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FURTHER EXAMPLES  

OF THE APPEARANCE OF MATRICES 

(AND THE ROLE THEY PLAY) 

IN THE COURSE OF THE ECONOMISTS’ EDUCATION 

 
Wojciech Rybicki 

 

 
Abstract. The paper makes up the third part of the series of articles aimed at establishing 

the usefulness of matrices for the study of contemporary economic sciences. The series was 

initiated by the present author in his previous articles of the subject (Rybicki, 2010, 2012). 

The themes discussed in the present article concern two areas: (i) the surface description of 

the Markov-type, continuous time stochastic dynamics (with special emphasis placed on 

“Poisson dynamics” and on families of transition probability matrices and intensity matri-

ces – finite or denumerable spaces of states); (ii) the second is devoted to showing the role 

of eigenvectors in modeling the economic dynamics. 

 
Keywords: Poissonian dynamics, queuing and risk models, intensity matrices, Kołmogorov 

equations, eigenvectors and eigenvalues of matrix of technology. 

1. Introduction 

This paper makes up the third part of the series of articles aimed at es-

tablishing the usefulness of matrices for the study of contemporary econom-

ic sciences. The present series was initiated by the author in his previous 

articles on the subject (Rybicki, 2010, 2012). The themes discussed in this 

article concern two areas: (i) the description of the stochastic dynamics of 

Markov-type systems (with the use of families of transition matrices, num-

bered by continuous time parameters, “running” along the positive part of   

t-axis), when special attention is placed on the Poissonian laws of motions, 

and intensity matrices – as generators of “huge powers” (like a mass, con-

centrated at some “aster-objects”), allowing them to create infinite chains of 

rules, governing the frames of randomness of trajectories (of classes of 

random process); (ii) the second one is devoted to exposing the role of 
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eigenvectors in modeling economic dynamics. In this context, there appear 

tasks of an important role in determining the so called stationary – with 

respect to the given transitions semi-group – distributions. On the other 

hand, they help to choose the optimal proportions of the sharing of compo-

nents creating the input vectors in an individual firm’s management or 

“steering” the large economic systems (“optimal” means – guaranteeing the 

acceptable rates of return on the invested capital or development of the 

national economy as a whole). The considerations of the paper are complet-

ed by conclusions, containing also the announcement of the subject of 

a subsequent part of the series (entitled “The role of matrices in the contem-

porary education of students of economics – further remarks and examples 

of applications”), in which some general schemes (involving operations 

with the – sometimes generalized – matrices) are to be outlined. The author 

has prepared that article for print in the next issue of Didactics of Mathemat-

ics (Rybicki, 2013). The stochastic (Markov) integral kernels (as generators 

of Markov dynamics, as well as devices for the measurement and compari-

son of randomness of so called random projects – double stochastic opera-

tors) are also mentioned in the above paper, as well as some remarks of 

mixing (of parameterized families of probability distributions), the concept 

of monotone matrices (in the spirit of Schur ordering). The usefulness of 

matrices in the description of autoregressive schemes, the Youle-Wakker 

equations and some models of the financial market are noted there as well.  

2. Matrices of the “Poissonian dynamics” 

The classical model of a Markov chain (non-homogeneous case) with 

a countable state space makes up the following Poissonian “mechanics of 

changes” in discrete time. Actually, the discussed example appears as 

a (somewhat artificial) “extracting” discrete frames of time from the Poisson 

process on the positive half-line of reals (continuous time) – we will return 

to this process in a sequel. The transition probabilities are defined by the 

formulas: 

 
if

( , ) ,( )!

0 if

m

j i

m

m

e j i
P i j j i

j i

 



 
 

 (1) 

for i, j = 1, 2, …; m = 1, 2, …, where all the “lambdas” are positive (con-

stant) parameters. If the requirement that ;t s   for t ≠ s is fulfilled, the 
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non-homogenity is guaranteed. When we put ,i  for all indexes (i), then 

the homogenous chain is obtained. 

It may be of some interest to note the form of the matrix of transition 

probabilities in ( 1)r r  steps. The corresponding probabilities are easy to be 

obtained thanks to the fact that a distribution in each row of the matrix Pm is 

subject to the Poissonian rule 
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Hence 
, , ( , ) ; , , ,m m r m m rP p i j m r N i j N 

     , where 
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So the matrix 
,m m rP 

 is, of course, upper triangular as well. 

Just this Markov chain was, at the beginning of the 20th century,       

applied by Swedish engineer Erlang to model the phone exchange (Erlang, 

1917) and, practically at the same time, by another Swedish scientist, 

Lundberg, as a model of the stream of claims reported by an insurance 

company (Lundberg, 1903). 

So these stimuli laid the foundations for the queuing theory and the the-

ory of risk processes describing the dynamics of fluctuation of the side (or 

level) of insurance companies’ capitals. Both of the above (sub)disciplines 

are present in the contemporary programs of a study of economics for their 

increasing significance in the business area. The origins of the subject con-

cern the case when random variables Yj (j  N) denote the number of calls 

incoming to the phone exchange from the moment t = 1 to the moment t = j. 

Continuing to reflect the “ideal” randomness of “location” of subsequent 

calls on the positive (discrete) time axis there are assumed (or deduced from 

other primitive postulates): the independence of quantities of additional 
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signals observed during the interval 1j t j    on the behavior of the pro-

cess of calls before the instant j which are governed by Poisson distribution 

with parameter λj (the general, non-homogenous case). 

The chain we are discussing is – sometimes – called the (stochastic) 

growth process: parallel to the passing of time the probability mass is       

shifting toward the states of higher numbers which may be interpreted as 

a (stochastic) tendency of increase of the global quantity of the considered 

systems (including – a very optimistic – version of the total economy level). 

3. The Markov processes in continuous time  

and “their” families of transition probabilities 

The above discussed chain makes a discrete time approximation to the 

variety of models describing the functioning of devices and systems in time, 

when the flows (or streams) of objects are flocking to be serviced. The 

mechanics of the arrival of these objects is assumed to be random. They   

can be of a multiple nature: elementary particles, observed in a molecular 

physics laboratory, calls registered by a phone exchange, items of products 

“crowding” to the next stage of the channel, claims reported by an insurance 

company or clients arriving at the ticket office, also the cars, lorries, boats, 

ships or planes. The somewhat idealized assumptions, such as a mutual 

independence of quantities reported in disjoint time intervals, identity of 

distributions of numbers of (say) calls coming at intervals of the same 

length and the exclusion of possibilities of the appearing portions of several 

(greater than one) objects at the same time (or in “infinitesimally short” 

intervals) leads to the classical Poisson processes – proceeding in continu-

ous time ( ; 0),tX X t   where 
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( ) ; , 0
!

k

t

t
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k


    . (3) 

The above assumed properties of so-called stationarity (homogeneity) 

and independency of increments implies the Markovian property 
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. (4) 

So in this case we deal with a family of (stochastic) transitions matrices 

“numbered” by positive reals given by the formula: 
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 , 0,sP s   (5) 

where 

  ( , ); , ; 0t tP p k l k l N t    (6) 

and ( , ) ( )s t s tp k l P X l X k   . (7) 

 

The process X is homogenous in time and space. The whole characteristic of 

this process is given by the family of transition matrices. It is worth noting 

the importance of the assumption excluding multiple signals which in turn 

prevent “explosions” – the discussed process is to be called ordinary Pois-

son process. 

The parameter λ is called an intensity of process X and describes 

(roughly speaking) the “average probability of at least one signal appearing 

in the infinitesimal interval of time”. To be more precise, we can define (for 

the arbitrary stochastic stream with stationary increments) the intensity of 

such a stream as a limit 

 = 
0

( )
lim
t

w t

t
, (8) 

where w(t) denotes the probability of reporting at least one signal during the 

interval of length t (such limits always exist, although they may be improper 

ones (Kopociński, 1973)). 

 The related notions of great importance are the (general) matrices of in-

tensities of transition for the state (say) k, to the state l (at the moment t). 

We proceed with the introduction of them by some revivals of bases. The 

general theorems of the theory of Markov process (see e.g. Szekli, 1995) 

justify – under proper regularity conditions – identifying the arbitrary, con-

tinuous time, homogenous (in time) Markov process with finite or countable 

space of states with the family of transition probabilities. They are functions 

of the form 
, ,( , ) ( , ) ( ,{ })h t t h t t hP i j p i j P i j   probabilities of “entering” the 

set {j} at the moment t + h, “departed” from the state i at the moment t. 

The fact that the above family of generalized matrices plays a crucial 

role in a (complete) description of time homogenous Markov chains of this 

kind follows from the theorem below. 

Theorem (Szekli 1995, p. 67, Corollary E) 

It { ( , ); 0, , }hp i j h i j N   is a family of measurable functions ful-

filling 
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 ( , ) 1, for all 0, ;h

i N

p i j h i N


    (i) 

 ( , ) ( , ) ( , ), for all 0 ; ,h t h h

k N

p i j p i j p k j h t i j N



      (ii) 

 ( , ) 0; ( , ) 1; for all , , 0h op i j p i i i j N t    , (iii) 

then there exists a Markov process ( ; 0)tX t   such that, for all 

, , , 0i j N h t   

( ) ( , ),t h i hP X j X i p i j     

and it has an arbitrary initial distribution μ. 

The above quoted theorem enables, in fact, to give the formal definition 

of Markov chains in continuous time (just like processes whose existence is 

ensured by the theorem). Let us change (slightly) only for a moment, the 

notation: by { ; 0}tP t  the (whole) family of transition probability matrices 

(of an infinite dimensions), will be denoted 

  ( , ) , , ; 0t tP p i j i j N t    (9) 

symbol(s) ( , )tp i j  should be interpreted as probabilities of transitions from 

the state i to the state j during the time interval of a length t. The property 

(of homogeneity) of processes allows us the “indexing” of the family with 

the use of merely a single parameter – the distance between the instants in 

mind. Suppose that for all entries of matrices Pt the following limits exist 

and are finite (Kopociński 1973, Szekli 1995) 

 
0

( )
lim

ij

ij
t

p t
q

t
 , (10) 

 
0

( ) 1
lim ii

ii
t

p t
q

t


 . (11) 

The matrix Q = [qij] i, jN is called the intensity matrix of this family 

(or the intensity matrix of the corresponding Markov chain). 

A glance at the formulas defining intensities, suggests the possibility of 

associating them with some kind of (natural) derivatives (at zero) of transi-

tion probabilities. This circumstance is of much more importance than 

a solely “graphical” similarity. For “small” t we may write 
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 ( , ) ( ) ~ , andt ij ijP i j q t o t q t    (12) 

 ( , ) 1 ( ) ~1 .t ii iip i i q t o t q t      (13) 

The above relations express the property of “infinitesimal proportionali-

ty” of transitions probabilities to (corresponding) intensities. 

The above observations can be summed up in the following notation 

 
0

tdP
Q

dt t



. (14) 

On this occasion we recall some terminology. The intensity matrix Q is 

called regular if .ij ii

j i

q q


   If in addition, sup(–qii) < , then the adjective 

“uniform” is added. It is worth noting the “finite case” – when an intensity 

matrix is easily “visualized” as a picture 

00 01 0

10 11 1

0 1

n

n

n n nn

q q q

q q q
Q

q q q

 
 
 
 
 
 

 

these properties (regularity and uniformity) are always fulfilled. The clou of 

interest and the essence of the role of intensity matrices, is “potentially 

hidden in them”: the single matrix suffices to reveal and determine the 

whole stochastic mechanics of the chain in mind (Kopociński, 1973; Szekli, 

1995). 

A powerful device is provided by the famous Kolmogorov equations 

together with expanding in the power series of exponential (general, matrix-

like) function (the convergence of matrices appearing in the formulas is well 

defined, by adopting “natural” norms). 

Theorem (Theorem F, Szekli 1995, p. 68; Feller 1969; Kopociński, 

1973). 

If Q is a uniform intensity matrix, then the formula 

 
0 !

n n
Qt

t

n

Q t
P e

n





   (15) 

defines a Markov transition functions family, which is the unique solution 

of the differential equations: 
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 ; 0t
t

dP
Q P t

dt
    (16) 

and 

 ; 0t
t

dP
P Q t

dt
    (17) 

with the initial condition P0 = I (I denotes the identity matrix and the above 

differential equations are called backward and forward Kolmogorov equa-

tions, respectively). 

The possibility of a “reconstruction” of the (uncountable, continuously 

indexed) family of probability rules, governing the random movement on 

the non-negative half-line of the time, from the generator Q, is a very strong 

property – in the spirit of (analytical) extending of analytical functions from 

small neighborhood of “initial” point to the whole domain (reals or complex 

numbers). 

Moving on to the end of the present point, we can stress the role of the 

semi-group character of the family of transition operators (represented in the 

discussed case by matrices) and the continuity (with respect to the time 

parameter) of this family. One word may be added also on the generaliza-

tions of the discussed subject: the classical topics (coming back to Feller’s 

early work (Feller, 1941) and the seminal Hille-Yosida type theorems, 

concern the notion of the so called infinitesimal generator of continuous 

semi groups – of linear operators, Szekli, 1995, p. 69). When applying to the 

(very) general state space the Markov process, such generators – according 

to their “label” – generate the whole (continuous time) process: the totality 

of all transition probabilities (functions, their densities etc.). But those theo-

retical considerations go beyond the scope of this paper – devoted to the role 

of matrices in the “quantitative education” of students of economics. 

In the next point we return to the “ordinary” (finite dimensional) matri-

ces and outline the certain reasoning, enlightening the role of eigenvectors 

(and eigenvalues) of matrices in the modeling of (simple) economic growth 

processes. 

 

4. Why the eigenvectors and eigenvalues are needed 

 

In the present point two applications of matrices to model the economic 

dynamics will be shown. We have got “accustomed” to the role matrices 

play as representations of rules of motions. Now we are going to “extract” 
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the specific aspects of “steering” of the economic process – the special role 

played here by eigenvectors and eigenvalues of (square, finite size) matrices. 

Let us recall some basic definitions, following the English edition of the 

monograph of Kurosh (see f.e. (Kurosh, 1972, pp. 199-203). Let the (linear) 

operation : n na R R  be represented by the square matrix A of size n. It 

simply means that ( )x x Aa  nxR , where vectors on the right are as-

sumed to be column vectors. If a non-zero vector nb R  is carried by its 

transformation into an image-vector of the form 

 ( )b b a , (18) 

where λ is some real number, then the vector b is called an eigenvector of 

the transformation a and, at the same time, an eigenvector of the matrix A. 

At the matrix notation we obtain 

 .b b A  (19) 

We also say that λ is an eigenvalue of the transformation (as well as of 

the matrix A) corresponding to the vector b. The eigenvectors and “their” 

eigenvalues are (relatively) simply obtained, according to the classical facts 

(and methods) concerning solutions (existence and uniqueness) of systems 

of linear equations (more basically, they follow from elementary properties 

of linear operations in finite-dimensional vector spaces). Rewriting the last 

equations leads to the chain of its subsequent shapes 

 ( ) 0.b b b b b b         A A A  (20) 

The above equation has a non-zero (vector) solution if determinant det

( ) A equals zero. So the condition 

 0  A  (21) 

serves determining (a set of) “lambdas” – characteristic roots of matrix A, 

(in other words – roots of a characteristic polynomial – in λ – of this matrix). 

Knowing the (concrete) eigenvalue λ, one may find the set of eigenvectors 

associated with λ. It is a rule that they form a subspace of R
n
 without    

“deleted” (“abandoned”) vector zero. After presenting the ideas we pass on 

to the first example. 

Consider the (extremely simplified) model of a business cycle (or eco-

nomic cycle), in a “stochastic costume” – we follow the example discussed 

in the textbook (Ostoja-Ostaszewski, 2006, pp. 234-235). They are assumed 

to be taken as merely two possible states of the economy: a “revival” (it is 
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the “sum” of classical periods – recovery and expansion) and a “recession” 

(summarizing the “classic” phases of a full cycle: crisis and recession). The 

“random moves” of the economy from state to state are governed by the 

transition matrix (of the homogenous two-state, discrete time, Markov 

chain) 

 
1

,
1

p p
P

q q

 
     

 (22) 

where the state (say) “revival” is associated with the first row and first 

column, while the second row and second column correspond to “reces-

sion”. Let us assume 0 < p < 1 and 0 < q < 1. So the economy goes to “the 

revival” at the next moment starting from “the revival” at present, with 

probability p, gets into “the recession” with complementary probability      

1 – p; the transition from “recession” to the “revival” occurs with probabil-

ity 1 – q and remaining in “recession” – with probability q. 

It seems to be proper to recall once more the notions connected with the 

studied subject. One of the fundamental questions in the theory of the Mar-

kov process is a problem of the existence of the limit behavior of instanta-

neous (marginal) distributions. Under natural, mild conditions put on the 

entries of transition probabilities matrix, there exist limits 

 
*lim ( , ) for all ,k j

k
p i j i j N


   (23) 

and they are independent of initial distributions [Szekli, 1995; Kopociński, 

1973]. The property may be classified as a statement from the field of the 

ergodic theory. The second notion concerns properties belonging to the area 

of stationarity (of the stochastic processes in a strict sense). As is known, the 

process is termed strictly stationary if its finite dimensional distributions (of 

the same dimension) are invariant with respect to translations of sets of 

indexes along the time axis. The related notion is the so called invariancy 

(probability) measure π on the state space of process, with respect to the 

family of transition probabilities matrices { , }tP t P T  ( also called the 

stationarity of this distribution with respect to P ) and is expressed in the 

formal requirement. 

 for all .tP t   T  (24) 

Remember, by the way, that (in the case of discrete time Markov 

chains) their defining relation takes the form 
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 1t tP     (25) 

( ,t N  both t  and 1t   are row probability vectors). 

 

Denoting by T the “time” allows us to treat simultaneously the case of 

discrete and continuous time. The discrete time version of the requirement 

(24) is 

 .P   (26) 

The remaining statements we want to recall are: the limit vector 
* *( )j   is stationary with respect to the P and, more generally, the 

stationarity with respect to the P is equivalent to stationarity of the chain 

(strict sense) if the limiting distribution coincides with the initial distribution 
0  (at the moment t = 0). In such a case 0 *.     

The relation (26) says, in fact, that π is the eigenvector of matrix P cor-

responding to the eigenvalue 1. Coming back to the simple model of busi-

ness cycle, we obtain the characteristic equation (of matrix P appearing in 

the case): 

  
1

0
1

p q

p q





  
 

  
.  (27)  

After calculations the equation 

  ( 1) [ ( 1)] 0p q        (28) 

is obtained. So λ = 1 is in fact the eigenvalue of P. The secondary school 

algebra leads to the general form of corresponding family of eigenvectors 

 [ , ] [1 , 1 ].x y q q    (29) 

After normalizing (by summing components to units) we obtain 

 1 2[ , ]   , (30) 

where 

1

1 2 1

1
1 ; 1 .

1

p

q
  



 
    

 
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So 1 0.5   if p > q, that in turn may be interpreted as a condition for 

the periods of revival prevail – in the long term (which sounds very ac-

ceptable from the intuitive perspective). 

The last (but – anyway – the least!) example is taken from the textbook 

on linear algebra (Smoluk, 2007). Let P denote the matrix of technology in 

a linear (discrete time or – even – “quasi-static”) model of economic growth 

(or, respectively, “time-less” production). We will follow the brilliant argu-

ments of Professor Smoluk, showing the significance of the choice of pro-

portions of factors creating the input of process. 

Let us begin with the general scheme of the linear transformations of 

the economic system from the initial vector of states into vectors in the 

“next” moment. The justification of assuming the linearity of the considered 

(modeled) transformation is a “rationale one”: the outputs “should be” 

(approximately) proportional to the inputs – this makes an innocuous sim-

plification of the “real economic world” – but within corollaries concerning 

the functioning of complex economic systems, have been discovered (“as 

a reward”) the number of interesting (sometimes – fundamental, as Leon-

tief-type models: Leontief, 1941; Gale, 1969; Malawski et al., 1997). The 

multiple super-positions of these operations generate the path of economic 

growth (in the macro, multi-sector scale) or the sequence of subsequent 

outputs of a production system, say, a firm as a whole or an individual 

business or even an “isolated” enterprise accomplished with the use of some 

feasible technology) resulted as the consequences of the coming inputs 

(microeconomic context). It should be noted that the output of the n-th stage 

of a process becomes the input of the stage of a number n + 1. 

Let us assume, for simplicity, that the technologies (or algorithms of 

distribution of resources among branches of economy – input flows) remain 

invariant (as discrete time goes). So the single input – output matrix and the 

initial decision on the division of means at disposal determine (theoretically) 

the “turnpike” of a development.  

The decision makers (central planners or managers, controlling the pro-

duction processes) are interested (first of all) in maximizing the values of 

some development coefficients (say, rate of growth) and finding optimal 

paths of growth, given a matrix A – of technological characteristics (or input 

– output) matrix. 

They aim to attain the optimal relations between the costs and benefits 

in the discussed case: between input(s) and output(s) (vectors). For a given 

matrix (Smoluk, 2007) 
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the characteristic polynomial takes a simple form 
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hence the characteristic equation may be written as a  
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from which, directly, follows that eigenvalues of A are 

 1 2

1 1
1 , 1

6 6
     . (34) 

To calculate the eigenvectors corresponding to these roots (λ1 and λ2), 

one needs to solve two systems of homogeneous linear/equations (respectively) 
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and 
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The solutions of these (undetermined) equations have the form (of the 

univariate subspaces, without zeros): 

   1 ( 3, 2);v t t R    (37) 

and  

  2 (3, 6); , respectively.v t t R   (38) 
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Inputs in the economy, described by matrix A, are proportional to the 

eigenvectors: v  R
2
 results in “going out” Av = λv. 

It is clear that being in front of the choice between different (potential) 

input eigenvalues, v1 or v2, the rational decision maker will choose the vec-

tor v2, for just this vector corresponds to the greatest eigenvalue of the ma-

trix A (the number λ2, additionally it is greater than one) which is a property 

of extraordinary importance in the discussed problem. 

Iterating this strategy we will obtain for n years output equal to 
2 2 ,nv  

so the economy flourishes and the welfare of society approaches infinity. 

On the other hand, the choice of v1 to be the vector of the initial input leads 

to the recession and even the ruin of the economy. The reason is equally 

clear as that of the previously discussed situation. When 1 1,  then after n 

years the economy unavoidably becomes worse and worse: 
1

n  tends to zero 

when n approaches infinity. The author, as well as the reader, is aware of the 

idealization (touching the limits of a joke) from which the model suffers. 

Anyway, the choice of the (proper) structure of economy plays a decisive 

role in its development. 

5. Conclusions  

The matrices appear very often in the problems of (in a wide sense) 

economic character. They, as well as some of their generalizations, work in 

describing schedules of movement of Markov processes in continuous time, 

they make up the role of representations and “hearts” of stochastic 

(Markovian) semi-group of operators – the special role played by the inten-

sity matrices of finite or countable dimensions: they generate the whole 

(stochastic) behavior of the processes, on the other hand they are – in 

a sense – “manageable”, thanks to the Kolmogorov equations, and have 

a convincing intuitive meaning. It should be remembered that for the stu-

dents it is compulsory to become familiarized with the Markov processes 

when they learn elements of operation research (queuing, renewal and relia-

bility theories) and encounter problems of insurance risk processes or some 

stochastic finance (and elements of financial engineering). 

The role of eigenvalues of matrices – in the context of describing eco-

nomic dynamics – should also be pointed out. They decide – at least in the 

theoretical models – on the efficiency of production (multi-sector inputs) 

and/or: the directions and speed of development of the great aggregates of 

the national economy as a whole. One common corollary may be extracted 



Further examples of the appearance of matrices… 

 
89 

from the considerations (which does not aspire to the range of a “discov-

ery”, but is merely aimed as a methodological (didactic) reflection and a 

kind of “hint’ (to be taken into account): matrices (like numbers, but – may 

be – in a significantly greater generality) make up the “laboratory example” 

of functioning of abstraction processes – inevitable for any mental activity, 

simplifying things and extracting their essence. On the other hand, they are 

– simply – “easy, friendly and convincing” for beginners, and – as such – 

can be successfully exploited during the process of teaching future manag-

ers, directors and (perhaps) politicians forced to possess some knowledge of 

the true mechanics of economics. Experience suggests that some subtle idea 

might be “hidden” and “smuggled”, when (cleverly) “dressed in costumes of 

naive tables”. 

Moving on to the end of the concluding remarks (and the article), the 

author would like to announce some items, which will be presented in the 

next paper of the series (mentioned in the introduction, Rybicki, 2013). 

Some generalizations of the notion of “classical” matrix are to be shown: 

stochastic (Markov) integral kernels (as generators of Markov dynamics, as 

well as devices for measurement and comparisons of randomness of the so 

called random projects – double stochastic operators are mentioned), some 

remarks of mixing (of parameterized families of probability distributions), 

the concept of monotone matrices (in the spirit of Schur ordering). The 

usefulness of matrices in the description of autoregressive schemes, the 

Youle-Wakker equations and some models of the financial market are noted 

there as well. Some information on covariance and correlation (including 

auto-correlation) matrices and sequences are also given – referring to the 

Gramm matrices and general positive definite functions. 

The themes discussed in the present article concern two areas: (i) the 

description the stochastic dynamics of Markov-type systems (with the use of 

families of transition matrices, numbered by continuous time parameters, 

“running” along the positive part of t-axis, when special attention is placed 

on the Poissonian laws of motions, and intensity matrices - allowing them to 

create the infinite chains of rules, governing random process; (ii) the second 

one is devoted to exposing the role of eigenvectors in modeling the econom-

ic dynamics. In this context there appear tasks of an important role in de-

termining the so called stationary – with respect to the given transitions 

semi-group – distributions. On the other hand, they help to choose the opti-

mal proportions of the sharing of components creating the input vectors in 

the theory of firms, as well as the theory of economic growth. 
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