

Projekt współfinansowany ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Wrocław University of Technology

Internet Engineering

Tomasz Kubik, Zofia Kruczkiewicz

UML AND SERVICE

DESCRIPTION LANGUAGES
Information Systems Modelling

Wrocław 2011

Wrocław University of Technology

Internet Engineering

Tomasz Kubik, Zofia Kruczkiewicz

UML AND SERVICE

DESCRIPTION LANGUAGES
Information Systems Modelling

Wrocław 2011

Copyright © by Wrocław University of Technology

Wrocław 2011

Reviewer: Dariusz Caban

ISBN 978-83-62098-22-4

Published by PRINTPAP Łódź, www.printpap.pl

Table of contents
1. Introduction ... 7
Patterns of multitiered systems ... 9
2. Introduction to Multitiered Information Systems .. 11

2.1. Multitiered Information System ... 11
2.2. Software Development Model .. 13
2.3. Software Development Process Management ... 16
2.4. The role of the Unified Modelling Language - UML .. 18

3. Overview of design patterns for supporting information systems modelling 20
3.1. Fundamentals of the design patterns identification .. 21
3.2. Creational patterns ... 22

3.2.1. Abstract Factory .. 22
3.2.2. Builder ... 23
3.2.3. Factory Method .. 24
3.2.4. Prototype ... 26
3.2.5. Singleton ... 27

3.3. Structural patterns .. 28
3.3.1. Adapter .. 28
3.3.2. Bridge .. 29
3.3.3. Composite ... 31
3.3.4. Decorator ... 33
3.3.5. Façade .. 35
3.3.6. Flyweight ... 36
3.3.7. Proxy ... 38

3.4. Behavioural patterns .. 40
3.4.1. Chain of Responsibility .. 40
3.4.2. Command .. 42
3.4.3. Interpreter .. 42
3.4.4. Iterator ... 44
3.4.5. Mediator .. 45
3.4.6. Memento ... 47
3.4.7. Observer .. 47
3.4.8. State .. 49
3.4.9. Strategy ... 50
3.4.10. Template Method ... 51
3.4.11. Visitor .. 51

4. Design patterns used to build the Business Tier ... 53
4.1. Basic issues of the Business Tier design ... 53

4.1.1. Using the session components .. 53
4.1.2. Using the Entity components ... 54

4.2. Bad practices of the Business Tier design ... 55
4.3. Analysis of basic design issues .. 56

4.3.1. Business Delegate Pattern .. 56
4.3.2. Service Locator Pattern ... 59
4.3.3. Session Façade Pattern .. 61
4.3.4. Application Service Pattern ... 64
4.3.5. Business Object Pattern .. 66
4.3.6. Composite Entity Pattern ... 69
4.3.7. Transfer Object Pattern ... 72

3

4.3.8. Value List Handler Pattern ... 73
5. Design patterns used to build the Presentation Tier ... 76

5.1. Basic issues of the Presentation Tier design .. 76
5.2. Bad practices of the Presentation Tier design ... 78
5.3. Design cases ... 79

5.3.1. Intercepting Filter ... 79
5.3.2. Front Controller .. 81
5.3.3. Context object .. 83
5.3.4. Application Controller .. 85
5.3.5. View Helper ... 87
5.3.6. Composite View ... 89
5.3.7. Service to Worker .. 91
5.3.8. Dispatcher View ... 93

6. Design patterns used to build the Integration Tier .. 95
6.1. Basic issues of the Integration Tier design ... 95
6.2. Bad practices of the Integration Tier design ... 96
6.3. Analysis of basic design issues .. 97

6.3.1. Data Access Object ... 97
6.3.2. Domain Store ... 100

7. Example of the multitiered web application ... 106
7.1. Two examples of architectures of the multitier application as the Visual Web
Java Server Pages applications .. 106
7.2. The Visual Web Java Server Pages application based on synchronization of
data by an application ... 107

7.2.1. Structure of project .. 107
7.2.2. Business Service Sub-tier ... 109
7.2.3. Application Service of the Business Tier as the remote sub-tier 112
7.2.4. Integration Tier .. 113
7.2.5. Presentation Tier ... 114

XML-based service description languages ... 119
8. RDF (Resource Description Framework) .. 121

8.1. Model ... 123
8.2. Vocabulary ... 125

8.2.1. RDF vocabulary ... 126
8.2.2. RDFS vocabulary .. 128

8.3. RDF serialization .. 131
8.3.1. RDF/XML ... 132
8.3.2. Terse RDF Triple Language (Turtle) .. 137
8.3.3. N-Triples .. 141

8.4. RDF Applications ... 141
8.4.1. Dublin Core, FOAF .. 141
8.4.2. RDF API .. 142

9. OWL (Ontology Web Language) .. 145
9.1. Ontology and its languages .. 145
9.2. OWL overview .. 146

9.2.1. OWL vocabulary .. 146
9.3. OWL details ... 150

9.3.1. OWL header .. 150
9.3.2. Classes .. 151
9.3.3. Properties .. 154

4

9.3.4. Annotations .. 158
9.3.5. Datatypes and facets ... 159

10. WSDL (Web Services Description Language) .. 162
10.1. Structure of a WSDL document ... 164
10.2. Constructs in WSDL 1.1 ... 166

10.2.1. Element <documentation> ... 166
10.2.2. Element <definitions> .. 166
10.2.3. Element <import> .. 168
10.2.4. Element <types> .. 168
10.2.5. Element <message> .. 169
10.2.6. Element <portType> .. 169
10.2.7. Element <binding> ... 169
10.2.8. Element <service> ... 169

10.3. Sample of WSDL 1.1 document ... 170
10.4. Constructs in WSDL 2.0 ... 171

10.4.1. Element <description> ... 171
10.4.2. Element <documentation> ... 171
10.4.3. Elements <include> and <import> ... 171
10.4.4. Element <types> .. 173
10.4.5. Element <interface> .. 173
10.4.6. Element <binding> ... 176
10.4.7. Element <service> ... 177

10.5. Sample of WSDL 2.0 document ... 177
11. SAWSDL (Semantic Annotations for WSDL and XML Schema) 179

11.1. Annotation Mechanism ... 180
11.1.1. Model Reference ... 180
11.1.2. Schema Mapping ... 181

11.2. Annotating WSDL Documents ... 181
11.3. Sample of SAWSDL description ... 182
11.4. SAWSDL API ... 182

12. UDDI (Universal Description, Discovery and Integration) 184
12.1. Technical Architecture .. 185
12.2. UDDI data structures .. 187

12.2.1. businessEntity ... 188
12.2.2. businessService .. 189
12.2.3. bindingTemplate .. 190
12.2.4. tModel .. 190
12.2.5. publisherAssertion ... 191
12.2.6. operationalInfo ... 192

12.3. UDDI Interfaces .. 192
12.3.1. Inquiry API Set ... 192
12.3.2. Publication API Set .. 193
12.3.3. Security Policy API Set .. 194
12.3.4. Custody and Ownership Transfer API Set ... 194
12.3.5. Subscription API Set .. 195
12.3.6. Value Set API Set .. 195

12.4. Using WSDL Definitions with UDDI .. 195
13. WS-CDL (Web Services Choreography Description Language) 197

13.1. Different views on business processes modelling 198
13.1.1. Orchestration ... 199

5

13.1.2. Choreography .. 200
13.2. WS-CDL document .. 200
13.3. package ... 202

13.3.1. informationType ... 203
13.3.2. token, tokenLocator ... 203
13.3.3. roleType .. 204
13.3.4. relationshipType .. 205
13.3.5. participantType .. 205
13.3.6. channelType .. 206
13.3.7. Choreography .. 208
13.3.8. Variables ... 209
13.3.9. Activity notation ... 210
13.3.10. Ordering structures .. 211
13.3.11. WorkUnit-Notation ... 211
13.3.12. Interaction activity .. 212
13.3.13. Perform activity .. 213
13.3.14. Assign activity .. 214
13.3.15. SilentAction activity .. 214
13.3.16. NoAction activity .. 215
13.3.17. Finalize activity .. 215
13.3.18. Exception block ... 215
13.3.19. Predefined functions .. 215
13.3.20. WS-CDL Example ... 216

Literature .. 222

6

1. Introduction
This document contains reference materials supporting “INFORMATION SYSTEMS
MODELLING, UML AND SERVICE DESCRIPTION LANGUAGES” course offered at
Wrocław University of Technology. The language of the course is English. The level of
English foreseen for attendees is advanced. Students enrol obligatorily for the course on the
second term of the first year, during which 30h of lectures as well as 30h of laboratories take
place. Workload is 150, and number of ECTS points equals 5.

Outcome: Knowledge of techniques based on design patterns used in object analysis,
design and programming. Web Services architecture design and implementation.

Content: Design patterns of Client, Web, Business and Enterprise information system tiers
of object oriented software, XML based service description languages, as WSDL (Web
Services Description Language) and SAWSDL (Semantic Annotations for WSDL and XML
Schema), RDF (Resource Description Framework) and OWL (Ontology Web Language),
UDDI (Universal Description, Discovery and Integration), WS-CDL (Web Services
Choreography Description Language).

7

PART I

Patterns of multitiered systems

2. Introduction to Multitiered Information Systems
Modelling of the Information System is based on mapping of data and processes existing in

the real world into data structures and processes of some software domain (Figure 2.1).

Figure 2.1. Definition of the Information System.

An Informal Information System is based on human resources. It supports work of people.

A Formal Information System consists of management procedures and knowledge base as
well as clearly outlined functionality of system. The Technical Information System is defined
as follows:

– An organized team of technical resources (computers, software, hardware
teletransmission etc.),

– Used for collecting, processing and transmitting information.
The Information System is a collection of interrelated elements informal, formal and

technical whose main function is data processing using the computer technique.
The Section 2.1 presents general characteristics of a multitiered information system, the

Section 2.2 describes a software development process, the Section 2.3 shows the Software
Development Environment and the Section 2.4 characterizes the role of UML (Unified
Modelling Language).

2.1. Multitiered Information System
Figure 2.2 shows the multitiered information system needed for a large number of users,

huge size of executing data and vast amounts of executing services. Each tier is specialized in
the implementation of sub-services used to implement the full functionality of the system. The
Busines Tier processes and stores data dedicated to one user, or it uses all data stored in a
common buffer of many services called by all users.

In software engineering, scalability is a property of a system, which indicates its ability
either to handle growing amounts of work or to become enlarged [1] – it is a feature that
allows the behaviour of the system to remain in fact in these situations. For example, it can
refer to the capability of a system to increase total throughput under increased load, because it
can add resources such as buffers with data and instances of services.

11

Program performance is defined by a number of units of input data (data size), which in
due time, the program manages to transform into units of output data.

Client Tier

Customer applications, applets, elements of
the graphical user interface

Presentation Tier
 JSP Pages, servlets, and other user

interface elements

Business Tier
 EJB components and other business

objects

 Integration Tier

 JMS, JDBC, connectors and connections
with external systems

Resource Tier
 Databases, external systems and other

resources

Interacting with users, device
and user interface

presentation

Login, session management,
content creation, formatting,

validation and content
delivery

 Business logic, transactions,
data and services

Resource adapters, external
systems, mechanisms for

resource, control flow

Resources, data and external
services

Figure 2.2. Example of the multitier Information System [2].

Figures 2.2-2.5 show the multitiered scalable information system with high performance [9].

Database
Server

Java EE
Server

Client

Machine

Java EE
Application 1

Java EE
Application 2

Client Tier

Enterprise
Beens

Enterprise
Beens Business Tier

Web Tier

EIS Tier
 Database

JavaServer
Faces
Pages

Database

Figure 2.3. Multitiered Applications [9].

Figure 2.3 shows multitiered application: two types of the Client Tier, the Web Tier

(Presentation Tier) for the web application, the Business Tier and the tier of Enterprise
Information System (EIS Tier).

Figure 2.4 presents the services of the Business Tier independent of the kind of the Client
Tier because of a business logic and data encapsulation. The access to the Business Tier is the
same for the Presentation Tier and the Application Client.

Figure 2.5 shows access of the Application Client or the Web Pages Client (the Client Tier)
across the Web Tier to the EIS Tier.

12

Business Tier

Web Tier

Web Pages
Servlets

Application Client
And Optional
JavaBeans
Components

Web Browser,
Web Pages,
Applets, and
Optional
JavaBeans
Components

Client Tier

JavaBeens
Components
(Optional)

Java EE
Server

Figure 2.4. Web Tier and Java EE Applications [9].

Business Tier

Application Client
And Optional
JavaBeans
Components

Web Browser,
Web Pages,
Applets, and
Optional
JavaBeans
Components

Client Tier

Java EE
Server

EIS Tier
Database and

Legacy Systems

 Java Persistence Entities
Session Beans
Message-Driven Beans

Web Tier

Web Pages
Servlets

JavaBeens
Components
(Optional)

Figure 2.5. Business and EIS Tiers [9].

2.2. Software Development Model
The process model of software development is based on its management model and the

software construction (or the software life cycle model) [4], [5], [6], [8].
During the software development, the two questions related to software development

should be answered:
– What and how to do? – while constructing the software (Table 2.1),
– When to perform? – during the software development process management (Figure

 2.6).

13

Table 2.1. The software life cycle model [4].
Modelling the structure
and dynamics of the system

Implementation of the structure
and dynamics of the system, code generation

Perspective of
the concept

Perspective of
specifications

Perspective of
implementation

What to do? How should I use? How to perform?

• Model of the real system
(business modelling)

• Requirements
• Analysis (conceptual model)
• Conceptual model tests

• Design model (hardware and
architecture software;
 user access; storage)

• Deployment model
• Design model tests
• Deployment tests

• Programming (specification of
the program: declarations,
definitions; additional data
structures: structure of
containers, files, databases)

• Software tests
• Implementation

Table 2.1 presents the software life cycle model as the workflows, which consist of the

following activities: business modelling, requirements, analysis, design, implementation,
change management, business management, environment and test of the different product of
the software life cycle.

Figure 2.6 shows when the workflows execute in the Unified Iterative-Incremental
Software Development Process. The workflows develop the models of software and answer
the question as follows: when do the tasks of workflows happen?

Workflows are defined as follows: [4]
– Business modelling - a description of dynamics and structure,
– Requirements - requirements specification through use cases,
– Analysis and design - architectural development of different perspectives,
– Programming - software development, unit testing, system integration,
– Testing – to describe test data, procedures and correctness metrics,
– Implementation - to determine the final configuration of the system,
– Configuration management – to gain control over changes and to ensure coherence of

the system components,
– Project management – to describe various strategies of an iterative process,
– Determination of the environment – the description of a structure necessary to develop

a system.

14

 Core Workflows

Configuration
Management

Requirements

Analysis,
Design

Programming

Implementation

Test

Iterations (time)

1-a 2-a - - - - - n-1 n

Inception Elaboration Construction Transition

Business
Modeling

 Environment

Project
Management

Figure 2.6. Unified iterative-incremental software development process - when? [4].

These are all perspectives on the design of an object-oriented information system [8]:
1. The perspective on concept of the analysis model - it refers to identifying what objects

should need to do.
2. The perspective on interface specifications of the design model – it concerns answers

how to use objects?
3. The perspective on implementation of the implementation model – it represents

answers how to implement an interface.
4. The perspective on creating and managing objects of the implementation model - it

means separation of individual subsystems to create objects and facility management.
5. The perspective on use of objects (implementation) - an object A should only use an

object B, in other words the object A cannot simultaneously create the object B.
The perspectives useful for understanding objects as object identification are as follows

[8]:
1. The perspective on concept of the analysis model – it concerns the facts that the object

is a collection of various types of liability.
2. The perspective on specifications of the design model – it represents the object as a

collection of methods (behaviours) that may be caused by its methods or other objects
3. The perspective on implementation (source code) - it refers the object code consisting

of methods, data as well as interactions.
Perspectives for scaling the system as the creation, management and use of objects [8]:
1. The perspective on creating and managing objects – concerns the changes in the

implementation on the objects relating to the factories of objects (creating the objects)
and should not affect the management of these objects.

2. The perspective on using objects – represents any change of the implementation of
object, which should not require other object implementations to be altered.

15

Analysis of
commonality

Analysis of
variability

The perspective
of the concept

The perspective
of specifications

The perspective
of implementation

Abstract class

+ Methods ()

 Concrete
Class 1

+ Methods ()

Concrete
Class 2

+ Methods ()

Figure 2.7. Perspectives on understanding objects - the method of identifying objects and classes [8].

Figure 2.7 shows three perspectives of identifying objects and classes as the relationship

between the prospect of the specification, design and implementation. During this process,
following questions must be answered: what and how to perform [8].

The relationship between the perspectives of specification and concept appoints that the
prospect of the specification defines interfaces required to handle all cases of the problem i.e.
the common part of data and their behaviours from the viewpoint of the perspective of the
concept.

The relationship between the specification perspectives and implementation presents
taking into account the specification, we understand how to implement the individual cases
(i.e. variable part of data and their behaviours).

The summary of the principles of objectivity are as follows [8]:
– Objects are defined through the prism of their responsibility,
– Encapsulation means any kind of concealment: data, implementation, class (using

abstract classes, or interface), the project, the object,
– The use of commonality and variability analysis in order to create abstractions

representing the variability in the data and behaviour,
– The use of inheritance as a way of the implementation of the variability in the data and

their behaviour,
– Striving for a low degree of relationships,
– Striving for a high degree of consistency,
– Separating code, which uses objects from the code that creates them,
– The principle of a single rule - only one implementation of the operation of a single

rule,
– Use of names clearly describing the purpose of objects.

2.3. Software Development Process Management
Figure 2.8 shows the relationship between People, Project, Product, and Process in

Software Development [4].

People

Process

 Project

Product

Tools Participants

Template

Result

Automation

Figure 2.8. The Four Ps: People, Project, Product, and Process in Software Development [4].

16

There are important issues of the software development:
– People: Architects, developers, testers, users, customers etc.,
– Project: Organizational element through which software development is managed ,
– Product: Artefacts that are created during the life of the project such as models, source

code, executables and documentation ,
– Process: A software engineering process is a definition of a complete set of activities

needed to transform users’ requirements into a product,
– Tools: Software used to automate the activities defined in the process.

Architect

 The Project
Manager

Users

Testers

 Designers

 Analysts

System

Figure 2.9. Workers participating in the software development [4].

Figure 2.9 shows the People as the workers participating in software development. Some

workers play the single role as the Architect or the Project Manager and other workers play
the multi-types and multi-objects role as users, testers, designers and analysts.

Basic concepts related to Projects are as follows:
– Feasibility of the project,
– Risk Management,
– Organization structure of design workers,
– Scheduling project tasks,
– Understanding of the project,
– Rational activities in the project.
 The main Project features represent:
– Sequence changes in the project,
– Iteration series,
– Organizational Pattern.
The Products represent the following things:
– System as the collection of models such as Use-Case Model, Analysis Model, Design

Model, Deployment Model, Implementation Model, Test Model (Figure 2.10),
– Diagrams: class, interaction, cooperation, states,
– Requirements, tests, manufacture, installation,
– System composed of artefacts representing programming tools, compilers, computers

programmers architects testing facilities traders administrators.
Artefacts are the general terms for any kind of information created, produced, changed, or

used by workers in developing system [4]. There are artefacts related to software creation
(requirements, analysis, project, programming, tests) and artefacts of the project management
process.

17

Use-Case
Model

Analysis
Model

Design
Model

Deployment
 Model

Implementation
Model

Test
Model

Figure 2.10. The primary model set of the Unified Iterative-Incremental Software Development Process [4].

Models provide following issues:
– System abstraction,
– Different perspectives on the system,
– Relationships between models.
The definition of the Process is as follows:
– The process as the software development process is a complete set of activities needed

to map user requirements into a set of artefacts that represent software development
factors:
o Organizational,
o Domain,
o Life-cycle,
o Technical.

Software Tools allow to:
– Automate the process,
– Standardize of process and product,
– Support the entire software lifecycle: defining of requirements, visual modelling and

design, programming, testing.

2.4. The role of the Unified Modelling Language - UML
UML is the language supporting the iterative - incremental unified process of the software

development. UML can be used for the software development by defining the UML diagrams.
Diagrams represent the structure and behaviour of the software [4], [6].

UML diagrams for modelling structure are as follows:
– Package Diagrams,
– Class diagrams,
– Object Diagrams,
– Mixed Diagrams,
– Component diagrams,
– Deployment diagrams.
UML diagrams for modelling behaviour are as follows:
– Use-case diagrams,
– Activity Diagrams,
– State diagrams,
– Communication Diagrams,
– Sequence Diagrams,
– Timing Diagrams,

18

– Interaction Diagrams.
There are many benefits of using UML 2:
– Teamwork,
– Overcome the complexity of the project,
– A formal, precise presentation of the project,
– Creating a standard project,
– The opportunity of testing the software in an early stage in its development.

3. Overview of design patterns for supporting information
systems modelling

In software engineering, emphasis is placed on software complexity and performance.
They determine the quality of software. Another issue is efficient management of the software
development. It is easier to manage the software development when using the principles of
building software. One of them is the use of design patterns. There were doubts whether the
use of design patterns supports the creation of high-quality software in an efficient manner.
This introduction explores some of the issues surrounding design patterns and considers
arguments from both the supporters and adversaries.

On one side of discussion are the advantages of applying design patterns, which result in
an increase in software quality (such as completeness of abstraction, reusability,
understandability, maintainability, testability), estimated cost of production, functionality
offered and improvement of the project management. On the other side of the discussion there
are groups of programmers who oppose the advocates of design patterns because these groups
fear a deterioration of software performance and the difficulties in the implementation of
design patterns in some languages.

A design pattern is a general reusable solution to commonly occurring problems in the
software design and it is not a finished design. Therefore, it cannot be transformed directly
into a code. Patterns as a kind of the description or the template provide a way to solve a
problem in different situations. They typically show relationships between classes and
interactions among the objects that are related but they do not provide the final specification
of application classes and objects. However, design patterns facilitate the specification of the
application classes and objects.

Therefore, efforts have been made to codify design patterns in creating multi-tiered
software. Developers should have the knowledge of techniques based on design patterns
which are used in object-oriented analysis, design and programming. They will develop their
analytic skills for building object oriented multi-tiers software based on design patterns of the
Client, Web, Business and Enterprise Information System Tiers.

The use of design patterns improves the management of software development. This
follows from the fact that design patterns are composed of several sections. On the one side,
there is the classification based on the Structure, Creational, and Behavioural sections [3], [6],
[8] and on the other side there is classification supporting design and implementation of the
multi-tier software such as Presentation, Business and Integration Patterns [2].

These sections describe a design motif: a prototypical micro-architecture that developers
introduce to their particular designs, based on well-defined rules of applying design patterns.
A micro-architecture as a design pattern is a set of program constituents (e.g. classes,
methods...) and their relationships. As participants of the design group, developers well
understand structure and organization of developed software if they are similar to the chosen
design motif. Additionally, patterns allow developers to work using well-known, well-
understood names of software activities. This improves the communication and organization
of the workflow among the contractors of the project, such as analysts, designers,
programmers and testers, and a project manager. They use the well-written documentation for
a design pattern, which describes the context, in which the pattern is used, the forces within
the context that the pattern seeks to resolve, and the suggested solution.

In addition to this, design patterns can be improved over time by making refactoring,
turning some micro-architectures onto functionality equivalent ones. Therefore, they prevent
subtle issues that can cause a major problem, for example reduce the scalability and

20

performance of software. This manner of the software development makes it is more robust
than management of ad-hoc designs.

However, some group of software engineering experts questions these claims. They
diminish the importance of the role of design patterns in production software, and they even
mention the negative impact on software development.

The one of them is necessity of workarounds for missing language features. It is discussed
in many design patterns as workarounds for the limitations of languages such as C++ and Java
[7]. For instance, the main goal of the Visitor pattern is to add new operations to existing
classes without modifying them. It is implemented in such languages as C++ and Java as a
class, which is declared as a syntactic structure with a specific and closed set of methods.
These patterns need not be implemented in a language that supports multi-methods as
Common Lisp, because the new methods can be added outside of the class structure without
modifying its structure. Similarly, in C++ and Java the Decorator pattern carries out functions
of dynamic delegation, as found in Common Lisp, Objective C, Self and JavaScript. Many
patterns only imply object orientation such as the Iterator pattern as a generalization of 'for'
loops, an equivalent notion of loop.

The other criticism of design patterns is that in order to achieve flexibility, design patterns
usually introduce additional levels of indirection. In some cases these levels may complicate
the resulting designs and decrease application performance.

In addition, a pattern must be always programmed into each application that uses it
because of the definition of design patterns. Therefore some authors believe that use of design
patterns is a step backward from software reuse as provided by components. Some experts are
working on transformation of design patterns into the functional-oriented reusable
components.

In conclusion, the use of design patterns could lead to many benefits for developers, but
could also lead to lower quality software. Therefore, developers should hone their skills on
analysis, design and programming of multi-tiers applications based on design patterns
fulfilling the user requirements for functionality, quality and cost of software.

In the Section 3.1, fundamentals of identification of design patterns are presented. The
Sections 3.2- 3.4 present patterns as follows: creational, structural and behavioural.

3.1. Fundamentals of the design patterns identification
There are some issues tied with design patterns:
– A well-built object system is full of object-oriented patterns,
– A pattern is usually adopted to solve a typical problem in the given context,
– A structure of a design pattern is represented in the form of class diagram,
– The pattern behaviour is showing up using the sequence diagram,
– The design pattern represents the relationship between problem and solutions

(according to G. Booch, J. Rumbaugh, I. Jacobson, UML User's Guide).
The main experts of software engineering represent the significant opinions upon the

design patterns:
– Each pattern consists of three parts, which express the relationship between a particular

context, problem and solution (based on Christopher Alexander),
– Each design pattern is a three-part rule that expresses the relationship between a

particular context, a recurrent distribution of forces in this context, and software
configuration, allowing for the mutual balancing of these forces in order to solve the
task (based on Richard Gabriel),

21

– A design pattern is an idea that proved to be useful in a real context and will probably
be useful in another (based on Martin Fowler).

These opinions support the ways of identification the design patterns during software
development and ability of reuse some known patterns in this process. As one kind of
classification there are three types of design patterns: creational, structural and behavioural.
They are based on concepts of aggregation, inheritance, interface and polymorphism. In other
words, they represent the most successful of paradigms of object- oriented methodology in
structure and behaviour of software.

Each pattern is described by using the following template:
– A solved problem,
– A solution of a problem with description of components of a pattern,
– A client of pattern,
– A result.

3.2. Creational patterns
The main goal based of using creational patterns in software is isolation of rules for

creating objects from rules that determine how the use of these objects (separation of the code
for creating objects from the code that uses objects).

The list of creational patterns and aspects, which can change, is as follows [3], [6], [8]:
1. Builder - a way of creating of the complex objects.
2. Abstract Factory - a family of objects.
3. Factory Method - a subclass of the created object.
4. Prototype - a class of the created object.
5. Singleton - only one copy of the class.

3.2.1. Abstract Factory
Problem

– Different operating systems,

: Creating the appropriate families of related or dependent objects in the following
cases:

– Different requirements for effectiveness, efficiency, etc.,
– Various versions,
– Different types of co-application (such as different types of databases),
– Different functionality for different users,
– Different groups of elements depending on the settings related to the location (e.g. data

format).
Solution

Figure 3.1

: A Client object uses the AbstractFactory interface and the AbstractProduct
interface. The ConcreteProduct and ConcreteFactory are classes that implement these
interfaces. Each ConcreteFactory object can create one of the families of ConcreteProduct
objects ().

22

Figure 3.1. Class Diagram of the Abstract Factory Pattern.

Client

Figure 3.2
: The Client object manages creation of objects by the factory, but it is independent

of the rules on the creation of these objects ().

Figure 3.2. Sequence diagram of creation of the ConcreteProduct object of the Abstract Factory Pattern.

– Isolation of rules for creating objects from rules that determine how the use objects,
Result:

– To define the rules to create objects, that can best achieve the main goals of the
application,

– Configuring applications using associated objects,
– The system uses created objects, knowing only their base classes.

3.2.2. Builder
Problem: Creating a complex custom objects represented in different ways.
Solution

Figure 3.3
: The Director object has a request to the ConcreteBuilder object that implements

the Builder interface, for creating the Product object ().

23

Figure 3.3. Class Diagram of the Builder Pattern.

Client

Figure 3.4
: A Client instructs the Director object to create a Product object using the supplied

the ConcreteBuilder object ().
Result

The pattern supports separating code used to construct Product objects from code using
these objects. For example, the Director objects are created to read documents in RTF or
XML format using the ConcreteBuilder as the ASCII converter, which supplies the ASCII
format document represented by the Products objects, from the documents of the RTF or the
XML formats. This does not affect of the client code, because of converting abilities of many
formats of different ConcreteBuilder objects.

: The Director objects receive the Builder abstract interface that allows you to
construct Product objects freely.

The algorithm to build a Product object is created independently of its components that
may be of any type. What we achieve is better control of the construction of the Product
object by using operations, implemented through an interface Builder by the ConcreteBuilder
object and controlled by the Director object.

Figure 3.4. Sequence Diagram of creation of the Product object of the Builder Pattern.

3.2.3. Factory Method
Problem: This pattern defines an interface for creating objects, and its subclasses are

allowed to decide which class is to be each of these objects.

24

Solution

Figure 3.5

: The Creator interface declares the factory method, which in turn declares the
produced object, derived from the Product object. The action is transferred to the
ConcreteCreator object, which produces the ConcreteProduct object by means of the factory
method ().

Client:

Figure 3.6

 The client selects the ConcreteCreator object with the appropriate factory method,
which creates the ConcreteProduct object. Processing the ConcreteProduct object by the
ConcreteCreator lies in the fact that only a factory method knows the representation of the
object and manner of its creation, while other methods know interface of the Product abstract
class and should only use methods of this interface ().

Figure 3.5. Class Diagram of the Factory Method Pattern.

Result
– Isolation of rules for creating objects from rules defining how to use the objects under

the family implementing the Creator interface,

:

– To define the rules to create objects that can best achieve the objectives of an
application,

– The ConcreteCreator object should serve well to use the ConcreteProduct object or its
derivative from the ConcreteProduct object, but only its factory method should know
the rules for creating ConcreteProduct objects.

Figure 3.6. Sequence Diagram of creation and using the Product object of the Factory Method Pattern.

25

3.2.4. Prototype
Problem: Separating code to create objects from code for using them, without building a

class hierarchy of factories in a situation where you need a limited number of created objects.
Solution:

Figure 3.7
 The Client object receives the needed object with the Prototype interface as the

ConcretePrototype object by cloning objects ().
Client:

Figure 3.8
 The Client object uses the cloned objects as the ConcretePrototype objects, which

implement the Prototype interface ().
Result
– Adding and deleting objects without using any object factory,

:

– Reducing the number of classes,
– Dynamic loading ConcretePrototype classes implementing the Prototype interface.

Figure 3.7. Class Diagram of the Prototype Pattern.

Figure 3.8. Sequence Diagram of the Prototype Pattern.

Below, it is an example of using the method clone, implemented the Prototype Pattern in

the ArrayList class.

26

3.2.5. Singleton
Problem: A guarantee, that only one instance of a class exists in software. There is a global

access to this object such as a file system or window system.
Solution

Figure 3.9
: A Singleton object makes sure on its own that no other object was constructed of

the same type ().
Client: The Singleton object can have multiple clients.
Result
– Reduced name space,

:

– Controlled access to the single copy.

Figure 3.9. Diagram Class of the Singleton Pattern.

 }

public Object clone() { // the clone method of the ArrayList class
 try{
 ArrayList<E> v = (ArrayList<E>) super.clone();
 v.elementData = Array.copyOf(elementData, size);
 v.modCount = 0;
 return v;
 } catch (CloneNotSupportedException e)
 { throw new InternalError(); }
 }
public class Main { //the example of the use of the Prototype pattern
 public static void main (String[] args) {
 ArrayList coll1, coll2 = new ArrayList();
 coll2.add(new Integer(1));
 coll2.add("B");
 coll1 = (ArrayList) coll2.clone();
 coll1.add("C"); // [1, B, C]
 coll2.remove(0); } // [B]
}

27

3.3. Structural patterns
The main goal of structural patterns is to make classes and objects into larger structures.
There are two kinds of structural patterns. On one side, there is a kind of a class design

pattern, which uses the inheritance and polymorphism to make the structures of interfaces and
their implementations. On other side, there is the object design pattern which describe the way
how to combine objects in order to obtain new functionality, even during execution of a
program.

There is the list of the structural patterns and aspects, which can change, as follows [3], [6],
[8]:

1. Adapter - class and object design pattern; an interface of an object.
2. Bridge - object design pattern; an implementation of the object.
3. Composite - object design pattern; a structure and a scheme of the object.
4. Decorator – object design pattern; an obligation of the object without defining of the

subclass.
5. Facade - object design pattern; an interface of a subsystem.
6. Flyweight - object design pattern; a cost of storing objects.
7. Proxy - object design pattern; a way of an access to the object; its location.

3.3.1. Adapter
Problem: The class interface should be adapted to the interface expected by the client, e.g.

the pattern associated with the change of class libraries that support graphics.
Solution

Figure 3.10
: The Client object uses the Adapter object, which implements the Target

interface, and mediates the access to methods of the Adaptee objects (, Figure
 3.11).

Client:

Figure 3.10

 The Client object is independent of changes in methods or headers of their
definition of a library class (Adaptee) that implement specialized operations such as graphical
operations, because the client always uses methods of the Adapter object, which does not
change the headers of the methods (, Figure 3.11).

Figure 3.10. Class and sequence diagrams of an object pattern type of the Adapter Pattern.

Result
– Adapter object (making objects):

:

o It allows one Adapter object to collaborate with multiple objects such the Adaptee
object and its derivatives. In the Adapter object can add new functionality – it is an
advantage of the Adapter pattern.

28

o In case of a hierarchy of the Adaptee classes, which reflect the change in the
behaviour of this object, the Adapter object must refer to the subclasses of Adaptee
object instead of the Adaptee type – it is a defect of Adapter pattern.

– Adapter classes (multiple inheritance):
o Pattern adapts the interface of the class, which is used in the program to the

interface of the new class libraries, but does not apply to the subclasses – it is the
defect of Adapter pattern.

o The Adapter object allows you to redefine the behaviour of the Adaptee class
because of its subclass– it is an advantage of Adapter pattern.

It introduces only one Adapter object that provides the adaptation of the one Adaptee
object – it is an advantage of the Adapter pattern.

 Figure 3.11. Class and sequence diagrams of the class pattern type of the Adapter Pattern.

3.3.2. Bridge
Problem: You should separate the abstract from the implementation, so that they can

change independently of one another.
Solution

Figure 3.12

: The Abstraction interface is implemented by the RedefineAbstraction class. The
RedefineAbstraction objects have methods that use the methods of the Implementor abstract
class (or an interface), which are implemented by specific ConcreteImplementor classes,
cooperating with various classes (with different interfaces) from a variety of platforms and
libraries (, Figure 3.13).

Client
Figure 3.14

: The client uniformly treats each RedefineAbstraction object without committing to
a specific platform or a library ().

Result
– Separation of abstraction from implementation to eliminate dependencies while

compiling a program or activity,

:

– Introduction of a multi-tier architecture,
– Extensibility of class hierarchies of the Abstraction and Implementor classes,
– Easy addition of new objects,
– Hiding implementation details.

29

Figure 3.12. Class Diagram of the Bridge Pattern.

Figure 3.13. Class Diagram of an example of the use of the Bridge Pattern supporting two kinds of frames of the

GUI.

Figure 3.14. Sequence diagram of an example of the use of the Bridge Pattern supporting two kinds of frames of

the GUI.

30

3.3.3. Composite
Problem

: It combines objects in object-oriented data structures (tree) as a part-whole.

Figure 3.15. Class Diagram of the Composite Pattern.

Solution

Figure 3.15

: The Component abstract class (or an interface) declares basic operations for
graphical objects. The Composite object contains two sets of objects: Composite objects and
containing Leaf objects, which in turn do not contain any objects at all. The Leaf objects
implement the Component class (, Figure 3.16).

Client:
Figure 3.17

 The Client object uniformly treats each element of the object structure - as objects
of the Component type ().

Result
– Recursively grouping objects primary (type-Leaf) and complex objects (Composite),

:

– A simple construction of a client who does not need to distinguish between simple and
composite objects,

– Easy addition of new facilities,
– Difficulties in maintaining restrictions of complex objects.
Implementation: Figure 3.18 a new class of "Boundry" such as Swing package ():
– The JComponent class represents the Component class,
– The JButton class represents the Leaf class and the,
– The JPanel class represents the Composite class.

31

Figure 3.16. Object Diagram of the Composite Pattern.

Figure 3.17. Sequence diagram of the key method of the Composite Pattern.

32

Figure 3.18. Example of an Object Diagram of the Composite Pattern as the GUI of the Swing library.

3.3.4. Decorator
Problem: Dynamically developing functionality of a facility as an alternative to creating a

deep hierarchy of classes.
Solution:

Figure 3.19

 A Component is an abstract class (or an interface) for visual objects. Its interface
defines operations of drawing and event handling implemented by the ConcreteComponent
class. The Decorator abstract class (or an interface) inherits operations from the Component
class (or an interface) and defines additional operations performed by the ConcreteDecorator
object (, Figure 3.20).

 Figure 3.19. Class Diagram of the Decorator Pattern.

33

Client:

Figure 3.21
 The object executes with objects inherited from the Component class, with and

without decorators (, Figure 3.22).
Result
– A dynamic and transparent solution to add additional components to the basic

components,

:

– Easy removal of any additional functionality,
– Replacement of a class hierarchy containing the equivalent functionality on a

permanent basis, by dynamically adding decorators with different functionalities.
Implementation

: a new class of "Boundry" such as Swing package classes, library classes
of Java Server Faces components.

Figure 3.20. Class Diagram of an example of using the Decorator Pattern.

Figure 3.21. Sequence Diagram of the example of using the Decorator Pattern.

34

Figure 3.22. Sequence Diagram of the example of using the Decorator Pattern (related to Figure 3.20).

3.3.5. Façade
Problem: Figure 3.23 Grant only access to selected functions of the system tier ().
Solution

Figure 3.24
: It is an interface or interfaces of a system tier - facades provide several methods

for selected groups of subsystems (, Figure 3.25).
Client Figure 3.26: receives only necessary methods ().
Result
– Release of important methods, only for example, a tier of the system use cases, hides

classes of the system tier,

:

– The facade may prevent access to all methods of the encapsulated class.

Figure 3.23. Refactorization of the Business Tier by using the Façade Pattern.

Tier1
Tier2

Tier1

Tier2

35

Figure 3.24. Class Diagram of the Façade Pattern.

Figure 3.25. Class Diagram of an example of using the Façade Pattern.

Figure 3.26. Sequence Diagram of an example of using the Façade Pattern (encapsulation and distribution of

business logic between the Façade object and the TTitle_book of adding a new TBook object – by the add_book
method of the Façade object and the add_book method of the TTitle_book object).

3.3.6. Flyweight
Problem: Repeated use of the same object - to share objects.
Solution:

Figure 3.27

 The Flyweight interface declares methods which are implemented by
ConcreteFlyweight objects (shared use) and UnsharedConcreteFlyweight objects (used once)
used by client applications. Objects-pollen are created and managed by the FlyweightFactory
object ().

36

Client: A client keeps references pools to flyweight objects.
Result: Memory savings by sharing facilities of „flyweight” objects,
Implementation (Figure 3.28, Figure 3.29, Figure 3.30), a new class of "Boundry" or

"Entity", e.g.:
– Reference of the same object from a TProduct1 family (flyweight) may be stored in

many objects such as the TItem (client),
– Object References of the TPromotion object (flyweight) may be kept by one of the

objects of the family TProduct1 (client).

Figure 3.27. Class Diagram of the Flyweight Pattern.

Figure 3.28. Class Diagram of an example of using the Flyweight Pattern.

1..*

1..*

0..*

37

Figure 3.29. Sequence Diagram of an example of using the Flyweight Pattern for preparing bills (the addItem
method of the TFacade class) – the family of TProduct1 objects as the flyweights objects of TItem objects of

TBill objects.

Figure 3.30. Sequence Diagram of an example of using the Flyweight Pattern for preparing bills (the addItem
method of the TBill class) – the family of TProduct1 objects as the flyweights objects of TItem objects of TBill

objects (related to Figure 3.29).

3.3.7. Proxy
Problem: Representation one object to control access to default one.

38

Solution:
– A Proxy object stores a reference to the true object of the RealObject object and may

replace the RealObject object because they have the same interface (a Proxy class
inherits from the Subject class) and can control access to the RealObject object,

– The Proxy object may be a remote object, referring to the RealObject object, or
provides the virtual access to the object by buffering the RealObject object, or prevents
the access to the RealObject object by unauthenticated objects (Figure 3.31, Figure
 3.32).

Figure 3.31. Class Diagram of the Proxy Pattern.

Client: Any object of any tier of the multitier systems (Figure 3.33).
Result:
– A remote Proxy object can hide RealObject objects in any address space,
– A virtual Proxy object improves performance by caching the data of the RealObject

object and limits unnecessary operations on the RealObject object such as
modifications of file records,

– The Proxy object provides security, because it can authorize or prohibit access to
RealObject objects.

Figure 3.32. Class Diagram of an example of using of the Proxy Pattern.

39

Figure 3.33. Sequence Diagram of an example of using of the Proxy Pattern (as the ProxyFigure object, which

can also draw the figure such as the Figure object).

3.4. Behavioural patterns
The main goal of behaviour patterns allocation of algorithms and obligations, covering the

patterns of objects and classes, and communication between objects.
The list of behavioural patterns and aspects, which can change, is as follows [3], [6], [8]:
1. Chain of Responsibility - an object, that can achieve a request.
2. Command - a condition and a way of realization of a request.
3. Interpreter - a grammar and an interpreter of a language.
4. Iterator - a way of the access and walking through elements of an aggregate.
5. Mediator - why and which objects influence one another.
6. Memento - which and when private information is stored outside the object.
7. Observer - number of objects, which are dependent on other objects and how

dependent objects keep the actual state.
8. State - a state of objects.
9. Strategy - an algorithm.
10. Template method - steps of the algorithm.
11. Visitor - operations, which can be applied to objects without changing their classes.

3.4.1. Chain of Responsibility
Problem: The pattern creates a chain receiving objects and passes the request along a chain

of objects, until any object, which can handle it.

40

Solution: The Handler interface declares the service of demands and possibly a reference
to the successor. The ConcreteHandler object is responsible for claims, which are detected
and supported (Figure 3.34).

Client: generates and directs requests to the list of ConcreteHandler objects (Figure 3.35).
Result: The object to be handled and the ConcreteHandler objects have no explicit

knowledge about them and do not necessarily know the structure of the chain. A chain of
commitments increases flexibility in allocating service requests by changing the subclasses of
objects and structures of objects chain - but no guarantee of receiving a request.

Implementation: Use of the event handlers.

Figure 3.34. Class Diagram of the Chain of Responsibility Pattern.

Figure 3.35. Sequence Diagram of the Chain of Responsibility Pattern.

41

3.4.2. Command
Problem: Encapsulation of requests in the form of an object, allowing to parameterize the

various demands of clients and records requests.
Solution: The Command interface declares the performed operations. The

ConcreteCommand object defines the link with the Receiver object and its action, and
implements the execute method by calling the methods of the Receiver object. The Invoker
object asks the ConcreteCommand object to perform request. The Receiver object knows how
to execute a request (Figure 3.36).

Client: The Client creates the ConcreteCommand object and sets Receiver objects, which
perform the request, and the caller such as the Invoker object (Figure 3.37).

Result (Figure 3.37):
– Separation of the objects which are triggering the operation and which are executing

these operations,
– Ability to create complex objects with the ConcreteCommand objects,
– Ease of insertion of new classes of the derivative-type Command.

Figure 3.36. Class Diagram of the Command Pattern.

Figure 3.37. Sequence Diagram of the Command Pattern.

3.4.3. Interpreter
Problem: A definition of representation for the grammar of the given language and the

interpreter of sentences written in a language-defined by the grammar.
Solution: The Context object contains global information for the interpreter. The Client

object gets the built the AbstractSyntax tree representing the sentence of the language and
calls its interpret method - a tree made up of the TerminalExpression and

42

NonterminalExpression objects, which implement the AbstractExpression interface (Figure
 3.38).

Client: The Client object builds or gets a syntax tree, and starts the process of interpretation
of the sentence represented by the tree (Figure 3.39).

Result:
– Easy modification of the grammar,
– Easy to implement different grammar,
– Difficulties to handle complex grammar - each class represents at least the one

production rule,
– Adding new ways of interpreting the expression by the modifications of the classes.

Figure 3.38. Class Diagram of the Interpreter Pattern.

Figure 3.39. Sequence Diagram of the Interpreter Pattern.

43

Example:
TerminalExpression = {-6, -2, 1, 5, x, y},
NonterminalExpression = {S, A, AN, B, N},
and rules BNF notation:
<S> ::= <AN><AN>
<AN> ::= <A><N>|<N>
<N> ::= x | y
<A> ::= 1 | -2
 ::= 5 | -6
((1+x)+(-6+y))

3.4.4. Iterator
Problem: Sequential, multiple and equal access to aggregated elements of the object

without specifying the internal structure of the elements.
Solution: The Iterator interface defines access to elements of units and how to pass through

the unit. The ConcreteIterator object implements the Iterator interface. The Aggregate
declares the interface through passes the Iterator interface. This is the only a link between
ConcreteAggregate and ConcreteIterator objects (Figure 3.40).

Client: The Client object can track in the ConcreteAggregate object by using the
ConcreteIterator object, which an element is the current and next or previous (Figure 3.41).

Result:
– Opportunity of free passage through the ConcreteIterator object the ConcreteIterator

interface simplifies of the ConcreteAggregate interface,
– At any given time, it can perform a lot to go through the ConcreteIterator object.
Implementation: a new class of "Control" for example, the Iterator and ListIterator classes

in package java.util.

Figure 3.40. Class Diagram of the Iterator Pattern.

44

Figure 3.41. Sequence Diagram of the Iterator Pattern.

3.4.5. Mediator
Problem: The pattern allows you to limit a number of links between objects that interact in

complex ways, and allows you to change the way they communicate.
Solution:
– The Mediator declares an interface in the agreement of the Colleague interface, so

everyone ConcreteColleague object knows the operations of the ConcreteMediator
object - each ConcreteColleague object need not communicate with another
ConcreteColleaque object, but with a ConcreteMediator object; the ConcreteMediator
object coordinates cooperation of many ConcreteColleague objects (Figure 3.42),

– The ConcreteColleague objects send requests to the ConcreteMediator object and then
the ConcreteMediator object sends these requests to the appropriate
ConcreteColleague objects (Figure 3.42).

45

Figure 3.42. Class Diagram of the Mediator Pattern.

Result (Figure 3.43):
– The ConcreteMediator object gathers behaviour that would otherwise be placed in

many ConcreteColleague objects,
– You can combine different types of object properties such the ConcreteClleague and

the ConcreteMediator,
– Simplification of protocols to communicate through one-to-many associations between

the objects such the ConcreteMediator and ConcreteColleague, replacing many of the
objects derived from many ConcreteColleague objects,

– The generalization of the cooperation between objects, which implement the Colleague
interface by the Mediator interface,

– The functionality of the objects, which implement the Mediator interface, can lead to
very complex implementations, which will be difficult to maintain.

Figure 3.43. Sequence Diagram of the Mediator Pattern.

46

3.4.6. Memento
Problem: The pattern stores a state of some objects to restore this state at some later

moment.
Solution: The Caretaker object is responsible for the care of the Memento object, but does

not refer to methods of this object - may, however, give the Memento object to other objects.
The Originator object creates the Memento object, which includes its state and uses it to
restore its status - it has access to all methods of the Memento object. The Memento object
holds the state of the Originator object (Figure 3.44).

Figure 3.44. Class Diagram of the Memento Pattern.

Result (Figure 3.45):
– Maintaining boundaries of encapsulation, but posing difficulties in its maintenance,
– Simplification of the Originator object,
– Performance degradation,
– Difficulty of implementation,
– Difficulty in maintaining the Memento objects.

Figure 3.45. Sequence Diagram of the Memento Pattern.

3.4.7. Observer
Problem: Define the relationship one-to-many relationship between objects - when one

object changes its state, all dependent objects are automatically notified and updated.

47

Figure 3.46. Class Diagram of the Observer Pattern.

Solution: The Subject interface knows its observers (Observer interface) and declares the

attaching and detaching operations of observers. The Observer interface declares the
operations of updating observed objects (Subject interface). The ConcreteSubject objects hold
the state, which is interesting for ConcreteObserver objects - when they change their status,
notify observers (Observer interface) by the update method. The ConcreteObserver object has
a reference to the ConcreteSubject object and holds the state, which must be consistent with
the state of the observed object (ConcreteSubject object) and implements the update method,
which allows you to keep this consistency (Figure 3.46).

Result (Figure 3.47):
– An abstract relationship between objects such as the ConcreteSubject and the

ConcreteObserver,
– Support for sending messages - the ConcreteSubject objects send the notification

without knowing the recipient,
– Unexpected upgrade - because the fact that observers do not know about existence of

other observers.

Figure 3.47. Sequence Diagram of the Observer Pattern.

48

3.4.8. State
Problem: You can change behaviour of an object when you change the inner state of this

object by forming its derivative object.
Solution: The Context object defines an interface for clients and maintains the

ConcreteState object. The State interface declares the interface associated with the state of the
Context object. The ConcreteState objects represent the complete behaviour associated with
the state of the Context object (Figure 3.48).

Client: The object, which configures the ConcreteState objects by using the Context object
(Figure 3.49).

Result:
– The location of all functionality in one object implementing the State interface and

diversification of the behaviour that depends of the change of the state in the derived
classes. These classes acquire all the functionality,

– Each derivative object implements a new full functionality, which improves the
visibility of transitions between states,

– Sharing objects such ConcreteState objects, because their states are represented by
their types.

Figure 3.48. Class Diagram of the State Pattern.

49

Figure 3.49. Sequence Diagram of the State Pattern.

3.4.9. Strategy
Problem: A selection of different business rules or algorithms for different versions

depending on the context.
Solution: It selects a version of the algorithm, which separates from its implementation

(Figure 3.50).
Client: The decision to implement strategies and a context of the objects takes by the

owner of these objects, which provides information how to create the proper objects of the
strategy and the context of using the factory object (Figure 3.51).

Result:
– Define a family of algorithms,
– Defining a Strategy interface which contains a method providing algorithms and

methods in a Context class which uses these algorithms,
– Elimination of manual selections or conditional choices of an algorithm of the strategy

by introducing a mechanism of polymorphism - especially, if the choice of the
algorithm is not the transitional one.

Figure 3.50. Class Diagram of the Strategy Pattern.

50

Figure 3.51. Sequence Diagram of the Strategy Pattern.

3.4.10. Template Method
Problem: Define a skeleton of an algorithm, providing a definition of details of this

algorithm to the derived classes.
Solution: The AbstractClass class defines the abstract algorithm, but the same parts of the

abstract algorithm are supplemented by various definitions, implemented by ConcreteClass
classes (Figure 3.52).

Result: "Hollywood principle" (do not call us, we'll call you), where the base class method
calls the methods from derived classes (Figure 3.52).

Implementation: the creation of libraries, which gives rise to common behaviour in library
classes.

Figure 3.52. Class and Sequence Diagrams of the Template Method Pattern.

3.4.11. Visitor
Problem: The pattern allows you to define a new operation without changing the

component class in which it operates.
Solution: An ObjectStructure object can enter your items and allows objects that

implement the Visitor interface to visit your elements (which may be composite). The Visitor
interface declares the method of visit, which receives the item as a parameter you want to
visit. The ConcreteVisitor object implements the visit method, which allows storing
information about the status of individual elements. The ConcreteElement objects define the
accept methods which take the ConcreteVisitor object (Figure 3.53).

51

Client: The Client must create a ConcreteVisitor object, and go through the whole structure
of objects represented by a ObjectStructure object, visiting each element, using the
ConcreteVisitor object. Each visited element calls the visit method of the ConcreteVisitor
object, giving access to each other, and enables him to call the appropriate method for your
class (Figure 3.54).

Result:
– Easily add new operations, which are dependent on complex elements,
– Bringing together related operations in a class that implements the Visitor interface,

and separation of unrelated ones in their subclasses,
– It is difficult to add new ConcreteElement classes because you need to declare a new

visit method in the Visitor interface and new implementation of visit methods in the
ConcreteVisitor classes.

Figure 3.53. Class Diagram of the Visitor Pattern.

Figure 3.54. Sequence Diagram of the Visitor Pattern.

52

4. Design patterns used to build the Business Tier
Figure 4.1 shows the definition of the Business Tier of a five-tiered model of logical

separation of tasks of an Enterprise application [2].

Client Tier
Customer applications, applets, elements of

the graphical user interface

Presentation Tier
 JSP Pages, servlets, and other user

interface elements

Business Tier
 EJB components and other business

objects

 Integration Tier

 JMS, JDBC, connectors and connections
with external systems

Resource Tier
 Databases, external systems and other

resources

Interacting with the user,
device and user interface

presentation

Login, session management,
content creation, formatting,

validation and delivery

 Business logic, transactions,
data and services

Resource adapters, external
systems, mechanisms for

resource, control flow

Resources, data and external
services

Figure 4.1. The definition of the Business Tier of multitier information system [2].

4.1. Basic issues of the Business Tier design
Basic issues of the Business Tier design are described in the subsections of Section 3.1

such as using the session components, use of Entity components and caching of references
and handles of remote enterprise bean components [2].

4.1.1. Using the session components
The session component (EJB specification) is characterized as follows:
– It is used by one customer or user only,
– There is only for the duration of the session,
– It is destroyed during failure of a container,
– It is not a permanent object,
– The time limit of its life may be exceeded,
– It may participate in transactions,
– It can be used for modelling of communication such as stateful or stateless between the

client and Business Tier components.
Stateless session components have some features as follows:
– Do not store customer data,
– Any instance of the stateless session component for any customer can be allocated

from a pool of stateless session components - after servicing the customer, each
component is returned to the pool,

– They are used in case of a service that requires only one method call.
Stateful session components are based on the following issues:
– Stores session state,
– Components are returned into a pool of stateful session components only when the

client has completed its session,

53

– If the service requires a number of method calls to complete the transaction, which is a
conversational process. This choice improves the scalability of the system.

There are some ways of storing session state:
– Web Applications store the session state of clients in the Presentation Tier,
– Applications, with different types of clients are keeping the session state in the

Business Tier.
Managing session state is dependent on:
– Hardware,
– Network Traffic Management,
– The use of clustering for the Web container,
– The use of clusters for the EJB (Enterprise Java Bean) container,
– Linking client session to a particular server in the cluster (server affinity),
– Session Replication,
– Session Persistence.

4.1.2. Using the Entity components
Entities are distributed, shared and persistent transactional objects and EJB containers

provide additional infrastructure to support the scalability, security, performance and
clustering. Specification of Entity components (EJB specification) defines among others,
following features:

– They represent an object-oriented view of life,
– They participate in transactions,
– They are shared by multiple users,
– They have a long life,
– They are resistant to failure of a container. This type of system crashes is usually

invisible to the customer.
Unique keys of main components of the Entity:
– A complex primary key requires definition of a class that implements the Serializable

interface. Attributes of this class are key attributes of the main complex key,
– The primary key class must redefine the hashCode and equals methods,
– If the primary key consists of a single attribute, then you can use the built-in type for

the key.
The business logic in Entity components is any logic associated with the provision of

services.
Checklist for business logic contained in the Entity:
– Will business logic introduce a new relationship between components of the Entity?
– Will the Entity component be responsible for managing the flow of user interaction?
– Will the component assume responsibility for issues that should be included in another

component of the business?
The Entity component must contain the business logic, which is self-sufficient in terms of

handling their own data and data objects belonging to the dependent objects. In this case, it
has to introduce identification, extraction and transfer of business logic, which provides such
dependencies to the session component.

54

4.2. Bad practices of the Business Tier design
There are some bad practices during development the Business Tier of application.
1. Mapping an object model directly on the model of Entity components:
– Impact: large container load, generation high traffic,
– Solution:

o Refactoring,
o Reducing the number of components - the application of the Composite Entity

pattern,
o Creating a tier of access to services - the use of the Session Facade pattern,

2. Mapping each use case at one session component:
– Effects: a large number of session components - high complexity applications,
– Solution:

o Refactoring,
o The Session Facade pattern.

3. Sharing all the attributes of components by the method of setting and collecting: set and
get:
– Impact: large network traffic,
– Solution: the Transfer Object Pattern.
4. The client stores the data of business components:
– Impact:

o Large network traffic,
o Dependence on the model of client applications,
o Difficulties in modifying the software,

– Solution: the Transfer Object Assembler Pattern.
5. Embedding search services on the client:
– Impact:

o Visualization of the complexity of application for the client,
o Redundant code - in case of changes to modify the code in many places in the

application.
– Solution:

o Refactoring,
o The Business Delegate Pattern,
o The Service Locator Pattern.

6. Use of components of the Entity as read-only objects.
7. Using the Entity objects as a minor component.
8. Saving an entire graph of related Entity components.
9. Disclosure of EJB - related exceptions to customers outside the EJB tier.
10. Stateless session component restores session state for each call.
11. Searching data using methods that return references to remote objects.

55

12. Mapping the relational model to the Entity component model.

4.3. Analysis of basic design issues
Design cases:
1. Conceal from the client program the complexity of remote communication with

business service component.
2. A transparent and uniform way to search services and business components.
3. Sharing components and business services to remote clients (take control of the

business objects and reduce network traffic, or improve efficiency).
4. Centralization of some business logic components and business services.
5. The object model is an implementation of the conceptual model, which is the domain

model, containing relationships and business logic.
6. Use of Entity components to implement the conceptual domain model.
7. Transferring data between tiers of application (reducing network traffic by reducing a

number of remote calls, or improve efficiency).
8. Preparing lists of objects for remote clients’ applications.

4.3.1. Business Delegate Pattern
Problem 1 – Conceal from the client program the complexity of remote communication

with business service components (Figure 4.2, Figure 4.3).

Servlets,
JSP

Client

Business
Delegate 1

Database

Code of Data
Access

Servlets and JSP presentation
logic and Business Delegate for

separating layers but searches of
business services

 Session
Component with
business logic of

services

Logic of Data
Acces

Session
Component

Client Tier

Servlets,
JSP

 Business
Tier

Client

Database

 Resource
Tier

 Code of
Data Access

Integration
Tier

 Presentation
Tier

Servlets and JSP with
presentation logic

and: many searches
and calls of business

services, error
services of other

layers etc.

 Session
Component with
business logic of

services

Logic of Data
Acces

Session
Component

Client Tier
 Business

Tier
 Resource

Tier
Integration

Tier
 Presentation

Tier

Figure 4.2. The first refactorization of the Business Tier by using the Business Delegate Component [2].

56

Client

 Client and
Presentation

Tier

Client and Presentation
Tier

Session
Component

1

 Business
Tier

Business
Delegate 1

Business
Delegate 1

Business
Delegate 1

Business Tier

Client

Entity
Component

1

Entity
Component

2

Entity
Component

3

Entity
Component

1

Entity
Component

2

Entity
Component

3

Session
Component

2

Session
Component

3

Session
Component

1

Session
Component

2

Session
Component

3

Figure 4.3. The second refactorization of the Business Tier using the Business Delegate Component (related to

Figure 4.2) [2].

Requirements:
– Our application should have access to the Business Tier components from the

presentation components and clients, which can be any device, web services and rich
clients,

– Linking should be minimized relationship of clients and business services by hiding
implementation details of services, for example, during searches and calls,

– Our application should avoid unnecessary calls of business services,
– Exceptions of the network and business services should change on exceptions of the

presentation or client tier,
– Our application should hide in the presentation or client tier the details of the use of

services, their configuration, and repeated attempts to call.
The Business Delegate Pattern has some characteristics:
– Abstract business service on the client side allows to hide implementation details of

business services and mechanisms for their search and call,
– More changes of implementation of business services than in BusinessDelegate

components.
The components of the pattern are as follows (Figure 4.4, Figure 4.5):
– ServiceLocator - implementation of the ServiceLocator pattern; performs searches of

business services (BusinessService component),
– BusinessService - business-tier components such as the EJB component, which is used

by the client. It may be part of the SessionFacade pattern or the JMS (Java Message
Service) component.

Implementation of the pattern:
– The representative of an intermediary (Proxy Delegate),
– Representative adaptable (Delegate Adapter).
Properties:
– Reduction of dependency between the Presentation Tier and the Business Tier, hiding

the implementation of the Business Tier (the client does not need to know the service
name and does not need to search for services),

– Transforming the exception of business services onto exceptions easily handled in the
Presentation Tier,

57

– Increased availability of services (temporary irregularities of the business service can
occur repeatedly, outside of the Presentation Tier. Only when permanently appear
system failure, the customer will be notified of the accident),

– Rendering the Business Tiers simpler for the Presentation Tier,
– caching ability of results and references to remote services, which reduces network

traffic and improves application performance,
– Placing an additional tier - it can sometimes be a disadvantage.

Figure 4.4. Class Diagram of the Business Delegate Pattern

Figure 4.5. Sequence Diagram of the Business Delegate Pattern – a business service call.

58

Figure 4.6. Sequence Diagram of the Business Delegate Pattern - a business service call and store of the

business handle.

4.3.2. Service Locator Pattern
Problem 2 – Transparent and uniform way to search for services and business components

(Figure 4.7).
Requirements:
– Our application should use the JNDI (Java Naming and Directory Interface) interface

to search for business components (e.g. EJB or JMS) or services (e.g. data sources),
– Our application should centralize searches of business services in Client Tiers,
– Our application should hide implementation details and complexity of searched

components,
– Our application should avoid the loss of efficiency associated with context creation of

and search services,
– Our application should be allowed to re-use found handles of business services.
The Service Locator:
– In computer systems, there are two ServiceLocator objects - one for the Presentation

Tier and the other for the Business Tier,
– Optimization of search operations and their creation.

59

Servlets,
JSP

Client

Service
Locator

Database

Code of Data
Access

Servlets and JSP presentation
logic and Business Delegate for
separating layers and Service

Locator for searches of business
i

 Session
Component with
business logic of

services

Logic of Data
Acces

Session
Component

Client Tier
 Business

Tier
 Resource

Tier
Integration

Tier
 Presentation

Tier

Servlets,
JSP

Client

Business
Delegate 1

Database

Code of Data
Access

Servlets and JSP presentation
logic and Business Delegate for

separating layers but searches of
business services

 Session
Component with
business logic of

services

Logic of Data
Acces

Session
Component

Client Tier
 Business

Tier
 Resource

Tier
Integration

Tier
 Presentation

Tier

Business
Delegate 1

Figure 4.7. Refactorization of the Enterprise application [2].

Components of the pattern (Figure 4.8, Figure 4.9):
– Client - It is the Business Delegate component, who is awaiting access to one of the

Session Facade components. Similarly, DataAccess Object components are clients
when retrieving JDBC (Java Database Connectivity) data source,

– Cache - A cache of handles to earlier sought out services to reduce unnecessary
operations, which improve performance,

– Initial Context - The starting point of the search process and the creation of objects.
Service providers give the context object, depended on your desired service (Target
object). Each supplier is specialized in the types of services (EJB, JMS),

– Target - The target represents a component of a service or business or the Integration
Tier. They may be EJBHome components for EJB, DataSource for JDBC data source,
the ConnectionFactory component for JMS (Java Message Service - Java EE
components can create, send and read the messages in a distributed environment,
controlling the long transactions),

– RegistryService - an object representing the implementation of the registry that stores
references to services or components registered as a provider of services for objects
Client).

Implementation of the pattern:
– EJB Service Locator,
– JDBC Data Source Locator,
– JMS Service Locator,
– Locator JMS queues,
– JMS Topics Locator,
– Web Service Locator,

60

Properties:
– Hiding the complexity,
– Providing uniform access to data,
– Facilitating the addition of EJB business components,
– Improving network performance in providing services,
– Improving performance through caching the handles of services.

Figure 4.8. Class Diagram of the Service Locator Pattern.

Figure 4.9. Sequence Diagram of search business services components use-case of the Service Locator Pattern.

4.3.3. Session Façade Pattern
Problem 3 – Provide components and business services for remote clients (take control of

the business objects and reduce network traffic, or improve efficiency) (Figure 4.10).

61

Client

 Business
 logic

Component
Entity A

Transaction
logic

 Client or
Presentation

Tier

Client

 Business
logic

Session
Facade

Transaction Logic
managed by:

Session Component

special components

 container

Business
Tier

Component
Entity B

Component
Entity C

 Client or
Presentation

Tier Business Tier

Component
Entity A

Component
Entity B

Component
Entity C

Figure 4.10. Refactorization of the Business Tier by using the Session Façade Pattern [2]

Figure 4.11. Class Diagram of the Session Façade Pattern.

Requirements:
– Our application should prevent clients from direct access to components of Business

Tiers to counteract the establishment of too many dependencies between clients and the
Business Tier (design case 1),

– Our application should provide the tier of remote access to Business Object
components (design case 5), or other business objects,

– Application services should be grouped and provided to remote clients (i.e. Application
Service pattern) and any other services,

– Our application should centralize and combine all of shared business logics to remote
clients,

– Our application should hide complex interactions and interdependencies between the
components and business services to facilitate management, centralization of logic,
increase in flexibility and facilitate the change.

62

Components of this pattern (Figure 4.11, Figure 4.12):
– Client - This is usually the Business Delegate pattern,
– BusinessComponent – It participates in the execution of client requests. This may be

the Business Object component (design case 5) as the object model of data and conduct
business or as the ApplicationService component,

– ApplicationService - This component uses the business objects and implements the
business logic. The Session Facade component may use many such objects,

– DataAccessObject (DAO) – This component facilitates access to a database in simple
applications where there is a tier of business objects forming an object model of data.

Figure 4.12. Sequence Diagram of providing business services to clients by hiding access to business

components of the Session Façade Pattern.

Implementation of the pattern:
– Stateless session component,
– Stateful session component.
Properties:
– The introduction of a tier that provides services to remote clients,
– Providing a uniform interface,
– Reduce dependency between tiers,
– Promoting the tiered model, increasing flexibility and ease of management,
– Reduce complexity of session facade services, if applied with Application Service

components,
– Improving productivity, reducing a number of fragmented remote methods,
– Centralization of Safety Management,
– Centralized management transactions,
– Sharing a smaller number of remote customer interfaces.

63

4.3.4. Application Service Pattern
Problem 4 – Centralization of some business logic components and business services

(Figure 4.13).

 Client and
Presentation

Tier Business Tier

Session
Component

2

Session
Component

1

Entity
Component

1
Client 1

Client 2

Client 3

Service
Application
Component

B

Service
Application
Component

A

Client 1

Client 2

Client 3

Session
Component

3

Session
Component

2

Session
Component

1

Session
Component

3

Entity
Component

2

Entity
Component

3

Entity
Component

1

Entity
Component

2

Entity
Component

3

 Client and
Presentation

Tier Business Tier

Figure 4.13. Refactorization of the Business Tier by using the Application Service Pattern [2].

Requirements:
– Our application should limit the amount of business logic in the facades of services,
– The business logic operates on a number of business objects or services,
– Our application should be to create a integrated services interface for the existing

components and business services,
– Our application should place the logic associated with the specific use cases outside the

Business Objects components (design case 5).
The Application Service – service façade:
– It provides a uniform tier of services and it is facilities of session facade services,
– It is the main business logic tier, where it does not use the BusinessObjects components

and if necessary it uses the DAO components to retrieve business data from data
sources,

– It provides a more detailed interface than the Session Façade components, but less
detailed than Business Object components,

– The business logic is common to many service session façade.
The components of the pattern (Figure 4.14, Figure 4.15):
– Client - Session Façade component, the objects of ordinary Java classes (POJO),

another of the Application Service component,
– Application Service – It is the leading component, encapsulates the business logic

operating in several business objects, or based on a specific use case. It calls methods
of BusinessObject or ApplicationService components,

– BusinessObject (design case 5) – These are components to complete the service of the
request of the ApplicationService component,

– Service – It is a component that provides any type of service,
– DataAccessObject – It is a data access component without the mediation of

BusinessObject components.

64

Implementation of the pattern:
– Application Service Command,
– Application Services using the GOF Strategy pattern,
– Application Service Tier.
Properties:
– Centralization of business logic used repeatedly,
– Increasing reuse of business logic,
– Prevention of duplication of code in client components,
– Simplifying implementation of session facades,
– The introduction of additional tiers within the Business Tier (centralized of common

business logic).

Figure 4.14. Class Diagram of the Application Service Pattern.

65

Figure 4.15. Sequence Diagram of the Application Service Pattern – encapsulation of the business services.

4.3.5. Business Object Pattern
Problem 5 – The object model is an implementation of the conceptual model, which is the

domain model containing relationships and business logic (Figure 4.16, Figure 4.17).
There are definitions of a business model, a business use cases model, a business object

model, a domain model, an object model, and a data model (The Unified Software
Development Process [4]):

– The business model consists of two models: the business use case model describing the
actors and business processes and the business object model, used to describe entities in
the various use cases,

– The domain model or otherwise the conceptual model is an abstract model that
describes the main types of objects in the system. Domain objects represent events and
"things" that exist in an environment where the system works. The domain model is
treated as the business model,

– The object model is an implementation of an abstract model (Domain),
– The data model is used to describe a model of the implementation of such an ER

model.

66

Client

Client Tier

Client Tier

Servlets,
JSP

Servlets,
JSP

 Business Tier

Client

 Code of
Access Data

Presentation Tier

Business
Delegate 1

Data
Base

 Resource
Tier

 Code of
Data Access

Integration
Tier Presentation Tier

Servlets and JSP with presentation
and small business logic without
consolidation for other clients –

small application

Servlets and JSP with
presentation logic and

controller to separate layers

Session
Component with
business logic

 Data Acces
logic with direct

accesss to
databases

 Data
Base

 Resource

Tier

Session
Component

Figure 4.16. Refactorization of the Business Tier [2]

Servlets,
JSP

Client

Entity
Component

Business
Delegate 1

Data
Base

 Code of
Data Access

Servlets and JSP with
presentation logic and

controller to separate layers

Session Component with business
logic, Entity Components as

persistence transaction objects

Data Acces
logic with JPA

accesss to
databases

Session
Component

Client Tier

Servlets,
JSP

 Business Tier

Client

Business
Delegate 1

Data
Base

 Resource
Tier

 Code of
Data Access

Integration
Tier Presentation Tier

Servlets and JSP with
presentation logic and

controller to separate layers

Session
Component with
business logic

 Data Acces
logic with direct

accesss to
databases

Session

Component

Client Tier

 Business Tier

 Resource
Tier

Integration
Tier Presentation Tier

Figure 4.17. Refactorization of the Business Tier by using the Business Object Pattern [2].

Requirements:
– There is a conceptual model containing structural complex interrelated objects,
– There is a conceptual model with strictly defined business logic and business rules

restrictions (design case 1),
– State business of the application and the related behaviour from the rest of the

application should be separated, improving the consistency and ease of reuse
application components,

67

– Our application should centralize the business logic and the state of business
applications in one place,

– Our application should enhance their ability to reuse business logic and avoid code
duplication.

The Business Object:
– It separates data and business logic using an object model - type "Entity".
Components of the pattern (Figure 4.18, Figure 4.19):
– Client – It is a client of BusinessObject components. This may be SessionFacade,

Application Service, or each object (component) such as helped object (View Helper
pattern) that requires access to a business object,

– ParentBO – It is a key element of the pattern and serves as a GOF facade. It is the main
business object, the primary model of complex business objects. The parent includes its
dependent objects, implements its own logic and rules,

– DependentBO – It is the business object that is managed by the parent ParentBO object
during their life cycle - they cannot exist without a parent. Individual objects
implement their own rules and business logic.

Figure 4.18. Class Diagram of the Business Object Pattern.

Implementation of the pattern:
– Business Objects as ordinary Java objects (POJO Business Objects),
– Business object in the form of the complex Entity component (design case 6).
Properties:
– Promote object-oriented approach in implementation of the business model,
– Centralization of business logic and state and promotion of reusable components,
– Avoiding duplication of code and turning it easier to care,
– The separation of persistence logic from business logic,
– Promoting service-oriented architecture,
– Usage of ordinary Java objects can lead to outdated information, if they do not

implement their own mechanisms for synchronization and data integrity,

68

– Adding an additional tier - it is not necessary in cases of simple logic, or it directly
benefits from the business model realized as a relational database schema. However,
this may be the result of an error,

– Danger of creating very complex objects.

Figure 4.19. Sequence Diagram of services of the Business Object Pattern.

4.3.6. Composite Entity Pattern
Problem 6 – Use of Entity components to implement the conceptual domain model.
 Business objects are not appropriate for transferring between tiers by using the Transfer

Object component because of their remote behaviour.
 A choice should be made between local and remote Entity components. Local components

are more efficient than remote but less efficient than ordinary business objects, which
implemented the Business Object pattern.

Requirements:
– Avoid drawbacks of remote Entity components, such as substantial network traffic and

remote relationships between components,
– Should be used by the component-managed persistence (BMP - Bean-Managed

Persistence), using in-house or non-standard implementations of the persistence
mechanisms,

– Our application is in an optimal way to implement a parent-child relationships, using
business objects, implemented in the form of Entity components,

– Our application should use and combine existing business objects implemented as
POJO objects with Entity components,

– Our application should use the EJB container, which provides management mechanism
of the transaction and security,

– Hide the physical database design from clients’ applications.

69

The Composite Entity:
– It should join (using aggregation) persistent business objects in the form of local Entity

components and ordinary Java objects (POJO),
– There are two ways of implementing the object model, related to matters of security,

transaction management, resource pools, caching, and concurrency,
– Using ordinary objects of Java classes (POJO) and mechanism for meeting the specific

requirements of life such as: DAO, proper implementation of the persistence
mechanism using the Domain Store pattern or consistent with the JDO (Java Data
Object) implementation,

– Application Entity objects according to the Composite Entity pattern, deciding whether
to use the BMP or the CMP (Container-Managed Persistence) persistence,

– Simple applications running on the same computer can provide for clients the business
objects, in the case of composite applications they can use patterns with remote calls:
Session Facade, Application Service, Transfer Data Object.

Figure 4.20. Class Diagram of the Composite Entity Pattern.

70

Figure 4.21. Sequence Diagram of services of the Composite Entity Pattern.

The components of the pattern (Figure 4.20, Figure 4.21):
– Client – It may be the SessionFacade, Application Service or other supporting

components (View Helper component) that requires access to a business object,
– CompositeEntity - It is a key element of the pattern. It contains dependent objects. It

plays role such as the GOF façade,
– DependentBO, DependentEntityBO, DependentPOJOBO – They create an object tree
– DataStore – It represents the persistent storage,
– EJBContainer – It is involved in the operations of reading and writing Entity

components. To this end, it calls the read /write Entity components.
Implementation of the pattern:
– Remote Facade as the Entity Composite component in cases of simple business logic
– Entity Composite component with the BMP persistence,
– Lazy loading,
– Optimalization Storage,
– Complex Transfer Object.
Properties:
– Facilitate code maintenance,
– Improve network performance, because not all objects of the model must communicate

remotely,
– Slower than the solution using standard Java objects (POJO),
– Reduce dependency on the database schema,
– Reduce the fragmentation of objects,
– Creating complex transfer objects.

71

4.3.7. Transfer Object Pattern
Problem 7 – Transferring data between tiers of application (reducing network traffic by

reducing the number of remote calls, or improve efficiency):
– Transferring data between tiers (business objects from the Business Tier or DAO

objects from the Integration Tier) should not generate much traffic, so be sure to send
lots of data using one complex transfer object,

– Independence of implementation of the Presentation Tier from the Business Tier
objects and the Business Tier from the tiers of integration by using the transfer object
for transfering data between the tiers of an application.

Requirements:
– Our application should allow clients to access to components from other tiers and

enable them to download and modify their data,
– Our application reduces the number of remote calls,
– Our application should avoid the performance degradation caused by the large number

of remote calls.
The Transfer Object:
– These objects are used to move multiple items of data between tiers.
The components of the pattern (Figure 4.22, Figure 4.23):
– Client – It uses the Component object to retrieve and send data. The Client component

is typically located in the different tier,
– Component - This may be an object of a different tier than the Client component,
– PresComponent – The Component object is located in the Presentation Tier, e.g. the

BusinessDelegate component,
– BizComponent – The Component object located in the Business Tier, for example:

BusinesObject, ApplicationService, SessionFacade components,
– IntComponent – The Component object is located in the Integration Tier of such as the

DataAccessObject pattern,
– TransferObject – It is a Java object that implements the Serializable interface. It

enables data transferring between the tiers.
Implementation of the pattern:
– Transfer object with modification ability,
– Many of the transfer objects,
– The Entity component inherited from the Transfer Object.
Properties:
– Reducing network load,
– Simplifying remote objects and interfaces,
– Sending more data with fewer remote calls,
– Reduce duplication of code by inheriting the Entity object from the Transfer Object

component,
– Danger of obsolete transfer objects co-exitence,
– Increased complexity due to synchronization and version control for objects with

modification.

72

Figure 4.22. Class Diagram of the Transfer Object Pattern.

Figure 4.23. Sequence Diagram of services of the Transfer Object Pattern.

4.3.8. Value List Handler Pattern
Problem 8 – Making lists of objects for remote client applications:
– Enterprise applications causes many search services - an operation initiates the

Presentation Tier, the Business Tier performs and the browser displays results,
– This can be done in different ways: using seek methods of the Entity component or by

using the DAO components,
– If the response contains a lot of data, it affects the application performance

degradation,
– With a large number of data, some data may remain in the Business Tier, if not all are

expected by the client.

73

Requirements:
– Our application should avoid the overhead of using such methods as ejbFind() for

searches that return a large number of results,
– Our application should implement a case of read-only collection of objects that do not

require transaction,
– Our application should provide customers with an efficient method for searching and

browsing for the long list of results,
– Results should be left on the server side.
The Value List Handler:
– It uses an object that implements the Value List Handler pattern that deals with

searching, caching the results and allows customers to browse and select items from the
list,

– The pattern uses the DAO component to retrieve query results from database.
Components of the pattern (Figure 4.24, Figure 4.25):
– Client – It is any component of the Presentation Tier or the Business Tier (component

of the session), executing queries that return large result set,
– ValueListIterator – This object provides the iteration mechanism for browsing the

contents of the ValueList object,
– ValueListHandler - It carries out search operations and gets results that are stored in the

ValueList object,
– DataAccessObject – The ValueListHandler component uses the DataAccessObject

component for access the data source,
– ValueList - It is a collection that stores the query results,
– Value – This object represents a single result.

Figure 4.24. Class Diagram of the Value List Handler Pattern.

74

Figure 4.25. Sequence Diagram of services of the Value List Handler Pattern.

Implementation of the pattern:
– Using normal Java objects,
– Using Session Facade components,
– List of values are given from the DAO component.
Properties:
– An efficient alternative to methods such as the ejbFind (),
– Caching results,
– More flexible ways to search,
– Improving Network Performance,
– Avoidance of transactions for Entity components,
– Promoting a tiered approach and allocation of responsibility,
– Danger of creating too a large list of objects.

75

5. Design patterns used to build the Presentation Tier
Figure 5.1 shows the definition of the Presentation Tier of the Multitierd Information

System [2].

Client Tier

Customer applications, applets, elements of
the graphical user interface

Presentation Tier
 JSP Pages, servlets, and other user

interface elements

Business Tier
 EJB components and other business

objects

 Integration Tier

 JMS, JDBC, connectors and connections
with external systems

Resource Tier
 Databases, external systems and other

resources

Interacting with the user,
device and user interface

presentation

Login, session management,
content creation, formatting,

validation and delivery

 Business logic, transactions,
data and services

Resource adapters, external
systems, mechanisms for

resource, control flow

Resources, data and external
services

Figure 5.1. The definition of the Presentation Tier of the multitier application [2].

5.1. Basic issues of the Presentation Tier design
The main issues of the Presentation Tier are as follows:
1. Session management.
2. Control client access to applications’ resources.
3. Validation.
4. Properties of helper objects.
5. Hiding resources from clients using the configuration of the container
Session management:
– Session state on the client: easy to implement, very good performance at small session

data (text session data stored in the hidden form fields or cookies),
– Security of the session - a session state at the client should be encrypted if it is to be

hidden from the client. This means big trouble for an Enterprise application session due
to the large amounts of data,

– Session state in the Presentation Tier (the difficulty of recover the client session after
server shutdown) exists when:
o Session Time,
o The session is cancelled,
o State has been removed from the session.

Control client access to applications’ resources - authentication and authorization:
– View protection: protection of the entire resources or their portion dependent of the

different types of clients, the system state or conditions of errors,
– Protection through configuration,

76

– Prevent duplication of forms in order to avoid repetition of transactions - a
synchronizing token stored in the user's session, direct control of the form access.

Validation:
– Validation at the client - complements the validation performed on the server should

never occur alone,
– Validation on the server: bound to a form (repetition code) or based on the type of

validation classes.
Properties of helper objects - the integrity and consistency (Figure 5.2):
– It should fit of the content requests from the Client Tier to the content of these objects.

Figure 5.2. Fitting of the content requests from the Client Tier to the content of these objects [2].

Figure 5.2 shows hiding resources from clients using container configuration.

Client

 JSP

 JSP

 JSP

 Client
Tier

 Controller

Possible access only
by the controller

 Presentation Tier

 Security Checking

Client

 JSP

 JSP

 JSP

 Client
Tier

 Presentation
Tier

Figure 5.3. Hiding resources against the client, using the container configuration for the authentication [2].

Figure 5.4 presents hiding resources from clients, using configuration of the container and

Database Users and Groups, User, Group, Role.

77

User 1

User 2 User 3

User 1

User 2 User 3

Create users
and/or groups

Groups 1
Role 1

Application

Define roles in
application

Application

User 1

User 2 User 3

User 1

User 2 User 3

Groups 1

Map roles to user
and/or groups

Role 2

Role 1

Role 2

Figure 5.4. Hiding resources against the client, using the container configuration for the authentication and

authorization [9].

Declarative security mechanisms - the so-called declared within "Deployment descriptors"

(e.g. application descriptors web.xml for a web application).
Descriptors as external elements of applications include information specifying the security

roles and access requirements mapped to roles specific to the environment, users, and security
policies.

Software security mechanisms – are embedded in applications and are used to make
decisions about security. They complement the declarative security mechanisms - better to
express the security model of applications.

API programming mechanisms:
– EJBContext interface methods,
– HttpServletRequest interface methods. These methods allow you to make business

decisions based on security roles of sender or remote receiver,
– Annotations or metadata are used to specify the information within a class code file.

When an application is run, this information is used or provided by the application
descriptor.

 For example,
 @ DeclareRoles ("Customer")
 public class Page1 extends AbstractPageBean {//...}

5.2. Bad practices of the Presentation Tier design
1. The Presentation Tier does not carry out the validation, even when validation is

performed on the client tier.
2. The Presentation Tier does not carry out data conversion.
3. Data structures of Business Tiers are used by the Presentation Tier.
4. The Presentation Tier data structures are available in other tiers.
5. To transmit data between the Presentation Tier and the Business Tier or the Integration

Tier, auxiliary object class are not used (called a transfer object, which is independent
of these tiers).

78

6. It is not prohibited to send the same form twice and double triggering of the
transaction, concerning the same data.

7. It does not restrict access to certain forms or parts thereof by authentication (e.g. login)
and authorization.

8. It does not encrypt sensitive data sent between the web client and the www server (lack
of HTTPS protocols).

9. There is a scriptlet, written in language such as Java, inside dynamically generated
HTML code - this code is made available to application clients.

5.3. Design cases
1. It should intercept and modify the request and response before and after appropriate

processing.
2. It should have a centralized access point for handling requests in the Presentation Tier.
3. It should avoid using specific protocol information outside its context.
4. It should centralize and achieve a modular structure of the management of actions and

views of the application.
5. The view should be separated from the logic associated with its processing.
6. The view should have a modular structure, built from unit components, which

combined together make up a complex page. Manage the various parts independently.
7. Major maintenance requests and business logics should be carried out before passing

control to the view.
8. Views can service requests and generate responses by doing a small amount of

business logics.

5.3.1. Intercepting Filter
Problem 1 – It should intercept and modify request and response objects before and after

appropriate processing.
There are same issues of this problem:
– Is the client linked to the correct session?
– Has the path violated any restrictions?
– Is it supported by particular type of the web browser?
– What encryption is used by the client to send data?
– Is the data stream encrypted or compressed?
Requirements:
– Our application should centralize and process all the requests together, for example,

checking the coding, storing information about each request, introducing of data
compression for the message back sent to the client,

– Our application not should involve the code of the pre-processing and final processing
of requests with their main code to make easier to add and remove, for example, new
methods of compression,

– Independent components should be used for the processing of before and after in order
to enhance their capability to re-use.

The Intercepting Filter:
– It is the filter of the final and pre-processing of demands actual object handling,

79

– It is a manager of filters, which combines basic filters connected in the chain, giving
them control,

– You can create a chain of filters without changing any existing code.

Figure 5.5. Class Diagram of the Intercepting Filter Pattern.

Components of the pattern (Figure 5.5, Figure 5.6):
– Client – sends a request to the FilterManager object,
– FilterManager – manages processing using filters. It creates an object with the

appropriate chain of filters of the declared order and initiates the process,
– FilterChain – is the ordered collection of independent filters,
– Filter – represents an independent filter mapped on the path of the Target object. The

FilterChain component coordinates processing of these filters,
– Target – is the resource dependent on a client requests.
Implementation:
– Standard filter,
– Custom filter,
– Base Filter,
– Template filters,
– Support for Web services messages,
– Custom filter SOAP,
– JAX-RPC Filter.
Properties:
– Centralization of control using independent handling procedures,
– Improved reuse,
– Declarative and Flexible Configuration,
– The small performance of data exchange between the filters.

80

Figure 5.6. Sequence Diagram of services of the Intercepting Filter Pattern.

5.3.2. Front Controller
Problem 2 – It should have a centralized access point for handling requests in the

Presentation Tier.
If there is no centralized access point for services, the control code is repeated in many

places (e.g. views). Current solution is not modular and flexible and makes it difficult to care
for code.

Definitions
– Processing Request:

o Service of the request,
o Protocol support and operations on the context,
o Navigation and path selection,
o Main processing (actions on the server),
o Transfer of control (dispatch),

– Processing view - transfer of control to the components of the processing view, after
the request service.

Requirements:
– Our application should avoid duplication of control logic,
– Our application should use the common logic for multiple solutions,
– Processing logic should be separated from the view,
– Our application should centralize and control all access points to the system.

81

The Front Controller:
– It is the initial point of service all requests,
– It centralizes the control logic, which in other circumstances would be certainly

duplicated in different places,
– It deals with basic operations related to service requests.
The Application Controller is used by the Front Controller pattern:
– Management actions - applies to searches of the relevant services and transfer control

to them in order to accommodate specific client requests (Command component),
– Management of views, which are returned to clients (View component) - applies to

search and refer of the appropriate view. Although the task may be part of the Front
Controller pattern responsibility, the use of a separate class as a part of the Application
Controller pattern increases the modularity and the ability to reuse and makes
maintenance of code easy.

The components of the pattern:
– FrontController – It is a place to accept requests and transfer them to the

ApplicationController component, dealing with actions of an application and sharing of
views,

– ApplicationController – It deals with the actions and views of the application,
redirecting requests to the relevant shares and the search and selection of appropriate
views,

– Command – It executes activities associated with handling requests,
– View – It represents views, which are returned to clients.
Implementation:
– Servlet receiving requests,
– JSP accepting requests,
– Command and Controller,
– Physical mapping of resources,
– Logical mapping of resources,
– Repeated mapping of resources,
– Selecting a view in the controller,
– A base class for accepting the request,
– The controller using filters.
Properties:
– Centralization of control,
– Improving management,
– Improving opportunities for reuse,
– Facilitates the separation of roles among developers.

82

Figure 5.7. Class Diagram of the Front Controller Pattern.

Figure 5.8. Sequence Diagram of services of the Front Controller Pattern.

5.3.3. Context object
Problem 3 – It should avoid using specific protocol information outside its context:
– The application uses a certain information system, such as client's request, the

configuration data and data related to safety during the life cycle of request and
response objects. These data are taken from the appropriate context,

– If the information does not belong to the context of the component, it should not be
made available to him, because this component becomes less useful and flexible.

Requirements:
– Components and services require access to information about systems,
– The application components and services should be separated from details of the

protocol,
– In the present context, our application should disclose only the necessary elements of

the interface.

83

The Context Object:
– It allows the encapsulation of an application state in the independent of the protocol

way,
– It transmits the state to the next elements of the application.

Figure 5.9. Class Diagram of the Context Object Pattern.

Components of the pattern:
– Client – It creates the ContextObject object by using the ContextFactory,
– ProtocolInterface – contains details of a protocol or a a tier,
– ContextFactory – creates the ContextObject object independent of the protocol or the

tier,
– ContextObject - transmits data within the entire application, which does not fall within

the area of the problem.
Implementation:
– Context of a request,
– Context of a request in the form of maps,
– Context of a request in the form of ordinary objects (POJOs),
– Verifying of the context of a request,
– Configuration context,
– Configuration of JSTL,
– Security context,
– General object of a context,
– Factory of contextual objects,
– Autofill contextual objects,
Properties:
– Improvement of maintenance and possibility of reuse,
– Facilitate tests,
– Reduce constraints related to change of interfaces,
– Reducing performance.

84

Figure 5.10. Sequence Diagram of services of the Context Object Pattern.

5.3.4. Application Controller
Problem 4 – It should centralize and achieve a modular structure of the action and view

management of the application:
– Inside the Presentation Tier after receiving a request, it can take two decisions:

o The request must be forwarded for executing appropriate actions of the required
service - it is management of shares,

o Localize and use an appropriate view - it's management of views.
– Management of actions and views can be placed in various parts of an application.

Placement of this behaviour in the Front Controller component centralizes this
functionality, but with development of applications, we must use a separate class to
group the modularity increasing, extensibility and flexibility.

Requirements:
– Our application should be repeated use of code for management of actions and views,
– Expansion of request services should be improved, such as the ability to incrementally

add more implementations of use cases,
– Our application should increase modularity of code to facilitate expansion of

application functionality and ease testing code of individual requests regardless of
environment provided by a web container or application server.

The Application Controller:
– Centralizes the calls of components, for example, commands and views,
– Basic aspects of service requests, for example, validation, error handling,

authentication and access control can be easily attached to the so created mechanism
for handling client requests.

85

Figure 5.11. Class Diagram of the Application Controller Pattern.

Components of the pattern:
– Client – It induces the FrontController or InterceptingFilter object,
– ApplicationController - It uses the Mapper component to map incoming requests to

appropriate actions and views, which take the control,
– Mapper - It uses the Map component to map requests to appropriate actions and views.

The Mapper object works like a factory,
– Map - It keeps references to handles, which are representing target actions or views.

The Map object can be a class or a register,
– Target – It is a resource associated with handling a particular request, which may be a

command, view, or a style sheet,
Implementation:
– Service of the command,
– Service of the view,
– Transformation service,
– Control of flow and navigation,
– Web service:

o a self service of SOAP messages,
o a service of JAX-RPC messages or web services,

Properties:
Improved:
– Modularity,
– Reuse,
– Expansion.

86

Figure 5.12. Sequence Diagram of services of the Application Controller Pattern.

5.3.5. View Helper
Problem 5 – The view should be separated from logic associated with its processing:

– Mixing control logic, data access and format inside a view components leads to a
reduction of modularity, reuse of components, maintenance, and separation of roles
of developers. Design principles are violated i.e. the separation of model from a
view and control logic,

– The Front Controller pattern separates the logic control, but still a significant
problem is separation of models and components associated with the view,

– Processing requests associated with two types of tasks: service of requests and
processing of views. Processing of view can be divided into two independent stages:
o preparation of a view: service of requests, management of actions and views

(converting the request to the specific action, action called to select a suitable
view, the next request will be forwarded to the desired view),

o creating a view: a view retrieves the appropriate content of model, using the
auxiliary objects to obtain data (e.g. Transfer Object) and their conversion to the
appropriate content for the client.

Requirements:
– Our application should use templates of views, such as JSPs,
– Our application should avoid embedding application logic inside a view (avoiding the

use of scriptlets),
– Application logic should be separated from a view, to clearly determine the boundaries

of work of programmers and web designers.
The View Helper:
– Formatting code is placed in views, and process logic in the auxiliary objects,
– Views direct processing to auxiliary classes, implemented as ordinary Java objects

(JavaBean), custom tags (CustomTag) files or tags (TagFile). Helper objects serve as
intermediaries between the view and the model involved in preparation of data for
display, for example, generate HTML tables.

87

Other goals of the pattern:
– Business logic is usually placed in the object model, for example, the BusinessObject

or the TransferObject component,
– Data access code is placed in Data Access Objects in accordance with the standard

DAO component,
– The control logic is placed in the standard Front Controller component and distributed

to the appropriate command and supporting facilities.

Figure 5.13. Class Diagram of the View Helper Pattern.

Components of the pattern:
– FrontController – It is used for the initial service of request (separation of control logic

to the command and supporting objects),
– ApplicationController – It is used for simple management of views, without

management of application actions,
– View – It includes information communicated to the client,
– PresentationModel - It stores data received from the business services for generating

views,
– Helper - It encapsulates the processing logic associated with generating and formatting

view. It adapts the PresentationModel component to the needs of display or makes data
contained in the model available. Helpers are JavaBean components, custom tags, or
markup files (JSP).

Implementation:
– Views using templates,
– View controller,
– Auxiliary JavaBean object,
– Custom tags,
– Assistant in the form of a Tag file,

88

– The auxiliary BusinessDelegate object.
Properties:
– Improved modularity, reuse and software maintenance facilitated (avoiding Java

scriptlets, and HTML code, which is contained in code of the helper component),
– Improved separation of roles,
– Facilitate testing,
– The use of auxiliary objects are not always different from use of Java scriptlets.

Figure 5.14. Sequence Diagram of services of the View Helper Pattern.

5.3.6. Composite View
Problem 6 – The view should have the modular structure, built from unit components,

which combined make up a complex page. Manage the various parts independently.
Avoid duplication of code in your views, because:
– It hinders the possibility of code reuse, which reduces modularity of software -

software quality is deteriorating, represented by software reuse,
– Duplicate code is harder to manage – it is deteriorating quality of the software,

represented by maintainability of software.
Requirements:
– Sub-views should be common, such as headers, footers, and tables used in many views.

Components can appear in different places and pages,
– The content of sub-views are subject to frequent change, or be made available only to

some users, therefore it is a problem with control of access roles,
– Duplication and direct placement of sub-views in many views should be avoided,

because it significantly impedes changes in the page layout.
The Composite View:
– It consists of many elementary sub-views,
– Each sub-view of the general template (Template) can be dynamically linked,
– The resulting layout is configured independently of the content.
Components of the pattern:
– View – It represents the displayed page,

89

– SimpleView – It represents a basic component of a complex view, as sub-view or
segment of view,

– CompositeView – It consists of several View objects, each of which may be the
SimpleView or the CompositeView component,

– Template - It represents a template of the view,
– ViewManager - Template object is used to create a page layout. Simple object uses JSP

tags to include the sub-views within the template. Complex object uses the auxiliary
components to manage the content and layout pages.

Implementation:
– Managing views with:

o JavaBean components,
o standard markers,
o custom tags,
o transformation,
o Early binding of resources,

– Late binding of resources.

Figure 5.15. Class Diagram of the Composite View Pattern.

Figure 5.16. Sequence Diagram of services of the Composite View Pattern.

90

Properties:
– Improving modularity and opportunities of reuse,
– Adding a control scheme based on roles or rules,
– Facilitating maintenance of the code (based on separating a template from a view),
– Handicap code management (possibility of mismatches of sub-views),
– Performance reduction when generating sub-views.

5.3.7. Service to Worker
Problem 7: Major maintenance requests and business logic should be carried out before

passing control to a view.
It should be taken into account:
– Complexity of control logic,
– Dynamics of an answer,
– Complexity of business logic and model.
Requirements:
– Perform business logic to handle requests and retrieve data that will be used to generate

a dynamic response,
– Contents of the view depends on the response received after performing the business

services,
– Library or a skeleton of a presentation should be used.
The Service to Worker:
– It is the most common method of designing the Presentation Tier, where the main role

plays the Application Controller pattern,
– It allows centralizing control and it handles requests for download the model of the

presentation before passing control to the view,
– View generates a dynamic response based on the presentation model.
Components of the pattern:
– Front Controller – It is used for the initial service of a request (the separation of

control logic to the command and supporting objects),
– Application Controller – It is used for simple management of views, without

management of application actions. For simple applications it can be replaced with the
FrontController component,

– View – It represents a transfer of customer data, adjusted using the View Helper. It may
be the Composite View component,

– BusinessHelper – It starts handling business demands,
– View Helper – It retrieves and adapts the presentation model to generate the creation of

a view,
– PresentationModel – The presentation model stores data received after a call to

business services and used when rendering a view,
– BusinessService – It represents the business logic. Access to remote services is done

using BusinessDelegate objects.

91

Figure 5.17. Class Diagram of the Service to Worker Pattern.

Figure 5.18. Sequence Diagram of services of the Service to Worker Pattern.

Implementation:
– Servlet receiving requests,
– JSP page receiving a request,
– Views using templates,
– View-based controller,
– Auxiliary JavaBean components,
– Auxiliary own tags,
– Selecting a view in the controller.
Properties:
– Centralization of control and improve modularity, reusability, and ease of maintenance,
– Proper separation between the developers roles.

92

5.3.8. Dispatcher View
Problem 8 – The view can perform service of a request and generates a response by doing

a small amount of business logic:
– In some cases, there is few business logic to run, or not at all, before a view has been

created. Usually the view is static or is a generated from an existing model of
presentation in these situations,

– The view derives limited benefit from business services and access to data.
Requirements:
– Views are static,
– Views are generated from an existing presentation model,
– Views are independent of calls of business services,
– Much business processing.
The Dispatcher View:
– The second most common method of designing the Presentation Tier, where the main

role plays the View component. Applications based on the Service Worker pattern, can
use this pattern (e.g. Struts),

– Views are initial points of requests services,
– There is the small amount of required business processing performed by the view,
– Two applications:

o the answer is completely static or a plain HTML,
o the answer is dynamic, but it is completely generated from the existing model of a

presentation.
Components of the pattern:
– Front Controller – It is used for the initial service of a request (the separation of

control logic to the command and supporting objects),
– Application Controller – It is used for simple management of views, without

management of application actions,
– View – It represents a transfer of customer data, adjusted using the View Helper

component,
– BusinessHelper – It starts handling business demands,
– View Helper – It retrieves and adapts the presentation model to generate the creation of

a view,
– PresentationModel – The presentation model stores data received after a call to

business services and used when rendering a view,
– BusinessService – It represents the business logic. Access to remote services is done

using BusinessDelegate components.

93

Figure 5.19. Class Diagram of the Dispatcher View Pattern.

Figure 5.20. Sequence Diagram of services of the Service to Worker Pattern.

Implementation:
– Servlet receiving requests,
– JSP page receiving a request,
– Views using templates,
– View-based controller,
– Auxiliary JavaBean components,
– Auxiliary own tags,
– Selecting a view in the controller.
Properties:
– It is used in the presentation skeletons and the library (e.g. JSTL),
– It may result in poor separation of a view from the model and control logic,
– Allows the separation of processing logic from the view, and facilitates code reuse.

94

6. Design patterns used to build the Integration Tier
Figure 6.1 shows the definition of the Integration Tier of the Multitiered Information

System [2].

Client Tier

Customer applications, applets, elements of
the graphical user interface

Presentation Tier
 JSP Pages, servlets, and other user

interface elements

Business Tier
 EJB components and other business

objects

 Integration Tier

 JMS, JDBC, connectors and connections
with external systems

Resource Tier
 Databases, external systems and other

resources

Interacting with the user,
device and user interface

presentation

Login, session management,
content creation, formatting,

validation and delivery

 Business logic, transactions,
data and services

Resource adapters, external
systems, mechanisms for

resource, control flow

Resources, data and external
services

Figure 6.1. The definition of the Integration Tier of the Multitier Information System [2].

6.1. Basic issues of the Integration Tier design
The basic issues of the Integration Tier are as follows [2], [5]:
1. Managing access to data.
2. Manage connections to a database - the pool calls.
3. Managing access to data:
4. Data access code is embedded in the Presentation Tier or the Business Tier, which is

used for other purposes such as:
a. Servlet,
b. EJB component.

5. This leads to load these classes with additional functions, impairs performance and
scalability. It would be better to introduce the Integration Tier and should place the
code to access data there.

6. Data access code is located in a tier of integration, but does not cache the results
obtained during various access operations to the databases.

7. If you need to increase scalability and improve performance, cache processing results
in a database, avoiding duplication of operations directly in databases.

8. Data access code is extracted from classes that are used to meet the other objectives.
9. Data access code should be placed logically and physically closer to its data source.

95

Any class

Code of
Data Access

Client,
Presentation or
Business Tier

 Resource
Tier

Resource
Tier

Data
Bases

Data
Bases

Any class

Code of
Data

Access

Client,
Presentation or
Business Tier

Integration
Tier

Figure 6.2. Refactorization of Client, Presentation Business Tiers based on elimination of the Integration Tier

for Data access [2].

Manage connections to a database - the pool calls:
– Each client application manages a connection of databases using the same classes that

are often used for other purposes, within the Presentation, Business or Integration
Tiers. Database connections are not shared, which decreases performance and
scalability,

– It should introduce a pool of connections initiated by clients before the connection
application and put it in a tier of integration - it improves performance and scalability,

– Number of calls to data access code (DAO) within the database is limited,
– Connections to the data access code (DAO) are not always used, but are kept as open

database connections and resources,
– Connection Pooling to the data access code (DAO) allows to manage reasonably

connections to the database application.

 Connections
returned to
connection

pool

 Client,
Presentation
or Business

Tier

 Resource
Tier

DAO

DAO

DAO

Data
Bases

 Client, Presentation or
Business Tier

Resource
Tier

Data
Bases

DAO

DAO

DAO

Used active
connection

Active
connections

Used active
connection

Active
connections

Figure 6.3. Refactorization of Client, Presentation or Business Tiers based on elimination of connections to a

database - the pool calls [2].

6.2. Bad practices of the Integration Tier design
There are some bad practices during the Integration Tier design:
1. Validating data,
2. Data structures from the Presentation Tier are available,
3. Data structures from the Business Tier are available,

96

4. Sharing objects of an active connection to the database with Presentation and Business
Tiers,

5. Direct integration of exception handling in the tiers of the presentation and business,
6. Transmission data between Presentation and Business Tiers and the tier of integration

is not used by an auxiliary object class (called an object transfer, independent of the
Presentation Tier and the Business Tier and data structures stored in data warehouses),

7. No encryption of sensitive data.

6.3. Analysis of basic design issues
Basic design issues of Integration Tier are as follows:
1. Hiding data access logic in a separate tier,
2. Separation of persistence mechanisms from an object model.

6.3.1. Data Access Object
Problem 1 – Hiding data access logic in a separate tier:
– Small applications do not use the Entity while in session facade object encapsulates

business logic and the processing is carried out directly on a permanent storage,
– Most business applications use as permanent storage relational database (RDBMS),

external mainframe systems, repositories, object-oriented databases (OODB), normal
file systems, such as external services, B2B or services by credit card. Each system
uses different access mechanisms supported by the API and has a different
functionality,

– Mixing data access code with application logic leads to a relationship between an
application and permanent storage, which requires many changes in the application if
you change the database.

Client Tier

Servlets,
JSP

 Business Tier

Client

Business
Delegate 1

Data
Base

 Resource
Tier

 Code of
Data Access

Integration
Tier Presentation Tier

Servlets and JSP with
presentation logic and

controller to separate layers

Session
Component with
business logic

 Data Acces
logic with direct

accesss to
databases

Session
Component

Figure 6.4. Architecture of information system with the Integration Tier [2].

Requirements:
– Our application should need to implement data access mechanisms to retrieve and

modify data in the permanent storage,
– The persistent storage system should be separated from the rest of application,
– Our application should create an uniform interface to access data stored in various

sources for example in RDBMS, LDAP, OODB, XML repository, flat file,

97

– Organization of the data access logic should be hidden in one location; specific
functions of data access achieve greater portability and ease of maintenance code.

The Data Access Object:
– It is standardized and contains all code for access permanent data store,
– It manages connections to data sources to retrieve and save data,
– It is stateless,
– It does not cache data obtained during data collection,
– It encapsulates implementation details of the data store,
– We do not disclose exceptions, data structures, objects related to types of sql libraries.
Components of the pattern:
– Client – It is the object requesting access to data in order to download or save data. A

client may be the business object (object model), the SessionFacade or Application
Service component or any other object that requires secondary access to durable data,

– DataAccessObject – It is a key element of the pattern. It hides the actual
implementation of data access from the client, to provide equal access, independent of
the DataSource. This object implements the CRUD operations (Create, Read, Update,
Delete),

– DataSource – It is any service data management. This may be a relational or object-
oriented database, file system, repository, XML, etc.,

– ResultSet - It represents a result of a query. For JDBC drivers, this is an instance of
type java.sql.ResultSet,

– Date - It represents a transfer facility, which is used to transfer data.
Implementation:
– Custom data access object,
– Data Access Factory,
– A collection of transfer objects,
– A buffered collection of lines,
– A collection of lines read-only,
– A Wrapper List (Wrapper Rowset List).
Properties:
– Hiding data access,
– Creation of object-oriented mechanisms for data access and concealment of database

schemas,
– Facilitate data migration by replacing the DAO tier,
– Reducing the complexity of client code,
– Introducing an additional tier,
– Putting all the data access code inside a separate tier,
– Project requires a hierarchy of classes,
– Introducing of the complexity for the use of object-oriented data access methods.

98

Figure 6.5. Class Diagram of the Data Access Object Pattern.

Figure 6.6. Sequence Diagram to download data using the Data Access Object Pattern.

99

Figure 6.7. Sequence Diagram to insert data using the Data Access Object Pattern.

Figure 6.8. Sequence Diagram to update data using the Data Access Object Pattern.

Figure 6.9. Sequence Diagram to delete data using the Data Access Object Pattern.

6.3.2. Domain Store
Problem 2 – Separation of persistence mechanisms from the object model:
– Many systems have a complex object model, built from the ordinary objects or

components, such as Entity. They require a sophisticated strategy of preserving the
permanent storage,

100

– Case 1 - container manages the persistence tier of business objects of the type Entity,
– Case 2 - the objects of Entity manage persistence, which can be used to implement the

persistence object model,
– Case 3 – It runs applications in the Presentation Tier and separation between the

persistence mechanism and an object model. Object models can be based on the so-
called invisible life, that is, business objects of the object model do not correspond to
the persistence mechanisms.

Possible solutions of the persistence mechanisms:
1. An object model does not exist (no objects of type Entity) - a solution to the problem 1

(solution 1).
2. The persistence mechanism is implemented in containers, which are objects of the

Entity (strategy-CMP Container-Managed Persistence) - no inheritance in the object
model (solution 2).

3. The persistence mechanism is implemented at the premises of the Entity (strategy BMP
- Bean-Managed Persistence); code of persistence mixed with the object model - no
inheritance in the object model (solution 3).

4. The mechanism of persistence is placed in the object model of the Entity - code of
persistence mixed with the object model (solution 4).

5. The mechanism of persistence is separated from the object model of the Entity based
on all object-oriented patterns (solution 5).

Figure 6.10 shows the model of the Business Tier based on 2, 3, 5 solutions of persistence.

Client

 Business
logic

Session
Facade

Transaction Logic
managed by:

 Session Facade (solution 5)

 Special Components (solution 3)

 Container (solution 2)

 Client or
Presentation

Tier Business Tier

Component
Entity A

Component
Entity B

Component
Entity C

Figure 6.10. Business Tier based on 2, 3, 5 solutions of persistence [2].

Requirements:
– Implementation of persistence mechanisms in business objects such as Entity should be

avoided,
– Objects of the type Entity that use the persistence mechanisms of the container should

be refrained,
– The application can run in the web container,
– The object model uses inheritance and complex relationships,

101

– The mechanism of persistence can be solved in two ways:
o make your own skeleton of persistence,
o or use a ready-made solutions based on JDO or own O-R solutions.

Servlets,
JSP

Client

 Entity

Component

Business
Delegate 1

Data
Base

 Code of
Data Access

Servlets and JSP with
presentation logic and

controller to separate layers

Session Component with business
logic, Entity Components as

persistence transaction objects

Data Acces
logic with JPA

accesss to
databases

Session
Component

Client Tier

 Business Tier

 Resource
Tier

Integration
Tier Presentation Tier

Figure 6.11. Architecture of 5-tiers information system [2].

The Domain Store:
– Provides an invisible persistence of an object model,
– Durability associated with the implementation of the Domain Store is separated from

the object model (as opposed to container-managed persistence (CMP) or bean-
managed persistence (BMP).

Components of the pattern:
– Application Service - It provides an object service using the object model,
– Persistable – It is an interface or a base class for all persistent business objects,
– PersitenceManagerFactory - It creates objects and manages the PersistenceManager

component,
– PersistenceManager - It manages persistence and a query object model.

PersistenceManager component manages objects via the object model together with
the StateManager component,

– StateManager – It manages the state of the objects of the object model. It forces a
transaction and retrieval of objects from the DataResource component,

– StoreManager (DAO) - It interacts with the DataResource to perform CRUD
operations (Create, Read, Update, Delete). The StoreManager DAO component
contains all the mechanisms to access data,

– DataResource – It is any service management data. This may be a relational or object-
oriented database, etc.

Additional components of the pattern:
– SessionFacade – It is an access point to the Business Tier. It cooperates with one or

more ApplicatonService objects,
– PersistMap – It contains definitions of relationships between objects and the mapping

between the persistent objects and data source,
– Transaction – It is associated with the PersistenceManager object. It is used to define

the rules of the transactions themselves and to manage transactions in environments
without such support,

– Query – It encapsulates a query, the criteria for filtering, sorting, and parameter
declaration.

102

Figure 6.12. Class Diagram of the Domain Store of Pattern.

An algorithm of creating and persisting of objects:
1. The ApplicationService creates the BusinessService.
2. The ApplicationService retrieves the PersistenceManager from the

PersistenceManagerFactory.
3. The PersistenceManager registers in the TransactionManager.
4. The ApplicationService asks the PersistenceManager to persist the BusinessObject.
5. The PersistenceManager creates the StateManager and instructs him to took

BusinessObject.
6. The StateManager informs the BusinessObject that from now it manages its condition.
7. The ApplicationService asks the PersistenceManager to approve the deal explicitly or

implicitly.
8. The TransactionManager informs the PersistenceManager to do empty all

StateManager objects in one transaction.
9. The PersistenceManager informs the StateManager that it has to save own data.
10. The StateManager retrieves data from the BusinessObject object.
11. The StateManager orders the StoreManager to save data.
12. The transaction is confirmed.
Implementation:
– Own implementation of persistence,
– Downloading of the on-demand,
– JDO (Java Data Object).

Properties:
– Create own implementation of persistence is a complex task,
– Loading and saving multi-level tree of objects requires optimization,
– Allows you to better understand mechanisms of persistence principles,

103

– Advanced mechanisms for persistence may be too powerful for a simple object model,
– Facilitate testing of an object model,
– Separation of a business object model from the persistence logic.

Figure 6.13. Sequence Diagram to create and persist business objects of the Domain Store Pattern.

Figure 6.14. Sequence Diagram to download business object of the Domain Store Pattern.

104

Figure 6.15. Sequence Diagram to create and perform the query business object of the Domain Store Pattern.

105

7. Example of the multitiered web application

7.1. Two examples of architectures of the multitier application as
the Visual Web Java Server Pages applications

Figure 7.1 shows an example of the architecture of a Web Application based on
synchronization of data by databases.

ApplicationBean1

Application Service
Sun pattern

SessionBean1
Session Facade

Sun pattern

JSF Pages JSF Pages JSF Pages

Client1 Client2 Client3

Database

Library
Directory

Object Model
Gof Patterns:
Facade: TFacade
Factory: TFactory
Flyweight: TTitle_book

 Integration Tier
(EntityManager,…)

TopLink
Gof and Sun Patterns:
Domain Store
Transfer Object
Facade (XXXController)
Factory

SessionBean1
Session Facade

Sun pattern

SessionBean1
Session Facade

Sun pattern

Object Model
Gof Patterns:
Facade: TFacade
Factory: TFactory
Flyweight: TTitle_book

Integration Tier
(EntityManager,…)

TopLink
Gof and Sun Patterns:
Domain Store
Transfer Object
Facade (XXXController)
Factory

Object Model
Gof Patterns:
Facade: TFacade
Factory: TFactory
Flyweight: TTitle_book

Integration Tier
(EntityManager,…)

TopLink
Gof and Sun Patterns:
Domain Store
Transfer Object
Facade (XXXController)
Factory

Resource
Tier

Integration
Tier

Business
Tier

Presentation
Tier

Client Tier

Figure 7.1. Architecture of the web application based on synchronization of data by databases.

Architecture of a Web Application based on synchronization of data by databases, when

there are:
– Many clients of the Client Tier as the www pages,
– Many JSF pages of the Presentation Tier – each client has own pages,
– Many Session Facade Components of the Business Tier (SessionBean1) as remote

facades of the Business Service Sub-tier (Java Application project) based on the POJO
objects – each client has own SessionBean1 and the own Business Service Sub-tier,

– Own Domain Store Components of the Integration Tier.

Figure 7.2 shows the example of the architecture of web application based on

synchronization of data by application.

106

ApplicationBean1
Application Service

Sun pattern

SessionBean1

Session Facade
Sun pattern

JSF Page JSF Page JSF Page

Client1 Client2 Client3

Database

Library
Directory

Object Model
Gof Patterns:
Facade: TFacade
Factory: TFactory
Flyweight: TTitle_book

Integration Tier (EntityManager,…) TopLink
Gof and Sun Patterns:
Domain Store
Transfer Object
Facade (XXXController)
Factory

SessionBean1

Session Facade
Sun pattern

SessionBean1

Session Facade
Sun pattern

Resource
Tier

Integration
Tier

Business
Tier

Presentation
Tier

Client Tier

Figure 7.2. Example of the architecture of the web application based on synchronization of data by an

application.

Architecture of a Web Application based on synchronization of data by application, when

there are:
– Many clients of the Client Tier as the www pages,
– Many JSF pages of the Presentation Tier – each client has own pages,
– Common Application Service Component of the Business Tier (ApplicationBean1) as

the remote facade of the Business Service Sub-tier (Java Application project) based on
the POJO objects – each client uses the common ApplicationBean1,

– Common Domain Store Components of the Integration Tier.

7.2. The Visual Web Java Server Pages application based on
synchronization of data by an application

Section 7.2 includes a few subsections, which illustrate the Web Application by using
screenshots of this project from NetBeans 6.7.1 with the Visual Web JSF plugin.

7.2.1. Structure of project
Figure 7.2 shows structure of the Enterprise Application based on the Java Application

project with Business and Integration Tiers and the Web Application project integrated with
the previous project. The Java Application project includes packages, the first one
representing the Integration Tier and the second one the Service Sub-tier as the part of the
Application Service with the object model. The web project includes the Presentation Tier as
the JavaServer Faces Pages (JSF Pages) and the remote part of the Business Tier as the
Application Service.

Figure 7.3 presents a one of JSF Pages and components of remote part of the Business Tier
as the Application Service: RequetsBean1, SessionBean1, and ApplicationBean1 objects.
Figure 7.4 shows some main classes of the integrated Enterprise project.

107

Figure 7.3. Structure of the Enterprise Application based on the Java Application Project with Business and

Integration Tiers and the Web Application project integrated with the previous project.

Figure 7.4. An example of one of JSF Pages and components of the remote part of the Business Tier.

Integration
Tier:

Facades of
Domain Store

Business Tier:
Business

Service Sub-tier
as Application
Service with
Object model

Presentation
Tier:

JSF pages

Business Tier:
Application
Service

Presentation
Tier

Business Tier:
Session Façade

Application Service

108

Figure 7.5. Some main classes of the integrated Enterprise Project, participating in individual tiers.

7.2.2. Business Service Sub-tier

Figure 7.6. Class Diagram of the Service Sub-tier of the Business Tier.

Classes
of
Business
Service
Sub-tier

Classes of
Presentation Tier
Business Tier
Integration Tier

109

Figure 7.7. Code of one of classes in the Service sub-tier of the Business Tier.

Figure 7.8. Code of one of classes in the Service sub-tier of the Business Tier (related to Figure 7.6).

Facade of
Business Service Sub-tier
as POJO class (2):
business logic methods of
sub-tier

Facade of
Business Service Sub-tier
as POJO class (1):
business logic methods
of sub-tier

110

Figure 7.9. Code of one of classes in the Service sub-tier of the Business Tier (related to Figure 7.6).

Figure 7.10. Code of one of classes in the Service sub-tier of the Business Tier (related to Figure 7.6).

Example of Entity class from
Object Model of
Business Service Sub-tier (1):

Persistence Annotation

Facade of
Business Service Sub-tier
as POJO class (3):
summarization of business logic

111

Figure 7.11. Code of one of classes in the Service sub-tier of the Business Tier (related to Figure 7.6).

7.2.3. Application Service of the Business Tier as the remote sub-tier

Figure 7.12. Code of one of classes in the remote sub-tier of the Business Tier (related to Figure 7.6).

Example of Entity class from
Object Model of
Business Service Sub-tier (2):

business logic methods

112

Figure 7.13. Code of one of classes in the remote sub-tier of the Business Tier (related to Figure 7.6).

7.2.4. Integration Tier

Figure 7.14. Code of one of classes in the remote sub-tier of the Integrated Tier (related to Figure 7.6).

remote methods for
methods of
Integration Tier

binding data
of JSF
Component

remote method for methods of
Business Service Sub-tier

113

Figure 7.15. Tables generated from data model of the Integrated Tier. Data model represents the Object model

with annotations of the Persistence Java language.

7.2.5. Presentation Tier

Figure 7.16. One of JSF Pages of the Presentation Tier, related to Figure 7.6 – the main view form consists of

some reusable sub-views as the Fragment Box components.

Tables generated from
Entities of Object Model of
Business Service Sub-tier by
Domain Store Components of
Integration Tier

114

Figure 7.17. One of JSF Pages of the Presentation Tier (related to Figure 7.6).

Figure 7.18. One of JSF Pages of the Presentation Tier (related to Figure 7.6) – the main view form consists of

some reusable sub-views as the Fragment Box components.

Links to other pages of web
application

115

Figure 7.19. View of one of JSF Pages of the Presentation Tier, related to Figure 7.18.

Figure 7.20. Code handling the event of one of JSF Pages of the Presentation Tier (related to Figure 7.6) –
calling methods from the sub-view of the main form view for input data and from the remote sub-tier of the

Business Tier for executing the called service by the Service Sub-tier.

Method of event: the click of
the addtitle button

Method of www response

addtitle_action

116

Figure 7.21. Method handling the event called from the sub-view of the main form view.

Figure 7.22. One of JSF Pages of the Presentation Tier (related to Figure 7.6) – the main view form consists of

some reusable sub-views as the Fragment Box components.

Methods of the
FragmentBox Component
as the sub-view of the
Titles form view

117

Figure 7.23. View of one of JSF Pages of the Presentation Tier, related to the Figure 7.22.

Figure 7.24. Code of the handling the event of one of JSF Pages of the Presentation Tier (related to Figure 7.6) –

calling methods from the remote sub-tier of the Business Tier for executing the called database service by
components of the Integration Tier.

Method of event: the click
of the storetitle button

Method of www response

storetitle_action

118

PART II

XML-based service description languages

8. RDF (Resource Description Framework)
The Resource Description Framework (RDF) is an open-world framework for representing

information about resources in a graph form. The framework, primarily intended for
representing metadata about WWW resources, makes use of Uniform Resource Identifier
(URI) or IRI (Internationalized Resource Identifier) to name or to refer to a particular
resource.

A concept of a resource has a long history. At the beginning, a term resource was
associated with a document or file, which was available in a computer network under a
statically assigned address. The development of Internet technology has upgraded this
definition. Today’s resource can be anything uniquely recognizable in the computer network
systems by the name, address, credentials or any other identifier. Therefore, the RDF, which
uses URI or IRI, is a language, which theoretically allows describing anything clearly named
or identified.

The use of resource identifiers is a mapping, which indicates the actual entities or objects.
However, this mapping may have a broader context. Identifiers attribute not only real things,
but also concepts, ideas or any other abstracts. Most often URI or IRI identifiers represent
addresses where the resources are located at, and where they can be downloaded from.
However, the resources, in general, do not have to be accessible on the Web. Moreover, it is
not required that complete information about them is available.

URI and IRI identifiers can refer to anything and, by the open-world assumption, anyone
can make statements about any resource. There are no restrictions preventing anyone from
making assertions, which are nonsensical or inconsistent with other statements. More over,
the identifiers interpretation can be context-dependent, as, for example, a link to a daily news
web page. Thus, application designers working with RDF need to be aware about these issues.

NOTE:
The open-world assumption: “The truth of a statement is independent of whether it is

known. In other words, not knowing that a statement is explicitly true does not imply that the
statement is false”.

The closed-world assumption: “Any statement that is not known to be true can be assumed
to be false”.

The no unique names assumption: “Unless explicitly stated otherwise, it cannot be
assumed that resources that are identified by different URIs are different”.

W3C organization maintains the RDF specification in the scope of W3C's Semantic Web

Activity. RDF became a W3C Recommendation on 10 February 2004. The documents
contributing to this recommendation [30, 33-37] are accessible from the W3C’s web page.

RDF was designed to be read and understood by computers. The RDF/XML is a normative
syntax for expressing RDF information in a computer-readable form. Apart from RDF/XML,
there exist other languages for the RDF graph serialization, as Notation 3 (N3) and Terse RDF
Triple Language (TURTLE). The syntax of those languages is less verbose than RDF/XML.
Therefore, they are used to represent RDF graphs for humans. The N3 language is designed as
a readable language for data on the Web that goes beyond RDF (it contains logical extensions
and rules). The TURTLE is a RDF-only subset of N3.

121

NOTE:
URI – is a sequence of characters that identify a name or a resource on the Internet. This

sequence is built from a limited subset of the repertoire of US-ASCII (ASCII) characters and
consists of four parts:
scheme ":" hier_part ["?" query] [# fragment]
where:
scheme – a string that begins with a letter followed by any combination of letters, digits,

and the plus ("+"), period ("."), or hyphen ("-") characters.
hier_part – a string that begins with a double forward slash ("//"), followed by an

authority part and an optional path intended to hold identification information
hierarchical in nature.
authority - holds an optional user information part, which might include scheme-

specific information about how to gain authorization to access the resource, terminated with
"@", a hostname, and an optional port number preceded by a colon ":".
path - is a sequence of segments separated by a forward slash ("/") representing a

hierarchy similar to the directory structure. Each segment can contain parameters separated
from it using a semicolon (";"), though this is rarely used in practice.
query - is an optional part separated with a question mark, which contains additional

identification information which is not hierarchical in nature. The query string syntax is not
generically defined, but is commonly organized as a sequence of <key>=<value> pairs
separated by a semicolon or separated by an ampersand, for example:
key1=value1;key2=value2 or key1=value1&key2=value2
fragment - is an optional part separated from the front parts by a hash ("#"). It holds

additional identifying information that provides direction to a secondary resource, e.g. a
section heading in an article identified by the remainder of the URI.

URI can appear in an absolute or relative form. The absolute form is a form, in which a
resource is identified with full and context independent resource reference. Relative form is a
form, in which resource reference has not given full information to identify a resource and
missing information must be derived from the context. The URI, which contains relative part
is URI reference. A URI reference (or URIref) is a URI, together with an optional fragment
identifier at the end. For example #section2 (relative URI) inside the document
http://www.example.org/index.html corresponds to the absolute URI
http://www.example.org/index.html#section2. The syntax of URI has been
defined in RFC2396 [38] and updated in RFC2732 [40] – both obsolete, but widely
implemented versions of the generic URI syntax. The current generic URI syntax
specification is RFC3986 [41].

IRI – is an extension of URI providing much wider repertoire of characters allowed. Its
definition is similar to URI. However, the class of unreserved characters has been extended by
the characters of the Universal Character Set (UCS) [44] beyond U+007F, with the restriction
that private UCS characters can occur only in query parts.

The definition of IRI is provided in RFC3987 [42], the specification that defines
"internationalized" versions corresponding to other constructs from RFC3986 [41], such as
URI references. In many cases URI and IRI are used interchangeably, but practical
replacement of URIs (or URI references) by IRIs (or IRI references) depends on the
application.

122

Some domain names appearing in the URL authority part have been reserved for testing or
other similar uses as described in RFC2606 [39] document. Therefore, URLs with
example.com, example.net, or example.org do not refer to any existing resources,
but serve well for illustrative purposes in documentation.

8.1. Model
The RDF is built on an abstract concept of Graph data model. The basic element of this

model is a statement, represented by a triple: <subject, predicate, object>. The triple links one
object (subject) to another object (object) or a literal via a property (predicate). In another
words: a resource (subject) has a property (predicate) valued by property value (object).

The RDF graph is a directed graph, in which subjects and objects are nodes and predicates
are arcs, starting at a proper subject and leading to a proper object. Thus, the simplest RDF
graph consists of just two nodes and one arc – a single triple representation. Because any
predicate appearing in a triple can be also considered as a resource, it can be used in a
recursive way as a subject of some other triple. Hence, given more triples, the graph can
grow. For example, the same person can be a subject of a bunch of triples linking this person
with various objects via number of properties, which in turn, can be associated with other
resources.

What makes RDF triples special is that every part of a triple can have URI associated with
it (and identifying it). Being more precise, RDF requires that subject has URI or is b-node;
predicate has URI; and that object has URI, is b-node or is literal. Moreover, the same URI
can be assigned to a node and to an arc as well.

Visualization of RDF graph is quite simple. Nodes of a graph (subjects and objects) are
visualized as ovals, linked by directed arcs (predicates). However, there is one exception – a
node that contains literal (what applies only to objects of triples) is visualized as a rectangle
(see Figure 8.1).

a) b)

Subject Object
Predicate

Subject Object

Predicate

Figure 8.1. Graphical representation of an RDF triple a) subject and object nodes are resources, b) object is

literal.

RDF model intrinsically supports binary relations only; that is, a statement specifies a

relation between two resources. However, the higher arity relations can be easily modelled.
RDF supports also the concepts of containers and collections, which, used together, allow
complex graph definitions (see Figure 8.2).

NOTE:
Representing information involving higher arity relations (relations between more than two

resources) in RDF needs some effort. The common way to represent any n-ary relation in
RDF is following. At first a subject of the original relation is selected. Then intermediate
resource is defined to represent the rest of the relation (either with assigned URI or without it
as b-node). Next, to represents the remaining components of the relation some new properties
are assigned to this intermediate resource.

123

URI-0

Literal-0

URI-1

URI-2

URI-3

Literal-1

Literal-3
Literal-4

URI-p0
URI-p1 URI-p2

URI-p3

URI-p2

URI-p4

URI-4

Figure 8.2. RDF graph with several interconnected subjects and objects, including container with three subjects

grouped in one container (shown as a rectangle with three object nodes inside). The containers are often
represented as star-like sub-graphs with blank nodes placed in the stars’ origins.

An RDF model is very simple and uniform. Because URIs are defined in a single universal

namespace, merging different RDF graphs is extremely easy – the triples can always be
merged without name translations, so entire graphs can be transported and combined without
any translation. This feature is highly appreciated by the developers of the web applications.
On the other hand, the flexibility and extensibility of RDF model might cause some troubles
in the knowledge-based systems and inference engines (for example, the inference might not
be possible for a given graph). An example of an RDF graph representing a statement “John
Smith is a father of Susan Smith” is shown in Figure 8.3.

mailto:John@example.org
http://example.org/family.rdf#fatherOf

mailto:Susan@example.org

"John Smith"^^xsd:string

http://example.org/family.rdf#name

"Susan Smith"^^xsd:string

http://example.org/family.rdf#name

Figure 8.3. RDF graph representing a statement “John Smith is a father of Susan Smith”. Both persons are

identified by their e-mail addresses and their names are provided as typed literals.

NOTE
Literal in the RDF sense is a constant string value such as string or number. Literals cannot

be the subjects of statements, only objects (target nodes in the RDF graphs). Literals can be
either plain literals (without type) or typed literals typed using XML Datatypes. All literals
have a lexical form being a Unicode string [44], which should be in Normal Form C. Plain
literals can have an optional language tag assigned in form of a suffix starting with @ followed
by the language code string (as defined by RFC3066, normalized to lowercase). Typed literals
have a lexical form ending with a suffix being RDF datatype URI reference (as in XML
Schema Datatypes or an URI of custom datatype defined). The suffix starts with two caret
characters ^^.

Resource in the RDF sense can represent anything that can be named: an object, act, or
concept. URIs identifies resources. Regarding RDF triples, resources can be subjects,
predicates or objects.

A blank node (abbreviated with b-node) is a node of some RDF graph, which is neither
identified by a URI nor not a literal. Such a node can be viewed as a graph scoped identifier
that cannot be directly referenced from outside. It is used mainly for graph branching as for
representing higher arity relations. In general, using b-nodes may cause some troubles in

124

different graphs merging or querying. In particular, the problem arises from possible node ID
conflicts (merging) or temporary node ID assignments (querying). A b-node can be used in
any RDF triple only as a subject or an object and cannot be used as a predicate (in in some
syntaxes like Notation 3 it is acceptable to use a Blank Node as a predicate [12].

NOTE:
There is no built-in concept of numbers or dates or other common values in RDF. RDF

predefines just one datatype: rdf:XMLLiteral, which is used for embedding XML in
RDF. There is no mechanism for defining new datatypes as well. It is expected that any new
datatypes will be provided separately, and identified with URI references, as XML Schema
datatypes defined in [60]. Thus, the datatype abstraction used in RDF is compatible with the
abstraction used in XML Schema. A datatype consists of a lexical space (a non-empty set of
character strings), a value space (a non-empty set) and a lexical-to-value mapping (a mapping
from the lexical space to the value space). For example, the lexical-to-value mapping for the
XML Schema datatype xsd:boolean, where each member of the value space (represented
here as 'T' and 'F') has two lexical representations, is as follows:

value space: {T,F};
lexical space: {"0", "1", "true", "false"};
lexical-to-value mapping: {<"true", T>, <"1", T>, <"0", F>, <"false",

F>}.
Not all XML Schema datatypes are suitable for the use in RDF. xsd:duration – does

not have a well-defined value space; xsd:QName and xsd:ENTITY – require an enclosing
XML document context; xsd:ID and xsd:IDREF – are for cross-references within an
XML document; xsd:NOTATION – is not intended for a direct use; xsd:IDREFS,
xsd:ENTITIES and xsd:NMTOKENS – are sequence-valued datatypes which do not fit the
RDF datatype model.

8.2. Vocabulary
The RDF is a language built on a set of URIs. There are two vocabularies defined in the

specification: RDF and RDF Schema (RDFS).
The RDF vocabulary contains basic terms (Table 8.1) for expressing simple statements

about resources using named properties and values [30].
The RDFS vocabulary is a semantic extension of the RDF vocabulary (Table 8.2)

providing mechanisms for describing properties and relationships between these properties
and other resources [37]. It allows custom vocabularies creation by introducing new terms
using built-in vocabulary or terms already defined.

RDFS defines classes and properties that may be used to describe classes, properties and
other resources. It includes terms that may be used to determine characteristics of other
resources, such as domains (to indicate that the resource is of a particular RDF class) and
ranges (to indicate that the resource is of a specific data type) of properties. Such description
can be recursive. It is said that RDF Schema provides a type system for RDF.

The RDF and RDFS vocabularies can describe relationships between items from multiple
vocabularies developed independently. To simplify such description the prefix strings
corresponding to the XML namespace names are often used.

The concepts of classes and properties are similar to the concepts used in object-oriented
programming. By convention, class’s names start with an upper case letter, and properties

125

names – with a lower case letter (after the leading prefix). However, there is one important
difference. “Instead of defining a class in terms of the properties its instances may have, the
RDF vocabulary description language describes properties in terms of the classes of resource
to which they apply”. In object oriented-programming languages class definition implies the
characteristic of instances, while in RDF properties definitions imply the class membership of
the instance – if an instance has a certain property asserted with a domain defined, this
domain specifies the class of this instance. This interpretation provides the basis for inference.

8.2.1. RDF vocabulary
 The RDF vocabulary consists of some basic concepts for describing RDF triples, and

concepts for describing containers and collections (gathered up in Table 8.1). The URI
references of these concepts start with a leading substring
http://www.w3.org/1999/02/22-rdf-syntax-ns#. For the sake of clarity, this
substring is often substituted by a namespace prefix rdf:. Thanks to that, names of the
concepts can be shortened, as, for example, rdf:type, whose full URI is
http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

RDF allows describing every element of RDF in RDF itself. It is done through RDF
reification – disassembling triples into parts, which can be used then in other statement
declarations, as a whole or as parts (RDF reification vocabulary).

The RDF containers and collections allow to describe groups of things. The main
difference between these two kinds of description relies on the way of stating out that no more
members of a group are present. The core RDF specifications define no mechanism for
containers to determine this fact. Therefore, containers are open in that sense. On the contrary,
collections cardinalities are determined. Collections are lists of items in terms of head-tail
links. Thus, the number of items in a given list delimits the existence of explicit list’s
terminator. Thanks to such syntax, collections are not altered by RDF graphs merging, and
differ from containers in allowing branching structures.

Table 8.1. RDF vocabulary.

RDF property and type
vocabulary

RDF reification
vocabulary

RDF container
vocabulary

RDF collection
vocabulary

rdf:Property
rdf:type
rdf:XMLLiteral
rdf:value

rdf:Statement
rdf:subject
rdf:predicate
rdf:object

rdf:Seq
rdf:Bag
rdf:Alt
rdf:_1
rdf:_2
...

rdf:List
rdf:first
rdf:rest
rdf:nil

rdf:Property – is a property (or, more formally, a class of RDF properties) used for
the definition of predicates in triples. Each definition of a property might include restrictions
regarding domain and range (using concepts from RDFS vocabulary). Even though properties
are classes, they are defined and used independently of RDFS classes (defined with
rdfs:Class from RDFS vocabulary).
rdf:type – is a property (or, more formally, an instance of rdf:Property) used to

assert a type to a resource. The value of this property is a URI identifying a class (or, more
formally, an instance of rdfs:Class defined with RDFS vocabulary). A triple of the form:
R rdf:type C states that C is an instance of rdfs:Class and R is an instance of C.
Asserting the same type to several resources is possible, as asserting any other predicates.

126

rdf:XMLLiteral - is a special built-in datatype delivered for assigning XML content as
a possible literal value to a target nodes in the RDF graph. In the specification this datatype is
described as an instance of rdfs:Datatype and a subclass of rdfs:Literal (using
RDFS vocabulary).
rdf:value – is an instance of rdf:Property that may be used in describing

structured values. For example, if there is a set of properties describing one subject, one of
them can deliver the actual value, while the others – additional information (distance can have
rdf:value property with a value, for example "15"^^xsd:decimal, and ex:unit
property with a value, for example "meter"^^xsd:string). rdf:value has no
meaning on its own. It is provided as a piece of vocabulary that may be used in such idioms.
The rdfs:domain and rdfs:range of rdf:value is rdfs:Resource (using RDFS
vocabulary).
rdf:Statement – is a resource reifying a triple. Such a resource must have at least 3

properties: rdf:subject, rdf:object and rdf:predicate, valued by the
corresponding resources.
rdf:Alt, rdf:Bag, rdf:Seq – these concepts are used in the description of

containers. rdf:Bag represents a container of unordered elements with duplicates allowed.
rdf:Alt is a container of alternative elements, possibly with a preference ordering, from
which one is to be selected. rdf:Seq is a container of ordered elements. All three concepts
characterize the types of containers and provide the information on partial enumeration of
their items rather then construct these containers. All they use the rdf:_n to establish the
containment relationship with other resources.
rdf:_1, rdf_2, ... – these are blank nodes of an RDF graph, which are not absolutely

identified by URIs. They represent anonymous resources at which RDF graph branches. They
are properties that associate a container as the subject with a resource it contains as the object.
rdf:List – is an instance of rdfs:Class that can be used to create collections known

as list or list-like structures. Declaration of such collections is similar as in the programming
languages, with head, and tail, and terminator declarations (for which the concepts of
rdf:first, rdf:last, rdf:nil are used, respectively).
rdf:first – this concept is used in the description of list and other list-like structures. It

appears in the triples of the form L rdf:first O. The meaning of such triple is following:
there is a first-element relationship between L and O. rfd:first is an instance of
rfd:Property. The rdfs:domain of rdf:first is rdf:List and its
rdfs:range is rdfs:Resource.
rdf:rest – this concept is used in the description of list and other list-like structures. It

appears in the triples of the form L rdf:last O. The meaning of such triple is following:
there is a rest-of-list relationship between L and O. rfd:last is an instance of
rfd:Property. The rdfs:domain of rdf:last is rdf:List and its rdfs:range
is rdfs:List.
rdf:nil – is an instance of rdf:List, representing the empty list or list-like structure.

rdf:nil appears in the triples of the form L rdf:rest rdf:nil, which, can be read as
following: L is an instance of rdf:List that has one item, that can be indicated using
rdf:first property.

127

8.2.2. RDFS vocabulary
The RDFS vocabulary extends the RDF vocabulary. It relates the RDF classes and

properties into taxonomies and allows introduction of new taxonomies of classes and
properties. New classes can be also defined as specialization of old ones.

The RDFS concepts have URI reference with leading substring
http://www.w3.org/2000/01/rdf-schema# associated, by convention, with a
namespace prefix rdfs:.

In RDFS a class may be an instance of a class. All resources are instances of the class
rdfs:Resource. All classes are instances of rdfs:Class and subclasses of
rdfs:Resource. All literals are instances of rdfs:Literal. All properties are
instances of rdf:Property.

The RDFS specification provides mechanism for describing limitations on the acceptable
types of values assigned to the properties or on the classes to which such properties can be
sensibly ascribed. The definitions of constrains can be done on the domain and range of RDF
properties. Domain of a property states that any resource that has given property is an instance
of the class. Range of a property states that the values of a property are instances of the class.
If multiple classes are defined as the domain and range then the intersection of these classes is
used. This allows inference of implicit triples (by the inference engines) and schema
validation. The list of properties defined in RDF and RDFS vocabularies, together with their
domain and range specification, is shown in Table 8.4.

Elements of RDFS vocabulary can be used in recursive declarations (as, for example, a
concept rdfs:range is used to declare the range of rdfs:range). RDFS includes
concepts allowing creation of higher-level languages on it. RDFS vocabulary helps in
specification of the information; it does not indicate how this information should be used.

Table 8.2. RDFS vocabulary.

rdfs:domain rdfs:range rdfs:Resource rdfs:Literal
rdfs:Datatype rdfs:Class rdfs:subClassOf rdfs:subPropertyOf
rdfs:member rdfs:Container rdfs:ContainerMembershipProperty
rdfs:comment rdfs:seeAlso rdfs:isDefinedBy rdfs:label

rdfs:domain – is an instance of rdf:Property used in resource definitions. These

definitions states that any resource with rdfs:domain property given is an instance of one
or more classes. Thus, the use of rdfs:domain is similar to the type declaration. The usage
of rdfs:domain is following: P rdfs:domain C. The triples declared in that way have
the following interpretation: P is an instance of the class rdf:Property, and C is an
instance of the class rdfs:Class, and the resources denoted by the subjects of triples
whose predicate is P are instances of the class C.

The property P can have more than one rdfs:domain property assigned. As a
consequence, the resources denoted by subjects of any triples with predicate P are instances of
all the classes stated by the rdfs:domain properties (are instances of more then one class).

The domain of rdfs:domain is rdf:Property class. It means that domain property
applies to instances, which are properties themselves. The range of rdfs:domain is
rdfs:Class class. This states that any resource that is the value of an rdfs:domain
property is an instance of rdfs:Class.

128

rdfs:range – is an instance of rdf:Property that is used for range of property
values definition. rdfs:range states that values of a property are instances of one or more
classes. Thus, the use of rdfs:range is similar to the type declaration. rdfs:range
appears in the triples in form: P rdfs:range C. The interpretation of such triple is
following: P is an instance of the class rdf:Property, C is an instance of the class
rdfs:Class and the resources denoted by the objects of triples whose predicate is P are
instances of the class C. The property P can have more than one rdfs:range property
assigned. In consequence, the resources denoted by the objects of triples with predicate P are
instances of all the classes stated by the rdfs:range properties.

The domain of rdfs:range is rdf:Property class. Thus any resource with an
rdfs:range property is an instance of rdf:Property. The range of rdfs:range is
the rdfs:Class. This states that any resource that is the value of an rdfs:range
property is an instance of rdfs:Class.
rdfs:Resource – is a class, whose instances can be all things described by RDF as

resources. Thus, it is the class of everything. All other classes are subclasses of this class.
rdfs:Resource is an instance of rdfs:Class.
rdfs:Literal – is a class of literals representing values such as numbers and dates. Its

intended use is to be the range of properties. Anything represented by a literal could also be
represented by a URI, but it is often more convenient or intuitive to use literals. Literals may
be plain (string combined with an optional language tags, as "October, 1, 2010") or
typed (string combined with a datatype URI, as "2010-01-10"^^xsd:date). In both
cases the string is recommended to be in Unicode Normal Form C (defined in the document
available at: http://www.unicode.org/unicode/reports/tr15/). Typed rdfs:Literal is an
instance of rdfs:Class. rdfs:Literal is a subclass of rdfs:Resource.
rdfs:Datatype – is a class of datatypes. A datatype is identified by one or more URI

references. Each instance of rdfs:Datatype is a subclass of rdfs:Literal.
rdfs:Datatype is both an instance of and a subclass of rdfs:Class.
rdfs:Class – is a concept used in RDF class. Classes are themselves resources. Once

declared, the RDF class can be used as a value of rdf:type property. The subject of the
corresponding triple becomes implicitly an instance of the class. The members of a RDF class
are instances of the class. However, the class and a set of class’ instances do not have to be
the same. The set of instances is the extension of the class, and two different classes may
contain the same set of instances. rdfs:Class is an instance of rdfs:Class, and is the
class of classes. The group of resources that are RDF Schema classes is itself a class called
rdfs:Class.
rdfs:subClassOf – is a property used to form a taxonomy of classes by extending

existing classes. It might be used to state that one class is a subclass of another. Extension
reuses (and thus shares) existing definition(s). A class can have multiple superclasses. If a
class C is a subclass of a class C', then all instances of C will also be instances of C'. The
term super-class is used as the inverse of subclass. If a class C' is a super-class of a class C,
then all instances of C are also instances of C'.
rdfs:subPropertyOf – is a property used to form a taxonomy of properties in a

similar way as rdfs:subClassOf in a classes case.
rdfs:member – is a property that is a super-property of all the container membership

properties, each container membership property has an rdfs:subPropertyOf
relationship to the property rdfs:member.

129

rdfs:Container – is a class used to represent the core RDF Container classes, i.e.
rdf:Bag, rdf:Seq, rdf:Alt.
rdfs:ContainerMembershipProperty – is a class, instances of which are

properties: rdf:_1, rdf:_2, rdf:_3 ... stating that a resource is a member of a container.
rdfs:ContainerMembershipProperty is a subclass of rdf:Property. Each
instance of rdfs:ContainerMembershipProperty is an rdfs:subPropertyOf
the rdfs:member property. Container membership properties might be applied to resources
other than containers.
rdfs:comment – is a an instance of rdf:Property that may be used to provide a

human-readable description of a resource, clarifying its meaning. Multilingual documentation
is supported through use of the language tagging facility of RDF literals.
rdfs:seeAlso – is an instance of rdf:Property that is used to indicate a resource

that might provide additional information about the subject resource.
rdfs:isDefinedBy – is an instance of rdf:Property that is used to indicate a

resource defining the subject resource. This property might be used to indicate an RDF
vocabulary in which a resource is described. rdfs:isDefinedBy is a subproperty of
rdfs:seeAlso.
rdfs:label – is an instance of rdf:Property that may be used to provide a human-

readable version of a resource's name. Multilingual labels are supported using the language
tagging facility of RDF literals.

RDF and RDFS concepts are related. All RDF and RDFS classes with corresponding

subclass-of (rdfs:subClassOf) and instance-of (rdf:type) relations are shown in
Table 8.3. The domains and ranges of build-in RDF and RDFS properties (instances of
rdf:Property) are listed in Table 8.4.

Table 8.3. Relations between RDF and RDFS concepts.

Element Class of rdfs:subClassOf rdf:type
rdfs:Resource all resources rdfs:Resource rdfs:Class
rdfs:Class all classes rdfs:Resource rdfs:Class
rdfs:Literal literal values rdfs:Resource rdfs:Class
rdfs:Datatype datatypes rdfs:Class rdfs:Class
rdf:XMLLiteral XML literal values rdfs:Literal rdfs:Datatype
rdf:Property properties rdfs:Resource rdfs:Class
rdf:Statement statements rdfs:Resource rdfs:Class
rdf:List lists rdfs:Resource rdfs:Class
rdfs:Container containers rdfs:Resource rdfs:Class
rdf:Bag unordered containers rdfs:Container rdfs:Class
rdf:Seq ordered containers rdfs:Container rdfs:Class
rdf:Alt containers of alternatives rdfs:Container rdfs:Class
rdfs:Container
MembershipProperty

rdf:_1... properties
expressing membership

rdf:Property rdfs:Class

Table 8.4. Roles and restrictions of RDF and RDFS properties.

Element Role rdfs:domain rdfs:range
rdfs:range restriction on subject rdf:Property rdfs:Class

rdfs:domain restriction on object rdf:Property rdfs:Class

rdf:type instance declaration rdfs:Resource rdfs:Class

rdfs:subClassOf subclass declaration rdfs:Class rdfs:Class

130

rdfs:subPropertyOf subproperty declaration rdf:Property rdf:Property

rdfs:label human readable label rdfs:Resource rdfs:Literal

rdfs:comment human readable comment rdfs:Resource rdfs:Literal

rdfs:member container membership rdfs:Resource rdfs:Resource

rdf:first first element declaration rdf:List rdfs:Resource

rdf:rest rest of a list declaration rdf:List rdf:List

rdf:_1,rdf:_2, ... container membership rdfs:Container rdfs:Resource

rdfs:seeAlso additional information rdfs:Resource rdfs:Resource

rdfs:isDefinedBy subject definition info rdfs:Resource rdfs:Resource

rdf:value used for structured values rdfs:Resource rdfs:Resource

rdf:object object declaration rdf:Statement rdfs:Resource

rdf:predicate predicate declaration rdf:Statement rdfs:Resource

rdf:subject subject declaration rdf:Statement rdfs:Resource

8.3. RDF serialization
A natural representation of RDF graphs is graphical representation, with nodes and arcs

reflecting particular triples. This representation is good for human analysis but not for
information exchange or processing by computers. In order to handle RDF graphs by
computers the graphs have to be serialized.

Serialization provides a way to convert between the abstract RDF model to a concrete
format, such as a file or other byte stream. The most popular methods of RDF graphs
serialization are: RDF/XML, Terse RDF Triple Language (Turtle), and N-Triples. The
serialization preserves all the constructs of the original RDF graph. Hence, serialized graphs
carry the same information, independently of the serialization method used. The only
difference is that, in general, this information is formatted more or less conveniently using
serialization method specific features.

The description of RDF/XML syntax with explanation about RDF graphs encoding can be
found on the Web at http://www.w3.org/TR/rdf-syntax-grammar/ . More
information about Turtle can be found on the Web at
http://www.w3.org/TeamSubmission/turtle/ . More details on N-Triples can
be found on the Web at http://www.w3.org/TR/rdf-testcases/#ntriples .

NOTE:
One of the key properties of RDF graphs is that they do not have roots. No single resource

is of any inherent significance as compared to other. Thanks to this, combining RDF graphs is
conceptually the same as placing them next to one another.

There are some very useful RDF tools available on-line allowing conversions between

different serialization formats and visualization of RDF graphs. A W3C validator for
RDF/XML (available at http://www.w3.org/RDF/Validator/) can validate and visualize
RDF/XML input. Another validator (available at
http://www.rdfabout.com/demo/validator/validate.xpd) can validate input, which can be a
serialized RDF graph in one of the mentioned representations, and produce output in other
representation. The example of a visualized RDF graph together with its all three serialized
forms is presented in Figure 8.4. The W3C validator for XML/RDF input has generated the
diagram. Please note, that this is the same graph as in Figure 8.3, but with the triples
separated.

131

RDF/XML serialization
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:ex="http://example.org/family.rdf#">
 <rdf:Description rdf:about="mailto:John@example.org">
 <ex:fatherOf rdf:resource="milto:Susan@example.org" />
 <ex:name
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">John Smith</ex:name>
 </rdf:Description>
 <rdf:Description rdf:about="mailto:Susan@example.org">
 <ex:name
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Susan
Smith</ex:name>
 </rdf:Description>
</rdf:RDF>

TURTLE serialization
@prefix ex: <http://example.org/family.rdf#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
This is a comment.
<mailto:John@example.org>
ex:fatherOf <milto:Susan@example.org> ;
ex:name "John Smith"^^xsd:string .
<mailto:Susan@example.org> ex:name "Susan Smith"^^xsd:string .

N-Triples serialization
<mailto:John@example.org> <http://example.org/family.rdf#fatherOf>
<milto:Susan@example.org> .
<mailto:John@example.org> <http://example.org/family.rdf#name> "John
Smith"^^<http://www.w3.org/2001/XMLSchema#string> .
<mailto:Susan@example.org> <http://example.org/family.rdf#name> "Susan
Smith"^^<http://www.w3.org/2001/XMLSchema#string> .
Figure 8.4. The example of an RDF graph serialization (visualized on top by the W3C validator for XML/RDF).

8.3.1. RDF/XML
RDF/XML is a normative, platform independent XML syntax for representing RDF triples.

Thanks to RDF/XML the RDF graphs can be serialized and exchanged between different
computers running different operating systems. Unfortunately, there is no canonical
RDF/XML serialization procedure. Thus, the results of serialization are not necessarilly
unique, i.e. the same RDF graph can be represented in RDF/XML in different ways. This
introduces some difficulties when comparing content of two documents – the same content for
the same model is not guaranteed. For example, two following RDF/XML serializations are
equivalent:

132

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/terms#" >
<ex:Description rdf:about="http://example.org/myFamily.rdf#John">
 <rdf:type rdf:resource="http://example.org/terms#Man" />
 <ex:fatherOf rdf:resource=http://example.org/myFamily.rdf#Susan />
 <ex:name>John Smith</ex:name>
</ex:Description>
<ex:Woman rdf:about="http://example.org/myFamily.rdf#Susan">
 <ex:name>Susan Smith</ex:name>
</ex:Woman>
</rdf:RDF>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/terms#" >
<ex:Man rdf:about="http://example.org/myFamily.rdf#John"
 ex:name="John Smith">
 <ex:fatherOf>
 <ex:Woman rdf:about="http://example.org/myFamily.rdf#Susan"
 ex:name="Susan Smith" />
 </ex:fatherOf>
 <ex:name>John Smith</ex:name>
</ex:Man >
</rdf:RDF>

Any RDF/XML document starts with the rdf:RDF element declaration, within which the

whole serialized RDF graph is embedded as a series of rdf:Description elements. The
list of attributes of rdf:RDF element contains XML namespace declarations. By convention
of the Semantic Web community, the namespace associated with rdf prefix is
http://www.w3.org/1999/02/22-rdf-syntax-ns#. This is always true, either
for XML namespaces declared in RDF/XML or by similar facilities offered by other
serialization methods. The definitions of elements used in RDF/XML serialization are given
in RDF/XML document, which is available under the link
http://www.w3.org/1999/02/22-rdf-syntax-ns. That document defines RDF
itself (RDF Schema for the RDF vocabulary defined in the RDF namespace).

Statements: In general RDF/XML statements are declared in the scope of
<rdf:Description> elements. One <rdf:Description> element can group several
statements with the same subject and different predicates and objects. The subject is declared
as a value of rdf:about element’s attribute. Names of nested elements or names of
element’s atrributes represent predicates. If an object of the statement is a resource, it is
represented by the value of rdf:resource predicate’s attribute. If an object of the
statement is a literal, it is represented by the predicate’s content (if the predicate is an
element) or by the predicate’s value (if the predicate is an attribute).

In the example below the subject identified as a resource
http://example.org/myFamily.rdf#John has rdf:type property and the
value of this property, i.e. object, is http://example.org/terms#Father.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description rdf:about="http://example.org/myFamily.rdf#John">
 <rdf:type rdf:resource="http://example.org/terms#Father" />
 </rdf:Description>
</rdf:RDF>

The use of rdf:type predicate in this way is very common for RDF/XML. The node
elements declared in such a way are called typed node elements. There is a shorthand syntax

133

for expressing typed node elements: <type rdf:about="resource" />. Thus, the
rdf:Description tag is replaced with the namespaced-element corresponding to the
RDF URI reference of the value of the rdf:type predicate and rdf:type predicate is
omitted (in a case of multiple rdf:type predicates only one can be used this way, the others
must remain as property elements or property attributes).

RDF/XML allows a further abbreviation. This incorporates the use of xml:base attribute
for setting the base URI for resolving relative RDF URI references (otherwise the base URI of
the document is valid). The base URI set applies to all RDF/XML attributes that deal with
RDF URI references which are rdf:about, rdf:resource, rdf:ID and
rdf:datatype. Additionally, the rdf:ID attribute on a node element (not a property
element, that has another meaning) can be used instead of rdf:about. When used, it gives
a relative RDF URI reference equivalent to # concatenated with the rdf:ID attribute value.
rdf:ID is useful for defining a set of distinct, related terms relative to the same RDF URI
reference. Such terms cannot appear more than once in the scope of an xml:base value (or
document, if none is given) what is automatically checked by XML editing tools.

In the example below, there are two alternative declarations of the same statement already
presented.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xml:base="http://example.org/myFamily.rdf"
 xmlns:ex="http://example.org/terms#" >
 <ex:Father rdf:about="#John" />
 <ex:Father rdf:ID="John" />
 </rdf:RDF>

Resources: In RDF/XML resources can appear as elements’ names (subjects or predicates)

or values of attributes (objects). In the former case, the URI identifying a resource has to be
abbreviated using standard XML namespace conventions (like ex:Father). In the latter
case, the URI can be abbreviated applying XML entity declarations (like
rdf:about="&base;#John"). The example below shows both cases.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY base "http://example.org/myFamily.rdf">
]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xml:base="&base;"
 xmlns:ex="http://example.org/terms#" >
 <ex:Father rdf:about="&base;#John" />
 <ex:Father rdf:ID="John" />
</rdf:RDF>

Literals: In RDF/XML literals can appear in an every place where a property value is

expected: as attributes of elements or as contents of property nodes but with some restrictions.
The plain literals can appear as either property attributes or property nodes values, while the
typed literals (XML or custom typed) only as property node contents. In the example below
the literal "John Smith" appeared as a value of ex:name property attribute (declared in
the namespace xmlns:ex="http://example.org/terms#").

<ex:Father rdf:about="#John" ex:name="John Smith"/>

134

The same effect can be received by inserting this literal into the content of a property node
<ex:name> as in the example below:

<rdf:Description rdf:about="http://example.org/myFamily.rdf#John">
 <rdf:type rdf:resource="http://example.org/terms#Father" />
 <ex:name>John Smith</ex:name>
 </rdf:Description>

Plain literals, when declared as a property node content, can have an optional indicator of

the content’s language. This indicator is provided as a value of an optional rdf:lang
attribute. In fact, this attribute can be used on any node element or property element to
indicate that the included content is in the given language. The set of valid language
indicators is restricted. All language indicators must be lowercased and match language tags
as defined by RFC 4646 (available at http://www.ietf.org/rfc/rfc4646.txt).

For an XML literal, an attribute rdf:parseType should be used with a value set to
"Literal" string. If so, the contents of the property node can be any XML document (as
shown in the example below).

<rdf:Description rdf:about="http://example.org/myFamily.rdf#John's_car">
 <ex:record rdf:parseType="Literal" >
 <ex:color>red</ex:color>
 <ex:checkDates>
 <ex:lastCheck>2009-02-03</ex:lastCheck>
 <ex:nextCheck>2012-02-02</ex:nextCheck>
 </ex:checkDates>
 </ex:record>
 </rdf:Description>
</rdf:RDF>

Typed literals have the type of the content declared using rdf:datatype attribute. The

value of this attribute should be a datatype URI as defined in XML Schema or a custom
datatype URI. In the example below "33" string will be interpreted as an integer number.

<ex:age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">33</ex:age>

Comments: As in any other XML document comments can be provided within tags

composed from characters <!-- and -->. But comments are not part of RDF graph and can
disappear in serializing-deserialising round-trip.

Blank nodes: In RDF-XML a b-node can be represented by a nested element. The

example below illustrates how to use a b-node when serializing the sentence like this: “John
likes somebody who is a woman and has name Ann” (see Figure 8.5).

"Ann"ex:Woman

http://example.org/myFamily.rdf#John
ex:likes

b-node

ex:namerdfs:type

Figure 8.5. Example of the graph with a blank node.

135

The blank node represents an unreferenced person – there is no URI identifying this

individual. We only know that the type of the person is an ex:Woman and that her name is
Ann. The RDF/XML serialization of the graph discussed is as follows:

<Description rdf:about="http://example.org/myFamily.rdf#John">
 <ex:likes>
<ex:Woman ex:name="Ann" />
 </ex:likes>
</Description>

The same blank node can be used more that once in the same RDF graph. To allow such a

multiple use an attribute rdf:nodeID is used.
The attribute assignment rdf:nodeID="b-node identifier" replaces

rdf:about="RDF URI reference" when declaring blank node (the place for
declaration of b-node with an identifier is Description element) or replaces
rdf:resource="RDF URI reference" when declaring property element (the place
where reference to b-node identified is used is nested element).

In the example below, the sentence “John and Adam like someone whose name is Meryl
Streep” is represented in RDF/XML syntax using a blank node.

<Description rdf:about="http://example.org/myFamily.rdf#John">
 <ex:likes rdf:nodeID="b1"/>
</Description>
<Description rdf:about="http://example.org/myFamily.rdf#Adam">
 <ex:likes rdf:nodeID="b1"/>
</Description>
<Description rdf:nodeID="b1">
 <ex:name>Meryl Streep</ex:name>
</Description>

Blank nodes can be declared omitting the <rdf:Description>
</rdf:Description> pair. This requires insertion of
rdf:parseType="Resource" attribute on the containing property element. Such
insertion turns the property element into a property-and-node element, which can itself have
both property elements and property attributes (but without rdf:nodeID attribute at the
same time).

<Description rdf:about="http://example.org/myFamily.rdf#John">
 <ex:likes rdf:parseType="Resource">
<ex:name>Meryl Streep</ex:name>
<ex:profession>actress</ex:profession>
 </ex:likes>
</Description>

There is a way for further simplification. If all of the property elements on a blank node

element have string literal values with the same in-scope xml:lang value (if present) and
each of these property elements appears at most once and there is at most one rdf:type
property element with a RDF URI reference object node, these elements can be omitted. But
this abbreviation requires transforming omitted elements into property attributes on the
containing property element, which becomes then an empty element.

136

<Description rdf:about="http://example.org/myFamily.rdf#John">
 <ex:likes ex:name="Meril Strip" ex:profession="actress"/>
</Description>

Containers and collections: In RDF/XML serialization containers are declared as nested

rdf:Bag, rdf:Seq, rdf:Alt elements – nodes of the RDF graph with a type property
reflecting container’s type. The rdf:about attribute can provide URIs identifying these
nodes. Without this attribute, any given container becomes b-node. The elements nested in a
container are rdf:_n or rdf:li . These elements are interpreted as properties of the
container’s node with values defined by rdf:resource attribute. The example of all three
types of containers declaration is provided below.

<?xml version="1.0"?>
<rdf:RDF xmlns:ex="http://example.org/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description rdf:about="http://example.org/Tournament">
 <ex:hasCompetitors>
 <rdf:Bag rdf:about="http://example.org/Competitors">
 <rdf:li rdf:resource="http://example.org/Adam" />
 <rdf:li rdf:resource="http://example.org/Witold" />
 <rdf:li rdf:resource="http://example.org/Tomasz" />
 </rdf:Bag>
 </ex:hasCompetitors>
 <ex:hasStages>
 <rdf:Seq rdf:about="http://example.org/Stages">
 <rdf:li rdf:resource="http://example.org/Preliminary" />
 <rdf:li rdf:resource="http://example.org/Group" />
 <rdf:li rdf:resource="http://example.org/Final" />
 </rdf:Seq>
 </ex:hasStages>
 <ex:hasPlace>
 <rdf:Alt rdf:about="http://example.org/Playgrounds">
 <rdf:li rdf:resource="http://example.net/Playground1" />
 <rdf:li rdf:resource="http://example.net/Playground2" />
 </rdf:Alt>
 </ex:hasPlace>
 </rdf:Description>
</rdf:RDF>

8.3.2. Terse RDF Triple Language (Turtle)
The Terse RDF Triple Language (Turtle) is the simplest and most concise serialization

syntax for RDF used in many textbooks and tutorials. Its human-friendly and readable syntax
was designed specifically for RDF. Turtle is not an XML language, and therefore it has no
support from XML editors.

Statements: The Turtle syntax of writing RDF statements is quite simple. All parts of the
statement, as subject, predicate, and object, should be written in one line, separated by white
spaces, and terminated with a period. The statements can be written in consecutive lines or, if
there are multiple statements about the same subject, they can be written in a shorthand way.
This shorthand way relies on writing shared subject followed by a sequence of pairs
composed from predicate and object of the statements, separated with a semicolon and
terminated with a period. In the example there are two statement declared. exf:John is a

137

subject of both statements, rdf:type and ext:name are properties, exf:Father and
"John Smith" are objects (the prefixes declarations were omitted).

exf:John rdf:type ext:Father .
exf:John ext:name "John Smith" .

An equivalent, shortened form of these declarations is as follows:

exf:John rdf:type ext:Father ;
ext:name "John Smith" .

Similar shorthand can be applied when shortening statements having the same both subject

and predicate. In such cases, the shared subject and predicate should be followed by the
objects of statements, separated with a comma and terminated with a period. Thus the
shortened form of two statements declaration:

exf:John ext:likes "Meryl Streep" .
exf:John ext:likes "Another name".

can be written as follows:

exf:John ext:likes "Meryl Streep", "Another name" .

The reification of statements can be written in a similar manner as presented below:

[a rdf:Statement;
rdf:subject exf:John;
rdf:predicate ext:likes;
rdf:object "Meryl Streep"] .

Resources: The use of URIs in Turtle for RDF resources identification has something in

common with the declarations and uses of XML namespaces. URI can be defined as either
fully qualified identifier or identifier built from a declared prefix and extension. In the former
case, the URI appearing in the statements definitions should be enclosed within angled
brackets: < and >. In the later case, the declaration of the prefix should be written in a line,
starting with @prefix keyword, followed by the prefix name and a leading part of URIref
enclosed within angled brackets. All these three parts should be separated by white spaces.
After a declaration, the prefix can be used in any statement definition.

The type of the resource can be declared with rdf:type predicate, written on line
between the resource and the type URI. Designating the type of an individual resource is also
possible with the use of convenient shorthand. The syntax of it is similar to the use of
rdf:type predicate, with the character a used instead of rdf:type. In the example
below, there is one statement about John (subject), whose type (predicate) is Father
(object). The example starts with the declarations of prefixes used.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ext: <http://example.org/terms#> .
@prefix exf: <http://example.org/myFamily.rdf#> .
the statement example comment
ex:John rdf:type ex:Father .

138

The equivalent statement using a syntactic shorthand for rdf:type is following:

ex:John a ex:Father .

Using fully qualified URIs in the presented example results in a statement of the form:

<http://example.org/terms#John> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://example.org/terms#Father> .

Literals: Writing literals in Turtle depends on whether they are plain, data-typed or
language tagged, as in RDF/XML. In general, literals are written as strings enclosed in double
quotes (in a case of a string without the line break character) or as strings limited by the set of
three double quotes on both sides (in a case of string containing line break). Since double
quote is a special character, it appears in the literal-string values written as \" (U+0022).
Similar escapes are used to encode surrounding syntax, non-printable characters and to
encode Unicode characters by codepoint number (although they may also be given directly,
encoded as UTF-8). These escapes are: \t (U+0009, tab), \n (U+000A, linefeed), \r
(U+000D, carriage return), \> (U+003E, greater than - only allowed inside URIs), \\
(U+005C, backslash), \uHHHH or \UHHHHHHHH (Unicode characters defined by
hexadecimal codepoint, where H is a single hexadecimal digit).

@prefix ex: <http://example.org/> .
ex:Book ex:hasMotto """Here is the first line of the \"motto\",
and next line,
and final line.""" .

The data typed literals are written with ^^ suffix, followed by any legal URI form giving

the datatype URI. The language tagged literals are written with @ suffix followed by the valid
character language tag. Literals might be given either a language suffix or a datatype URI but
never both.

@prefix ex: <http://example.org/> .
ex:Bridge ex:numberOfCards "52"^^<http://www.w3.org/2001/XMLSchema#int> ;
ex:Bridge ex:name "Bridge"@en ;
ex:Bridge ex:name "Brydż"@pl.

Comments: Lines starting with # character are comments. The Turtle parser will ignore all

text after this character to the end of the line.
Blank nodes: The syntax of Turtle reserved a special notion of a b-node identifier. Such

identifier starts with a prefix, which is a colon, followed by a node ID. For example :b3 is a
valid b-node identifier. Each b-node identifier is unique only within the scope of a single RDF
document. There is also a shorthand notion used when referring to the blank nodes. It is
possible to define a blank node without b-node identifier. This can be done with the use of a
pair of square brackets [and]. All statements written within these brackets have an unnamed
b-node as the subject.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ex:Furniture ex:hasDescription :Furniture-01 .
:Furniture-01
ex:name "chair"@en, "krzesło"@pl;

139

ex:color "brown"@en, "brązowy”@pl;
ex:productionDate "2010-12-01"^^<http://www.w3.org/2001/XMLSchema#date> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ex:Furniture ex:hasDescription [ex:name "chair"@en, "krzesło"@pl;
ex:color "brown"@en, "brązowy”@pl;
ex:productionDate "2010-12-01"^^<http://www.w3.org/2001/XMLSchema#date>] .

In the following document, both lines after the prefix declarations part are equivalent:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ex: <http://example.org/terms#>
@prefix : < http://example.org/myFamily.rdf > .
:#John a ex:Father .
: #John rdf:type ex:Father .

Containers and collections: A container declaration in Turtle starts with a line containing

the subject, keyword a and one of the following terms: rdf:Bag, rdf:Seq and rdf:Alt.
The consecutive line includes a list of predicates of the form, rdf: 1, rdf: 2, rdf: 3, .
. . , rdf n together with associated resources. All lines should end with a semicolon, except
last, ended by dot. The numbers near by rdf: terms can be ignored in the declarations of
rdf:Bag and rdf:Alt containers, but not in rdf:Sequence. Ordering of elements in
rdf:Sequence is significant. If the sequence is declared once, using predicates as rdf: n
is straightforward. However, inserting any new elements into an existing structure can cause
some problems. If this did happen, several predicates would need to be re-enumerated. The
solution to this problem is given with the use of the rdf:li predicate. This predicates
substitutes any of rdf: n predicates. When used, the order in which rdf:li predicates
appear in the document is significant. The first resource of the group associated with rdf:li
becomes rdf: 1, the second rdf: 2, and so on. Resources declared in such a way will not
be altered even when different RDF graphs are merged.

@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
ex:Competitors a rdf:Bag ;
rdf:_1 ex:Adam ;
rdf:_2 ex:Witold ;
rdf:_3 ex:Tomasz .
ex:Stages a rdf:Seq ;
rdf:_1 ex:Preliminary ;
rdf:_2 ex:Group ;
rdf:_3 ex:Final .
ex:Playgrounds a rdf:Alt ;
rdf:_1 <http://example.net/Playground1> ;
rdf:_2 <http://example.net/Playground2> .
ex:Tournament ex:hasCompetitors ex:Competitors .
ex:Tournament ex:hasStages ex:Stages .
ex:Tournament ex:hasPlace ex:Playgrounds .

The collection declaration in Turtle is based on the concept of head-tail links. This concept

is quite similar to the concept of the list data structure. The declaration starts with a subject,
keyword a, followed by the rdf:List term. Two next lines starts with, respectively,
rdf:first (head) and rdf:rest (tail) predicates. A resourse identifier follows each
predicate. rdf:first predicate usually refers to the object, while rdf:rest refers to the

140

b-node being a subjects of another collection declaration. Thus, the collection declaration
includes elements that explicitly refer to the subsequent elements. The objects of
rdf:first predicates are members of collection being declared. The terminator of such
recursive declaration is rdf:rest predicate, whose object is rdf:nil (the tail referring to
nil).

@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix cmp: <http://example.org/Company#> .
ex:Sponsors a rdf:List ;
rdf:first cmp:Company1 ;
rdf:rest :r1 .
:r1 a rdf:List ;
rdf:first cmp:Compan2 ;
rdf:rest :r2 .
:r2 a rdf:List ;
rdf:first cmp:Company3 ;
rdf:rest :r3 .
:r3 a rdf:List ;
rdf:first ex:Company4;
rdf:rest rdf:nil .

ex:Tournament ex:hasSponsors ex:Sponsors .

There is also concise shorthand for representing collections. The lists can be written as a

collection of white space-separated resources enclosed within parenthesis.

ex:Tournament ex:hasSponsors (cmp:Company1 cmp:Company2 cmp:Company3) .

8.3.3. N-Triples
Serialization with N-Triples is based on the same syntax for comments, resources and

literal values as in Turtle, but imposes some restrictions. These restrictions obey missing
@prefix directive, missing shorthand notion with semicolon or coma, and necessity of
writing statements (triples) in a single line.

8.4. RDF Applications

8.4.1. Dublin Core, FOAF
Many languages introduce new vocabulary terms based on RDF. Two of them, FOAF

(Friend of a Friend, http://www.foaf-project.org/, and DC (Dublin core,
http://dublincore.org/) are widely used as supporting vocabularies in semantic
modelling. Both can be used in a definition of custom ontology (see the example below).

RDF/XML serialization
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns="http://www.example.org/contact.rdf#">
 <foaf:Person rdf:about="http://www.example.org/contact.rdf#johnsmith">
 <foaf:mbox rdf:resource="mailto:john.smith@example.org"/>
 <foaf:homepage rdf:resource="http://www.example.org/~jsmith/"/>
 <foaf:family_name>Smith</foaf:family_name>

141

 <foaf:givenname>John</foaf:givenname>
 </foaf:Person>
</rdf:RDF>

Turtle serialization
@prefix : <http://www.example.org/contact.rdf#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

:johnsmith a foaf:Person ;
 foaf:givenname "John" ;
 foaf:family_name "Smith" ;
 foaf:homepage <http://www.example.org/~jsmith/> ;
 foaf:mbox <mailto:joe.smith@example.org> .

8.4.2. RDF API

JENA
Jena is a Java based open source framework for building Semantic Web applications

(http://jena.sourceforge.net/), providing RDF and OWL APIs. It allows reading
and writing RDF in various formats (RDF/XML, N3 and N-Triples). It offers in-memory and
persistent storage, supports SPARQL query engine and includes a rule-based inference
engine. The example presented below shows how to generate an RDF file with the use of the
Jena framework.

import java.io.*;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.vocabulary.*;

public class GenerateRDF extends Object {
 public static void main (String args[]) {
 String personURI = "http://localhost/jkowalski";
 String givenName = "John";
 String familyName = "Kowalski";
 String fullName = givenName+familyName;

 Model model = ModelFactory.createDefaultModel();

 Resource node = model.createResource(personURI)
 .addProperty(VCARD.FN, fullName)
 .addProperty(VCARD.N,
 model.createResource()
 .addProperty(VCARD.Given, givenName)
 .addProperty(VCARD.Family, familyName));
 model.write(System.out);
 }
}

There are two imported packages in the example: com.hp.hpl.jena.rdf.model
and com.hp.hpl.jena.vocabulary. They are necessary for, respectively, creating and
manipulating model resources, and creating VCARD vocabulary. The line with the
assignment Model model = ModelFactory.createDefaultModel(); creates an
object of Model interface. The next line creates the resource and adds properties to it by
using the addProperty() method. After compilation and execution with external jars
(jena.jar, icu4j_3_4.jar, iri.jar, commons-logging-1.1.1.jar,
xercesImpl.jar) the example produce the following output:

142

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#" >
 <rdf:Description rdf:nodeID="A0">
 <vcard:Family>Kowalski</vcard:Family>
 <vcard:Given>John</vcard:Given>
 </rdf:Description>
 <rdf:Description rdf:about="http://localhost/jkowalski">
 <vcard:N rdf:nodeID="A0"/>
 <vcard:FN>JohnKowalski</vcard:FN>
 </rdf:Description>
</rdf:RDF>

SWI-Prolog
SWI-Prolog is an open-source environment for logic programming (Prolog stands for

Programming in Logic). It is available at http://www.swi-prolog.org/ and includes
the semweb library (Prolog library based on foreign-language extensions for storing and
manipulating RDF triples). This library depends on the RDF parser library, which in turn
depends on the XML parser provided by the sgml package. SWI-Prolog can handle quite
large sets of triples limited only by available memory. The RDF parser converts an RDF-
XML document into the triple notation. The library library(rdf_write) creates an
RDF/XML document from a list of triples. The example presented below shows how to build
a simple RDF graph in Prolog.

:- module(subprop,[subprop/0]).
:- use_module('../rdf_db').

rdf_db:ns(test, 'http://www.test.org/').

t1 :- rdf_assert(test:a, rdfs:subPropertyOf, test:r1),
 rdf_assert(test:jan, test:a, literal(jan)).

t2 :- rdf_assert(test:a, rdfs:subPropertyOf, test:r1),
 rdf_assert(test:a, rdfs:subPropertyOf, test:r2),
 rdf_assert(test:jan, test:a, literal(jan)).

t3 :- rdf_assert(test:a, rdfs:subPropertyOf, test:r1),
 rdf_assert(test:a, rdfs:subPropertyOf, test:r2),
 rdf_assert(test:b, rdfs:subPropertyOf, test:r3),
 rdf_assert(test:b, rdfs:subPropertyOf, test:r4),
 rdf_assert(test:c, rdfs:subPropertyOf, test:a),
 rdf_assert(test:c, rdfs:subPropertyOf, test:b),
 rdf_assert(test:jan, test:a, literal(jan)).

subprop :- rdf_reset_db, t3,
 rdf_has(test:jan, test:r1, Name),
 Name == literal(jan).

Sesame
Sesame is an open source Java framework with an extensible and configurable storage, and

inference and querying support for RDF data (http://www.openrdf.org/). The
framework supports various RDF file formats, query result formats and query languages. It
offers also JBDC-like user API, streamlined system APIs and a RESTful HTTP interface
supporting the SPARQL Protocol for RDF (to communicate with configurable storage). The

143

example below shows how to initialize a non-inferencing main-memory repository using the
Sesame framework.

import org.openrdf.repository.Repository;
import org.openrdf.repository.sail.SailRepository;
import org.openrdf.sail.memory.MemoryStore;
...
Repository myRepository = new SailRepository(new MemoryStore());
myRepository.initialize();

144

9. OWL (Ontology Web Language)

9.1. Ontology and its languages
Since many years, people are trying to build a knowledge model to represent the meaning

of concepts from a domain of interest, and their relationships. The concepts can be anything,
ranging from abstract ideas and topics up to concrete things. Ontology is a formal
representation of knowledge expressed in specialized modelling language. Thus, ontology
describes the meaning of knowledge (semantics). According to wikipedia
(http://en.wikipedia.org/wiki/Ontology):

Ontology (from the Greek nominative ὤν: being, genitive ὄντος: "of being" (neuter
participle of εἶναι: "to be") and -λογία, -logia: science, study, theory) is the philosophical
study of the nature of being, existence or reality in general, as well as the basic categories of
being and their relations. Traditionally listed as a part of the major branch of philosophy
known as metaphysics, ontology deals with questions concerning what entities exist or can be
said to exist, and how such entities can be grouped, related within a hierarchy, and subdivided
according to similarities and differences.

Ontology can be regarded as a science of what kinds and structures of objects, properties
and relations between them are. The ontology helps to understand how different pieces of
information relate to each other. Moreover, a knowledge model, if built, is not static. It can
change according to the knowledge changes. Ontology also provides the basis for inference
and reasoning through mapping to a known logical formalism, with consistency checks,
checks for unintended relationships, and automatic classification.

In the computer science ontology means a rigorous and exhaustive organization of some
knowledge domain, usually hierarchical, containing all the relevant entities and their relations,
suitable for reasoning about these entities within that domain, described in languages that are
processable by computers.

NOTE
Categorization is the process in which ideas and objects are recognized, differentiated and

understood. Categorization implies that objects are grouped into categories, usually for some
specific purpose. Ideally, a category illuminates a relationship between the subjects and
objects of knowledge. (http://en.wikipedia.org/wiki/Categorization)

Hierarchy (Greek: hierarchia (ἱεραρχία), from hierarches, "leader of sacred rites") is an
arrangement of items (objects, names, values, categories, etc.) in which the items are
represented as being "above," "below," or "at the same level as" one another. Abstractly, a
hierarchy is simply an ordered set or an acyclic graph.
(http://en.wikipedia.org/wiki/Hierarchy)

The ontology languages can have various flavors and tastes. Some of them come from the

domain of conceptual modelling (ER and UML – providing conceptual diagrams, Conceptual
graphs – providing graphical interface for the first-order logic). Some have roots in formal
logics: predicate logic, first-order logic (e.g., KIF, Knowledge Interchange Format), higher
order logics (e.g., LBase), non-classical logics (e.g., F-Logic, Non-Mon, and modalities),
description logics (e.g., OIL, DAML+OIL, OWL). Other languages are rule-based (such as
RuleML, LP/Prolog), or are used to provide semantic annotations to the web resources and
links between these resources (as SHOE, Simple HTML Ontology Extensions, RDF together

145

with RDFS). There exist also some projects and initiatives that influenced semantic
knowledge modelling significantly (as, for example, Dublin Core and CYC).

OWL is an ontology language designed to facilitate ontology development and sharing via
the Web, with the ultimate goal of making Web content more accessible to machines. It is the
result of the Web Ontology Working Group (now closed) and descends from DAML+OIL,
which is in turn an amalgamation of DAML and OIL.

9.2. OWL overview
OWL allows explicit, formal conceptualizations of knowledge models. It meets the

following criteria set for ontology languages:
– the language should have a well-defined syntax, suitable for machine-processing, a

formal semantics, and provide convenient way of writing expressions (XML syntax
and the XML Schema datatypes are preferable);

– the language should derive from description logic theory and have sufficient expressive
power, so reasoning systems would support it efficiently;

– the language should provide the notions of such abstracts as: concept (or class), role (or
property), and individual;

– the language design should facilitate development of ontologies in a distributed
fashion, with their versioning and reuse, and ontology, as well abstracts declared within
its scope, should be identified with URI.

Thus, OWL provides constructs for properties, classes and relationships definitions. The
OWL is partially mapped on the description logic, which is a subset of predicate logic, for
which efficient reasoning support is possible. Ontology described in OWL can provide the
answers to the questions: “What is x? Is this x?” Based on OWL ontology description one can
run: consistency check (“Are there any contradictions in this model?”); classification (what
are all the inferred types of this resource?”); satisfiability check (“Are there any classes in this
ontology that cannot possibly have any members?”).

OWL is built upon RDF and RDFS and has the same XML-based syntax. It replenishes
RDF and RDF Schema missing features as: local scope of properties, disjointness of classes,
Boolean combinations of classes, cardinality of restrictions, and special characteristics of
properties. Since that, ontology in OWL is a collection of RDF triples with a specific OWL-
defined meaning.

The original OWL specification became a World Wide Web Consortium (W3C)
recommendation in February 2004, after almost three years of academic and industry
development [27]. In October 2007, a new W3C working group started with the aim of
extending OWL with several new features as proposed in the OWL 1.1 member submission
(19 December 2006). W3C announced the new version, of the standard, OWL 2, on 27
October 2009 (see Table 9.5).

9.2.1. OWL vocabulary
OWL vocabulary consists of terms defined in owl namespace and uses some terms defined

in rdf, rdfs, and xsd namespaces (Table 9.1). Three OWL sublanguages group and restrict
OWL terms and thus have different expressiveness:

OWL Lite (Table 3.2) allows to build classification hierarchy and to declare simple
constraints what is enough to create thesauri and simple ontologies. The constraints on range,
existence and cardinality (0 or 1) together with opportunity to define equality and properties
characteristic (inverse, transitive, and symmetric) reduce RDF expressiveness (OWL Lite

146

requires that URIrefs denoting classes, properties, and individuals to be mutually disjoint
while the RDF data model imposes no limitations on URIrefs use).

OWL DL (Table 9.3) extends expressiveness of the language while retaining
computational completeness and decidability (conclusions can be reached in finite time). The
DL in the name of this sublanguage reflects its correspondence to description logics. The
vocabulary of OWL DL includes all OWL language constructs but with some restrictions
(negation, disjunction, cardinality, set operators, value restrictions, and enumerations). A class
cannot also be an individual or property, a property cannot also be an individual or class.

OWL Full (Table 9.3) gives maximum expressiveness, however its use does not give
computational guarantees (complete or efficient reasoning support cannot be provided). The
vocabulary is the same as in DL case, but restrictions are released. Classes can be treated
simultaneously as both collections and individuals, datatype properties can be marked as
inverse functional. This sublanguage is fully compatible with RDF syntax and semantics.
Every OWL (Full, DL, or Lite) document is an RDF/XML document; every RDF/XML
document is an OWL Full document; not all RDF/XML documents are OWL DL (or OWL
Lite) documents.

Table 9.1. Namespaces used in OWL.
prefix namespace
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
xsd http://www.w3.org/2001/XMLSchema#
owl http://www.w3.org/2002/07/owl#

Table 9.2. OWL Lite vocabulary.

RDF Schema Features:
Class
 (Thing, Nothing)
rdfs:subClassOf
rdf:Property
rdfs:subPropertyOf
rdfs:domain
rdfs:range
Individual

(In)Equality:
equivalentClass
equivalentProperty
sameAs
differentFrom
AllDifferent
distinctMembers

Property Characteristics:
ObjectProperty
DatatypeProperty
inverseOf
TransitiveProperty
SymmetricProperty
FunctionalProperty
InverseFunctionalProperty

Class Intersection:
intersectionOf

Restricted Cardinality:
minCardinality (0 or 1)
maxCardinality (0 or 1)
cardinality (0 or 1)

Property Restrictions:
Restriction
onProperty
allValuesFrom
someValuesFrom

Header Information:
Ontology
imports

Versioning:
versionInfo
priorVersion
backwardCompatibleWith
incompatibleWith
DeprecatedClass
DeprecatedProperty

Annotation Properties:
rdfs:label
rdfs:comment
rdfs:seeAlso
rdfs:isDefinedBy
AnnotationProperty
OntologyProperty

Datatypes:
xsd datatypes

Table 9.3. OWL DL and OWL Full vocabulary (addition or extension of OWL Lite).

Class Axioms:
oneOf
DataRange
disjointWith
equivalentClass
(applied to class expressions)
rdfs:subClassOf
(applied to class expressions)

Boolean Combinations of Class Expressions:
unionOf
complementOf
intersectionOf

Arbitrary Cardinality:
minCardinality
maxCardinality
cardinality

Filler Information:
hasValue

147

OWL 2 extends the original OWL vocabulary (Table 9.4), re-uses the same namespaces,
and is backwards-compatible. The extensions were motivated by the feedback from the users
of the original OWL version. The extensions obey: keys; property chains; richer datatypes and
data ranges; qualified cardinality restrictions; asymmetric, reflexive, and disjoint properties;
enhanced annotation capabilities. OWL 2 makes use of XML Schema facets while declaring
restrictions.

Table 9.4. OWL 2 vocabulary (extension to the original OWL vocabulary).
Annotations
owl:annotatedProperty
owl:annotatedSource
owl:annotatedTarget
owl:Annotation
owl:AnnotationProperty
owl:versionIRI
owl:deprecated
owl:priorVersion
owl:versionInfo
owl:backwardCompatibleWith
owl:incompatibleWith

Properties
owl:assertionProperty
owl:AsymmetricProperty
owl:bottomDataProperty
owl:bottomObjectProperty
owl:onProperties
owl:propertyChainAxiom
owl:propertyDisjointWith
owl:hasSelf
owl:hasKey
owl:topDataProperty
owl:topObjectProperty
owl:IrreflexiveProperty
owl:ReflexiveProperty

Semantical extensions
owl:Axiom
owl:sourceIndividual
owl:targetIndividual
owl:targetValue
owl:disjointUnionOf
owl:AllDisjointProperties
owl:AllDisjointClasses
owl:NegativePropertyAssertion
owl:NamedIndividual
owl:hasValue
owl:qualifiedCardinality
owl:maxQualifiedCardinality
owl:minQualifiedCardinality
owl:members
owl:onClass

Extended datatype capabilities
owl:DataRange
owl:datatypeComplementOf
owl:onDataRange
owl:onDatatype
owl:withRestrictions

Facets
rdf:langRange
xsd:length
xsd:minLength
xsd:maxLength
xsd:minInclusive
xsd:minExclusive
xsd:maxInclusive
xsd:maxExclusive
xsd:totalDigits
xsd:fractionDigits
xsd:Pattern

OWL 2 releases some of the restrictions applicable to OWL DL and defines three new

language profiles. Each profile is more restrictive than OWL DL, and consists of subset of
structural elements defined in [25]:

OWL 2 EL – enables polynomial time algorithms for all the standard reasoning tasks,
OWL 2 QL – enables conjunctive queries to be answered in LogSpace (more precisely,

AC0) using standard relational database technology,
OWL 2 RL – enables the implementation of polynomial time reasoning algorithms using

rule-extended database technologies operating directly on RDF triples.
The OWL 2 specification consists of several normative and non-normative documents (see

Table 9.5 for short description). The semantics of OWL 2 is defined based on RDF semantics
[24] and logic style semantics (direct semantics) [16]. In addition to these, the specification
provides the definition of a new, optional language syntax [17].

148

The OWL ontology can be viewed as a collection of RDF triples, but those triples that use
the OWL vocabulary and have a specific OWL-defined meaning (see Figure 9.1). If a given
RDF graph (or subgraph) instantiates the OWL specification, then OWL provides a semantic
interpretation for the components of that graph or subgraph. Other portions of the RDF graph
that do not follow the OWL specification have no OWL semantic interpretation – though, of
course, they will have an RDF interpretation.

OWL2 Ontology

corespondence theorem
(for DL subset)

functional
syntax

document

RDF/XML
document

OWL/XML
document

functional
syntax

document

Turtle
document

Direct
Semantics

RDF based
Semantics

pr
od

uc
e parse

pr
od

uc
e

parse

produce

parse

pr
od

uc
e

parse

produce

parse

mapping

mapping

import

Ontology
Structure

RDF
Graph

Syntax layer

Semantic layer

Figure 9.1. OWL2 ontology syntax, structure and semantics (based on http://www.w3.org/TR/2009/REC-owl2-

overview-20091027/).

Table 9.5. OWL 2 specification.
 Type Document
1 For Users [19] gives quick overview of the OWL 2 specification.

2 Core Specification [25] defines the constructs of OWL 2 ontologies in terms of both their structure and
a functional-style syntax, and defines OWL 2 DL ontologies

3 Core Specification [23] defines a mapping of the OWL 2 constructs into RDF graphs

4 Core Specification [16] defines the meaning of OWL 2 ontologies in terms of a model-theoretic
semantics.

5 Core Specification [24] defines the meaning of OWL 2 ontologies via an extension of the RDF
Semantics.

6 Core Specification [14] provides requirements for OWL 2 tools and a set of test cases to help determine
conformance.

7 Specification [21] defines three sub-languages of OWL 2
8 For Users [20] provides an approachable introduction to OWL 2

9 For Users [18] provides an overview of the main new features of OWL 2 and motivates their
inclusion in the language.

10 For Users [22] provides a brief guide to the constructs of OWL 2 and changes from OWL 1.
11 Specification [26] defines an XML syntax for exchanging OWL 2 ontologies
12 Specification [17] defines an easy-to-read, but less formal, syntax for OWL 2
13 Specification [15] specifies an optional extension to OWL 2

149

9.3. OWL details
There are few basic concepts used to describe ontologies: classes (sets of resources);

relations between classes (hierarchy, disjointedness, etc.); individuals (member of at least one
class); properties (used to describe resources). OWL specification provides notions for these
concepts together with notions for cardinality, equality, property typing, characteristics of
properties, and enumerated classes.

A normative serialization of OWL is RDF/XML. Thus, an OWL document is an XML
documents with elements, tags, and namespaces. It starts with an ontology header and
includes annotations, class and property definitions (axioms), descriptions of individuals,
datatype definitions (that describe ranges of values). Object, datatype, and annotation
properties in OWL must be disjoint. No URI can be typed as more than one kind of property.
Classes and datatypes must be disjoint. No URI can be typed as both a class and a datatype.
One URI can represent both a class and an individual.

9.3.1. OWL header
A header defines and describes the resource representing the ontology itself. In RDF/XML

serialization the root element is identified as an rdf:RDF element with namespaces
declarations. This element includes owl:Ontology element, containing typically:
comments, labels, versioning information, and ontology import statements. The definitions of
classes, object and datatype properties come next, see the example below.

RDF/XML serialization
<?xml version=''1.0'' encoding=''UTF-8''?>
xmlns:owl = "http://www.w3.org/2002/07/owl#"
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs = "http://www.w3.org/1999/02/22-rdf-schema#"
xmlns:xsd = "http://www.w3.org/2000/1/XMLSchema#">

<owl:Ontology rdf:about = "http://example.org/MyOntology.owl">
<owl:versionInfo>1.0</owl:versionInfo>
<owl:imports rdf:resource="http://example.org/AnotherOntology.owl"/>
</owl:Ontology>
</rdf:RDF>

Turtle serialization
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/MyOntology.owl> rdf:type owl:Ontology;
owl:imports "http://example.org/AnotherOntology.owl";
owl:versionInfo "1.0" .

The list of OWL vocabulary terms used in a header is following:
owl:Ontology – defines ontology
owl:imports – is used to specify those external ontologies that should be imported into

this ontology
owl:priorVersion – provides information about prior version of this ontology
owl:backwardCompatibleWith– provides information about previous versions of

this ontology that it is backward compatible with

150

owl:incompatibleWith –provides information about version of the ontologies this
ontology is not compatible with

9.3.2. Classes
A class is a collection of individuals that share some characteristics as declared in the class

definition. The class definition can consists of optional annotations, followed by constructs
restricting the membership of the class. There are various forms of possible class restrictions.
They can be used to set class hierarchy (subclass relationships), enumerate class membership
explicitly, combine different classes (set operations as union-of, intersection-of, complement-
of), declare disjointeness of memberships of classes.

The base class of all user-defined classes is owl:Thing. Every individual is a member of
owl:Thing class. OWL also defines the empty class, owl:Nothing. Every class in OWL
must be a member of owl:Class, and every resource that has an rdf:type of
owl:Class is a class. In the following example Female is a class which is subclass of
Person and is disjoint with Male.

:Female rdf:type owl:Class ;
 rdfs:subClassOf :Person ;
 owl:disjointWith :Male .

Individuals may become members of classes in two ways: by asserting their membership

explicitly through typing (just as in RDF, using rdf:type term), and by deriving their
membership based on their properties. The set of individuals that are members of a class is
called the extension of this class. One individual can belong to more then one class extension.
Two classes can have the same extension (until they differentiate by asserting new members).

NOTE
Individuals in OWL are not the same as individuals in object-oriented programming. These

two concepts differ slightly. In OWL, individuals are member of the same class because they
share some characteristics. The structure of each individual does not necessarily depend on
the class the individual is a member of. In other words, class membership is decided based on
the characteristics of individuals. In object-oriented programming, the characteristics of the
class dictate the structure of its members.

In OWL Lite, subject of rdfs:subClassOf or owl:equivalentClass must be a
class name and the object must be either a class name or a property restriction. OWL Lite
does not support owl:disjointWith. There is no such restriction in OWL DL.

Using owl:sameAs to equate two classes is not the same as equating them with
owl:equivalentClass. In OWL Full owl:sameAs may be used to equate anything a
class and an individual, a property and a class, etc., and causes both arguments to be
interpreted as individuals.

In the following example three classes, Car1, Car2, and Car3 are defined. All three

classes are disjoint. There are also three instances c1, c2, c3 of the class Car3 defined. All
three are different.

151

RDF/XML
<!-- Classes -->
<owl:Class rdf:about="Car1"/>
<owl:Class rdf:about="Car2"/>
<owl:Class rdf:about="Car3"/>

<!-- Individuals -->
<owl:NamedIndividual rdf:about="c1">
 <rdf:type rdf:resource="Car1"/>
</owl:NamedIndividual>
<owl:NamedIndividual rdf:about="c2">
 <rdf:type rdf:resource="Car1"/>
</owl:NamedIndividual>
<owl:NamedIndividual rdf:about="c3">
 <rdf:type rdf:resource="Car1"/>
</owl:NamedIndividual>

<!-- General axioms -->
<owl:AllDifferent>
<owl:distinctMembers
rdf:parseType="Collection">
 <rdf:Description
rdf:about="c1"/>
 <rdf:Description
rdf:about="c2"/>
 <rdf:Description
rdf:about="c3"/>
</owl:distinctMembers>
</owl:AllDifferent>

<owl:AllDisjointClasses>
 <owl:members
rdf:parseType="Collection">
 <rdf:Description
rdf:about="Car1"/>
 <rdf:Description
rdf:about="Car2"/>
 <rdf:Description
rdf:about="Car3"/>
 </owl:members>
</owl:AllDisjointClasses>

Turtle
Classes
:Car1 rdf:type owl:Class .
:Car2 rdf:type owl:Class .
:Car3 rdf:type owl:Class .

Individuals
:c1 rdf:type :Car3 ,
 owl:NamedIndividual .
:c2 rdf:type :Car3 ,
 owl:NamedIndividual .
:c3 rdf:type :Car3 ,
 owl:NamedIndividual .

General axioms
[rdf:type owl:AllDifferent ;
 owl:distinctMembers (:c1 :c2 :c3)
] .
[rdf:type owl:AllDisjointClasses ;
 owl:members (:Car1 :Car2 :Car3)
] .

Final forms of OWL serialization can be different. In the example below the definitions of

three disjoint classes and three different instances are provided (it is assumed, that owl entity
was declared before these definitions, as well classes and instances) which is semantically the
same as the definitions given in the example above.

<!-- General axioms -->
<rdf:Description>
 <rdf:type rdf:resource="&owl;AllDifferent"/>
 <owl:distinctMembers rdf:parseType="Collection">
 <rdf:Description rdf:about="c1"/>
 <rdf:Description rdf:about="c2"/>
 <rdf:Description rdf:about="c3"/>
 </owl:distinctMembers>
</rdf:Description>
<rdf:Description>
 <rdf:type rdf:resource="&owl;AllDisjointClasses"/>
 <owl:members rdf:parseType="Collection">
 <rdf:Description rdf:about="Car1"/>

152

 <rdf:Description rdf:about="Car2"/>
 <rdf:Description rdf:about="Car3"/>
 </owl:members>
</rdf:Description>

Basic terms for defining classes and their hierarchies:
owl:Class – a term used to declare a class
owl:Thing – the base class of all classes, all individuals belongs to this class
owl:Nothing – the empty class, its extension contains no individuals
owl:subClassOf – a transitive property used to assert that derived class is more

specific than the base class, and that members of derived class are also members of base class
rdf:type – a property that declares the class of which an individual is a member
owl:equivelentClass – a property used to define equivalence of classes. Classes

associated by this property have equivalent extensions.

Terms used to describe the membership of a class in terms of the extensions of other

classes:
owl:intersectionOf – a property used for specifying that members of the class are

members of all of the specified classes
owl:unionOf – a property used to declare that the members of this class are members of

at least one of the specified classes
owl:complementOf – a property used for specifying that members of the class are not

members of the specified class
owl:sameAs – a property that specifies that two individuals are the same individual (two

URIrefs denote the same individual). Because in OWL Full classes and properties may be
treated as individuals, in this sublanguge owl:sameAs may be used to indicate that two
classes (or two properties) are indeed the same.
owl:oneOf – a property used to limit membership of the class to the specified collection

of individuals. Thus the class can be defined by enumerating its instances, that is by declaring
its extent explicitly.
owl:AllDisjointClasses – a class used with owl:members to specify a set of

pair-wise disjoint classes. It is a shortcut for defining that a set of classes is pair wise disjoint
using owl:disjointWith.
owl:disjointWith – a property used to declare that the class is disjoint with a given

set of individuals. The memberships of two classes connected by this relation will share no
individuals, thus no instance of either class can be an instance of both classes.
owl:disjointUnionOf – a property used to specify that this class is the union of the

set of specified classes and that those classes are pair-wise disjoint. It is easy to assign this
property to the class, however, any future attempts to incorporate a new subclasses will
require to redefine the disjoint union to include these new subclasses.
owl:AllDifferent – a class used with owl:distinctMembers to define a

collection of mutually distinct individuals. It is a shorthand for specifying multiple
owl:differentFrom properties.
owl:differentFrom – a property used to declare that two individuals are different

153

9.3.3. Properties
The concept of property in OWL is similar to the concept of property in RDF. It is used to

establish a binary relation between two resources. OWL specification defines two main types
of properties: object properties (relationships between two individuals) and data properties
(relationships between individuals and literals or XML Schema datatypes). They let to assert
general facts about the members of classes and facts about individuals.

The properties in OWL are declared in a similar way as properties in RDF, with possible
addition of some constrains. The basic declarations of properties starts with
owl:ObjectProperty (for object properties) or owl:DataProperty (for data
properties) and include rdf:ID, rdfs:domain and rdfs:range. Domain and range
relationships are globally asserted. They specify the class memberships of individuals and the
datatypes of literals. One property can be declared with multiple domains (or ranges). This
means that the domain (or range) of this property is the intersection of the identified classes.
Properties can be organized into hierarchies (using owl:subPropertyOf), can have their
own characteristics (symmetric, reflexive, transitive, and so on), can be restricted, and can be
associated with a key.

Declarations of properties’ hierarchies and characteristics have a global scope. The
property restrictions describe properties within the context of a specific class. They define
how a property is to be used when it is applied to an instance of a particular class. In other
words, a restriction describes the class of individuals that meet the specified property-based
conditions.

Restrictions are declared using the construct owl:Restriction, and
owl:onProperty, which identifies the property to which particular restriction applies.

Restrictions become related to the classes through the use of either rdfs:subClassOf
or owl:equivalentClass. Restrictions have no names and must be defined using
anonymous resources – they are relevant only in the context of the class in which they are
defined and never need to be referred to.

Restriction defined using rdf:subclassOf specifies conditions necessary for the
membership – all members of the class must meet the conditions specified by this restriction.
Restriction defined using owl:equivalentClass specifies necessary and sufficient
conditions to assert that an individual is a member of the class. Thus, with
owl:equivalentClass definition, class members must meet the conditions of the
restriction and any individual who meets the conditions of the restriction is implicitly a
member of the class. Restrictions can also appear also as the objects of statements that
combine classes using set operators.

A single class can contain many restrictions. When this is the case, each restriction is
applied independently of the others to create a set of conditions that are either necessary or
sufficient for membership in the class.

There are two kinds of property restrictions: value and cardinality. The value restrictions
specify the range of a property when it is used with an instance of a particular class (owl:all
ValuesFrom, owl:someValuesFrom, and owl:hasValue). There is one value
restriction that is different from the others – owl:selfRestriction. This restriction,
when applied to a property, refers to the class of all individuals that are related to themselves
using this property.

Cardinality restrictions specify under very precise terms how many times a property can be
used to describe an instance of a class (owl:minCardinality,

154

owl:maxCardinality etc.). Cardinality and value restrictions can be combined to create
more complex conditions for class membership.

In addition, OWL 2 introduced the concept of qualified cardinality restrictions, which
combine cardinality and value restrictions and allow to specify expected number of properties
and their range. The restrictions of this kind can be constructed for datatype properties (using
owl:onDataRange to identify a range of data values for the restriction) and object
properties (using owl:onClass to identify the class to which the restriction refers.

A key describes a set of such properties, whose values uniquely identify the individuals.
Thus keys are similar to inverse functional properties. The difference is that keys group one or
more property expressions to uniquely identify the subject they describe. Keys are class-
specific. A class becomes associated with a set of properties that are the keys for instances of
that class after declaration of owl:hasKey property for it.

The following code shows how to declare classes using properties, how to apply
restrictions and how to characterize properties.

:Person rdf:type owl:Class ;
 owl:equivalentClass [rdf:type owl:Class ;
 owl:unionOf (:Female
 :Male)
] ;
 rdfs:subClassOf [rdf:type owl:Restriction ;
 owl:onProperty :hasParent ;
 owl:cardinality "2"^^xsd:nonNegativeInteger
] .

:hasSibling rdf:type owl:ObjectProperty ,
 owl:SymmetricProperty ;
 rdfs:range :Person .

Basic terms for defining properties and their hierarchies:
owl:ObjectProperty – the class of all properties that link two individuals.
owl:DatatypeProperty – the class of all properties that link an individual with a

literal value.
owl:topObjectProperty – a property that connects all possible pairs of individuals.
owl:bottomObjectProperty – a property that connects no pairs of individuals.
owl:topDataProperty – a property that connects all possible individuals with all

possible literals.
owl:bottomDataProperty – a property that does not connect any individual with a

literal
rdfs:subPropertyOf – a property that specifies that one property is more specific

than the other. If a property p1 is a subproperty of a property p2, the existence of a statement
(A p1 B) implies the existence of the statement (A p2 B).
owl:propertyChain – a property used to build a chain of properties that represent the

super property in a subproperty-of relationship. A property chain may consist of several,
chained relationship, connecting two resources. Asserting that this chain is a subproperty of a
property p1 has the consequence, that the existence of the property chain between two
resources implies the existence of p1. Property chains can be used only as a part of a
subproperty relationship and they can appear only in the subproperty position of such a
relationship.

155

rdfs:domain – it is used to associate a property with a class (individuals with this
property are members of the declared class)
rdfs:range – it is used to indicate the possible values for a property

Terms used to describe properties characteristics:
owl:SymmetricProperty – the class of all properties that are symmetric (such as “is

sibling of”, “equals”, “adjacent to”). For any symmetric property p, the statement (A p B)
implies the existence of the statement (B p A).
owl:AsymmetricProperty – the class of all properties that are explicitly not

symmetric. For any asymmetric property p, the statement (A p B) implies the nonexistence of
the statement (B p A).
owl:ReflexiveProperty – the class of all properties that are reflexive. For any

reflexive property p and individual A, A is related to itself by p, (A p A).
owl:IrreflexiveProperty – the class of all properties that are not reflexive. For all

irreflexive properties p and individuals A, there is no statement (A p A).
owl:TransitiveProperty – the class of all properties that are transitive (such as

“has better grade than”, “is taller than”, “is ancestor of”, etc.). For any transitive property p,
(A p B) and (B p C) implies (A p C).
owl:FunctionalProperty – the class of all properties for which a given domain

value has only a single range value (such as “age”, “height”, “directSupervisor”, etc.). For
any functional property p and individual A, (A p x) and (A p y) implies that x = y.
owl:FunctionalProperty is a special subclass of the RDF class rdf:Property.
Other property classes are subclasses of owl:ObjectProperty.
owl:InverseFunctionalProperty – the class of all properties for which a given

object of a statement has only a single subject value, (A p B) and (C p B) implies that A = C
(a property for which two different objects cannot have the same value).
owl:inverseOf – a property used to specify that two properties are inverse of each

other. If a property p1 is inverse of a property p2, the existence of a statement (A p1 B)
implies the existence of the statement (B p2 A). Both the domain and range of this
relationship must be object properties. Datatype properties cannot have inverses because
literal values cannot be the subjects of statements.
owl:equivalentProperty – a property used to assert that two properties are

equivalent.
owl:propertyDisjointWith – Relationship that establishes that two properties

(object properties or data properties) are disjoint. If two properties p1 and p2 are disjoint, it
implies that no two statements with the same subject and object can have the predicates p1
and p2, so (A p1 B) and (A p2 B) both cannot holds.
owl:AllDisjointProperties – A class that is used with owl:members to describe

collections of properties that are pair-wise disjoint. In addition to conventional, positive
property assertions, OWL provides a notion of negative property assertions. Negative
property assertions specify that a particular relationship does not exist between two
individuals or between an individual and a literal value. The following vocabulary terms are
used to specify negative property assertions:
owl:NegativePropertyAssertion – The class of all negative property assertions.

In the most cases properties are used to specify relationships that exists. Negative properties
assertions are used to express the fact that no relationship exists. Such assertions can be made

156

for both object and datatype properties. The specification requires to declare source
individual, property, and target individual (when applied to object property) or target value
(when applied to data property). Negative property assertions are instances of the class
owl:NegativePropertyAssertion and cannot be named.
owl:sourceIndividual – the individual that is the subject of the negative property

assertion.
owl:assertionProperty – a property that is the predicate of the negative property

assertion.
owl:targetIndividual – the individual that is the object of the negative property

assertion.
owl:targetValue – the literal value that is the object of the negative property

assertion.

Terms used to build restrictions and keys:
owl:Restriction – the class of all restrictions. In general, in an OWL document

owl:Restriction element contains owl:onProperty element and one or more
restriction declarations. One restriction can define a range of values the property can take by
using owl:allValuesFrom.
owl:SelfRestriction – the class of all self-restrictions. Self-restrictions identify

classes of individuals related to themselves by a property.
owl:onProperty – a property that identifies the property to which a restriction applies.
owl:allValuesFrom – a property used to declare that all instances of the class must

have values for this property only from the specified range.
owl:someValuesFrom – a property used to specify that all instances of this class must

have at least one property with a value from the specified range.
owl:hasValue – a property used to specify that all instances of this class must have

have an occurrence of this property with the specified value (to be a member of the class an
instance must have at least one of its property values equal to the resource specified in
owl:hasValue)
owl:minCardinality – a property used to specify that there must be at least N of the

specified properties on each instance of this class. Cardinality expressions with values limited
to 0 or 1 are part of OWL Lite. Positive integer values other than 0 and 1 are permitted in
OWL-DL. In combination with owl:maxCardinality it limits the property's cardinality
to a numeric interval.
owl:maxCardinality – a property used to specify that there must be at most N of the

specified properties on each instance of this class.
owl:cardinality – a property used to specify that there must be exactly N of the

specified properties on each instance of this class.
owl:onClass – a property used to identify the class of which the subject of a qualified

cardinality restriction is a member.
owl:minQualifiedCardinality – a property used to specify that there must be at

least N properties that have an individual of a particular class or value of a particular data
range as the object of the statement.

157

owl:maxQualifiedCardinality – a property used to specify that there must be at
most N properties that have an individual of a particular class or value of a particular data
range as the object of the statement.
owl:qualifiedCardinality – a property used to specify that there are exactly N

properties that having an individual of a particular class or value of a particular data range as
the object of the statement.
owl:hasKey – a property used to identify a collection of properties that constitute a key

for a given class.

9.3.4. Annotations
Annotations are primarily used in user interfaces. They describe classes, properties,

individuals, datatypes and axioms in an ontology, including the ontology itself. Annotations
are made by creating a statement that uses the annotation property as the predicate of this
statement. The two most common annotation properties are rdfs:label and
rdfs:comment.

Annotation properties have no semantic meaning, therefore they can not be specialized
(using owl:subPropertyOf) nor characterized (using owl:inversePropertyOf),
nor restricted by domain and range declarations. Introducing new annotation properties relies
on declaring new instances of the class owl:AnnotationProperty.

Axiom annotations are slightly more complicated. Their exact structure depends on the
type of axiom that is being described.

Terms used in annotation declarations:
owl:AnnotationProperty – the class of all annotation properties
rdfs:label – a property that provides a label representing a resource. It is often used by

software tools as a substitution of resource’s URI presented on user interface
rdfs:comments – a property that provides a textual description of the resource
rdfs:seeAlso – a property that specifies a resource that provides additional

information
rdfs:isDefinedBy – a property that specifies a resource that defines the subject

resource
owl:deprecated – a property that specifies whether or not the subject URI is

deprecated
owl:DeprecatedClass – the class of all deprecated classes
owl:DeprecatedProperty – the class of all deprecated properties
owl:versionInfo – a property that provides information about the subject ontology or

resource version
owl:priorVersion – a property that specifies a prior version of the ontology that is

the subject of the statement
owl:backwardCompatibleWith – a property that specifies the URI of an ontology

that is compatible with the ontology that is the subject of the statement
owl:incompatibleWith – a property that specifies the URI of an ontology that is not

compatible with the ontology that is the subject of the statement

158

9.3.5. Datatypes and facets
Datatypes represent ranges of data values and are identified using URIs. OWL uses most

of the built-in XML Schema datatypes (see Table 9.6) plus rdfs:Literal defined in RDF.
All OWL reasoners are required to support the xsd:integer and xsd:string datatypes.

In addition to the predefined datatypes, OWL 2 introduced the ability to define custom
datatypes by using facet restrictions or by defining them by means of other datatypes.

Table 9.6. Build-in XML Schema datatypes recommended for use with OWL (the other built-in XML Schema

datatypes are problematic for OWL).
xsd:string xsd:normalizedString xsd:boolean
xsd:decimal xsd:float xsd:double
xsd:integer xsd:positiveInteger xsd:nonPositiveInteger xsd:negativeInteger
xsd:nonNegativeInteger xsd:long xsd:unsignedLong xsd:int xsd:unsignedInt
xsd:short xsd:unsignedShort xsd:byte xsd:unsignedByte xsd:hexBinary
xsd:base64Binary
xsd:dateTime xsd:time xsd:date xsd:gYearMonth xsd:gYear xsd:gMonthDay
xsd:gDay xsd:gMonth
xsd:anyURI xsd:token xsd:language xsd:NMTOKEN xsd:Name xsd:NCName

Facet restrictions restrict a set of valid values using a term defined in XML Schema

namespace. To create a custom datatype with facet restriction one should create an instance of
the class rdf:Datatype and associate one or more facet restrictions with it. In the example
below an unnamed datatype was defined with a set of values allowed ranging from 0
(exclusive) up to 10 (inclusive).

[] rdf:type rdfs:Datatype;
owl:onDatatype xsd:integer;
owl:withRestrictions ([xsd:minExclusive 0;][xsd:maxInclusive 3;]).

Custom datatypes in terms of other datatypes can be defined with the use of one of OWL

set operator constructs: owl:intersectionOf, owl:unionOf, or
owl:datatypeComplementOf. It is also possible to enumerate allowable values for the
custom datatype with the use of owl:oneOf (see following two examples).

[] rdf:type rdfs:Datatype;
owl:unionOf (
[rdf:type rdfs:Datatype; owl:onDatatype xsd:integer; owl:withRestrictions
([xsd:minExclusive 0;])]
[rdf:type rdfs:Datatype; owl:onDatatype xsd:integer; owl:withRestrictions
([xsd:maxExclusive 3;])]
).

[] rdf:type rdfs:Datatype;
owl:oneOf ("1"^^xsd:int "2"^^xsd:int "3"^^xsd:int).

Note that the datatypes above are declared as b-nodes. The custom datatype definitions are

usually provided within a definition of properties as in the following example (in Turtle and
RDF/XML syntax):

159

:hasScore rdf:type owl:DatatypeProperty ;
 rdfs:range [rdf:type rdfs:Datatype ;
 owl:oneOf ("1"^^xsd:int "2"^^xsd:int "3"^^xsd:int).
].

<owl:DatatypeProperty rdf:ID="hasScore">
 <rdfs:range>
 <owl:DataRange>
 <owl:oneOf>
 <rdf:List> <rdf:first rdf:datatype="&xsd;int">1</rdf:first>
 <rdf:rest>
 <rdf:List> <rdf:first rdf:datatype="&xsd;int">2</rdf:first>
 <rdf:rest>
 <rdf:List> <rdf:first rdf:datatype="&xsd;int">3</rdf:first>
 <rdf:rest rdf:resource="&rdf;nil" />
 </rdf:List>
 </rdf:rest>
 </rdf:List>
 </rdf:rest>
 </rdf:List>
 </owl:oneOf>
 </owl:DataRange>
 </rdfs:range>
</owl:DatatypeProperty>

Terms used to define custom datatypes:
rdfs:Datatype – the class of all datatypes.
owl:onDatatype – a property identifying the datatype to which the facet restrictions

apply.
owl:withRestrictions – a property identifying a collection of facet restrictions that

describe the datatype.
owl:intersectionOf – a property identifying a set of datatypes such that the

datatype being described contains the values that are contained in all datatypes in the set.
owl:unionOf – a property identifying a set of datatypes such that the datatype being

described contains any value that is contained in at least one of the datatypes in the set.
owl:datatypeComplementOf – a property specifying that the datatype being

described contains all values that are not in the datatype that the property identifies.
owl:oneOf – a property identifying a set of values (values’ enumeration) that make up

the datatype.

The list of XML Schema facets supported in OWL 2:
xsd:length – declares the exact number of items (or characters) allowed.
xsd:minLength – declares the minimum number of items (or characters) allowed.
xsd:maxLength – declares the maximum number items (or characters) allowed.
xsd:minInclusive – declares the lowest value for the range of allowable values for

the dataType being defined, including this value.
xsd:minExclusive – declares the lowest value for the range of allowable values for

the dataType being defined, excluding this value.
xsd:maxInclusive – declares the highest value for the range of allowable values for

the dataType being defined, including this value.

160

xsd:maxExclusive – declares the highest value for the range of allowable values for
the dataType being defined, including this value.
xsd:totalDigits – declares the number of digits for the value.
xsd:fractionDigits – declares the maximum number of decimal places allowed.
xsd:Pattern – declares a regular expression that defines allowed character strings.

161

10. WSDL (Web Services Description Language)
A network service is a software component placed somewhere on the Internet, accessible

via standard network protocols such as, but not limited to, SOAP over HTTP, providing its
functionality through a standardized set of interfaces. A web service is based on XML
technology, and is designed to support interoperable machine-to-machine interaction over a
network. According to the SOA paradigm, the service provider should have an opportunity to
register offered service in the network in order to provide possibility of service discovery and
use to service clients. The service registration should record service description, that is, all
information needed to start interaction with a service (including details about offered
operations, used types, transport protocols, service location etc.).

 A WSDL (Web Services Description Language) is an XML application, developed by
W3C, used to write a formal, technical description of web service interfaces. A WSDL
specification provides distinct definitions and terminologies used in web service description.
It includes a schema for services declarations as collections of network endpoints, or ports,
offering operations, and exchanging data through messages. The WSDL separates abstract
definitions from their concrete uses or instances. This allows reusing the same parts of
definitions in several services descriptions.

The WSDL description is enough to generate code partially, for a client or a server side of
the service, in an automatic manner. It is also possible to generate WSDL description on a
basis of existing code of web service implementation. There is no specific rule, what should
be done first: service description or service implementation. All depends on a particular use
case. The basic scenario of a WSDL service description use is following:

– a client discovers a web service in the network and analyses its description provided in
the corresponding WSDL document,

– a client learns from the description about operations provided and data types used by
the service,

– a client decides, which operations he or she is interested in, and builds the application
code for it,

– if a client wants and can, it invokes chosen service’s operations.
The code generation based on WSDL description can be done in a static way (when

designing application from the beginning), or in a dynamic way (when creating a web service
client or server instance during application execution). Although WSDL allows describing
many types of network services, it is often used to describe SOAP-based services. In such
case, a client program reads web service description and determines operations that are
available from a corresponding WSDL document (usually generated automatically and
provided on the same server that offers web service). Any specific datatypes used in the
communication are declared in the WSDL document using XML Schema. Knowing all
details, the client can use SOAP to actually call one of the discovered operations.

A WSDL is somewhat similar to an IDL (Interface Definition Language) used in CORBA.
WSDL is a platform independent language, allowing service provider to describe all service’s
operations and principals of their invocation, and additionally, binding to the protocols, and
the service’s location.

There are two major versions of WSDL specification available: WSDL 1.1 (old W3C
proposition, but still used), and WSLD 2.0 (current W3C recommendation). The WSDL 2.0
got its name after renaming WSDL 1.2 because of some substantial differences between 1.1
and 1.2 versions (the WSDL 1.2 was renamed to WSDL 2.0).

162

WSDL 2.0 accepts binding to all the HTTP request methods (not only GET and POST as
in WSDL 1.1) so it better suits RESTful web services implementation. There is also SOAP
1.1 binding recommendation available. However, WSDL 1.1 has better support from software
development tools. The major versions of WSDL specification, with their publication dates
and URL addresses, are collected in the Table 10.1.

Table 10.1: Publication dates and URL addresses of major versions of WSDL specification (based on

http://www.w3schools.com/w3c/w3c_wsdl.asp).
Specification Publication

date
Status Available at

WSDL 1.1 Note 15 Mar 2001 Draft /Proposal http://www.w3.org/TR/wsdl

WSDL Usage Scenarios 04 Jun 2002 Draft /Proposal http://www.w3.org/TR/ws-desc-

usecases/
WSDL Requirements 28 Oct 2002 Draft /Proposal http://www.w3.org/TR/ws-desc-

reqs/
WSDL Architecture 11 Feb 2004 Draft /Proposal http://www.w3.org/TR/ws-arch/
WSDL Glossary 11 Feb 2004 Draft /Proposal http://www.w3.org/TR/ws-gloss/
WSDL Usage Scenarios 11 Feb 2004 Draft /Proposal http://www.w3.org/TR/ws-arch-

scenarios/

WSDL 1.2 Core Language 11 Jun 2003 Draft /Proposal http://www.w3.org/TR/2003/WD-

wsdl12-20030611
WSDL 1.2 Message
Patterns

11 Jun 2003 Draft /Proposal http://www.w3.org/TR/2003/WD-
wsdl12-patterns-20030611/

WSDL 1.2 Bindings 11 Jun 2003 Draft /Proposal http://www.w3.org/TR/2003/WD-
wsdl12-bindings-20030611/

WSDL 2.0 Primer 26 Jun 2007 Recommendation http://www.w3.org/TR/wsdl20-

primer/
WSDL 2.0 Core Language 26 Jun 2007 Recommendation http://www.w3.org/TR/wsdl20/
WSDL 2.0 Adjuncts 26 Jun 2007 Recommendation http://www.w3.org/TR/wsdl20-

adjuncts/
WSDL 2.0 SOAP 1.1
Binding

26 Jun 2007 Recommendation http://www.w3.org/TR/wsdl20-
soap11-binding/

WSDL 2.0 RDF Mapping 26 Jun 2007 Recommendation http://www.w3.org/TR/wsdl20-
rdf/

Web Services Addressing
Core

09 May 2006 Recommendation http://www.w3.org/TR/ws-addr-
core/

Web Services Addressing
SOAP Binding

09 May 2006 Recommendation http://www.w3.org/TR/ws-addr-
soap/

Web Architecture 15 Dec 2004 Draft /Proposal http://www.w3.org/TR/webarch/

NOTE:
The WSDL specification does not include any explicit rules or mechanisms for including

semantic information in the description of web services. Therefore, two services can have
similar descriptions (with the same syntax), while doing completely different things. To
resolve this ambiguity “Semantic Annotations for WSDL and XML Schema” (SAWSDL)
specification was developed by SAWSDL Working Group, as a part of W3C Web Services
Activity. SAWSDL defines mechanisms, which relies on adding semantic annotations to
WSDL components (see Chapter 11 for more details).

163

10.1. Structure of a WSDL document
A WSDL document is simply a set of definitions that describes a Web service in terms of

messages it sends and receives. In general, the structures of WSDL 1.1 document and WSDL
2.0 document are similar. There is an abstract section and a concrete section, each built from
some constructs (see Figure 10.1). Such design promotes reusability of description and
separation of the independent design concerns.

In the WSDL 1.1 document:
– The abstract section includes: port types, messages and types constructs. Port types are

abstract collections of supported operations. Operations refer to messages that are
abstract descriptions of the data being exchanged. Operations and messages are bound
to a concrete network protocol and message format.

– The concrete section includes: binding that defines the concrete protocol and data
format specifications for a particular port type. Port definition associates a network
address with a reusable binding. A collection of ports defines a service.

In the WSDL 2.0 document:
– The abstract section includes: interfaces and types constructs. An interface collects

together supported operations. An operation associates a message exchange pattern
with one or more messages. Messages are described using a type system (usually XML
Schema) for defining bodies of inputs, outputs and faults.

– The concrete section includes: binding that specifies transport and wire format details
for one or more interfaces. An endpoint associates a network address with a binding. A
group of endpoints that implement a common interface defines a service.

message

portType
operation

input
output
fault

interface

binding

service

binding

service
port endpoint

operation
input
output
infault
outfault

fault

MEP

Operation
style

definitions description

Ab
st

ra
ct

se
ct

io
n

C
on

cr
et

e
se

ct
io

n

WSDL 1.1 WSDL 2.0

types
Element decl.
Type def.

types
Element decl.
Type def.

Figure 10.1. Comparison and analogies between WSDL 1.1 and 2.0 structures (based on

http://en.wikipedia.org/wiki/File:WSDL_11vs20.png).

164

A short description of WSDL 1.1/WSDL 2.0 constructs is as follows.
<definition>/<description>: is a root element in a WSDL document that

includes all WSDL constructs. WSDL allows extension elements within it. This element has
been renamed to description in WSDL 2.0.
<service>/<service>: collects functions that have been exposed to the web based

protocols. In WSDL 2.0, a service element can only implement one interface via its interface
attribute. One service element can have more then one endpoint. If it happens, all endpoints
employ different bindings and addresses for the same, shared interface (they provide the same
behaviour via different binding configurations).
<port>/<endpoint>: defines the address or connection point to a web service,

typically as a simple URL string. Port has been renamed to endpoint in WSDL 2.0.
<binding>/<binding>: contains binding declarations necessary to access the service

(concrete protocol and data format specifications for the operations and messages).
<portType>/<interface>: defines a web service, operations that can be performed,

and the messages that are used to perform the operation. The <portType> element has been
renamed to <interface> in WSDL 2.0. WSDL 2.0 not only changed the element name,
but also expanded the interface construct with a set of new elements and attributes, including
an extends attribute that allows to declare interface inheritance (an interface that extends other
interface offers all inherited operations plus the operations it defines directly).
<operation>/<operation>: defines constructs that can be compared to the methods

or functions definitions known from programming languages. But operations are something
more. An operation describes interaction with a service – so it does not only list function calls
(messages exchanged between the service and its user or users) but also defines their number
and order. This message exchange pattern is defined in the value of pattern attribute of an
operation. WSDL2.0 uses new terms to describe message exchange patterns. For example, the
"Request-Response" pattern from WSDL 1.1 has been renamed to the "In-Out" in WSDL 2.0,
and the "One-Way" has been renamed to "In".
<message>/N.A.: Each service offers at least one operation which involves some

communication between a requestor and service. This communication relies on sending
queries and responses between both parts involved in form of messages. The order of queries
(representing a call to a service) and responses (representing a service responses to the calls)
must conform to an operation specific message exchanged pattern. Each message can consist
of one or more logical parts which are description of the logical content of a message. Each
part is associated with a message-typing attribute. A part may represent a parameter in the
message; the bindings define the actual meaning of the part. Each message must have a
unique name among all messages defined in a name attribute. Each part must have a unique
name among all the parts of the enclosing message defined in the part name attribute.
Messages have been removed in WSDL 2.0. Instead of defining message elements the WSLD
designer simply refers to XML Schema types that defines bodies of inputs, outputs and faults.
<types>/<types>: is a place for descriptions of data types used in WSDL document

(inline or referenced XML Schema types).

A WSDL document designer should be aware of not defining too many operations and

messages. The rule is to define what is really needed and nothing more then that. Therefore, a
WSDL document should not contain any parts that a client of the service does not need to
know nor use. A WSDL document is not program code, it should rather be treated as a set of

165

metadata related to the code. To ensure platform independency a type system should be XML
Schema based whenever possible.

10.2. Constructs in WSDL 1.1
WSDL 1.1 service description is an XML document including a set of information inside

<definitions> root element. This element is a container for such elements as:
<documentation>, which provides a human readable description
<import>, which allows to include external definitions
<types>, which is a container for the data type definitions used to describe the content of

the messages being exchanged.
<message>, which represents an abstract definition of data being transmitted during

service operation execution. A message consists of logical parts, each of which is associated
with a definition within some type system.
<portType>, which is an abstract set of operations. Each operation refers to input and

output messages and can be supported by one or more endpoints.
<binding>, which specifies concrete protocol and data format for operations and

messages defined by for a particular portType.
<service>, which is used to aggregate a set of ports definitions which specify a single

communication endpoint as a combination of a binding and a network address.

10.2.1. Element <documentation>
Element documentation is used to provide a human readable description. This element can

assists (be nested in) any other element appearing in a WSDL document.

10.2.2. Element <definitions>
This is a root element of any WSDL document. It works as a container for several

fragments (nested elements) that forms together a full service description. It provides
namespace declarations valid for its content along with XML namespace prefixes (see Table
 10.2 for basic namespaces used in WSDL 1.1 documents).

Table 10.2: Basic namespaces and their prefixes that are used in WSDL documents.
Prefix Namespace URI Description
wsdl http://schemas.xmlsoap.org

/wsdl/
Namespace of WSDL grammar.

soap http://schemas.xmlsoap.org
/wsdl/soap/

Namespace of WSDL extension binding for SOAP
message.

http http://schemas.xmlsoap.org
/wsdl/http/

Namespace of WSDL extension binding HTTP protocol.

mime http://schemas.xmlsoap.org
/wsdl/mime/

Namespace of WSDL extension binding for MIME
protocol.

soapenc http://schemas.xmlsoap.org
/soap/encoding/

Namespace of schema governing SOAP 1.1 encoding.

soapenv http://schemas.xmlsoap.org
/soap/envelope/

Namespace of schema governing SOAP 1.1 envelopes.

xsi http://www.w3.org/2000/10/
XMLSchema-instance

Namespace of schema governing XML Schema instances.
An instance is an XML document that conforms to a
given XML Schema (.xsd) file.

xsd http://www.w3.org/2000/10/
XMLSchema

Namespace of schema governing XML Schema (.xsd)
files.

tns (application or context-dependent) Convention used to refer to the current WSDL document.
The prefix is an acronym for “this namespace.” Assigning
the targetNamespace value to this prefix is customary.

166

The namespace declarations are provided in the <definitions> attributes with a
targetNamespace attribute as a namespace declaration for the current document. The
informal grammar of <definitions> element is following [52]:
<definitions name="nmtoken"? targetNamespace="uri" xmlns=....?>
 <import namespace="uri" location="uri"/>*
 <documentation /> ?
 <types> ?
 <documentation />?
 <xsd:schema />*
 <-- extensibility element --> *
 </types>
 <message name="nmtoken"> *
 <documentation />?
 <part name="nmtoken" element="qname"? type="qname"?/> *
 </message>
 <portType name="nmtoken">*
 <documentation />?
 <operation name="nmtoken">*
 <documentation /> ?
 <input name="nmtoken"? message="qname">?
 <documentation /> ?
 </input>
 <output name="nmtoken"? message="qname">?
 <documentation /> ?
 </output>
 <fault name="nmtoken" message="qname"> *
 <documentation /> ?
 </fault>
 </operation>
 </portType>
 <binding name="nmtoken" type="qname">*
 <documentation />?
 <-- extensibility element --> *
 <operation name="nmtoken">*
 <documentation /> ?
 <-- extensibility element --> *
 <input> ?
 <documentation /> ?
 <-- extensibility element -->
 </input>
 <output> ?
 <documentation /> ?
 <-- extensibility element --> *
 </output>
 <fault name="nmtoken"> *
 <documentation /> ?
 <-- extensibility element --> *
 </fault>
 </operation>
 </binding>
 <service name="nmtoken"> *
 <documentation />?
 <port name="nmtoken" binding="qname"> *
 <documentation /> ?
 <-- extensibility element -->
 </port>
 <-- extensibility element -->
 </service>
 <-- extensibility element --> *
</definitions>

167

where ? denotes zero or one occurrence, * means zero or more occurrences; + means one

or more occurrences; the dots stands for omitted information, irrelevant to the context;
<-- extensibility element --> is a part with elements from some "other"
namespace (like ##other in XSD). The diagram in Figure 10.2 illustrates the contents of
this element (as defined in the http://schemas.xmlsoap.org/wsdl/, with some
elements collapsed and without elements’ attributes).

Figure 10.2. Diagram showing the content of the <definitions> element (with some nested elements

collapsed and without elements’ attributes, as defined in http://schemas.xmlsoap.org/wsdl/).

10.2.3. Element <import>
This elements works like the #include pre-processor directive in the C programming

language. It allows splitting the description into independent documents and merging them in
one, main document as necessary. This improves the modularity and legibility definition of
the service. The import has two attributes: namespace and location.

10.2.4. Element <types>
This element is a container for data types definitions used in <message> elements. It

contains zero or more sub-elements <schema>, which must adhere to the rules for XML
Schema documents. The declared types can be complexType or simpleType.

168

10.2.5. Element <message>
This element defines a format of messages exchanged between a client and a web service.

It may represent a query, response or error signal. It refers to data types defined in <types>.
The data contained in <message> are abstract. A message consists of one or more sub-
elements <part>.

Each <part> identifies portion of data exchanged in a message, and used data types.
Typically, when client invoke an operation, it sends a message with input data. It receives
back a response with output data. The order of <part> elements reflects the order of
parameters of the operation being invoked.

10.2.6. Element <portType>
This element specifies a set of operations supported by the service endpoint (it provides a
unique identifier to a group of operations supported by a single endpoint). Each
<operation> is defined individually.
<operation> is an abstract definition of an operation supported by a Web service. The

use of this element is analogous to the method declaration in Java, but with a set of messages
representing method invocation and method results. Thus, there can be several input, output
and fault messages defined. Input, output and fault messages are defined using nested
<input>, <output> and <fault> elements. These elements refer to <message>
elements defined in the same WSDL document or imported from external documents.

The order of messages should follow so called Message Exchange Patterns (MEP). WSDL
1.1 supports four MEPs:

– One-way - a port receives a message (operation consists of a single <input> child
element).

– Request-response - a requester sends a message and receives reply from a port
(operation consists of <input>, <output>, and optional <fault> child element).

– Notification - a port sends a message (there is only one message sent in the operation:
<output>).

– Solicit-response - the port sends a notification and receives a response (operation
consists of an <output>, <input>, and optional <fault> child element)

Each operation element must have a unique name, assigned to its name attribute, for all
operations in the <portType>. Similarly, <input> and <output> elements must have
unique names in the scope of <portType> defined assigned to their name attributes.

10.2.7. Element <binding>
This elements is used to specify a concrete protocol binding and data encoding for a given

<portType> (i.e. it provides binding to HTTP, SOAP MIME or, possibly, custom
protocols). Since in the WSDL document <operation> elements are already defined, the
element <binding> maps the abstract definitions of operations, their input and output
messages, to the appropriate protocol used by a web service.

10.2.8. Element <service>
This element appears typically in the end of the WSDL document. It defines a concrete

web service endpoint with URL to the service location (there is no other occurrence of such
URL before service element). <service> element groups one or more <port> elements.
A single <port> element represents an endpoint (access point) to a web service.

169

10.3. Sample of WSDL 1.1 document
The WSDL 1.1 sample document provided below was generated using Eclipse IDE for

SOA Developers. It contains a description of HelloService offering one Operation
with OperationRequest as input, and OperationResponse as output, and SOAP
binding.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/HelloService/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="HelloService"
targetNamespace="http://www.example.org/HelloService/">
 <wsdl:types>
 <xsd:schema targetNamespace="http://www.example.org/HelloService/">
 <xsd:element name="RequestMsg">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="in" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ResponseMsg">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="out" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="RequestMsg">
 <wsdl:part element="tns:RequestMsg" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="ResponseMsg">
 <wsdl:part element="tns:ResponseMsg" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="HelloService">
 <wsdl:operation name="Operation">
 <wsdl:input message="tns:RequestMsg" name="Request"/>
 <wsdl:output message="tns:ResponseMsg" name="Response"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="HelloServiceSOAP" type="tns:HelloService">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Operation">
 <soap:operation
soapAction="http://www.example.org/HelloService/Operation"/>
 <wsdl:input name="Request">
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="Response">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="HelloService">
 <wsdl:port binding="tns:HelloServiceSOAP" name="HelloServiceSOAP">
 <soap:address location="http://www.example.org/"/>

170

 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

10.4. Constructs in WSDL 2.0
WSDL 2.0 description is an XML document conforming to the WSDL 2.0 specification

and XML Schema (not all restrictions described in the specification can be defined in XML
Schema). A WSDL document describes a set of Web service by providing its interface and a
set of endpoint definitions. An interface consists of a set of operations. An operation is a
sequence of input and output messages. An endpoint is defined by its address and binding. An
address tells where the service is provided and binding tells how messages should be
formatted and transmitted. Accompanying specification defines extensions of SOAP 1.2,
SOAP 1.1, HTTP GET, HTTP POST, and MIME bindings.

The elements of WSDL 2.0 documents are defined in the
http://www.w3.org/ns/wsdl namespace, and their XML schema is available as
http://www.w3.org/2002/ws/desc/ns/wsdl20.xsd file.

10.4.1. Element <description>
The <description> is a main element of a WSDL document. The content of this

element should conform to the following pattern:
<description
 targetNamespace="xs:anyURI" >
 <documentation />*
 [<import /> | <include />]*
 <types />?
 [<interface /> | <binding /> | <service />]*
</description>

where: ? denotes an optional element (zero or more occurrences), * means zero or more
occurrences, + means one or more occurrences, the brackets [and] are used for grouping,
and the | represents an alternative choice.

Element <description> is defined in the namespace
http://www.w3.org/ns/wsdl, has a mandatory attribute targetNamespace of
type anyURI, and can have zero or more attributes defining other namespaces. The diagram
in Figure 10.3 illustrates contents of this element (as defined in the wsdl20.xsd, shown
with elements collapsed and without elements’ attributes).

10.4.2. Element <documentation>
A human readable description in the WSDL 2.0 documents is provided within optional

<documentation> elements. These elements can appear in all elements included in a
<description>. The <documentation> syntax is following:

<documentation>
 [extension elements]*
</documentation>

10.4.3. Elements <include> and <import>
Element <include> allows to include components defined in other WSDL documents in

the current interface definition. This allows describing a network of services in a modular
manner - fragments once prepared can be used many times in several descriptions of various
network services.

171

Figure 10.3. Diagram showing the content of the <description> element (with some nested elements

collapsed and without elements’ attributes, as defined in http://www.w3.org/2007/06/wsdl/wsdl20.xsd).

Element <include> has a mandatory location attribute which specifies a location of the

external, included WSDL documents. The target namespace of attached WSDL descriptions
must match the target namespace of the base document. Standard content of this element is as
follows:
<description>
 <include
 location="xs:anyURI" >
 <documentation />*
 </include>
</description>

Element <import> has a similar meaning to <include>. The difference is that the

imported WSDL document can have different target namespace than the base document. This
element has a mandatory namespace attribute for an imported element and an optional
location attribute. Standard content of this element is as follows:
<description>
 <import
 namespace="xs:anyURI" location="xs:anyURI"? >
 <documentation />*
 </import>
</description>

172

10.4.4. Element <types>
Element <types> serves as a place for definitions of data types used by exchanged

messages. XML Schema is preferred as a typing language, although it is possible to use also
the DTD or RELAX NG. The use of custom schemas relies on importing them (with the use
of <xs:import>) or embedding them within <types> element of the WSDL document
(using <xs:schema>). The elements from imported or included schemas can be referenced
using their QName. WSDL allows using built-in types defined in XML Schema. Standard
content of <types> is as follows:
<description>
 <types>
 <documentation />*
 [<xs:import namespace="xs:anyURI" schemaLocation="xs:anyURI"? /> |
 <xs:schema targetNamespace="xs:anyURI"? /> |
 other extension elements]*
 </types>
</description>

10.4.5. Element <interface>
Element <interface> contains <operation> elements, which group definitions of

sequences of messages sent to and from the service. In other words: an operation is a
sequence of input and output messages, and an interface is a set of operations. The operations
can be defined in the interface directly or can be inherited from other interfaces that the
current interface extends. Extending interface is optional. One interface can extend one or
more other interfaces. To prevent loops in the definitions, the current interface must not
appear in a set of interfaces it extends (either directly or indirectly).

The declaration of <interface> is equivalent to the definition in IDL or to the
definition of an abstract class in object-oriented programming languages. <interface>,
apart from <operation>, may contain <fault> elements with errors descriptions. The
<interface> has mandatory attribute name (the value of which is a name of the
interface), and two optional attributes: extends (which lists the interfaces that the interface
extends) and styleDefault (which contains the default style used to create element
declarations for all interface operations).

The styleDefault attribute is optional. It can be used to set a default value for the style
attributes of all interface’s operations. If it is missing, it simply means that no additional rules
need to be followed. The value of styleDefault attribute can be overwriten by a style
attribute of operation elements (individually for each operation as described below). The
provided, predefined style values with short description are listed in Table 10.3. Details are
provided in [50] specification.

Table 10.3: Predefined styles.
IRI Description
http://www.w3.org/ns/
wsdl/style/rpc

Requires that all operations within an interface must follow the rules for
RPC-style messages

http://www.w3.org/ns/
wsdl/style/iri

Places restrictions on message definitions so they may be serialized into
something like HTTP URL-encoded

http://www.w3.org/ns/
wsdl/style/multipart

In the HTTP binding, for XForms clients, a message must be defined
following this style and serialized as "Multipart/form-data"

173

The content of <interface> should conform to the following pattern:
<description>
 <interface
 name="xs:NCName"
 extends="list of xs:QName"?
 styleDefault="list of xs:anyURI"? >
 <documentation />*
 [<fault /> | <operation />]*
 </interface>
</description>

Element <fault>
<description>
 <interface>
 <fault
 name="xs:NCName"
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </fault>
 </interface>
</description>

Element <fault> serves as an abstract description of a fault that MAY occur during
invocation of an operation of an interface. The two attributes, name and element, are used,
respectively, to declare a name of the fault and indicate contents of the fault message. Once
declared, the fault element can be referred by name in multiple operations using ref attributes
of their infault and outfault elements. The name attribute is required and must be unique
within the parent interface element. The element attribute is optional and indicate a schema
for the content or payload of the fault message (defined in the types section).

Element <operation>
Element <operation> describes interaction with a service by listing messages

exchanged between the service and its users (in normal situation or caused by an error). Thus,
the <operation> element may contain such elements as: <input>, <output>,
<infault>, and <outfault>. The list of attributes of the <operation> consists of the
following items: style, safe, pattern (all three are optional), and name (required). The
content of <operation> should conform to the following pattern:
<description>
 <interface>
 <operation
 name="xs:NCName"
 pattern="xs:anyURI"?
 style="list of xs:anyURI"? >
 <documentation />*
 [<input /> | <output /> | <infault /> | <outfault />]*
 </operation>
 </interface>
</description>

The value of style attribute overrides the value of styleDefault attribute of a

parental <interface> element. Attribute style provides some additional information
related to the operation, such as structural restriction on appearance of elements in a normal
message or in an error message. For example, the value
http://www.w3.org/ns/wsdl/style/iri indicates that a model of the message
content must be defined as a complexType containing a sequence (these are types

174

defined in XML Schema). Using other structures (like choice) instead of sequence is
prohibited. The complexType must have no attributes, and child elements of the
sequence should inherit from simpleType, but cannot inherit or be of the type QName,
NOTATION, hexBinary or base64Binary (the types defined in XML Schema). The
number of elements in the sequence is not limited. The sequence may include local child
elements, each of which may contain a nillable attribute. The localPart belonging to
the QName of elements must be the same as the name used in the <interface> element.

The value of a pattern attribute represents a message exchange pattern, i.e. message
placeholders, the order and number of messages involved in the interaction, the interaction’s
participants and their roles (source or sink of the messages). The WSDL specification neither
define a machine understandable language for defining message exchange patterns, nor
provide any specific patterns definitions. Some specific patterns are defined in [50] together
with their IRIs that may be used as the value of the pattern attribute. The examples of
patterns for the in-bound type of communication are following:

– In-Only – the pattern consists of only one message sent to the service by a node. Error
message can not be generated.

– Robust In-Only – is a variation of In-Only. It contains, similarly, only one message
sent to the service, but in this case an error messages can be generated;

– In-Out – this pattern consists of exactly two messages: a message received by a service
from a node followed by a response message sent to a node by a service. The second
message can be normal or an error message;

– In-Optional-Out - in this pattern one or two messages may appear: message received by
a service from a node, followed by an optional response message sent to a node by a
service. Each "in" message may trigger a response in the form of an error message.

The value of safe attribute, which can be "true" or "false", indicates whether an operation
is considered to be "safe" or not. An operation is considered to be safe, if it does not
permanently alter any part of the service environment or if it does not give the consumer any
new obligations (as it is for "read only" operations). The default value is "false". Therefore, if
the attribute is not present or if it is explicitly set to false, then the consumer can assume the
operation is "not safe". The safe attribute is described in [50] specification.

The value of obligatory name attribute is used to declare an operation’s name, which is
used as its identifier.

Message containers are nested in the <operation> element. Their number and order
depends on message exchange pattern used. There are <input> and <output> messages
containers for normal messages, and <infault>, <outfault> containers for error
messages. Although local names of these containers indicate whether a given message is
incoming or outgoing, their accurate role must be defined in their messageLabel attribute
(for example messageLabel="In"). The order of the input and output elements should be
the same as the order defined in the message exchange pattern used.

Elements <input> and <output>
Elements <input> and <output> are message containers used in normal

communication. Message exchange pattern includes rules on how to generate messages with
information about the error. Elements <infault> and <outfault> are used as containers
for messages with errors. Signaling an error might terminate message exchange pattern. The
value of their mandatory messageLabel attribute indicates the role of messages they carry.
This value must match a name defined in the message exchange pattern, and be consistent

175

with the direction stored in token (which may take one of the two values - in or out). A
container can be marked as optional in a given message exchange pattern. A node that
communicates with a service and a service both use these containers. The content of the
message container should conform to the following pattern:
<description>
 <interface>
 <operation>
 <input
 messageLabel="xs:NCName"?
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </input>
 <output
 messageLabel="xs:NCName"?
 element="union of xs:QName, xs:token"? >
 <documentation />*
 </output>
 </operation>
 </interface>
</description>

A required model of message content described by an xs:token can take one of the

following values #any, #none, #other, or #element. The value #any indicates that the
content of message is a single element. The value #none means no message content. The
value #other indicates that the message content is described by some other properties of the
extension indicating declarations in the system different from the XML type system
extensions. The value #element indicates that the message consists of a single element
described by the global element declaration referred in the declaration of that element. This
property is used only when a message is described using a data model based on XML.

Declaration of an element is optional. This element represents a message content or a
payload. If the content model has the value #any or #none, the element’s declaration must
remain empty.

10.4.6. Element <binding>
Element <binding> contains binding declarations necessary to access the service. These

declarations describe a message format and transmission protocol for communication with an
endpoint (including encoding of input and output parameters implemented in the service). The
relevant declarations are described in the mandatory element <operation>. Once defined a
<binding> can be used many times in the definitions of various interfaces. The service can
support several bindings for a single interface, but each bound (endpoint) should be accessible
under a unique address, identified by an URI. The syntax of the <binding> is as follows:
<description>
 <binding
 name="xs:NCName"
 interface="xs:QName"?
 type="xs:anyURI" >
 <documentation />*
 [<fault /> | <operation />]*
 </binding>
</description>

176

10.4.7. Element <service>
Element <service> contains a set of <endpoint> elements, determining places where

the service has been implemented. An interface attribute of the service contains the name
of the interface, whose endpoints are just being described. The syntax of <service>
declaration is as follows:
<description>
 <service
 name="xs:NCName"
 interface="xs:QName" >
 <documentation />*
 <endpoint />+
 </service>
</description>

Element <endpoint>
Element <endpoint> is used to define an endpoint. Two of its attributes - name (name

of the endpoint) and binding (representing binding) are required. The third attribute,
address (address of the service that implements the interface) is optional. The syntax of the
endpoint declaration is as follows:
<description>
 <service>
 <endpoint
 name="xs:NCName"
 binding="xs:QName"
 address="xs:anyURI"? >
 <documentation />*
 </endpoint>+
 </service>
</description>

10.5. Sample of WSDL 2.0 document
The WSDL 2.0 file provided below includes a description of the InformerService. The

service interface, Informer, has only one operation GetOrderPrice. The request should
include the information on the product name and the number of ordered pieces. Then, in the
response, the service will provide the total cost of the order.

<?xml version="1.0">
<description
 xmlns="http://www.w3.org/ns/wsdl"
 targetNamespace="http://example.com/wsdl20/informer"
 xmlns:tns="http://example.com/wsdl20/informer"
 xmlns:skl="http://example.com/schemas/informer"
 xmlns:wsoap="http://www.w3.org/ns/wsdl/soap" >

 <types>
 <schema targetNamespace="http://example.com/schemas/informer"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="OrderPriceRequest">
 <complexType>
 <all>
 <element name="productName" type="string"/>
 <element name="quantity" type="int"/>
 </all>
 </complexType>
 </element>

177

 <element name="OrderPriceResponse"
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <interface name="Informator" >
 <operation name="GetOrderPrice"
 pattern="http://www.w3.org/2004/03/wsdl/in-out">
 <input messageLable = "In"
 element="skl:OrderPriceRequest"/>
 <output messageLable = "Out"
 element="skl:OrderPriceResponse"/>
 </operation>
 </interface>

 <binding name="InformerSOAP" interface="tns:Informer"
 type="http://www.w3.org/ns/wsdl/soap"
 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/"
 wsoap:mepDefault="http://www.w3.org/2003/05/soap/mep/request-response">

 <operation ref="tns:GetOrderPrice">
 wsoap:action="http://example.com/GetOrderPrice"/>
 </operation>
 </binding>

 <service name="InformerService" interface="tns:Informer">
 <documentation> Service test </documentation>
 <endpoint name="InformerPort"
 binding="tns:InformerSOAP"
 address ="http://example.com/informer"/>
 </endpoint>
 </service>
</description>

178

11. SAWSDL (Semantic Annotations for WSDL and XML
Schema)

The SAWSDL is a W3C specification that describes a method for adding semantic
annotations to various parts of a WSDL document. There are two basic types of annotations
defined: the model reference and the schema mapping. The model reference associates WSDL
or XML Schema component with a concept from a given ontology. Such concept can support
a semantic based web service discovery. The schema mapping specifies the data mapping of
XML Schema types to and from a semantic model. Thus, this is a description of
transformation of data from one representation into another, which is especially applicable
when trying to chain web services.

The SAWSDL annotation, in general, relies on using a set of extension attributes holding
one or more URIs. Each URI typically refers to a concept in a semantic model that is external
or internal to the WSDL document. This approach fits within the WSDL 2.0 [51], WSDL 1.1
[52] and XML Schema [61] extensibility frameworks.

The SAWSDL specification reached W3C Recommendation status on August 28, 2007. It
derives from the earlier work of the semantic Web community OWL-S [28] and the other
efforts METEOR-S [13], WSMO [55]. Many of SAWSDL ideas originate from the earlier
specification WSDL-S [53].

The SAWSDL is not any new ontology definition language or mapping definition
language, nor does depend on such languages. The possible choices of such languages are not
restricted in any way.

The SAWSDL address the topic of “Semantic Web Services”. There exist some
alternatives for describing Web Services semantically. It is SWSI (Semantic Web Services
Initiative), incorporating the SWSL (Semantic Web Services Language) and the SWSO
(Semantic Web Services Ontology). For more information on SWSI, please refer to
http://www.ai.sri.com/daml/services/.

NOTE:
The Semantic Web is an extension of the current World Wide Web. It enables

interpretation of published information not only web browsers users (humans), but also by
machines that recognize and understand the semantics of web resources from the meta-
information they are annotated with.

The meta-information gives the clue on what the annotated resources are about, how to
interpret them, etc. The meta-information is well structured, and machine processable data,
created using formal semantic models (ontologies). Two main W3C Standards commonly
used for defining such models are RDF and OWL. Describing them briefly: RDF is used to
represent information and to exchange knowledge, and OWL is used to define ontologies,
supporting web searches and knowledge management (refer to Chapter 8 and Chapter 9 for
details).

The Semantic Web Services are web services of the semantic web. These services make
use of semantic annotations and markups to publish structured, machine processable data and
to discover and interact with other services in a detailed and sophisticated way (including
dynamic discovery, composition and invocation of services).

Machine processable semantic models and concepts are perfect for service description and
discovery. Their applications run beyond simple keywords search limits, and assure receiving
query matches that fits the desired functionality.

179

11.1. Annotation Mechanism
Extending web service description with semantic annotations in the SAWSDL relies on

adding extension attributes to chosen WSDL or XML Schema components. The XML
Schema of such extension attributes is following:
<xs:schema
targetNamespace="http://www.w3.org/ns/sawsdl"
xmlns="http://www.w3.org/ns/sawsdl"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://www.w3.org/ns/wsdl">
<xs:simpleType name="listOfAnyURI">
<xs:list itemType="xs:anyURI"/>
</xs:simpleType>
<xs:attribute name="modelReference" type="listOfAnyURI" />
<xs:attribute name="liftingSchemaMapping" type="listOfAnyURI" />
<xs:attribute name="loweringSchemaMapping" type="listOfAnyURI" />
<xs:element name="attrExtensions">
<xs:complexType>
<xs:annotation>
<xs:documentation>This element is for use in WSDL 1.1 only. It does not
apply to WSDL 2.0 documents. Use in WSDL 2.0 documents is
invalid.</xs:documentation>
</xs:annotation>
<xs:anyAttribute namespace="##any" processContents="lax" />
</xs:complexType>
</xs:element>
</xs:schema>

All three extension attributes (modelReference, liftingSchemaMapping,

loweringSchemaMapping) are of the listOfAnyURI type. It means that each
extension attribute in a WSDL or XMLSchema can have a list of URIs assigned as its value.
The form of the list is the same in all three cases, but its interpretation is different. In case of
the first extension attribute, named modelReference, each URI on the list should identify
(be a direct reference of) an ontological concept with which an annotated element should be
associated. In case of two other extension attributes, named liftingSchemaMapping and
loweringSchemaMapping, each URI on the list should identify a mapping between
semantic data and XML. The lifting schema transforms from XML to semantic data, the
lowering schema transforms from semantic data to XML. Multiple schema mappings should
be treated as alternatives whereas multiple model references should all apply. SAWSDL does
not specify any other relationship.

11.1.1. Model Reference
The modelReference attribute can be used with every element within WSDL and

XML schema. However, the SAWSDL specification defines its use only to annotate:
XML Schema complex type definitions, simple type definitions, element declarations, and

attribute declarations, as well as WSDL interfaces, operations, and faults.
The semantic annotations applied to the schema types help in web service discovery and

potential service composition. The semantic annotations applied to WSDL interfaces and
operations description provide categorization information necessary for future semantical
based discovery (after publication of the service description in a registry).

The URIs appearing in the list assigned to the modelReference attribute are direct
references to the ontological concepts. If direct references are not accessible, then

180

liftingSchemaMapping and loweringSchemaMapping attributes can provide
references to data mapping transformation.

11.1.2. Schema Mapping
The liftingSchemaMapping and loweringSchemaMapping extension attributes

apply in the XML Schema element declarations and type definitions. They serve as a place for
declaration of the data mappings of XML Schema types to and from semantic models. The
URIs from the list assigned as values to these attributes identify mappings.

The liftingSchemaMapping can be applied to XML Schema element declaration,
complexType definitions and simpleType definitions. The specification does not define
any rules on how a client processor should acquire details of the semantic model being
referred to. However, the specification recommends that each URI should resolve to a
document with a semantic model definition. In particular, a semantic model definition can
reside within WSDL document.

NOTE:
The non-semantical service discovery can end up with the results which meet functional

requirements of a client, but are not usable because of the mismatches in the the semantic
model and the structure of the inputs and outputs of the discovered service’s operations. For
example, the client may operate on data including addresses build from street names
concatenated with numbers, while the service may require all address parts separated. A
lowering schema mapping applied to the client’s data would turn them into an XML form
acceptable by the service. The lifting schema mapping would invert the data acquired from a
service back to the form acceptable by a client. In general, lifting schema mappings lift data
from XML to a semantic model, whereas lowering schema mappings lower data from a
semantic model into an XML structure.

11.2. Annotating WSDL Documents
Conceptually, the WSDL service descriptions consist of abstract and concrete parts. The

SAWSDL specification focuses on annotating the abstract parts semantically.
In terms of the WSDL 2.0 component model, a model reference is a new property. In

particular, when used on an element that represents a WSDL 2.0 Component, the
modelReference extension attribute with a non-empty value introduces an optional
property {model reference} whose value is a set of URIs taken from the value of this
attribute. An empty model reference or no model reference are both reflected by the absence
of the {model reference} property on a given component.

The mechanism for semantic annotation described so far can be also applied to the WSDL
1.1 based web service descriptions. All the XML attributes mentioned apply without
modification. Annotation of XML Schema types in WSDL 1.1 with modelReference,
liftingSchemaMapping or loweringSchemaMapping works in the same way as in
WSDL 2.0. The modelReference annotation on element, complexType, simpleType and
attribute defines the semantics of the input or output data of WSDL operations where these
types are used.

However, semantic annotations in some cases apply to different elements then in WSDL
2.0 document structure. Moreover, to overcome a restrictions on attribute extension (and thus
to facilitate operation annotations) a new annotation mechanism was introduced.

181

A WSDL 1.1 schema prohibits extension attributes on operation element. The problem
was solved by introducing a general mechanism for adding extension attributes where
attribute extensibility is not allowed, but element extensibility is allowed. This mechanism
relies on adding a new extension element attrExtensions annotated with a
modelReference attribute to the element being described. The attrExtensions
SHOULD NOT be used where attribute extensibility is allowed. The attrExtensions
element MUST NOT be used for SAWSDL annotations in WSDL 2.0. Attributes with the
same namespace name and local name MUST NOT appear both on the attrExtensions
element and on its parent element.

Thus, to annotate operation element one should add an attrExtensions child to it.
The modelReference attribute of added element will specify the operation annotation.

A WSDL 1.1 portType corresponds to a WSDL 2.0 interface and is annotated in
the same way. A modelReference applied provides a classification or other semantic
descriptions of this element.

A liftingSchemaMapping, loweringSchemaMapping or modelReference
attribute may be added to a part element, defined under a message element, to specify an
input or output annotation that applies to the entire message part. Message parts are
referenced from the portType structure in WSDL 1.1 that generally corresponds to the
WSDL 2.0 interface structure.

In WSDL 1.1 fault is defined identically to input or output, i.e. as a <fault> subelement
of the operation element. Annotation of the meaning of the fault needs to be done on the
<fault> element in each operation where it occurs.

11.3. Sample of SAWSDL description
The example of WSDL 1.1 document presented in Section 10.3 can be enriched with the

semantic annotation as follows:

<interface name="Informator" >
 <operation name="GetOrderPrice"
 pattern="http://www.w3.org/2004/03/wsdl/in-out">
<sawsdl:attrExtensions
 sawsdl:modelReference="http://example.org/purchase#RequestOrderPrice">
<input messageLable = "In"
 element="skl:OrderPriceRequest"/>
 <output messageLable = "Out"
 element="skl:OrderPriceResponse"/>
 </operation>
 </interface>

11.4. SAWSDL API
WSDL documents can be processed programmatically with the aid of general (XML

processing) or specific (SAWSDL processing) API. The list of specific API includes:
– SAWSDL4J which provides a clean object model for SAWSDL documents (available

at http://sawsdl4j.sourceforge.net).
– Woden4SAWSDL which provides an implementation of WSDL 2.0 parser and API

allowing SAWSDL parsing and creation (available at
http://lsdis.cs.uga.edu/projects/meteor-s/opensource/
woden4sawsdl/index.html).

182

– Radiant which is an eclipse plugin with graphical user interface for annotating existing
WSDL documents into WSDL-S or SAWSDL via an OWL Ontology (available at
http://lsdis.cs.uga.edu/projects/meteor-
s/downloads/index.php?page=1).

– GRDDL with transformation for SAWSDL (available at
http://ns.inria.fr/grddl/sawsdl/).

183

12. UDDI (Universal Description, Discovery and Integration)
UDDI (Universal Description, Discovery and Integration) is an open industry initiative

running under the auspices of the OASIS (Organization for the Advancement of Structured
Information Standards). The members of this initiative, involving the largest IT companies,
considered the problem of describing, publishing and discovering information about services
and service providers. The aim was to enable businesses to find each other in an easy,
efficient and well-defined way, and to define the principles of businesses’ interaction over the
Internet. The conducted work resulted in a proposition of a global, platform-independent,
open framework.

The framework is based on W3C (WorldWideWeb Consortium) and IETF (Internet
Engineering Task Force) standards as XML, HTTP, DNS (Domain Name System) and
benefits from SOAP and WSDL. The triple UDDI, SOAP and WSDL is recognized as a set of
foundation standards of SOA (service-oriented architecture).

The framework includes a definition of a model and operations on a registry of Web
services. The registry helps in realization of the concept of B2B (business-to-business)
communication based on Web Services (see Figure 12.1). A typical scenario of the registry
use is following:

– the provider publishes the service description specified in WSDL to the registry,
– the requester searches the registry for the information published,
– the requester sets up a connection with a service based on details received in the

registry response (possibly creating its own service client in an automatic manner),
– both, provider and requester, use SOAP for communication with the registry.
Registry contains information on the companies and provided Web services. It is a kind of

a “phone book” allowing searching by a type of business and type of service. The registry
information scope is often described using the phone book metaphor: The UDDI registry
contains: green pages - a technical description of the service and its URL reference (by
assumption the service described do not necessarily has to be a Web service); white pages -
identification, addresses and other contact details of companies; yellow pages - a list of
companies arranged by industrial classification. However, this is only a metaphor. The real
information model used in the registry is given in UDDI specification. Moreover, the
information stored in the registry can have much broader application then only business
description. It can be used, for example, to describe a hierarchy of an organization
(department, unit, etc.) or information infrastructure (applications, servers, etc.)

The UDDI specification has evolved over time to reflect the providers and customers
needs. All started with a version 1.0, released in 2000, which laid foundation for the registry
of Internet-based business services. Version 2.0, released in 2001 and ratified as an OASIS
Standard in 2003, aligned the specification with emerging Web services standards and
provided a flexible service taxonomy. Next version, with a 3.0 number, released in 2004 and
ratified as an OASIS Standard in 2005, supported secure interaction of private and public
implementations as major element of service-oriented infrastructure. The current version is
3.0.2. For more information about UDDI, please refer to http://www.uddi.org/about.html.

IBM, Microsoft and SAP used to host public UDDI registry (called the UDDI Business
Registry, UBR) a couple of years ago, but that was discontinued in the favour of private
registries.

184

Software developers,
standard bodies and
organizations populate
registry with tModels

Business publish
portfolio of
services provided

Each tModel and
business description
published in UDDI
gets its own identifier

Service clients
discover services
they need

Interaction may
occurs between
colaborating parties

1 2 3 4 5

Typical scenario

UDDI
registry

Service
Client

Business
Service

Developers

Business
analysts

Administrators

Java, ...
Runtime Binding

.Net,

Publish services
descriptions

Points to
service

Publish service
metadata

Discover service
(description,
capabilities,
and constrains)

Points to
service description

WSDL

Interact

Standard
bodies

Java, ...
Runtime Binding

.Net,

Figure 12.1. Typical UDDI registry use cases.

12.1. Technical Architecture
The UDDI technical architecture consists of three parts:
– the data model that allows creation and storage of information on businesses and web

services
– the API specification that includes definitions of operations for finding and publishing

data (and other operations) in management of rights,
– the registry that enables companies to advertise their business so other businesses can

find potential partners.
The data model and the API specification have formal descriptions expressed in XML

Schema language (see Table 12.1 and Table 12.2). The registry can be accessed traditionally
(as a web application) or programmatically (as a web service), and can be implemented in
various ways.

Table 12.1. UDDI Version 3.0.2 XML Schema files (available at http://uddi.org/schema/).
Description XML Schema file
API Schema uddi_v3.xsd
Custody Schema uddi_v3custody.xsd
Subscription Schema uddi_v3subscription.xsd
Subscription Listener Schema uddi_v3subscriptionListener.xsd
Replication Schema uddi_v3replication.xsd
Value Set Validation Schema uddi_v3valueset.xsd
Value Set Caching uddi_v3valuesetcaching.xsd
Policy uddi_v3policy.xsd
Policy Instance Parameters uddi_v3policy_instanceParms.xsd

185

Table 12.2. UDDI Version 3.0.2 WSDL Service Interface Descriptions files (available at
http://uddi.org/wsdl/).

Description WSDL file
API Binding uddi_api_v3_binding.wsdl
API Port Type uddi_api_v3_portType.wsdl
Custody Binding uddi_custody_v3_binding.wsdl
Custody Port Type uddi_custody_v3_portType.wsdl
Replication Binding uddi_repl_v3_binding.wsdl
Replication Port Type uddi_repl_v3_portType.wsdl
Subscription Binding uddi_sub_v3_binding.wsdl
Subscription Port Type uddi_sub_v3_portType.wsdl
Subscription Listener Binding uddi_subr_v3_binding.wsdl
Subscription Listener Port Type uddi_subr_v3_portType.wsdl
Value Set Validation Binding uddi_vs_v3_binding.wsdl
Value Set Validation Port Type uddi_vs_v3_portType.wsdl
Value Set Caching Binding uddi_vscache_v3_binding.wsdl
Value Set Caching Port Type uddi_vscache_v3_portType.wsdl

The UDDI registry is often called a cloud of services because it is logically centralized, but

physically distributed, built from multiple UDDI nodes that synchronize their data by
replication. Thanks to the replication, businesses can register themselves at any node of the
UDDI registry, and the same information will be available in time at any other node of this
registry (which possibly resides on different systems).

Multiple registries may form a group, known as an “affiliation” (see Figure 12.2). The aim
of setting such a group is to permit controlled copying of core data structures between its
members. To do this in a safe way an introduction of appropriate policies is required.
Affiliated registries: share a common namespace for entity keys, have compatible policies for
assigning keys to entities, have policies that permit publishers to assign keys.

Public
Domain

Shared
Domain

UBR
node 1 UBR

node 2

UBR
node nPrivate

Registry 3

Private
Domain

Private
Registry 1

Semi-Private
Domain

Private
Registry 2

Private
Domain

Private
Registry 1

Affiliated

Private
Registry 2

Affiliated

Shared
Domain

Sub
sc

rib
e

Pub
lis

hPublish

Publish

Replicate

Replicate

Rep
lic

ate

Figure 12.2. Affiliation of UDDI registries (inspired by: http://www.uddi.org/pubs/uddi-tech-

wp.pdf).

186

UDDI nodes are servers that are compliant with the UDDI specification. They belong to

the UDDI registry, and collectively manage a well-defined set of UDDI data. The UDDI
registry, in turn, is comprised of one or more UDDI nodes.

The registry is itself a web service based on SOAP. There are some API sets defined for
different operations on the registry. All operations are synchronous, and the UDDI
specification provides details on them in a form of XML Schemas. Summarizing, the
construction of UDDI registry conforms to the following rules:

– UDDI registry must have at least one node that offers a Web service compliant Inquiry
API set.

– UDDI registry should have at least one node that offers a Web service compliant with
the Publication, Security, and Custody and Ownership Transfer API sets.

– If a UDDI registry has multiple nodes, all nodes should offer Web services that are
compliant with the Replication API set. Thanks to that, data supplied to one of the
registry nodes can be replicated to all other nodes, so they will look identically,
regardless the node they will be accessed from (replication occurs every 24 hours).

– The Subscription and Value Set API sets are optional for all nodes and all registries.
– A registry must make a policy decision for each policy decision point. It MAY choose

to delegate policy decisions to nodes.
Some software tools and frameworks allow creating private UDDI registry, for example,

BEA WebLogic Server, IBM WebSphere (commercial) and jUDDI (open source). However,
the nodes of private registry do not synchronize with the nodes of other registries. Of course,
this does not prohibit the synchronization of private registry nodes with one another.

12.2. UDDI data structures
UDDI information model is composed of instances (persistently stored in UDDI nodes) of

data structures, called entities (formally described using XML Schema Language). The main
entity types are following (described in API Schema, uddi_v3.xsd):
businessEntity: represents descriptive information about the business or provider and

about the services it offers, such as: contact information, business category, business
identifiers, the list of services provided. It includes one or more businesService
structures containing service descriptions and technical information.
businessService: represents collection of related network services offered by a

service provider defined by businessEntity. It includes information about particular
service’s binding, type, and category through one or more bindingTemplates.
bindingTemplate: represents technical information necessary to use a particular Web

service. It contains references to tModels.
tModel: represents a technical model of reusable concept, such as a Web service type, a

protocol used by Web services, or a category system. The use of tModel structure eliminates
duplication of the same information in different places (e.g. in a situation where many
services offer the same interface).
publisherAssertion: represents the relationship between businessEntities

such as the manufacturer - supplier, contractor - subcontractor, etc.
The associations between the UDDI data structures are shown in Figure 12.3. Taking a

closer look at it makes it clear that entities are organized into a hierarchical pattern. The
business entities are at the top of the pyramid, they contain business services, and those

187

contain binding templates. Thus, to publish any information about services, at first
businessEntity should be registered, then businessService, and then
bindingTemplate.

Figure 12.3. The UDDI data structures and the relationships between them as defined in uddi_v3.xsd. There
are some changes to the official UDDI Version 3.0.2. They affect, among the others, the bindingTemplate

structure. The changes can be summarized as follows: a) removing the use of xsd:choice b) removing the use
of the final attribute. The diagram hides attributes of elements (bindingTemplate has two optional

attributes: serviceKey, bindingKey; businessEntity has one optional attribute businessKey;
tModel has two optional attributes: deleted, tModelKey).

12.2.1. businessEntity
The businessEntity is the top-level data structure holding descriptive, possibly

multilangual information about the business or organization.
The textual service descriptions are stored in businessService structures, and

corresponding technical information are stored in bindingTemplate structures. These
structures are associated with businessEntity through references.

Each businessEntity structure is uniquely identified by the value of its
businessKey attribute. The value of this attribute, of the UUID type, MUST be omitted if
the publisher wants the registry to generate a key during registration. The value of this
attribute MUST be present, if a businessEntity is retrieved from a UDDI registry. The
elements that a businessEntity might contain are following:

188

discoveryURLs – is a list of URLs that point to alternate, file based service discovery
mechanisms;
name – is a name of a businessEntity (required, non-empty, can occur multiple

times);
description – is textual information about the businessEntity (optional, can

occur multiple times);
contacts – is a simple list of single contact information (optional, can occur multiple

times);
businessServices – is a list of business services provided by a businessEntity;
identifierBag – contains a list of identifiers used for other purposes than a

businessKey, valid in their own identifier systems (like tax identifier);
categoryBag – contains a list of business categories which a businessEntity can

be associated with (like industry, product category or geographic region);
Signature – contains a digital signature created in accordance with the XML-Signature

specification (optional, but MUST be provided if a businessEntity was digitaly signed).

12.2.2. businessService
A businessService structure represents a group of web services and includes simple,

textual information outlining the purpose of individual Web services. It contains: names,
descriptions and classification information, potentially in multiple languages. The technical
information is stored in the bindingTemplate structures provided in the contained
bindingTemplates list.

A businessService has two attributes: serviceKey and businessKey. The
serviceKey attribute uniquely identifies a given businessService in all UDDI
registries. The value of serviceKey follows the same rules as the value of businessKey
attribute of businessEntity (it MUST be omitted when registering an entity and MUST
be present when retrieving an entity). The businessKey attribute represents logical parent-
child relationship between a businessEntity and a businessService. Every
businessService has exactly one businessEntity parent, uniquely identified by
businessKey attribute. However, the value of a businessKey attribute of a
businessService may differ from the value of a businessKey attribute of a parental
businessEntity. When it happens, it indicates a service projection.

A service projection allows a business or organization to include in its
businessEntity a businessService offered by some other business or organization.
A projected businessService is made part of a businessEntity by a reference as
opposed to by containment. Projections to the same service can be made in any number of
business entities.

The elements that a businessService might contain are following:
name – is a name of a businessEntity (required except when indicating a service

projection, non-empty, can occur multiple times);
description – is textual information about the businessService (optional, can

occur multiple times);
bindingTemplates – is a list of technical descriptions for theWeb services provided;
categoryBag – contains a list of business categories which a businessService can

be associated with (like industry, product category or geographic region);

189

Signature – contains a digital signature created in accordance with the XML-Signature
specification (optional, but MUST be provided if a businessService was digitaly
signed).

12.2.3. bindingTemplate
A bindingTemplate structure represents technical information needed by applications

to bind and interact with services described in the businessService structure. The
bindingTemplate includes information on service protocol binding, access points (given
with URL) or an indirection mechanism leading to the access point, a notice whether service
is independent, etc. The type of Web service being offered is provided using references to
tModels, application-specific parameters, and settings. Because the same service can be
implemented in many ways, it can have various bindingTemplate entities associated
with it, with different set of protocols and different network addresses.

A bindingTemplate has two attributes: serviceKey and bindingKey. The
bingingKey attribute uniquely identifies a bindingTemplate in all UDDI registries.
The value of bindingKey follows the same rules as the value of businessKey attribute
of businessEntity (it must be omitted when registering an entity and must be present
when retrieving an entity).

The serviceKey attribute uniquely identifies the businessService that contains
the bindingTemplate (each bindingTemplate is the child of a single
businessService which is referenced by a serviceKey). The value of serviceKey
follows simmilar rules as the value of bindingKey attribute (it may be ommited when
registering a bindingTemplate entity and this entity is a part of a fully expressed
businessService element, and must be present when retrieving a
bindingTemplate).

The elements that a bindingTemplate might contain are following:
description – is textual information about the bindingTemplate (optional, can

occur multiple times, potentially in multiple languages);
accessPoint – is a string used to convey the network address suitable for invoking the

Web service being described (typically an URL, but may be any other locator, as an e-mail
address, a telephone number, etc.);
hostingRedirector – is a deprecated element, functionality of which is now covered

by the accessPoint (is mutually exclusive with accessPoint);
tModelInstanceDetails – is a structure containing a list of one or more

tModelInstanceInfo elements, each with tModelKey attribute. All they form a kind
of stamp that can be used to identify compatible services;
categoryBag – is a container for categories which a bindingTemplate can be

associated with (as, for example, „test” or „production”).
Signature – contains a digital signature created in accordance with the XML-Signature

specification (optional, but must be provided if a bindingTemplate was digitally signed).

12.2.4. tModel
Technical Model, or tModel for short, is used to describe technical aspects, important for

the developers, of a variety of business, service, and template entities registered in UDDI
registry. However, the technical descriptions are not registered in the UDDI registry. Instead,
tModel provides the addresses to the documents and supporting documentation (WSDL,

190

XSD, and other documents that outline and specify the contract and behavior) along with
metadata.
tModel can be used to register any unique concept or construct within UDDI registry.

Each registered tModel entity has unique key identifying it within registry. The use of such
keys prevents duplication of the same information in different places, as it would happen in a
case of several services offering the same interface. Thus, UDDI data structures can refer to a
particular registered tModel using its key. The UDDI specification defines a set of common
tModels that can be used canonically to model information in registry in this way.

A tModel has two attributes: deleted and tModelKey. The tModelKey attribute
uniquely identifies a tModel entity in all UDDI registries. The value of tModelKey
follows the same rules as the value of businessKey attribute of businessEntity (it
MUST be omitted when registering an entity and MUST be present when retrieving an
entity). The deleted attribute appears in the retrieved tModel data as an information-only
field. It indicates whether tModel was deleted from a registry or not. Two allowed values for
this attribute are "true" and "false".

The elements that a tModel might contain are following:
name – is a name of a tModel (required, non-empty, can occur multiple times, SHOULD

be formatted as a URI, and the xml:lang attribute SHOULD NOT be used);
description – is short, textual information about the tModel (optional, can occur

multiple times, potentially in multiple languages);
overviewDoc – contains an URL reference to remote descriptive information or

instructions related to the tModel (optional, can occur multiple times). More exactly,
overviewURL element, included in overviewDoc, holds an URL. An overviewURL
has an optional useType attribute with a value indicating the type of referenced document
("text" value indicates that the overviewURL refers to additional textual information,
and "wsdlInterface" value indicates that the overviewURL refers to a WSDL
interface document).
identifierBag – contains a list of identifiers used for other purposes than a

tModelKey, valid in their own identifier systems.
categoryBag – is a container for categories which a tModel can be associated with

(showing, for example, its technical type).
Signature – contains a digital signature created in accordance with the XML-Signature

specification (optional, but MUST be provided if a tModel entity was digitally signed).

12.2.5. publisherAssertion
A publisherAssertion structure links two or more business entities represented by

businessEntity structure. It is used in a case when there are some associations, such as
the manufacturer - supplier, contractor - subcontractor, etc. between these entities. To make
these associations visible in the registry (for customers who wish to find information about
cooperating businesses), these structures should be registered by the both entities involved.
publisherAssertion structure consists of three elements: fromKey (a key of the first
entity), toKey (a key of the associated entity) and keyedReference (a reference that
defines the type of association in terms of pairs: KeyName, keyValue inside a tModel
referenced by tModelKey).

191

12.2.6. operationalInfo
An operationalInfo structure stores information about structures published in a

registry, including: date and time of structure creation and modification, ID of the UDDI node
where publication occurred, and ID of the publisher.

12.3. UDDI Interfaces
UDDI registry can be accessed programmatically for the purposes of manipulating or using

data stored within it. The UDDI specification standardizes behaviour and communication with
and between implementations of UDDI registries. XML Schemas support formal definitions
of UDDI APIs and basic data types used in all flows of information. Thus, the operations of
the API sets correspond to messages of well defined structure and underlying UDDI
datatypes.

The UDDI API’s are grouped into API sets as described below. The most commonly used
Node API Sets are: UDDI Inquiry, UDDI Publication and UDDI Security.

Node API Sets:
– UDDI Inquiry – contains operations for querying the registry for details on registered

entities
– UDDI Publication – contains operations for publishing entities into the registry
– UDDI Security – contains operations for authentication handling
– UDDI Custody Transfer – contains operations for transferring ownership and custody

of entities
– UDDI Subscription – contains operations for retrieving information on entities in a

timely manner using a subscription format
– UDDI Replication – contains operations related to data replication between registry

nodes
Client API Sets:
– UDDI Subscription Listener – contains operations for receiving subscription results
– UDDI Value Set – contains operations related to keyed reference values validation

12.3.1. Inquiry API Set
Inquiry interface is used primarily to search for service descriptions in the registry (with

the use of different classification schemes). It contains operations that can be organized in two
groups: browsing operations and drilling-down operations. Browsing operations (find_xxx)
are used to get a coarse view and check the contents of a large portion of information.
Drilling-down operations (get_xxx) are used to search for specific, detailed information
based on coarse information.

A typical use case scenario starts with a browsing request issued usually by the registry
client from inside of dedicated software. The results of browsing (keys) are used in drilling-
down requests that provides detailed information contained in the underlying data structures
(such as businessEntity, businessService, bindingTemplate and tModel).
After receiving these details, the client application can call the service found.

To search requests are:
find_binding – returns a list of network services bingings matching the criteria

specified in the input arguments (on technical information);
find_business – returns a list of business entities matching the search criteria;
find_relatedBusinesses – discovers related business compounds.

192

find_service – returns a list of network services matching the search criteria;
find_tModel – returns a list of tModel structures matching the search criteria;
The demands of drilling include:
get_bindingDetail – returns the complete information about the service

bindingTemplate structure for all values of bindingKey listed in the request;
get_businessDetail– returns the information in the businessEntity structure

for all business entities whose values are bindingKey listed in the request ;
get_businessDetailExt – returns extended information on a business entity in a

businessDetailExt structure;
get_operationalInfo – returns the information in the operationalInfos

structure (containing data such as time and date of creation of a structure, the date and time
Last modified, node identifier, the entity which has been published, the service provider
identifier) for all entities whose values are entityKey listed in the request.
get_serviceDetail – returns the details in the structure of businessService for

services for which the value of serviceKey listed in the request;
get_tModelDetail – returns the information for tModel entities identified by the

values of tModelKey listed in the request.

12.3.2. Publication API Set
The interface allows modifying registry content by registering a new, and updating or

removing an old information. The interface contains fourteen operations:
add_publisherAssertions – adds one or more relationship assertions to the

existing assertion collection;
delete_binding – removes an existing bindingTemplate from a

bindingTemplates collection that is part of a specified businessService structure;
delete_business – removes the registered businessEntity information from the
registry;
delete_publisherAssertions – removes one or more assertion from the assertion

set managed by a particular publisher account.
delete_service – removes the existing businessService from the
businessServices collection that is part of a specified businessEntity;
delete_tModel – hides registered information about a tModel (models can not be

deleted normally, except by administrative petition);
get_assertionStatusReport – provides administrative support for determining

the status of all assertions made involving any businessEntity controlled by the
requesting publisher account. The status is included in the assertionStatusReport
returned.
get_publisherAssertions – gets a list of all relationship assertions associated with

a specific publisher account in publisherAssertions structure;
get_registeredInfo – returns an abbreviated synopsis of all information currently

managed by a given individual;
save_binding – creates or updates bindingTemplate information;
save_business – creates or updates businessEntity information;

193

save_service – creates or updates complete information about a
businessService exposed by a specified businessEntity.
save_tModel – creates or updates complete information about a tModel;
set_publisherAssertions – manages all relationship assertions for an individual

publisher account (replaces any existing assertions, and causes any old assertions that are not
reasserted to be removed from the registry).

12.3.3. Security Policy API Set
This interface contains two methods used to draw and release a token required to perform

safe operations:
discard_authToken – is used to inform a node that an authentication token it has

obtained is no longer required and should be considered as invalid (equivalent to logout from
the system).
get_authToken – is used to request an authentication token potentially required for

performing operations included in the Inquiry API Set, Publication API Set, Custody and
Ownership Transfer API Set, and Subscription API Set. The requested token issued from a
UDDI node has the form of an authInfo element (equivalent to login to the system).

12.3.4. Custody and Ownership Transfer API Set
The operations of this interface enables any nodes of a registry to cooperatively transfer

custody of one or more businessEntity or tModel structures from one node to another,
as well as allowing the transfer of ownership of these structures from one publisher to
another. Associated entities of a businessEntity such as its businessService,
bindingTemplate, and publisherAssertion structures are transferred as part of the
custody transfer of the business entity.

A publisher keeps an ownership on the entity it has created (a publisher is the owner of the
entity). A custodial node must maintain a relationship of ownership between an entity and its
publisher by means of authorization mechanisms. Every node of a multi-node registry must
guarantee the integrity of an entity's custody. As such, a node must not permit changes to an
entity unless it has custody of it.

The base data structure used in this API Set is transferToken. This structure
represents the one-time authority to transfer ownership of a specific set of entities to any
publisher and to transfer custody of them to any node in the registry. The authority
represented by a transferToken expires after some period of time, per node policy.

The list of operations of this inteface is following:
discard_transferToken – is used to discard a transferToken obtained through the
get_transferToken API at the same node;
get_transferToken – is used to initiate the transfer of custody of one or more

businessEntity or tModel entities from one node to another;
transfer_entities – is used by publishers to whom custody is being transferred to

actually perform the transfer. The recipient publisher must have an unexpired transferToken
that was issued by the custodial node for the entities being transferred;
transfer_custody – is used by the custodial node to ensure that permission has been

granted to transfer custody of the entities that the target publisher has requested (is invoked by
the target node in response to transfer_entities). The transfer_custody API is

194

in the replication namespace since it is sent from one node to another node in a registry using
replication.

12.3.5. Subscription API Set
Operations of the interface are used to monitor activities in the registry. They are designed

so flexibly that it is possible to monitor new, changed and deleted entries for each of the
following entities: businessEntity, businessService, bindingTemplate,
tModel and entities related through publisherAssertion. Operations may be invoked
in a synchronous or asynchronous mode (asynchronous mode relies on sending notifications
to the subscriber by UDDI node). Operations of subscription interface are following:
save_subscription – creates a new subscription, changes an existing subscription or

renews an existing subscription;
delete_subscription – cancels one or more subscription;
get_subscriptions – returns a list of existing subscriptions previously saved by the

applicant;
get_subscriptionResults – returns the registry data pertaining to the specific

subscription within a specified time;
notify_subscriptionListener – optional method implemented by a subscriber

and pre-subscribed in UDDI, called by the UDDI node in order to notify subscriber about data
changes (about new, modified or deleted data matching the subscription).

12.3.6. Value Set API Set
The "value sets" term stands for all classification and identification systems used in UDDI.

Value sets may be "checked" (having the use of them checked to recognize whether it
conforms to the formal requirements of the value set) or "unchecked" (do not having their use
checked). UDDI provides the opportunity to register value sets and control the validation
process to third parties. Caching collections of such external values can be also supported
(with external validation). Publicly available interfaces to support external validation set of
operations include:
validate_values – used by nodes to allow external network service providers to

validate value sets (to determine whether keyedReferences or
keyedReferenceGroups are correct). Returns a dispositionReport structure;
get_allValidValues – used by nodes to obtain the set of valid values from cacheable

checked value sets (applies to nodes supporting caching of valid values). Returns an empty
message or a dispositionReport structure.

12.4. Using WSDL Definitions with UDDI
As described in chapter 12 UDDI registry stores metadata of Web service and references to

the specifications on implementation. According to the OASIS UDDI Technical Note Using
WSDL in a UDDI Registry, Version 2.0.2 (available at http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-
v2.htm) the information from WSDL documents can be referenced in UDDI
businesServices (service documents) and tModels (binding documents). The
corresponding mapping is presented in Figure 12.4.

195

businessService name = [human-readable name]
categoryBag
 type = service
 namespace = [namespace]
 local name = [service local name]

bindingTemplate
 accessPoint = [access point]
 portType = [portType tModel]
 binding = [binding tModel]
 local name = [port local name]

message

portType
operation

input
output
fault

binding

service
port

definitions
A

bs
tra

ct
se

ct
io

n
C

on
cr

et
e

se
ct

io
n

WSDL 1.1

types
Element decl.
Type def.

categoryBag
 type = portType
 namespace = [namespace]

tModel name = [binding local name]
 overviewURL = [wsdl location]
categoryBag
 type = binding
 namespace = [namespace]
 portType = [portType tModel]
 protocol = SOAP
 transport = HTTP

tModel name = [portType local name]
 overviewURL = [wsdl location]

UDDI V2

Figure 12.4. Methodology for mapping WSDL 1.1 definitions to the UDDI V2 and UDDI V3 data models

(based on UDDI Technical Note Using WSDL in a UDDI Registry, Version 2.0.2).

The example below shows <tModel> definition with a reference to the WSDL document

with URL of this document provided inside overviewURL.

<tModel authorizedName="..." operator="..." tModelKey="...">
 <name>CustomService</name>
 <description xml:lang="en">
WSDL description of the CustomService
 </description>
 <overviewDoc>
<description xml:lang="en">WSDL source document</description>
<overviewURL>http://example.org/wsdl/CustomService.wsdl</overviewURL>
 </overviewDoc>
 <categoryBag>
<keyedReference tModelKey="uuid:..."
keyName="uddi-org:types" keyValue="wsdlSpec"/>
 </categoryBag>
</tModel>

196

13. WS-CDL (Web Services Choreography Description
Language)

The WS-CDL is a W3C Candidate Recommendation for a choreography language based
on XML. The language itself includes constructs and elements for specifying common and
observable behaviours of collaborating parties that need to interact in order to achieve some
goals. The language allows describing rules of message exchange for multiple web service-
based participants. Some of its aspects are inspired by the pi-calculus. The long-living and
stateful interactions are defined from a global point of view, independently of how these
behaviours are implemented internally. Thus, the description provided is presented in a global
and neutral perspective rather than from a perspective of any particular participant.

The WS-CDL specification was initially designed by Oracle. In September 2003 it was
submitted into the W3C Web Services Choreography Working Group. The first Working
Draft was published in April 2004. The WS-CDL specification as W3C Candidate
Recommendation was published on 9th November 2005. Since then the specification did not
mature enough to become a Recommendation. It has not been implemented by the main
software vendors and has not got their support. However, there are some modelling tools that
support it. The example is pi4soa project, which is described on the following web page:
http://sourceforge.net/apps/trac/pi4soa/wiki.

The W3C Web Services Choreography Working Group was closed on the 10th July 2009.
The three working drafts related to the WS-CDL: Primer [47], published on 19th June 2006,
Requirements [49], published on 11th March 2004, and Model overview [48] published on
24th March 2004, got a retired status.

The list of standards related to BPM and Choreography with a short description is provided
in Table 13.1.

Table 13.1. Standards related to BPM and Choreography with short description.
Standard Organization Type
Business Process Execution
Language (BPEL)

OASIS Execution Language. BPM's most popular language;
represents a process as XML with web services bindings

Business Process Modelling
Notation (BPMN)

BPMI Notation language. Graphical language with a mapping to
BPEL

Business Process Modelling
Language (BPML)

BPMI Execution language. An XML process language similar to
BPEL

Business Process Query Language
(BPQL)

BPMI Administration and monitoring interface. Management
interface to a business process management infrastructure
that includes a process execution facility (process server)
and a process deployment facility (process repository).

Business Process Semantic Model
(BPSM)

BPMI Process metamodel, in fashion of Object Management
Group (OMG) Model-Driven Architecture (MDA)

Business Process Extension Layer
(BPXL)

BPMI BPEL extension for transactions, human workflow,
business rules

UML Activity Diagrams OMG Notation language
Workflow Reference Model WfMC A basic architectural approach to workflow/BPM
XML Process Definition
Language (XPDL)

WfMC Execution language. An XML process language similar to
BPEL

Workflow API (WAPI) WfMC Administration and monitoring, human interaction,
system interaction. A functional and administrative API
with definitions in C, IDL, and COM

Workflow XML (WfXML) WfMC An XML language for web service-based communication
between workflow runtime engines (similar to
choreography).

Business Process Definition OMG Execution language and/or notation language, as MDA

197

Metamodel (BPDM) metamodel. A model for a BPM process language
constructed using the Model Driven Architecture (MDA)

Business Process Runtime
Interface (BPRI)

OMG Administration and monitoring, human interaction,
system interaction, as MDA metamodel, an MDA model
for a functional and administrative BPM API

Web Services Choreography
Interface (WSCI)

W3C Choreography, a mature XML language for web services
choreography, or the stateful, process-oriented
interactions of web services among multiple participants

Web Services Choreography
Description Language (WS-CDL)

W3C Choreography. The W3C's official XML choreography
language

Web Services Conversation
Language (WSCL)

W3C Choreography. A basic but elegant XML choreography
language

XLANG Microsoft Execution language. An early XML process
language;XLANG influenced the design of BPEL

Web Services Flow Language
(WSFL)

IBM Execution language. An early XML process language,
which also influenced the design of BPEL

Business Process Schema
Specification (BPSS)

OASIS Choreography (and collaboration). A process language for
business-to-business collaboration

13.1. Different views on business processes modelling
In the software and system engineering domain business process modelling and business

process management play a very important role. They provide the bases for designing and
implementing enterprise information system. Both terms share the same abbreviation, BPM,
although their meaning is slightly different.

In general, a business process modelling is a method of improving organisational
efficiency and quality. It focuses on designing and analysing a process model (also
abbreviated to BPM) reflecting a flow of activities in a particular business or organisational
unit. The model may have a structural representation, can be provided in a form of a
description or can be visualized graphically in a diagram.

A business process management attempts to improve business processes continuously.
This is a kind of activity or methodology oriented at improving effectiveness and efficiency
while striving for innovation, flexibility, and integration with technology. It could therefore be
described as a “process optimization process.”

A business process is a collection of related, structured activities or tasks, performed by
their relevant roles, to produce a specific service or product for a particular customer or
customers, and to purposefully achieve the common business goal.

The common understanding of all business processes and their relationships among
participants involved is essential when implementing enterprise information systems. This
common understanding has a different flavour in different contexts. Regarding coordination
or control of individual web services in the scope of one, coherent overall process, there are
two concepts related: “orchestration” and “choreography”. Introducing them shortly:
orchestration refers to coordination of a single participant's process from a local, subjective
level, whereas choreography refers to collaboration of multiple participants from a global
view.

In Figure 13.1 the business processes of Buyer, Seller and CreditAgency are presented (for
more details refer to the last section of this chapter). It can be seen that the exchange between
these participants relies on sending messages with requests and responses. Thus, from the
external perspective, the state of the collaboration can be determined only through the
observation of messages being exchanged (see Figure 13.2).

198

Figure 13.1. The example of processes in Buyer-Seller-CreditAgency cooperation (resources used:

http://pi4soa.sourceforge.net).

Buyer’s System

Service
Endpoint

send

receive

Process
instance

Seller’s System

Service
Endpoint

send

receive

Process
instance

Credit Agency’s System

Service
Endpoint

send

receive

Process
instance

request

request

response

response

request

request

response

response

Figure 13.2. The Buyer-Seller-CreditAgency choreography.

13.1.1. Orchestration
Generally speaking, an orchestration is all about coordination of web services within a

single process from a local, subjective perspective. An orchestration model of a particular
service defines both the communication actions and the internal actions required for this
service delivery. The communication actions involve externally and/or internally visible
message exchanges and dependencies between them. The externally visible message
exchanges appear while executing operations exposed to external parties through the service’s
behavioural interface(s). The internally visible message exchanges are parts of the process
execution that are not exposed to external parties as they do not have to know any details
about them. The internal actions may include processing which is not exposed directly as a
service (data processing or running dedicated applications locally). Moreover, such actions

199

can be responsible for recording externally and internally visible states, essential for a proper
business logic execution.

An orchestration can be expressed using an execution language, such as BPEL. So, once
defined, it can be executed by an orchestration engine automatically and exposed as a service
that can be invoked through an API. However, orchestration does not describe a coordinated
set of interactions between two or more parties. What orchestration, and therefore BPEL, does
is to enable a user to define a new service from existing services and present the result as a
service which is a kind of recursive composition. But all this is done from a single controller
perspective.

Orchestration = Executable Process

13.1.2. Choreography
Choreography is about global coordination of several services. It focuses on how to build

stateful, conversational, long-running, multiparticipant processes out of basic stateless, atomic
web service operations. It concerns collaboration of two or more participants, aimed at
achieving a common goal.

A choreography model describes externally observable interactions that exists between
collaborating participants within a global, participant agnostic perspective, and defines the
common observable behaviour. It sets some jointly agreed, information driven reactive rules
that control the observable information exchanges. The interactions between collaborating
participants are captured with potential information alignment and dependencies, as, for
example, control-flow dependencies, data-flow dependencies, transactional dependencies,
message correlations, time constraints.

Choreography does not describe any internal action that occurs within a participating
service such as an internal computation or data transformation. They are not considered if
they are not visible externally.

Choreography is not an executable process. It serves rather as a contract between parties
that clarifies all details of their collaboration. This contract can be written in choreography
language as WS-CDL. The WS-CDL language allows declaration of multi-party contracts and
is somewhat like an extension of WSDL: WSDL describes web service interfaces, WS-CDL
describes collaborations between web services.

Choreography = Multi-party Collaboration

13.2. WS-CDL document
A WS-CDL document is simply a set of definitions specified with the use of some

obligatory and optional XML constructs, following the syntax defined in ws-cdl.xsd
schema (see Figure 13.3). A WS-CDL document includes choreography description with
precise definitions of interactions between collaborating parties written using XML syntax
with limited set of used terms. The specification of WS-CDL language permits extensibility
elements and/or attributes being declared inside any of WS-CDL language elements.
However, when used, they have to be defined in an XML namespaces, different from that of
WS-CDL. Moreover, they must not contradict the semantics of any of elements or attributes
from the WS-CDL namespace. In a WS-CDL document additional information can be also
embedded. The container for it is a <description> element. This element can be nested in
any other WS-CDL language element. The contents of <description> may refer to some
semantic definitions and provide explanation of meaning and use of a nesting element. This
information can be provided in multiple different human readable languages and in different

200

forms. However, the WS-CDL parsers are not required to parse nor interpret a
<description>‘s content. The acceptable forms of provided additional information can be
following:

– plain text, HTML or other non-encoded text formats (corresponding to text/plain,
text/html, text/sgml, text/xml and other MIME types),

– a reference to a document with a wider description (it may contain an URI to it),
– a machine readable description (it may be expressed in one of the semantic description

languages as RDF or OWL and may contain an URI).
The choreography is about collaboration of multiple parties and their interactions through

information exchange. So the main concepts in WS-CDL specification are: choreography,
interaction, and channel. WS-CDL defines rules on passing information around channels (web
service-based communication links) in the spirit of the pi-calculus. Similar to other XML
applications, WS-CDL provides the syntax for element declaration and referencing. It relies
on assigning matching values of name and typeRef attributes of two different elements,
where name is treated as an element identifier and typeRef as a reference to it. It is
important to understand that in WS-CDL document two elements can starts with the same
XML tag name and have different syntax and semantics (one is a declaration, the other is a
reference, as, for example, roleType in package and roleType in
participantType).

 Within choreography, information is always exchanged between participants within or
across trust boundaries. The interactions occur between roles exhibited by participants, but
only those which take part in a declared relationship. Thus, a choreography description in
WS-CDL includes at minimum:

– a set of roles that represent a service with named behaviour which can be provided in a
form of WSDL description,

– relationships between those roles,
– channels used by roles to interact, and
– a choreography block that uses channels to describe interaction.
Using this basic set of constructs one can describe typed and unambiguous service

connections that enable collaboration. However, more complex collaboration requires more
detailed description. A powerful feature of WS-CDL are guarded interactions – interactions
that may occur only if some declared pre or post conditions are met. It is also possible to
model interaction branching by introducing non-observable conditionals for observable
exchanges. This can be modelled using existential predicate returning true when a certain
pattern of observable interaction appeared. Moreover, the interactions (and choreographies
already declared) can be combined into sequences, parallel activities and so on, with further
rules achieved through their structural composition.

In a WS-CDL document a package is a root element. It is a container for such elements
as informationType, token, tokenLocator, roleType, relationshipType,
participantType, chanelType, and choreography (including activity
declarations). The roleType, relationshipType, participantType, and
channelType elements define collaborating participants and their coupling. A roleType
enumerates potential observable behavior that participantType can exhibit in order to
interact. A relationshipType identifies the mutual commitments that must be made for
collaborations to be successful. A participantType groups together those parts of the
observable behaviour that must be implemented by the same logical entity or abstract
organization. Thus, a participant is abstractive modelled by a participantType, a role by

201

a roleType, and a relationship by a relationshipType (they are used when describing
choreography).

At a certain level of collaboration declared roles must share some knowledge about states
they entered what is essential for the coordination of their actions. This knowledge should be
available globally or, at least, should be accessible for interacting roles. In practice this
problem is solved by introducing a coordination mechanism based on use of variables. A
variable may contain information about commonly observable objects, such as information
exchanged or interactions performed between roles involved. For coordination purpose only a
part of observed information may be sufficient. Such piece of data can be aliased by a token
and extracted using tokenLocator. In WS-CDL document any variable of exchange
variables, state capturing variables and tokens, holds data of informationType.

13.3. package
The <package> is a root element of any WS-CDL document. It aggregates a set of

elements defining several types and choreography under a common namespace. The types are
defined in informationType, token, tokenLocator, roleType,
relationshipType, participantType and channelType elements. These
definitions may be used in all choreographies defined within a package, and inside individual
choreography type definitions. They are similar in some sense to the types in XSD. Once
declared, these types can be used everywhere they are needed in a valid scope. The syntax of
the <package> is following:
<package
 name="NCName"
 author="xsd:string"?
 version="xsd:string"?
 targetNamespace="uri"
 xmlns="http://www.w3.org/2005/10/cdl">

 <informationType/>*
 <token/>*
 <tokenLocator/>*
 <roleType/>*
 <relationshipType/>*
 <participantType/>*
 <channelType/>*

 Choreography-Notation*
</package>

The attributes name, author, and version store authoring properties of the document.
The targetNamespace attribute defines the namespace for all WS-CDL type declarations.
Other types can be included using an inclusion mechanism as in the example below:
<xi:include href="someGenericVariableDefinitions.xml"/>
<xi:include href="externalChoreography.xml"
xpointer="xpointer(//choreography/variable[1])"/>

Included declarations may be associated with different namespaces.

202

Figure 13.3. Diagram showing the content of the <package> element (with some nested elements collapsed

and without elements’ attributes, as defined in the current WS-CDL specification).

13.3.1. informationType
An <informationType> element is a place for declarations of abstract data types and

elements used within choreography, as, for example, variables (storing messages or part of a
messages or states resulting from evaluation of some expressions) or tokens. The syntax of the
informationType is following:
<informationType name="NCName"
 type="QName"?|element="QName"? />

where name is an obligatory attribute, unique within a choreography package, and used as
a name of declared type, and type and element are optional, mutually exclusive attributes.
The type is used as a reference to WSDL 1.1 message type or an XML Schema simple type,
while element as a reference to a WSDL 2.0 Schema element or an XML Schema element
(see Figure 13.4).

13.3.2.
Sometimes a choreography definition demands some complex types that have parts of the

same type. In a WS-CDL it is possible to refer to such parts in a consistent, systematic
manner. This can be done with the aid of <token> and <tokenLocator> element
declarations.

token, tokenLocator

The token represents an alias for a part of information. This part can be extracted from a
complex type using XPath expression declared in tokenLocator associated with this token.
One tokenLocator would be required for each combination of token and complex type
that contains the token field. The use of token and tokenLocator is especially
productive in choreography synchronization. Because collaborating participants do not share

203

memory, the only way for information sharing is to exchange it or derive it from the
observations. In both cases, the type of information analysed is usually complex.

The syntax of the token is following:
<token name="NCName" informationType="QName" />

where attributes name and informationType are used, respectively, to specify a
distinct name for the token, and to identify the type of a piece of information the token is an
alias of.

The syntax of the tokenLocator is following:
<tokenLocator tokenName="QName"
 informationType="QName"
 part="NCName"?
 query="XPath-expression" />

where attributes tokenName and informationType are used, respectively, to specify
the name of the token that the tokenLocator is associated with, and to identify the type
of the document on which the query is performed to locate the token. The values assigned
to these two attributes are simply references (names of declared elements). The part
attribute is optional. It defines a document’s part that should be a subject of the query. It can
be used to define a querable part of a multipart message described in WSDL1.1, but cannot be
used for WSDL 2.0 based descriptions. Summarizing: tokenType specifies name and type
as an alias to a piece of information within a document, tokenLocator specifies rules for
selecting a piece of information within a document (see Figure 13.4).

WSDL 1.1 Message Type WSDL 2.0 Schema element

informationType

xor

variable a token x tokenLocator p

message

XML Schema type XML Schema element

Figure 13.4. Dependencies between and use of informationType, token and tokenLocator elements.

13.3.3. roleType
A <roleType> element defines an observable behaviour a participant can exhibits in

order to interact with other parties. This element must contain at least one <behavior>
element that specifies the operations supported by this roleType. The syntax of a
roleType is following:
<roleType name="NCName">
 <behavior name="NCName" interface="QName"? />+
</roleType>

where name attributes in roleType and behavior are unique names of corresponding
elements. The name of a roleType can be referenced later from within
relationshipType and channelType elements. The optional interface attribute
of nested behavior element refers to a WSDL reference. A behavior without an
interface attribute describes a behavior of a roleType without requirement to support
any specific interface.

204

In the WS-CDL specification a given roleType cannot be associated with more than one
participantType. However, the pi4soa tools include an extension to the standard,
making it possible to treat roleType in the same manner as a Java interface, and have more
than one participant, i.e. equivalent to a Java class, implementing the same roleType.
Thanks to that, interactions defined within sub-choreographies can be reused in conjunction
with multiple participant types.

13.3.4. relationshipType
The <relationshipType> element defines a static relationship between two

interacting roleTypes. The syntax of relationshipType is following:
<relationshipType name="NCName">
 <roleType typeRef="QName" behavior="list of NCName"? />
 <roleType typeRef="QName" behavior="list of NCName"? />
</relationshipType>

The name attribute of the relatioshipType is simply a holder for a name. The two
nested roleType elements provide references to the roleTypes engaged in the
relationship, optionally together with subsets of behaviours they supports. If no behaviours
are listed, then it is assumed that all behaviours declared for a roleType are applicable.

13.3.5. participantType
The <participantType> element defines an observable behavior a collaborating

participant must provide. The declaration simply enumerates one or more roleTypes
assigned to this particular participantType. Such definition is similar to a class
declaration with a list of all interfaces this class implements. The syntax of
participantType is following:
<participantType name="NCName">
 <roleType typeRef="QName" />+
</participantType>

where name attribut holds a participantType name, and typeRef attribute of each
nested roleType element refer to roleType declarations enumerating supported
behaviors.

It is important to understand that it is a participant’s duty to maintain the state information
associated with each roleType it exposes. If two or more of the roleTypes have a
variable with the same name, then they refer to the same piece of information.

Participant X Participant Y

Role A

Behavior P

Relationship AB

Role B

Behavior Q

Figure 13.5. Dependences between participant, role, behaviour and relationship.

205

13.3.6. channelType
A <channelType> element defines an abstract model of a channel – a point of

collaboration between participants. It provides details on where and how participants
exchange information. A channelType can also restrict the use of its instances, which may
be captured within channel variables and passed among participants in information
exchanges. These restrictions can be statically checked to ensure that these instances are used
in choreography correctly. Thus, in a complex choreography the instances, whether of the
same or different channel type, should have own identity. The channelType definition
provides solution to that issue. The syntax of their channelType is following:
<channelType name="NCName"
 usage="once"|"distinct"|"shared"?
 action="request-respond"|"request"|"respond"? >

 <passing channel="QName"
 action="request-respond"|"request"|"respond"?
 new="true"|"false"? />*

 <roleType typeRef="QName" behavior="NCName"? />

 <reference>
 <token name="QName"/>
 </reference>

 <identity usage="primary"|"alternate"|"derived"|"association">
 <token name="QName"/>+
 <identity>*
</channelType>

where name attribute of the channelType holds its name, usage – identifies the

permitted usage pattern for the channel instances of this channelType ("once" means
that a channel instance can be used for one interaction, or can be passed to another
roleType; "distinct" – that a channel instance can be used multiple times by a
participantType within multiple interactions and it is a default usage mode; "shared"
– that a channel instance can be used multiple times by multiple participantTypes
within multiple interactions), action – defines whether the channelType supports
"request/response" or just "request", which is default, or just "response"
messages.

The elements nested in the channelType serve for the following purposes:
passing – defines the valid type of channel instances passed from one participant to

another when using an information exchange on a channel instance of this channelType.
The attribute channel refers the definition of a valid channelType of the instance being
passed. The optional attribute action defines whether the channel instance passing can
occur during a request, which is default, or response or both. The optional attribute new,
when set to "true", enforces a passed channel instance to be always unique. If the element
passing is missing, then this channelType may be used for exchanging information, but
must not be used for passing channel instances of any channelType.
roleType – identifies the destination roleType associated with this channelType.

If the action within channelType holds "request" value, then the roleType
identified is effectively the provider of the service. In general, the roleType element nested
in channelType is used for statically determining where and how to send or receive

206

information to or from the participant. The meaning of roleType’s attributes is following:
typeRef – holds a name of the destination roleType defined in the choreography
package; behavior – identifies a specific observable behaviour of the destination
roleType that this channel type is associated with. The behavior attribute is optional. If
it is missing, then any one of the behaviour types belonging to the roleType identified may
be a target of an information exchange.
reference – identifies the type of the service endpoint reference. The content of this

element allows dynamic determination of where and how to send or receive information to or
from a participant. The type of a participant reference is distinguished by a token, as specified
by the name attribute of the nested token element.
identity – associates a unique identity for a particular channelType instance. Each

identity is defined by the name attribute of the nested token. The mandatory usage
attribute within identity defines the purpose of this identity in the context of the
channelType. The value of this attribute can be:

– "primary" – which means that the identity is created by the initial message on an
instance of this channelType (only one "primary" identity field can be defined in a
channelType, and all messages exchanged in the instance of the chanelType
must have the same field);

– "alternate" – which means that an alternative identity for a channelType
instance can be established (such identity can be initialized based on any message
within the channel instance's conversation. However, to ensure that it is associated with
the appropriate channel instance, this identity must occur in a message that has already
bound this identity to the channel instance as it contained either the channel instance's
primary key, or another previously initialized alternate identity. Once the alternate
identity has been bound to the channel instance, subsequent messages that only contain
this alternate identity will be correlated to the right channel instance);

– "derived" – which means that the identity will be derived from a message sent on
the current channel instance (conversation). Declaration of derived identity type allows
establishing a correlation between different channel instances (of the same or different
channelType) ensuring that they are bound to the same choreography session. Thus,
if a message is exchanged on an instance of the channelType containing the
appropriate information for the derived identity, then the identity will be associated
with the choreography session. Then if another channel instance (of the same or
different channelType) will reference this identity value in its "primary" identity
field, the referencing channel instance will become correlated with the current channel
instance of the same choreography session.

– "association" – which means that this channel instance is correlated to a previous
channel instance identity, and therefore is associated with the same choreography
instance as the previous channel instance. This kind of identity type can be considered
equivalent to a backward reference. With an association identity, the initial
channelType only defines its own identity information, and the subsequent
channelType (that needs to be correlated to the initial channelType) provides the
association identity element with the information necessary to map onto one of the
primary or alternate identity values in the initial channelType.

207

NOTE
An identity mechanism in the WS-CDL solves a problem of a proper collaboration of

choreography participants based on observed information exchange. Assume, for example,
that one participant observed an "Order" request followed by a "Buy" request. How this
participant can be sure that both messages belong to the same choreography session, and not
to different choreography sessions (or instances)? The answer is hidden in the content of
information exchanged. Each message could have a field (or fields) playing a role of
identifier(s) and each field could be aliased by a token. It would be possible now to create a
tokenLocator for each message type and a token pair to extract each identifier.
Although each tokenLocator could be created based on knowledge of the token and
message types to be handled, one way to ensure that all of the appropriate locators are created
is to associate the identity token with the channel types. In WS-CDL such association
indicates that messages being exchanged over a particular channel type must provide a locator
for the token associated with that channel type.

NOTE
The channelType instances exchanged may be used in subsequent interaction activities.

This allows the modelling of both static and dynamic message destinations when
collaborating within choreography. For example, a "Buyer" could specify channelType
instance information to be used for sending delivery information. The "Buyer" could then
send this channelType instance information to a "Seller" who then forwards it to a
"Shipper". The "Shipper" could then send delivery information directly to the "Buyer" using
the channelType instance information originally supplied by the "Buyer". This, of course,
requires declaration of proper relationshipTypes associating roleTypes (and
collaborating participants as a consequence).

13.3.7. Choreography
A <choreography> element groups a set of interactions into a meaningful business

transaction. It consists of variables, activities, exception handler (that specifies what
additional actions should occur when a choreography behaves in an abnormal way), finalizer
(that specifies additional actions that should occur to modify the effect of an earlier
successfully completed choreography, for example, to confirm or undo the effect), and other
choreographies.

Choreographies represent modules that can be recursively combined to form new
choreographies, using the perform activity. This enables more comprehensive business
protocols to be assembled from simplier protocol units.

Choreographies may be defined locally or globally, and may be coordinated. The
choreography must contain at least one relationship type, enumerating the observable
behaviour the choreography requires its participants to exhibit. It must contain at least a single
activity with some actions performing work.

The choreography life-line expresses the progression of a collaboration. Initially, the
collaboration is established between participants, then work is performed within it and finally
it completes either normally or abnormally. During its life-time choreography enters states:
Initiated State, Enabled State, Unsuccessfully Completed State, Successfully Completed State,
Closed State.

208

The syntax of choreography is following:
<choreography name="NCName"
 complete="xsd:boolean XPath-expression"?
 isolation="true"|"false"?
 root="true"|"false"?
 coordination="true"|"false"? >

 <relationship type="QName" />+

 variableDefinitions?
 Choreography-Notation*
 Activity-Notation

 <exceptionBlock name="NCName">
 WorkUnit-Notation+
 </exceptionBlock>?

 <finalizerBlock name="NCName">
 Activity-Notation
 </finalizerBlock>*
</choreography>

where name defines a distinct name of the choreography, complete – is an optional
attribute that holds XPath expression used to determine when this choreography can be
prematurely completed in a successful state (it is a Boolean conditional), isolation – is an
optional Boolean property which specifies whether variables defined in the enclosing
choreography and changed within enclosed choreography will be available to its sibling
choreographies (setting it to true means that the enclosing and sibling choreographies will
block when accessing those variables, until the isolated choreography has completed),
coordination – is a boolean property which if set to true indicates that all participants
involved in the choreography will be coordinated so that they all complete at the same time
and with the same status, root – is a boolean property which identifies whether this is the
root choreography (only one top level choreography can be declared as root, which identifies
it as the entry point into the set of choreographies included in the CDL package).

The elements nested in the choreography serve for the purposes described below:
relationship – enumerates the relationships the choreography may participate in (if

not defined, then the choreography will be implicitly associated with all relationships);
variableDefinitions – enumerates the variables defined in this choreography;
Choreography-Notation – defines the locally defined choreographies that may be
performed only within this choreography; Activity-Notation – is a place for
definitions of actions that perform work; exeptionBlock and finalizerBlock – are
both optional elements used for, respectively, specification of one or more exception
workunits, and specification of finalizer activity (a choreography may have more than one
finalizerBlock, each with one finalizer activity).

13.3.8. Variables
Variables are required for coordination of roles’ actions taken within a choreography. They

are declared within the scope of variableDefinitions as variable elements.
Variables allow knowledge sharing about actual states roles entered while executing a

choreography. They contain information about commonly observable objects. Values of
variables are available to all roles by initializing them prior to the start of a choreography. The
variables can be categorized with respect to their use as follows:

209

– information exchange capturing variables (contain information used when sending or
receiving messages),

– state capturing variables (contain information about observable changes of a role as a
result of information being exchanged),

– channel capturing variables (contain information such as endpoint URL and quality of
service (QoS) for a given channel)

– exception capturing variables (used in case of an exception).
Each variable represents a value declared in a choreography for a specific role. The values

of variables can be of informationType or channelType (mutually exclusive),
available to roleTypes within a choreography, shared between different roleTypes that
are part of the same participantType (under condition that the variables have the same
name). The syntax of variableDefinitions is following:
<variableDefinitions>
 <variable name="NCName"
 informationType="QName"?|channelType="QName"?
 mutable="true|false"?
 free="true|false"?
 silent="true|false"?
 roleTypes="list of QName"? />+
</variableDefinitions>

where the attribute name is used to specify a distinct name for each variable;
informationType and channelType – are mutually exclusive attributes used,
respectively, in either information exchange capturing variables or state capturing variables
declaration, and in channel capturing variables declaration; mutable – is an attribute that
specifies whether variable information can change once initialized (if set to "false", the
variable information cannot change once initialized); silent –specifies if there should be an
activity used for creating or changing this variable in the choreography (if set to "true", the
manipulation of the value associated with this variable is non-observable); free – when set
to "true" specifies that a variable is shared by enclosing and current choreographies. Any
perform activity must bind a free variable defined in a performed choreography with a
variable defined in a performing choreography. The variable must be bound to an equivalent
(i.e. same type) variable within an enclosing choreography (and cannot be used in its own
right without being bound); roleTypes – attribute that specifies an XML Schema list of
one or more roleTypes of a participant at which the variable information will reside (if no
list is provided, then the variable will be declared at all roles associated with the
choreography).

13.3.9. Activity notation
Activity notations describe actions performed within a choreography in the form of:
OrderingStructures – they combine activities with other ordering structures in a

nested way to express the ordering rules of actions performed within a choreography using
sequence, parallel, and choice elements.
WorkUnit-Notation – is used to guard and/or provide a means of repetition of

activities enclosed within it (as, for examle, condition and repetition for activity, optionally
blocking on data availability)
BasicActivities – are used to describe the basic actions performed within a

choreography (interaction, perform, assign, silentAction, noAction,

210

finalize). The actual work in choreography specification is described in the
<activity> elements.

13.3.10. Ordering structures
The ordering structures sequence, parallel and choice are constructs that are used

to organize set of activities in blocks and have the following syntax:
<sequence>
 Activity-Notation+
</sequence>

<parallel>
 Activity-Notation+
</parallel>

<choice>
 Activity-Notation+
</choice>

sequence activity specifies that the set of activities should be performed one by one, in

the order they are defined, and no subsequent activity can be performed before its proceeding
activity has completed. This activity completes when the final activity in its list has
completed.
parallel activity specifies that the activities it contains should be performed

concurrently. This activity completes when all of the contained activities have completed.
choice activity specifies two or more mutually exclusive paths of choreography. The

proper path is selected based on the observable or non-observable features. These features
may be defined as expressions that operate on the state managed by the choreography (i.e.
variables), and may relate to exchange events (e.g. messages). A typical use case of the choice
construct is to represent alternate paths for a normal or fault response generation.

13.3.11. WorkUnit-Notation
workunit activity represents guarded activity – an activity that includes other

choreography structuring constructs and is executed only when a guard condition evaluates to
true. This activity provides means of repetition and conditionality. Thus, group of activities
can be executed only if some declared pre or post conditions are met.
workunit can be used to model interaction branching by introducing non-observable

conditionals for observable exchanges. It serves as a construct that assures consistency of the
collaborations commonly performed, and allows recovery from errors.

The guard condition can be configured to wait for all its data to become available. When
the variable is/becomes available and the guard condition evaluates to true, the enclosed
activities are enabled. The guard condition may be set on variables that reside on different
roles.

The syntax of workunit is following:
<workunit name="NCName"
 guard="xsd:boolean XPath-expression"?
 repeat="xsd:boolean XPath-expression"?
 block="true|false"? >

 Activity-Notation
</workunit>

211

 where name – specifies a name for the workunit, guard – specifies the guard (Boolean
condition), repeat – specifies the repetition (Boolean condition), block – specifies
whether the workunit has to block waiting for referenced variables within the guard condition
to become available (if they are not already) and the guard condition to evaluate to "true".

13.3.12. Interaction activity
interaction is a basic activity. It represents an exchange between roles within a

relationship. It encapsulates both sending of messages and subsequent receiving of these
messages as a single concept. Any interaction can have a time limit, as well as alignment
requirements that ensure synchronization. A specific interaction can be designed to be a
choreography initiator. Such interaction activity starts choreography with a message sent from
one role to another role through a common channel (and ends with a normal response message
or a fault message in a request-response exchange pattern).

A declaration of interaction includes: the channel capturing variable (indicating where and
how the message is to be sent to and received into the accepting roleType); the operation (that
specifies what a recipient of the message should do with the message when it is received); the
participating roles (refered as 'from' and 'to') and the information exchange capturing variables
at these roles; informationType or channelType that is being exchanged (depending
on what is a subject of exchange); the potential state capturing variables.

The syntax of interaction is following:
<interaction name="NCName"
 channelVariable="QName"
 operation="NCName"
 align="true"|"false"?
 initiate="true"|"false"? >
 <participate relationshipType="QName"
 fromRoleTypeRef="QName"
 toRoleTypeRef="QName" />
 <exchange name="NCName"
 faultName="QName"?
 informationType="QName"?|channelType="QName"?
 action="request"|"respond" >
 <send variable="XPath-expression"?
 recordReference="list of NCName"?
 causeException="QName"? />
 <receive variable="XPath-expression"?
 recordReference="list of NCName"?
 causeException="QName"? />
 </exchange>*
 <timeout time-to-complete="XPath-expression"
 fromRoleTypeRecordRef="list of NCName"?
 toRoleTypeRecordRef="list of NCName"? />?
 <record name="NCName"
 when="before"|"after"|"timeout"
 causeException="QName"? >
 <source variable="XPath-expression"? | expression="XPath-expression"? />
 <target variable="XPath-expression" />
 </record>*
</interaction>

where name is a short name used to describe the interaction, channel – refers to the
variable that represents the channelType instance on which communication is performed;
operation – specifies a name of the operation that is associated with this interaction
(operation belongs to the interface, as identified by the roleType and behaviour elements
specified in the channel variable used in this interaction); align and initiate – are

212

Boolean attributes, indicating, respectively, whether the result of this interaction should be
aligned with the communicating endpoints (i.e. they both agree that they have the same
resulting state before the interaction completes), and whether this interaction is responsible for
initiating the choreography.

The elements nested in the interaction serve for the purposes as described below:
participate – includes relationshipType attribute that specifies the

relationshipType this interaction participates in and two mode attributes:
fromRoleTypeRef and toRoleTypeRef, identifying the requesting and the accepting
roleTypes (accepting roleType must be the same as the roleType identified by the
roleType element specified in the channel variable)
exchange – optional element that allows information to be exchanged during an

interaction. This element includes several optional attributes (name – used to name this
exchange; faultName – used to identify this exchange element as a fault exchange with the
specified name; informationType and channelType – mutually exclusive attributes
identifying, respectively, the informationType and the channelType of the information that is
exchanged between the two roleTypes) and action attribute, that specifies the direction of
the information exchange. It can include also two nested elements: send – that shows that
information is sent from a roleType, and receive – that shows that information is received
at a roleType in the interaction.
timeout – defines a timeframe within which an interaction must complete after it was

initiated, or the deadline before which an interaction must complete (time-to-complete
provides time limits; fromRoleTypeRecordRef / toRoleTypeRecordRef provides
a list of records in the same interaction that will be performed at the 'from'/'to' roleType when
a timeout occurs).
record – is used to create a value of one or more variables using another variable or an

expression (nested source element must define either a variable attribute or an expression
attribute) or change and then make available variable or expression within one roleType
(name – specifies a distinct record’s name, when – defines when the recording happens,
causeException – identifies an exception that may be caused at the corresponding
roleType). Nested source and target elements specify recordings of information
happening at the send and receive ends of the interaction.

13.3.13. Perform activity
perform is a basic activity allowing composition of choreographies by their combination.

It is used to indicate that the activities within a referenced choreography should occur at
certain point and that referenced choreographies are either directly defined within the
performing choreography, or at the top level. It provides also optional capability to bind
variables within the performing choreography with variables in the performed choreography.
When this feature is used, it means that perform has no direct storage of its own, but instead
maps onto the storage of a variable contained within an enclosing choreography.

The syntax of perform is following:
<perform choreographyName="QName"
 choreographyInstanceId="XPath-expression"?
 block="true|false"? >
 <bind name="NCName">
 <this variable="XPath-expression" roleType="QName"/>
 <free variable="XPath-expression" roleType="QName"/>
 </bind>*

213

 Choreography-Notation?
</perform>

where choreographyName – defines a reference to the choreography that is being
performed, choreographyInstanceId – identifies a specific instance of the
choreography to be performed in this performance in cases where multiple instances of this
choreography will be performed and later finalized, block – determines whether the
performing choreography should wait for the performed choreography to complete, before
preceding to the next activity.

The bind element, nested in the perform, enables information sharing between
performing and performed choreography. This element can be named using name attribute. It
includes this element (that defines the variable within the performing choreography,
that will be bound with the variable identified within the free element in the performed
choreography, and aliases roleType from the performing choreography to the performed
choreography) and free element (that defines variable, within the performed
choreography, that will be bound, and roleType that is reverted roleType from this
element within this choreography).
Choreography-Notation – defines a locally defined choreography that is performed

only by this perform activity.

13.3.14. Assign activity
assign is a basic activity which provides a mechanism for assigning values to one or

more variables within one roleType using the value of another variable or expression (what
may cause an exception at a roleType). Assignments perform at the declared role type. If
the source information is unavailable, the result of an assignment is undefined.

The syntax of assign is following:
<assign roleType="QName">
 <copy name="NCName" causeException="QName"? >
 <source variable="XPath-expression"?| expression="XPath-expression"? />
 <target variable="XPath-expression" />
 </copy>+
</assign>

where name is the name of this assignment. The copy element nested in assign
(named and with indication that it may causeException) includes source – element
that defines the source variable through its reference or XPath expression to derive the value
that will be copied into the target variable (the use of variable or expression should be
mutually exclusive), and target – element that defines the target variable into which the
copied value will be assigned.

13.3.15. SilentAction activity
This basic activity provides an explicit designator used for specifying the point where

participant specific actions with non-observable operational details are performed. These
actions may modify the state information associated with a particular participant and role.
However, it will not be entitled to perform interactions, as this would interfere with the
externally observable behaviour of the role.

The syntax of silentAction is following:
<silentAction roleType="QName"? />

where roleType is used to specify the participant at which the silentAction will be
performed.

214

13.3.16. NoAction activity
This basic activity defines that the participants involved within choreography should not

perform any internal tasks that would modify the observable behaviour exhibited by those
participants. Thus, within this activity the participant would not be able to perform any
interactions, or modify state information that is defined within choreography.

The syntax of noAction is following:
<noAction roleType="QName"? />

where roleType is used to specify a participant at which the noAction will be
performed.

13.3.17. Finalize activity
This basic activity is used to initiate the finalization handling (to enable a particular

finalizerBlock) for a choreography that has previously been performed (using the
perform activity) and thus concludes choreography.

The syntax of finalize is following:
<finalize name="NCName"? choreographyName="NCName"
 choreographyInstanceId="XPath-expression"?
 finalizerName="NCName"? />

where name – specifies a distinct name for each finalize element, choreographyName
– identifies the choreography referenced by the choreographyName attribute of the
perform construct, choreographyInstanceId – identifies the performed choreography
instance to be finalized, using the value defined by the choreographyInstanceId
attribute of the perform construct, finalizerName – indicates which finalizerBlock
is to be enabled in the performed instance.

13.3.18. Exception block
WS-CDL provides a mechanism to enable choreography to terminate in case of occurrence

of an unusual situation caused by: interaction failures, protocol based exchange failures,
security failures, timeout errors, validation errors, application failures etc.

Some choreography activities have a property, called cause exception, to indicate that
when the activity is performed, then an exception of the type associated with the activity
should be raised. The exceptions are handled within exceptionBlocks defined as
workUnits (with a guard condition defined using hasExceptionOccurred function).
One or more exception workunits may be defined for each exception that needs to be handled.
The exception handlers’ properties define names and descriptions of the exception handling
activities. They also allow selecting the information type associated with the exception.

13.3.19. Predefined functions
Within expressions defined in choreography, it is possible to make use of a set of pre-

defined functions. Functions are simply invoked by expressing the function name (including
the namespace) and the set of comma separated parameters within the following brackets. The
list of predefined functions contains:
any getChannelIdentity(string varName) – is used to get the identity

information associated with a channel instance.
any getChannelReference(string varName) – is used to get the endpoint

reference information associated with a channel instance.

215

time getCurrentTime(QName roleName) – is used to retrieve the current time
at the role identified by the roleName parameter.
date getCurrentDate(QName roleName) – is used to retrieve the current date at

the role identified by the roleName parameter.
dateTime getCurrentDateTime(QName roleName) – is used to retrieve the

current date and time. This function will be performed locally at the role identified by the
roleName parameter.
any getVariable(string varName, string part, string

documentPath, QName roleName?) – is used to obtain a value of a named variable at
the specific roleType. If the variable is a WSDL1.1 message, then it will also be necessary
to identify the part of the message that should be retrieved.
boolean isVariableAvailable(string varName, QName roleName) –

is used to check if a variable is already available at a specific roleType or to wait for a
variable to become available at a specific roleType, based on the block attribute being
"false" or "true" respectively.
boolean variablesAligned(string varName, string withVarName,

QName relationshipName) – is used to check or wait for an appropriate alignment
interaction to happen between the two roleTypes, based on the block attribute being
"false" or "true" respectively. Alignment means that there has been an agreement that
the two variables have the same value.
boolean globalizedTrigger(string expression, string roleName,

string expression2, string roleName2, ...) – is used in case of
combining constraints prescribed for each roleType but without requiring that all these
constraints have to be fulfilled for progress to be made.
boolean hasDeadlinePassed(dateTime deadlineTime, QName

roleName) – is used to determine whether a particular deadline time has passed.
boolean hasDurationPassed(duration elapsedTime, QName

roleName) – is used to determine whether a particular time interval has passed.
boolean hasExceptionOccurred(QName exceptionType) – is used to

determine whether an exception of the type identified by the parameter exceptionType has
occurred.
boolean hasChoreographyCompleted(string choreoName, string

choreoInstanceId?) – is used to determine whether the performed choreography
associated with the parameter choreoName and optional choreoInstanceId has a
status of completed (whether successfully or not).
string getChoreographyStatus(string choreoName, string

choreoInstanceId?) – is used to get the current status associated with the identified
choreography by choreoName and optional choreoInstanceId.

13.3.20. WS-CDL Example
The example of a WS-CDL document provided below comes from the pi4soa project

(available at http://pi4soa.sourceforge.net). In this document there are three roles defined:
Buyer, Seller and CreditAgency. Buyer sends the BuyRequest to the Seller. Seller asks
CreditAgency to check the credit with CreditCheck request. If credit is OK, then the
CreditAgency sends back to the seller CreditCheckOk message. If not, the message sent is
CreditCheckFailed. Seller, depending on the response from CreditAgency, confirms the Buyer

216

order sending BuyConfirmed message, or rejects it sending BuyFailed message. The schema
of this choreography was shown in Figure 13.1. The following code is the choreography
description expressed in WS-CDL language.
<?xml version="1.0" encoding="Cp1252"?>
<org.pi4soa.cdl:Package xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:org.pi4soa.cdl="http:///org/pi4soa/cdl.ecore" name="BuyerSellerCDL"
author="Steve Ross-Talbot" version="1.4"
targetNamespace="http://www.pi4tech.com/cdl/BuyerSeller">
 <typeDefinitions>
 <nameSpaces prefix="bs"
uRI="http://www.pi4tech.com/cdl/BuyerSellerExample-1"/>
 <nameSpaces prefix="xsd" uRI="http://www.w3.org/2001/XMLSchema"/>
 <informationTypes name="BooleanType" typeName="xsd:boolean"
elementName=""/>
 <informationTypes name="CreditAcceptType" typeName="bs:CreditAccept"
elementName=""/>
 <informationTypes name="CreditCheckType"
typeName="bs:CreditCheckRequest" elementName=""/>
 <informationTypes name="CreditRejectType" typeName="bs:CreditReject"
elementName=""/>
 <informationTypes name="DeliveryDetailsType"
typeName="bs:DeliveryDetails" elementName=""/>
 <informationTypes name="QuoteAcceptType" typeName="bs:QuoteAccept"
elementName=""/>
 <informationTypes name="QuoteType" typeName="bs:Quote" elementName=""/>
 <informationTypes name="QuoteUpdateType" typeName="bs:QuoteUpdate"
elementName=""/>
 <informationTypes name="RequestDeliveryType"
typeName="bs:RequestForDelivery" elementName=""/>
 <informationTypes name="RequestForQuoteType"
typeName="bs:RequestForQuote" elementName=""/>
 <informationTypes name="StringType" typeName="xsd:string"
elementName=""/>
 <tokens name="BuyerRef"
informationType="//@typeDefinitions/@informationTypes.10"/>
 <tokens name="CreditCheckRef"
informationType="//@typeDefinitions/@informationTypes.10"/>
 <tokens name="SellerRef"
informationType="//@typeDefinitions/@informationTypes.10"/>
 <tokens name="ShipperRef"
informationType="//@typeDefinitions/@informationTypes.10"/>
 <roleTypes name="BuyerRoleType">
 <behaviors name="BuyerBehavior" interface=""/>
 </roleTypes>
 <roleTypes name="CreditCheckerRoleType">
 <behaviors name="CreditCheckerBehavior" interface=""/>
 </roleTypes>
 <roleTypes name="SellerRoleType">
 <behaviors name="SellerBehavior" interface=""/>
 </roleTypes>
 <roleTypes name="ShipperRoleType">
 <behaviors name="ShipperBehavior" interface=""/>
 </roleTypes>
 <relationshipTypes name="BuyerSeller"
firstRoleType="//@typeDefinitions/@roleTypes.0"
secondRoleType="//@typeDefinitions/@roleTypes.2"/>

217

 <relationshipTypes name="SellerCreditCheck"
firstRoleType="//@typeDefinitions/@roleTypes.2"
secondRoleType="//@typeDefinitions/@roleTypes.1"/>
 <relationshipTypes name="SellerShipper"
firstRoleType="//@typeDefinitions/@roleTypes.2"
secondRoleType="//@typeDefinitions/@roleTypes.3"/>
 <relationshipTypes name="ShipperBuyer"
firstRoleType="//@typeDefinitions/@roleTypes.3"
secondRoleType="//@typeDefinitions/@roleTypes.0"/>
 <participantTypes name="Buyer"
roleTypes="//@typeDefinitions/@roleTypes.0"/>
 <participantTypes name="CreditChecker"
roleTypes="//@typeDefinitions/@roleTypes.1"/>
 <participantTypes name="Seller"
roleTypes="//@typeDefinitions/@roleTypes.2"/>
 <participantTypes name="Shipper"
roleTypes="//@typeDefinitions/@roleTypes.3"/>
 <channelTypes name="2BuyerChannelType" action="Request"
referenceToken="//@typeDefinitions/@tokens.0"
roleType="//@typeDefinitions/@roleTypes.0"/>
 <channelTypes name="Buyer2SellerChannelType"
referenceToken="//@typeDefinitions/@tokens.2"
roleType="//@typeDefinitions/@roleTypes.2">
 <passingChannelDetails channel="//@typeDefinitions/@channelTypes.0"
new="true"/>
 </channelTypes>
 <channelTypes name="Seller2CreditCheckChannelType"
referenceToken="//@typeDefinitions/@tokens.1"
roleType="//@typeDefinitions/@roleTypes.1"/>
 <channelTypes name="Seller2ShipperChannelType"
referenceToken="//@typeDefinitions/@tokens.3"
roleType="//@typeDefinitions/@roleTypes.3">
 <passingChannelDetails channel="//@typeDefinitions/@channelTypes.0"/>
 </channelTypes>
 </typeDefinitions>
 <choreographies name="Main" completionCondition="" root="true"
relationships="//@typeDefinitions/@relationshipTypes.0
//@typeDefinitions/@relationshipTypes.1
//@typeDefinitions/@relationshipTypes.2
//@typeDefinitions/@relationshipTypes.3">
 <variableDefinitions name="Buyer2SellerC"
type="//@typeDefinitions/@channelTypes.1"
roleTypes="//@typeDefinitions/@roleTypes.0
//@typeDefinitions/@roleTypes.2"/>
 <variableDefinitions name="DeliveryDetailsC"
type="//@typeDefinitions/@channelTypes.0"
roleTypes="//@typeDefinitions/@roleTypes.0 //@typeDefinitions/@roleTypes.2
//@typeDefinitions/@roleTypes.3"/>
 <variableDefinitions name="Seller2CreditChkC"
type="//@typeDefinitions/@channelTypes.2"/>
 <variableDefinitions name="Seller2ShipperC"
type="//@typeDefinitions/@channelTypes.3"
roleTypes="//@typeDefinitions/@roleTypes.2
//@typeDefinitions/@roleTypes.3"/>
 <variableDefinitions name="barteringDone"
type="//@typeDefinitions/@informationTypes.0"
roleTypes="//@typeDefinitions/@roleTypes.0
//@typeDefinitions/@roleTypes.2"/>
 <activities xsi:type="org.pi4soa.cdl:Interaction" description="Buyer
requests a Quote - this is the initiator" name="BuyerRequestsQuote"
operation="requestForQuote"

218

channelVariable="//@choreographies.0/@variableDefinitions.0"
initiate="true" relationship="//@typeDefinitions/@relationshipTypes.0">
 <exchangeDetails name="request"
type="//@typeDefinitions/@informationTypes.9" sendCauseException=""
receiveCauseException=""/>
 <exchangeDetails name="response"
type="//@typeDefinitions/@informationTypes.6" action="Respond"
sendCauseException="" receiveCauseException=""/>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:While" description="Repeat until
bartering has been completed" name="BarteringLoop" expression=""
reEvaluateCondition="barteringDone = false">
 <activities xsi:type="org.pi4soa.cdl:Choice">
 <activities xsi:type="org.pi4soa.cdl:SilentAction"
roleType="//@typeDefinitions/@roleTypes.0" name="NoBartering"/>
 <activities xsi:type="org.pi4soa.cdl:Sequence">
 <activities xsi:type="org.pi4soa.cdl:Interaction"
description="Buyer accepts the quote and engages in the act of buying"
name="AcceptQuote" operation="quoteAccept"
channelVariable="//@choreographies.0/@variableDefinitions.0"
relationship="//@typeDefinitions/@relationshipTypes.0">
 <exchangeDetails name="AcceptQuote"
type="//@typeDefinitions/@informationTypes.5" sendCauseException=""
receiveCauseException=""/>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Interaction"
description="Buyer send channel to seller to enable callback behavior"
name="SendChannel" operation="sendChannel"
channelVariable="//@choreographies.0/@variableDefinitions.0"
relationship="//@typeDefinitions/@relationshipTypes.0">
 <exchangeDetails name="sendChannel"
type="//@typeDefinitions/@channelTypes.0"
sendVariable="//@choreographies.0/@variableDefinitions.1"
receiveVariable="//@choreographies.0/@variableDefinitions.1"
sendCauseException="" receiveCauseException=""/>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Assign"
roleType="//@typeDefinitions/@roleTypes.0">
 <copyDetails name="copy" sourceExpression="true"
targetVariable="//@choreographies.0/@variableDefinitions.4"
causeException=""/>
 </activities>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Sequence">
 <activities xsi:type="org.pi4soa.cdl:Interaction"
description="Buyer updates the Quote - in effect requesting a new price"
name="RequestNewPrice" operation="quoteUpdate"
channelVariable="//@choreographies.0/@variableDefinitions.0"
relationship="//@typeDefinitions/@relationshipTypes.0">
 <exchangeDetails name="updateQuote"
type="//@typeDefinitions/@informationTypes.7" sendCauseException=""
receiveCauseException=""/>
 <exchangeDetails name="acceptUpdatedQuote"
type="//@typeDefinitions/@informationTypes.5" action="Respond"
sendCauseException="" receiveCauseException=""/>
 </activities>
 </activities>
 </activities>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Interaction" description="Seller
check credit with CreditChecker" name="CreditCheck" operation="creditCheck"

219

channelVariable="//@choreographies.0/@variableDefinitions.2"
relationship="//@typeDefinitions/@relationshipTypes.1">
 <exchangeDetails name="checkCredit"
type="//@typeDefinitions/@informationTypes.2" sendCauseException=""
receiveCauseException=""/>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Choice">
 <activities xsi:type="org.pi4soa.cdl:Interaction" description="Credit
Checker fails credit check" name="CheckFails" operation="creditCheck"
channelVariable="//@choreographies.0/@variableDefinitions.2"
relationship="//@typeDefinitions/@relationshipTypes.1">
 <exchangeDetails name="creditCheckFails"
type="//@typeDefinitions/@informationTypes.3" action="Respond"
sendCauseException="" receiveCauseException=""
faultName="creditCheckFails"/>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Sequence">
 <activities xsi:type="org.pi4soa.cdl:Interaction"
description="Credit Checker passes credit" name="CreditOk"
operation="creditCheck"
channelVariable="//@choreographies.0/@variableDefinitions.2"
relationship="//@typeDefinitions/@relationshipTypes.1">
 <exchangeDetails name="creditCheckPasses"
type="//@typeDefinitions/@informationTypes.1" action="Respond"
sendCauseException="" receiveCauseException=""/>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Interaction"
description="Seller requests delivery details - passing channel for buyer
and shipper to interact" name="ReqDelivery" operation="requestShipping"
channelVariable="//@choreographies.0/@variableDefinitions.3"
relationship="//@typeDefinitions/@relationshipTypes.2">
 <exchangeDetails name="sellerRequestsDelivery"
type="//@typeDefinitions/@informationTypes.8" sendCauseException=""
receiveCauseException=""/>
 <exchangeDetails name="sellerReturnsDelivery"
type="//@typeDefinitions/@informationTypes.4" action="Respond"
sendCauseException="" receiveCauseException=""/>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Interaction"
description="Shipper forward channel to shipper" name="SendChannel"
operation="sendChannel"
channelVariable="//@choreographies.0/@variableDefinitions.3"
relationship="//@typeDefinitions/@relationshipTypes.2">
 <exchangeDetails name="forwardChannel"
type="//@typeDefinitions/@channelTypes.0"
sendVariable="//@choreographies.0/@variableDefinitions.1"
receiveVariable="//@choreographies.0/@variableDefinitions.1"
sendCauseException="" receiveCauseException=""/>
 </activities>
 <activities xsi:type="org.pi4soa.cdl:Interaction"
description="Shipper sends delivery details to buyer"
name="DeliveryDetails" operation="deliveryDetails"
channelVariable="//@choreographies.0/@variableDefinitions.1"
relationship="//@typeDefinitions/@relationshipTypes.3">
 <exchangeDetails name="sendDeliveryDetails"
type="//@typeDefinitions/@informationTypes.4" sendCauseException=""
receiveCauseException=""/>
 </activities>
 </activities>
 </activities>
 </choreographies>

220

</org.pi4soa.cdl:Package>

Literature
1. A.B. Bondi: Characteristics of scalability and their impact on performance, Proceedings of the 2nd

international workshop on Software and performance, Ottawa, Ontario, Canada, 2000, ISBN 1-58113-195-
X, pages 195 – 203

2. A. Deepak, J. Crupi, D. Malks, Core J2EE Patterns: Best Practices and Design Strategies, 2nd Edition,
Prentice Hall Ptr, 2003

3. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1994.

4. I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process, Addison-Wesley
Professional, 1999

5. J. Nilson: Applying Domain-Driven Design and Patterns with Examples in C# and .NET, Addison-Wesley
Professional, 2006

6. R.C. Martin, M. Martin: AGILE principles, patterns and practices in C#, Prentice Hall, 2006
7. P. Norvig: Design Patterns in Dynamic Programming (1998-03-17), http://norvig.com/design-patterns.
8. A. Shalloway, J. Trott: Design Patterns Explained: A New Perspective on Object-Oriented Design, Addison-

Wesley Professional, 2004
9. Tutorial Java EE 6.0. Available at: http://download.oracle.com/javaee/6/tutorial/doc/bnaay.html
10. E. Newcomer, Understanding Web Services: XML, WSDL, SOAP, and UDDI
11. S. Weerawarana, F. Curbera, F. Leymann, T. Storey. Web Services Platform Architecture: SOAP, WSDL,

WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More
12. T. Berners-Lee: Notation3 (N3) A Readable RDF syntax, World Wide Web Consortium. Available at:

http://www.w3.org/DesignIssues/Notation3.html
13. METEOR-S: Semantic Web Services and Processes. Available at: http://lsdis.cs.uga.edu/projects/meteor-s/
14. OWL 2 Web Ontology Language: Conformance, M. Smith, I. Horrocks, M. Krötzsch, B. Glimm (eds.) W3C

Recommendation, 27 October 2009. The latest version available at http://www.w3.org/TR/owl2-
conformance/.

15. OWL 2 Web Ontology Language Data Range Extension: Linear Equations, B. Parsia, U. Sattler, W3C
Working Group Note 27 October 2009. The latest version is available at: http://www.w3.org/TR/owl2-dr-
linear/

16. OWL 2 Web Ontology Language: Direct Semantics, B. Motik, P.F. Patel-Schneider, B.C. Grau (eds.) W3C
Recommendation, 27 October 2009. The latest version is available at: http://www.w3.org/TR/owl2-direct-
semantics/.

17. OWL 2 Web Ontology Language Manchester Syntax, M. Horridge, P.F. Patel-Schneider, W3C Working
Group Note 27 October 2009. The latest version is available at: http://www.w3.org/TR/owl2-manchester-
syntax/

18. OWL 2 Web Ontology Language New Features and Rationale, C. Golbreich, E.K. Wallace (eds.) W3C
Recommendation 27 October 2009. The latest version (series 2) is available at:
http://www.w3.org/TR/owl2-new-features/

19. OWL 2 Web Ontology Language Document Overview, W3C OWL Working Group, eds. W3C
Recommendation 27 October 2009. The latest version (series 2) is available at:
http://www.w3.org/TR/owl2-overview/ .

20. OWL 2 Web Ontology Language: Primer, P. Hitzler, M. Krötzsch, B. Parsia, P.F. Patel-Schneider, S.
Rudolph (eds.) W3C Recommendation, 27 October 2009. The latest version is available at
http://www.w3.org/TR/owl2-primer/.

21. OWL 2 Web Ontology Language: Profiles, B. Motik, B.C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz
(eds.) W3C Recommendation, 27 October 2009, Latest version available at: http://www.w3.org/TR/owl2-
profiles/.

22. OWL 2 Web Ontology Language Quick Reference Guide, J. Bao, E.F. Kendall, D.L. McGuinness, P.F.
Patel-Schneider (eds.) W3C Recommendation 27 October 2009. The latest version (series 2) is available at:
http://www.w3.org/TR/owl2-quick-reference/

23. OWL 2 Web Ontology Language: Mapping to RDF Graphs, P.F. Patel-Schneider, B. Motik, eds. W3C
Recommendation, 27 October 2009. The latest version is available at http://www.w3.org/TR/owl2-mapping-
to-rdf/.

24. OWL 2 Web Ontology Language: RDF-Based Semantics Michael Schneider, editor. W3C
Recommendation, 27 October 2009. The latest version available at: http://www.w3.org/TR/owl2-rdf-based-
semantics/.

25. OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax, B. Motik, P.F.
Patel-Schneider, B. Parsia (eds.) W3C Recommendation, 27 October 2009. The latest version is available at:
http://www.w3.org/TR/owl2-syntax/ .

222

26. OWL 2 Web Ontology Language: XML Serialization, B. Motik, B. Parsia, P.F. Patel-Schneider (eds.) W3C
Recommendation, 27 October 2009, http://www.w3.org/TR/2009/REC-owl2-xml-serialization-20091027/.
Latest version available at http://www.w3.org/TR/owl2-xml-serialization/.

27. F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, L.A. Stein: OWL Web
Ontology Language Reference, Dean M., Schreiber G (eds.) W3C Recommendation, 10 February 2004. The
latest version is available at: http://www.w3.org/TR/owl-ref/.

28. Web Ontology Language for Web Services. Available at: http://www.daml.org/services/
29. PRISM: Publishing Requirements for Industry Standard Metadata, Version 1.1, 19 February 2002. The

latest version is available at http://www.prismstandard.org/.
30. Resource Description Framework (RDF): Concepts and Abstract Syntax, Klyne G., Carroll J. (eds.), W3C

Recommendation, 10 February 2004. The latest version is available at: http://www.w3.org/TR/rdf-concepts/.
31. MIME Media Types, The Internet Assigned Numbers Authority (IANA). Available at:

http://www.iana.org/assignments/media-types/ . The registration for application/rdf+xml is archived at
http://www.w3.org/2001/sw/RDFCore/mediatype-registration.

32. Resource Description Framework (RDF) Model and Syntax Specification, Lassila O., Swick R. (eds.),
World Wide Web Consortium, 22 February 1999. The latest version is available at:
http://www.w3.org/TR/REC-rdf-syntax/.

33. RDF Primer. F. Manola, E. Miller (eds.), W3C Recommendation 10 February 2004. Tge latest version is
available at: http://www.w3.org/TR/rdf-primer/.

34. RDF Semantics, Hayes P. (ed.), W3C Recommendation, 10 February 2004. The latest version is available
at: http://www.w3.org/TR/rdf-mt/.

35. RDF/XML Syntax Specification (Revised), Beckett D. (ed.), W3C Recommendation, 10 February 2004.
The latest version is available at: http://www.w3.org/TR/rdf-syntax-grammar/.

36. RDF Test Cases, Grant J., Beckett D. (Editors), W3C Recommendation, 10 February 2004. The latest
version is available at: http://www.w3.org/TR/rdf-testcases/.

37. RDF Vocabulary Description Language 1.0: RDF Schema, Brickley D., Guha R.V. (eds.), W3C
Recommendation, 10 February 2004. The latest version is available at: http://www.w3.org/TR/rdf-schema/.

38. T. Berners-Lee, R. Fielding, L. Masinter: RFC 2396 - Uniform Resource Identifiers (URI): Generic Syntax,
IETF, August 1998. Available at: http://www.ietf.org/rfc/rfc2396.txt.

39. D. Eastlake, A. Panitz: Reserved Top Level DNS Names, June 1999. Available at: http://www.rfc-
editor.org/rfc/rfc2606.txt

40. R. Hinden, B. Carpenter, L. Masinter: RFC 2732 - Format for Literal IPv6 Addresses in URLs, IETF,
December 1999. Available at: http://www.ietf.org/rfc/rfc2732.txt

41. T. Berners-Lee, R. Fielding, L. Masinter: RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax.
IETF, January 2005. Available at: www.ietf.org/rfc/rfc3986.txt

42. M. Duerst, M. Suignard: RFC 3987 - Internationalized Resource Identifiers (IRIs), IETF, January 2005.
Available at: http://www.ietf.org/rfc/rfc3987.txt

43. RDF Site Summary (RSS) 1.0, G. Beged-Dov, D. Brickley, R. Dornfest, I. Davis, L. Dodds, J. Eisenzopf, D.
Galbraith, R.V. Guha, K. MacLeod, E. Miller, A. Swartz, E. van der Vlist, 2000. Available at:
http://purl.org/rss/1.0/spec.

44. The Unicode Standard, Version 3, The Unicode Consortium, Addison-Wesley, 2000. The latest version and
additional information ara available at: http://www.unicode.org/unicode/standard/versions/

45. T. Berners-Lee, D. Connolly, R. Swick: Web Architecture: Describing and Exchanging Data, World Wide
Web Consortium, 7 June 1999. Available at http://www.w3.org/1999/04/WebData.

46. Web Services Choreography Description Language, W3C Candidate Recommendation 9 November 2005.
Available at: http://www.w3.org/TR/ws-cdl-10/

47. Web Services Choreography Description Language: Primer. W3C Working Draft 19 June 2006, Available
at: http://www.w3.org/TR/ws-cdl-10-primer/

48. WS Choreography Model Overview, W3C Working Draft 24 March 2004. Available at:
http://www.w3.org/TR/ws-chor-model/

49. Web Services Choreography Requirements, W3C Working Draft 11 March 2004. Available at:
http://www.w3.org/TR/ws-chor-reqs/

50. Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts, R. Chinnici, H. Haas, A. Lewis,
J-J. Moreau, D. Orchard, S. Weerawarana (eds.) World Wide Web Consortium, 26 June 2007. The latest
version is available at: http://www.w3.org/TR/wsdl20-adjuncts.

51. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, R. Chinnici, J-J. Moreau,
A. Ryman, S. Weerawarana (eds.) World Wide Web Consortium, 26 June 2007. The latest version is
available at: http://www.w3.org/TR/wsdl20.

52. Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 2001. Available at:
http://www.w3.org/TR/wsdl]

223

53. WSDL-S: Adding semantics to WSDL - White paper. Available at:
http://lsdis.cs.uga.edu/library/download/wsdl-s.pdf

54. Web Service Modelling Language. Available at: http://www.wsmo.org/wsml/
55. Web Service Modelling Ontology. Available at: http://www.wsmo.org/
56. XML Linking Language (XLink) Version 1.0, S. DeRose, E. Maler, D. Orchard (eds.) World Wide Web

Consortium, 27 June 2001. The latest version is available at: http://www.w3.org/TR/xlink/.
57. Extensible Markup Language (XML) 1.0, Second Edition, T. Bray, J. Paoli, C.M. Sperberg-McQueen, E.

Maler (eds.), World Wide Web Consortium, 6 October 2000. The latest version is available at:
http://www.w3.org/TR/REC-xml.

58. XML Base, Marsh J. (ed.), World Wide Web Consortium, 27 June 2001. The latest version is available at
http://www.w3.org/TR/xmlbase/.

59. Namespaces in XML, T. Bray, D. Hollander , A. Layman (eds.), World Wide Web Consortium, 14 January
1999. The latest version is available at: http://www.w3.org/TR/REC-xml-names/ .

60. XML Schema Part 2: Datatypes, P. Biron, A. Malhotra(eds.) World Wide Web Consortium. 2 May
2001.The latest version is available at: http://www.w3.org/TR/xmlschema-2/.

61. XML Schema Part 1: Structures Second Edition, H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn
(eds.) W3C Recommendation 28 October 2004. The latest version is available at:
http://www.w3.org/TR/xmlschema-1/

62. Exclusive XML Canonicalization Version 1.0, J. Boyer, D.E. Eastlake 3rd, J. Reagle (Authors/Editors),
World Wide Web Consortium, 18 July 2002. The latest version is http://www.w3.org/TR/xml-exc-c14n/ .

	Contents
	1. Introduction
	PART I. Patterns of multitiered systems
	2. Introduction to Multitiered Information Systems
	2.1. Multitiered Information System
	2.2. Software Development Model
	2.3. Software Development Process Management
	2.4. The role of the Unified Modelling Language - UML

	3. Overview of design patterns for supporting information systems modelling
	3.1. Fundamentals of the design patterns identification
	3.2. Creational patterns
	3.2.1. Abstract Factory
	3.2.2. Builder
	3.2.3. Factory Method
	3.2.4. Prototype
	3.2.5. Singleton

	3.3. Structural patterns
	3.3.1. Adapter
	3.3.2. Bridge
	3.3.3. Composite
	3.3.4. Decorator
	3.3.5. Façade
	3.3.6. Flyweight
	3.3.7. Proxy

	3.4. Behavioural patterns
	3.4.1. Chain of Responsibility
	3.4.2. Command
	3.4.3. Interpreter
	3.4.4. Iterator
	3.4.5. Mediator
	3.4.6. Memento
	3.4.7. Observer
	3.4.8. State
	3.4.9. Strategy
	3.4.10. Template Method
	3.4.11. Visitor

	4. Design patterns used to build the Business Tier
	4.1. Basic issues of the Business Tier design
	4.1.1. Using the session components
	4.1.2. Using the Entity components

	4.2. Bad practices of the Business Tier design
	4.3. Analysis of basic design issues
	4.3.1. Business Delegate Pattern
	4.3.2. Service Locator Pattern
	4.3.3. Session Façade Pattern
	4.3.4. Application Service Pattern
	4.3.5. Business Object Pattern
	4.3.6. Composite Entity Pattern
	4.3.7. Transfer Object Pattern
	4.3.8. Value List Handler Pattern

	5. Design patterns used to build the Presentation Tier
	5.1. Basic issues of the Presentation Tier design
	5.2. Bad practices of the Presentation Tier design
	5.3. Design cases
	5.3.1. Intercepting Filter
	5.3.2. Front Controller
	5.3.3. Context object
	5.3.4. Application Controller
	5.3.5. View Helper
	5.3.6. Composite View
	5.3.7. Service to Worker
	5.3.8. Dispatcher View

	6. Design patterns used to build the Integration Tier
	6.1. Basic issues of the Integration Tier design
	6.2. Bad practices of the Integration Tier design
	6.3. Analysis of basic design issues
	6.3.1. Data Access Object
	6.3.2. Domain Store

	7. Example of the multitiered web application
	7.1. Two examples of architectures of the multitier application asthe Visual Web Java Server Pages applications
	7.2. The Visual Web Java Server Pages application based onsynchronization of data by an application
	7.2.1. Structure of project
	7.2.2. Business Service Sub-tier
	7.2.3. Application Service of the Business Tier as the remote sub-tier
	7.2.4. Integration Tier
	7.2.5. Presentation Tier

	PART II. XML-based service description languages
	8. RDF (Resource Description Framework)
	8.1. Model
	8.2. Vocabulary
	8.2.1. RDF vocabulary
	8.2.2. RDFS vocabulary

	8.3. RDF serialization
	8.3.1. RDF/XML
	8.3.2. Terse RDF Triple Language (Turtle)
	8.3.3. N-Triples

	8.4. RDF Applications
	8.4.1. Dublin Core, FOAF
	8.4.2. RDF API

	9. OWL (Ontology Web Language)
	9.1. Ontology and its languages
	9.2. OWL overview
	9.2.1. OWL vocabulary

	9.3. OWL details
	9.3.1. OWL header
	9.3.2. Classes
	9.3.3. Properties
	9.3.4. Annotations
	9.3.5. Datatypes and facets

	10. WSDL (Web Services Description Language)
	10.1. Structure of a WSDL document
	10.2. Constructs in WSDL 1.1
	10.2.1. Element <documentation>
	10.2.2. Element <definitions>
	10.2.3. Element <import>
	10.2.4. Element <types>
	10.2.5. Element <message>
	10.2.6. Element <portType>
	10.2.7. Element <binding>
	10.2.8. Element <service>

	10.3. Sample of WSDL 1.1 document
	10.4. Constructs in WSDL 2.0
	10.4.1. Element <description>
	10.4.2. Element <documentation>
	10.4.3. Elements <include> and <import>
	10.4.4. Element <types>
	10.4.5. Element <interface>
	10.4.6. Element <binding>
	10.4.7. Element <service>

	10.5. Sample of WSDL 2.0 document

	11. SAWSDL (Semantic Annotations for WSDL and XML Schema)
	11.1. Annotation Mechanism
	11.1.1. Model Reference
	11.1.2. Schema Mapping

	11.2. Annotating WSDL Documents
	11.3. Sample of SAWSDL description
	11.4. SAWSDL API

	12. UDDI (Universal Description, Discovery and Integration)
	12.1. Technical Architecture
	12.2. UDDI data structures
	12.2.1. businessEntity
	12.2.2. businessService
	12.2.3. bindingTemplate
	12.2.4. tModel
	12.2.5. publisherAssertion
	12.2.6. operationalInfo

	12.3. UDDI Interfaces
	12.3.1. Inquiry API Set
	12.3.2. Publication API Set
	12.3.3. Security Policy API Set
	12.3.4. Custody and Ownership Transfer API Set
	12.3.5. Subscription API Set
	12.3.6. Value Set API Set

	12.4. Using WSDL Definitions with UDDI

	13. WS-CDL (Web Services Choreography Description Language)
	13.1. Different views on business processes modelling
	13.1.1. Orchestration
	13.1.2. Choreography

	13.2. WS-CDL document
	13.3. package
	13.3.1. informationType
	13.3.2. token, tokenLocator
	13.3.3. roleType
	13.3.4. relationshipType
	13.3.5. participantType
	13.3.6. channelType
	13.3.7. Choreography
	13.3.8. Variables
	13.3.9. Activity notation
	13.3.10. Ordering structures
	13.3.11. WorkUnit-Notation
	13.3.12. Interaction activity
	13.3.13. Perform activity
	13.3.14. Assign activity
	13.3.15. SilentAction activity
	13.3.16. NoAction activity
	13.3.17. Finalize activity
	13.3.18. Exception block
	13.3.19. Predefined functions
	13.3.20. WS-CDL Example

	Literature

 HistoryItem_V1
 Nup

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Sheet orientation: tall
 Scale by 90.00 %
 Align: centre

 0.0000
 10.0001
 20.0001
 0
 Corners
 0.2999
 ToFit
 1
 1
 0.9000
 0
 0
 1
 0.0000
 0

 D:20110811143247
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 630
 275
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom right
 Offset: horizontal 56.69 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 1
 TR
 1
 0
 1005
 173
 0
 11.0000

 Odd
 224
 1
 AllDoc

 CurrentAVDoc

 56.6929
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 224
 222
 112

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom left
 Offset: horizontal 56.69 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BL

 1
 TR
 1
 0
 1005
 173
 0
 11.0000

 Even
 224
 1
 AllDoc

 CurrentAVDoc

 56.6929
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 224
 223
 112

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 50 down, columns 50 across
 Align: centre
 Registration colour: All separations
 PDF/X handling: Ignore PDF/X
 Annotations and form fields: UNKNOWN

 0.0000
 Prompt
 10.0001
 20.0001
 1
 Corners
 0.2999
 ToFit
 50
 50
 1.2000
 FormsAndFields
 0
 0
 1
 0.0000
 0
 IgnoreAll

 D:20110811143451
 841.8898
 a4
 Blank
 595.2756

 Tall
 886
 110

 0.0000
 AllSeps
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

