite impulse response h(τ). Typical spectral 

characteristics of the filters are: low pass, band pass, low stop and band stop.  

Design of the digital IIR filters usually begins with the typical approximation of the 

low pass (the most common) filter. Among typical known approximations the best are: 

Butterworth’s, Chebyschev’s and Bessel’s , each of them may be of various orders. 

The transfer functions of the second and third order approximations are given in the 

Table 4.1. 

The spectra of all typical approximations have the cut off angular frequency ωc = 1. 

One may observe that the better spectral characteristic (possibly narrow transition 

band) the longer settling time of the step pulse response.  

The first step in designing of any IIR filter is to choose a typical approximation and 

its transfer function H(s). Then the procedure depends on the type of the filter, which 

is to be designed. It is described in the following paragraphs. 
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Table 4.1. Typical approximations of LP filters 

 

Order    Butterworth’s          Chebyshev’s         Bessel’s 

 

   

II 

 

12

1
2 ++ ss

 

 

516,1421,1

431,1
2 ++ ss

 

 

33

3
2 ++ ss

 

 

    

 

III 

 

 

122

1
23 +++ sss

 

 

 

716,0535,1253,1

716,0
23 +++ sss

 

 

 

15156

15
23 +++ sss

 

 

4.2.1. DESIGN OF THE LOW PASS FILTER 

WITH THE CUT OFF FREQUENCY ΩCA 

 

The typical transfer function with the cut off frequency ωc is selected. Then the 

Laplace operator in the transfer function s is replaced by the modified operator s1:  

1ss
ca

c









⇒

ω
ω

, 

where: ωca is the required cut off frequency of the designed filter.  

If we choose the one of the standard transfer functions like the ones presented in 

Table 4.1, then the value of ωc = 1.  

For example, if we select a Bessel’s approximation of the second order then the 

transfer function of the designed filter, which is to have the cut off frequency ωca, 

becomes: 

( )
3

1
3

1

3

1
2
1

211

+







+








=

ss

sH

caca ωω

. 

The digital transfer function of the filter is then obtained by substituting the Lap-

lace operator by one of known discrete equivalents of differentiation (inverse of the 

integration operand). 
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4.2.2. HIGH PASS FILTER WITH THE CUT OFF FREQUENCY ΩCB 

In order to obtain a high pass filter the Laplace operator in the basic transfer func-

tion s is to be replaced by the modified operator s1: 

 















⇒

1

1

s
s

c

cb

ω
ω

. 

Therefore, the transfer function of the Bessel’s second order approximation would 

be: 

 ( )
2
11

2

2
1

11
33

3

ss

s
sH

cbcb ++
=

ωω
. 

Again, the digital transfer function of the filter is then obtained by substituting the 

Laplace operator by one of known discrete equivalents of differentiation/integration. 

4.2.3. BAND PASS FILTER WITH CUT OFF FREQUENCIES ΩC1 AND ΩC2  

The low pass region of the low pass filter is to be shifted to the band pass region. It 

can be done if the Laplace operator s in the low pass transfer function is replaced by 

the modified operator s1: 









+⇒

1

2
0

1

1

s
s

B
s

ω
, 

where: B and ω0 are coefficients which are to be calculated to match the desired band 

pass spectrum. The conditions are the following:  

If s=jωc, then s1=ωc1; 

If s=-jωc, then s1=ωc2. 

Substituting it to the formula of the modified Laplace operator one gets:  

1

2
0

2
1

c

c
cB

ω
ωω

ω
−

=            and      
2

2
0

2
2

c

c
cB

ω
ωω

ω
−

=− . 

It enables to calculate the coefficient B, which is: 

c

ccB
ω

ωω 21 −
= , 

and the coefficient ω0, which is: 

210 cc ωωω = . 
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Knowing the coefficients B and ω0 one may now substitute it to the transfer func-

tion. If the starting point was the Bessel’s second order low pass approximation, then 

the band pass transfer function becomes: 

( )
3

1
3

1

3

1

2
0

1

1

2
0

1

211

+







+







+







+








=

s
s

Bs
s

B

sH
ωω

. 

It leads to the final formula: 

( )
011

2
12

3
13

4
14

2
12

11
bsbsbsbsb

sa
sH

++++
= , 

where: a2, b0, b1, b2, b3, b4 are coefficients, which result from the transformation of the 

previous formula.  

4.2.4. BAND STOP FILTER WITH CUT OFF FREQUENCIES ΩC1 AND ΩC2  

The procedure is performed in two steps. The first one transfers the low pass basic 

transfer function into the high pass transfer function. It is done by substituting: 

1

1

s
s ⇒ . 

Then in place of s1 one substitutes the operator s2: 

2
0

2
2

2
1 ω+

=
s

Bs
s . 

Calculation of the coefficients B and ω0 are identical as in case of the band pass fil-

ter presented in Section 4.3.3. 

If the final Laplace transform of the filter is determined, one has to transfer it into 

the z domain. This may be done by means of introduction of the integration operator. 

If for example it is the low pass transfer function based on the Bessel’s approximation 

of the second order, the Laplace transfer function is: 

( )
2

1
21

1

2
1

2

11
331

3
−−

−

++
=

ss

s
sH

caca

ca

ωω
ω

. 

Now in place of s1
−1
 one has to introduce the integration operator. If it is the Eu-

ler’s operator: 

1

1
1

1
−

−

−
⇒

z

T
s S , 

after the substitution the z–domain transfer function becomes: 
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( )
2

1

2

1

2

1

2

1

1
3

1
31

1
3
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−−

−









−

+



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
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−

+









−=

z

T

z

T

z

T

zH

S
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S
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S
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ωω

ω
. 

Eventually the transfer function has the shape: 

( ) ( )
( )zF

zY

zbzb

azaza
zH =

++

++
=

−−

−−

11
1

2
2

0
1

1
2

2
1 . 

Remembering that multiplication by z
−1
 in the z-domain is a delay of one sampling 

period TS in the time domain, the filter is given by the following algorithm: 

( ) ( ) ( ) ( ) ( ) ( )2121 21210 −−−−−+−+= nybnybnfanfanfany . 

4.3. FINITE IMPULSE RESPONSE FILTERS 

4.3.1. GENERAL CONSIDERATIONS 

An illustration of the signals in case of the FIR filter is given in Fig. 4.2. 

 

x
 [
p
u

]

 
Fig. 4.2. Illustration of the signals of the FIR filter 
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Generally, the duration of the data window is ( ) Sw TpT 1+= . In the Fig. 4.2 the du-

ration of the data window is 5TS. Therefore the output of the data window becomes: 

 ( ) ( )∑
=

−=
p

k

k knfany
0

. (4.8) 

Deriving the z transform of the (4.8) one gets: 

 ( ) ( )∑
=

−=
p

k

k
k zazFzY

0

*  (4.9) 

and the z – domain transfer function is: 

 ( ) ( )
( ) ∑

=

−==
p

k

k
k za

zF

zY
zH

0

. (4.10) 

Taking the Fourier transform to convert it to the frequency domain one gets: 

 ( ) ( )∑
=

−=
p

k

Sk kTjajH
0

exp ωω .  (4.11) 

An example of the digital filter spectrum is presented in Fig. 4.3. 

 

 
 

Fig. 4.3. Example of the spectrum of the FR filter transfer function 

 

Simplified calculation of the main band of the spectrum may be done through cal-

culating the convolution of the continues functions f(τ) and h(τ): 

ω  0 

|H(jω)| 

ωS -ωS 

  Main band Side bands 
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 ( ) ( ) ( ) ( ) τττ dthfknfaTnyT

t

Tt

p

k

kSS

W

−≈−= ∫∑
−=0

. (4.12) 

Therefore: 

( ) ( ) ( ) τττ dthf
T

ny

t

TtS
W

−≈ ∫
−

1
, 

or taking the Fourier transform of (4.12): 

 ( ) ( ) ( )ωωω jHjF
T

jY
S

1
≈  (4.13) 

and: 

 ( ) ( ) ( ) ττττω ωτωτ deh
T

deh
T

jH j

T

S

j

t

TtS

w

w

−−

−
∫∫ =≈
0

11
. (4.14) 

Therefore, the spectrum of the discrete filter – or, to be more precise, the main 

band of the spectrum – may be represented by the spectrum of the continuous weight-

ing function h(τ). It often simplifies calculation of the spectrum, however it neglects 

the side bands. It is not a great disadvantage, because the frequency regions of side-

bands are eliminated by the low pass antialiasing input filters.  

Next step in simplifications of the spectrum calculation is to shift the data window, 

which is the impulse response h(τ) in such a way that the value of τ=0 is located in the 

middle of the window: 

 ( ) ( ) ( ) ( ) ( ) ( ) τωττωτωττω djh
T

Tjdjh
T

jH
w

w

w T

T

r

S

w

T

S

−







−=−= ∫∫

−

exp
1

5.0expexp
1

5.0

5.00

, (4.15) 

where: ( ) ( )wr Thh 5.0+= ττ . 

An example is shown in Fig. 4.4. 

One may observe that such a shifting affects only the phase angle of the spectrum: 

 ( ) ( ) ( )ωωω jHTjjH rw5.0exp −= , (4.16) 

where: Hr(jω) – spectrum of the shifted window.  

One of the advantages of shifting is that the shifted window is usually either sym-

metrical h(τ) = h(−τ), or antisymmetrical h(τ) = −h(−τ). 
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Fig. 4.4. Shifted rectangular window 
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Fig. 4.5. Absolute value of the spectrum of the rectangular window; ωw = 2π/Tw 
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For symmetrical windows, the spectrum is real, but in cases of antisymmetrical 

ones the spectrum is imaginary, i.e. 

 ( ) ( ) ( ) ( ) ( )
( )w

w

S

w

T
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r
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r
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T

T
d

T
djh
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1
exp

1
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5.0

5.0









==−≈ ∫∫

−−

 (4.17) 

or: 

 ( ) ( ) ( )wr TSapjH ωω 5.01+= . (4.18) 

The spectrum of rectangle data window is presented in Fig. 4.5. 

The numerical calculation of the filter output is as follows: 

 ( ) ( )∑
=

−=
p

k

knfny
0

. (4.18) 

It may be expressed in the recursive form, which is more economical numerically: 

 ( ) ( ) ( ) ( )11 −−−+−= pnfnfnyny .  (4.19) 

The characteristic shows that it is a low pass filter. However, one must bear in 

mind that the spectral characteristics of filters with rectangular windows show compa-

ratively high side lobes. It is caused by the abrupt change of the windows at the in-

stants +/- 0.5Tw. The side lobes are greatly reduced if there is a soft change of the 

windows, for example if it is a triangular window, shown in Fig. 4.6. 

 

 
Fig. 4.6. Triangular data window 

 

hr(τ) 
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The spectrum of the triangular window presented in Fig. 4.6 is expressed by the 

formula: 

 ( ) ( )wr TSa
p

jH ωω 25.0
2

1 2* 






 +
=  (4.20) 

and shown in Fig. 4.7. 
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Fig. 4.7. Absolute value of the spectrum of the triangular window 

4.3.2. WALSH FUNCTIONS AS DATA WINDOWS 

The family of Walsh functions of the order W0, W1, W2 is presented in Fig. 4.8. 

The Fourier transfer function of a filter with the W1 data window is: 

 ( ) ( ) ( )







 −
+−=

w

w
r

T

T
pjjH

ω
ω

ω
5.0

5.0cos1
1 .  (4.21) 

The Fourier transfer function of a filter with the W2 data window is the following: 

 ( ) ( ) ( ) ( )[ ]w

w

w
r T

T

T
pjH ω

ω
ω

ω 25.0cos1
25.0

25.0sin
1 −








+= .  (4.22) 

The spectra of the filters are presented in graphical form in Fig. 4.9 and 4.10. 

42



 

 

 

 
  

Fig. 4.8. Illustration of the Walsh functions of the 0, 1, and 2 orders 
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Fig. 4.9. Absolute value of the spectrum of the W1 data window 

  W0 

τ 0.5Tw −0.5Tw 

W1 

W2 

43



 

0 1 2 3 4 5 6
0

2

4

6

8

10

12

ω/ωw

a
b
s
[H

2
(j
ω

)]

 
Fig. 4.10. Absolute value of the spectrum of the W2 data window 

 

One may note that while the rectangular window spectrum (or in the other words 

the W0 window) represents the low pass filter), the spectra of filters with the W1 and 

W2 data windows represent the band pass filters. It is worthwhile to note that the spec-

tra are mutually shifted by 90 degrees, and their absolute values for 
w

W
T

π
ω

2
=  are the 

same and equal to 0.637(p+1).  

Digital representation of the filter with W1 data window is simple. If the number of 

samples in the window is even, it becomes: 

 ( ) ( )
( )

( )
( )

∑∑
+=

−

=

−−−=
p

pk

p

k

knfknfny
15.0

15.0

0

. (4.23) 

Calculation of the output of the filter with W2 data window – again if the number 

of samples is even, has the shape: 

 ( ) ( )
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( )

( )
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∑∑∑

+=

−+

+=

−+

=

−−−+−−=
p
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k

knfknfknfny
175.0

1175.0

125.0

1125.0

0

. (4.24) 

Both formulas (4.23) and (4.24) may be expressed also in recursive form, which 

are computationally more efficient.  
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4.3.3. SINE/COSINE FUNCTIONS AS DATA WINDOWS 

In modern digital relays the FIR filters usually use the sine/cosine data windows, as 

shown in Fig. 4.11. 

The filter coefficients are:  

 ( )[ ]Swk Tka 5.0sin += ω  (4.25) 

 ( )[ ]Swk Tkb 5.0cos += ω ,  (4.26)  

where:  
w

w
T

π
ω

2
= . 

Therefore the filter algorithms become: 

 ( ) ( )∑
=

−=
p

k

kS knfany
0

, (4.27) 

 ( )∑
=

−=
p

k

kC knfbny
0

)( . (4.28) 

 

 
 

Fig. 4.11. Examples of sine/cosine data windows with 8 samples in the window 
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The spectra of the sine/cosine data windows are: 

 ( ) ( ) ( ) ( )



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 +
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−
+−=
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15.0 wwww

S
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22
15.0 wwww
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T
Sa

T
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ωωωω
ω . (4.30) 

The spectra (4.29) and (4.30) are presented in graphical form in Fig. 4.12 and Fig. 

4.13, respectively. 

One may find that if the input signal is sinusoidal with the angular frequency 

wωω =  then the absolute values of the spectra with sinusoidal and cosinusoidal data 

windows are the same:  

 ( ) ( ) ( )15.0 +== pjHjH wCwS ωω . (4.31) 

It may noted that for Wωω =  filtration is exactly the same as extraction of the ro-

tating components of the phasor. Therefore, if the input signal is purely sinusoidal, i.e. 

has the form 

( ) ( )βω −= STnFnf cos  
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Fig. 4.12. Absolute value of spectrum of the sinusoidal data window 
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Fig. 4.13. Absolute value of spectrum of the cosinusoidal data window. 

 

The output of the filter with sinusoidal data window becomes: 

( ) ( )βω −






 +
= Ss Tn

p
Fny cos

2

1
 

while for cosinusoidal data window it is: 

( ) ( )βω −






 +
= Sc Tn

p
Fny sin

2

1
. 

It means that the outputs ys(n) and yc(n) are orthogonal. 

The quality of the filters in terms of their filtering efficiency can be analysed from 

Fig. 4.14, where the sin/cos filters are compared with the Walsh ones. The signal i 

after the level change from 2 to 5 pu at t=0.06s is corrupted by the 3
rd
 harmonic. The 

fundamental frequency component amplitude calculated from orthogonal components 

taken from filter outputs is accurate in case of sine and cosine windows, since both 

data windows reject all harmonics of the fundamental frequency. The amplitude 

measured with use of Walsh filters is not perfect (one can observe significant oscilla-

tions), which is due to the frequency characteristics of Walsh filters that do not fully 

suppress odd harmonics. 
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Fig. 4.14. Filtering efficiency with Walsh and sin/cos filters. 

4.3.4. DATA WINDOWS FOR REQUIRED SPECTRA 

If the desired spectrum of the FIR filter may be approximated by the straight line 

segments, the data window may be determined in an interesting way, as discussed 

below. 

The spectrum of the continuous window h(τ) is defined by the well known formula: 

 ( ) ( ) ( ) τωττω djhjH ∫
∞

∞−

−= exp . (4.32) 

Differentiating it twice one gets: 

 ( ) ( ) ( ) ( ) ( ) ( )ωττωτττω jHjdjhjjH −=−−= ∫
∞

∞−

exp/
,  (4.33) 

 ( ) ( ) ( ) ( )ωττωτττω jHdjhjH 22// exp −=−−= ∫
∞

∞−

.  (4.34) 

Let’s assume that the desired spectrum is triangular (Fig. 4.15a). The first and 

second derivative of it are presented in Fig. 4.15b and 4.15c. 
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Fig. 4.15. Desired spectrum with its derivatives 

 

The weighting function h(τ) may be determined on the ground of the value of the 

transfer function H(jω) since it is the inverse Fourier transform. Therefore: 

 ( ) ( ) ( )∫
∞

∞−

= ωωτω
π

τ djjHh exp
2

1
. (4.35) 

Now, using (4.33) and (4.34), one may write: 

 ( ) ( ) ( ) ωωτω
πτ

τ djjH
j

h exp
2

1 /∫
−

=  (4.36) 

   ω ωa -ωa 

H(jω) 
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H’’(jω) 

a) 

b) 

c) 

( )aa ωωδω −−1
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( )ωδω 12 −
a
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and:  

 ( ) ( ) ( ) ωωτω
ωτ

τ djjHh exp
2

1 //

2 ∫
−

= . (4.37) 

However, one may note that H
//
(jω) is a sum of weighted Dirac’s pulses, and there 

is a well known general formula: 

 ( ) ( ) ( )00 xgdxxxxg =−∫
∞

∞−

δ .  (4.38) 

Therefore, from (4.37) one may obtain the value of the window function h(τ): 

 ( ) ( ) ( )[ ]τωτω
πτ
ω

τ aa
a jjh −++

−
=

−

exp2exp
2 2

1

  (4.39) 

or in the trigonometric form: 

 ( ) ( )[ ] 







=−=

22
cos1

1 2

2

τω
π

ω
τω

ωπτ
τ aa

a

a

Sah .  (4.40) 

The calculated data window is infinite, therefore h(τ) must be truncated at a certain 

value of τ, which will determine the duration of the data window.  

4.3.5. SPECTRUM OF THE GIVEN DATA WINDOW 

If the data window may be approximated by the straight lines one may use a tech-

nique which is similar to the ones described in section 4.3.4. Starting from the formula 

(4.35) and differentiating it twice one gets: 

 ( ) ( ) ( ) ( ) ( )τωτωτω
π
ω

τ rrr hjdjjH
j

h == ∫
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∞−

exp
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/ ,  (4.41) 

 ( ) ( ) ( ) ( )τωτωτω
π
ω

τ rrr hdjjHh 2
2

// exp
2

−=
−

= ∫
∞

∞−

.  (4.42) 

On the other hand, one may write: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) τωττ
ω

τωττ
ω

τωττω

djh

djh
j

djhjH rr

−






 −
=

=−







=−=

∫

∫∫
∞

∞−

∞

∞−

∞

∞−

exp
1

exp
1

exp

//

2

/

. (4.43) 
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As an example, the spectrum of the rectangular data window calculation is illu-

strated in Fig. 4.16. 

 

 
 

Fig. 4.16. Rectangular data window (a) and its first derivative (b) 

 

On the ground of (4.43) one may write: 

( ) ( ) ( ) ( ) ( )ωττ
ω

τωττω jh
j

djhjH rrr −







=−= ∫∫

∞

∞−

∞

∞−

exp
1

exp / . 

Since the first derivative hr
/
 consists only of the Dirac’s pulses then, using the for-

mula (4.38), the spectrum may be easily calculated as: 

( ) ( ) ( )( ) ( ) ( )wwwwwr TSaTTTjTj
j

jH ωω
ω

ωω
ω

ω 5.05.0sin
2

expexp
1

=






=−−







= . 

This is the spectrum of the continuous rectangular data window. The spectrum of 

the discrete data window becomes: 

( ) ( ) ( ) ( )ww

S

w
r TSapTSa

T

T
jH ωωω 5.015.0 +== . 

It is the same result as it was calculated previously with (4.17). 

hr(τ) 

0.5TW   -0.5TW 

  1 

hr(τ) 

( )WT5.0+τδ
 

( )WT5.0−− τδ

a) 

b) 
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4.3.6. SEQUENTIAL FILTERS 

Two filters connected in series are depicted in Fig. 4.17. 

 

 

 
 

Fig. 4.17. Sequential filters 

 

In such a case one may write: 

 ( ) ( ) ( )ωωω jHjFjY 11 = , (4.44) 

 ( ) ( ) ( )ωωω jHjYjY 21= . (4.45) 

Therefore: 

 ( ) ( ) ( ) ( )ωωωω jHjHjFjY 21= . (4.46) 

and finally the resulting Fourier transfer function (spectrum) is: 

 ( ) ( )
( )

( ) ( )ωω
ω
ω

ω jHjH
jF

jY
jH 21== . (4.47) 

In some cases this approach may simplify the digital algorithm of the filter with the 

desired spectrum. For example, two sequential filters with rectangular data windows 

represent a filter with the triangular data window. 

F(jω) 

H1(jω) 

Y1(jω) 

H2(jω) 

Y(jω) 
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5. CALCULATION OF SYMMETRICAL COMPONENTS 

5.1 GENERAL CONSIDERATIONS 

If the three phase sinusoidal signals are given in form of phasors, then, taking the 

phase L1 as a reference phase, the symmetrical components are given by the well 

known formulae: 

 ( )3210
3

1
LLL IIII ++= , 

 ( )3
2

211
3

1
LLL IaIaII ++= , (5.1) 

 ( )32
2

12
3

1
LLL IaIaII ++= , 

where: I0, I1, I2 – phasors of symmetrical components, 

 IL1, IL2, IL3 – phasors of the three phase currents, 

 a = exp(jπ/3) – coefficient shifting the signal by 120 deg. 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.1. Illustration of the complex coefficients a and a2 

 

If the three phase current phasors are presented by time dependent forms, one may 

write: 

1 

a 

    a
2 -a 
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( ) ( )
( ) ( )
( ) ( )3133

2122

1111

sin

sin

sin

βω

βω

βω

−=

−=

−=

tIti

tIti

tIti

LL

LL

LL

. 

However, one must remember that multiplication by a shifts the signal by 

deg120
3

2
1 +=+=

π
λ  what is tantamount to the delay by .deg240

3

4
=

π
 Therefore 

multiplication by a
2
 shifts the signal by deg240

3

4
2 +=+=

π
λ , what in turn is equiva-

lent to the delay by .deg120
3

2
=

π
 Thus: 








−−=






−==
3

exp
3

4
exp)

3

2
exp(

πππ
jjja , 








−=






=
3

2
exp

3

4
exp2 ππ

jja . 

The phase shift in the time domain may be presented as the time delay: 








 +
−=







 −⇒






−
3

1

33

2
exp 1 p

ni
T

tijI
π

, 








 +
−=







 −⇒






−
6

1

63
exp 1 p

ni
T

tijI
π

. 

5.2. CALCULATION OF SYMMETRICAL COMPONENTS 

WITH USE OF ORTHOGONAL COMPONENTS 

5.2.1. NON ROTATING ORTHOGONAL COMPONENTS 

Two first coefficients of the Fourier series are non rotating phasor components. 

Therefore, if the fundamental component of the input signal is: 

( ) ( )βω −= STmImi 11 cos . 

the orthogonal components are: 

β

β

sin

cos

11

11

II

II

=

=

−

+
. 
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Therefore the current amplitude in the complex form is: 

 +− += 111 jIII . (5.2) 

If the phase currents in the complex notation are expressed in the form: 

 

333

222

111

LLL

LLL

LLL

jIII

jIII

jIII

+−

+−

+−

+=

+=

+=

, (5.3) 

then one may write: 

 

( )

( ) 









−−+=











+−+=

+−

+−

2

3
5.0

2

3
5.0

22
2

2

222

jjIIaI

jjIIaI

LLL

LLL

, (5.4) 

 

( )

( ) 









−−+=











+−+=

+−

+−

2

3
5.0

2

3
5.0

33
2

3

333

jjIIaI

jjIIaI

LLL

LLL

. (5.5) 

Substituting (5.4) and (5.5) into (5.1) one gets the symmetrical components. How-

ever, one has to remember that the complex quantities represent amplitudes of the 

components and that the phase L1 is selected as a reference one.  

5.2.2. ROTATING ORTHOGONAL COMPONENTS 

Remembering, that in the time domain the phase shift corresponds to the time delay 

(as it was explained in the par. 5.1), and if the phase L1 is selected as the basic one, 

one may write:  

 ( ) ( ) ( ) ( )3132121110 sinsinsin3 βωβωβω −+−+−= tItItIti LLL , (5.6) 

 ( ) ( ) ( ) ( )131322121111 sinsinsin3 λβωλβωβω −−+−−−−= tItItIti LLL , (5.7) 

 ( ) ( ) ( ) ( )231312121112 sinsinsin3 λβωλβωβω −−−−−+−= tItItIti LLL , (5.8) 

where: 
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3

2

3

36

1
12

1
11

π
ωλ

π
ωλ

==

==

T

T

. 

Now, if the orthogonal rotating components are known, one may use them to calcu-

late symmetrical components. The lagging and leading orthogonal components of the 

currents in each phase are therefore given as follows: 

 

( )
( )
( )
( )
( )
( )3133

3133

2122

2122

1111

1111

cos

sin

cos

sin

cos

sin

βω

βω

βω

βω

βω

βω

−=

−=

−=

−=

−=

−=

+

−

+

−

+

−

tIi

tIi

tIi

tIi

tIi

tIi

LL

LL

LL

LL

LL

LL

. (5.9) 

Now, substituting it to the equations (5.6) – (5.8), the symmetrical components be-

come: 

 

( )
( ) [ ]
( ) [ ])(3)()(3)(5.0)(3

)(3)()(3)(5.0)(3

)()()(3

332212

332211

3210

titititititi

titititititi

titititi

LLLLL

LLLLL

LLL

+−+−−

+−+−−

−−−

++−−=

−++−=

++=

. (5.10) 

Therefore in the digital form it is: 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )[ ]nininininini

nininininini

nininini

LLLLL

LLLLL

LLL

332212

332211

3210

335.03

335.03

)(3

+−+−−

+−+−−

−−−

++−−=

−++−=

++=

. (5.11) 

Thus, instantaneous values of the symmetrical components are determined on the 

ground of calculated orthogonal components of the three phase currents. In case of 

voltages the formulae are identical. 

In Figs. 5.2 and 5.3 an illustration of symmetrical components calculation is pre-

sented for a case of simulated three-phase fault on a HV transmission line. One can 

see that both before and after fault inception the positive sequence component is 

present only (Fig. 5.2), which is correct since the situation is symmetrical. In real case, 

when CT secondary currents are processed (Fig. 5.3), the signals become transiently 

saturated. Thus, the other sequence components also appear, and the calculated posi-

tive sequence current is at the beginning lower than on the CT primary side. 
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Fig. 5.2. Extraction of symmetrical components with eq. (5.11), 

orthogonal components obtained with full cycle Fourier filters; CT primary signals 
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Fig. 5.3. Extraction of symmetrical components with eq. (5.11), 

orthogonal components obtained with full cycle Fourier filters; CT secondary signals 
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5.3. CALCULATION OF SYMMETRICAL COMPONENTS 

BY MEANS OF SIGNAL DELAYING 

Another way to calculate symmetrical components is to use time delay for the three 

phase signals. The delays τ1 and τ2 correspond to angles 2π/3 and to 4π/3: 

3

2

3

1
2

1
1

T

T

=

=

τ

τ
. 

Besides, one may note that: 

( )[ ] ( )[ ]βττωβττω −−−=−− 1121 5.0sinsin . 

what leads to the digital formulae: 
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

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3211
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p
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p
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p
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p
ninini

nininini

LLL

LLL

LLL

, (5.12) 

where:  (p+1) TS = T1 . 

However, (p+1)/3 and (p+1)/6 may not be integer numbers. In such a case one may 

write: 

 

22

11

3

1

6

1

rk
p

rk
p

+=
+

+=
+

, (5.13) 

where: k1 and k2 are integers, while r1 and r2 are fractional numbers less than 1. In 

such a case : 

 

( )[ ] ( )

( )[ ] ( ) 2222

1111

11
3

1

11
6

1

rknirkni
p

ni

rknirkni
p

ni

−−+−−≈






 +
−

−−+−−≈






 +
−

. (5.14) 

Applying (5.14) the symmetrical components may be easily calculated with the 

sufficient accuracy, otherwise the calculation would be corrupted by significant errors. 
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6. CALCULATION OF PROTECTION CRITERIA VALUES 

6.1. CALCULATION OF AMPLITUDES OF SINUSOIDAL SIGNALS 

6.1.1. CALCULATION BY MEANS OF ORTHOGONAL COMPONENTS 

The orthogonal components of a phasor may be calculated by use of formulas 

(3.22) – (3.41) or (4.25) – (4.28). If they are available, the simplest way to determine 

an amplitude of the phasor becomes:  

 
( ) ( ) ( )
( ) ( ) ( )βω

βω

−=

−=

+

−

S

S

TnnFnf

TnnFnf

11

11

cos

sin
 (6.1) 

and consequently: 

 ( ) ( ) ( )nfnfnF 22
1 +− += . (6.2) 

The argument of the phasor may also be easily calculated: 

 ( ) ( )
( )

( )
( )

( )
( )nF

nf

nF

nf

nf

nf
arctgTn S

11

1 arccosarcsin +−

+

− ===− βω . (6.3) 

One may observe that perhaps the easiest way to determine orthogonal components 

of the sinusoidal signal is to use the value of the signal and its derivative (3.30) – 

(3.35): 

 

( ) ( )

( ) ( )5.0
1

5.0

/

1

−







=

−=

+

−

nfnf

nfnf

ω

. 

One can also employ a pair of orthogonal FIR filters having symmetrical and anti-

symmetrical data windows. The orthogonalization with time delay (single or double) 

with or without additional filtering of noise is possible as well. 

In Fig. 6.1 the comparison of measurement results obtained with full-cycle Fourier 

filters and orthogonalization with single delay can be made. For pure sine wave the 

steady-state accuracy of both approaches is the same, however, the estimation dynam-

ics is different, with advantage for the delay method. 
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Fig. 6.1. Signal amplitude measurement with two orthogonalization methods for pure sine input 
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Fig. 6.2. Signal amplitude measurement with two orthogonalization methods 

for the signal with 2nd harmonic (after t=0.06s) 
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The algorithm with time delay is very fast, yet its behavior is poor when the input 

signal contains some noise. This is illustrated in Fig. 6.2 for the input signal being 

fundamental component contaminated with the second harmonic (10%). Application 

of Fourier filters helps to get rid of the 2
nd

 harmonic what gives perfect measurement 

result, contrary to the delay method, which delivers results with significant oscilla-

tions. 

6.1.2. CALCULATION BY MEANS OF MAXIMIZATION 

If the signal is sinusoidal, but the orthogonal components are not available, one 

may calculate the amplitude by means of finding maximum of the absolute value of 

the signal during half a period. Therefore: 

 ( ) ( )( )
( )15.0

0
1 max

+

=
↑−=
p

k
knfnF . (6.4) 

This process may be accelerated, if one uses the signal and the signal delayed by a 

quarter of a period (here, for p=15): 

 ( ) ( )
( )325.0

0
1

4

3
;max

−

=
↑















 −
−−−=

p

k

p
knfknfnF , (6.5) 

where: T1 = (p+1)TS. 

The same may be done if one employs the first derivative of the signal: 

 ( ) ( )( ) ( )15.0

0

/

1

1 5.0
1

max
+

=
↑−−=
p

k
knfnF

ω
 (6.6) 

or, in the mixed form: 

 ( ) ( ) ( )
( )325.0

0

/

1

1 5.0
1

;5.0max
−

=
↑








−−−−=

p

k
knfknfnF

ω
. (6.7) 

6.1.3. CALCULATION BY MEANS OF INTEGRATION 

If there is a pure sinusoidal signal, calculation of its amplitude may be performed 

integrating the absolute value of the signal, with the data window being a half of the 

period: 

 ( ) ( )βτωτ −= 1sinFf , 
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 ( ) ττ
ω

dfF

t

Tt

∫
−

=
15.0

1

2
 (6.8) 

or, in the digital form: 

 ( )∑
+

=

−
+

=
)1(5.0

0
1

p

k

knf
p

F
π

. (6.9) 

Again, the process may be accelerated, if one uses the value of the signal, and the 

same signal delayed by a quarter of the period T1. 

6.2. CALCULATION OF ACTIVE AND REACTIVE POWER 

6.2.1. CALCULATION BASED ON ORTHOGONAL COMPONENTS 

The orthogonal quantities of voltage and current are given by the expressions: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )ϕβω

ϕβω

βω
βω
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−−=
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1

1
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, 

where: φ – phase angle between voltage and current. 

Then: 
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1

1

1

1

tUItuti

tUItuti

tUItuti
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. (6.10) 

Therefore, active and reactive powers in the digital form will become: 

 ( ) ( ) ( ) ( )[ ]nuninuniQ +−−+ −= 5.0 , (6.11) 

 ( ) ( ) ( ) ( )[ ]nuninuniP −−++ += 5.0 . (6.12) 

One should understand that the dynamics and accuracy of measurement is depen-

dent on the algorithms that were used for calculation of orthogonal components. 
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Fig. 6.3. Active and reactive power measurement with two orthogonalization methods 

for pure sine current and voltage input signals 
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Fig. 6.4. Active and reactive power measurement with two orthogonalization methods 

for the current signal with 2nd harmonic (after t=0.06s) 
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The results of measurement of active power for the cases when both current and 

voltage signals are pure sine waves and when the current signal contains additional 

second harmonic component are shown in Figs. 6.3 and 6.4, respectively. Two meth-

ods or signals orthogonalization were applied – with full-cycle filtering (curve Pf) and 

with time delay (curve Pd). One can see that, similarly as for measurement of current 

amplitude presented in Figs. 6.1, 6.2, faster stabilization of active power is obtained 

for the time delay algorithm. On the other hand, when the current signal contains 

higher harmonics, better accuracy is assured for the measurement with use of Fourier 

filters. 

6.2.2. CALCULATION BASED ON INTEGRATION OF THE PRODUCT 

OF CURRENT AND VOLTAGE 

If the voltage and current are given by the following formulas: 

( ) ( )
( ) ( )ϕβω
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−=
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1
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sin

sin
, 

then|: 
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In the digital form it will be: 
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If the values of current and voltage amplitudes were calculated before, then: 

 225.0 QPUIS +==  

and consequently: 

 22 PSQ −= , (6.15) 

where: S - apparent power. 

Alternatively, the reactive power may be calculated if the current signal is delayed 

by π/4: 
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T
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
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
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5.0 1
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and in the digital form (again – for p=15): 
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6.3. CALCULATION OF ACTIVE AND REACTIVE 

COMPONENTS OF CURRENT SIGNAL 

6.3.1. CALCULATION BASED ON ACTIVE AND REACTIVE POWER 

Perhaps the most straightforward way to calculate the active components of current 

and reactive power is to derive them directly from active and reactive power formulae: 

 

U

P
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U

Q
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2
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2
sin

=

=

ϕ

ϕ
. (6.18) 

However, it requires that the values of active and reactive powers and the ampli-

tude of voltage have been calculated before: 
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. (6.19) 

6.3.2. CALCULATION BASED ON WAVESHAPES RELATIONS 

If current and voltage signals are sinusoidal, and the phase shift between them is 

positive (the voltage leads), then: 

( ) ( )
( ) ( )ϕβτωτ

βτωτ

−−=

−=

1

1

sin

sin

Ii

Uu
. 

One may observe that the value of reactive component of the current corresponds 

to the values of current at the instants of zero crossing of the voltage waveshape, what 

is illustrated in Fig. 6.5. 
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Fig. 6.5. Illustration how reactive part of the current is determined 

 

Therefore: 

 ( ) ( )[ ]1
/

1sin tusigntiI −=ϕ  (6.20) 

where: t1 - instant of the voltage zero crossing.  

Then:  

( )
( )2

1
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tiI
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−=

=

ϕ

ϕ
. 

However, the zero crossing of voltage may be located somewhere between the 

samples (see Fig. 6.6). 
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Fig. 6.6. Increased accuracy of the calculation 

 

Therefore, to minimize the error one may assume that the zero crossing is between 

the samples (Fig. 6.6). Therefore in the digital form the reactive part of the current is: 
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The active part of the current may be calculated indirectly: 

 ( )22 sincos ϕϕ III −= . (6.22) 

The alternative way in calculation of the active part of the current is to determine 

the value of the current at the instant, when the first derivative of voltage crosses zero.  

 ( ) ( )[ ]3
//

3cos tusigntiI −=ϕ , (6.23) 

where t3 – instant of zero crossing by the first derivative of voltage.  

6.4. CALCULATION OF IMPEDANCE, REACTANCE 

AND RESISTANCE 

The circuit for which the quantities are to be calculated is presented in Fig. 6.7. 
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Fig. 6.7. Series R–X circuit 

 

If the active and reactive power is known, and so are amplitudes of current and vol-

tage, the basic formulas to calculate Z, R and X are very simple: 
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or, using the orthogonal components of current and voltage: 
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Fig. 6.8. Parallel R – X circuit 
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In a similar way one may calculate admittance, susceptance and conductance, for a 

circuit presented in Fig. 6.8. 
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Therefore:  
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6.5. CALCULATION OF RESISTANCE AND INDUCTANCE 

In the circuit from Fig. 6.7 one may calculate the resistance and inductance on the 

ground of differential equation taken at two instants t and (t−t0) 
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From the two equations the unknown R and L values may be calculated by means 

of the final relationships: 
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In the digital form, if (t0 = kTS ) the values of signals and their derivatives are: 
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The shortest delay is for one sampling period, therefore in such a case k = 1. 

Having known R and L one may easily calculate the time constant of the circuit: 
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The method is insensitive to the decaying DC components in currents, therefore in 

this respect it is very accurate. However, the errors may be caused by the higher fre-

quency components, which have not been removed by the antialiasing input filters. To 

minimize the errors one may modify the process of calculation, by means of applying 

the basic equation in which this error e exists: 

 ( ) ( ) ( ) etLitRitu ++= / . (6.35) 

To minimize the mean square error one may solve two equations, thus calculating 

R and L: 
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which leads to the following equations: 

532
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ALARA
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. 

In the digital form the integrals will be calculated by summations, and therefore the 

coefficients A1 – A5 become:  
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where: (p+1) TS = t0.  

And finally: 
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6.6. DETERMINATION OF FREQUENCY 

OF THE SINUSOIDAL SIGNAL 

6.6.1. MEASUREMENT WITH IMPULSE COUNTING 

The most straightforward way to determine frequency of input sinusoidal signals 

(in most cases voltages) is to count the number of sampling pulses for one period of 

the sine wave. In such cases: 

 
1

50
m

m
fx = , (6.39) 

where: 

 fx – measured frequency of the signal, 

 m – number of pulses in one period of the input signal. If the period is equal to 

T1 the value of m becomes: m=T1/TS,  

 m1 – number of sampling pulses counted between the instants of zero crossing 

of the signal, when it increases.  
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However, this method shows the error, which may reach the value: 

[ ]%
1

100100
1 mT

T
e S ±=±= . 

To make the error as low as possible one must use very short sampling periods, or 

in the other words, very high sampling frequency. In most of the relays the sampling 

period is not very high. For example, if the sampling frequency is 1000 Hz (20 sam-

ples in the period T1, m=20), the error may be as high, as 5%, what is unacceptable.  

The accuracy may be drastically improved, if the moment of zero crossing by the 

signal is better estimated. It is demonstrated in Fig. 6.9.  

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 6.9. Illustration of the frequency measurements 

 

Therefore the measured period of the signal TX becomes: 

 ( ) 211 ttTmT SX ++−=  (6.40) 

And, if the voltage at the moment of zero crossing is approximated by the straight line: 
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Therefore, the existing frequency of the signal fX is: 
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One must remember that: 

 n – first sample after the voltage crossed zero while increasing, 

 n-m – first sample after the previous voltage zero crossing while increasing, 

u(n-m) 

t1 

u(n-m-1) 

t2 

u(n) 

  u(n-1) 

TS       (m−1)TS 
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 m – number of samples between two consecutive zero crossings when the 

voltage waveshape increases.  

The accuracy of the method is much improved. If for example the sampling fre-

quency is 1000 Hz, and the signal frequency is close to 50 Hz, the accuracy of fre-

quency measurement is in order of 0.1%, what is sufficient for protective algorithms. 

6.6.2. UTILISATION OF SIGNAL ORTHOGONAL COMPONENTS 

 If the orthogonal components of input signal are known (have been calculated), the 

frequency of the signal can be obtained using the following formula: 

 








−−−

−−−
=

+−−+

+−−+−

)()()()(

)2()()2()(
5.0cos

2
)( 1

knunuknunu

knunuknunu

k

f
nf S

π
 (6.44) 

where: k – any delay value (in samples) 

The accuracy of (6.44) is very good. In the range of frequencies from 48 to 52Hz 

the measurement error does not exceed the level of 2.5mHz. 
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7. CORRECTION OF ERRORS INTRODUCED 

BY MEASURING TRANSFORMERS 

7.1. CORRECTION OF VOLTAGE TRANSFORMER 

PERFORMANCE 

Inductive voltage transformers selected in the proper way do not introduce errors, 

which could affect operation of protective devices. It is so in both steady states and 

transients. Therefore, there is no need to make special arrangements which would 

correct the errors. 

However, in cases of capacitive voltage transformers (CVTs) it is otherwise. Be-

cause they are equipped with the compensating inductance and the ferroresonance 

suppressing circuits they may introduce substantial errors if there is a sudden change 

of the primary voltage. The errors may cause maloperation of protective devices, par-

ticularly if there is a sudden drop of primary voltages. Therefore correction of the ex-

pected errors may be advantageous.  

The circuit of a capacitive voltage transformer is presented in the Fig. 7.1. The fer-

roresonance suppressing circuits are represented by FSC (parallel circuit).  

 

 

 
 

Fig. 7.1. Equivalent circuit of a capacitive voltage transformer 
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The whole circuit may be considered as linear, therefore one may write the Laplace 

transform relation: 

 ( )sFJ
v

v
V

P

S =1 , (7.1) 

where:  JV – transformation ratio of the voltage transformer, 

  F(s) – Laplace transfer function of the circuit.  

  vS1 – secondary voltage at the terminals of the transformer.  

The correction algorithm ought to process the secondary voltage by a transfer func-

tion which is equal to inverse of the CVT transfer function. Therefore the corrected 

secondary voltage vS becomes: 

 ( ) JvsFvv PSS ≈= 11 , (7.2) 

where: ( )
( )sF

sF
1

1 = . 

Digital representation of the transfer function F1(s) may be obtained by the discrete 

operators of integration, for example the Euler’s operator (5.59):  

 








−
⇒ −

−
−

1

1
1

1 z

zT
s S , (7.3) 

remembering, that multiplication by z
−1
 in the z-transform domain represents delay by 

one period of sampling TS in the time domain. 

7.2. CORRECTION OF CURRENT TRANSFORMER ERRORS 

7.2.1. FORMULATION OF THE PROBLEM 

The problems due to errors of current transformers are much more significant than 

the ones of in case voltage transformers. It is so because: 

• errors of the CTs are much more harmful for proper operation of digital de-

vices, 

• current transformers are strongly nonlinear, because of the nonlinear magne-

tizing characteristic of the cores, therefore their errors are much more difficult 

to calculate and correct, 

• due to the hysteresis loop of the magnetization characteristic of the core it is 

hardly possible to establish the initial value of the core flux,  

• range of primary currents levels and the time constants of their DC compo-

nents are relatively high. 
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If during the steady state operation the primary currents of the transformer are 

within the accuracy range (if they are below the rated level multiplied by the accuracy 

limit factor) the errors of transformation do not affect operation of protective relays. 

However, if they are larger, it is otherwise. 
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Fig. 7.2. Primary and secondary CT currents: a) instantaneous signals, 

b) measured amplitudes (algorithm with full-cycle Fourier filters used). 
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In Fig. 7.2 as an example the CT primary and secondary currents as a function of 

time are shown. It is obvious that protection criterion values calculated on the basis of 

saturated CT secondary signal may fall quite distantly from their correct values, which 

might have been determined if the CT primary unsaturated signal was available. Erro-

neous measurement may, in consequence, lead to wrong decisions (e.g. underreaching 

of overcurrent relays, overestimation of fault loop impedance in distance relays) and 

protection maloperation. Thus it can be stated that CT saturation phenomenon may 

impair protection system reliability if appropriate algorithms for saturation detection 

and/or correction are not applied to minimize the problem. 

There are three basic ways of overcoming the problem which make correct opera-

tion of the protective devices possible. They are:  

o application of the CTs with larger accuracy limit factor, CTs which do not sa-

turate during steady state operation, 

o application the relay algorithms which are insensitive to the errors (for exam-

ple they make measurements only within the fraction of periods, when the 

transformation is correct).  

o calculation of the primary current on the ground of the secondary, corrupted 

waveshape.  

The first way is obvious, but in some cases it requires the CTs with the cores of 

very large cross sections. The second and third ways do not require very large cross 

sections, but they demand correction of the secondary currents.  
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Fig. 7.3. Block scheme of CT saturation compensation. 

 

The basic idea of handling the CT saturation problem may be based on splitting the 

task into two subtasks, namely saturation detection and correction of the distorted 
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secondary current (Fig. 7.3). When the CT is not saturated (i.e. the detection block has 

not detected it) the correction block is not activated. Starting from the point of satura-

tion beginning the procedure of secondary current correction is activated. The proce-

dure is operative until the CT goes out of saturation. The process is repeated when the 

detection block affirms saturation beginning again. 

7.2.2. DETECTION OF THE UNSATURATED FRAGMENT 

OF THE WAVESHAPE 

Saturation of the CT core is particularly likely during transient states, when the 

primary currents contain large DC components, and the residual flux in the transfor-

mer core is high. In such cases the secondary current waveshape in each cycle may be 

divided into two time spans. The first covers the time, when the CT is not saturated 

and the transformation is correct. The second corresponds to the saturation of the 

transformer magnetic core, what results in very large errors of transformation. Correc-

tion of the transformation requires identification of the moment of saturation, which in 

Fig. 7.4 is between the samples n and n−1. The saturation ends between the samples 

m−1 and m. Therefore, the transformation is correct, what means that the secondary 

current is proportional to the primary current (i2 =Jii1=ip), until the sample n, and after 

the sample m. 
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Fig. 7.4. Primary and secondary current waveshape of the saturated CT 

 

Determination of the sample n can be based on the comparison of the measured 

secondary current is(n) and the estimated secondary current ise(n). If the difference 

between the two exceeds a part ∆ of the estimated level it means that there was a 
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change of the waveshape and that the saturation happened between the samples. It is 

so if: 

 ( ) ( ) ( )ninini sesse ∆≥−  (7.4)  

and:  

 ( ) ( ) 0≥− nini sse . (7.5) 

If the condition (7.4) is satisfied, but : 

 ( ) ( ) 0≤− nini sse , (7.6) 

like between the samples m and m−1 in Fig. 7.2, it marks the end of saturation. Esti-

mation may be done through the assumption, that the derivatives of the secondary 

current between the samples n−1and n−2 are the same, as between the samples n and 

n−1. The simplest way is to assume, that the first order derivatives are equal: 

 
( ) ( ) ( ) ( )

S

ss

S

sse

T

nini

T

nini 211 −−−
≈

−−
. (7.7) 

This leads to the formula: 

 ( ) ( ) ( )212 −−−≈ ninini ssse . (7.8) 

And now one may apply the condition (7.4) to find out, if there was a rapid change 

in the waveshape.  

The second and third order derivatives may be calculated by the well known for-

mulae: 

 ( ) ( ) ( )
ST

nini
ni

1''
'' −−

≈  (7.9) 

 ( ) ( ) ( )
ST

nini
ni

1''''
''' −−

≈  (7.10) 

If one assumes that the second order derivative is to be the same in n-th sampling 

period then, in the n−1-th sampling period, the value of ise(n) may be estimated from 

the formula: 

 ( ) ( ) ( ) ( )32313 −+−−−≈ nininini sssse  (7.11) 

The formula (7.11) is more accurate than (7.8). However, if one wants to increase 

accuracy even more, one may assume, that the third derivative is to be the same be-

tween the samples n - n−1, and n−1 - n−2, what gives the condition: 

 ( ) ( ) ( ) ( ) ( )4342614 −−−+−−−≈ ninininini ssssse . (7.12) 
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The detection of the end of saturation is not that important as detection of satura-

tion beginning, since some of the correction methods may perform quite well (proper-

ly estimate the signal) even during unsaturated periods of CT operation. It is however 

advantageous to know the end-of-saturation time instant for at least two good reasons: 

a) the estimate of the corrected CT current is always somewhat worse than the original 

CT signal (the primary current is known when CT is not saturated), therefore it is 

better to stop the procedure of secondary current correction at that point, 

b) some correction methods may require the information on the end-of-saturation time 

instant simply to calculate the interval of unsaturated period before they start their 

operation for the next saturation period. 

The end-of-saturation determination can be based on calculation of the integral of 

the secondary current, starting from the saturation beginning instant. If the secondary 

impedance of the current transformer is purely resistive, then during the saturation 

period the magnetic induction in the core rises at the beginning, reaches maximum 

when the secondary current is zero, and after that decreases to the saturation level. 

Therefore the integral of the secondary current in the time span of saturation must be: 

 0 )( =∫ dtti

SE

SB

t

t

s  (7.13) 

where: tSB – beginning of saturation, tSE – end of saturation. 

Tracking the value of integral (7.13) enables determination of the end of saturation. 

7.2.3. CORRECTION OF THE SECONDARY CURRENT 

During transient state the primary current may be presented in the following form: 
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where:  Ji – current transformer ratio, 

 i1 – primary current, 

 I0 – DC decaying component, 

 Ta – time constant of the decay, 

 I1 – amplitude of the AC component, 

 α - phase angle of the AC component. 

In spite of the transient errors caused by the CT core saturation, operation of the 

protective devices may be correct. However, it demands careful processing of the sig-

nal, what may be done in a number of ways.  

If the aim of processing is to make proper operation of differential relays, the best 

way is to use current signals only in the fraction of periods, when the CTs at both sides 

are not saturated. Therefore, the differential current is detected taking into considera-
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tion non corrupted current samples of the input currents: isn−1; is(n−2); is(n−3)… etc., 

and is(m); is(m+1); is(m+2), etc. until the beginning of saturation in the next period. In 

fact, this unsaturated fragment may be artificially expanded particularly in the cases, 

when the secondary current samples ise(n) and ise(n+1) are estimated by the formula 

(7.12), which returns sufficiently accurate results. 

If the aim of the processing is the proper operation of protective devices, which are 

based on the calculation of the fundamental frequency components (overcurrent, dis-

tance etc…), the amplitude I1 of the current ought to be determined, on the ground of 

the distorted current signals.  

 

A. Calculation of the amplitude I1 based on the unsaturated fractions of the wa-

veshape 

 

There are several methods of determination of the amplitude, considering only the 

samples of the secondary current taken in the fraction of each period during which the 

CT core is not saturated. Perhaps the easiest one is to consider the value of the sec-

ondary current is, and the first derivative of it i’s, correlating both of them with the 

sinusoidal function: 
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where: 

( ) ( ) ( )
2

1−+
≈

riri
rfc , 

( ) ( ) ( )
S

c
T

riri
rf

1' −−
≈  

and: 

 22
1 +− += ffI . (7.17) 

One must bear in mind that this method does not reproduce the waveshape of the 

primary current. It only estimates the fundamental and DC components in each period. 

The accuracy of calculation is good even if the primary current contains a substantial 

level of the higher harmonics, providing the unsaturated time span is longer than 6-7 

ms. The method is not very sensitive to the small errors in determining the beginning 

of the unsaturated time span. 
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Besides, it ought to be remembered that the method is not suitable in cases when 

extraction of the higher harmonics in the current is required (e.g. when protecting a 

power transformer). 

 

B. Reproduction of the distorted waveshape 

 

Equivalent circuit of the CT reduced to the secondary side is presented in Fig. 7.5 

and the magnetizing characteristic of the core in Fig. 7.6. 
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Fig. 7.5. Equivalent circuit of the CT 
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Fig. 7.6. Simplified magnetizing characteristic of the transformer core 

 

Estimation of the true values of the secondary current by means of the formula 

(7.12) is sufficiently accurate while calculating two samples of the current after satura-

tion. Therefore one may assume that: 
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 ( ) ( )nini pse ≈ , 

 ( ) ( )11 +≈+ nini pse . 

Therefore, the samples of the magnetizing current become: 

 ( ) ( ) ( )ninini ssem −≈ , (7.18) 

 ( ) ( ) ( )111 +−+≈+ ninini ssem . (7.19) 

Thus, the change of the magnetizing current between the samples n and n+1 be-

comes:  

 ( ) ( )ninini mmm −+≈+∆ 1)1( . (7.20) 

If the secondary inductance is negligible then the mean value of voltage between 

the samples n+1 and n+2 becomes: 

 ( ) ( ) ( )
R

nini
nu ss

2

1
1

++
≈+ . (7.21) 

Therefore, the increase of the flux linkage ψ in one sampling period becomes:  

 ( ) ( )11 +≈+∆ nuTn Sψ . (7.22) 

The value of the magnetizing inductance between the samples is given by the for-

mula: 

 ( ) ( )
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ψ
. (7.23) 

Now, assuming that the magnetizing inductance Lm between the samples n+2 and 

n+3 has the same value, as during the previous sample, one may write: 
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where: 

 ( ) ( )22 +≈+∆ nuTn Sψ , (7.25) 
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Therefore:  

 ( ) ( ) ( )212 +∆++≈+ ninini mmm . (7.27) 
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In consequence:  

 ( ) ( ) ( )222 +++≈+ ninini msse . (7.28) 

This algorithm may be repeated, bearing in mind that:  

 ( ) ( )
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, (7.29) 
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and consequently:   

 ( ) ( )33)3( +++≈+ ninini msse . (7.31) 

The calculation of the estimated values of the secondary current samples continues 

until the end of the saturated fraction of the period.  

If the waveshape of the secondary current is reproduced, the phasor may be calcu-

lated using the data window duration Tw equal to the period of the fundamental fre-

quency component T1, either calculating the non-rotating phasor components (3.22), 

(3.23), (3.24), (3.25), (3.19) or calculating rotating phasor components (3.26), (3.27), 

(3.19).  

The above considerations show, how digital representation of the secondary current 

may be efficiently used for determination of time intervals in which the CT magnetic 

core is not saturated and transformation is correct, and how distorted waveshape may 

be processed to determine phasors. The presented methods are not unique, but perhaps 

represent the best compromise between the accuracy and efficiency. 

 

An example of application of the above described methods for CT saturation detec-

tion and correction is shown in Fig. 7.7 for the case of a fault on transmission line 

simulated with use of EMTP-ATP program. In this case the CT saturation time con-

stant was equal to 3ms while the input signal was sampled at 1kHz. One can see that 

in each period the CT is saturated transiently, mainly due to the presence of decaying 

DC component. When this component decreases, the CT saturation becomes shorter. It 

can be observed that the saturation detection, marked with red line in Fig. 7.7a, is cor-

rect both for positive as well as negative halves of the current waveshape. It is also 

seen that the primary current is reconstructed with quite a good accuracy (red curve in 

Fig. 7.7b). 
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Fig. 7.7. Performance of the algorithms for: a) CT saturation detection, 

b) correction of the secondary current 
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8. DECISION MAKING 

8.1. GENERAL CONSIDERATIONS 

The protective relays are devices that are supposed to evaluate the state of the pro-

tected plant and to react properly in case of abnormal operating conditions. The relay 

final output is usually the command to trip the protected element or to raise an alarm, 

whenever it is necessary. The protection decision is mostly based on the locally meas-

ured criteria values and additional information from other protective relays and/or 

control centers. In this paragraph the possible approaches to the decision making are 

briefly outlined. 

The protective devices of previous generations (electromechanical, also static) 

were frequently designed to generate its final output (trip signal) basing on compari-

son of selected signals and/or their combinations, often without direct measurement of 

the protection criteria. Numerical relays, on the contrary, first digitally measure the 

criteria values that are further compared with appropriate threshold values or characte-

ristics. 

The final decision-making is only one of the numerous logic operations performed 

by the protection relays. The logic structure of the protection embraces the following 

functional areas: 

• detection of the abnormal or emergency condition (e.g. a short circuit), 

• checking if the fault is within the protected zone, 

• determination of the phases involved, 

• exchange of information with other protection units, e.g. those from the opposite 

line ends, 

• choice of the way of reaction (alarm, tripping, …), 

• communication with personnel, 

• automatic self-testing, 

• auxiliary functions. 

8.2. CLASSICAL APPROACH 

Depending on the plant to be protected the protection relays generate their final de-

cision basing on a single or multiple criteria signals. The number of criteria used in 

given case is a function of the plant complexity, size, rated power and its importance 

in power system. 
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8.2.1. DECISION MAKING WITH A SINGLE CRITERION 

The simplest approach, adopted e.g. in overcurrent or over/undervoltage relays, 

consists in tracking the values of a single criterion signal. After the value has been 

measured, it is further compared with a pre-set threshold or located with respect to an 

appropriately shaped protection characteristic. 

For the single dimension decision problem (single criterion taken into account) the 

discrimination is made when the criterion signal crosses or exceeds the pre-defined 

border value (threshold) separating two classes of events to be distinguished, e.g. 

normal operation vs. fault conditions. Depending on the problem the discrimination 

may be of one of the two types: 

− overreaching, when the criterion value is higher than a threshold, e.g. for overcur-

rent protection, see illustration in Fig. 8.1, or 

− underreaching, when the criterion value is lower than a threshold, e.g. for undervol-

tage protection. 
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Fig. 8.1. Comparison of measured current amplitude with a threshold 

 

With reference to Fig. 8.1, the decision to trip the protected element is taken when 

the measured current (instantaneous value or signal magnitude) exceeds the pick up 

value: 

 uppickInI −>)(  (8.1) 
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The decision threshold is to be set with care, i.e. taking into account the maximum 

expected load current and minimum fault current in the protected element. One should 

also note that the speed of decision-making may depend on the type of the measure-

ment algorithm. The shorter data window is adopted, the faster reaching of the mea-

surement steady-state and exceeding of the pick-up value. 

Another situation exists when the applied criterion is a multi-dimension variable, as 

in case of impedance measures in distance relays. In such a case the decision is not 

taken by simple checking of (8.1) but by comparing mutual location of the measured 

complex variable with appropriately set characteristic. With reference to Fig. 8.2, the 

protection decision is made when the measured impedance vector is seen within the 

prescribed protection decision curve (here – Mho type). The protection characteristic 

should embrace the region of fault loop impedance for all in-zone fault cases, separat-

ing it from the region of normal operating conditions, as shown in Fig. 8.2b. 

Distance protection relays of different manufacturers offer decision characteristics 

of various types, including Mho and polygon ones, with possibility of their quite easy 

shaping by setting a number of parameters. 
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Fig. 8.2. Decision making in a distance relay: 

a) simple power system with faults, b) impedance plane and zone concept 
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In the above-presented cases it was assumed that the protection decisions were tak-

en without any intentional time delay. Usually one allows for some delay, waiting 

until the decision signal exceeds the threshold/characteristic for a number of consecu-

tive time instants. Such a measure makes the relay less dependent on signal noise and 

sudden signal jumps or peaks, which results in more reliable final decisions. 

Intentional delays are introduced, when the time dependency is needed, mainly for 

time grading, which should assure protection coordination, e.g. in: 

− overcurrent protection of distribution networks, 

− distance protection, with appropriate tripping time set for particular protection 

zones. 

8.2.2. MULTICRITERIA AND ADAPTIVE PROTECTION 

For the plants of complex structure or installed at a point where the operating con-

ditions might be difficult to analyze, the single criterion decision making may be not 

secure enough, like it is e.g. in case of protecting of big power transformers or genera-

tors. For such objects, another option with multiple criteria is usually applied. In such 

a case some additional signals are delivered and processed by the relay. Thus the mul-

ti-criteria decision making brings improvement of protection reliability in terms of 

increased decision confidence, elimination of wrong decisions and higher speed of 

decision making. 
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Fig. 8.3. Decision making with multiple criteria 

 
A very basic scheme of multi-criteria decision making is shown in Fig. 8.3. The fi-

nal decision is worked out in several steps including: 

− calculation of particular criteria values, 

− generation of partial decisions for all criteria (e.g. by comparing their values with 

some thresholds or characteristics, as described above), 
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− aggregation of partial decisions. 

Aggregation of partial decisions can be done with use of: 

− simple Boolean logic operators (AND, OR), 

− the strategy 'some-out-of-all' (the decision is taken when not less then the minimum 

number of partial decisions support one of the possible protection options), 

− weighting factor method (confidence coefficients for particular criteria are used to 

express their relative strength or quality and to calculate the weighted support for 

final decision), 

− decision rules of the IF … THEN form (certain knowledge is required to set up the 

rules), 

− decision trees (equivalent to logic structure with combination of AND/OR ope-

rands), 

− other techniques. 

Deterministic aggregation with weighting factors can be expressed as follows: 

 12121111 ... nnwww νννδ +++=  (8.2) 

 12 1 δδ −=  (8.3) 

 confirmed 121 Dec→∆>−δδ  (8.4) 

where: 

1iν  - partial support values for the decision Dec1 from the i-th criterion, 

iw  - weighting factors for particular criteria, 

1δ  - total support for the decision Dec1, 

2δ  - support for the opposite decision Dec2, 

∆  - discrimination threshold. 

The partial decision support values 1iν  may be crisp (taking values 0 or 1, where 0 

stands for no support and 1 – for full support) or fuzzy (here any value between 0 and 

1 is permissible, the larger the value, the higher the support). 

The multi-criteria decision-making in a relay may sometimes be supported by the 

signals transmitted from other protection units or from the higher level control. Ex-

change of information between relays is often a source of information for protection 

blocking or stabilization. 

External signals may also be a source of data for realization of adaptive or wide-

area protection schemes. As an example of adaptive schemes application one could 

mention: 

− adjustment of the power transformer differential relay sensitivity to the tap changer 

position, 

− adjustment of the distance protection settings to the operating conditions of the 

parallel line (in operation / switched off), 
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− adaptation of the under-frequency load shedding strategy to the current loading of 

particular feeders, 

− adaptive distance overreaching/underreaching schemes (first zone extended or 

shortened according to the information gained from the opposite line terminal/-s), 

− a proposal of wide-area adaptive on-line coordination of the relay settings based on 

the so called multi-agent approach, etc. 
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Fig. 8.4. Block scheme of an adaptive protection 

 
Internally, from the functional point of view, the adaptation may be related to some 

changes in one or more of the following protection units (Fig. 8.4): 

− analog filtration (switching to another set of filters), 

− analog-to-digital conversion (change of sampling frequency), 

− digital signal processing (selection of the processing algorithm, modification of the 

filters’ frequency characteristics), 

− measurement of protection criteria (change of the algorithm parameters and/or 

type), 

− decision making (change of thresholds and decision characteristics, selection of 

new or additional criteria and logic signals). 

Changes initiated by the adaptation block may include not only certain modifica-

tion of selected algorithms but also their exchange for the ones better suited for given 

power system operating conditions.  

8.3. NOVEL TECHNIQUES FOR DECISION MAKING 

In the field of decision making several new techniques and tools have recently been 

developed and proposed in the literature to be applied for complex technical problems, 

also in power systems. Among the others the following are worth mentioning: 
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− statistic decision making (that mostly reduces to testing of statistical hypotheses 

related to the state of protected plant), 

− application of fuzzy logic (instead of crisp signals and thresholds fuzzy signals and 

fuzzy settings are introduced), 

− decision making by pattern recognition (application of neural networks), 

− analysis of multiple alternatives (application of expert systems). 

The latter three belong to the family of Artificial Intelligence and are described in 

more detail in Section 9. Here the technique based on statistical reasoning is presented 

only. 

Unlike to deterministic approach, where the decision algorithm is precisely defined 

by decision thresholds either fixed or being changed according to a prescribed scena-

rio, the statistic approach assumes that the decision signals may have probabilistic 

nature, thus calling for an appropriate procedure of reasoning. One may say that many 

parameters which affect phenomena in power systems are not known and may only be 

described by probability distributions. Similarly, in many cases the decision areas 

(representing classes of events to be distinguished) which often overlap in statistic 

terms can be viewed as overlapping of the probability density functions - see illustra-

tion in Fig. 8.5. 
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Fig. 8.5. Decision space and decision areas: a) ideal situation, b) real case, c) statistic interpretation 
 

Statistical approach to the decision-making problem in digital protection assumes 

that criterion values can be considered as random variables and that required condi-

tional statistics are known. Probabilistic nature of the decision vector is a result of 
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random localization of fault or such other conditions as fault resistance, fault angle, 

pre-fault load etc. 

With statistical approach to the decision making problem various algorithms of hy-

pothesis testing can be applied. The fundamental decision theory with probabilistic 

roots is the Bayesian approach. For practical technical problems the application of 

methods based on statistical hypothesis testing is recommended, where the hypotheses 

advanced could represent normal and faulty/abnormal operating conditions. When 

distinguishing between two hypotheses is required, one can use the Sequential Proba-

bility Ratio Test (SPRT). The approach can also be adapted for multiple hypotheses 

testing and in such a case so called Multi-hypotheses Sequential Probability Ratio Test 

(MSPRT) can be used. The SPRT methods use conditional probability density func-

tions (PDFs) of the decision vector (for given classes of events) to generate the deci-

sion. 

The Sequential Probability Ratio Test belongs to decision methods in which num-

ber of samples of the decision vector necessary to issue the decision is not pre-defined. 

The algorithm of the SPRT can be written in the form: 
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where: 

)|( ill Hf X - probability density functions (PDFs) of the decision vector X at the in-

stant l after test starting for hypothesis Hi, 

kΘ - test index at the instant k, 

A, B - probabilistic thresholds, 

10  , εε - assumed values of the first and second order error probabilities. 

The above procedure minimizes values of the first and the second type error proba-

bilities 10  , εε . The first type error concerns situations in which hypothesis H1 is recog-

nized instead of H0 (underfunction), while the second type error corresponds to the 

decision H0 instead of H1 (overfunction). 

Application of the SPRT method is possible when the following conditions are sa-

tisfied: 

− random decision quantities are at two different time steps stochastically indepen-

dent, 

− conditional probability density functions of the decision vector are known. 
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The required distributions )|( ill Hf X  may be calculated on basis of simulation 

cases or estimated taking into account distributions of all factors possibly affecting 

system behavior for given hypothesis (with the latter method sought functions can be 

assessed rather roughly, especially when dynamic distributions are to be found). One 

should understand that proper operation of the SPRT test depends heavily on the 

choice of an appropriate decision variable. Such a variable has to carry a lot of infor-

mation on the phenomena being analyzed and its conditional PDFs for hypotheses H0 

and H1 should be separated from each other to the highest possible degree. 

The application of the SPRT algorithm for fault detection and fault type identifica-

tion may serve as an example how the probabilistic technique can be used for decision 

making [B]. The conditional probability density functions of the decision variable 

X=I0 (zero sequence current amplitude) for successive samples k after fault inception 

are shown in Fig. 8.6. It is seen that the PDFs change with time and their divergence 

for both hypotheses (ground vs. isolated fault) increases sample by sample, which also 

means that more and more information is delivered to the decision algorithm. For time 

instant k=6 first signs of CT’s saturation can be seen (due to inaccuracy of current 

transformation some zero-sequence current is measured, distribution for hypothesis H1 

is no longer zero). 
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Fig. 8.6. Conditional PDFs for hypothesis H0 - „ground fault“,H1 - „isolated fault“ 
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The simulative tests confirmed that the SPRT algorithm demonstrated excellent 

ability of fault detection. All cases were detected properly, mostly in the first or sec-

ond sample after fault inception (in rare cases only more time was needed). Fault clas-

sification was made with exactitude of 97.2% and average time of 3 ms, which should 

be considered as a good result. 

One has to admit that the application of SPRT based decision methods requires of 

course intensive simulative investigations and calculations to be done (conditional 

PDFs for the considered hypotheses must be known). Similar introductory work (off-

line) is also necessary if other novel approaches (with use of Kalman filtering or neu-

ral networks) are to be applied. Contrary, on-line computational complexity of SPRT 

algorithm is relatively small; therefore it may be easily implemented in real time pro-

tection systems. 
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9. ARTIFICIAL INTELLIGENCE TECHNIQUES 

9.1. GENERAL CONSIDERATIONS 

Even though the digital protection devices become better and better, offering fast 

and accurate signal processing algorithms, possibilities of almost free shaping and 

setting of decision characteristics, as well as number of additional auxiliary functions, 

there are some situations and plants where classical approach and methods may not 

guarantee proper relay operation. It is so e.g. for: 

− overcurrent protection of highly loaded transmission/distribution lines, 

− differential protection of contemporary power transformers (low value of second 

harmonic signal used for stabilization), 

− protection on distribution network with high penetration of distributed generation, 

− protection of networks with FACTS devices, etc. 

In all abovementioned cases the normal operation and overload/fault regions may 

overlap and thus it is difficult or even impossible to set a threshold that would separate 

the operation and blocking areas completely. Besides, even if the steady-state loci of 

measured criteria values are situated within proper decision areas, they may be seen in 

wrong part of the decision space during measurement transients. Therefore, new intel-

ligence is needed to improve operation of protection devices for such situations. 

Artificial Intelligence (AI) is a sub-field of computer science that investigates how 

the thought and action of human beings can be mimicked by a machine. The intelli-

gence can be understood as the ability of a living being or a machine to organize ex-

ternal information, observations and experiences and to discover relationships that can 

be used to evaluate the information. The mimicking of human intelligence should in-

clude the following aspects: 

− making rational decisions, 

− dealing with missing or corrupted data, 

− adapting to existing situations, 

− improving the scheme in the long time horizon basing on the accumulated expe-

rience. 

Considering the digital protection (Fig. 9.1) as a device processing the input signals 

(analog and digital signals from power system) with the aim of generating the final 

decision (alarm or trip command), one can say that the protection realizes in fact one 

of the two functions. If the relaying task is treated as a decision-making problem, then 

by using its algorithm (knowledge) the relay should decide whether to trip or restrain 

itself from tripping. Here the fuzzy reasoning or expert systems are well suited and 
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find their application for many protection problems. On the other hand, if the protec-

tion task is considered as a kind of pattern recognition problem (monitoring chosen 

input signals, called patterns, should lead to the protected plant state classification), 

then the artificial neural networks may seem a proper tool for realizing given protec-

tion function. 
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Fig. 9.1. Protection relay seen from outside 

 

The literature survey shows that in most cases the neural networks and expert sys-

tems are applied for power system protection tasks. A number of proposals of AI 

techniques applications have been issued, mainly for protection of transmission and 

distribution lines, power transformers, as well as for diagnostics and analysis of dis-

turbances. 

In the following sections the key features, advantages and disadvantages, as well as 

fields of applications of particular techniques of Artificial Intelligence are described. 

9.2. ARTIFICIAL NEURAL NETWORKS 

9.2.1. BASIC INFORMATION 

Artificial Neural Networks (ANN) represent a modern approach to decision mak-

ing that is nowadays quite frequently proposed also for power system protection and 

control applications. The ANNs perform actions similar to human reasoning which 

rely on experience gathered during so called training. Advantages of neural computing 

methodologies over conventional approaches include faster computation, learning 

ability, robustness and noise rejection. Once trained the ANN should possess the fea-

ture of knowledge generalization, which means that they should reasonably respond to 

the situations that had not been presented during training. The ANNs are mainly used 

for classification and decision-making in case of problems that are not fully described 

in the deterministic way or when their description (model) is non-linear or heavy 

complicated. 

The ANNs are artificial units resembling the structure, internal connections and the 

way of functioning of the human brain. Application of ANNs results from the possibil-

ity of their training for particular task, so that the neural network becomes a mathe-
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matical model of the system or process being analyzed. Independently of the ANN 

structure, the neural networks consist of small computational units called neurons. 

Single neuron performs computation of the weighted sum of its input signals: 

 a = X ∗ W  +b, (9.1) 

where: X – vector of input signals [J×1],  

 W – vector of synaptic weights [1×J], 

b – bias coefficients. 

on which then a usually non-linear activation function is imposed. 

The design of a neural pattern recognition unit (both single-neuron and more com-

plex structures) is based on the ANN training, which is realized with use of a set of 

prepared learning patterns and appropriate training algorithm. 

 

a

x(1)
w

1

w
n

w
2

t

. . .

. . .

∑ -+

δ

x(2)

x(J)

 
 

Fig. 9.2. Single neuron training scheme 

 

In the process of neuron training the values of synaptic weights are automatically 

adjusted in such a way that at the output of the neuron (generally – an ANN) a signal 

of desired level (value) is generated. With the so called supervised training methodol-

ogy (illustration in Fig. 9.2) the synaptic weights are corrected after successive presen-

tations of the input-output pairs (X – t), with minimization of an appropriate goal func-

tion. The goal function can be e.g. the mean-square error, defined as: 

 ∑ ∑
= =

−==
Q

k

Q

k

kaktkδmse
1 1

22
))()(()( , (9.2) 

where: Q – number of signal patterns. 

The neuron weights are modified according to: 

 )()()()()1( jxjδjηjwjw +=+ , (9.3) 

where )( jη  – time-dependent learning rate. 

Understanding that the efficiency of single neuron in solving of more complex 

problems is quite low, various type neuron connections, called neural networks, have 

found practical applications. An example of such a network (multilayer perceptron) is 
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shown in Fig. 9.3. The multilayer perceptron consists of several layers of neurons, 

being interconnected, that process input signals with unidirectional flow of informa-

tion (feed forward).  
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Fig. 9.3. Multilayer perceptron architecture 

 

There exist a number of neural network types. The most frequently applied are (in 

brackets the frequency of application for power system protection and control tasks 

are given): 

• multilayer perceptron networks (81%) – three- or four-layer feed-forward net-

works, networks with radial basis function, 

• Hoppfield networks (6%) – Bolzmann machines, Gauss networks, chaotic net-

works, 

• Kohonen networks (8%) – two- or three-dimensional grid nets, 

• others – less frequently used. 

In case of multilayer networks more complex training algorithms are utilized, like 

the method of error backpropagation. The backpropagation (BP) is a recursive algo-

rithm based on a gradient-search optimization method applied to an error function. 

The neurons’ weights are iteratively adjusted until the desired accuracy level is 

achieved. The net errors are propagated back from output layer to hidden layers. Vari-

able „learning rate” and „momentum” techniques are often utilized with the aim of 

reaching faster convergence and more accurate results. 

The other mode of training, called unsupervised training (data self-organization 

concept), is based on comparison of the inputs with previously encountered patterns. If 

coming input is similar to any of the patterns, it will be placed in the same category, 

otherwise a new category (cluster) will be assigned, whereas category proliferation is 

controlled by a threshold. After the learning (cognition phase) the user defines or la-

bels the clusters according to some criterion. 
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9.2.2. ANN APPLICATION TO PROTECTION PROBLEMS 

The neural networks are believed to possess a generalization feature, which simi-

larly to human reasoning makes them good tools for identification of patterns, even if 

not all representative features of the patterns are well defined or when some data is 

missing. Due to built-in neuron activation functions the ANNs are well suited to 

represent non-linear problems and bring answers to difficult protection and control 

questions, some of them being outlined in this section. 

The neural networks for pattern classification are usually single-output structures. 

They may, however, also have multiple outputs, each of them assigned to specific 

purpose. Such networks can be used e.g. in fault classification or in multidimensional 

control schemes, where the outputs of particular neurons of the output layer are sent to 

appropriate points of the control structure. 

The following (selected) examples of the ANN applications for power system pro-

tection and control tasks are quite representative: 

• protection of transmission and distribution lines (fault detection and classification, 

fault direction discrimination, adaptive distance protection, distance relay for series 

compensated lines, autoreclosing and fault location functions, high impedance 

faults detection, high frequency based relaying), 

• power transformer monitoring, protection functions (e.g. stabilization against in-

rush conditions), diagnostics, 

• generator protection (e.g. out-of-step – described in more detail below), 

• fault location and analysis in substations, 

• other non-protection tasks (on-line security assessment, load forecasting, optimisa-

tion tasks in power plants, signal analysis, process control and automation). 

It is good to know what are the problems and issues that should be addressed when 

an ANN-based solution is to be developed for an application at hand. Generally, one 

should take into consideration the following points: 

• ANN structure type, 

• ANN size (number of layers and neurons in particular layers), 

• neuron activation function (may be different in given layers), 

• number and type of input signals, 

• representative set of patterns, 

• initial values of synapse weights and biases (usually random values), 

• the training algorithm itself (depends on the ANN type), 

• generalisation vs. memorisation dilemma. 

Having the ANN type chosen for given task (e.g. multilayer perceptron) one should 

decide on the size of the neural network. It has been proven that infinitely large neural 

network with just a single hidden layer is capable of approximating any continuous 

function. In practice ANNs with one or two hidden layers are in use, with the number 

of neurons dependent on the number of ANN input signals and the size of training set. 
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The neural network size is sometimes chosen arbitrarily, but it can also be optimized, 

e.g. with use of a genetic procedure. 

The last of the above-mentioned problems (generalization vs. memorization) re-

sults from the very fact that the well trained ANN is expected to operate correctly not 

only for all the patterns from the training data set, but also for all other possibly ap-

pearing data that were not presented to the ANN during training. Such a feature means 

generalization of the acquired knowledge, which is different from focusing on the 

training cases only (memorization). The knowledge generalization feature can be as-

sured when appropriate techniques, like randomization of training set elements, are 

applied. 

 

Out-of-step (OS) protection with application of AJJ 

 

The out-of-step conditions (loss of synchronism) of a synchronous machine may 

occur as a result of loss of excitation or during pole slipping. The pole slipping condi-

tion can arise after a long power system fault or when a tie line between two systems 

is opened. The parameter that supervises the detection of pole slipping is the imped-

ance vector measured at the machine terminals. Crossing of the impedance vector 

trajectory with properly set characteristic on the impedance plane is checked to detect 

the pole slipping. The other methods used for OS protection are based on the equal 

area criterion, direct method of Liapunov or rate of change of apparent resistance 

augmentation. With a communication channel available, an OS protection system may 

use observations of phase difference between substations. It must be said that all the 

above methods allow detecting the OS conditions not before the first slip actually oc-

curred. 
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Fig. 9.4. Neural OS protection arrangement 
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Since the commonly used methods of loss of excitation and pole slipping protec-

tion are not always fast and secure enough, it is justified to search for new solutions 

applying AI approach. Hence, appropriate relaying procedures have been considered 

and adequate ANN solutions have been developed and tested [C]. The general scheme 

of the neural OS protection scheme developed is shown in Fig. 9.4. The decision part 

of the protection is realized with help of an ANN performing typical pattern recogni-

tion with appropriately chosen vector of criterion signal samples X(k). The decision 

(criterion) values have to be previously calculated from available power system sig-

nals with use of dedicated digital processing algorithms. The ANN was assumed to 

produce output equal to 0 for stable patterns and 1 for OS conditions. For the classifi-

cation purpose a threshold value set to 0.5 was introduced. All the cases for which the 

ANN output is lower than 0.5 were classified as stable and those for which the thre-

shold was exceeded were recognized as OS cases. 

To obtain data for training of ANNs and further testing of the OS protection, the 

following simple single machine – infinite bus system has been modeled (Fig. 9.5) 

with use of the ATP software package. The synchronous machine G1 is connected to 

the infinite bus system S1 (220 kV) via the block transformer T1 and a 200-km long 

double-circuit line L1. Within the transmission line L1 a number of symmetrical faults 

on one of the line circuits were applied, some of them responsible for further develop-

ing OS conditions. 
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Fig. 9.5. Test power system modelled 

 

Generator output voltages and currents as well as its angular speed were registered 

in ATP output files. Additional features like voltage/current amplitudes, components 

of generator power etc. were obtained after digital processing of voltage and current 

signals. In order to choose the best signals for application as ANN input features, the 

statistical properties of available signals were determined. The analysis of calculated 

conditional PDFs allowed sorting the decision signals according to their relative rec-

ognition strength. Ultimately, the machine angular frequency deviation ∆ω was taken 

as the most valuable recognition feature in the investigated case. 

The ANN input vector X(k) was being created on-line from a number of signal 

samples captured with use of a sliding data window (DW). The criterion signal ∆ω is 

observed with the measurement rate MR (time distance between two successive sam-
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ples, not necessarily equal to the sampling period) within the DW having the length 

being a whole multiple of MR and number of samples m (DWL=MR*m). The data 

window beginning (DWB, measured from the fault inception time) is moving and thus 

consecutive sets of signal samples (input vectors) are delivered to the ANN-based 

reasoning unit. The case studies have been done for ANNs fed with input vector X(k) 

consisting of ∆ω samples captured with MR=120 ms within the data window having 

DWL=360 ms (m=3). 

The choice of the ANN structure and size for the neural OS protection scheme de-

veloped has been done with use of the genetic optimisation procedure (see section 9.4 

for more details). The nets constituting the population of individuals were graded ac-

cording to two different quality indices, i.e. mean square error of the net output Qms 

(squared difference between desired and actual output values) and testing efficiency 

Qeff (percentage of properly recognized OS cases). Consequently, different results of 

the genetic process have been reached. After performing the training the “best” nets 

obtained after 50 generations had 6-1 and 3-1 neurons for the Qmse and Qeff grading 

indices, respectively. 

The ANN-based OS protection scheme developed has been thoroughly tested with 

ATP-generated power system signals. The scheme displayed high efficiency and very 

short time of OS detection. The OS protection equipped with the “best” ANNs (graded 

with quality indices equal to 1.0) displayed 100% selectivity which means that all 

considered ATP testing cases were correctly classified. 

Comparing to other existing impedance-based OS protection devices, a kind of 

prediction of approaching machine instability is performed instead of traditional detec-

tion of actually occurring phenomena. The decision is taken within approx. 500ms 

after fault inception (some 300-900 ms before actual OS appeared), thus leaving 

enough time for an appropriate action (machine tripping, fast valving) to protect the 

generator from stresses and preserve the stability of power system. Wide robustness 

features of the scheme with respect to both various fault types and other synchronous 

machine ratings have also been confirmed. 

9.3. FUZZY LOGIC SYSTEMS 

9.3.1. THEORETICAL BACKGROUND 

The other group of methods that have found application in power system protection 

and control is based on so called fuzzy sets theory or fuzzy logic. Fast development of 

fuzzy techniques has been connected with the need of finding an adequate way of 

description of problems and phenomena being ambiguous and/or imprecise in nature. 

Since utilization of classical theories with two-valued logic was inefficient for such 

issues, one has developed theoretical foundations for unsharp/fuzzy sets along with 
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respective tools and algorithms for operations on such sets. The multi-valued logic has 

become an extension of Boolean logic for the cases of imprecise rules and values. 

The very basic definition of a fuzzy set can be expressed in the form: 

 ( ){ } ]1,0[:,;)(,         →∈= XX AA xxxA µµ . (9.4)  

Each element of the crisp set X has been assigned a membership function µA de-

scribing the degree of membership of given element to the fuzzy set A. Full member-

ship corresponds with the value 1, whereas lack of membership – value 0. Values of 

µA from the range (0, 1) denote partial membership to the fuzzy set A. The definition 

(9.4) is well suited for sets of elements of any kind, including also imprecise “linguis-

tic” statements determining e.g. “high temperature” or “low angular velocity”. Such 

statements, being close to intuitive and natural description of the process, can be then 

used to design of a fuzzy controller or regulator, provided appropriate rules of opera-

tion in the form “IF … THEN …” have been developed. 

In power system protection and control issues the fuzzy sets specified on the ob-

jects being real numbers are of special importance, since the decision or control signal 

is usually worked out with relation to the input signals being real numbers. The fuzzy 

set A determined on the set of all real numbers R is called a fuzzy number, if there is 

defined a membership function ]1 ,0[: →RAµ , being normal, convex and at least 

fragmentary continuous. 
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Fig. 9.6. Architecture of a fuzzy protection relay or control unit 

 

Practical utilisation of the fuzzy set theory as well as the rules of operations on 

fuzzy numbers leads to the general scheme of the fuzzy protection/control device pre-

sented in Fig. 9.6. The following main blocks can be distinguished here: 
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• fuzzification, where the real input signals are converted into their fuzzy counter-

parts (fuzzy numbers), 

• fuzzy reasoning, where the fuzzy criteria signals are processed and – after compari-

son with fuzzy settings – some fuzzy decision/output signals are generated, 

• defuzzification, which is understood as conversion of the fuzzy outputs into crisp 

numbers (real output signal or decision). 
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Fig. 9.7. Classical and fuzzy criteria signals 

 

An example of the fuzzy criterion signal, defined for the measured amplitude of 

fault current, is shown in Fig. 9.7. Since the non-fuzzy signal is dynamic, the corres-

ponding fuzzy signal changes with time accordingly. The location of center of the 

membership function µ depends on the actual current magnitude value, while the 

degree of fuzziness reflects the degree of confidence to the dynamic measurement 

results at given time instant. The width of membership function is directly related to 

the rate of change of the criterion signal, which is also a function of applied digital 

filters and specific measurement algorithms, and in a way encodes the degree of con-

formity between accurate (but not exactly known) and measured criterion signal val-

ues. The amount of information IJ in the signal is inversely proportional to the degree 
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of fuzziness, expressed by the area P under the membership function µ, and is the 

highest at the steady state of measurement (points A, E), but the lowest during tran-

sient, when the signal magnitude changes dynamically (points B, C and D). Utilization 

of the fuzzy criteria signals instead of their real counterparts allows for mathematical 

depiction of the measurement uncertainty, especially during transients, that is also just 

after the fault/disturbance inception. 

As a consequence of using fuzzy criteria signals the notion of fuzzy setting is also 

introduced, understood as a fuzzy number separating the two states to be distin-

guished. For example (see Fig. 9.8), instead of classical decision threshold I0 of the 

overcurrent protection one can propose a fuzzy curve, that separates the blocking and 

tripping regions in a smooth way. Unambiguous decision (with the degree of confi-

dence 1.0) can be taken for current magnitudes lower than I1 and higher than I2, 

whereas for the values within the range (I1, I2) appropriate value of the membership µ 

from the range (0, 1) is assigned, coding the grade of the signal membership to the 

category of fault cases. The higher the membership value µ, the more clearly (with 

higher certainty) the decision to trip the protected plant can be taken. One can say that 

application of the fuzzy settings creates a remedy for many problems with settings of 

classical protection relays, being often a peculiar compromise between sensitivity and 

selectivity. 
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Fig. 9.8. Classical and fuzzy overcurrent decision threshold 

 

Fig. 9.9 illustrates one of the possible ways of comparison of the fuzzy signal 

with fuzzy setting. The degree of the threshold exceeding (also a value within [0, 

1]) is defined as a ratio of the areas P* and P, where P* stands for this part of the 

area under the fuzzy signal membership function that is also situated under the 

fuzzy setting curve, i.e. 

 
P

P *
=ν . (9.5) 
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Fig. 9.9. Comparison of fuzzy decision signal with fuzzy threshold 

 

With such a way of comparison, if the signal ν (non-fuzzy number) is inter-

preted as the grade of meeting given criterion, it is not necessary to perform its defuz-

zification. It can be directly used for decision making (through comparison with sim-

ple threshold) or for working out the final decision in multi-criteria protection 

schemes, where a number of various criteria signals are analyzed and evaluated in 

parallel. Introducing the weighting factors wi for particular criteria values, the result-

ing support grade for protected plant tripping can be defined as a weighted sum: 

 ∑
=

=
J

i

iiw
1

νδ , (9.6) 

and the final protection decision is taken after the value of δ exceeds certain non-fuzzy 

threshold ∆. This approach is called weighting factor aggregation method and can be 

treated as a simplified version of fuzzy reasoning. 

Application of other comparison methods, e.g. based on product or implication of 

the fuzzy sets, leads to generating output signal being also a fuzzy number. Thus there 

is a need of its converting back to a real value (defuzzification). Among numerous 

methods of defuzzification one should mention the following three that are most fre-

quently used: center average defuzzification, center of gravity (center of area) method, 

maximum of membership function. 

9.3.2. APPLICATION EXAMPLES 

Among the most important virtues of fuzzy systems that imply application of fuzzy 

theories in protection practice, the following should attract the reader’s attention: 

• ability of processing of uncertain information, inaccurate and/or corrupted data, 

• possibility of expressing of non-sharp relationships and rules in a way close to 

natural language (linguistic variables, IF … THEN … rules), 

• quite easy interpretation of the internal signals of a fuzzy system, 
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• improvement of efficiency and selectivity by decision-making in protective relays 

thanks to application of fuzzy settings and fuzzy decision characteristics, 

• relatively simple, intuitive setting of the input/output membership functions (at 

least for the first, not-optimized scheme version), 

• simple description of systems, for which a detailed mathematical model is too 

complex or is not known.  

Among the interesting application of fuzzy logic in power systems, and especially 

in power system protection and control, one can enumerate the following: 

• identification of fault type in transmission lines, 

• fault location on a line, 

• fuzzy multi-criteria protection of power transformer, 

and also, being examples of non-protection applications: 

• fuzzy controllers of voltage and angular speed of synchronous machines, 

• diagnostics of power transformers,  

• network planning and security assessment, 

• reactive power control, 

• load forecasting, etc. 

Below an example of fuzzy scheme is described that was intended for improvement 

of power transformer differential protection [D]. The scheme concentrates on the as-

pect of protection stabilization for the situations of inrush with low level of second 

harmonic in the differential current. 

 

Fuzzy Logic Based Multi-Criteria Stabilization of Transformer Differential Protection 

 

Although differential protection has been successfully used for decades to protect 

power transformers against faults, its implementation (even in digital technique) is not 

free from errors which result in improper functioning either as undesired delay or lack 

of tripping for internal faults or as unwanted tripping for magnetizing inrush condi-

tions. During normal operation of power transformers the magnetizing currents are 

very small, usually below 1% of the rated currents. However, due to nonlinear magne-

tizing characteristic an increase of the core flux amplitude by 20% causes an increase 

of the magnetizing current 10-20 times. In the latter case the harmonic spectrum of the 

current shows domination of the fundamental harmonic, however, the 2
nd

 harmonic 

exceeds 30-40% of the fundamental one. Magnetizing inrush currents caused by high 

DC components of the flux, which result from sudden increase of the terminal voltag-

es, may also become very high. The current level depend on various factors, however 

the dominant ones are point on wave of the voltage signal, residual flux in the core as 

well as source impedances. Excessive magnetizing currents may also arise as a result 

of voltage recovery after clearing of a nearby fault, change of the character of a fault 

or out-of-phase synchronizing of a connected generator. 

Numerous single or compound criteria are usually used or proposed in the literature 

to discriminate inrush conditions and to prevent unwanted tripping. They are based on 
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second harmonic restraint, current waveform analysis, model based methods, flux 

restraint, etc. Since all the methods mentioned display certain limitations and cannot 

classify all possible inrush cases correctly, a fuzzy logic based stabilization algorithm 

of transformer differential protection has been developed. The new fuzzy stabilization 

algorithm employs second harmonic content and DC ratio measured in differential 

signal to discriminate inrush cases. It has been noticed that when during transformer 

energization the second harmonic ratio drops below 10% level – at the same time DC 

component ratio remains at high level. Thus the performance of stabilization algorithm 

may be enhanced by adding DC ratio signal as an additional decision variable. 
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Fig. 9.10. Block scheme of the transformer differential protection with fuzzy stabilization algorithm. 

 

In Fig. 9.10 the transformer differential protection scheme with proposed fuzzy 

blocking algorithm is presented. One can see that decision-making process is based on 

two signals. The first one comes from the standard percentage differential characteris-

tic which is responsible for tripping signal generation. The second one is derived from 

fuzzy stabilization block and indicates when inrush conditions take place. All de-

manded criteria values are calculated in block responsible for estimation of criteria 

signals. The magnitudes of fundamental component I1 and the 2
nd

 harmonic I2 of diffe-

rential currents are extracted with use of traditional full cycle Fourier filters (a pair of 

sine and cosine filters), while the DC component in differential current IDC is calcu-

lated using the algorithm based on full cycle averaging of the current, which corres-

ponds to signal filtering with 0-order Walsh filter. The DC component is extracted on-

line until potentially accurate measurement results are guaranteed, i.e. when 21 current 

samples (full cycle + 1 sample) after event inception are available. Then using the 
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determined initial value and time constant of DC component following samples of the 

DC signal are calculated. 

Instead of crisp comparison the criteria signals are here compared with appropriate 

fuzzy setting. First, when 2
nd

 harmonic ratio h2 = I2/I1 and DC component ratio hDC = 

IDC/I1 are estimated, fuzzification process takes place. In Fig. 9.11 an example of 

second harmonic ratio fuzzification is shown for the case of transformer energization. 

It is seen that during the first few ms after sudden signal increase the membership 

function µ1(h2) of the fuzzified signal obtained is quite broad, which can be unders-

tood as a very small confidence to the measurement results (not settled down yet, tran-

sient still in course). The membership function µ2(h2), for the period when the mea-

surement process approaches its steady-state (e.g. at t=70ms) is much narrower (al-

most crisp), which allows to make protection decisions with higher confidence 
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Fig. 9.11. Fuzzification and fuzzy representation of criteria signals 
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Fig. 9.12. Assumed fuzzy settings for: a) second harmonic content and b) DC component ratio 
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In the next step the fuzzified criteria signals are compared with appropriate fuzzy 

settings (see Fig. 9.12). The membership function of fuzzy setting are based on the 

designer’s experience and results of statistical analyses of signals achieved form si-

mulative test done in EMTP. It has been assumed that if the second harmonic content 

is less than 5% the inrush state is unlikely and, on the other hand, when this rate ex-

ceeds 25% transformer saturation is undeniable. As far as fuzzy setting for DC com-

ponent ratio µS(hDC) is concerned the same reasoning was applied. It has been assumed 

that if the DC component ratio is less than 10% the inrush state is unlikely and, on the 

other hand, when this rate exceeds 25% transformer saturation is undeniable. Accord-

ing to such assumptions the fuzzy setting functions µS(h2) and µS(hDC) are a kind of 

saturable curves changing gradually from 0 to 1 (see Fig. 9.12a,b). 

The fuzzy comparison was performed according to the method illustrated in Fig. 

9.9 and the formula (9.5). As a result of comparison two coefficients were achieved, 

namely: δh2 - which specifies the degree of satisfying the 2
nd

 harmonic restraint crite-

rion and δDC - which defines the degree of satisfying the DC component restraint. 

Then both values were processed according to the multiplicative aggregation: 

 ( ) ( )DCDChh ww δδδ ⋅⋅⋅=
22

 (9.7) 

where weighting factors wh2 and wDC are equal to 1, but can be changed if required. 

Such calculated final decision support coefficient δ was compared with additional 

threshold ∆ equal to 0.5. If coefficient δ was greater than the threshold an indication 

on inrush state was issued, which should result in relay blocking. 

The developed fuzzy stabilization scheme has been tested in simulative way with 

ATP generated signals. It has been confirmed that significant improvement of the pro-

tection stabilization function was obtained with introduction of criteria signals fuzzifi-

cation. The implementation of fuzzy processing in the form proposed (triangle mem-

bership functions, filter-type calculation algorithm and simple comparison with the 

settings) should not pose any technical problem since the algorithm is not computa-

tionally exhaustive. Application of the proposed stabilization criteria in fuzzified form 

allowed for faster excluding of magnetizing inrush condition during faults, which can 

be also seen as a mean of relay response speed-up. The stabilization scheme with 

combined fuzzy second harmonic and DC restraint enabled furthermore detecting 

transformer internal faults that may occur during transformer energization. 

9.4. EXPERT SYSTEMS 

The Expert Systems (ES) can be treated as a kind of software that in certain forma-

lized way expresses and thus simulates the way of reasoning of a human expert by 

solving tasks from given knowledge domain. The design and application of expert 

systems finds justification in situations when the traditional data processing is highly 

time-consuming, because of either complex computational algorithm or big amount of 
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data. Then (see Fig. 9.13) instead of algorithmic methods one can utilize techniques of 

intelligent searches, moving up to a higher generalization level, i.e. from processing of 

simple data and facts to the reasoning in the space of knowledge and rules. 
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Fig. 9.13. Data processing and knowledge mining 

 

 

9.4.1. EXPERT SYSTEM COMPONENTS 

 

An expert system is usually organized as it is schematically shown in Fig. 9.14. 

The components of ES are: 

• Knowledge Base – containing the knowledge about the system, its functioning, 

rules of problem solving, etc., 

• Data Base – including the facts, which generally describe the domain and the state 

of the problem to be solved, 

• Inference Engine – with the reasoning principles and conflict resolution strategies. 

The block connections in Fig. 9.14 suggest that there exist unidirectional (read-

only) information flow from the KB to the Inference Engine and bidirectional ex-

change of data with the DB. This is because during data and knowledge processing 

new facts are created that should be stored in the Data Base for further usage.  
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Fig. 9.14. Block scheme of an expert system 
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The most important blocks of the ES structure, i.e. Knowledge Base and Inference 

Engine contain the information provided by human experts. Potential experts are those 

who possess knowledge and strong practical experience in particular domain. They are 

often skilful persons that can do things other people cannot. The experts should, how-

ever, be capable of expressing their knowledge in the form of rules for problem solv-

ing, which is not always simple since some conclusions are sometimes drawn without 

deep consideration, on basis on experience and “rules of thumb” that cannot be easy 

explained. 

Knowledge can be understood as a theoretical or practical understanding of a sub-

ject or a domain, the sum of what is currently known. For the usage in an expert sys-

tem the knowledge can be represented in form of: 

• mathematical logic (well suited for objects with numerical values), 

• production rules (condition – action), 

• meta-rules (based on meta-knowledge – knowledge about knowledge, how to use 

and control knowledge), 

• semantic networks, consisting of nodes (concepts or meanings) and links (rela-

tions), 

• frames (information is grouped in records, with multiple levels), 

or in mixed form of the above, when required. 

The inference block, apart from the main task, i.e. simulation of the problem-

solving strategy of an expert, fulfils also the functions of control and coordination of 

work of the entire expert system. It determines also, which rules or algorithms should 

be applied in the considered case as well as, if needed, manages the process of conflict 

resolution for the rules of similar strength (importance) that may lead to contradictory 

reasoning results. 

The aim of inferencing (working out of the solution of final decision) is usually ob-

tained as a result of checking the truth (fulfillment) of all reasonable hypotheses on the 

basis of available measurement data – the forward chaining method, or through prov-

ing of a selected hypothesis for all currently known facts – the backward chaining 

method, which is schematically illustrated in Fig. 9.15. 

 

Solution

Knowledge / Data

Forward
chaining

Backward
chaining

 
 

Fig. 9.15. Inference methods of an expert system 
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Development of an expert system for given purpose requires close cooperation of 

the following parties: 

• Human Expert - can solve problems; one desires to implement his knowledge and 

solve the problems without him/her, 

• Knowledge Engineer - should communicate with the HE to obtain and model the 

knowledge that we need in the system, 

• Programmer - builds and maintains all the necessary computer programs, 

• User - wants to use expertise to solve problems (better, cheaper). 

9.4.2. APPLICATION OF EXPERT SYSTEMS 

It should be stressed that the applications of expert systems in on-line operating 

protection and control devices are quite rare. The limitations arise basically from sig-

nificant complexity and time-consuming execution of the expert reasoning algorithms. 

As characteristic examples of expert systems for the tasks executed off-line (or 

possibly on-line, but with longer time horizon) one can enumerate: 

• network planning, 

• intelligent alarm processing in EMS and SCADA systems, 

• network security analysis, 

• load forecasting, 

• voltage and reactive power flow control 

• power quality monitoring, 

• power system restoration 

• post-fault diagnosis, 

• coordination of protection settings (off-line, i.e. at design stage), etc. 

 

Design of a Pilot Knowledge-based Expert System for Providing Coordinated Setting 

Values for Power System Protection Devices 

 

As an example an application of expert technique for coordination of expert system 

is outlined. The scheme described in [E] is intended as a support for protection engi-

neer in design and setting of protection devices, with the aim of achieving and main-

taining protection selectivity, sensitivity, reliability and possibly highest speed of op-

eration. 

The problem solution strategy was based on a definition of the calculation se-

quence for the protection function parameters. The protection knowledge (IF… 

THEN… rules) was formalized in three main knowledge bases. Protected objects were 

grouped in the following categories: 

(1) Components, including motor, generator, line, transformer, busbar, etc.  

(2) Group of components that is protected together, like a generator with unit trans-

former, a motor with infeed cable, etc.  
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(3) Subsystems, being a set of network components and groups protected together. 

The protection knowledge was formalized and documented as a decision tree for 

the reasoning process. Appropriate rules for protection settings coordination have been 

defined. Samples of solution strategy rules for overcurrent relays settings are: 

− Strategy Rule 1: Find protection settings for network components and groups that 

always consume energy, 

− Strategy Rule 2: Find protection settings of incoming feeders/bus ties/bus couplers. 

Consider subsystems with incoming feeders always absorb energy from upstream 

and deliver it to downstream feeder(s); all downstream protections are adjusted; 

subsystems may have local generation units, 

− Strategy Rule 3: Find protection setting of Incoming Feeders/Bus ties/Bus Coup-

lers; consider subsystems with incoming feeders having energy flow from and into 

the upstream substations; all downstream protections are adjusted; subsystems may 

have local generation units, 

− Strategy Rule 4: Find protection settings for network components and groups that 

always generate energy. 

The pilot expert system developed can be used in manual or auto mode. Auto re-

sponse mode allows speeding up the protection setting process. The user’s proxy runs 

the referenced calculation methods and calculates automatically the new value of each 

entity in the decision tree. It also runs database queries to retrieve required data for 

network components and protection devices. In manual mode the system can be used 

for training of new protection engineers. 

More details about the system structure and utilization can be found in [E]. 
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10. LABORATORY EXERCISES 

Below an exemplary collection of laboratory exercises is provided that can be rea-

lized during labs. The students are expected to define the input signals containing the 

fundamental plus a set of non-fundamental components, to test the filtering/measuring 

algorithms in both time and frequency domains. A report from each of the exercises 

should be prepared. 

10.1. DIGITAL RECURSIVE FILTERS (IIR) 

Exercise contents: 

 

1.  Design the IIR digital filter according to the requirements defined by the teacher 

(analogue filter prototype, cut-off frequencies). 

2.  Determine/draw the frequency response of the designed IIR filter, 

compare with the frequency response of the analogue prototype. 

3.  Analyze filter response in time domain for various input signals 

(sinusoids of various frequencies + noise). 

 

IIR digital filter design formulae: 
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LP or HP – to be decided by the teacher. 

 

Useful functions/procedures in MATLAB: 

• fft, ifft 

• filter 

• plot, bar, stairs, hist 

• bode, dbode, freqs, freqz 

• hamming, hanning, blackman 
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10.2. ANALYSIS OF NONRECURSIVE (FIR) FILTERS  

Exercise contents: 

 

1.  Define the FIR digital filters having the impulse responses as specified by the 

teacher 

(e.g. Walsh, triangle, sine, cosine, etc.). 

2.  Determine/draw the frequency responses of the FIR filters. 

3.  Analyze the filtering efficiency of the filters for the signals containing harmonic, 

inter-harmonic and decaying DC components. 

4.  Analyze filters’ responses in time and frequency domains after their data window 

modification with selected smoothing filtering windows (e.g. Hamming, Blackman, 

…). 

10.3. ALGORITHMS FOR SIGNAL AMPLITUDE MEASUREMENT  

Exercise contents: 

 

For the measurement algorithms given below make comparative analysis with regard 

to: 

1.  measurement accuracy and dynamics for the undistorted 50Hz sine signal; 

2.  algorithms’ accuracy for the signals containing decaying DC component of various 

time constants (50-300ms); 

3.  influence of harmonic and inter-harmonic components on the measurement quality; 

4.  algorithms’ quality for the cases of frequency change in the range 50±2Hz; 

5.  influence of sampling frequency on the measurement accuracy. 

 

The algorithms to be examined are as follows (example): 

 

A – averaging methods 
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B – orthogonal components 

- orthogonalisation with 
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- measurement with 
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( ) )()( 22 nxnxnX scm +=  

 

C – orthogonal components 

- orthogonalisation with full-cycle sine/cosine filters 

- measurement as above 

10.4. ALGORITHMS FOR POWER AND IMPEDANCE 

COMPONENTS MEASUREMENT  

Exercise contents: 

For the measurement algorithms given below make comparative analysis with regard 

to: 

1.  measurement accuracy and dynamics for the undistorted 50Hz sine signals (current 

and voltage); 

2.  algorithms’ accuracy for the signals containing decaying DC component (in current 

signal) of various time constants (50-300ms); 

3.  influence of harmonic and inter-harmonic components on the measurement quality; 

4.  algorithms’ quality for the cases of frequency change in the range 50±2Hz; 

5.  influence of sampling frequency on the measurement accuracy. 

 

The algorithms to be examined are as follows (example): 

 

A – averaging methods 
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B – orthogonal components 

 

- orthogonalisation with 
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full-cycle sine/cosine filters 
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- measurement with 
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10.5. MEASUREMENT OF SIGNAL FREQUENCY 

Exercise contents: 

 
For the measurement algorithms given below make comparative analysis with regard 

to: 

1.  measurement accuracy and dynamics for the undistorted 50Hz sine signal; 

2.  algorithms’ accuracy for the signals containing decaying DC component of various 

time constants (50-300ms); 

3.  influence of harmonic and inter-harmonic components on the measurement quality. 

 

The algorithms to be examined are as follows (example): 

 

A – algorithm with counting of impulses with zero-crossing correction 
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B – algorithm with use of orthogonal components 

- orthogonalisation with full-cycle sine/cosine filters 

- measurement 
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10.6. MEASUREMENT OF SYMMETRICAL COMPONENTS 

Exercise contents: 

 
For the measurement algorithms specified as below make comparative analysis with 

regard to: 

1.  measurement accuracy and dynamics for the undistorted 50Hz sine signals; 
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2.  algorithms’ accuracy for the signals containing decaying DC component of various 

time constants (50-300ms); 

3.  influence of harmonic and inter-harmonic components on the measurement quality; 

4.  algorithms’ quality for the cases of frequency change in the range 50±2Hz. 

 

The algorithms to be examined are as follows (example): 

 

A. Algorithm in complex matrix form 
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Orthogonalisation 

- with double delay, k=J1/4 
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- with full-cycle sine/cosine filters 

 

B. Algorithm with time delay 

10.7. DESIGN AND ANALYSIS OF ANN-BASED 

PROTECTION UNIT 

Exercise contents: 

 

Problem: ANN-based overcurrent protection (example) 

 

For the decision/classification task as defined above do the following particular tasks: 

1.  prepare the input and output matrices for training of ANN; 

2.  execute ANN training; 

3.  examine the ANN operation for training and new testing patterns; 

4.  check the ANN operation for distorted input signals; 

5.  perform comparative analysis with chosen non-AI measurement/decision proce-

dure. 
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Useful Matlab functions (Matlab 5.3): newff, train, sim 

 

%initialization 

net = newff([min max],[n1 n2],{'tansig' 'purelin'}); 

%trainig 

net.trainParam.epochs = 50; 

net = train(net,P,T); 

%simulation and comparison 

Y = sim(net,P); 

plot(P,T,P,Y,'o') 

where: 

P, T – input and output vector matrices, net – ANN structure 

min, max – expected range od change of input signal(-s) 

n1, n2 – number of neurons in particular layers 
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