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TESTING FOR EPIDEMIC CHANGES IN THE MEAN  
OF A MULTIPARAMETER STOCHASTIC PROCESS 

Beatrice Bucchia (University in Köln) 

1. Introduction 
We discuss the problem of detecting epidemic changes of multi-
indexed variables over a rectangle in ℕ𝑑. More precisely, assuming 
we have observed 𝑛𝑑 values {𝑥𝐣: 𝐣 ∈ {1, … ,𝑛}𝑑} of a random field 
{𝑋𝐣}𝐣∈ℤ𝑑 (where 𝑑 ∈ ℕ is fixed and small relative to 𝑛 ∈ ℕ), we may 
ask whether these observations all have the same mean 𝜇𝑛, or whether 
there is a rectangle (𝐤0,𝐦0] = (𝑘0,1,𝑚0,1] × … × (𝑘0,𝑑 ,𝑚0,𝑑] over 
which the mean has changed to a value 𝜇𝑛 + 𝛿𝑛. Such a change point 
problem is the straightforward generalization to the multiparameter 
case of a one-dimensional change point problem with two change 
points 0 < 𝑘0 < 𝑚0 < 𝑛. Levin and Kline (1985) coined the term 
epidemic change for the latter in their paper about the connection be-
tween chromosomal abnormalities and the number of spontaneous 
abortions. In this medical context, the term epidemic change corre-
sponds to a period of normal behavior, followed by a sudden change 
in patient numbers and finally by a return to normalcy. The change 
point problem considered here, namely a change in the mean over a 
rectangle in the index-space of a random field, was also studied by 
Jaruškovă and Piterbarg [2011] and Zemlys [2008]. In both of these 
publications, the asymptotic distributions of the considered test statis-
tics are determined by the fact that the random variables are independ-
ent and therefore the associated partial sum processes converge weak-
ly to a Wiener process. This observation motivates us to replace the 
independence assumption by the (weaker) assumption of a functional 
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central limit theorem (FCLT). Examples of the problem of detecting 
imhomogeneity arise in image analysis and in textile fabric quality 
control (e.g. [Zhang, Bresee 1995]). In particular, the search for an 
inhomogeneity in the shape of a rectangle might be of interest in the 
context of rectangular shape object detection problems. For instance, 
fiding rectangular objects in an image is a step in the detection of 
buildings or vehicles from aerial imagery [Vinson et al. 2001; Vinson, 
Cohen 2002; Moon et al. 2002], license plate detection [Kim et al. 
2002; Huang et al. 2008] and in the detection of filaments in cryoelec-
tron microscopy images [Zhu et al. 2001]. 

1.1. The model 

First, we introduce some notations. We consider the vector space ℤ𝑑 
(𝑑 ∈ ℕ) equipped with the usual partial order. For 𝐱, 𝐲 ∈ ℝ𝑑, we write 
⌊𝒙⌋ = (⌊𝑥1⌋, … , ⌊𝑥𝑑⌋)′ for the integer part of 𝒙, |𝐱| = (|𝑥1|, … , |𝑥𝑑|)′ 
and [𝐱] = 𝑥1 ⋯𝑥𝑑 . Furthermore, for any integer 𝑘 ∈ ℕ0, we denote 
(𝑘, … , 𝑘)′ ∈ ℕ0

𝑑 by 𝐤. A rectangle in ℝ𝑑 is a set of the form  

(𝐱,𝐲] = {𝐳:  𝑥𝑖 < 𝑧𝑖 ≤ 𝑦𝑖, 𝑖 = 1, … ,𝑑} 

for 𝐱, 𝐲 ∈ ℝ𝑑 ((𝐱, 𝐲] = ∅, if 𝑥𝑖 ≥ 𝑦𝑖 for some 𝑖 ∈ {1, … ,𝑑}). A rectan-
gle in ℤ𝑑 is the intersection of a rectangle in ℝ𝑑 and the set ℤ𝑑 . For a 
function 𝑓:𝐷 → ℝ, 𝐷 ⊆ ℝ𝑑 , we define the increment of 𝑓 over a rec-
tangle (𝐬, 𝐭] ⊂ 𝐷 as  

𝑓(𝐬, 𝐭] = �
� (

𝜺∈{0,1}𝑑
− 1)𝑑−∑ 𝜀𝑖𝑑

𝑖=1 𝑓(𝐬 + 𝛆(𝐭 − 𝐬)), 𝐬 < 𝐭

    0, 𝐬 ≮ 𝐭.
 

For instance, in the case 𝑑 = 2 and 𝐬 < 𝐭, the increment is  

𝑓(𝐬, 𝐭] = 𝑓(𝑡1, 𝑡2) − 𝑓(𝑡1, 𝑠2) − 𝑓(𝑠1, 𝑡2) + 𝑓(𝑠1, 𝑠2). 

We write  

� 𝑥𝐣
𝐤≤𝐣≤𝐦

=

⎩
⎪
⎨

⎪
⎧ � 𝑥𝒋
𝐣∈(𝐤,𝐦]∩ℤ𝑑

, 𝐤 < 𝐦

    �𝑥𝐣
𝐣∈∅

= 0, 𝐤 ≮ 𝐦.
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Assume we have 𝑛𝑑 realisations 𝑥𝐤,  𝐤 ∈ {1, … ,𝑛}𝑑 , 𝑛,𝑑 ∈ ℕ, of a 
real-valued random field {𝑋𝐤}𝐤∈ℤ𝑑 . We want to test  

𝐻0: 𝑋𝐤 = 𝑌𝐤 + 𝜇𝑛 ∀ 𝐤 ∈ {1, … ,𝑛}𝑑 

against  

𝐻𝐴: ∃ 𝟎 ≤ 𝐤0 < 𝐦0 ≤ 𝐧,   ⌊𝛼𝑛𝑑⌋ ≤ [𝐦0 − 𝐤0] ≤ ⌊(1 − 𝛽)𝑛𝑑⌋: 

𝑋𝐤 = 𝑌𝐤 + 𝜇𝑛 + 𝛿𝑛 𝐼{𝐤0<𝐤≤𝐦0} ∀ 𝐤 ∈ {1, … ,𝑛}𝑑 , 

where 𝜇𝑛,𝛿𝑛 ∈ ℝ are unknown parameters, 𝛿𝑛 ≠ 0, and 0 < 𝛼 < 1 −
𝛽 < 1. The parameters 𝛼 and 𝛽 are used to restrict the possible chang-
es to rectangles that have a certain size. They were used for technical 
reasons (cf. Section 2.1) but the restriction is nevertheless reasonable 
since a shifted mean on a set which is too small or too large would be 
difficult to distinguish. Since the points 𝐤0,𝐦0 ∈ ℤ𝑑 parametrize the 
set over which the change takes place, we call them the change points. 
Our main assumption is that the random field 𝑌 = {𝑌𝐤}𝐤∈ℤ𝑑 is cen-
tered, weakly stationary and fulfills the FCLT  

 �
1

𝜎𝑛𝑑/2 � 𝑌𝐤
𝟏≤𝐤≤⌊𝑛𝐭⌋

�

𝐭∈[0,1]𝑑

⟶ {
𝐷[0,1]𝑑

𝑊(𝐭)}𝐭∈[0,1]𝑑 ,𝑛 → ∞, (1) 

where 0 < 𝜎2: = ∑ C𝐤∈ℤ𝑑 ov(𝑌𝟎,𝑌𝐤) < ∞, and {𝑊(𝐭)}𝐭∈ℝ+𝑑  is a stand-

ard Wiener field.  

This covers a large class of processes, e.g. i.i.d. (cf. [Wichura 
1969] Corollary 1), (positively and negatively) associated and (BL,𝜃)-
dependent (cf. [Bulinski, Shashkin 2007] Theorem 5.1.5), as well as 
martingale-difference and Roelly (cf. [Poghosyan, Rœlly 1998] Theo-
rem 3) random fields fulfill this assumption under certain conditions.  

Example 1.1. Let {𝜉𝐣}𝐣∈ℤ𝑑  be a centered, stationary random field 
such that 𝐸[|𝜉𝐣|𝑞] < ∞ for some 𝑞 > 2𝑑 and  

0 < 𝜌2 = � 𝐶
𝐤∈ℤ𝑑

𝑜𝑣(𝜉𝟎, 𝜉𝐤) < ∞. 
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We assume further that the {𝜉𝐤}𝐤∈ℤ𝑑 fulfill the FCLT (1) with 𝜎 = 𝜌. 
For 𝐤 ∈ ℤ𝑑 and real numbers {𝑎(𝐣)}𝐣∈ℤ𝑑 that fulfill the assumption  

�⋯
∞

𝑖1=0

� � ⋯
∞

𝑘1=𝑖1+1

∞

𝑖𝑑=0

� |
∞

𝑘𝑑=𝑖𝑑+1

𝑎(𝑘1, … ,𝑘𝑑)| < ∞, 

we define  

𝑌𝐤 = �⋯
∞

𝑗1=0

� 𝑎
∞

𝑗𝑑=0

(𝑗1, … , 𝑗𝑑)𝜉(𝑘1 − 𝑗1, … , 𝑘𝑑 − 𝑗𝑑). 

Then Ko et al. [2008] showed that {𝑌𝐤}𝐤∈ℤ𝑑 satisfies (1) with  

𝜎 = 𝜌 ⋅ �⋯
∞

𝑖1=0

� 𝑎
∞

𝑖𝑑=0

(𝑖1, … , 𝑖𝑑). 

In the case when the {𝜉𝐣}𝐣∈ℤ𝑑 are i.i.d., this result was proven by Mari-
nucci and Poghosyan [2001] without the assumption that the {𝜉𝐣}𝐣∈ℤ𝑑 
fulfill the FCLT themselves.  
 

2. Testing for epidemic changes in the mean 

2.1. The test statistic 

The idea to test for a change in the mean is to test for each rectangle 
(𝐤,𝐦] whether or not the mean is significantly different from the 
overall mean on (𝟎,𝑛] and to reject the null hypothesis if this is the 
case for any of the rectangles. For each rectangle, the test for differ-
ence in the mean is based on a pseudo log-likelihood approach. This 
approach makes it necessary to restrict the choice of considered rec-

tangles: The weighting function �[𝐦−𝐤]
𝑛𝑑

�1 − [𝐦−𝐤]
𝑛𝑑

� for [𝐦− 𝐤] tend-

ing to zero or one causes the test statistic to be unbounded even 
under the null hypothesis. We therefore consider a trimmed test 
statistic of the following form (cf. [Jaruškovă. Piterbag 2011]): 

𝑇𝑛(𝛼,𝛽) = 𝜎�𝑛−1𝑛−𝑑/2 max
𝟎≤𝐤<𝐦≤𝐧

⌊𝛼𝑛𝑑⌋≤[𝐦−𝐤]≤⌊(1−𝛽)𝑛𝑑⌋

�∑ �𝑋𝐣 − 𝑋̄𝑛�𝐤<𝐣≤𝐦 �

�[𝐦− 𝐤]
𝑛𝑑 �1 − [𝐦− 𝐤]

𝑛𝑑 �
, 
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where 𝑋̄𝑛 = 𝑛−𝑑 ∑ 𝑋𝐤𝟏≤𝐤≤𝐧 , 𝜎�𝑛 is an estimator for 𝜎 and 0 < 𝛼 < 𝛽 <

1 are trimming parameters. It can easily be seen that 𝑇𝑛 is independent 

of 𝜇𝑛, so that we can assume 𝜇𝑛 = 0 w.l.o.g.  

2.2. Behavior under the null and alternative hypotheses 

To define a test that has a given asymptotic level, we need to deter-
mine the asymptotic behavior of our test statistic under the null hy-
pothesis. We do this in two steps, by first determining its limit varia-
ble and then finding an approximation for the tail behavior of the limit 
distribution.  

Theorem 2.1. Let 𝜎�𝑛 be a (weakly) consistent estimator for 𝜎 under 
𝐻0. Then under 𝐻0 it holds that for 𝑛 → ∞  

 𝑇𝑛(𝛼,𝛽)⟶ 𝑠𝑢𝑝
𝟎≤𝒔<𝒕≤𝟏

𝛼≤[𝒕−𝒔]≤1−𝛽

|𝑊(𝐬, 𝐭] − [𝐭 − 𝐬]𝑊(𝟏)|
�[𝐭 − 𝐬](1 − [𝐭 − 𝐬])

𝒟
. (2) 

Approximating the tail behavior of the limit distribution is made 
easier by the fact that the limit variable is the supremum of a Gaussian 
field over a compact set. We define  

𝐶𝑑(𝛼,𝛽) = �
1

4𝑑𝜉𝑑2(1− 𝜉𝑑)2𝑑

1−𝛽

𝛼

�⋯
1

𝜉𝑑

 

�
(1 − 𝜉1)(𝜉1 − 𝜉2)⋯ (𝜉𝑑−1 − 𝜉𝑑)

𝜉12 ⋯𝜉𝑑−12

1

𝜉2

𝑑𝜉1 ⋯𝑑𝜉𝑑−1𝑑𝜉𝑑 

and consider a random field {𝑋(𝐬, 𝐭)}(𝒔,𝒕)∈𝐷 of the form  

𝑋(𝐬, 𝐭) =
𝑊(𝐬, 𝐭] − [𝐭 − 𝐬]𝑊�𝟏�
�[𝐭 − 𝐬](1 − [𝐭 − 𝐬])

, 

where  

𝐷 = {(𝐱,𝐲) ∈ [0,1]2𝑑: 𝐱 < 𝐲,𝛼 ≤ [𝐲 − 𝐱] ≤ 1 − 𝛽}. 

The following theorem is a direct consequence of Theorem 7.1 of [Pi-
terbarg 1996] (cf. also [Jaruškovă 2011] Theorem A.1).  
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Theorem 2.2. Let 𝜙(𝑢) be the density of the standard normal distri-
bution. For 𝑢 → ∞ it holds that:  

𝑃 � 𝑠𝑢𝑝
(𝐬,𝐭)∈𝐷

𝑋 (𝐬, 𝐭) > 𝑢� ∼ 𝐶𝑑(𝛼,𝛽)𝑢4𝑑−1𝜙(𝑢). 

 
This result can be used to obtain an approximation for the tail behav-
ior of the right hand side of (2):  
 
Corollary 2.1. With the same notations as in Theorem 2, it holds for 
𝑢 → ∞ that  

𝑃 � 𝑠𝑢𝑝
(𝐬,𝐭)∈𝐷

|𝑋(𝐬, 𝐭)| > 𝑢� ∼ 2 𝐶𝑑(𝛼,𝛽)𝑢4𝑑−1𝜙(𝑢). 

The constructed test is consistent under the alternative hypothesis:  
 
Theorem 2.3. If |𝛿𝑛|𝑛𝑑 → ∞ for 𝑛 → ∞ and 𝜎�𝑛 = 𝒪𝑃(1), 𝜎�𝑛 > 0, it 
holds under the alternative 𝐻𝛼,𝛽 that  

𝑇𝑛(𝛼,𝛽)
𝑃
→ ∞ 𝑓𝑜𝑟 𝑛 → ∞. 

2.3. Long-run variance estimators 

In the test statistics presented above, we have used an unspecified 
estimator for 𝜎2 in order to show that the main requirements for such 
an estimator are consistency under the null and stochastic bounded-
ness under the alternative hypothesis. In order to give some idea of 
possible estimators, we now give an example for an estimator that 
fulfills our requirements. We apply generalizations of well-known 
kernel-based variance estimators from the time series literature to our 
model. In the spirit of our general approach, we consider a nonpara-
metric estimator. In order to shorten notation, we write 𝑟(𝒋) =
Cov�𝑌0,𝑌𝐣� and define 

𝑟̂𝑋(𝒋) =
1
𝑛𝑑 �

(𝑋𝐤 − 𝑋�𝑛)�𝑋𝐤+𝐣 − 𝑋�𝑛�
𝑘∈𝑁𝐣

, 

With 𝑁𝐣 = �𝑘 ∈ ℤ𝑑: 1 < 𝐤,𝐤 + 𝐣 ≤ 𝐧�. We consider estimators of the 
form  



ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr  12(18) 

 

 

 

  

 

Extended abstracts 163 

𝜎�𝑛2 = � 𝜔𝑞,𝐣
𝐣∈𝐵𝑞−1

𝑟̂𝑋(𝒋), 

where 𝑞 = 𝑞(𝑛) ∈ [1,𝑛] is an integer with 𝑞 = 𝑞(𝑛) → ∞ and 
lim𝑛→∞ 𝑞/𝑛 = 0, 𝐵𝑞 = {−𝑞, … , 𝑞}𝑑 and 𝜔𝑞,𝐣 is a bounded weight 
function that fulfills 𝜔𝑞,𝐣 → 1 for 𝑞 → ∞. If we assume additional 
moment and homogeneity conditions on 𝑌𝐤 (cf. [Lavancier 2008] hy-
pothesis H0), a careful reading of the proof of Lemma 1 in [Lavancier 
2008] shows that his proof of 𝜎�𝑛2 converging stochastically to 𝜎2 re-
mains valid if we replace |𝐣| by and consider different weight func-
tions (e.g. flat-top kernels as suggested by [Politis, Romano 1996]). 
This more general case is therefore discussed here. 
 
Lemma 2.1. (cf. [Lavancier 2008]) for 𝛿𝑛 = 0). It holds for 
  𝑞 = 𝑞(𝑛) → ∞with lim𝑛→∞ 𝑞/𝑛 = 0, that  

𝜎�𝑛2
𝑃
→ 𝜎2,     𝑛 → ∞, 

Under 𝐻0  and  

𝜎�𝑛2 = 𝒪𝑃(1), 

under  𝐻𝐴, if  𝛿𝑛 and 𝑞 satisfy 

𝜎�𝑛2𝑞𝑑 = 𝒪𝑃(1), 

And |𝛿𝑛|𝑛𝑑 2� → ∞. 
 
3. Estimation of the change points 
In this last section, we want to cover the related problem of estimating 
the change points. We consider the alternative 

𝐻𝐴(𝝑,𝜸):�𝟎 < 𝝑 < 𝜸 < 𝟏:𝐤𝟎 = ⌊𝑛𝝑⌋,𝐦0 = ⌊𝑛𝜸⌋, 

and the “change” 𝛿𝑛 is assumed to be a constant multiple of  𝑛−𝑑 2� , 
i.e.  

 𝛿𝑛 = 𝛿𝑛−𝑑 2�  ,       𝛿 ≠ 0.  (3) 

Our aim is to estimate the points 𝝑 and 𝜸. Using a similar approach to 
the one employed by Aston and Kirch (2012), the estimators we con-
sider are points where the maximum of a slightly modified version of 
our test statistic is reached. To do so, we define  
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arg max
𝐵

𝑍 = {𝐚 ∈ 𝐵:𝑍(𝐚) = max
𝐛∈𝐵

𝑍(𝐛)} 

for functions 𝑍:𝐴 → ℝ (𝐴 ⊆ [0,1]𝑑 ,𝑑 ∈ ℕ in 𝐷[0,1]𝑑 and compact 
subsets 𝐵 ⊆ 𝐴. Furthermore, let 

𝐾𝑑 = �(𝒔, 𝒕) ∈ [0,1]2𝑑:𝟎 < 𝐬 < 𝐭 < 𝟏� 

and  

𝐺𝑛,𝑑(𝐬, 𝐭) =
1
𝑛𝑑 � (𝑋𝐢 − 𝑋�𝑛)

⌊𝑛𝐬⌋<𝑖≤⌊𝑛𝐭⌋

𝐼𝐾𝑑(𝐬, 𝐭). 

Then |𝐺𝑛,𝑑| ≠ ∅, and arbitrary points �𝝑�𝒏,𝜸�𝒏� in max𝐾𝑑 |𝐺𝑛,𝑑| give 
consistent estimators for (𝝑,𝜸):  
 
Theorem 3.1. Under 𝐻𝐴(𝝑,𝜸) with 𝛿𝑛 as in (3), it holds that  

�𝝑�𝒏 − 𝝑,𝜸�𝒏 − 𝜸� = oP(1),          𝑛 → ∞. 
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VARYING DEMOGRAPHIC ENVIRONMENT  
IN THE EUROPEAN UNION: 
INFLUENCE ON ACTUARIAL AMOUNTS 
 
Joanna Dębicka (Wrocław University of Economics 
 
The calculation of reserves for each year of insurance period is made 
at the moment of policy issue and based on current life tables (LT). 
During the insurance period life tables are changing. It means that 
premiums and prospective reserves are changing too, but according to 
a contract, an insurer cannot change insurance premiums and benefits.  

The aim of the talk was to analyze the influence of change of mor-
tality in the European Union (UE) countries on premiums and pro-
spective reserves in temporary life insurance contracts.  

For the analysis of the actuarial amounts we selected European 
Union countries in which the expected future life-time was changed 
the most and the least between 1999 and 2009 year (with respect to 
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particular age groups: 20, 40, 60 years old, and sex). 10-years period 
was chosen, not too short to make changes visible and not too long, so 
that the changes were not obvious. The first step of research involved 
analysis of statistics on the difference between the expected future 
life-time for men/women in 2009 and 1999 in the EU countries. It 
appeared that, regardless of age, variation range for women is lower 
than for men and there are no outliers observations. It means that to 
analyze influence of demographic environment on actuarial amounts it 
is enough to do it for men. The second step of research was connected 
with the choice of countries. For the further analysis Lithuania, Poland 
and Ireland were chosen. The smallest change in the expected future 
life-time was observed in Lithuania and the biggest in Ireland. Poland 
appeared to be a country where the change in the expected future life-
time was typical. 

For the analysis of 10-year temporary life insurance was chosen 
(such type of insurance contract is sold in each country of the EU). 
We focused on discrete-time model, where insurance payments are 
made at the ends of time intervals. Practically it means that insurance 
benefits are paid immediately before the end of the year. Premiums 
are paid immediately after the beginning of the year. 

Multiple state modeling is a classical tool for designing and im-
plementing insurance products. Among others it is also used to calcu-
late premiums and reserves. In particular, matrix representation of 
formulas on net premiums and net prospective reserves were used for 
numerical calculations. For numerical examples, we considered an 
insurance contract where insurance benefit is equal to 1 and premiums 
are constant for the whole insurance period. It was assumed that annu-
al interest rate is equal to 2%. 

Figure 1 illustrates percentage changes in annual premiums calcu-
lated for LT for the years 2000–2008, in relation to the annual premi-
ums calculated for 1999 LT. 

It is observed that independently of the age of insured person in 
Poland and Ireland premiums calculated under current LT were lower 
than for 1999LT. The dynamics of changes was larger in Ireland than 
in Poland. In case of Lithuania, situation of 20-year-old persons was 
similar like in other countries. Interestingly for 40- and 60-year-old 
persons one can observe that premiums calculated under the current 
LT were up to 21.5 % higher than for 1999 LT. 
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Figure 1. Net premiums 
Source: own elaboration. 

 

Figure 2. Net prospective reserves 
Source: own elaboration. 
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Figure 2 illustrates net prospective reserves 𝑉1(𝑡, 1999) calculated 
for 1999 LT and 𝑉1(𝑡, 1999 + 𝑡) calculated for current LT  
( 10,...,3,2,1,0=t ). 

It is observed that in Poland and Ireland net perspective reserves 
calculated under current LT were higher than for 199LT, because ex-
pected future life-time is increasing and this means that actuarial value 
of benefits is decreasing and simultaneously actuarial value of premi-
ums is increasing. In Lithuania the situation is reverse. The most im-
portant effect on the difference between net prospective reserves cal-
culated under current LT and 1999 LT is age at entry. The older  
a person is, the absolute value of the difference between reserves is 
greater. 

To sum up, because of the demographic environment premiums 
and reserves in EU countries are quite different. Diversity of dynamics 
of life tables’ parameters may influence actuarial quantities in many 
ways. In particular, it may lead to underestimation or overestimation 
of funds needed to cover future benefits. The modelling of cash flows 
is important both because of the dynamics of changes in interest rates 
and also because of the dynamics of the life table parameters. 

DATA COLLECTION AND ESTIMATION FOR SENSITIVE 
CHARACTERISTICS AND COMPLEX SAMPLE SURVEYS 

Heiko Grönitz (Philipps-University Marburg 
 

1. Introduction 

In surveys with a sensitive characteristic X (e.g., income, tax evasion, 
social benefit fraud, academic cheating behavior), direct questioning 
causes answer refusal and untruthful responses. If the distribution of X 
is estimated from the responses obtained by direct questioning, a seri-
ous bias must be expected. A possible approach for better estimates is 
the implementation of ingenious survey techniques, which on the one 
hand protect the interviewees' privacy to increase their cooperation 
and on the other hand yield data that allow inference on the distribu-
tion of the sensitive variable. In this field of research, nonrandomized 
response procedures are currently emerging. 
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2. Diagonal model (DM) 
One of these nonrandomized response methods is the diagonal model 
from [Groenitz 2012], which is suitable to collect data on an arbitrary 
categorical { }kX ,...,2,1∈ . For instance, X  may represent income 
classes. The principle of the DM is that the respondents do not reveal 
the value of the sensitive X , but give a scrambled response A, which 
depends on X  and a scrambling variable (= auxiliary variable) 

{ }kW ,...,2,1∈ . For every A , each X  value is still possible. The 
characteristic W  must be nonsensitive, must have a known distribu-
tion and must be independent of X . A possible scrambling attribute 
W can be constructed for the period of the birthday. The following 
table illustrates the answer schema of the DM for 4=k categories: 
 

X/W W = 1 W = 2 W = 3 W = 4 
X = 1 1 2 3 4 
X = 2 4 1 2 3 
X = 3 3 4 1 2 
X = 4 2 3 4 1 

 
We define iπ , ic  and iγ  to be the proportion of units in popula-

tion having category i  for X , W , and A , respectively. Then, the 
distribution of X , W , and A  in the population can be described by 
vectors ( )1 2, ,..., T

kπ π π π= , ( )kcccc ,...,, 21= , ( )1 2, ,..., T
kγ γ γ γ= . 

With a certain matrix 0C  depending on c , we have πλ ⋅= 0C . The 
topic of this talk is to estimate π  from the scrambled responses and 
derive properties of the estimator. 
 
3. Estimation and estimation properties for diagonal model  

in several sampling designs 
Of course, the sampling design must be incorporated in the estimation. 
The case of simple random sampling with replacement (SRSWR) is 
treated in [Grönitz 2012]. More complex sampling designs including 
stratified, cluster, multi-stage and unequal probability sampling are 
considered in [Grönitz 2013a]. We remark that there are also methods 
that enable the exploitation of prior information via Bayes technique 
(see [Grönitz 2013b]), but we do not give details on this issue in this 
talk. 
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The idea for the estimation is to derive an estimator λ̂ for λ  
which involves the sampling design from the observed scrambled an-
swers and to set λπ ˆ~ 1

0 ⋅= −C . We give some examples: For simple 

random samples (SRSs), îλ  is the relative frequency of answer iA =  

in the sample. For stratified SRSs, iλ̂  is a weighted relative frequency. 

For a general with-replacement sample, iλ̂  is the Hansen-Hurwitz 

estimator whereas iλ̂  is the Horvitz-Thompson estimator in the case 
of a general without-replacement sample. 

However, the estimator π~  can attain inadmissible values (compo-
nents outside [0,1] or sum of components unequal to one). For this 
problem, which is often ignored in the literature, we propose the rem-
edy to compute a modified estimator π̂  based on π~ . In the case of 
SRSWR or stratified SRSWR, we can apply the expectation maximi-
zation (EM) algorithm to obtain .π̂  For other sampling designs, we 
search the admissible estimate that is closest to the nonmodified esti-
mate, that is, the modified estimate is the solution of a quadratic opti-
mization problem. 

To measure precision of the modified estimators, details on the 
bootstrap variance estimation are also given in this talk. Moreover, we 
demonstrate a simulation-based method for the investigation of the 
connection between estimation efficiency in complex sample surveys 
and the degree of privacy protection. Our simulations illustrate that 
larger efficiency corresponds to a lower degree of privacy protection 
and discover optimal model parameters for the diagonal model. Such 
optimality results are rare in the literature on survey designs for sensi-
tive X with an arbitrary number of categories, especially when com-
plex sample surveys are studied. 
 

4. Summary 
Privacy-protecting survey designs possess an appealing principle to 
reduce untruthful answers and answer refusal in surveys with sensitive 
questions. Such techniques are both methodologically interesting and 
applicable in practice. In this talk, we have considered the nonrandom-
ized diagonal model, which is suitable for arbitrary categorical sensi-
tive attributes, facilitates the respondents’ cooperation and possesses a 
simple procedure. We have studied different sampling designs which 
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often appear in practice and have solved the following problems: First, 
how can we estimate the distribution of the sensitive attribute? Se-
cond, how can we estimate the estimator's variance? Finally, how does 
the efficiency depend on degree of privacy protection and how can we 
find optimal parameters of the diagonal model? 
 
References 
Grönitz H., A new privacy-protecting survey design for multichotomous sensitive varia-

bles, “Metrika” 2012, DOI: 10.1007/s00184-012-0406-8.  
Grönitz H., Applying the nonrandomized diagonal model to estimate a sensitive distribu-

tion in complex sample surveys, “Journal of Statistical Theory and Practice” 2013a, 
DOI 10.1080/15598608.2013.793630.  

Grönitz H. Using prior information in privacy-protecting survey designs for categorical 
sensitive variables, Statistical Papers 2013b, DOI 10.1007/s00362-013-0573-3. 

PRICING DEPENDENT COMPOUND POISSON PROCESSES 

Stanisław Heilpern (Wroclaw University of Economics) 
 
1. Introduction 

The paper is devoted to the compound Poisson process, in which the 
interclaim time and the neighboring claim amount may be dependent 
on each other In the classical approach we assume that all random 
variables and processes are independent. This assumption is unrealis-
tic. In practice some random variables may be dependent. For exam-
ple, in investigating natural catastrophic events, we meet such varia-
bles. The total claim amount on the occurrence of a catastrophe, e.g. 
the earthquake, and the time elapsed since the previous catastrophe are 
often dependent. Bigger damages occur when the time between the 
claims is longer. 

The dependent structure is described by some copulas. The values of 
the insurance premiums based on the moments of the aggregated claim 
and basic risk measures: VaR and ES, are derived. The exact formulas, 
approximation and simulations are used to compute these values. 

2. Compound Poisson process  

We will study the following risk process: 

𝑆(𝑡) = 𝑋1 + 𝑋2 + ⋯+ 𝑋𝑁(𝑡), 
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where Xi are the identically distributed claim amounts with the ex-
pected values E(Xi) = 1/β, N(t) is a claim number process generated by 
a renewal process Wi. We assume that N(t) is a Poisson process, so the 
interclaim times Wi are identically exponentially distributed, with cu-
mulative distribution function (c.d.f.) FW(w) = 1 – e-λw.  

We also assume that (Xi, Wi) are the independent random vectors, 
but the random variables Xi, Wi may be dependent. We denote by 
symbol F(x, t) the joint c.d.f. of them. The dependent structure be-
tween Xi, Wi may be described by the copula C: 

F(x, t) = C(FX(x), FW(t)). 

We will use in our paper the Spearman copula defined by the formula 

Cα(u1, u2) = (1 – α)CI(u1, u2) + αCM(u1, u2), 

where 0 ≤ α ≤ 1. The Spearman copula is a convex combination of 
independent CI(u1, u2) = u1u2 and comonotonic (strict dependent) 
CM(u1, u2) = min(u1, u2) copulas. The parameter α reflects the degree 
of dependence. It is equal to Spearman coefficient of correlation. If 
the random variables X, W are comonotonic, then X = l(W), when l  
is an increasing function, so they have singular joint distribution on  
D = {(x, t): x = l(t)}. This copula reflects the positive dependence, 
between the independence and positive strict, functional dependence. 

The Farlie-Gumbel-Morgenstern (FGM) copula is described by the 
formula 

Cθ(u1. u2) = u1u2 + θu1u2(1 – u1)(1 – u2), 

where –1 ≤ θ ≤ 1. It models the small degrees of dependence only, 
when the Spearman coefficient of correlation ρ satisfies the relation –
1/3 ≤ ρ ≤ 1/3.  

The Clayton copula is done by the formula 

Cα(u1. u2) = (u1
-α + u2

-α – 1)-1/α, 

where α > 0. It reflects the positive dependence. The Kendal coeffi-
cient of correlation τ is equal to 𝛼

𝛼+2
 in this case. 

3. Insurance premium 
We will study the following form of insurance premium connected 
with the aggregate claims S(t): 

Π(t) = E(S(t)) + L(t), 
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where E(S(t)) is a pure premium and L(t) is a loading for the risk. 
When L(t) = cE(S(t) we obtain so called the expected value principle, 
L(t) = cV(S(t)) the variance principle and when L(t) = c�𝑉(𝑆(𝑡))  we 
have the standard deviation principle. The constant c > 0 is a safety 
loading. 

This insurance premiums are based on the first two moments of S(t). 
When the dependent structure is described by the Spearman copula, the 
first moment μ1(t) satisfies the following relation [Heilpern in review] 

μ1(t) = E(S(t)) = E(E(X1 + S(t – w)| W1 = w)) 

= 𝜆� 𝑒−𝜆𝑤𝐸(𝑋|𝑊 = 𝑤)𝑑𝑤
𝑡

0
+ 𝜆� 𝑒−𝜆𝑤𝜇1(𝑡 − 𝑤)𝑑𝑤

𝑡

0
, 

where 𝐸(𝑋|𝑊 = 𝑤) = 1−𝛼
𝛽

+ 𝛼𝑙(𝑤), so 

𝜇1(𝑡) =
1 − 𝛼
𝛽 �1 − 𝑒−𝜆𝑡�  + 𝜆� 𝑒−𝜆𝑤𝑙(𝑤)𝑑𝑤

𝑡

0
 

+ 𝜆� 𝑒−𝜆𝑤𝜇1(𝑡 − 𝑤)𝑑𝑤
𝑡

0
 

and we obtain the Laplace transform of the first moment of S(t) 

𝜇1∗(𝑝) = (1 − 𝛼)
𝜆
𝛽𝑝2 + 𝛼𝜆

𝑝 + 𝜆
𝑝2 𝑙∗(𝑝 + 𝜆). 

The expected value of S(t) is equal to 

𝜇1(𝑡) =
1 − 𝛼
𝛽 𝜆𝑡 + 𝛼𝜆� 𝑒−𝜆𝑤(1 + (𝑡 − 𝑤)𝜆)𝑙(𝑤)𝑑𝑤.

𝑡

0
 

When the claims are exponentially distributed we have FX(x) = 1 – 
e-βx, 𝑙(𝑤) = 𝜆

𝛽
𝑤 and 

𝜇1(𝑡) =
𝜆
𝛽 𝑡 −

𝛼
𝛽 �1 − 𝑒−𝜆𝑡�. 

For the Pareto distributed claims we obtain 𝐹𝑋(𝑥) = 1 − � 𝑏
𝑥+𝑏

�
𝑎
 

and l(w) = b(e-λw/a – 1) 

𝜇1(𝑡) =
𝜆𝑡
𝛽

+ 𝛼
𝑎 �2𝜆𝑡 + 𝑏𝛽 �𝑒�

1
𝑎−1�𝜆𝑡 + 𝜆𝑡 − 1�� − 𝑎2𝜆𝑡 − (1 + 𝑏𝛽)𝜆𝑡

(𝑎 − 1)2𝛽
, 
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where β = (a – 1)/b. We obtain the Laplace Transform of the second 
moment of S(t)  

𝜇2∗(𝑝) =
1

𝑝2𝛽2 𝜆(2 − 2𝛼 + 𝛽(𝛼𝛽(𝑝 + 𝜆)(𝑙2)∗(𝑝 + 𝜆) + 2𝑝(1 − 𝛼

+ 𝛼𝛽(𝑝 + 𝜆)𝑙∗(𝑝 + 𝜆)𝜇1∗(𝑝))) 

using the formula [Heilpern in review] 

μ2(t) = E(S2(t)) = E(E((X1 + S(t – w))2| W1 = w)). 

For the exponential claims the second moment and variance of S(t) 
are equal to 

𝜇2(𝑡) =  
2𝛼2 − 4𝑡𝛼𝜆 + 𝑡𝜆(2 + 𝑡𝜆)− 2𝑒−𝑡𝜆𝛼(𝛼 − 𝑡(1 − 𝛼)𝜆)

𝛽2 , 

𝑉�𝑆(𝑡)� =
2𝜆
𝛽2 𝑡 − 𝛼

2𝜆
𝛽2 𝑡 + 𝛼2

1 − 2𝜆𝑡𝑒−𝜆𝑡 − 𝑒−2𝜆𝑡

𝛽2 . 

The variance is a decreasing function of degree of dependence α. 
When the claims are Pareto distributed we obtain more complicate 
statements. 
 

Example 1. Let λ = 5, β = 0.01, c = 0.2 and t = 2 when the claims 
have the exponential distribution and a = 2, b = 100 for the Pareto 
distribution. The values of the expected, variance and standard devia-
tion principles are presented in Table 1. We see that if the degree of 
dependence, described by α, increases, then the values of the insur-
ance premiums decreases. 
 
Table 1. The values of the insurance premiums for the dependent structure  
described by Spearman copula 

 Exponential Pareto 
α expected variance stand. dev. expected variance stand. dev. 

0 1200.000 41000.000 1089.443 1200.000 41000.000 1089.443 
0.2 1176.001 33060.001 1060.101 1152.324 37097.070 1045.284 
0.4 1152.002 25279.802 1029.744 1104.647 33790.739 1001.619 
0.6 1128.004 17659.343 997.829 1056.971 31081.409 958.527 
0.8 1104.005 10198.844 963.083 1009.294 28969.078 916.082 
1 1080.006 2898.189 919.996 961.618 27453.348 874.358 

Source: own elaboration. 
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Barges et al. [2011] studied case when the dependent structure is 
described by FGM copula. The expected value and variance of S(t) 
take the following form in this case: 

𝜇1(𝑡) =
𝜆
𝛽 𝑡 − 0.5𝜃�1 − 𝑒−2𝜆𝑡� �� �1 − 𝐹𝑋(𝑥)�2𝑑𝑥

∞

0
−

1
𝛽�, 

𝑉�𝑆(𝑡)� = 2
𝜆𝑡
𝛽2

−
1 + 2𝜆𝑡 + 𝑒−2𝜆𝑡(2𝜆𝑡 − 1)

4𝛽2 𝜃

−
𝑒−4𝑡𝜆 + 4𝑒−2𝑡𝜆𝑡𝜆 − 1

16𝛽2 𝜃2. 

 
Example 2. Let λ = 5, β = 0.01, c = 0.2 and t = 2. The values of  
the insurance premiums for the exponential claims are presented in 
Table 2. 
 
Table 2. The values of the insurance premiums for the dependent structure described  
by FGM copula 

ρ Expected Variance Stand. dev. 
  –1/3 1230 51525.0 1125.499 
  –0.3 1227 50477.5 1121.954 
  –0.2 1218 47335.0 1111.250 
  –0.1 1209 44202.5 1100.446 
    0 1200 41080.0 1089.532 
    0.1 1191 37967.5 1078.494 
    0.2 1182 34685.0 1067.098 
    0.3 1173 31527.5 1055.666 
    1/3 1170 30475.0 1051.811 

Source: own elaboration. 

For other copulas we must use the simulation methods. For in-
stance when the dependent structure is done by the Clayton copula, we 
may use the following procedure: 

1) generate two independent exponential (λ = 1) variates y1 and y2; 
2) generate gamma (a = 1/α, b = 1) variate z, independent of yi; 

3) set 𝑢1 = �1 + 𝑦1
𝑧
�
−1/𝛼

 and 𝑢2 = �1 + 𝑦2
𝑧
�
−1/𝛼

; 
4) set 𝑥 = 𝐹𝑋−1(𝑢1) and 𝑤 = 𝐹𝑊−1(𝑢2). 
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Example 3. Let λ = 5, β = 0.01, c = 0.2 and t = 2. The values of the 
insurance premiums for the exponential claims and when the depend-
ent structure is done by the Clayton copula are presented in Table 3. 

Table 3. The values of the insurance premiums for the dependent structure described  
by Clayton copula 

τ Expected Variance Stand. dev. 
   0.01 1216.84 39400.2 1088.63 
   0.2 1173.70 33723.5 1059.01 
   0.4 1161.34 26449.7 1039.17 
   0.6 1133.55 18428.9 1003.76 
   0.8 1105.86 10680.7 965.731 
   0.95 1087.63 4825.7 934.358 

Source: own elaboration. 

4. Calculation of VaR and TVaR 
Now we derive the two main risk measure of the aggregate claims 
S(t): Value at Risk (VaR) and Tail Value at Risk (TVaR). They are 
done by the following formulas: 

VaRα(S(t)) = inf{x: FS(t)(x) ≥ α}, 

TVaRα(S(t)) = E(S(t)| S(t) > VaRα). 

 

 
α = 0    α = 0.4 

  
  α = 0.8    α = 1 

Figure 1. Distributions of S(t) for different degrees of dependence 
Source: own elaboration. 
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When the dependent structure is described by the Spearman copu-
la, we use two methods to this end. First we use the simulation meth-
od. The distributions of S(t) for different values of α done by simula-
tion (n = 100 000) are presented in Figure 1. 

The second method uses the mixture of Erlang distributions ap-
proximation based on the three first moments [Barges et al. 2011]. We 
approximate for fixed t the distribution of S(t) by the mixture Z of two 
Erlang distributions with common shape parameter, i.e.: 

FS(t)(x) ≈ FZ(x) = 𝑝1𝐹𝑌1(𝑥) + 𝑝2𝐹𝑌2(𝑥), 

where Yi has gamma distribution Γ(n, li) and pi ≥ 0, p1 + p2 = 1, i = 1, 
2. We assume that i-th moment μi of Z are equal to such moments of 
S(t), i.e. μi = μi(t), i = 1, 2, 3.  

Johnson and Taaffe [1989] obtained the values of parameters of 
distribution Z. The shape parameter n is the smallest integer satisfying 
relation 

𝑛 > 𝑚𝑎𝑥 �
1
𝑐2 ,

1
𝑐3 + 1

𝑐 + 2𝑐 − 𝛾

𝛾 − 𝑐 + 1
𝑐

�, 

where 𝑐 = √𝑚2
𝜇1

 is a coefficient of variation, 𝛾 = 𝑚3
(𝑚2)3/2 is a coefficient 

of skewness, mi is the i-th central moment of Z, i = 2, 3. The scale 
parameter takes the form 

𝑙𝑖 =
−𝐵 + (−1)𝑖√𝐵 − 4𝐴𝐶

2𝐴 , 

where A = n(n + 2)μ1y, 𝐵 = −(𝑛𝑥 + 𝑛(𝑛+2)
𝑛+1

𝑦2 + (𝑛 + 2)𝜇12𝑦),  

C = μ1x, 𝑦 = 𝜇2 −
𝑛+1
𝑛
𝜇12, 𝑥 = 𝜇1𝜇3 −

𝑛+2
𝑛+1

𝜇22 and 

𝑝1 = 1 − 𝑝2 =
𝜇1
𝑛 −

1
𝜆2

1
𝜆1
− 1
𝜆2

. 

We investigated in section 3 first two moments of S(t), but now we 
need the third moment of it. The Laplace Transform of the third mo-
ment when the dependent structure is done by the Spearman copula is 
done by the formula 
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      𝜇3∗(p) =
1

𝑝2𝛽3 𝜆(𝛼𝛽3(𝑝 + 𝜆)(𝑙3)∗(𝑝 + 𝜆) + 

3(2 − 2𝛼 + 𝑝𝛽((2 − 2𝛼 + 𝛼𝛽2(𝑝 + 𝜆) 

(𝑙2)∗(𝑝 + 𝜆))𝜇1∗(p) + 𝛽(1 − 𝛼 + 𝛼𝛽(𝑝 + 𝜆)𝑙∗(𝑝 + 𝜆))𝜇2∗(p)))). 

If the claims have the exponential distribution, then the third mo-
ment is equal to 

𝜇3(𝑡) =
1
𝛽3 𝑒

−𝑡𝜆(3𝛼(2𝛼(2 + 𝛼)− 4 − 2𝑡(1 − 𝛼)𝛼𝜆

+ 𝑡2(1 − 𝛼)2𝜆2) + 𝑒𝑡𝜆(6𝛼(2 − 𝛼(2 + 𝛼)) +        
6𝑡(1 − 3(1 − 𝛼)𝛼)𝜆 + 3𝑡2(2− 3𝛼)𝜆2 + 𝑡3𝜆3)). 

 
Example 4. Let the claims have the exponential distribution and λ = 5, 
β = 0.01, t = 2. For α = 0.4 the probability distribution function of Z is 
equal to 

fZ(z) = 3.45546×10-22 e-0.0178147 z z8+9.0297×10-24 e-0.0090181 z z8. 

Table 4 contains the values of the risk measures obtained by the 
simulation and approximation methods. 
 
Table 4. The values of VaR and TVaR 

 Simulation Approximation 
α VaR TVaR VaR TVaR 

0 2254.98 2484.62 2259.61 2514.63 
0,2 2090.42 2309.79 2095.91 2317.78 
0,4 1933.83 2129.65 1914.30 2097.68 
0,6 1744.93 1921.56 1727.13 1877.39 
0,8 1529.63 1677.39 1484.15 1586.05 
1   999.01   999.51 1116.97 1151.50 

Source: own elaboration. 
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SOME RESULTS OF STOCHASTIC MODELLING  
OF INTEREST RATE IN LIFE INSURANCE 

Agnieszka Marciniuk (Wrocław University of Economics) 
 
1. Introduction 
In the traditional actuarial literature, for simplicity, it is assumed that 
the rate of interest is fixed and the same throughout the years. How- 
ever, the interest rate that will apply in the future years is, of course, 
neither known nor constant. Therefore, the stochastic interest rate to 
the actuarial calculations is applied in the researches. There are pre-
sented some results of the doctoral thesis (cf. [Marciniuk 2009]). 
Some of them have been not published yet. 
 
2. Interest rate models classification 
Two ways of stochastic modelling of interest rate: actuarial and finan-
cial, are applied. The actuarial and financial ways of modelling of 
interest rate are distinguished according to applying of interest rate 
model. 

In the actuarial way the expected value and the variance of the dis-
count value of benefit payment are determined in a traditional way, 
and the technical stochastic interest rate models are applied to the cal-
culations. Therefore, firstly, the technical interest rate as the actuarial 
model of interest rate is introduced. The technical interest rate is de-
termined by the following formula (cf. [Bowers et al. 1986]) 

2 1 2
1 2 1 2

1 1

1
, ,1 1t t t

t t t t
t t

K K K
i v

K K
−−

= = − = − , 

where tK  is a value of the capital at moment t , 1
, 21

−
ttv – the discounting 

function from date 2t  to date 1t  ( )1 20 t t≤ ≤ . 
In the financial theory four models of interest rate are distin-

guished, i.e.: a forward interest rate, a spot interest rate, an instantane-
ous forward rate, and an instantaneous spot rate. In this abstract two of 
them are applied, but three definitions must be introduced.  

The instantaneous forward rate, in short the forward rate, is given 
by the formula (cf. [Musiela, Rutkowski 1988]) 

,
,

ln
, 0 ,t T

t T
P

f t T
T

∂
= − ≤ ≤

∂
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where TtP ,  is a price of zero-coupon bond with maturity T at moment
t , Tt ≤≤0 . 

The instantaneous spot rate, also called the short-term rate, is de-
noted by tr  and defined as follows (cf. [Jakubowski et al. 2003]) 

ttt fr ,= . 

The spot interest rate is defined by the following formula 

,
,

ln
, 0t T

t T

P
R t T

T t
= − ≤ ≤

−
. 

In the financial way benefit payments are treated as a stochastic 
cumulative cash flow { } 0≥ttdC . The moments of the discounted value 
of these cash flows is valuated under the assumption that arbitrage is 
not possible. The following formula is used (cf. [Carriere 1999]): 

( )
( )

,
,

1











ΛΛ= ∫

∞

−

t
tssttt FdCEFDE QQ  

where 









−=Λ ∫−

T

t
sTt dsrexp1

,  

is the discounting process. 
The following points are assumed (cf. [Carriere 2004]): 

• { } 0≥ttr  is a stochastic process of short-term rate, 
• { } 0≥ttr  is defined on a probability space ( )P,, FΩ , 
• P  is physical measure on a space with a associated history 

FFt ⊂ at time 0≥t , 
• { } 0≥ttr  is adapted to the history tF , 

• Ttdsr
T

t
s ≤∞<∫ , , 

• the another measure Q  exists that is called the martingale meas-
ure,  

• Q  is equivalent to P . 
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3. Applying the deterministic function of spot interest rate 

The first the case is considered, when the interest rate is described as a 
function of time t. Four models of this function are used (cf. 
[Marciniuk 2009]): 
• Stoodley model (M.St), 
• Nelson-Siegel model (M. N-S), 
• Bliss model (M.B), 
• Svensson model (M. Sv). 

The parameters of these functions are estimated on the basis of re-
al data, which follows from Polish market. The rate of return on 
Treasury bills and bonds with fixed interest rate from the date of 
26.05.08 are used (cf. [http://bossa.pl/notowania/o/ciagle/obligacje/]). 
These data and the models of spot rate are presented on Figure 1. 
 

 
Figure 1. The data and the models of spot interest rate 

Source: [Marciniuk 2009]. 
 

The results are presented on the basis of pure endowment policy, 
for 30-year-old women, when benefits is paid in the amount of 10 000 
PLN and on the basis of the actuarial calculations in the case of the 
generalized life annuity payable m  ( )0m >  times a year at the end of 
each m-th of the year. The conclusions are as follows: 
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• the differences in the amount of premium are very small, it is 
about a few pennies when the benefit is 10 000 PLN, 

• the premium is the smallest for 10<n in the case of Svensson 
function, 

• the premium is the smallest for 10≥n in the case of Nelson-Siegel 
function, 

• the similar results are for the standard deviation of the discounted 
value of benefit, 

• when the benefit is paid at the end of the death day of insured, the 
premium is higher about 0,23% than the premium in the case when 
the benefit is paid at the end of month, 

•  the similar results are for life annuity and installment premium. 
 
4. Applying the models of stochastic interest rate 
Four stochastic processes are used as interest rate models in life insur-
ances, i.e. Wiener process, autoregressive process of order one, Va-
sicek model and Cox-Ingersoll-Ross model. 

To calculate the net premium the models parameters should be 
known. The short-term rate is not directly observed on the financial 
market. Hence, it must be estimated somehow, e.g. on the basis of 
WIBOR rate. The forward rate can be also determined on the basis of 
the treasury bills and the fixed interest bonds. Knowing the forward 
rate we can calculate the short-term rate. To make it simpler, it is as-
sumed that the data of the short-term rate are known, i.e. the data are 
simulated. It has been assumed that it was the weekly data observed 
throughout 20 years (cf. [Marciniuk 2009]). 

On the basis of these data the parameters of the short-term rate mod-
els have been estimated. In case of the Wiener process, AR(1) process 
and Vasicek model the maximum likelihood method was used (cf. [Chan 
et al. 1992]). The general method of moments has been applied in case of 
CIR model. The packet Solver in Excel program has been used for the 
estimation. The results of the estimation are as follows: 
• AR(1) process – actuarial model 

• ( ) tttd εδδ +−+= − 05524.084598.005524.0 1 , 
• ( ) 04845.0,009375.0;0~ 0 =δε Nt , 

• Wiener process – actuarial model 

• ,04845.0,0052.0 0 == δδ tt dBd  
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• Vasicek model – financial model   
• ( ) ,04.0055.067.8 ttt dBdtrdr +−−=  

• CIR model – financial model 

• ( )0.06218 1.1254 0.32t t t tdr r dt r dB= − + . 

The actuarial calculations are presented in the case of the general-
ized life annuity payable m  (m > 0) times a year at the end of each  
m-th of the year for women at age 30 and when benefit is paid at 
height 10 000 PLN. The best model is Vasicek model, so the actuarial 
values of life annuity are presented in Table 1 only for this model. 

Table 1. The actuarial value of life annuity in the case of Vasicek model 

n m = 1 
(yearly) 

m = 2 
(half-yearly) 

m = 4 
(quarterly) 

m = 12 
(monthly) 

m = 365 
(daily) 

m = 8760 
(hourly) 

2 1.947 1.920 1.907 1.898 1.894 1.894 
4 3.689 3.639 3.614 3.598 3.590 3.589 
6 5.249 5.177 5.141 5.118 5.106 5.106 
8 6.644 6.553 6.508 6.478 6.463 6.463 

10 7.891 7.783 7.729 7.694 7.676 7.676 
12 9.006 8.882 8.821 8.780 8.761 8.760 
14 10.002 9.864 9.796 9.751 9.729 9.728 
16 10.891 10.740 10.666 10.616 10.593 10.592 
18 11.683 11.522 11.442 11.388 11.363 11.362 
20 12.389 12.217 12.132 12.076 12.048 12.047 

Source: cf. [Marciniuk 2009]. 

Moreover, we can see in Table 2 the yearly value of net periodic 
premiums for pure endowment policy for 30-year-old women, when 
benefit is paid at height 10 000 PLN. 

The smallest premium is also for the Vasicek model. 
Table 2. The net periodic premiums 

model m = 1 
(yearly) 

m = 2 
(half-yearly) 

m = 4 
(quarterly) 

m = 12 
(monthly) 

m = 365 
(daily) 

n =10 
AR(1) 730.19 740.25 745.34 748.76 – 
Wiener 757.81 767.05 771.72 774.86 776.39 
Vasicek 726.34 736.42 741.53 744.97 746.64 

CIR 897.59 902.62 905.10 906.73 907.53 
n =20 

AR(1) 265.03 268.69 270.55 271.80 – 
Wiener 291.25 294.78 296.56 297.76 298.34 
Vasicek 260.90 264.57 266.42 267.67 268.28 

CIR 403.01 405.15 406.22 406.93 407.27 
Source: [Marciniuk 2009]. 
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5. Results and conclusions of applying of stochastic interest 
rate models 

The best of the presented models is the Vasicek model. Similar results 
were obtained for the AR (1) process. Hovewer, the standard deviation 
of the discounted value of the benefit is smaller in the first case for all 
types of insurance. The worst results are obtained for the CIR model. 
The actuarial values can be calculated for each 0≥t  in the case of the 
Vasicek model. However, the partition of the year into more than 12 
parts does not cause a significant increase in premiums. It makes no 
sense to pay premiums or benefits more than once a month. Therefore, 
the use of continuous models, the interest rate is not necessary. In the 
case of the CIR model and the Wiener process premiums are higher. 
Theoretically, the insurance company could choose these models, 
however, the standard deviation of the discounted value of the benefit 
is also higher in these cases. This increases the risk of incurring higher 
losses for the insurer. If the premiums are calculated assuming a fixed 
interest rate, this interest rate should be equal to the long-term interest 
rate.  

In the case of financial modelling of interest rate a zero-coupon 
bond prices can be taken from the market. This is an advantage. But 
the premium for the persons at the same age can be different every 
day. In addition, there are not too many of these bonds on the Polish 
market, which makes it impossible to calculate the actuarial values of 
life annuities. Therefore the price of bonds has to be modelled. In or-
der to calculate the standard deviation of the discounted value of bene-
fit the second moment of the discounted process has also to be mod-
elled.  
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THE EMERGENCE OF STATISTICAL SCIENCE 

Walenty Ostasiewicz (Wrocław University of Economics) 
 
In 1581 G. Ghislini in his work Ristretto della civile, politica, 
statistica e militare scienza for the first time used the expression “sta-
tistical science” (statistica scienza) understanding it as a description of 
the state matter. In 1999 J. Nelder in his paper From statistics to sta-
tistical science argued that the subject should be renamed statistical 
science. The aim of this paper is to review a long way of that trans-
formation. As almost all modern sciences, statistics has also its roots 
in an ancient Greek. It was Aristotle who for the first time described 
constitutions of 158 Greek cities. Only the constitution of Athens sur-
vived till our times. This work was the pattern for the Latine lecture 
given by H. Conring in Helmsted. Achenwall continued his work, but 
using German language, he also coined a word “Statistik”. 
Achenwall’s book had seven editions and was translated in almost all 
European languages. In spite of the great popularity the Conring-
Achenwall statistics prior to 1800 had an interest “only to antiquari-
ans”. English style of statistics, under the name of political arithmetic, 
became a dominant in Europe. It was initiated by J. Graunt, whose 
work has been imported to Germany by Süssmilch. The novelty of 
English school was to emphasize the method rather than description. 
Graunt’s approach was fully scientific: following Baconian philoso-
phy, starting from observations he discovered regularities in social 
life. The most significant (a crucial step in the taming of chance-in 
Hacking’s words) has been done by A. Quételet. Proclaiming the uni-
versality of the rule: mundum regunt numeri, he formulated his fa-
mous doctrine of statistical law. The basis for this doctrine was the 
distinction between the constant forces of nature and perturbational 
one. Statistical determinism and Qutelesimus were however criticized 
in Germany. Statistics as a science of variability and uncertainty need-
ed appropriate theory for the quantification of these concepts. The 
path breaking contribution in this direction is due to J. Bernoulli’s Ars 
conjectandi, alternatively named by him as stochastics. Nowadays, in 
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German-speaking environment this expression is meant as the amal-
gam of probability and statistics. According to D.V. Lindley (and 
many others) statisticians in the twenties changed their paradigm (in 
a Kuhn sense). That change is due to the Fisher revolution, who also 
distinguished statistics of science and statistics of market-place, i.e. 
the field of decision making. According to the same Lindley all statis-
ticians will form a united profession in 2020 when all of them will be 
Bayesians. 
 

IS THE TEST FOR ASYMMETRIC PRICE TRANSMISSION  
IN A TAR- OR MTAR-FRAMEWORK BIASED BY REQUIRING 
EVIDENCE FOR COINTEGRATION? 
 
Karl-Heinz Schild (University of Marburg) 
 
1. Introduction 

Almost all economic processes, like production, refinement or trading, 
involve some kind of transmission of “input prices” to “output prices”. 
For example, in the gasoline market the crude oil price is 
“transmitted” to the end user price at the gas stations. Such a price 
transmission is said to be asymmetric, if its characteristics differ 
between periods of increasing and decreasing prices. For example, it is 
frequently suspected that the oil refining companies, due to their 
market power, tend to transmit increases in crude oil prices faster to 
the price at the gas station than they lower the end user price after a 
decrease. In standard economic theory such an “asymmetric price 
transmission” (APT) is considered to be the result of a market failure, 
which should be avoided.  

Various statistical methods have been developed to test, based on 
historical times series of the two prices, if a significant asymmetry in 
the price transmission can be detected. All approaches are faced with 
the problem that the price series usually follow integrated, i.e. non-
stationary processes. Instead of resorting to models that include short-
term changes of the prices only, the cointegration approach focuses on 
a long-term relationship between the two price series, which, unlike 
the price series themselves, follows a stationary process. Such a 
“cointegrating relationship” should exist for economic reasons (there 
must be something in the price transmission process that keeps the 
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two prices tied together), although its precise form may be hard to 
identify. In the original approach of Engle & Granger [1987], the only 
type of cointegrating relation allowed was a static linear equation 
whose stationarity was assessed by a single reversion rate. As this is 
unable to capture asymmetries in the price transmission, Enders & 
Granger [1998], Enders [2001] and Enders & Siklos [2001] devised a 
concept of asymmetric cointegration which allows the cointegrating 
relation to revert to its long-term equilibrium with two different 
reversion rates, depending on whether the deviation from the 
equilibrium is above or below some threshold (TAR-model). A second 
threshold model was also introduced as the mTAR-model, where the 
“deviation from the equilibrium” is replaced by its short-term change. 
The mTAR-model covers, for example, a price transmission where the 
adjustment rate of the output price depends on whether the input price 
decreased or increased. Given cointegration with the TAR- or mTAR-
model, a formal test for asymmetry is easily devised as an F-test of 
equality of the two reversion rates.  

The Enders/Granger/Siklos approach ends up with a hierarchy of 
two tests: The primary aim is to reject the null hypothesis “no 
cointegration” in the test for cointegration. Only if this aim is achieved 
– i.e. only if there is sufficient evidence for cointegration in the data – 
will the test for asymmetry be performed. This might not result in a 
serious problem, if evidence for cointegration were easy to obtain. 
However, the test for cointegration has a very low power to detect 
cointegration, so that the test for asymmetry is performed in very 
special situations only. In this paper I will demonstrate by means of 
simulations that – at least with the mTAR-model – this causes the test 
for asymmetry to excessively reject its null hypothesis “symmetry”: 
By insisting on evidence for cointegration one obtains a tendency to 
false detection of asymmetry. The bias (in the same direction, i.e. 
towards false detection of asymmetry) becomes dramatic, if the 
method suggested in Enders & Siklos [2001] to select an optimal 
switching threshold is applied. This holds for both, the TAR and 
mTAR-model. Thus, under the threshold optimization, the test for 
asymmetry in my opinion is (not only biased, but) more or less 
meaningless.  

The performance of the test for asymmetry in an Engle/Granger-
like procedure has been investigated in other simulation studies. Von 
Cramon-Taubadel & Meyer [2001] also diagnose a bias towards 
excessively rejecting the null hypothesis “symmetry”. However, these 
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authors deal with the effect of structural breaks, which (from the 
perspective of the test) is a misspecification, in that the simulated data 
come from a model the test was not designed for. Hence, their result 
does not render the test invalid – as in our simulation, where the bias 
does not originate from a misspecification, but from the implicit 
conditioning on evidence for cointegration.  

There are also papers which point in the (opposite) direction of a 
tendency to stick with the symmetry hypothesis. The authors usually 
aim at the conclusion “asymmetry”, which they find difficult to obtain 
with Engle/Granger-like procedures. For example, Galeotti et al. 
[2003] state (without further reference or simulation) that the tests for 
asymmetry “are biased toward accepting the null of symmetry in small 
samples. This fact could explain why the data fail to turn up the 
asymmetric price adjustments that many commonly suspect.” 
Actually, the authors do not criticize the test for a bias (as we do), but 
for a low power to detect asymmetry. Honarvar [2010] conducts 
simulations which support this criticism. His results do not necessarily 
contradict ours, as he simulates asymmetry in the data (and then finds 
low power to detect the simulated asymmetry), while we simulate 
symmetry in the data (and then find excessive rejections of the 
simulated symmetry). Although both types of errors should be taken 
into consideration, a low power does not render the test invalid, while 
excessive rejections of the null hypothesis do. It should be mentioned 
that Honarvar allows for more types of asymmetric cointegration than 
the restrictive Enders/Granger/Siklos-model (from whose perspective, 
the model is again misspecified) and suggests a different method for 
estimation and testing to account for this. It seems, however, that the 
suggested method retains the implicit conditioning on evidence for 
cointegration. Thus, while he aims at improving the ability to detect 
asymmetry, the problem of excessive rejections of the null of 
symmetry, invalidating the test, might persist in his approach. 

 
2. Models and tests 
The cointegration test suggested by Enders/Granger/Siklos is best 
understood in the context of the Engle/Granger procedure (EG-
procedure), whose aim is to provide evidence for a static linear 
cointegrating relationship between two integrated time series tx  and 

ty  (where the cointegration is assessed by a single reversion rate). The 
EG-procedure first regresses ty  on (a const. +) tx  and then essentially 
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performs an (A)DF-test with the residual series tz . That is, one tests if 
it is possible to reject  

=1
: = ( ) where : . . ., [ ] = 0,k

null t t j t j t tj
H z z i i d Eε γ ε ε−∆ + ∆∑  

in favor of  

1 =1
: = ( ) ( ) where < 0k

alt t t t j t jj
H z z z zρ ε γ ρ− −∆ − + + ∆∑ . 

For the implementation one regresses tz∆  on 1−tz  (+ constant + 
lags) and uses the t -statistic of the coefficient ρ  of 1−tz  to decide, if 

0=ρ  can be rejected in favor of 0<ρ . A subtle, but important point 
is that under nullH  ( = 0ρ ) the OLS-estimate has non-standard 
behavior, so that the t-statistic does not follow a t-distribution (even 
with normal tε  or asymptotically). To account for this, the critical 
values for rejection of 0=ρ  must be more extreme (larger in absolute 
value) than those coming from the appropriate t-distribution.  

One can interpret the EG-procedure as searching for a sufficiently 
strong tendency for mean reversion in the residuals tz , in order to be 
able to reject the null hypothesis of “no cointegration”. As the critical 
values are more extreme than in a scenario with stationary time series, 
an extraordinarily strong mean reversion in the cointegration residuals 
is required for rejection, i.e. to arrive at the conclusion 
“cointegration”. This has the drawback that the power (to detect 
cointegration) is very low.  

To allow for an asymmetry in the reversion rate ρ , Enders/ 
Granger/Siklos (see [Enders, Siklos 2001]) use a TAR-model instead 
of the ADF-model in the second step of the EG-procedure: The 
reversion rate ρ  is allowed to switch between two different values +ρ , 

−ρ , depending on whether the past residual 1−tz  is above or below 
some threshold τ . Enders [2001] and Enders & Siklos [2001] also 
introduce the so-called mTAR-model, where the switching decision is 
based on the change 1−∆ tz  rather than 1−tz . Thus, they test if it is 
possible to reject  

=1
: = ( ) where : . . ., [ ] = 0,k

null t t j t j t tj
H z z i i d Eε γ ε ε−∆ + ∆∑  
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in favor of  

1 1 =1
: = [ ( )] [(1 )( )] ( )k

alt t t t t t t j t jj
H z I z z I z z zρ ρ ε γ+ − − − −∆ ⋅ − + ⋅ − − + + ∆∑
where 0<+ρ , 0<−ρ  and  

1

1

1

1

1
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For a given threshold τ , this test can be implemented by 
regressing tz∆  on 1:= ( )t t tz I z z+

− − , ))((1:= 1 zzIz ttt −− −
−   

( )( jtzlags −∆+ ) and using the F-statistic for nullH : 0=0,= −+ ρρ . 

Again, the critical values for rejection of 0=0,= −+ ρρ  are (much) 
larger than those coming from the appropriate F-distribution. For 
example, the critical value for the 5%-level with 100=T  
observations is roughly 6, instead of roughly 3. Note that the aim of 
this test is the same as that of the EG-procedure: To provide evidence 
for (a more general form of) cointegration. It is somewhat surprising 
that – even under situations where −+ ≠ ρρ  – the power of the test (to 
detect cointegration) is even lower than that of the original EG-
procedure. This means that the test does not achieve its primary aim 
(to detect cointegration) very well. Given that cointegration  
( 0<0< −+ ∧ρρ ) is confirmed, the test for asymmetry amounts to an 
F-test of −+ ρρ =:0H , using standard critical values. Note that usage 
of these critical values assumes cointegration. 

In order to improve the ability of the cointegration test to detect 
cointegration, Enders [2001] and Enders & Siklos [2001] suggested to 
select the threshold τ  by optimizing the AIC of the regression for 

−+ ρρ ,  (which is equivalent to maximizing its 2R  and simply means 
to improve the fit of the cointegration model to the data). In practice, 
this is achieved by estimating many regressions with fixed τ , where 
τ  runs through to all values of tz  (TAR) or tz∆  (mTAR) (usually a 
lateral trimming is applied, to avoid *τ  becoming too close to the 
extreme values). Enders [2001] claims that this is an implementation 
of a superconsistent TAR-model estimator suggested by Chan [1993)]  



ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr  12(18) 

 

 

 

  

 

Extended abstracts 191 

3. Simulations 
In order to investigate the dependency of the test for cointegration and 
the test for asymmetry, we simulate a large number of time series tx  
and ty  which cointegrate with symmetric reversion in the cointegration 
residuals tz . Thus, the correct conclusions would be to reject the null 
hypothesis of “no cointegration” (decide “cointegration”), but to not 
reject the null hypothesis of “no asymmetry” (retain “symmetry”). We 
report the probability that the symmetry test, performed at the 5%-
level, falsely detects asymmetry, given that cointegration was 
(correctly) detected. That is, we ignore all cases, where the 
Enders/Granger/Siklos test failed to detect cointegration, as the test for 
asymmetry is invalid without cointegration (in practice, it is likely that 
the study based on these data would be aborted, because there was no 
evidence for cointegration). In the remaining cases, the frequency of 
(falsely) rejecting the null hypothesis “symmetry” should be below the 
prescribed significance level of 5%. The curve labelled pAPT | CI in 
the diagrams shows these probabilities as a function of the critical F-
value, CritVal.CI, that was used in the test for cointegration. As 
mentioned above, the valid critical values for the cointegration 
scenario are much larger than the classical ones from the appropriate 
F-distribution: The valid 5%-critical value is around 6, while the 
classical one turns out to be slightly above 3. The diagramms also plot 
the probablitity of (correctly) detecting cointegration as a function of 
CritVal.CI (dotted curves labelled pCI). For the valid critical value (≈  
6 at 5%-level), this is the power of the test. In all of the simulations 
shown the length of the time series was 100=T  and the (symmetric) 
model for the CI-residuals tz  was  

2
1= , where  is i.i.d. (0, ),

( < 0, but quite close to 0)
t t t tz z Nρ ε ε σ

ρ
−∆ + :

 

where 0.1= −ρ  and 1=σ . Note that we thereby completely conform 
to the modelling framework of Enders/Granger/Siklos: no misspe-
cification; normally distributed i.i.d. error terms (in particular: no 
serial correlation in error terms); the number of lags jtz −∆  is 0, which 
is known in advance. In all diagrams 2000 data sets were simulated.  

We start by estimating an mTAR model with a prescribed 
threshold of 0=τ :  
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The results clearly indicate that the combined test much too often 

falsely finds “asymmetry”. This would already hold when using the 
classical critical value for detecting cointegration (around CritVal.CI 
≈  3), although here the probability of an α-error in the test of 
symmetry would be only slightly above the prescribed 5% level. But 
with the valid critical values for the cointegration test, the actual 
probability of an α -error for the symmetry test lies above 15%, more 
than three times as high as the pretended significance level. The 
striking point here is not that there is a mismatch at all (it is not 
surprising that in a repeated testing the test which is performed 
conditional on the outcome of a “primary” test does not match its 
pretended significance level, except the test statistics were 
independent of each other), but that the mismatch is always in favor of 
(falsely) detecting asymmetry and that this discrepancy increases with 
more evidence for cointegration (larger CritVal.CI). With the large 
critical values required for the cointegration test to be valid, a 
considerable amount of excessive rejections of the null hypothesis 
“symmetry” arises. The diagram also confirms the small power of the 
cointegration test: At the 5%-level it detects less than 20% of the 
cointegrations (see curve pCI above CritVal.CI ≈  6).  

We next estimate the mTAR-model with optimal threshold 
*ˆ= ττ  (with a lateral trimming of 15% to both sides):  
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The results are qualitatively similar to those of the previous simulation, 
but much more pronounced. The APT-test at the 5%-level now (falsely) 
detects asymmetry in more than half of the cases where evidence for 
cointegration is found at the 5%-level. At the same time, the ability to 
(correctly) detect cointegration has improved. The reason for the 
dramatically increased rate of false rejections of the symmetry hypothesis 
is that the search for an optimal fitting threshold tends to locate the 
threshold asymmetrically, i.e. close to the borders of the trimming area. 

The result for the TAR-model with prescribed threshold 0=τ  
is suprisingly different: 

   

We now have almost no false asymmetry classifications (but an 
even lower power to detect cointegration). I do not try to explain the 
good performance of the test for asymmetry here, but mention that 
results like this are only obtained with a perfectly matching 
specification of the estimated model. If, for example, the TAR-model 
is estimated with one or more asymmetric lags (which is not a false 
specification, but an over-specification), the results for the TAR-
model become very similar to those of the mTAR-model (too many 
classifications of “asymmetry”). 

The results for the TAR-model with optimal threshold *ˆ= ττ  
(with lateral trimming of 15%) also resemble those of the mTAR-
model with optimal threshold:  
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4. Conclusions 
It was shown that the test of symmetry in the Enders/Granger/Siklos 
procedure for asymmetric cointegration is confounded towards indicating 
asymmetry by requiring the data to provide sufficient evidence for 
cointegration (“Evidence for cointegration provokes artificial asymmetry”). 
This bias is strongly enlarged by selecting an optimal fitting threshold 
(“optimizing over the threshold provokes artificial asymmetry”). For 
purposes of demonstration, we selected scenarios with a substantial bias, 
which are characterized by a small sample size and relatively small 
reversion rates. However, except for the TAR-model with perfect 
compliance of the simulated data to the model specification, a bias in the 
same direction was observed for all other scenarios simulated (although it 
tends to become ignorably small with sufficiently large sample sizes and/or 
reversion rates). The same kind of confoundedness towards asymmetry 
detection might not be specific to the Ender/Granger/Siklos procedure 
alone, but latent in other methods for asymmetric cointegration too.  

Acknowledgement. I would like to thank Karsten Schweikert for 
many discussions on the subject, for providing me with literature and, 
in particular, for his excellent master thesis [Schweikert 2013], from 
which my interest in the Enders/Granger/Siklos-procedure originated.  

References 
Chan K.S., Consistency and limiting distribution of the least squares estimator of  

a Threshold Autoregressive Model, “The Annals of Statistics” 1993, Vol. 21, No. 1, 
pp. 520–533. 

Cramon-Taubadel S. von, Meyer J., Asymmetric price transmission, fact or artefact?, 
Working Paper, University Göttingen, Göttingen 2001.  

Enders W., Improved critical values for the Enders-Granger unit-root test, “Applied 
Economics Letters” 2001, Vol. 8, No. 4, pp. 257–261. 

Enders W., Granger C.W.J., Unit-root tests and asymmetric adjustment with an example 
using the term structure of interest rates, “Journal of Business & Economic 
Statistics” 1998, Vol. 16, No. 3, pp. 304–311. 

Enders W., Siklos P.L., Cointegration and threshold adjustment, “Journal of Business & 
Economic Statistics” 2001, Vol. 19, No. 2, pp. 166–176. 

Engle R.F., Granger C.W.J., Co-integration and error correction: Representation, 
estimation and testing, “Econometrica” 1987, Vol. 55, No. 2, pp. 251–276. 

Galeotti M., Lanza A., Manera M., Rockets and feathers revisited: An international 
comparison on European gasoline markets, “Energy Economics” 2003, Vol. 25,  
No. 2, pp. 175–190. 

Honarvar A., Modeling of asymmetry between gasoline and crude oil prices: A Monte 
Carlo comparison, “Computational Economics” 2010, Vol. 36, pp. 237–262. 

Schweikert K., Asymmetrische Adjustierung zwischen Tankstellen- und Rohölpreisen in 
Deutschland: Ein TAR Fehlerkorrekturmodell mit endogen bestimmtem Struktur-
bruch, Master Thesis, University of Marburg, 2013. 




