ROZWOJ POTENCJALU | OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCtAWSKIEJ

Wroctaw University of Technology

Internet Engineering

Tomasz Kubik, Zofia Kruczkiewicz

UML AND SERVICE
DESCRIPTION LANGUAGES

Information Systems Modelling

Wroctaw 2011

Projekt wspétfinansowany ze srodkéw Unii Europejskiej w ramach
Europejskiego Funduszu Spotecznego

Wroctaw University of Technology

Internet Engineering

Tomasz Kubik, Zofia Kruczkiewicz

UML AND SERVICE
DESCRIPTION LANGUAGES

Information Systems Modelling

Wroctaw 2011

Copyright © by Wroctaw University of Technology
Wroctaw 2011

Reviewer: Dariusz Caban

ISBN 978-83-62098-22-4

Published by PRINTPAP L.6dZ, www.printpap.pl

Table of contents

L. INEPOAUCTION ...ttt e e e 7
Patterns of multitiered SYStEMS........c.uuviiiiii e 9
2. Introduction to Multitiered Information SYSteMS..........ccovcivriiieeeeeiiiiiiiieee e 11
2.1. Multitiered Information SYSEM........cvvviiiiiiiiiieieeeeeeeeeeeeeeee e 11
2.2. Software Development MOdel ... 13
2.3. Software Development Process Management...........ccoocvveeirieeeeniieeesnnneeens 16
2.4. The role of the Unified Modelling Language - UML...........ccccvvvieeeiiiniiniennnnnn. 18
3. Overview of design patterns for supporting information systems modelling 20
3.1. Fundamentals of the design patterns identificationcccccveeeeieiiivnennnnnn. 21
BT O == L1 [= L o = =] 1 1 22
3.2.1. ABSIIACT FACIOMYociiriiiiiiiiee et 22
.22, BUIIAET et 23
3.2.3. FaCtory MethOd.........uuiiiiiiiiiiiiiiee e 24
T B e (0] (0] 1 o L= P PRRPRRRRRN 26
3.2.5. SINGIELION L.ttt e e e e e e e e e e 27
3.3, SHIUCIUIAl PALLEINS.....eiiiiiieieiieiiee e e e e e eeeeas 28
R 0t B Y =T o] (= PP PP PP PR OPPRPRRPURRIN 28

TR T2 =1 o [0 T PP PUPRRTO 29
3.3.3. COMPIOSITE ..vvviieieeeiiiiiiiie ettt e e e e e e e s e e e e e e s bbb eeeeeeeesnsanees 31
.34, DBCOTALONeeeieeiieiii et e ettt ettt e e e e e et e e e e e e e e e e e e e 33

R T TR T - T Vo [35
.36, FIYWEIGNT ... 36

R TN o (o) YOS SUPRPSRSI 38
3.4. Behavioural PAtteINScooiiiiiiiiiee e 40
3.4.1. Chain of ReSPONSIDIIILYccoiiiiiiiieee e 40
3142, COMIMAND ...ttt ettt et e e e e e eeen 42
IR I T | 1= 1 0] €= =] PSR P PP PPROPPRTRPRRPRRN: 42
B | (=] - 1o] SO TP PP PP O PP PPPPPPPPPON 44
ST 1Y =T [=1 (o] PP PP PPPPPPUTTPP 45
3.4.6. MEMENTOeeiiiiiiiiiiiiieiii it n e nnnnnnnne 47
e 7 ODSEBIVE ...ttt ettt e e e e e a e e e aan e 47
Bid.8. SHALE ... 49
R e T 1 7= 1 (=T)RR 50
3.4.10. Template MEthOd.........cccceiiiiiiiiiiee et 51
N I V11 (o] PP PP OO PP PPPUT PP 51

4. Design patterns used to build the BuSiness Tier........cccccooviiiiiiiiieniiee e 53
4.1. Basic issues of the BUSINeSS Tier deSIgNcoovvuiiiiiiieeiiiiiiiiiiee e 53
4.1.1. Using the SeSSIiON COMPONENTS........uiiiiiiiiiiiiiiieeeeeeiiiiiieeeeeessniinreeeeesaannns 53
4.1.2. Using the Entity COMPONENTS.........uuviieiiiiiiiiiiiiee e eeiiriieee e e e sssiivneeeee s ennns 54
4.2. Bad practices of the Business Tier designcccccuvvveeeeeiiiiiiiieeee e esciineeeenn. 55
4.3. Analysis Of basiC deSigN ISSUES.........couiuuiiiiiieeiiiiieeeee e 56
4.3.1. Business Delegate Patternccccovrieeiiieie e 56
4.3.2. Service LoCator PatterNccoiiiiiiiiiiiee et 59
4.3.3. Session Fagade Patterncooiiiiiiiei it 61
4.3.4. Application Service Patternccuuvvieeeiiiiiiiiiiiee et 64
4.3.5. BUSINESS ObJeCt Patternccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 66
4.3.6. Composite Entity Pattern..........cccuviiiiiiiiiiieeeeiiee e 69
4.3.7. Transfer ObJeCt Patternoooiiiiiiiiiiiiie e 72

4.3.8. Value List Handler Pattern..............uuviiiiiiiiiiiiieeeeeeeeieee e 73

5. Design patterns used to build the Presentation Tier.........ccccccceeeeviiiiiieeeeeeeescieenn, 76
5.1. Basic issues of the Presentation Tier designcccevvvevveiiiiiiiiieeeieeieeeeeeeeee, 76
5.2. Bad practices of the Presentation Tier design..........cccoecvveeiriiieiniiiee s 78
5.3. DESIGN CASES ..ottt ettt ettt e e e e a e s 79

5.3.1. INtercepting Filter.........coviii i 79
5.3.2. FrONt CONIOIEI.....coiiiiiiieiiiie e 81
5.3.3. CONEXE ODJECL....ci ittt e e e 83
5.3.4. Application CONLrollErcoooiiiiiiiiiee e 85
5.3.5. VIBW HEIPET ..t 87
5.3.6. COMPOSILE VIBW.....uiiiiiiiiie ettt e e e e e e e 89
5.3.7. SErVICE 10 WOIKET ...t 91
5.3.8. DISPALCNET VIBW.......iiiiiiiie e ettt e e e e e e s e e e e e e e snsnnees 93

6. Design patterns used to build the Integration Tierccooeeeeieeiieeeiieeeeeeeeeeeee, 95
6.1. Basic issues of the Integration Tier design..........ccuveveieeiiiiiiiiiieee e, 95
6.2. Bad practices of the Integration Tier deSigN.........cccccvveviieeiniiiieeniiiee e 96
6.3. Analysis Of basiC deSIgN ISSUBS.........coiuiiiiiiiie i 97

6.3.1. Data ACCESS ODJECE...uuiiiiieiiiiiiiiiiie et 97
6.3.2. DOMAIN STOTE......eiiiiiiiiiee ettt et e e e e e eneeeas 100

7. Example of the multitiered web application...........ccooeeeeeeeeeeee e, 106
7.1. Two examples of architectures of the multitier application as the Visual Web
Java Server Pages appliCatiONS..........ueuueuuerieereiiiiiereieeeeeinieeeeeeeeneeeneenenneeeennn.. 106
7.2. The Visual Web Java Server Pages application based on synchronization of
data by an appliCAtIONcciiiiiiiiiiiie e 107

7.2.1. StrUCIUrE Of PrOJECT ...uvvviiiie e e ettt e e e e e e e e e e e e enes 107
7.2.2. BUSINESS SErvICe SUD-TIEN ... 109
7.2.3. Application Service of the Business Tier as the remote sub-tier............ 112
7.2.4. INtEGratioN TIET c.oiiiiiiiiiiee ettt e e e e e e e e e e s reeeeeeeane 113
7.2.5. Presentation TIETiii i 114

XML-based service description [anQUAgEScoovvuriiiieeeiiiiiiiiieee e esirieee e 119

8. RDF (Resource Description Framework)oooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 121
S O 1L o - S 123
8.2. VOCADUIAIY ..ottt 125

8.2.1. RDF VOCADBUIAIY........eviiiiiii et 126
8.2.2. RDFS VOCADBUIAIYcvvviiiiiiiiiiiiiiee et 128
8.3. RDF SeraliZatiON.....ccuueiiiiiiiie et 131
8.3.1. RDF/XIML.....iiiiiie ettt ettt e et e e e e e e e e e enneeas 132
8.3.2. Terse RDF Triple Language (TUrtle)..........uuuuurremmmmmmmeeeieeiinnnneenennnnnnnnnnnns 137
8.3 3 N-THIPIES .ttt e e e e e 141
8.4. RDF APPHCALIONSvvviiiiiiiiiiiiiiiiee ettt e s ea e 141
8.4.1. DUDIIN COrE, FOAF ...t e e e e e e aeaas 141
8.4.2. RDF AP .ttt ettt 142

9. OWL (Ontology Web LangUAaOE)ceeeeeeiiiiiiiiiieeeeaiiiieieee e e e e 145
9.1. Ontology and itS aNQUAGES.ccormriieiiiie e 145
9.2, OWL OVEIVIEW......eeiiiiiiiee ettt ettt et e et e e st e e s e e e annneees 146

9.2.1. OWL VOCADUIAIY ...ttt e e e e e 146
9.3, OWL ELAIIS ..ottt 150
9.3.1. OWL NEAAET ...ttt e 150
9.3.2. CIBSSES. ...ttt 151
9.3.3. PrOPEITIES ...t 154

LRI AN o [(o] ¢= L1 [0 1 1T PR 158

9.3.5. Datatypes and faCelS........ccouiiiiiiiiiie e 159
10. WSDL (Web Services Description Language)c.evveeeeeeeiniiiiieieeeeeeiiieeeeeen 162
10.1. Structure of 8@ WSDL dOCUMENTcoiiiiiiiiiiiee e 164
10.2. CoNStruCtS INWSDL 1.1 ...ccoiiiiiiiiiieeeieee et 166
10.2.1. Element <dOCUMENTALION........ccoiiiiiiiiiiie it 166
10.2.2. Element <definitioNS>cuviiiiiiiiiiiiiiiec e 166
10.2.3. ElemMent <IMPOMSociieiiiiiiiiee et e e e e e e e e e e e e enennees 168
O S =T o T=T) A 1Y 01T 168
10.2.5. EIeMEeNt KMESSAQGE™.......ouviiiiiieeiiiie et eireeessrree e e nreeeens 169
10.2.6. Element KPOMTYPES ...cooiiiiiiiiieee ettt 169
10.2.7. Element KDINAINGS....ccooiiiiiiiiiiiee ettt 169
10.2.8. EIEMENE KSEIVICES ...ciiiiiiiiiiiiiee ettt et e e e e e e a e e e e e e eeannees 169
10.3. Sample of WSDL 1.1 dOCUMENt......ccceeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 170
10.4. ConStrUCIS INWSDL 2.0 e 171
10.4.1. Element <AeSCrPtION........uuiiiiieiiiiiiiiiiie e e 171
10.4.2. Element <AOCUMENTALION........ccoiiiiiiiiiiie et 171
10.4.3. Elements <include> and <import>........cccccceviiiiiiieee e 171
10.4.4. ElEMENE SEYPESS...uiiiiiieiiiiiiiiee e e e e ettt e e e e e e st e e e e e e e saaraaaaaeeeennsnnees 173
10.4.5. Element <INtErface™oovvviiiiiiiiieieieeeeeeeeeeeeeeeeee ettt 173
O I G 1 1= o =T) AR o T [T Vo P 176
10.4.7. EIEMENT SSEIVICEScciiiiiii ittt et e e ee e 177
10.5. Sample of WSDL 2.0 dOCUMENT........cuiiiiiiiiiiiiiiiee e eesiiiiee e e esiaeeeee e e 177
11. SAWSDL (Semantic Annotations for WSDL and XML Schema) 179
11.1. Annotation MEChANISM........uuiiiiiiiiiiiiie e e e 180
0 I I /T To [0= £ = o 180
11.1.2. SChemM@a MaPPiNg......ccoeiiiiiuiiiieee et ee e e e e e e e e e e e e neeneees 181
11.2. Annotating WSDL DOCUMENLSuuviiiiieiiiiiiiiiiieeeessiiiiiieee e e s ssiinneeeeeeeeenes 181
11.3. Sample of SAWSDL deSCHPLON......uuuviiiiiiiiiiiiiie e e e 182
L1214, SAWSDL AP ..ottt ettt n e nae e e an 182
12. UDDI (Universal Description, Discovery and Integration)ccccccuveeveennnnns 184
12.1. Technical ArChiteCtUIE.......cccoe e 185
12.2. UDDI data StIUCTUIES.......eeiiiiiieeiiiiie ettt 187
12.2.1. DUSINESSENLILYvvviiiieieiiiiiiiiee ettt eennes 188
12.2.2. DUSINESSSEIVICE ..vvviiiiiiiiiiiiiiiee ettt e e e e e e e e e e e neennees 189
12.2.3. biNdiNgTemMPIALEceeee e 190
12.2.4. tMOGEL.....eeeeeeee et a e 190
I T o8] o] 1] =T A=Y= 1 1T o P 191
12.2.6. 0peratioNalINfO.........couviiiiiiiiiiee e 192
12.3. UDDI INtEIACES. ... eeiieiiiiee ettt e e 192
12.3.2. INQUINY APL SEL.. .ttt e e e e e e e e e eeennees 192
12.3.2. PUDlICAtion AP Sel.....cccoiiiiiiiie ettt 193
12.3.3. Security POlICY APl SEL.....ccovveiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee et 194
12.3.4. Custody and Ownership Transfer APl Set...........cccceviiiieiniiieiniieeens 194
12.3.5. SUDSCHIPLON APL SEL.....ciiiiiiiiee et 195
12.3.6. ValUE SEE AP SEL.....oiiiiiiiiiiiiiee e 195
12.4. Using WSDL Definitions With UDDI..........ccccuviiiieeeiiiiiiiiiiee e eciiiieee e 195
13. WS-CDL (Web Services Choreography Description Language)....................... 197
13.1. Different views on business processes modelling...........cccccevviiiiiiiieennnnnns 198
13.1.1. OFChESIIALIONceeiiiiieeiiieee et 199

R 2 @1 s To 1 £ To To [=T o]) /2 USRS 200
13.2. WS-CDL OCUMENTitiiiieiiiieeaiiiee e eitee et e e et e e sbae e e e e e e eeeeeesannneaeans 200
13,30 PACKAGE ..ot e e e e e 202

13.3. 2. INfOrMALIONTYPE ...ttt e 203

13.3.2. token, tOKENLOCALONevviiiiiieeiiiie et 203

TR JoC T 0] [0 1Y o L= OO RPPUPR P 204

13.3.4. relatioNShIPTYPE ..vvvviiieeiiiiiiiiie e e e e e e searaees 205

13.3.5. PArtiCIPANTTYPE . .uvvviieeeeeeeciei et e e e e e e e e e eaa e e e e ennnnees 205

13.3.6. CNANNEITYPE .. 206

13.3.7. ChOreOgraphyccccuvieiiiiiee ettt 208

13.3.8. VANBDIES ..o 209

13.3.9. ACHVILY NOLALION ...uvviiiiieiiiiiiiiiee e 210

13.3.10. Ordering SITUCLUIESc.uuviiiieeeeeeeiitire e e e e e et e e e e e e e ae e e e e e neennees 211

13.3.11. WOrkUNIt-NOTALIONcooiiiiiiiiieeeeeiieie e 211

13.3.12. INtEraction ACtVILYccevviiiiiiiiiiiieiiieeceeeeeeee e e e e e e e e e eeeeees 212

13.3.13. Perform aCtiVItycccooiiiiieiiiee e 213

13.3.14. ASSIGN ACHVILYvvviiiieeiiiiiiiiiee et e s e e e e neennees 214

13.3.15. SIlentACtION ACHIVILYccvvviiieee e 214

13.3.16. NOACHON ACHVILY ..vvveeeeeiiiiiiiiee et ee e e e e e e e e 215

SR R 10 T 1 = T 1Y/ Y 215

13.3.18. EXCePLiON DIOCKcooeiiiiiiiiiiieee e 215

13.3.19. Predefined fUNCHONS.........oooiiiiiiiee e 215

13.3.20. WS-CDL EXAMPIE ..cceeeiiiiiiiieeeeeeiiiiiee et 216

[(T = LD = T PO OURPTP 222

1. Introduction

This document contains reference materials supporting “INFORMATION SYSTEMS
MODELLING, UML AND SERVICE DESCRIPTION LANGUAGES” course offered at
Wroctaw University of Technology. The language of the course is English. The level of
English foreseen for attendees is advanced. Students enrol obligatorily for the course on the
second term of the first year, during which 30h of lectures as well as 30h of laboratories take
place. Workload is 150, and number of ECTS points equals 5.

Outcome: Knowledge of techniques based on design patterns used in object analysis,
design and programming. Web Services architecture design and implementation.

Content: Design patterns of Client, Web, Business and Enterprise information system tiers
of object oriented software, XML based service description languages, as WSDL (Web
Services Description Language) and SAWSDL (Semantic Annotations for WSDL and XML
Schema), RDF (Resource Description Framework) and OWL (Ontology Web Language),
UDDI (Universal Description, Discovery and Integration), WS-CDL (Web Services
Choreography Description Language).

PART I

Patterns of multitiered systems

2. Introduction to Multitiered Information Systems

Modelling of the Information System is based on mapping of data and processes existing in
the real world into data structures and processes of some software domain (Figure 2.1).

Informal d @ —

Information System: .é‘ : ti“ 5?9‘ -
Human resources - people Q;.“_, Any information
system
is a collection of

interrelated
elements

Formal Information System:
e management procedures
e knowledge base

informal, formal
and technical
whose main
H function is
Technical Information System: data processing
e Equipment using the
« Software computer
« Database Knowledge Base technique.

Figure 2.1. Definition of the Information System.

An Informal Information System is based on human resources. It supports work of people.
A Formal Information System consists of management procedures and knowledge base as
well as clearly outlined functionality of system. The Technical Information System is defined
as follows:

— An organized team of technical resources (computers, software, hardware
teletransmission etc.),

— Used for collecting, processing and transmitting information.

The Information System is a collection of interrelated elements informal, formal and
technical whose main function is data processing using the computer technique.

The Section 2.1 presents general characteristics of a multitiered information system, the
Section 2.2 describes a software development process, the Section 2.3 shows the Software
Development Environment and the Section 2.4 characterizes the role of UML (Unified
Modelling Language).

2.1. Multitiered Information System

Figure 2.2 shows the multitiered information system needed for a large number of users,
huge size of executing data and vast amounts of executing services. Each tier is specialized in
the implementation of sub-services used to implement the full functionality of the system. The
Busines Tier processes and stores data dedicated to one user, or it uses all data stored in a
common buffer of many services called by all users.

In software engineering, scalability is a property of a system, which indicates its ability
either to handle growing amounts of work or to become enlarged [1] — it is a feature that
allows the behaviour of the system to remain in fact in these situations. For example, it can
refer to the capability of a system to increase total throughput under increased load, because it
can add resources such as buffers with data and instances of services.

11

Program performance is defined by a number of units of input data (data size), which in
due time, the program manages to transform into units of output data.

Interacting with users, device
and user interface
presentation

Client Tier
Customer applications, applets, elements of
the graphical user interface

Login, session management,

Presentation Tier content creation, formatting,
JSP Pages, servlets, and other user validation and content
interface elements delivery

Business logic, transactions,

Business Tier i
data and services

EJB components and other business
objects

Resource adapters, external
systems, mechanisms for
resource, control flow

Integration Tier
JMS, JDBC, connectors and connections
with external systems

Resource Tier Resources, data and external
Databases, external systems and other services
resources

Figure 2.2. Example of the multitier Information System [2].

Figures 2.2-2.5 show the multitiered scalable information system with high performance [9].

/ Java EE Java EE
Application 1 Application 2
Client
Client Tier | pmachine
) ——
\ Application Client Web Pages
g, NN\ —
JavaServer v
Faces | Web Tier
Pages N Java EE
Server
Enterprise Enterprise v
Beens Beens Business Tier
-
Database Database v Database
EIS Tier Server
N\

Figure 2.3. Multitiered Applications [9].

Figure 2.3 shows multitiered application: two types of the Client Tier, the Web Tier
(Presentation Tier) for the web application, the Business Tier and the tier of Enterprise
Information System (EIS Tier).

Figure 2.4 presents the services of the Business Tier independent of the kind of the Client
Tier because of a business logic and data encapsulation. The access to the Business Tier is the
same for the Presentation Tier and the Application Client.

Figure 2.5 shows access of the Application Client or the Web Pages Client (the Client Tier)
across the Web Tier to the EIS Tier.

12

(] Application Client Web Browser,)
And Optional Web Pages,
JavaBeans Applets, and
pp.e S, an Client Tier
Components o \ Optional &
Qe § JavaBeans .
N Components \

1 g
JavaBeens Web Pages _|

C

omPonents <P servlets | Web Tier

(Optional)

) 4 t Java EE

\[Business Tier] SEI‘VGI‘/

Figure 2.4. Web Tier and Java EE Applications [9].

\'\
J

/ Application Client Web Browser, \
And Optional Web Pages,
JavaBeans Applets, and . .
v pp.e S an Client Tier
Components ,\\’.\ Optional X e
& § JavaBeans i I% Vi ——n
\ Components \‘\\ J
y
~
JavaBeens Web Pages \
Com t
ponents <P servlets || Web Tier
(Optional)
t J
(\ Java EE
Java Persistence Entities Business Tier Server
Session Beans
Message-Driven Beans /

v v
Database and EIS Ti
Legacy Systems ter

Figure 2.5. Business and EIS Tiers [9].

—

2.2. Software Development Model

The process model of software development is based on its management model and the
software construction (or the software life cycle model) [4], [5], [6], [8]-

During the software development, the two questions related to software development
should be answered:

— What and how to do? — while constructing the software (Table 2.1),

— When to perform? — during the software development process management (Figure
2.6).

13

Table 2.1. The software life cycle model [4].

Modelling the structure
and dynamics of the system

Implementation of the structure
and dynamics of the system, code generation

Perspective of
the concept

Perspective of
specifications

Perspective of
implementation

What to do?

How should I use?

How to perform?

e Model of the real system
(business modelling)

e Requirements

e Analysis (conceptual model)

e Conceptual model tests

e Design model (hardware and
architecture software;
user access; storage)

e Deployment model
Design model tests

e Deployment tests

e Programming (specification of
the program: declarations,
definitions; additional data
structures: structure of
containers, files, databases)

e Software tests

e Implementation

Table 2.1 presents the software life cycle model as the workflows, which consist of the
following activities: business modelling, requirements, analysis, design, implementation,
change management, business management, environment and test of the different product of

the software life cycle.

Figure 2.6 shows when the workflows execute in the Unified Iterative-Incremental
Software Development Process. The workflows develop the models of software and answer
the question as follows: when do the tasks of workflows happen?

Workflows are defined as follows: [4]
— Business modelling - a description of dynamics and structure,

— Requirements - requirements specification through use cases,

— Analysis and design - architectural development of different perspectives,

— Programming - software development, unit testing, system integration,

— Testing — to describe test data, procedures and correctness metrics,

— Implementation - to determine the final configuration of the system,

— Configuration management — to gain control over changes and to ensure coherence of

the system components,

— Project management — to describe various strategies of an iterative process,
— Determination of the environment — the description of a structure necessary to develop

a system.

14

Core Workflows Inception Elaboration Construction Transition

Business
Modeling

Requirements

Analysis,
Design

Programming

Test ——— | Pra— —

Implementation

Configuration

Management
Mas;%’s;tem D=+ g — —
Environment
BRI R
Iterations (time ==)

Figure 2.6. Unified iterative-incremental software development process - when? [4].

These are all perspectives on the design of an object-oriented information system [8]:

1. The perspective on concept of the analysis model - it refers to identifying what objects
should need to do.

2. The perspective on interface specifications of the design model — it concerns answers
how to use objects?

3. The perspective on implementation of the implementation model — it represents
answers how to implement an interface.

4. The perspective on creating and managing objects of the implementation model - it
means separation of individual subsystems to create objects and facility management.

5. The perspective on use of objects (implementation) - an object A should only use an
object B, in other words the object A cannot simultaneously create the object B.

The perspectives useful for understanding objects as object identification are as follows
(8l:
1. The perspective on concept of the analysis model — it concerns the facts that the object
is a collection of various types of liability.

2. The perspective on specifications of the design model — it represents the object as a
collection of methods (behaviours) that may be caused by its methods or other objects

3. The perspective on implementation (source code) - it refers the object code consisting
of methods, data as well as interactions.

Perspectives for scaling the system as the creation, management and use of objects [8]:

1. The perspective on creating and managing objects — concerns the changes in the
implementation on the objects relating to the factories of objects (creating the objects)
and should not affect the management of these objects.

2. The perspective on using objects — represents any change of the implementation of
object, which should not require other object implementations to be altered.

15

Analysis of

The perspective > Abstract class
commonality

of the concept

+ Methods ()

The perspective /
of specifications

\
Z

Concrete Concrete
Class 1 Class 2
Analysis of The perspective
variability ofimplementation [1 Methods () || + Methods ()

Figure 2.7. Perspectives on understanding objects - the method of identifying objects and classes [8].

Figure 2.7 shows three perspectives of identifying objects and classes as the relationship
between the prospect of the specification, design and implementation. During this process,
following questions must be answered: what and how to perform [8].

The relationship between the perspectives of specification and concept appoints that the
prospect of the specification defines interfaces required to handle all cases of the problem i.e.
the common part of data and their behaviours from the viewpoint of the perspective of the
concept.

The relationship between the specification perspectives and implementation presents
taking into account the specification, we understand how to implement the individual cases
(i.e. variable part of data and their behaviours).

The summary of the principles of objectivity are as follows [8]:

Obijects are defined through the prism of their responsibility,

Encapsulation means any kind of concealment: data, implementation, class (using
abstract classes, or interface), the project, the object,

The use of commonality and variability analysis in order to create abstractions
representing the variability in the data and behaviour,

The use of inheritance as a way of the implementation of the variability in the data and
their behaviour,

Striving for a low degree of relationships,
Striving for a high degree of consistency,
Separating code, which uses objects from the code that creates them,

The principle of a single rule - only one implementation of the operation of a single
rule,

Use of names clearly describing the purpose of objects.

2.3. Software Development Process Management

Figure 2.8 shows the relationship between People, Project, Product, and Process in
Software Development [4].

16

Process
Automation

Template | \

Participants

Tools

People

Project

Result I

Product

Figure 2.8. The Four Ps: People, Project, Product, and Process in Software Development [4].

There are important issues of the software development:
— People: Architects, developers, testers, users, customers etc.,
— Project: Organizational element through which software development is managed ,

— Product: Artefacts that are created during the life of the project such as models, source
code, executables and documentation ,

— Process: A software engineering process is a definition of a complete set of activities
needed to transform users’ requirements into a product,

— Tools: Software used to automate the activities defined in the process.

Users

Testers

| Architect | | |
-

Manager

Analysts

Figure 2.9. Workers participating in the software development [4].

Figure 2.9 shows the People as the workers participating in software development. Some
workers play the single role as the Architect or the Project Manager and other workers play
the multi-types and multi-objects role as users, testers, designers and analysts.

Basic concepts related to Projects are as follows:
— Feasibility of the project,

— Risk Management,

— Organization structure of design workers,
— Scheduling project tasks,

— Understanding of the project,

— Rational activities in the project.

The main Project features represent:

— Sequence changes in the project,

— lteration series,

— Organizational Pattern.

The Products represent the following things:

— System as the collection of models such as Use-Case Model, Analysis Model, Design
Model, Deployment Model, Implementation Model, Test Model (Figure 2.10),

— Diagrams: class, interaction, cooperation, states,
— Requirements, tests, manufacture, installation,

— System composed of artefacts representing programming tools, compilers, computers

programmers architects testing facilities traders administrators.

Artefacts are the general terms for any kind of information created, produced, changed, or
used by workers in developing system [4]. There are artefacts related to software creation
(requirements, analysis, project, programming, tests) and artefacts of the project management
process.

17

«flefJef e«

Use-Case Analysis Design Deployment Implementation Test
Model Model Model Model Model Model

Figure 2.10. The primary model set of the Unified Iterative-Incremental Software Development Process [4].

Models provide following issues:

— System abstraction,

— Different perspectives on the system,
— Relationships between models.

The definition of the Process is as follows:

— The process as the software development process is a complete set of activities needed
to map user requirements into a set of artefacts that represent software development
factors:

o Organizational,
o Domain,
o Life-cycle,
0 Technical.
Software Tools allow to:
— Automate the process,
— Standardize of process and product,

— Support the entire software lifecycle: defining of requirements, visual modelling and
design, programming, testing.

2.4. The role of the Unified Modelling Language - UML

UML is the language supporting the iterative - incremental unified process of the software
development. UML can be used for the software development by defining the UML diagrams.
Diagrams represent the structure and behaviour of the software [4], [6].

UML diagrams for modelling structure are as follows:
— Package Diagrams,

— Class diagrams,

— Object Diagrams,

— Mixed Diagrams,

— Component diagrams,

— Deployment diagrams.

UML diagrams for modelling behaviour are as follows:
— Use-case diagrams,

— Activity Diagrams,

— State diagrams,

— Communication Diagrams,

— Sequence Diagrams,

— Timing Diagrams,

18

Interaction Diagrams.

There are many benefits of using UML 2:

Teamwork,

Overcome the complexity of the project,

A formal, precise presentation of the project,

Creating a standard project,

The opportunity of testing the software in an early stage in its development.

3. Overview of design patterns for supporting information
systems modelling

In software engineering, emphasis is placed on software complexity and performance.
They determine the quality of software. Another issue is efficient management of the software
development. It is easier to manage the software development when using the principles of
building software. One of them is the use of design patterns. There were doubts whether the
use of design patterns supports the creation of high-quality software in an efficient manner.
This introduction explores some of the issues surrounding design patterns and considers
arguments from both the supporters and adversaries.

On one side of discussion are the advantages of applying design patterns, which result in
an increase in software quality (such as completeness of abstraction, reusability,
understandability, maintainability, testability), estimated cost of production, functionality
offered and improvement of the project management. On the other side of the discussion there
are groups of programmers who oppose the advocates of design patterns because these groups
fear a deterioration of software performance and the difficulties in the implementation of
design patterns in some languages.

A design pattern is a general reusable solution to commonly occurring problems in the
software design and it is not a finished design. Therefore, it cannot be transformed directly
into a code. Patterns as a kind of the description or the template provide a way to solve a
problem in different situations. They typically show relationships between classes and
interactions among the objects that are related but they do not provide the final specification
of application classes and objects. However, design patterns facilitate the specification of the
application classes and objects.

Therefore, efforts have been made to codify design patterns in creating multi-tiered
software. Developers should have the knowledge of techniques based on design patterns
which are used in object-oriented analysis, design and programming. They will develop their
analytic skills for building object oriented multi-tiers software based on design patterns of the
Client, Web, Business and Enterprise Information System Tiers.

The use of design patterns improves the management of software development. This
follows from the fact that design patterns are composed of several sections. On the one side,
there is the classification based on the Structure, Creational, and Behavioural sections [3], [6],
[8] and on the other side there is classification supporting design and implementation of the
multi-tier software such as Presentation, Business and Integration Patterns [2].

These sections describe a design motif: a prototypical micro-architecture that developers
introduce to their particular designs, based on well-defined rules of applying design patterns.
A micro-architecture as a design pattern is a set of program constituents (e.g. classes,
methods...) and their relationships. As participants of the design group, developers well
understand structure and organization of developed software if they are similar to the chosen
design motif. Additionally, patterns allow developers to work using well-known, well-
understood names of software activities. This improves the communication and organization
of the workflow among the contractors of the project, such as analysts, designers,
programmers and testers, and a project manager. They use the well-written documentation for
a design pattern, which describes the context, in which the pattern is used, the forces within
the context that the pattern seeks to resolve, and the suggested solution.

In addition to this, design patterns can be improved over time by making refactoring,
turning some micro-architectures onto functionality equivalent ones. Therefore, they prevent
subtle issues that can cause a major problem, for example reduce the scalability and

20

performance of software. This manner of the software development makes it is more robust
than management of ad-hoc designs.

However, some group of software engineering experts questions these claims. They
diminish the importance of the role of design patterns in production software, and they even
mention the negative impact on software development.

The one of them is necessity of workarounds for missing language features. It is discussed
in many design patterns as workarounds for the limitations of languages such as C++ and Java
[7]. For instance, the main goal of the Visitor pattern is to add new operations to existing
classes without modifying them. It is implemented in such languages as C++ and Java as a
class, which is declared as a syntactic structure with a specific and closed set of methods.
These patterns need not be implemented in a language that supports multi-methods as
Common Lisp, because the new methods can be added outside of the class structure without
modifying its structure. Similarly, in C++ and Java the Decorator pattern carries out functions
of dynamic delegation, as found in Common Lisp, Objective C, Self and JavaScript. Many
patterns only imply object orientation such as the Iterator pattern as a generalization of 'for'
loops, an equivalent notion of loop.

The other criticism of design patterns is that in order to achieve flexibility, design patterns
usually introduce additional levels of indirection. In some cases these levels may complicate
the resulting designs and decrease application performance.

In addition, a pattern must be always programmed into each application that uses it
because of the definition of design patterns. Therefore some authors believe that use of design
patterns is a step backward from software reuse as provided by components. Some experts are
working on transformation of design patterns into the functional-oriented reusable
components.

In conclusion, the use of design patterns could lead to many benefits for developers, but
could also lead to lower quality software. Therefore, developers should hone their skills on
analysis, design and programming of multi-tiers applications based on design patterns
fulfilling the user requirements for functionality, quality and cost of software.

In the Section 3.1, fundamentals of identification of design patterns are presented. The
Sections 3.2- 3.4 present patterns as follows: creational, structural and behavioural.

3.1. Fundamentals of the design patterns identification

There are some issues tied with design patterns:

— A well-built object system is full of object-oriented patterns,

— A pattern is usually adopted to solve a typical problem in the given context,

— Astructure of a design pattern is represented in the form of class diagram,

— The pattern behaviour is showing up using the sequence diagram,

— The design pattern represents the relationship between problem and solutions
(according to G. Booch, J. Rumbaugh, 1. Jacobson, UML User's Guide).

The main experts of software engineering represent the significant opinions upon the

design patterns:

— Each pattern consists of three parts, which express the relationship between a particular
context, problem and solution (based on Christopher Alexander),

— Each design pattern is a three-part rule that expresses the relationship between a
particular context, a recurrent distribution of forces in this context, and software
configuration, allowing for the mutual balancing of these forces in order to solve the
task (based on Richard Gabriel),

21

A design pattern is an idea that proved to be useful in a real context and will probably
be useful in another (based on Martin Fowler).

These opinions support the ways of identification the design patterns during software
development and ability of reuse some known patterns in this process. As one kind of
classification there are three types of design patterns: creational, structural and behavioural.
They are based on concepts of aggregation, inheritance, interface and polymorphism. In other
words, they represent the most successful of paradigms of object- oriented methodology in
structure and behaviour of software.

Each pattern is described by using the following template:

A solved problem,

A solution of a problem with description of components of a pattern,
A client of pattern,

A result.

3.2. Creational patterns

The main goal based of using creational patterns in software is isolation of rules for
creating objects from rules that determine how the use of these objects (separation of the code
for creating objects from the code that uses objects).

The list of creational patterns and aspects, which can change, is as follows [3], [6], [8]:

1.

g s DN

Builder - a way of creating of the complex objects.
Abstract Factory - a family of objects.

Factory Method - a subclass of the created object.
Prototype - a class of the created object.

Singleton - only one copy of the class.

3.2.1. Abstract Factory
Problem: Creating the appropriate families of related or dependent objects in the following

cases:

Different operating systems,

Different requirements for effectiveness, efficiency, etc.,

Various versions,

Different types of co-application (such as different types of databases),
Different functionality for different users,

Different groups of elements depending on the settings related to the location (e.g. data
format).

Solution: A Client object uses the AbstractFactory interface and the AbstractProduct
interface. The ConcreteProduct and ConcreteFactory are classes that implement these
interfaces. Each ConcreteFactory object can create one of the families of ConcreteProduct
objects (Figure 3.1).

22

Elclient

Attributes
Operations \

<<interface>> <<interface>>
|© AbstractProduct [© AbstractFactory
Attributes Attributes
Operations Operations
[ElconcreteProduct Sl concreteFactory
Atiributes Attributes
" e —— 7 "
Operations Operations
public void setData(Data data) public AbstractProduct buildProduct(Data data)
public void anOperation()

Figure 3.1. Class Diagram of the Abstract Factory Pattern.

Client: The Client object manages creation of objects by the factory, but it is independent
of the rules on the creation of these objects (Figure 3.2).

‘JI : ConcreteFactory
public AbstractProduct buildProduct(Data data)
| - ConereteProduct
public void setData(Data data)\ !

|j public void anOperation() | !

[l
| I
|
I
Figure 3.2. Sequence diagram of creation of the ConcreteProduct object of the Abstract Factory Pattern.

Result:
— Isolation of rules for creating objects from rules that determine how the use objects,

— To define the rules to create objects, that can best achieve the main goals of the
application,

— Configuring applications using associated objects,

— The system uses created objects, knowing only their base classes.

3.2.2. Builder

Problem: Creating a complex custom objects represented in different ways.

Solution: The Director object has a request to the ConcreteBuilder object that implements
the Builder interface, for creating the Product object (Figure 3.3).

23

ElDirector <<interfacesx
Attributes builder }© Builder
Operations Attributes

public Product construct() Operations

public void buildPart1()
public void buildPari2()

'
'
ElProduct [ElconcreteBuilder
Abtribute Attribute
ributes t‘.; - ributes
Operations Operations

public Product getResult()
public void buildPart1()
public void buildPart2()

Figure 3.3. Class Diagram of the Builder Pattern.

Client: A Client instructs the Director object to create a Product object using the supplied
the ConcreteBuilder object (Figure 3.4).

Result: The Director objects receive the Builder abstract interface that allows you to
construct Product objects freely.

The pattern supports separating code used to construct Product objects from code using
these objects. For example, the Director objects are created to read documents in RTF or
XML format using the ConcreteBuilder as the ASCII converter, which supplies the ASCII
format document represented by the Products objects, from the documents of the RTF or the
XML formats. This does not affect of the client code, because of converting abilities of many
formats of different ConcreteBuilder objects.

The algorithm to build a Product object is created independently of its components that
may be of any type. What we achieve is better control of the construction of the Product
object by using operations, implemented through an interface Builder by the ConcreteBuilder
object and controlled by the Director object.

?

S| builder: ConcreteBuilder

public void setBuilder(Builder builder)

|
public Product construct() u

public void buildParti()

|
|
|
public void buildPart2() u

{ ____________________
e public Product getFJesuIt()

T | |

Figure 3.4. Sequence Diagram of creation of the Product object of the Builder Pattern.

3.2.3. Factory Method

Problem: This pattern defines an interface for creating objects, and its subclasses are
allowed to decide which class is to be each of these objects.

24

Solution: The Creator interface declares the factory method, which in turn declares the
produced object, derived from the Product object. The action is transferred to the
ConcreteCreator object, which produces the ConcreteProduct object by means of the factory
method (Figure 3.5).

Client: The client selects the ConcreteCreator object with the appropriate factory method,
which creates the ConcreteProduct object. Processing the ConcreteProduct object by the
ConcreteCreator lies in the fact that only a factory method knows the representation of the
object and manner of its creation, while other methods know interface of the Product abstract
class and should only use methods of this interface (Figure 3.6).

Ecreator to Product
Attributes Attributes
Cperations Cperations
public Product factoryMethod(Data data) public void setDataf Data data)
public void anOperation() public void anOperation{)
i 5
\
Elconcretecreator A
Atiribates ElconcreteProduct
Cperations ==creates= pighives
public Product factoryMethod(Data data) |— _ _ = Cperations
public void Operation(Data data) Operations Redefined From Product
Operations Redefined From Creator public void setData(Data data)
public void anOperation() public void anOperation()

Figure 3.5. Class Diagram of the Factory Method Pattern.

Result:

— Isolation of rules for creating objects from rules defining how to use the objects under
the family implementing the Creator interface,

— To define the rules to create objects that can best achieve the objectives of an
application,

— The ConcreteCreator object should serve well to use the ConcreteProduct object or its
derivative from the ConcreteProduct object, but only its factory method should know
the rules for creating ConcreteProduct objects.

I;\ application : ConcreteCreator products : TreeSet

Ij public void Operation(Data data),_|

ublic Product factoryMethod(Data data)

product : ConcreteProduct
ublic void setData(Data data) |

p

B

public void add(Product product)

public void anOperation{)

public void anOperation()

@

| I
Figure 3.6. Sequence Diagram of creation and using the Product object of the Factory Method Pattern.

25

3.2.4. Prototype

Problem: Separating code to create objects from code for using them, without building a
class hierarchy of factories in a situation where you need a limited number of created objects.

Solution: The Client object receives the needed object with the Prototype interface as the
ConcretePrototype object by cloning objects (Figure 3.7).

Client: The Client object uses the cloned objects as the ConcretePrototype objects, which
implement the Prototype interface (Figure 3.8).

Result:

— Adding and deleting objects without using any object factory,

— Reducing the number of classes,

— Dynamic loading ConcretePrototype classes implementing the Prototype interface.

<<interface==
[© Prototype
Atrributes

Elciient
Abtributes prototype

Qperations
public Prototype clonePrototype()
public void Init(Data data)
public void operation{)

)

Operations
public vaid operation()

h
=l concretePrototype
Atrributes

Operations
public Prototype cloneProtatype()
public void Init{ Data data)
public void operation()

Figure 3.7. Class Diagram of the Prototype Pattern.

clone : ConcretePrototype

I : ConcretePrototype

mblc Prototype cIunePrutone(__) |
|pub|ic void Init{ Data data)

|
|
|
|
|
I
ublic void operation{) | |
| public void operation{) |
]
I
| | |

|
Figure 3.8. Sequence Diagram of the Prototype Pattern.

Below, it is an example of using the method clone, implemented the Prototype Pattern in
the ArrayList class.

26

public Object clone() { // the clone method of the ArrayList class

try{

ArrayList<E> v = (ArrayList<E>) super.clone();

v.elementData = Array.copyOf(elementData, size);

v.modCount = 0;
return v;

} catch (CloneNotSupportedException e)
{ throw new InternalError(); }

public class Main { /lthe example of the use of the Prototype pattern

public static void main (String[] args) {
ArrayList colll, coll2 = new ArrayList();

coll2.add(new Integer(1));
coll2.add("B");
colll = (ArrayList) coll2.clone();

colll.add("C"); // [1, B, C]

coll2.remove(0); %}

3.2.5. Singleton

/1 [B]

Problem: A guarantee, that only one instance of a class exists in software. There is a global
access to this object such as a file system or window system.

Solution: A Singleton object makes sure on its own that no other object was constructed of

the same type (Figure 3.9).

Client: The Singleton object can have multiple clients.

Result:
— Reduced name space,
— Controlled access to the single copy.

Eiclient
Attributes

Operations ——

public void operation()

public void operation() {

Singleton singleton = Singleton.instance();
singleton.singletonOperation(;

intdata = singleton.getSingletonData();

N define programmer code

}

Elsingleton

public Client() -

Attributes
private Singleton uniguelnstance
private int singletonData

Operations
public Singleton _instance()
public void singletonOperation()
public int getSingletonData()

AN
public Singleton instance() {
if (uniquelnstance == null)
unigquelnstance = new Singleton;
return uniguelnstance;
}

Figure 3.9. Diagram Class of the Singleton Pattern.

27

3.3. Structural patterns
The main goal of structural patterns is to make classes and objects into larger structures.

There are two kinds of structural patterns. On one side, there is a kind of a class design
pattern, which uses the inheritance and polymorphism to make the structures of interfaces and
their implementations. On other side, there is the object design pattern which describe the way
how to combine objects in order to obtain new functionality, even during execution of a
program.

There is the list of the structural patterns and aspects, which can change, as follows [3], [6],
(8l:
Adapter - class and object design pattern; an interface of an object.
Bridge - object design pattern; an implementation of the object.
Composite - object design pattern; a structure and a scheme of the object.
Decorator — object design pattern; an obligation of the object without defining of the
subclass.
5. Facade - object design pattern; an interface of a subsystem.
6. Flyweight - object design pattern; a cost of storing objects.
7. Proxy - object design pattern; a way of an access to the object; its location.

el A\

3.3.1. Adapter

Problem: The class interface should be adapted to the interface expected by the client, e.g.
the pattern associated with the change of class libraries that support graphics.

Solution: The Client object uses the Adapter object, which implements the Target
interface, and mediates the access to methods of the Adaptee objects (Figure 3.10, Figure
3.11).

Client: The Client object is independent of changes in methods or headers of their
definition of a library class (Adaptee) that implement specialized operations such as graphical
operations, because the client always uses methods of the Adapter object, which does not
change the headers of the methods (Figure 3.10, Figure 3.11).

<<interfaces= s Adapter :Adaptee
Eiclient to Target
Attributes Aftributes Ij public void request() ! |
Operations Operations |pub|ic void specificRequest(,) !
public void request() | H
] | |
\ | I |
£l Adapter ElAdaptee
Attributes adaptes Attributes
Operations Operations
public void request() public void specificRequest()

Figure 3.10. Class and sequence diagrams of an object pattern type of the Adapter Pattern.

Result:
— Adapter object (making objects):
o It allows one Adapter object to collaborate with multiple objects such the Adaptee

object and its derivatives. In the Adapter object can add new functionality — it is an
advantage of the Adapter pattern.

28

o In case of a hierarchy of the Adaptee classes, which reflect the change in the
behaviour of this object, the Adapter object must refer to the subclasses of Adaptee
object instead of the Adaptee type — it is a defect of Adapter pattern.

— Adapter classes (multiple inheritance):

o Pattern adapts the interface of the class, which is used in the program to the
interface of the new class libraries, but does not apply to the subclasses — it is the
defect of Adapter pattern.

0 The Adapter object allows you to redefine the behaviour of the Adaptee class
because of its subclass— it is an advantage of Adapter pattern.
It introduces only one Adapter object that provides the adaptation of the one Adaptee
object — it is an advantage of the Adapter pattern.

<<interface>» - Client
Elclient la Target ElAdapteE ‘ public void request])

Attributes |—={ Attributes Attributes |:|

Operations Operations Operations ‘
public void request() public void specificRequest() ‘ ublic void specificRequest()

- /V ‘

|

Eladapter
Aftributes

Operations
public void request()

Figure 3.11. Class and sequence diagrams of the class pattern type of the Adapter Pattern.

3.3.2. Bridge

Problem: You should separate the abstract from the implementation, so that they can
change independently of one another.

Solution: The Abstraction interface is implemented by the RedefineAbstraction class. The
RedefineAbstraction objects have methods that use the methods of the Implementor abstract
class (or an interface), which are implemented by specific Concretelmplementor classes,
cooperating with various classes (with different interfaces) from a variety of platforms and
libraries (Figure 3.12, Figure 3.13).

Client: The client uniformly treats each RedefineAbstraction object without committing to
a specific platform or a library (Figure 3.14).

Result:

— Separation of abstraction from implementation to eliminate dependencies while
compiling a program or activity,

— Introduction of a multi-tier architecture,

— Extensibility of class hierarchies of the Abstraction and Implementor classes,

— Easy addition of new objects,

— Hiding implementation details.

29

<<interface=> <<interface=>
Fo Abstraction te Implementor
im
Attributes <>p—> Attributes
Qperations Operations
public void operation() public void operationlmp()
|y 4
v i
v L
ElRefinedAbstraction =l concreteimplementor
Attributes Attributes
Operations Cperations
public void operation() public void operationlmp()

Figure 3.12. Class Diagram of the Bridge Pattern.

drawLine();
drawLine();
drawLine();
drawLine();
}

void drawFrame() {

void drawlnderline() {
drawLine();
drawLine();

}

Elwindow_abstraction void drawLinz0 {
Altributes l--| getimplementator].drawLinieimpi); <<interfaces:
Cperations e Graphics
public void drawLine() [- Attributes
public Window_abstraction{) | '™MP Operations
public void drawilinelmpl()
P L - .
Eipialog Window ElEdit Window =" B
Attributes Attributes B Concretelmplementor1 = Concretelmplementor2
Operations COperations Atiributes Attributes
public void drawLine() public Edit_Window() Cperations Operations
public Dialog_Window() public void drawUnderline() [| public Concretelmplementor?() public Concretelmplementor2()
public void drawFrame() 1. Operations Redefined From Graphics| | Operations Redefined From Graphic
| public void drawLinelmpl{) public void drawLinelmpl{)

void drawLinelmpl{) {

void drawLinelmpl() {
graphic1.graphLine(; graphic2.Line();
} }

Figure 3.13. Class Diagram of an example of the use of the Bridge Pattern supporting two kinds of frames of the

GUL.

Q | - concretelmplementort | |g|‘aphic1 : || - Cconcretelmplementor2 ||g|‘aphic2: |
T | | |
u

D public void ldrawFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
I°°E L[public void drawLine)
|
|
|

public void drawLinglmpl{)

public void graph

public void Line()

T [;} pubtlic void drawLinelpl()
i
|
i

Figure 3.14. Sequence diagram of an example of the use of the Bridge Pattern supporting two kinds of frames of

30

the GUI.

3.3.3. Composite
Problem: It combines objects in object-oriented data structures (tree) as a part-whole.

<<interfaces=
te Component
ECIient Attributes
Abributes Operations
public Component operation| Data data)
ocepiigas public void add] Component ¢)
public void remove(Component ¢)
public Object getChild(int index)
7 - V.
i,«’ mComponent “m“
. children T~
El composite ElLeaf
Attributes Attributes
Cperations Cperations
public void add{ Component ¢) public Component operation{ Data data)
public void remove{ Component ¢) public void add{ Component ¢)
public Object getChild{ int index) public void remove(Component ¢)
public Component[0..*] getComponent() public Object getChild(int index)
public void setComponent{ Component val[0..*])
public Component operation{ Data data)

Figure 3.15. Class Diagram of the Composite Pattern.

Solution: The Component abstract class (or an interface) declares basic operations for
graphical objects. The Composite object contains two sets of objects: Composite objects and
containing Leaf objects, which in turn do not contain any objects at all. The Leaf objects
implement the Component class (Figure 3.15, Figure 3.16).

Client: The Client object uniformly treats each element of the object structure - as objects
of the Component type (Figure 3.17).

Result:
Recursively grouping objects primary (type-Leaf) and complex objects (Composite),

A simple construction of a client who does not need to distinguish between simple and
composite objects,

Easy addition of new facilities,

Difficulties in maintaining restrictions of complex objects.

Implementation: a new class of "Boundry" such as Swing package (Figure 3.18):
— The JComponent class represents the Component class,

— The JButton class represents the Leaf class and the,

— The JPanel class represents the Composite class.

31

32

Oparadians
public void operation{)
public woid add{ Componert ¢)
public void remove(Component ¢
public Object getChild(int index)

Composite
Client i
Abutes 5
Dporations —————__ | public void operation{ }
public void add{ Component c)
public void remove(Component ¢ }
mLeaf public Object getChildf int index) mLeatz
Leaf /.- public Composite get Compositef) N Leaf
= public void setComposite{ Composite val | e
‘Atinbulas ")) . Atiwbutas
public Composite getCompaosite1{)
public woid operation() public void operation{)
public woid add{ Component e) mCompasited public woid add{ Component &)
public woid remowe(Component public woid remeowve(Component e
public Objeet getChild int index) public Object getChild{int index)
mlLeafd
mComposite
Leaf Composite
Adtetbuas Attbutos
public void operationf) public void operation{ }
public woid add{ Component c) public void add{ Component e)
public void remowe(Component e | public void remowve(Component ¢)
public Object getChild{int index } public Object getChild(int index }
public Composite get Compositef)
o Leard
mlLeaf? | public void setComposite{ Composite val }b“‘u: i
| public Composite getCompositel() Iy Leaf
Leaf 7
Astbuos

Oparaiions
public void operation{ }
public void add{ Component)
public woid remowe(Component &
public Object getChild{int index)

Figure 3.16. Object Diagram of the Composite Pattern.

L]

| :Component| | :Leaf| |:Composite|

r public Component operation{ Data data} |

loop

[for C tc:c

public Component 0perati0n(Data|data)

— 1

alt [Leaf]

public Component operation(D

41&1 data)

S | |
T tcompositel | T
public Companent aperatjon(Data datd) _ |
| |
B | |
___________________ R B

0

Figure 3.17. Sequence diagram of the key method of the Composite Pattern.

Client

JFrame P JPanel c .
omposite
Attributes Attributes 4/ p
Operations QOperations
public JFrame() public JPanel()
.
JButton JTextField JScrollPanel
Attributes Attributes Attributes
Operations Operations Operations
public JButton() public JTextField() public JScrollPanel()
S - ra 1

\

JTextArea JScrollBar
Atrributes r Atiributes
Operations Operations

public JTextArea() public JScrollBar()

Figure 3.18. Example of an Object Diagram of the Composite Pattern as the GUI of the Swing library.

3.3.4. Decorator

Problem: Dynamically developing functionality of a facility as an alternative to creating a
deep hierarchy of classes.

Solution: A Component is an abstract class (or an interface) for visual objects. Its interface
defines operations of drawing and event handling implemented by the ConcreteComponent
class. The Decorator abstract class (or an interface) inherits operations from the Component
class (or an interface) and defines additional operations performed by the ConcreteDecorator
object (Figure 3.19, Figure 3.20).

<<interfaces>
}© component
Attributes

Operations
public void operation|)

,V Y}"\“\c.{zponent

=l concreteComponent <<interfaces>
Attributes }o Decorator
Aftributes

Operations
public void operation() Operations
public void operation()

I

E ConcreteDecorator
Attributes

Qperations
public void addedBehavior()
public void operation()

Figure 3.19. Class Diagram of the Decorator Pattern.

33

Client: The object executes with objects inherited from the Component class, with and
without decorators (Figure 3.21, Figure 3.22).

Result:

— A dynamic and transparent solution to add additional components to the basic
components,

— Easy removal of any additional functionality,

— Replacement of a class hierarchy containing the equivalent functionality on a
permanent basis, by dynamically adding decorators with different functionalities.

Implementation: a new class of "Boundry" such as Swing package classes, library classes
of Java Server Faces components.

run:
Elmain document |_= Component | Document
Attributes Attributes Footnote
- lo—" , Page Numbering
Operations Operations SUCCESSFUL 1 time: 0 d
public void draw() public void draw()| BUILD (total time: 0 seconds)
public void main(String 31—1-10/ w\
ElDocument ElDecoratorDocument
Attributes Attributes
QOperations Operations
QOperations Redefined From Component Operations Redefined From Component
public void draw() public void draw()
y / \
public voiddraw() {
d t=new D t0; EirPageNumbering ElFootnote
Footnote footnote= - -
new Footnote(d t): Attributes Attributes
PageNumberingy - bering= Operations Operations
mnew PageNumbering(footnote); | pyplic PageNumbering(Component k) | | public Footnote(Component k)
page_numbering.draw(); public void pageNumbering() public void footnote()
Operations Redefined From Component Operations Redefined From Component
public void draw() public void draw()

Figure 3.20. Class Diagram of an example of using the Decorator Pattern.

| : | |self: Main”document:Component|

puhblic void draw |

ublic Com |onem
D P pl 0 document: Component
d public!Footnote(Componentk) !

} f % footnote : Footnote
publidPageNumbering(Compqnentk) N

| ‘ qpagefnumbering PageMumbering

| public void draw{) | I _|
T T
_________ R ! A"
H‘ | \ |
| |

Figure 3.21. Sequence Diagram of the example of using the Decorator Pattern.

[Main ” self: PageNumbering} [: Footnote] [: Documem] [: Cumponem] Ioul : F’rintStleam]

public void draw()
ublic void draw(

|

|

]

|
public void draw|()

public void |d|aw()]

public void |draw()

public void plintllﬂ(String s)

public voifl faotnote()
public void priuﬂr{(String s)

public void }lageNumbermg}) public void prmt\nlk String s)

| | | | [
Figure 3.22. Sequence Diagram of the example of using the Decorator Pattern (related to Figure 3.20).

3.3.5. Fagade
Problem: Grant only access to selected functions of the system tier (Figure 3.23).

Solution: It is an interface or interfaces of a system tier - facades provide several methods
for selected groups of subsystems (Figure 3.24, Figure 3.25).

Client: receives only necessary methods (Figure 3.26).
Result:

— Release of important methods, only for example, a tier of the system use cases, hides
classes of the system tier,

— The facade may prevent access to all methods of the encapsulated class.

facade A

|| Clientlll. Class A |__ | Class_1 |Client1| acade Class_A) Class_1
N / Y /

| Client 2 Class B || Class_2 "c“entzl. | 7(C|ass_s | [[Cass2

facade B
Class_C Class_3
I Client 3 —* | —»| Class-3 ||Client3|| | Class-C L -
Tierl Tierl
Tier2 Tier2

Figure 3.23. Refactorization of the Business Tier by using the Fagade Pattern.

35

ElFacade El subsystem
Attributes Attributes
Operations Operations

Figure 3.24. Class Diagram of the Fagade Pattern.

acade itle_hoo
ElTFacad ElTTitle_book

Aftiibutes Athibutes

Qpermtions private String publisher ElTBook
public TFacade() private String ISBM Attiibutes

.- R 2 rivate int number
public TTitle_book search_tile_book{ TTitle_book tite_book) pr f"ate Str ing title S P
public TTile_book add_ttle_baok(String datal0.*]) private String author Operstions
public TTitle_book add_book(String data1[0.*], String data2[0.]) Operations o Publfc TBook() _ _
public TBook Search_accessible_book(String datal[D.]) " | public TTitle_book() " | public boolean equals(Object obj)
I D/-’ public int hashCode{)

public int hashCode()
public boolean eguals{ Object obj)

public boolean period_pass()

\ public void add_book(String data[0.*]) public void startPeriod(Object data)
E‘ TFame public TBook search_book(TBook book) f.
Aibotes public TEock search_ ble_book()
% E TBook_period
el Athibutes
public TTitle_book create_title_hook(String data[0..4]) El TTitle book on tape " P -
public TBook create_book(String data[0..*]) pE—— s B e

private long serial\'ersionliD = 1L

Cperations
private String actor

Operations Redefined From TBook

Cperations

Operations Redefined From TTitle_book

Figure 3.25. Class Diagram of an example of using the Facade Pattern.

’helm :'I'I'itle_book| |title_exist:'|'|'it|e_b00k|

self: TFacade
|

fabryka : TFactary |
ublic TTitle_book create_title_book(String data[0..*])

|

-l creation ofthe help1 object, which is j
|

T

|

|

|

|

|

-l

the pattern of searching

[(title_exist = search_title_hook(helpq) = null]

public TTitle_boolk search_title_book('I'I'itle_bodktitle_book)

searching for the title_exist object,
existing in the application

|
|

public void add_book(String data[0.*])
|

Figure 3.26. Sequence Diagram of an example of using the Fagade Pattern (encapsulation and distribution of
business logic between the Fagade object and the TTitle_book of adding a new TBook object — by the add_book
method of the Fagade object and the add_book method of the TTitle_book object).

3.3.6. Flyweight
Problem: Repeated use of the same object - to share objects.

Solution: The Flyweight interface declares methods which are implemented by
ConcreteFlyweight objects (shared use) and UnsharedConcreteFlyweight objects (used once)
used by client applications. Objects-pollen are created and managed by the FlyweightFactory
object (Figure 3.27).

36

Client: A client keeps references pools to flyweight objects.
Result: Memory savings by sharing facilities of ,,flyweight” objects,
Implementation (Figure 3.28, Figure 3.29, Figure 3.30), a new class of "Boundry" or

"Entity", e.g.:

many objects such as the Tltem (client),

objects of the family TProductl (client).

Reference of the same object from a TProductl family (flyweight) may be stored in

Object References of the TPromotion object (flyweight) may be kept by one of the

flyweights

<<interfaces>>

1o Fiyweight

Abtributes

Cperations
public void operation()

7

-

Y,"\

[ElFlyweightFactory

[EunsharedConcreteFlyweight

ElconcreteFlyweight

Attributes

Attributes

Attributes

COperations

public Flywsight getFlyweight{)

Operations
public void operation()

Operations
public void operation()

T

Elclient
Aftributes

Operations

1.*
Figure 3.27. Class Diagram of the Fiyweight Pattern.

EITail
Attribetes
protected int number

Operations Bills

—

= TFacade
atiutes

public Tl int nr)

Items \”D "

=Titem
Attributes
protectsd int amount = 0

Operations
public Tkem(int aamount, TProduct1 aProduct)
public boolean equals({ Object aTZakup)
public float getValuel int duty_)
public void addAmount(int aveid)
publicint getAmount{)

Vi
4
N

public boolean equals{ Object aTBill) 0. = TProduct1
publ?c float getValuel int duty_) Attributes
public Them findtem{ Them aTitem) protected String name =™ o.r
public void addtem(Ttem aTitem) protected float price = 0 L]
Operations frod
Proguct

public TProduct1(String aname, float aprice)
public boolean equals{ Object aTProduct)
public float getPricel)

public float getDuty()

public float partBruttol)

public TPrometion getPromation()

public void setPromation{ TPromation val)

T\

= TProduct2

Abtributes
public float duty =0

Operations
public TProduct2(String aname, float aprice, float aduty)

Gperations Redefined From TProduct 1
public float partBrutto()

public float getDuty()

public TPromotion getPromation()

public void setPromotion{ TPromotion val)

Operations
public void additem(int nr, int amount, String data[0.*])
public float getValue int nr int duty_)
public TProcuct! findProcuct] TProduct! product)
public void adcProduct{ String data[0.*])
public TBill findBill(int nr)
public void addBillf int nr)

v
(=l TFactory
Attributes

Operations
public TFactory()
public TProduct! getProduct(String data[0..4]

(£l TPrometi
Attributes
public float promation = 0

K Operations
public TRromation(flogt apromotion)

public String toStringl)

public 11::&1 getPromation{)

Figure 3.28. Class Diagram of an example of using the Flyweight Pattern.

37

|self:TFacade| |n|‘:int| |am0unt:int| |data:8tl'ing| |biII:TBiII| |p|‘0duct1 :TP|‘0duct1|
publi&TFacmw(] |

S factory ; TFactory

pyblic TProduct] getProduct(String dataf0.])

[(bill = ﬂndbill(nr)) = null]

| | |
| | [(proc+1ct1 = ﬂndPr+duct(product1)) !]I*- null]

|

T

|

|

|

|

|

publicTProducﬂ ﬂnhF‘roduct(TPlHducﬂ produci) | I

| | | | | |
| | | | |

|

|

|

|

|

Il

[

|

I

| | publicTItdm(intaamouht,TProducﬂ aProl:iuct)

publfcvoid additgm(Tiem aTitym) |

| ———

Figure 3.29. Sequence Diagram of an example of using the Flyweight Pattern for preparing bills (the addItem
method of the TFacade class) — the family of TProductl objects as the flyweights objects of Tltem objects of
TBill objects.

| - Titem

|self:TBiII| |aTnem:T|tem| |nem:T|tem| |Items:ArrayList|
| [(item = I[l'lm:lltem(aTltemP = null]

public Tltern fndltem(TIter’p aTitern)

= | |

public int getﬂ]muunt()] |
] |

|
|
|
|
|
|
|
e
I O S

{ _______

| public vaid adt:lAmount(int avoit[l)
P I

| | [Else] | |

M public poolean add(omectu) -
R e o

Figure 3.30. Sequence Diagram of an example of using the Flyweight Pattern for preparing bills (the additem
method of the TBiIll class) — the family of TProductl objects as the flyweights objects of Tltem objects of TBill
objects (related to Figure 3.29).

3.3.7. Proxy
Problem: Representation one object to control access to default one.

38

Solution:

— A Proxy object stores a reference to the true object of the RealObject object and may
replace the RealObject object because they have the same interface (a Proxy class
inherits from the Subject class) and can control access to the RealObject object,

— The Proxy object may be a remote object, referring to the RealObject object, or
provides the virtual access to the object by buffering the RealObject object, or prevents
the access to the RealObject object by unauthenticated objects (Figure 3.31, Figure

3.32).

<<interface=»
[subject

Attributes

Cperations

public void request()

e =
ElRealSubject ElProxy
Attributes realSubject Attributes
COperations Operations
public void request() public void request()

Figure 3.31. Class Diagram of the Proxy Pattern.

Client: Any object of any tier of the multitier systems (Figure 3.33).

Result:

— Arremote Proxy object can hide RealObject objects in any address space,

— A virtual Proxy object improves performance by caching the data of the RealObject
object and limits unnecessary operations on the RealObject object such as

modifications of file records,

— The Proxy object provides security, because it can authorize or prohibit access to

RealObject objects.

El GraphicEditor

=l GraphicObject B

Attributes

Atiributes

puhlic void draw() {
if (getFigure () == null)

Operations
public GraphicEditor()
public GraphicObject getGraphicObject()

public void graphics()

public void setGraphicChject(GraphicObject val

mGraphicObjsct

Operations
public GraphicObject()
public void draw{)
public void maove()

{ setFigure(ReadFigure()

}
getFigure().draw();
}

/

ElFigure

Attributes

public Figure()

Operations

0
A
v

L
= ProxyFigure
Aftributes

Operations
public Figure getFigure()
public void setFigure(Figure val)

Operations Redefined From GraphicObjec!
public void draw()
public void mave()

public ProxyFigure()
public Figure ReadFigure()

Cperations Redefined From GraphicObject
public void draw{)

public void move()

Figure 3.32. Class Diagram of an example of using of the Proxy Pattern.

39

Q | :G|‘aphicEdit0r| | :Figure” :F'ruxyFigure|
public void graphics() ! I |

I-—[} at] public void draw(|

| | D

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

___ﬁﬁnﬁuﬁzﬁﬁj___ __________ T

[getFigure()==null]

uhlic Figure getFigure()

public void draw()

Figure 3.33. Sequence Diagram of an example of using of the Proxy Pattern (as the ProxyFigure object, which
can also draw the figure such as the Figure object).

3.4. Behavioural patterns

The main goal of behaviour patterns allocation of algorithms and obligations, covering the
patterns of objects and classes, and communication between objects.

The list of behavioural patterns and aspects, which can change, is as follows [3], [6], [8]:
Chain of Responsibility - an object, that can achieve a request.

Command - a condition and a way of realization of a request.

Interpreter - a grammar and an interpreter of a language.

Iterator - a way of the access and walking through elements of an aggregate.
Mediator - why and which objects influence one another.

Memento - which and when private information is stored outside the object.

Observer - number of objects, which are dependent on other objects and how
dependent objects keep the actual state.

8. State - a state of objects.

9. Strategy - an algorithm.

10. Template method - steps of the algorithm.

11. Visitor - operations, which can be applied to objects without changing their classes.

No g k~owbdpRE

3.4.1. Chain of Responsibility

Problem: The pattern creates a chain receiving objects and passes the request along a chain
of objects, until any object, which can handle it.

Solution: The Handler interface declares the service of demands and possibly a reference
to the successor. The ConcreteHandler object is responsible for claims, which are detected
and supported (Figure 3.34).

Client: generates and directs requests to the list of ConcreteHandler objects (Figure 3.35).

Result: The object to be handled and the ConcreteHandler objects have no explicit
knowledge about them and do not necessarily know the structure of the chain. A chain of
commitments increases flexibility in allocating service requests by changing the subclasses of
objects and structures of objects chain - but no guarantee of receiving a request.

Implementation: Use of the event handlers.

<<interface>>
= client K2 Handler
Aftributes Attributes
Operations Operations
public void handleRequest(
P
== mHandler
= concreteHandler
Attributes
Operations

public void handleRequest(Data h)

public ConcreteHandler(Data h)

public ConcreteHandler(Handle H, Data h)
public boolean isHandled(Data h)

Figure 3.34. Class Diagram of the Chain of Responsibility Pattern.

public ConcreteHandler{ Data h)
H1 : ConcreteHandler
public ConcreteHandler{ Handle H, Data h)

E public ConereteHandler(Handle H, Data h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

:‘{ H2: ConcreteHandler

H3: ConcreteHandler

|
public void handleRequest(Datah) |
Il
I
I
| [isHandled{Data h)]
|
|
|

ublic boolean isHandled{ Data h)
1 7 public Eﬁpﬁlﬁeﬁe?ﬂﬁtﬁﬁ ____________
| |
opt | [isHandled(Data h)] |

ublic boolean istndIed(Data h)

Figure 3.35. Sequence Diagram of the Chain of Responsibility Pattern.

41

3.4.2. Command
Problem: Encapsulation of requests in the form of an object, allowing to parameterize the
various demands of clients and records requests.

Solution: The Command interface declares the performed operations. The
ConcreteCommand object defines the link with the Receiver object and its action, and
implements the execute method by calling the methods of the Receiver object. The Invoker
object asks the ConcreteCommand object to perform request. The Receiver object knows how
to execute a request (Figure 3.36).

Client: The Client creates the ConcreteCommand object and sets Receiver objects, which
perform the request, and the caller such as the Invoker object (Figure 3.37).

Result (Figure 3.37):

— Separation of the objects which are triggering the operation and which are executing

these operations,

— Ability to create complex objects with the ConcreteCommand objects,

— Ease of insertion of new classes of the derivative-type Command.

<<Interfaces=
}© command
Attributes
Operations Elclient
public void execute) Altributes
W\ . Cperations
- —
N -
d -
e s
“ -
.. y
Elinvoker =l concretecommand EIReceiver
Aftributes Attributes receive Aftributes
Operations Operations Cperations
public void remember_command({ Command command) | | public void execute() public void action()

Figure 3.36. Class Diagram of the Command Pattern.

|

|

. . . publicvoid execute()J
pUbHC void actlun()

|

|

1
Figure 3.37. Sequence Diagram of the Command Pattern.

3.4.3. Interpreter

Problem: A definition of representation for the grammar of the given language and the
interpreter of sentences written in a language-defined by the grammar.

Solution: The Context object contains global information for the interpreter. The Client
object gets the built the AbstractSyntax tree representing the sentence of the language and
calls its interpret method - a tree made up of the TerminalExpression and

42

NonterminalExpression objects, which implement the AbstractExpression interface (Figure

3.38).

Client: The Client object builds or gets a syntax tree, and starts the process of interpretation
of the sentence represented by the tree (Figure 3.39).

Result:

— Easy modification of the grammar,
— Easy to implement different grammar,

— Difficulties to handle complex grammar - each class represents at least the one
production rule,

— Adding new ways of interpreting the expression by the modifications of the classes.

Elclient <<interfaces»

}© AbstractExpression

Attributes \
Cperations Attributes
Cperations

=l context

Attributes

Operations

public void interpret()

maAhstractExpression I

v

mAb tractExpressith

.

TerminalExpression

ElTExpression

Attributes

EINtExpression

Attributes

Operations
public void interpret()

Cperations

public vaid interpret{ Context ctx)
public AbstractExpression getAbstractExpression()
public void setaddExpresion(AbstractExpresSion vall, AbstractExpression val2)

MonterminalExpression

oo Context

Figure 3.38. Class Diagram of the Interpreter Pattern.

¥ : NtExpression

i

v NtExpression

/-“J z: NtExpression

“Jl A TExpression |

“‘J/-| B TExpression

=1 TExpression

public vr:ld setaddExp\epmn(AhsnactExp\eFSmn vall Ahstlactb{plessinn val2)

public v!:ud setaddExplepmn(AhstlaclExple

— O e T -

public wb\u setaddExp\e%lon(AbstlactExpleiSlonvaH Abst\act%xplessmnvau)

I

puhllt‘fnld interprat(Cdntext cte) |

Ij > |
|

#S\Dﬂ vall Ahshaullfxp\essmn val2)

>| N: TExpression

Figure 3.39. Sequence Diagram of the Interpreter Pattern.

43

Example:

TerminalExpression = {-6, -2, 1, 5, X, ¥},
NonterminalExpression = {S, A, AN, B, N},
and rules BNF notation:

<S> 1= <AN><AN>

<AN> ::= <A><N>|<N>

<N> =Xy
<A> =1]|-2
 :=5|-6

((1+x)+(-6+y))

3.4.4. lterator

Problem: Sequential, multiple and equal access to aggregated elements of the object
without specifying the internal structure of the elements.

Solution: The Iterator interface defines access to elements of units and how to pass through
the unit. The Concretelterator object implements the Iterator interface. The Aggregate
declares the interface through passes the Iterator interface. This is the only a link between
ConcreteAggregate and Concretelterator objects (Figure 3.40).

Client: The Client object can track in the ConcreteAggregate object by using the
Concretelterator object, which an element is the current and next or previous (Figure 3.41).

Result:

— Opportunity of free passage through the Concretelterator object the Concretelterator

interface simplifies of the ConcreteAggregate interface,

— Atany given time, it can perform a lot to go through the Concretelterator object.

Implementation: a new class of "Control" for example, the Iterator and Listlterator classes
in package java.util.

<<interface>=

tO Iterator
GARITED <<interface>>
Operations |'U Aggregate
public void first() Attributes
pubn.c vord nex?() e
public boolean isDonef) public lterator createlterator()
public Object currentitem() A
R \
[I
Elconcretelterator '
=i concreteAggregate
Attributes]
- Attributes
Operations -
public void first() / ublic Iterai‘)rerZT;:tselterator
public void next() P 0

public boolean isDone()
public Object currentltemi)

Figure 3.40. Class Diagram of the Iterator Pattern.

| Concreteaggregate || : Conereteterator| [item : Object]

-

public terator createlterator()|

m—

1 |
loop | lisDone()] |

public hoolean isPone()

A —

public void next()

O

public Ohject currehtltem() ___|_|

peration()

|
|
|
|
|
|
|
|
|
|
i
!
|

I

public vpid operation() !
T T

I

1

Figure 3.41. Sequence Diagram of the Iterator Pattern.

3.4.5. Mediator

Problem: The pattern allows you to limit a number of links between objects that interact in
complex ways, and allows you to change the way they communicate.

Solution:

The Mediator declares an interface in the agreement of the Colleague interface, so
everyone ConcreteColleague object knows the operations of the ConcreteMediator
object - each ConcreteColleague object need not communicate with another
ConcreteColleaque object, but with a ConcreteMediator object; the ConcreteMediator
object coordinates cooperation of many ConcreteColleague objects (Figure 3.42),

The ConcreteColleague objects send requests to the ConcreteMediator object and then
the ConcreteMediator object sends these requests to the appropriate
ConcreteColleague objects (Figure 3.42).

45

<<interfaces=> <<interfaces>
Fo Colleague | mediator }o Mediator
Attributes | Attributes
Operations Operations
A public veid ChangeState()
]

=l concretemediator

Attributes
El concreteColleague
o c eteCall Qperations
ribures meoncreteColleague public void getResult()
o Bl 1.* 1 | public ConcreteColleague[1..*] getConcreteColleague()
public void getDatal(] public void setConcreteColleague(ConcreteColleague val[1..*])
public void getData2()

Operations Redefined From Mediator
public void ChangeState()

Figure 3.42. Class Diagram of the Mediator Pattern.

Result (Figure 3.43):

The ConcreteMediator object gathers behaviour that would otherwise be placed in
many ConcreteColleague objects,

You can combine different types of object properties such the ConcreteClleague and
the ConcreteMediator,

Simplification of protocols to communicate through one-to-many associations between
the objects such the ConcreteMediator and ConcreteColleague, replacing many of the
objects derived from many ConcreteColleague objects,

The generalization of the cooperation between objects, which implement the Colleague
interface by the Mediator interface,

The functionality of the objects, which implement the Mediator interface, can lead to
very complex implementations, which will be difficult to maintain.

I;\ . ConcreteMediator

public void getResult()

!

46

ConcreteColleague : ConcreteColleague

“Jl ConcreteColleague2 : ConcreteColleague

|_public void Changsstats()

[g public void getDatatl()

|
[l
l
|
|
|
public void getData2() u
|
|

| M

Figure 3.43. Sequence Diagram of the Mediator Pattern.

3.4.6. Memento

Problem: The pattern stores a state of some objects to restore this state at some later
moment.

Solution: The Caretaker object is responsible for the care of the Memento object, but does
not refer to methods of this object - may, however, give the Memento object to other objects.
The Originator object creates the Memento object, which includes its state and uses it to
restore its status - it has access to all methods of the Memento object. The Memento object
holds the state of the Originator object (Figure 3.44).

El caretaker E originator
Attributes Attributes
Operations Operations
public void setMemento(Memento m)
memento public Memento createMemento()
s
s
Y
ElMemento

Attributes
private Object mState

COperations
public Object getState()
public void setState(Object val)

Figure 3.44. Class Diagram of the Memento Pattern.

Result (Figure 3.45):

— Maintaining boundaries of encapsulation, but posing difficulties in its maintenance,
— Simplification of the Originator object,

— Performance degradation,

— Difficulty of implementation,

— Difficulty in maintaining the Memento objects.

att] | |

D public Memento createMemento()\l

| : Memento
public void setState(Ohjectval)

|
|
e

ublic void setMemento{ Memento m
I_—; u public Object getState() |

| l :

Figure 3.45. Sequence Diagram of the Memento Pattern.

3.4.7. Observer

Problem: Define the relationship one-to-many relationship between objects - when one
object changes its state, all dependent objects are automatically notified and updated.

47

<<interface>> <<interface>>
fo subject Fo observer
Aftributes Aftributes
Operations Operations
public void attach(Obsemwer o) public void update()

public void detach(Chserver o)
public void notifyObservers()

mObserver 0.* 'ﬂ

|
A |
| I
! i
| I
I
Elconcretesubject !
Attributes :
. oncrete server
private Object mState . Bc teOb
Operations subject Attributes
public Object getState() -
public void setState(Object val) ublic vo?;eftj:tse()
public void attach(Observer o) y .

public void detach(Observer o)
public void notifyObservers()

Figure 3.46. Class Diagram of the Observer Pattern.

Solution: The Subject interface knows its observers (Observer interface) and declares the
attaching and detaching operations of observers. The Observer interface declares the
operations of updating observed objects (Subject interface). The ConcreteSubject objects hold
the state, which is interesting for ConcreteObserver objects - when they change their status,
notify observers (Observer interface) by the update method. The ConcreteObserver object has
a reference to the ConcreteSubject object and holds the state, which must be consistent with
the state of the observed object (ConcreteSubject object) and implements the update method,
which allows you to keep this consistency (Figure 3.46).

Result (Figure 3.47):

— An abstract relationship between objects such as the ConcreteSubject and the
ConcreteObserver,

— Support for sending messages - the ConcreteSubject objects send the notification
without knowing the recipient,

— Unexpected upgrade - because the fact that observers do not know about existence of
other observers.

- ConcreteSubject 01 ConcreteOhsener| | g9 - conereteObserver

| public void setState{ Objectval) [Fl

|

ublic void attach{ Observero)

public void update()

public Object getState() u
public void update()

|

|

|

|

|

|

|

|
public Object getState() :
|

| [

I/ —E_—L__H_%I:

Figure 3.47. Sequence Diagram of the Observer Pattern.

3.4.8. State

Problem: You can change behaviour of an object when you change the inner state of this
object by forming its derivative object.
Solution: The Context object defines an interface for clients and maintains the
ConcreteState object. The State interface declares the interface associated with the state of the
Context object. The ConcreteState objects represent the complete behaviour associated with
the state of the Context object (Figure 3.48).

Client: The object, which configures the ConcreteState objects by using the Context object

(Figure 3.49).
Result:

— The location of all functionality in one object implementing the State interface and
diversification of the behaviour that depends of the change of the state in the derived
classes. These classes acquire all the functionality,

— Each derivative object implements a new full functionality, which improves the
visibility of transitions between states,

— Sharing objects such ConcreteState objects, because their states are represented by

their types.
£ Context <<interface>>
Atrributes state O State State
Operations —] Attributes TCP
public void request1() Operations
public void request2() public void handle(Context c, State s)
public void setState(State s) A
|
=/ ConcreteState
Attributes
: TCP
g Connection
public void handle1(Context c)
public void handle2(Context c) TCP
public void handle(Context c, State s) Accept
TCP
Close

Figure 3.48. Class Diagram of the State Pattern.

49

: ConcreteState
a ! [
ublic void |equest1(‘LI |

U public void handle1{ Context c‘)\ |

It T
[
I
I
I
I
I
I
I

ublic void handle(Context ¢, State 5)

|

|

|

! public void setState(State 5)
1 |
S 4+ —_———— .

Ij public void requesta(I 1 bublic void handle2{ Contextc) I
| I

I

I

I

I

|

1

|

I ﬁubllc void handle(Context ¢, State 5)

| public void setState(State s) [;I

! |

| .
Figure 3.49. Sequence Diagram of the State Pattern.

3.4.9. Strategy

Problem: A selection of different business rules or algorithms for different versions
depending on the context.

Solution: It selects a version of the algorithm, which separates from its implementation
(Figure 3.50).

Client: The decision to implement strategies and a context of the objects takes by the
owner of these objects, which provides information how to create the proper objects of the
strategy and the context of using the factory object (Figure 3.51).

Result:

— Define a family of algorithms,

— Defining a Strategy interface which contains a method providing algorithms and

methods in a Context class which uses these algorithms,

— Elimination of manual selections or conditional choices of an algorithm of the strategy

by introducing a mechanism of polymorphism - especially, if the choice of the
algorithm is not the transitional one.

Elcontext <<interface>>
Attributes strategy to Strategy
Cperations 0‘_‘_‘_‘__%}" Attributes
public void contextinterface() Cperations
public void algorithminterface()

)

ElconcreteStrategy
Aftributes

Operations
public void algorithminterface()

Figure 3.50. Class Diagram of the Strategy Pattern.

50

Q - ConcreteStrateqgy

[g public void contextinterface() |
|

L public void algorithminterface(L|
I

Figure 3.51. Sequence Diagram of the Strategy Pattern.

3.4.10. Template Method

Problem: Define a skeleton of an algorithm, providing a definition of details of this
algorithm to the derived classes.

Solution: The AbstractClass class defines the abstract algorithm, but the same parts of the
abstract algorithm are supplemented by various definitions, implemented by ConcreteClass
classes (Figure 3.52).

Result: "Hollywood principle" (do not call us, we'll call you), where the base class method
calls the methods from derived classes (Figure 3.52).

Implementation: the creation of libraries, which gives rise to common behaviour in library
classes.

AbstractClass

Operations ijuhllc void templateMethnd(‘l
\
\
\
\
\
\
\
I

public vaid templateMethod{)
ublic void primitiveQperationt()

public void primitiveCperation2()

public void primitiveCperationt()
ublic void primitiveOperation2()

T

ConcreteClass

Attributes

Operations
public void primitiveOperationt{)

public void primitiveOperation2{)

Figure 3.52. Class and Sequence Diagrams of the Template Method Pattern.

3.4.11. Visitor

Problem: The pattern allows you to define a new operation without changing the
component class in which it operates.

Solution: An ObjectStructure object can enter your items and allows objects that
implement the Visitor interface to visit your elements (which may be composite). The Visitor
interface declares the method of visit, which receives the item as a parameter you want to
visit. The ConcreteVisitor object implements the visit method, which allows storing
information about the status of individual elements. The ConcreteElement objects define the
accept methods which take the ConcreteVisitor object (Figure 3.53).

51

Client: The Client must create a ConcreteVisitor object, and go through the whole structure
of objects represented by a ObjectStructure object, visiting each element, using the
ConcreteVisitor object. Each visited element calls the visit method of the ConcreteVisitor
object, giving access to each other, and enables him to call the appropriate method for your
class (Figure 3.54).

Result:
— Easily add new operations, which are dependent on complex elements,

— Bringing together related operations in a class that implements the Visitor interface,
and separation of unrelated ones in their subclasses,

— It is difficult to add new ConcreteElement classes because you need to declare a new
visit method in the Visitor interface and new implementation of visit methods in the
ConcreteVisitor classes.

— <<interface>>
= ObjectStructure o Visitor
Attnbudes athibtes
Opemtiore, P Operatians
| 7 public void visit_elM(ConcreteElement] element ,
i public void visit_ef2(ConcreteElement? element
- =
- -
B - - Tl
=<interface>> e e ..
|2 Erement e o .,
- e
i [Elconcretevisitor [=lConeretevisitor2
R Attribetes Attrides
public void accepl{ Visitor visitor ; = =
= & Operations Operations
L AN Cperations Redefined From Visitor Cperations Redefined From Visitor
N public void visit_el1(ConcreteElement! element public void visit_el1({ ConcreteElement! element
public void visit_el2(ConcreteElement2 element | | public vaid visit_el2(ConcreteElement2 element
[l ConcreteElement1 [ElConcreteElement2
Attributes Attributes
Operations Operations

public void operation_el1() public void operation_el2()

Operations Redefined From Element
public void accept(Visitor visitor)

Cperations Redefined From Element
public void accept(Visitor visitor)

Figure 3.53. Class Diagram of the Visitor Pattern.

‘el1 :ConcreleE\emenl1| |el2 : ConcreteEIement2|

| ‘ | visitor : ConcreteVisitor1
| visitor : ConcreteVisitor2

. ObjectStructure

|
\
|
|
\
[

L public void visit_el1{ ConcfeteElement2 element)

|publ|c void operation_gl1(

|

\
| |
u public void visit eIE(ConcJeleElememE element)

%ublicvoid accept{Visitor visitor)
\
\
\
|

1
|
pub\lc void operation_el2()I

U

Figure 3.54. Sequence Diagram of the Visitor Pattern

|

|

|

|

|

public void accept(\iisiturvisitor)u |

@ | '

Il

| ! I
\ |

| ! Q

| ! I

52

4. Design patterns used to build the Business Tier

Figure 4.1 shows the definition of the Business Tier of a five-tiered model of logical
separation of tasks of an Enterprise application [2].

Client Tier
Customer applications, applets, elements of
the graphical user interface

Interacting with the user,
device and user interface
presentation

Presentation Tier
JSP Pages, servlets, and other user
interface elements

Login, session management,
content creation, formatting,
validation and delivery

Business Tier
EJB components and other business
objects

Business logic, transactions,

data and services

Integration Tier
JMS, JDBC, connectors and connections
with external systems

Resource adapters, external
systems, mechanisms for
resource, control flow

Resource Tier
Databases, external systems and other
resources

Resources, data and external
services

Figure 4.1. The definition of the Business Tier of multitier information system [2].

4.1. Basic issues of the Business Tier design

Basic issues of the Business Tier design are described in the subsections of Section 3.1
such as using the session components, use of Entity components and caching of references
and handles of remote enterprise bean components [2].

4.1.1. Using the session components
The session component (EJB specification) is characterized as follows:

It is used by one customer or user only,
There is only for the duration of the session,
It is destroyed during failure of a container,
It is not a permanent object,

The time limit of its life may be exceeded,
It may participate in transactions,

It can be used for modelling of communication such as stateful or stateless between the
client and Business Tier components.

Stateless session components have some features as follows:

Do not store customer data,

Any instance of the stateless session component for any customer can be allocated
from a pool of stateless session components - after servicing the customer, each
component is returned to the pool,

They are used in case of a service that requires only one method call.

Stateful session components are based on the following issues:

Stores session state,

Components are returned into a pool of stateful session components only when the
client has completed its session,

53

— If the service requires a number of method calls to complete the transaction, which is a
conversational process. This choice improves the scalability of the system.

There are some ways of storing session state:
— Web Applications store the session state of clients in the Presentation Tier,

— Applications, with different types of clients are keeping the session state in the
Business Tier.

Managing session state is dependent on:

— Hardware,

— Network Traffic Management,

— The use of clustering for the Web container,

— The use of clusters for the EJB (Enterprise Java Bean) container,

— Linking client session to a particular server in the cluster (server affinity),
— Session Replication,

— Session Persistence.

4.1.2. Using the Entity components

Entities are distributed, shared and persistent transactional objects and EJB containers
provide additional infrastructure to support the scalability, security, performance and
clustering. Specification of Entity components (EJB specification) defines among others,
following features:

— They represent an object-oriented view of life,
— They participate in transactions,

— They are shared by multiple users,

— They have a long life,

— They are resistant to failure of a container. This type of system crashes is usually
invisible to the customer.

Unique keys of main components of the Entity:

— A complex primary key requires definition of a class that implements the Serializable
interface. Attributes of this class are key attributes of the main complex key,

— The primary key class must redefine the hashCode and equals methods,

— If the primary key consists of a single attribute, then you can use the built-in type for
the key.

The business logic in Entity components is any logic associated with the provision of
services.

Checklist for business logic contained in the Entity:
— Will business logic introduce a new relationship between components of the Entity?
— Will the Entity component be responsible for managing the flow of user interaction?

— Will the component assume responsibility for issues that should be included in another
component of the business?

The Entity component must contain the business logic, which is self-sufficient in terms of
handling their own data and data objects belonging to the dependent objects. In this case, it
has to introduce identification, extraction and transfer of business logic, which provides such
dependencies to the session component.

4.2. Bad practices of the Business Tier design
There are some bad practices during development the Business Tier of application.
1. Mapping an object model directly on the model of Entity components:

Impact: large container load, generation high traffic,

Solution:

0 Refactoring,

0 Reducing the number of components - the application of the Composite Entity
pattern,

o0 Creating a tier of access to services - the use of the Session Facade pattern,
2. Mapping each use case at one session component:
Effects: a large number of session components - high complexity applications,
Solution:
0 Refactoring,
0 The Session Facade pattern.

3. Sharing all the attributes of components by the method of setting and collecting: set and
get:

Impact: large network traffic,
Solution: the Transfer Object Pattern.
. The client stores the data of business components:
Impact:
0 Large network traffic,
o Dependence on the model of client applications,
o Difficulties in modifying the software,
Solution: the Transfer Object Assembler Pattern.
5. Embedding search services on the client:
Impact:
o Visualization of the complexity of application for the client,

0 Redundant code - in case of changes to modify the code in many places in the
application.

Solution:

0 Refactoring,

0 The Business Delegate Pattern,

0 The Service Locator Pattern.

6. Use of components of the Entity as read-only objects.

7. Using the Entity objects as a minor component.

8. Saving an entire graph of related Entity components.

9. Disclosure of EJB - related exceptions to customers outside the EJB tier.
10. Stateless session component restores session state for each call.

11. Searching data using methods that return references to remote objects.
12. Mapping the relational model to the Entity component model.

SN

55

4.3.

Analysis of basic design issues

Design cases:

1.

2.
3.

o>

134

8.

Conceal from the client program the complexity of remote communication with
business service component.

A transparent and uniform way to search services and business components.

Sharing components and business services to remote clients (take control of the
business objects and reduce network traffic, or improve efficiency).

Centralization of some business logic components and business services.

The object model is an implementation of the conceptual model, which is the domain
model, containing relationships and business logic.

Use of Entity components to implement the conceptual domain model.

Transferring data between tiers of application (reducing network traffic by reducing a
number of remote calls, or improve efficiency).

Preparing lists of objects for remote clients’ applications.

4.3.1. Business Delegate Pattern

Problem 1 — Conceal from the client program the complexity of remote communication
with business service components (Figure 4.2, Figure 4.3).

Servlets and JSP with Session Logic of Data
presentation logic Component with Acces
and: many searches business logic of
and calls of business services
services, error
services of other
layers etc.
N\
Client N Session Code of
Serviets, |\ Component Data Access Database
JSP
Client Tier Presentation - Integration Resource
Tier Bu_;l:fss Tier Tier
Servlets and JSP presentation Session Logic of Data
logic and Business Delegate for Component with Acces
separating layers but searches of business logic of
business services services
) N\ 2 N\ N
Client Servlets, \ Business | Session Code of Data Database
JsP Delegate 1 Component Access
Client Tier Presentation Business Integration Resource
Tier Tier Tier Tier

Figure 4.2. The first refactorization of the Business Tier by using the Business Delegate Component [2].

56

Session Entity BUSINGSS Session \/ Entity
[Componen Component Delegate 1 [T\ |Component] Component
1 1 1 1
) — ~——
. Session Entity ‘ Business Session /' Entity
Client Component| Component Client Delegate 1 H [Componer Component
2 2 9 2 L\
N——— N———
/\ /\
Session \ /[Entity BUSINGSS Session \/ Entity
[Component Component Delegate 1 H\ [Componen / Component
s Y\ s s Y\ s
N——— N———
Client and . Client and Presentation i i
Presentation Business Tier Business Tier
Tier Tier

Figure 4.3. The second refactorization of the Business Tier using the Business Delegate Component (related to
Figure 4.2) [2].

Requirements:

— Our application should have access to the Business Tier components from the
presentation components and clients, which can be any device, web services and rich
clients,

— Linking should be minimized relationship of clients and business services by hiding
implementation details of services, for example, during searches and calls,

— Our application should avoid unnecessary calls of business services,

— Exceptions of the network and business services should change on exceptions of the
presentation or client tier,

— Our application should hide in the presentation or client tier the details of the use of
services, their configuration, and repeated attempts to call.

The Business Delegate Pattern has some characteristics:

— Abstract business service on the client side allows to hide implementation details of
business services and mechanisms for their search and call,

— More changes of implementation of business services than in BusinessDelegate
components.

The components of the pattern are as follows (Figure 4.4, Figure 4.5):

— ServiceLocator - implementation of the ServiceLocator pattern; performs searches of
business services (BusinessService component),

— BusinessService - business-tier components such as the EJB component, which is used
by the client. It may be part of the SessionFacade pattern or the JIMS (Java Message
Service) component.

Implementation of the pattern:

— The representative of an intermediary (Proxy Delegate),
— Representative adaptable (Delegate Adapter).
Properties:

— Reduction of dependency between the Presentation Tier and the Business Tier, hiding
the implementation of the Business Tier (the client does not need to know the service
name and does not need to search for services),

— Transforming the exception of business services onto exceptions easily handled in the
Presentation Tier,

57

Increased availability of services (temporary irregularities of the business service can

occur repeatedly, outside of the Presentation Tier. Only when permanently appear
system failure, the customer will be notified of the accident),

Rendering the Business Tiers simpler

traffic and improves application perfo

for the Presentation Tier,

caching ability of results and references to remote services, which reduces network

rmance,

Placing an additional tier - it can sometimes be a disadvantage.

I Client E BusinessDelegate
Attributes Attributes
Operations aceess Operations
public Glient() x public BusinessDelegate{)
public BusinessDelegate getBusinessDelegate() 1 public void cal{)
public void setBusinessDelegate(BusinessDelegate val) public void getldentifier()
public Busin vice getBusin vice()
public void setBusin vice(Busin vice val)
H serviceLocator uses =~ - 1 % approach
Attributes - - -
Operations -é,_r’ EBUSIHESSSEI’VICE
public SenviceLocator() Attributes
public void getSenvice() Operations
publicvoid getidentifier() | _ s__eaLch_ = public BusinessService()
public void convert_Handle_to_|dentifier() public void searchService()
public void getServiced_for_identifier{) public void call{)
public void convert_service_for_identifier() public void getHandle()

public void connectionf)

Figure 4.4. Class Diagram of the Business Delegate Pattern

: SewviceLocator

:BusinessSenice

:BusinessDelegate

public void getSenviced_for_identifierl)

ublic void convert_semvice_for_identifier()

S| Handle
ublic void getBusinessSemvice(L_
public vaid connaction(3 |

public void call)

Figure 4.5. Sequence Diagram of the Business Delegate Pattern — a business service call.

58

: BeniceLocator . BusinessSenice

alt
: BusingssDelegate]

|
L public void getsenice() | |
! |

|
| public void search3swice() .
[| N | P 1
| . |
| M I |
- e F—————— 4
public void cali) _ | | |
I |
| L publicyoid calll § | |
I - _ S I [
t] cvoid call) | |
pubic vaid cal() pulbilic vaid -:lallt) |
I B & S i [
[N I
public vaid getld:—nnﬂer!] public void getidentifier] | | |
———— public void getHandlz() |

ubilic woid corvert_Handle_fo_|dentifizr])

i |
Figure 4.6. Sequence Diagram of th

i i |
e Business Delegate Pattern - a business service call and store of the
business handle.

4.3.2. Service Locator Pattern
Problem 2 — Transparent and uniform way to search for services and business components

(Figure 4.7).
Requirements:

Our application should use the JNDI (Java Naming and Directory Interface) interface

to search for business components (e.g. EJB or JMS) or services (e.g. data sources),

components,

and search services,

The Service Locator:

Tier and the other for the B

Our application should centralize searches of business services in Client Tiers,
Our application should hide implementation details and complexity of searched

Our application should avoid the loss of efficiency associated with context creation of

Our application should be allowed to re-use found handles of business services.

In computer systems, there are two ServiceLocator objects - one for the Presentation

usiness Tier,

Optimization of search operations and their creation.

59

Servlets and JSP presentation Session Logic of Data
logic and Business Delegate for Component with Acces
separating layers but searches of bUS'neSS_|09'C of
business services services
Client -
serviets, |\ /] Business |\ Session / CodAeCé);slzata Database
1 JSP Delegate 1 Component
Client Tier p . | .
res_le?_ntatlon Business nte_lg;_ratlon Resource
ier Tier ier Tier
Servlets and JSP presentation Session
logic and Business Delegate for Component with
separating layers and Service business logic of
Locator for searc_hes of business services Logic of Data
— Acces
Client -
Business
T Delegate 1 /\
Serviets, |\ Service Session [Cocfcg;SlZata Database
1 JSP \\ Locator // Component
Client Tier . .
Presentation Business Integration Resource
Tier Tier Tier Tier

Figure 4.7. Refactorization of the Enterprise application [2].

Components of the pattern (Figure 4.8, Figure 4.9):

Client - It is the Business Delegate component, who is awaiting access to one of the
Session Facade components. Similarly, DataAccess Object components are clients
when retrieving JDBC (Java Database Connectivity) data source,

Cache - A cache of handles to earlier sought out services to reduce unnecessary
operations, which improve performance,

Initial Context - The starting point of the search process and the creation of objects.
Service providers give the context object, depended on your desired service (Target
object). Each supplier is specialized in the types of services (EJB, JMS),

Target - The target represents a component of a service or business or the Integration
Tier. They may be EJBHome components for EJB, DataSource for JDBC data source,
the ConnectionFactory component for JMS (Java Message Service - Java EE
components can create, send and read the messages in a distributed environment,
controlling the long transactions),

RegistryService - an object representing the implementation of the registry that stores
references to services or components registered as a provider of services for objects
Client).

Implementation of the pattern:

60

EJB Service Locator,
JDBC Data Source Locator,
JMS Service Locator,
Locator JMS queues,
JMS Topics Locator,
Web Service Locator,

Properties:

— Hiding the complexity,

— Providing uniform access to data,

— Facilitating the addition of EJB business components,

— Improving network performance in providing services,

— Improving performance through caching the handles of services.

<<8ingleton>>
E ServiceLocator
Attributes

HClient uses Opertions

Attributes public ServiceLocator{))

e public InitialCantext getinitialContext() mRegisiryService
erstions

public Glient() 1.0 public void setinitialContext(InitialContextval) E RegistryService

public SenviceLocator getSenvicelocator() . public Cache geiCache() s Altibules
— ublie vold setCache(Cache val) 4

public void setServiceLocator(ServiceLocator val) s

’ public void getinstance() 1 Opermtions
public RegistrySenvice()

/ rd public void getObjeci() S
/ / public void searchOhject()
/ // usé/: }’ }\
/
seliroft / pd E cache Y
/ search j/ Attributes \
S =
7 // Qoermtions refer y
/ Pid public Cache() \
,/ e cache 1 | public Target[0.* getTarget() \\
5’/ f,/ public void sefTarget(Targetval[0.*]) ~ \
E Target public void setObject() Ny \
T public void get_from_buffer() E InitialContext
0.* -
Cpertions contain_and_allow_to_get Attiibuies
public Target({) === ——————— - - oo Tm=====77" Cesmlions
public void render() public InitialContext{)
public void searchOhjeci{)

Figure 4.8. Class Diagram of the Service Locator Pattern.

| : Client | | . SenicelLocator | :RegistrySenice || :Target |

L _ T
public void getbject() | ‘ \ |
ublic void searchOhjec)| [| |
| public void searchOpject() Lpublic void render()|
< 1 u

ublic void searchonjectj_ﬂ |

pultlic void get_from_buffer() |
P v
(< T |

Figure 4.9. Sequence Diagram of search business services components use-case of the Service Locator Pattern.

4.3.3. Session Facgade Pattern

Problem 3 — Provide components and business services for remote clients (take control of
the business objects and reduce network traffic, or improve efficiency) (Figure 4.10).

61

Componen : Component]
> Client ession <
/ ien Facade ——
. N
Business
I . - Componen I Component]
ogic Entity B Busines Entity B
~———— .
\ logic ’
y Componen Component
Transaction Entity C)) Entity C
logic — [Transaction Logic —
Imanaged by:
Session Component
special components —.
Client or . i i
) Business Client or container
Presentation Tier Presentation
Tier Tier Business Tier

Figure 4.10. Refactorization of the Business Tier by using the Session Facgade Pattern [2]

EClient

Attributes

Cpemtions
public Client()
public SessionFacade[0.*] getSessionFacade()
public void setSessionFacade(SessionFacade val[0."])

1.4 uses 1.
[ElSessionFacade

Attributes

Cperstions [E BusinessComponent
public SessionFacade() use Attributes
public BusinessComponent[0.*] getBusinessComponent{) 1.2 1.9 -

Cpemtions

publ!c vo!d setBusinessComponent({ BusinessComponentval[0.) public BusinessComponant()
puhblic void call{)
public void process() / T \

El ApplicationService [E BusinessOhject =IDatafccessObject
Atributes Attributes Attributes
Gperations Gperations Gperations

public ApplicationService() puhblic BusinessOhject() puhlic DataAccessOhject{)
public void call{) pubhlic void call{) puhlic void getData()

Figure 4.11. Class Diagram of the Session Fagade Pattern.

Requirements:

62

Our application should prevent clients from direct access to components of Business
Tiers to counteract the establishment of too many dependencies between clients and the
Business Tier (design case 1),

Our application should provide the tier of remote access to Business Object
components (design case 5), or other business objects,

Application services should be grouped and provided to remote clients (i.e. Application
Service pattern) and any other services,

Our application should centralize and combine all of shared business logics to remote
clients,

Our application should hide complex interactions and interdependencies between the
components and business services to facilitate management, centralization of logic,
increase in flexibility and facilitate the change.

Components of this pattern (Figure 4.11, Figure 4.12):

— Client - This is usually the Business Delegate pattern,

— BusinessComponent — It participates in the execution of client requests. This may be
the Business Object component (design case 5) as the object model of data and conduct
business or as the ApplicationService component,

— ApplicationService - This component uses the business objects and implements the
business logic. The Session Facade component may use many such objects,

— DataAccessObject (DAQO) — This component facilitates access to a database in simple
applications where there is a tier of business objects forming an object model of data.

|: Clierdl | : SessionFacade || : ApplicationService || : BusinessObject || : Businessobject” : Da‘taAccessObject|
T T T T
I

public void call|
| public void call{) |

|public void call{) | |

| public veid call)

public void call()|

4)ublic void getData(;l

public void pl'ocesil(b

Figure 4.12. Sequence Diagram of providing business services to clients by hiding access to business
components of the Session Facade Pattern.

Implementation of the pattern:

— Stateless session component,

— Stateful session component.

Properties:

— The introduction of a tier that provides services to remote clients,

— Providing a uniform interface,

— Reduce dependency between tiers,

— Promoting the tiered model, increasing flexibility and ease of management,

— Reduce complexity of session facade services, if applied with Application Service
components,

— Improving productivity, reducing a number of fragmented remote methods,

— Centralization of Safety Management,

— Centralized management transactions,

— Sharing a smaller number of remote customer interfaces.

63

4.3.4. Application Service Pattern

Problem 4 — Centralization of some business logic components and business services
(Figure 4.13).

—— —
- Session \ / Entity N Session /—\ Entity
Compone:../ L\ Component Client 1 =P lcomponent /| Service P+lcomponent
Client 2 Componer > -
Session [Entity Session Application Entity
Client 3 Component] Component > Client 3 §==| [Component] Component tComponent

1 Application 1
SN—— IComponent
e A
Yy

Entity - Session Entity
‘Component | P\ [Component Component

1
SN—
=z

Session

1

2 2 2 S 2

SN~—— SN—

Service

3 3 3 B 3
Client and Client and
Presentation . . Presentation
Tier Business Tier Tier Business Tier

Figure 4.13. Refactorization of the Business Tier by using the Application Service Pattern [2].

Requirements:

Our application should limit the amount of business logic in the facades of services,
The business logic operates on a number of business objects or services,

Our application should be to create a integrated services interface for the existing
components and business services,

Our application should place the logic associated with the specific use cases outside the
Business Objects components (design case 5).

The Application Service — service fagade:

It provides a uniform tier of services and it is facilities of session facade services,

It is the main business logic tier, where it does not use the BusinessObjects components
and if necessary it uses the DAO components to retrieve business data from data
sources,

It provides a more detailed interface than the Session Fagade components, but less
detailed than Business Object components,

The business logic is common to many service session fagade.

The components of the pattern (Figure 4.14, Figure 4.15):

Client - Session Fagade component, the objects of ordinary Java classes (POJO),
another of the Application Service component,

Application Service — It is the leading component, encapsulates the business logic
operating in several business objects, or based on a specific use case. It calls methods
of BusinessObject or ApplicationService components,

BusinessObject (design case 5) — These are components to complete the service of the
request of the ApplicationService component,

Service — It is a component that provides any type of service,

DataAccessObject — It is a data access component without the mediation of
BusinessObject components.

Implementation of the pattern:
— Application Service Command,

— Application Services using the GOF Strategy pattern,

— Application Service Tier.
Properties:

— Centralization of business logic used repeatedly,

— Increasing reuse of business logic,

— Prevention of duplication of code in client components,
— Simplifying implementation of session facades,
— The introduction of additional tiers within the Business Tier (centralized of common

business logic).

ElserviceFacade

Atiributes

Operations
public ServiceFacade()
public ApplicationService[0..*] getApplicationSenvice()
public void setApplicationService(ApplicationService vall0.."])

N

E ApplicationService

Attributes

% profit

Operations

public ApplicationSenvice()

public Senvice|0..*] getSemice()
public void setSenice(Service vall0.."])
* public DataAccessObject[0..*] getDataAccessObject()
public void setDataAccessObject(DataAccessObject val[0..*])
public BusinessObject[D..*] getBusinessObject{)

<<SessionEJB>> <<P0JO>> public void setBusinessObject{ BusinessObject val[0. *])
ElsessionFacade E ordinaryJavaFacade public void call(}
Attributes Attributes public void process()
Operations Operations
public SessionFacade() public OrdinaryJavaFacade() Uses] uses? uses3
/ \ 1.
- 1.x . B
1. E BusinessObject
<<l ocalSession>» <<RemateSession=> Elservice E DataAccessObject Attributes
Bl LocalFacade ElRemoteFacade Attributes Attributes T
SLAL ity Operations Operations public BusinessObject()
Operations Operations public Service() public DataAccessObject{)| | public void call{)
public LocalFacade()| | public RemoteFacade() public void call{)| | public void getDatas{) public void process{ }

Figure 4.14. Class Diagram of the Application Service Pattern.

65

| . ServiceFacade | | . ApplicationSewice| | :BusinessObject| | :BusinessObject| |:ApplicationService| |:Se|‘vice| | . DataAccessObject|

alt m public void call{] | |
ublic void process()l

|
|
|
I
|
|
|
|
——E ————— T e i) T
[
|
|
|
|
|
|
|
|
|

public veid calll)

|
|
|
|
ublic void pl'o}:ess()]

ublic void process(

" public void callf)

|
|
|
|
\?ublic void process()

ublic void process()

ublic void pr%cess()l |

= Hublic void getDaths(

_public void pl':1|cess()]

|

|

|

i

|

|

| L | U
| public void call
|

|

|

|

|

Figure 4.15. Sequence Diagram of the Application Service Pattern — encapsulation of the business services.

4.3.5. Business Object Pattern

Problem 5 — The object model is an implementation of the conceptual model, which is the
domain model containing relationships and business logic (Figure 4.16, Figure 4.17).

There are definitions of a business model, a business use cases model, a business object
model, a domain model, an object model, and a data model (The Unified Software
Development Process [4]):

66

The business model consists of two models: the business use case model describing the
actors and business processes and the business object model, used to describe entities in
the various use cases,

The domain model or otherwise the conceptual model is an abstract model that
describes the main types of objects in the system. Domain objects represent events and
"things" that exist in an environment where the system works. The domain model is
treated as the business model,

The object model is an implementation of an abstract model (Domain),

The data model is used to describe a model of the implementation of such an ER
model.

Servlets and JSP with presentation
and small business logic without
consolidation for other clients —

small application
Client Servlets, Code of Data
JSP Access Data Base
Client Tier Resource
Presentation Tier Tier
Servlets and JSP with Session | Data ﬁc((j:_es
presentation logic and Component with ogic with direct
controller to separate layers business logic accesss to
databases
: N\ .
Client - Session de of
Servlets, Business |\ Component Code o Data
JSP Delegate 1 \ Data Access Base
Client Tier 1 : Resource
Presentation Tier Business Tier nte_lg_;i;artlon Tier
Figure 4.16. Refactorization of the Business Tier [2]
Serviets and JSP with Session | I_Jate_lt/r-:c;_esm
presentation logic and Component with ogic with dire
controller to separate layers business logic accesss to
databases
) N\ -
Client - Session Code of
Serviets, Business Component 00€ 0 Data
JSp Delegate 1 \ Data Access Base
Client Tier Integration Resource
Presentation Tier Business Tier Tier Tier
I Session Component with business Data Acces
Servlets and JSP with logic, Entity Components as logic with JPA
presentation logic and persistence transaction objects accesss to
controller to separate layers databases
Client Q =\ Session Code of
S,
USINess Component 1| | Data Access Data
JSP Delegate 1 Base
Entity
Component
Client Tier \/ Integration Resource
Presentation Tier Tier Tier
Business Tier

Figure 4.17. Refactorization of the Business Tier by using the Business Object Pattern [2].

Requirements:

restrictions (design case 1),

application components,

There is a conceptual model containing structural complex interrelated objects,
There is a conceptual model with strictly defined business logic and business

State business of the application and the related behaviour from the rest of the
application should be separated, improving the consistency and ease of reuse

Our application should centralize the business logic and the state of business
applications in one place,

Our application should enhance their ability to reuse business logic and avoid code
duplication.

The Business Object:

It separates data and business logic using an object model - type “Entity".

Components of the pattern (Figure 4.18, Figure 4.19):

Client — It is a client of BusinessObject components. This may be SessionFacade,
Application Service, or each object (component) such as helped object (View Helper
pattern) that requires access to a business object,

ParentBO — It is a key element of the pattern and serves as a GOF facade. It is the main
business object, the primary model of complex business objects. The parent includes its
dependent objects, implements its own logic and rules,

DependentBO - It is the business object that is managed by the parent ParentBO object
during their life cycle - they cannot exist without a parent. Individual objects
implement their own rules and business logic.

Hclient <<BusinessObject>> <<BusinessObject>>
Attributes E parentBo EDbependedBo
] contains]
Operations ‘__Er_o_ﬂ_tié Attributes \ Attributes
public Client() Operations = Operations
public ParentBO getParentBO() public ParentBO() 0. public DependedBO()
public void setParentBO(ParentBO val) public void call{) \\ public void call{)
public void process() \\ public void process()
public void ifexist()
persists \\ 1y
\\ b persists
<<PCJO>> Y Q
ElserviceFacade E ordinaryHelper El applicationservice E patastore
Attributes Attributes Attributes Attributes
Operations Operations Operations Operations
public ServiceFacade()| | public OrdinaryHelper() public ApplicationService() public DataStore()

Figure 4.18. Class Diagram of the Business Object Pattern.

Implementation of the pattern:
Business Objects as ordinary Java objects (POJO Business Objects),
Business object in the form of the complex Entity component (design case 6).
Properties:
Promote object-oriented approach in implementation of the business model,
Centralization of business logic and state and promotion of reusable components,
Avoiding duplication of code and turning it easier to care,
The separation of persistence logic from business logic,
Promoting service-oriented architecture,

68

Usage of ordinary Java objects can lead to outdated information, if they do not

implement their own mechanisms for synchronization and data integrity,

Adding an additional tier - it is not necessary in cases of simple logic, or it directly
benefits from the business model realized as a relational database schema. However,
this may be the result of an error,

Danger of creating very complex objects.

| cParentB O | | :DependedBO |
T

alt

4l

[public void call{) " publicvoid process()i

| =

public void process()

I I:g pubiic void call()
|
|
|
|
|
|
|
|
|

|

|

I public void call{)
| /

|

|

|

Figure 4.19. Sequence Diagram of services of the Business Object Pattern.

4.3.6. Composite Entity Pattern
Problem 6 — Use of Entity components to implement the conceptual domain model.

Business objects are not appropriate for transferring between tiers by using the Transfer
Object component because of their remote behaviour.

A choice should be made between local and remote Entity components. Local components
are more efficient than remote but less efficient than ordinary business objects, which
implemented the Business Object pattern.

Requirements:

Avoid drawbacks of remote Entity components, such as substantial network traffic and
remote relationships between components,

Should be used by the component-managed persistence (BMP - Bean-Managed
Persistence), using in-house or non-standard implementations of the persistence
mechanisms,

Our application is in an optimal way to implement a parent-child relationships, using
business objects, implemented in the form of Entity components,

Our application should use and combine existing business objects implemented as
POJO objects with Entity components,

Our application should use the EJB container, which provides management mechanism
of the transaction and security,

Hide the physical database design from clients’ applications.

69

The Composite Entity:

It should join (using aggregation) persistent business objects in the form of local Entity
components and ordinary Java objects (POJO),

There are two ways of implementing the object model, related to matters of security,
transaction management, resource pools, caching, and concurrency,

Using ordinary objects of Java classes (POJO) and mechanism for meeting the specific
requirements of life such as: DAO, proper implementation of the persistence
mechanism using the Domain Store pattern or consistent with the JDO (Java Data
Object) implementation,

Application Entity objects according to the Composite Entity pattern, deciding whether
to use the BMP or the CMP (Container-Managed Persistence) persistence,

Simple applications running on the same computer can provide for clients the business
objects, in the case of composite applications they can use patterns with remote calls:
Session Facade, Application Service, Transfer Data Object.

public Client()
public CompositeEntity[1..*] getCompositeEntity()
public void setCompositeEntity(CompositeEntity val[1..*])

EiClient =l CompositeEntity
Attributes Attributes
Operations Operations

profit
N public CompositeEntity()

| public DependedBO[0..*] getContains()
" | public void setContains(DependedBO val[D..*]

public void call()
public void process()

7 N

mDependedEntityBO]
contain

El sessionFacade ElApplicationService public void store()
Attributes Attributes _1 l 0.*
contains
Operations Operations
public SessionFacads() public ApplicationSenice() ElDependedBO
Attributes
ElDependedEntityBO TS
- public DependedBO()
Attributes ﬂ
Operations
public DependedEntityBO() ElDependedPOJOBO
public void getDatas() Attributes
public void process() Cperations
public void setDatas() public DependedPOJOBO()
public DependedEntityBCO getDependedEntityBO() public void getDatas()
public void setDependedEntityBO(DependedEntityBO val) public DependedPOJOBO getDependedPCOJOBO()

public void setDependedPOJOBO(DependedPOJOBO

mDependedPOJOBO -
contains

Figure 4.20. Class Diagram of the Composite Entity Pattern.

70

| : Client || : EJBContener | | : CompositeEntity | | : DependedPOJOBO || : DependedEntityBO ” : DependedEntityBO | | :DataStore|
[[

_________ B e e

public void calll) | i i
T
| !public woid loadDatas()!
T
ubilic woicl procesls()]

!

public void calll)

ublic void getDatas()

|
|
|
|
ublic void getDatas{) |

ublic void! process(

|
||:TF ublic void getDatas(

|

|

|

|

|

|
|
|
|
| :
| . |
| ublic void setDatas(
ublic voicl procesls()]
- | |
= |
|
|

)

|
|
| Fublic void storeDatas(i
|
|

Figure 4.21. Sequence Diagram of services of the Composite Entity Pattern.

The components of the pattern (Figure 4.20, Figure 4.21):

Client — It may be the SessionFacade, Application Service or other supporting
components (View Helper component) that requires access to a business object,

CompositeEntity - It is a key element of the pattern. It contains dependent objects. It
plays role such as the GOF facade,

DependentBO, DependentEntityBO, DependentPOJOBO — They create an object tree
DataStore — It represents the persistent storage,

EJBContainer — It is involved in the operations of reading and writing Entity
components. To this end, it calls the read /write Entity components.

Implementation of the pattern:

Remote Facade as the Entity Composite component in cases of simple business logic
Entity Composite component with the BMP persistence,

Lazy loading,

Optimalization Storage,

Complex Transfer Object.

Properties:

Facilitate code maintenance,

Improve network performance, because not all objects of the model must communicate
remotely,

Slower than the solution using standard Java objects (POJO),

Reduce dependency on the database schema,

Reduce the fragmentation of objects,

Creating complex transfer objects.

71

4.3.7. Transfer Object Pattern

Problem 7 — Transferring data between tiers of application (reducing network traffic by
reducing the number of remote calls, or improve efficiency):

— Transferring data between tiers (business objects from the Business Tier or DAO
objects from the Integration Tier) should not generate much traffic, so be sure to send
lots of data using one complex transfer object,

— Independence of implementation of the Presentation Tier from the Business Tier
objects and the Business Tier from the tiers of integration by using the transfer object
for transfering data between the tiers of an application.

Requirements:

— Our application should allow clients to access to components from other tiers and
enable them to download and modify their data,

— Our application reduces the number of remote calls,

— Our application should avoid the performance degradation caused by the large number
of remote calls.

The Transfer Object:
— These objects are used to move multiple items of data between tiers.
The components of the pattern (Figure 4.22, Figure 4.23):

— Client — It uses the Component object to retrieve and send data. The Client component
is typically located in the different tier,

— Component - This may be an object of a different tier than the Client component,

— PresComponent — The Component object is locate