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SOME REASONS WHY WE SHOULD TEACH 

MATRICES TO STUDENTS OF ECONOMICS  
 

Wojciech Rybicki  

 

 
Abstract. The paper makes up the second part of the series of articles aimed at establishing 

the usefulness of matrices in the study of contemporary economic sciences. The series was 

initiated by the present author in his previous article of this subject (Rybicki, 2010). The 

items chosen to be presented here concern applications of (operating with) matrices in the 

field of welfare economics and to the description dynamics of economic systems. The first 

class of matrices we discuss serves as tools for indicating the inequalities of distributions of 

(finite) commodity bundles (and as devices to “equalize” these distributions). Other consid-

ered families of matrices consist of transition matrices of Markov chains. The presented 

statements are of an elementary character – they are intended to help students feel (and 

believe in) some uniformity of the content of lectures on mathematics and economics and 

(in a wider sense) operations research. 

 
Keywords: commodity bundle, double stochastic matrix, equalization of allocations and 

distributions, Markov chain, transition matrix, Markov-Chapman-Kołmogorov equations. 

 

1. Introduction 

In this article, the considerations on the role of matrices for the educa-

tion of students of economics are continued. The author began to discuss 

some observations and impressions concerning this problem in his previous 

paper (Rybicki, 2010), where the main ideas were laid out and a number of 

examples were outlined. There we argued that students of economics, as 

well as the readers of scientific papers qualifying for these (and related) 

fields, unavoidably encounter the notion of matrix and matrix notations on 

many occasions during the period of their study (the same concerns also 
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some routine operations with matrices). Actually, with very little exaggera-

tion, one may formulate (somewhat jokingly) a warning: “the matrices can 

be spotted everywhere” (from representations of multidimensional data, 

through “profound” statistics and econometrics, theory of games, investiga-

tions of random phenomena, up to some macroeconomic models). 

According to the announcement given in the above mentioned paper, 

today’s subject matter is to present applications of matrices to selected 

problems from welfare economics and stochastic dynamics of economic 

systems. 

So in the first section the role matrices play as tools for indicating, 

comparing and measuring inequalities of distributions (of goods, resources 

or finite commodity bundles) is established. Simultaneously, operations 

with matrices treated as devices for equalizations of such inequalities (via 

reallocation procedures) are involved. The special role of double stochastic 

matrices has to be pointed out, on occasion. 

The subsequent parts of the paper are devoted to showing the applica-

tions of matrices to modelling “Markov dynamics”. The crucial role of 

transition matrices in this context is noted and accompanied by illustrative 

examples – chosen mainly from the area of Markov chains with finite or 

denumerable state spaces. We will mainly discuss the discrete time case, but 

some remarks on continuous processes and “their” families of matrices will 

also be given. The correspondence between the shape of the transition ma-

trices with the behavior of processes is pointed out. 

Moving on to the end of the introduction, the author wants to point 

out that he does not pursue the great generality when presenting the chosen 

notions and mathematical objects. One may easily find some general 

schemes, “governing” (obeying) the discussed special cases. They are the 

stochastic integral kernels (Markov kernels), the idea of mixing (of parame-

terized families of probability distributions), the concept of measurement of 

randomness of probability distributions (non-parametric) setting, double 

stochastic operators and some stochastic orders (especially convex, concave 

and Lorenz orders). Some generalization (just in the spirit of Markov ker-

nels and the theory of mixtures of probability measures) are discussed in the 

subsequent paper the author has prepared for print in the next issue of  

Didactics of Mathematics (Rybicki, 2013). The matrices useful in the de-

scription of autoregressive schemes, the Youle-Wakker equations and some 

model of the financial market, will also appear in that article.  
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2. Double stochastic matrices and a comparison  

of distributions of commodity bundles 

The idea of comparing certain n-vectors of numbers (of equal “lengths” 

and sums of their coordinates), reflecting the extent of their uniformity 

(“similarity” of coordinates) goes back to the paper of Muirhead (Muirhead 

1903), the seminal theorem of Hardy, Littlewood and Polya (Hardy, 

Littlewood, Polya, 1929) and Schur (Schur, 1923) (pre)orders (Schmeidler, 

1979; Le Breton, 1991; Arnold, 1987; Nermuth, 1993). Some significant 

elements of the original reasoning and constructions turned out to allow 

generalizations towards a wide variety of directions; very often they “en-

countered” other (sub)theories, “interwove” with them and developed with 

an increased impetus. From a historical perspective, one may note the “pre-

vailing probabilistic share” in this development. Just inside of the “probabil-

ity and statistics world”, various types of stochastic majorization have  

appeared, as well as the notions of stochastic dominances and stochastic 

orders, such as convex and Lorenz orders – starting from one-dimensional 

case and culminating in the Choquet order, defined on spaces of probability 

measures on locally convex compact (and more general) spaces (Shaked, 

Shanthikumar, 1993; Mosler, Scarsini (Eds.), 1991; Phelps, 1966; Winkler, 

1980). Let us mention (once again) that the related problems appeared in the 

“socio-economic costume” at the beginning of the 20th century – in the 

fundamental works of Lorenz (Lorenz, 1905) as well as Dalton (Dalton, 

1920). 

At the moment we restrict these considerations to the case of measures, 

supported by finite subsets of (say) Banach space. From now on, we will 

refer to the selected thoughts and observations made in the paper of 

Nermuth (Nermuth, 1993) – up to the end of the present section. On this 

occasion, we note that the above mentioned paper does not contain original 

mathematical topics. The author himself wrote (Nermuth, 1993): “In this 

paper I present neither a survey of known theories or else I try to show how 

different economic theories are connected, not on the surface in the sense 

that they address closely related economic problems, but in a deeper sense, 

viz. in their underlying logical structure”. So, on account of the fact that 

matrices appear in that article, as an apparatus used for portraying and elab-

orating chosen models (examples), the article seems to be a “perfectly tai-

lored” source for drawing some illustrations for our needs.  
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Let 1 1{ , , } and { , , }m n x x x y y y  be subsets of a space X, and 

let vectors 1{ , , }m  x  and 1{ , , }n  y be two probability distri-

butions supported by x and y, respectively (all K and s  are non-negative 

and each of the vectors μ and ν has coordinated summing to one). The ma-

trix A with non-negative entries 

 A ( ) 1,..., ; 1,...,ija i m j n    (1) 

is called stochastic (or row-stochastic) if its rows sum to unit. A stochastic 

matrix B such that (additionally) its columns sum to one is called bi-

stochastic (or double-stochastic). Denoting by bi the i-th row of B and, 

analogously, by jb – the j-th column of it, we may note 

 1, 1, 1,T j T T

i n m m nb e e b e e          (2) 

where en is a row vector consisting of n ones, em is a row vector consist-

ing of m ones. The equivalent (but more compact) matrix notations of the 

first two conditions is 

 andT T T T T

n n m me e e e  B B . (2a) 

Definition 1 (Nermuth, 1993; Schmeidler, 1979). A distribution x is 

less dispersed than y  if one of the following (equivalent!) conditions is 

satisfied 

 ( ) ( )i i j s

i j

f f  x y  (3) 

for all convex functions f: X  R 

  ,x x x y  A = A  for a (row) stochastic matrix A. (4) 

Remarks: 

a) The definition also contains the theorem of equivalences of condi-

tions (3) and (4). 

b) One may easily check that x yx  , which means that the distribu-

tions x  and y  have the same expectations. 

c) The choice of the level of generality of the universe X was made    

intentionally: apart from the finiteness of support of distributions consi-

dered, we assumed of X to be a Banach space. For a further construction and 
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examples given below, the minimal condition – of an algebraic character – 

on X, is its linear structure. This enables us to model problems, “beyond the 

real line”, covering the cases of multidimensional objects. 

So, consider the case when X serves as a space of “feasible” l-bundles 

of commodities: (X = R
l 
) allocated for members of set A (agents, objects, 

persons) of (finite) cardinality. In this case one deals with the set 

A = {a1, …, an} and vectors xi  X such that xi = (xi1, …, xil), 

(i = 1, 2, …, n), are interpreted as a basket of goods allocated to a “person” 

(without any loss of generality we may take A = {1, 2, …, n}). Referring    

to the general model introduced above we note that have n = m and 

1 1 1
, , ...

n n n
 

 
   

 
 (n-times) are uniform distributions and xih is the 

amount of commodity h allocated to person i. A crucial role is played in this 

case by the matrix x of n rows (representing agents) and l columns (repre-

senting commodities) 

 ( ); 1, ..., ; 1, ...,ihx i n h l  x . (5) 

The routine “translation” of the statements of Definition 1, together 

with the substitution of convex function by its concave counterpart u    

(u = –f ) leads to the subsequent specifications. The matrices x will be 

called, in short, allocations. 

Definition 1* (Nermuth, 1993). An allocation x is more equal than al-

location y if one of the following (equivalent) conditions is satisfied  

 
1 1

( ) ( )
n n

i i

i i

u u
 

 x y  (6) 

for all concave (utility) functions : ,lu R R   

              Bx y     for a (certain) double – stochastic matric  B. (7) 

Remarks: 

a) Both of the conditions (6) and (7) have clear economic (in the spirit 

of welfare economics) interpretations. More equal allocations are preferred 

when applying a utilitarian criterion (and operating with an identical utility 

function, fulfilling a classical requirement – diminishing marginal utility). 

The “equalization” effect 1( , ..., )nx x  can be achieved with the use of 
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weighted averaging of bundles 1( , ..., )ny y  with weights given, respectively 

by entries (bih) of bi-stochastic matrix B. So, for baskets x1 and x2 we have  

 
1 1 2 2

1 1

and .
n n

j j j j

j j

b b
 

  x y x y

 

(8) 

b) The explanation of the socio-economic “content” of relations (7) and 

(8) in mathematical terms (and notions) is contained in the famous charac-

terization of the collection of bi-stochastic matrices as a convex hull of the 

set of permutation matrices, due to Birkhoff (Birkhoff, 1946; Marshall, 

Olkin, 1979; Nermuth, 1993). The author announced this topic in his previ-

ous paper on reasons for telling students of economics about matrices 

(Rybicki, 2010). 

c) It should be pointed out the role matrices play as “mixing advice”. In 

the above σ-mixing (preceding by permuting) of given objects (bundles of 

commodities) aimed at “improving” (in a defined sense) allocation. Fixing 

one of the indices in a “pair-index” numbering terms of a given matrix, and 

then “integrating” it onto the second ones, results in a new bundle. The 

above scheme is common to the general theory of mixtures of distributions, 

Markov “mechanics”, kernel (stochastic) dominance and so called double 

stochastic operators (see i.e. Mosler, Scarsini (Eds.), 1991; Feller, 1966; 

Szekli, 1995; Schmeidler, 1979). Anticipating further discussion, we merely 

outline at the time, the general pictures of functioning of the mentioned 

scheme  

 ( ) ( , ) ( ); ,
x

A y A dy A  B B  (9) 

 ( , ) ; .t t t

j i

i S

p p i j p j S


   (10) 

The precise meaning of the above relations (as well as the explanations 

of symbols appearing in them) will be given later. Now we are only stating 

that B is a function of two variables: the states from the space S of sets of 

a Markov process and the sets belonging to σ-field B, S denotes the state 

space of a Markov process and both of the relations express the way the 

“new” probability measure is built from the “old” one. One can also take 

another position and treat the transformations (9) and (10) as mixing per-

formed by “mixers”  (and p
t 
) on the families of distributions, parameter-

ized with the help of variables y (or i), respectively). 



Some reasons why we should teach matrices… 

 
61 

Let us return to the mainstream of considerations, and restrict – for 

a moment – the discussion to the one dimensional case: X = R. In this case 

one speaks of income distributions. This branch of the subject constitutes 

the earliest (historically) part of the field of comparisons of equality (of sets 

of objects, namely – numbers; Lorenz, 1905; Dalton, 1920; Muirhead, 1903; 

Hardy, Littlewood, Polya, 1929). 

Nermuth (Nermuth, 1993) mentioned the notions of social welfare 

functions being, at the same time, inequality measures as mappings 

 : nW X R  (11) 

monotonic (increasing) with respect to the above defined relation. Denoting 

it by symbol  we may define (and say – according to points (6) and (7) of 

definition 1*) 

 x y      if  x is more equal than y. (12) 

Then the condition for W to be called an inequality measure may be 

formulated as a requirement 

 ( ) ( ) whenever ,W Wx y x y  (13) 

which, in turn, is equivalent to concavity W in the Schur sense (Nermuth, 

1993; Schmeidler, 1979). 

Reasoning along this line, one may introduce the notion of (linear) 

equalizing redistribution as a linear transformation T assigning to every 

allocation x a new, more equal allocation y. So T acts from X
n
 to X

n
. In the 

framework of the proceeding part of the paper, T has a matrix representa-

tion: there exists such a bi-stochastic matrix B that Tx= Bx. Nermuth men-

tioned a possibility of comparing a grade (or intensity) of equalization: 

summarizing his concept, T is shown to be more equalizing than T* when-

ever * .Tx T x Then, for corresponding double stochastic matrices B and B* 

(respectively) the following statement holds: there exists the third double-

stochastic matrix B** such that ** * B B B . It is worth noting the relation 

of this condition with the measuring of riskiness and intensity of subjective 

aversion to risks (in the tradition of Kilhstrom-Mirman, 1974). 

3. Matrices as devices for modeling  

Markovian random movements – generalities 

There is a common agreement (among economists, as well as resear-

chers acting in other fields) that the majority of phenomena and processes 
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appearing in the real world should be modeled with the use of stochastic 

processes, for their inherited random (or incompletely determined) charac-

ter. The simplest models of random dynamics are provided by random (real) 

sequences taking values from finite or countable sets. Such processes are 

also called time series or processes with a discrete time – for their variables 

are “numbered by subsequent moments (or periods) of time”. The complete 

mathematical description of the above process (even with more general 

spaces of states) is given by defining all their finite dimensional distribu-

tions (satisfying the routine consistency conditions of the Kołmogorov-

Daniell type, see e.g. Kingman 1972). 

Consider a random sequence 

 0 1 2( , , , ..., )X X X X  (14) 

consisting of real variables. For simplicity (and aiming not to obscure the 

main stream of reasoning) we omit the formal restrictions and precise as-

sumptions. One may, for instance, assume that all the functions Xt are de-

fined on the same probability space (Ω, B, Ρ). But, on the other hand, this 

assumption will not be exploited later. Nevertheless, one should not forget 

some tacit (usual) limitation, i.e. all of the appearing subsets (“events”) of 

a real line are assumed to be Borel measurable sets. 

Several kinds of questions concerning the “stochastic behavior” of vari-

ables of the above process may be of some interest. Firstly, one would want 

to know some “basic” families of probabilities. 

 0 0( ).P X A  (15) 

 ( ) 0, 1, 2,t tP X A t  … (16) 

 0 0 1 1( , , , ); 0,1,t tP X A X A X A t     (17) 

 1 1 2 2 1 1 0 0( , , , , )t t t t t tP X A X A X A X A X A         t = 1,2, … (18) 

 1 1( )t t t tP X A X A    t = 1,2, … (19) 

The above expressions refer (respectively) to the initial distribution, the 

family of all finite-dimensional distributions (the joint probability distribu-

tions of the first finite “segments” – collections of variables of process), all 

the conditional distributions, when conditioning with respect to the “whole 

past” and merely to the latest period. Remember that, in the general case, 
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calculating the above quantities turns out to be cumbersome. Note also, on 

occasion, the basic role of conditioning at each stage of calculations 

 

0 0 1 1

1 1 2 2 0 0

1 1 2 2 0 0

2 2 3 3 6 0

2 2 1 1 0 0 1

1 0 0 0 0

( , , , )

( , , , )

( , , )

( , , )

( , )

( ) ( ).

t t

t t t t t t

t t t t

t t t t

P X A X A X A

P X A X A X A X A

P X A X A X A

P X A X A X A

P X A X A X A

P X A X A P X A

   

   

   

   

     

   

    

   

   
 

(20) 

It should be pointed out that all finite dimensional distributions (of arbi-

trary finite collections of variables of process) can be obtained from joint 

distributions of “full initial segments” 0 1( , , , ).tX X X  

Things are getting much simpler when it is possible “to forget” all but 

the latest moment in the history of process (there are many phenomena, 

when such simplifications are justified: the classical random walk, allowing 

one step moves, “up” or “down”, serves as a commonly used example). In 

such a case the long tail on the right of the equality can be substituted by the 

(relatively) “shapely” recurrent expression  

 

0 0 1 1

1 1 2 2

2 2 1 1

0 0 0 0

( , , ) ( )

( )

( )

( ) ( ).

t t t t t t

t t t t

t t

P X A X A P X A X A

P X A X A

P X A X A

P X A X A P X A

 

   

     

   

  

   

 (21) 

Abstracting, for a moment, on the “nature of time” one may formulate 

the idea of a Markov property as a requirement 

 ( , 0; , ) ( )t s s tP X A X x s t P X A X x         . (22) 

We mention once again, that the heuristic convention, we have as-

sumed, “allows” us to neglect some formal subtleness, such as requirements 

on relations to hold “almost sure” (with respect to a given “basic” probabil-

ity measure), or noting “finite-dimensional” dependences in (22). 

At this level of generality, one can comment on the two-parametric 

family of transition probabilities. Fixing t, τ we obtain the generalized “ma-

trix”, whose entries are numbered by pairs (set A, point x) and denote the 
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probability of entering the respective sets at the moment t, “starting” from 

the state x at the moment τ < t:  , , ( , ) ; ,t tp P x A x S A   BR. 

The symbol BR denotes a family of all Borel subsets of reals and the 

meaning of other used symbols will became clear in the light of the follow-

ing notation 

 , ( , ) ( ).t tp x A P X A X x     (23) 

This symbol ,tp  denotes, of course, the probability of entering the set 

A at a moment t, conditioning the value of the process at an earlier instant τ 

to be x. One may regard the above explanation to be a pointless repetition of 

remarks preceding the formula (23) – but the author did it deliberately: to 

underline the importance of operation of conditioning, from the mathemati-

cal (probabilistic) point of view.  

Coming back to the case of (discrete time) Markov chains with the fi-

nite or denumerable state spaces, we formulate the “original” Markov prop-

erty 

 
1 1 1 1 0 0 1 1( , , , ) ( )

, 0.

t t t t t t t t

l

P X s X s X s X s P X s X s

s l

         

 S
 (24) 

Abbreviating the notation, we may write  

 1( , ) ( ),t t l t kp k l P X s X s    (25) 

which is simply the probability of transition from the state k at the moment t 

to the state l at the next moment. So we again have obtained the (one-

parameter) family of conditional probabilities – the so called one-step tran-

sition probabilities (numbered by discrete points of the time axis).  

Assuming, for a moment, the finiteness of a state space S (i.e. s = n), 

one may arrange these quantities in a family of square (n  n) matrices 

(transitions matrices for subsequent moments of time) 

 [ ( , )]; , 1, ..., ; 0,1, ...t tP p k l k l n t    (26) 

The most basic applications of such matrices consist in operating with 

them to calculate subsequent “marginal” (one-dimensional or multidimen-

sional) distributions. 
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Denoting by pt the (row) vector – distribution of the variable tX :

1, ..., n

t t tp p p    , where 

 ( )k

t t kp P X s   (27) 

we obtain the identity 

 
1t t tp p P    (28) 

(the terms of vector pt +1 are calculated with the – multiple – use of the 

formula of total probability). 

Iterating the procedure defined by the formula (28) (engaging the sub-

sequent “present” ones and the matrices of one-step transition probabilities), 

results in the appearance of the expression for the probability distribution 

(of a variable of process in considerations) at time t. Given the distribution 

at point s and the product of t – s one-step transition matrices 

 
1( ).t s s s tp p P P P      (29) 

The above equations inform us about the “mechanics” of transitions 

during the period of (discrete) time ,s t . In the “language” of probability 

transitions matrices, one can “codify” these partial calculations into the 

compact form 

 ,

0

;
t s

s t s k

k

P P s t






  , (30) 

where the symbol on the left denotes the matrix of (probabilities of) transi-

tions (for all “feasible” pairs of states) from the moment s to the moment t. 

The generalization of the above relations leads directly to the basic rela-

tions of the theory of Markov-type dependencies. For each triple of time 

moments (say, on the positive half-line of reals) s < t < u , the following 

equality holds 

 
, , , .s t t u s uP P P   (31) 

The equation (31) is known as the Chapman-Kolmogorov equation. 

It should be noted that (31) is valid also in the case of continuous time and 

that it is a “prototype” for various generalizations: integral representations 

(the same idea) and semi-group of transition (probability) operators (see 

Feller, 1966; Szekli, 1995). It is clear, that – on the other hand – the Chap-
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man-Kolmogorov formula itself makes up a generalization of the original 

Markov requirement (condition) – which will be quoted (and briefly com-

mented on), in the sequel. 

Coming back to the models elaborated earlier (discrete time, discrete 

state-space), let us assume, for a moment, the independence of transition 

formulas on time. More precisely, one may consider a special case of the 

models discussed up till now: suppose all the one-step transition probabili-

ties do not depend on the time parameter 

 ( , ) ( , ) 0; , .tp k l p k l t k l S     (32) 

This requirement involves, in turn, an analogous condition for one-step 

transition matrices (which cover simultaneously all “singletons” like (32)). 

So one may write 

 .tP P  (33) 

The corresponding Markov process is called a homogenous Markov 

chain. The slightly more general formulation of the condition (33) involves 

many-step transitions 

 
, ( ).s t t sP P   (34) 

The essence of the above conditions makes up the expression of de-

pendence of a functional form of the Markov-type rule, governing the sto-

chastic movement merely on differences between moments (periods) of 

time, but neglecting their absolute positions. So this is the reason for replac-

ing the ordered pair of subscripts s, t by their difference in brackets at the 

right-hand subscript of symbol of matrix of transition probabilities P(t–s). 

The multiplication of matrices, and increasing them to the subsequent pow-

ers, then “produce” the desired representations of multi-stage transitions. 

The present circumstances allow us to rewrite the Chapman-

Kolmogorov equation in the form: 

 
( )m n m nP P P   , (35) 

which is closer to the original Markov equation 

 ( ) ( , ) ( , ) ( , )m n m n

j S

p k l p k j p j l



  (36) 
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for all natural m, n and all “triples” of states , , .k j l S Going a step ahead, 

we conclude that the matrix of transitions in (say) n step equals the n-th 

power of one-step transition matrices 

 
( )

( ) .n

nP P  (37) 

After outlining the basic features of applications of a matrix calculus for 

describing some elementary rules of a kind of random evolutions, we only 

mention the validity and effectiveness of the so called algebraic theory of 

Markov chains. This approach exploits merely “pure” algebraic techniques 

such as e.g. the Perron-Frobenius theory. The classification of states of 

chains and the distinguishing of special kinds of subsets of the state space 

(according to their role in the long-term behavior of the process) is strictly 

connected with the form transition matrices take: especially important are 

correspondences between sets of recurrent, periodic and transient states and 

their closure properties with the block-like shape of matrices or the impossi-

bility of their decomposition (the irreducibility of chains and ”their” matri-

ces – see Rosenblatt, 1967; Feller, 1966 or Fisz, 1967). The same thing 

concerns the phenomenon of absorption (by some “barriers”) and zeros of 

corresponding entries of transition matrices, and – in fact – the whole “finite 

state space” ergodic theory. We are not going in to pursue in this paper these 

(elementary, and – at the same time – very deep) theories, restricting our 

considerations to the basic notes on relations linking the description of (the 

simplest) random dynamics with elementary notions of linear algebra – on 

the level of definition, which were already presented. 

4. Matrices as devices for modeling Markovian movements 

 – some examples 

Let us begin with the random sequences of i.i.d. – type
1
 taking their 

values from the finite or countable set of states S = {0, 1, 2, …}, according 

to the (fixed) probability distribution p = (p1, p2, …), (P(Xt = s) = pt  for  all 

variables Xt  of the process in mind). In  this case the transition probabilities 

do not depend on “starting states” (in subsequent moments) – simply, by 

definition. So all the rows of a transition matrix are the same (say, 

p = (p1, p2, …) and – of course – ps ≥ 0 (s  S), ps = 1 and 

                                                 
1
 The notation “i.i.d.” is in common use as an abbreviation of the phrase: “independent, 

identically distributed”. 
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0 1 2

0 1 2

0 1 2

, , ,

, , ,
;

, , ,

p p p

p p p
P

p p p

 
 
 
 
 
 

 (38) 

passing to the slightly more interesting (class of) cases is possible in an easy 

way. One should substitute the “original” i.i.d. moves (or changes) by their 

cumulative effects: the variables Xs are replaced by their partial sums 

 
0

.
n

n t

t

S X


  (39) 

The simplest process belonging to this class is a model of movement of 

a particle, walking on the lattice of nonnegative integers. The subsequent 

steps are assumed to be i.i.d. jumps of a unit “up” or “down” ( { 1,1})tX  

with respective probabilities p = P(Xt = 1) and q = P(Xt = –1). The above 

regime results in the behavior of process of cumulated sums of individual, 

subsequent moves. The variables of process Sn do not remain independent, 

the process itself becomes a Markov chain – the (discrete: time and the state 

space) random walk. If we allow this walk to vary without bounds, the 

unbounded random walk is obtained, which makes up a mathematical ideal-

ization of (a simplified) physical phenomenon. Before writing the corre-

sponding transition matrix we are going to discuss (very briefly) the other 

possibilities: there may appear two (or one) “traps” – so called absorbing 

states (barriers, screens). If a particle attains such a state then it remains 

there forever, the probability of getting out is zero. These restrictions may 

be relaxed to admit leaving the screen with positive probability (so called 

elastic screens) or even guaranteeing (“automatic”) escaping to the nearest 

previous position with probability one (the case of reflecting screens). 

There are at least two other stories which may be associated with the 

above model - one may equally well decide to take the inverse direction of 

reasoning – the formal models being involved in the stories one would 

conceive. One of them is the classical problem of a gambler’s ruin. The 

player visiting a casino (or simply – deciding the “fair” or “unfair” coin) 

performs a sequence of independent repetitions of bets which could result in 

gains (of say one dollar) or of the loss (of the same size) with, respectively, 

probabilities p or 1 – p. The player begins his/her game with the initial 

capital (say) “a”, while the capital of the casino may be assumed to be a 

“large” (positive, integer) number “C – a” or even infinity. The situation of 
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infinite gambles may be modeled by the assumption, that the level zero 

plays a role of a reflecting barrier (the “benevolent uncle” who lends 

him/her every time a lacking dollar). The interpretation of the discussed 

random evolution of great importance may be expressed in terms of fluctua-

tions of a level of capital (or resources) of an insurance company, confron-

ted with random shocks (unavoidable expenditure when claims are       

reported), disturbing its steady – usually, linear – increase of capital (flows 

of premiums from policyholders). 

Let us start with describing a model with two absorbing screens located 

at points 1 and u (the integer greater than 1). The (one-step) transition prob-

abilities matrix of the discussed above random walk, can be easily deduced 

from the assumptions. So we have 

 

(1,1) ( , ) 1, and for 2 1

if 1

( , ) if 1 .

0 if 1

p p u u i u

p j i

p i j q j i

i j

    

 


  
  

  

Hence the transition matrix of this homogenous (in time) chain is a square 

matrix of dimension u and it takes a form: 

 

1 0 0 0

0 0 0

0 0 0 0 .

0 0 0 0

0 0 0 0 0 0 1

q p

P q p

q p

 
 
 

  
 
 
  

 (40) 

On the other extreme, one may find (an unbounded) random walk with 

countable space of states (numbered by positive integers), where the state 

“1” makes so called reflecting screen p (1, 2) = 1. There is not, in the pre-

sent case, any upper limit for the described movements, but the remaining 

transition probabilities are the same as in the previous example 
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0 1 0

0 0

0 0 .

0 0 0

q p

P q p

q p

 
 
 

  
 
 
  

 (41) 

If we allow a particle to stay at the state 0 with probability q and escape 

to the state 1 with probability p = 1 – q (0 < q <1), then the chain obtained 

in this fashion is said to have an elastic screen at 1. Doing the same with 

(say) level u leads to random walk with two elastic screens – this is again a 

bounded, homogeneous Markov chain, whose transitions are governed by 

the u x u matrix 

 

0 0

0 0

0 0 0 .

0 0 0

q p

q p

P q p

q p

q p

 
 
 

  
 
 
  

 (42) 

In the terminology of (repeated) games, the players decide (with proba-

bilities p or q, respectively) to give a chance of continuation of gambling for 

their opponents. Analogously: banks admit (conditionally) allowing the 

insurance company to continue its functioning. 

A more realistic case is described by the matrix (Feller 1966): 

 

0 0

1 1

2 2

2 2

0 0

0 0

0 0

0 0 0

q p

q p

P q p

q p

 
 
 
 
 
 
 
 

, (43) 

which corresponds to random walk on the positive half-line (the state-space 

consists of nonnegative integers). In this case the probabilities of transitions 

depend on the numbers (“magnitudes”) of states. They change – the (homo-

geneous in time) chain has lost the property of being homogeneous in the 

state space but, of course, 1, 0, 0; {0,1, ...}.k k k kp q p q k     Such 
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chains play an important role as (discrete) models in the theory of birth and 

death processes. 

5. Concluding remarks 

In the article, several classes of application of matrices in the field of 

economics were exhibited. Students of economics encounter such problems 

at various stages of their high-school education. Continuing the beginnings 

undertaken in his previous paper, the author aimed to extract the essential, 

decisive “mechanics, hidden between square brackets” – the commonly 

known pictures. The content enlightened in the paper may be seen as two-

fold: (i) the matrices as devices equalizing “unjust” allocations (or distribu-

tions) of goods, services or resources; (ii) matrices as generators of rules of 

(stochastic, Markov-type) movements. The models of the first type appear 

in the context of welfare economics, the second inevitably enter the branch-

es of operation research (the “classics”: queuing, renewal and reliability 

theories, as well as the problems of (insurance) risk processes, obligatorily 

present in the modern courses conducted for students of economics. We 

actually restricted the modeling to the simplest (discrete time and state-

spaces) cases. 

What should be concluded from the above consideration – in respect of 

the methods of teaching students (familiarizing them with elementary math-

ematical notions and convincing them as to the fairness and effectiveness of 

the “culture” of mathematical treating phenomena of quantitative economics 

– in the order of learning other subjects)? First of all, it would be desirable 

for them to note the multi-sided, but – in a sense – unique nature of matrices 

as operators acting in the “linearized world”: contracting, extending, equal-

izing, mixing, comparing and rotating the systems of vital significance, and 

(at the same time) – generators of “infinite sequences of one step random 

moves” of processes. The theme of comparing will be presented in the paper 

(Rybicki, 2013). A notable part of considerations concerned basic relations 

linking the description of (the simplest) random dynamics with elementary 

notions of linear algebra – on the definition level. In the author’s own opin-

ion, the above mentioned – mathematically trivial – findings are of some 

didactic (methodological) importance: they illustrate the linear character of 

Markovian stochastics, the “mystery of randomness” is resolved as a se-

quence of multiplying subsequent probability vectors by stochastic matrices. 

One may – somewhat provocatively – say that such “randomness is nothing 

but linearity”! But, on the other hand, one may be aware of the fundamental 
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danger hidden in such logical abbreviations and abstractions. The simplicity 

may easily degenerate into crudeness (or, at least – charlatanry) which in 

turn, leads directly to lying to the beginners (first course students of eco-

nomics), which – of course – is an inadmissible practice (especially in the 

“positive” exposition of the subject!). The idea of randomness must not be 

“lost” or “deleted” – teachers are expected to suggest effective ways of (and 

tools for) solving problems and to reveal the various perspectives of looking 

at them, but nothing like the negation of models before presenting them. 

The considerations of the paper are to be continued in the accompany-

ing paper of the author, submitted to print in the same issue of Didactics of 

Mathematics (Rybicki, 2012). The mentioned article (entitled “Further 

examples of the appearance of matrices (and the role they play) in the 

course of education of economists”) is devoted to introducing families of 

transition probability matrices and to stressing the role of intensity matrices 

– for processes in continuous time; some remarks on “Poissonian mechanics 

and its matrices” are to be made; elementary facts from the “finite states” 

ergodic theory are reported and the role of eigenvectors in the problems of 

the choice of the structure of inputs, given the technology (matrix), is 

demonstrated.  

6. Summary 

The subject matter of the paper is to present applications of matrices to 

the selected problems from welfare economics and stochastic dynamics of 

economic systems. In the first section, the role matrices play as tools for 

indicating, comparing and measuring inequalities of distributions (of goods, 

resources or finite commodity bundles) is established. Simultaneously, 

operations with matrices treated as devices for equalizations of such ine-

qualities (via reallocation procedures) are involved. The special role of 

double stochastic matrices has been pointed out. Subsequent parts of the 

paper are devoted to show the applications of matrices to modeling “Markov 

dynamics”. The key role of transition matrices in this context is noted and 

accompanied by illustrative examples – chosen from the area of Markov 

chains with finite or denumerable state spaces. The discrete time case is 

discussed, but some remarks on continuous processes and “their” families of 

matrices are also given. The strict connections between the shape of the 

transition matrices and the behavior of processes is pointed out. 
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