
edited by
Małgorzata Nycz
Mieczysław Lech Owoc

Publishing House of Wrocław University of Economics
Wrocław 2011

232
PRACE NAUKOWE
Uniwersytetu Ekonomicznego we Wrocławiu
RESEARCH PAPERS
of Wrocław University of Economics

Knowledge Acquisition
and Management

3 strona:Makieta 1 2012-08-22 10:31 Strona 1

Reviewers: Grzegorz Bartoszewicz, Witold Chmielarz, Halina Kwaśnicka,
Antoni Ligęza, Stanisław Stanek

Copy-editing: Marcin Orszulak

Layout: Barbara Łopusiewicz

Proof-reading: Barbara Łopusiewicz

Typesetting: Beata Mazur

Cover design: Beata Dębska

This publication is available at www.ibuk.pl

Abstracts of published papers are available in the international database
The Central European Journal of Social Sciences and Humanities
http://cejsh.icm.edu.pl and in The Central and Eastern European Online Library
www.ceeol.com as well as in the annotated bibliography of economic issues BazEkon
http://kangur.uek.krakow.pl/bazy_ae/bazekon/nowy/index.php

Information on submitting and reviewing papers is available
on the Publishing House’s website www.wydawnictwo.ue.wroc.pl

All rights reserved. No part of this book may be reproduced in any form
or in any means without the prior written permission of the Publisher

© Copyright by Wrocław University of Economics
 Wrocław 2011

ISSN 1899-3192
ISBN 978-83-7695-200-0

The original version: printed

Printing: Printing House TOTEM

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 4 2012-09-18 13:29:59

Contents

Preface... 	 7

Iwona Chomiak-Orsa: Selected instruments of controlling used in the area
of knowledge management.. 	 9

Roman V. Karpovich: Creating the portfolio of investment projects using
fuzzy multiple-criteria decision-making.. 	 19

Jerzy Korczak, Marcin Iżykowski: Approach to clustering of intraday stock
quotations... 	 29

Antoni Ligęza: A note on a logical model of an inference process. From ARD
and RBS to BPMN... 	 41

Maria Mach: Analysing economic environment with temporal intelligent
systems: the R-R-I-M architecture and the concept of quasi-objects.......... 	 50

Alsqour Moh’d, Matouk Kamal, Mieczysław L. Owoc: Integrating busi-
ness intelligence and theory of constraints approach.................................. 	 61

Eunika Mercier-Laurent: Future trends in knowledge management. Knowl-
edge EcoInnovation... 	 70

Małgorzata Nycz: Business intelligence in Enterprise 2.0............................... 	 79
Mieczysław L. Owoc: Key factors of Knowledge Grid development.............. 	 90
Maciej Pondel: Data mining with Microsoft SQL Server 2008....................... 	 98
Maria Radziuk: Multi-agent systems for electronic auctions.......................... 	 108
Tatiana V. Solodukha, Boris A. Zhelezko: Developing a multi-agent system

for e-commerce.. 	 117
Jerzy Surma: Case-based strategic decision-making....................................... 	 126
Paweł Weichbroth: The visualisation of association rules in market basket

analysis as a supporting method in customer relationship management
systems... 	 136

Radosław Wójtowicz: Office online suits as a tool for supporting electronic
document management.. 	 146

Radosław Zatoka, Cezary Hołub: Knowledge management in programming
teams using agile methodologies... 	 156

Presentations

Markus Helfert: Current und Future “Trends” in Knowledge Management –
A management capability perspective... 	 167

Eunika Mercier-Laurent: Knowledge EcoInnovation.................................... 	 181

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 5 2012-09-18 13:29:59

6	 Contents

Streszczenia

Iwona Chomiak-Orsa: Wybrane instrumenty controllingu wykorzystywane
w obszarze zarządzania wiedzą... 	 18

Roman V. Karpovich: Tworzenie portfela projektów inwestycyjnych przy
użyciu wielokryterialnych rozmytych metod podejmowania decyzji......... 	 28

Jerzy Korczak, Marcin Iżykowski: Próba klasteryzacji dziennych notowań
giełdowych... 	 40

Antoni Ligęza: Uwaga na temat logicznych modeli procesu wnioskowania.
Od ARD i RBS do BPMN... 	 49

Maria Mach: Analiza środowiska ekonomicznego przy pomocy inteligent-
nych systemów temporalnych – architektura R-R-I-M i koncepcja quasi-
-obiektów... 	 60

Alsqour Moh’d, Matouk Kamal, Mieczysław L. Owoc: Integracja business
intelligence z teorią ograniczeń... 	 69

Eunika Mercier-Laurent: Przyszłe trendy w zarządzaniu wiedzą. Ekoinno-
wacje wiedzy... 	 78

Małgorzata Nycz: Business intelligence w koncepcji Enterprise 2.0.............. 	 89
Mieczysław L. Owoc: Kluczowe czynniki rozwoju Knowledge Grid............. 	 97
Maciej Pondel: Drążenie danych w MS SQL Server 2008.............................. 	 107
Maria Radziuk: Wieloagentowy system wspierający aukcje elektroniczne.... 	 116
Tatiana V. Solodukha, Boris A. Zhelezko: Budowa systemów wieloagento-

wych na potrzeby handlu elektronicznego.. 	 125
Jerzy Surma: Podejmowanie strategicznych decyzji w oparciu o analizę

przypadków.. 	 135
Paweł Weichbroth: Wizualizacja reguł asocjacyjnych w analizie koszykowej

jako metoda wspierająca systemy klasy CRM.. 	 145
Radosław Wójtowicz: Pakiety biurowe on-line jako narzędzia wspierające

zarządzanie dokumentami elektronicznymi.. 	 155
Radosław Zatoka, Cezary Hołub: Zarządzanie wiedzą w zespołach progra-

mistycznych przy użyciu metodyk zwinnych.. 	 164

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 6 2012-09-18 13:29:59

PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU  nr 232
RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS
Knowledge Acquisition and Management	 ISSN 1899-3192

Radosław Zatoka, Cezary Hołub
Wrocław University of Economics

Knowledge management in programming
teams USING AGILE METHODOLOGIES

Summary: This paper discusses the idea of knowledge management in software development
organisations at the level of programming teams. The authors use conceptual modelling
approach to adapt classical knowledge flow cycle for teams of programmers building projects
by means of agile development processes. In our work we select techniques derived from
agile methodologies and artefacts of software development process and integrate them into
Nonaka and Takeuchi’s concept in order to obtain a more coherent model – the proposed
extension of Nonaka and Takeuchi’s model conforms to the discipline of software engineering
and the character of agile projects.

Keywords: knowledge management, agile development methodologies, software engi-
neering, programming teams.

1. Introduction

Software development is a highly heterogonous process, involving many disciplines,
among which one can distinguish requirements engineering, systems analysis and de-
sign, software engineering, user interface design, graphic design, project management,
etc. As a consequence, this field requires knowledge intensively in various areas. Fast-
ly changing and steadily growing knowledge needs to force software development
companies to introduce knowledge management strategies which can facilitate tasks
that concern capturing and using knowledge. This paper focuses on knowledge man-
agement in programming teams using agile methodologies. The software development
context is narrowed down to implemental, code-creational level. Knowledge manage-
ment in software engineering, and in particular, from the perspective of a member of
a programming team, can be distanced from the common knowledge management, but
the classic knowledge management concepts can be used as a starting point.

2. Method

A systematic review and a conceptual modelling approach was used in this paper.
The authors start with referring to the knowledge management classical theory and
distinguish explicit and tacit knowledge assets in software development. We continue

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 156 2012-09-18 13:30:18

Knowledge management in programming teams…	 157

our deliberation by setting knowledge management beside agile development
methodologies and highlighting the role of tacit assets in agile teams. The theoretical
part is finished with the short comparison between sequential design process and
agile methodologies. The last part of the paper presents modified Nonaka and
Takeuchi’s model adapted to the character of agile projects. This section emphasises
distinguishing and discussing technics and methods derived from agile methodologies
that support creation of tacit knowledge assets. It also reviews a need for their
codification to maintain a project in the long run.

3. Knowledge in software development organisations

As presented in Nonaka and Takeuchi’s model, intellectual capital of an organisation
appears in the form of tacit and explicit knowledge [Nonaka, Takeuchi 1995]. Tacit
knowledge is personal knowledge of employees which they bring to a company and
continuously develop while “learning-by-doing”. Explicit knowledge is codified; it
can be represented in textual or symbolic form and easily shared in a group. One can
say that from the perspective of a programmer tacit knowledge reflects changes in
practice, while explicit knowledge creates an organisation memory.

The endeavour of application Nonaka and Takeuchi’s distinction at the
programming team level can result in distinguishing tacit and explicit knowledge
assets. Table 1 presents the most important assets.

Table 1. Explicit and tacit knowledge assets in the process of software development

Explicit assets Tacit assets

Documented code repositories••
System specifications and client requirements••
System fragments models••
Unit-tests sets••
Reports from team meetings••

Skills and experience of team members••
Undocumented code repositories••

Source: authors’ own study.

The general idea of knowledge management systems emphasises transforming
tacit knowledge into explicit. The proportion of managing these two knowledge asset
groups is connected with used software development method. Teams using agile
development processes should concentrate on tacit assets, while the explicit ones are
more important when using traditional sequential design methods, for instance
waterfall. However, according to the research in the field of software engineering,
both explicit and tacit knowledge are required, no matter which approach is pursued.
[Bjørnson, Dingsøyr 2008].

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 157 2012-09-18 13:30:18

158	 Radosław Zatoka, Cezary Hołub

4. “Programming as Theory Building”

In 1985 Peter Naur published his article “Programming as Theory Building”, in which
he introduced the Theory Building View of programming [Naur 1992]. The idea,
however, became more known and widely commented just not long ago, with the
works of Alistair Cockburn, the co-author of the Agile Manifesto.

Naur’s concept derived from observations that “at least with certain kinds
of large programs, the continued adaptation, modification, and correction of errors
in them, is essentially dependent on a certain kind of knowledge possessed by a
group of programmers who are closely and continuously connected with them”
[Naur 1992]. This leads to a conclusion that essential part in programming is
building up programmers’ knowledge, regarded as a theory which is intangible and
created throughout the process of software development. Without having the proper
theory, a person is not able to do certain things intelligently. Coping with changes
in software development demands matching various theories: the theory of a client
problem, the theory of programmers solution, and often theories of previous
programmers.

Theory Building View points out that “knowledge of the theory is tacit
in the owning” [Cockburn 2008]. An important consequence of this idea is that
restoring the theory of a programme merely from the documentation is strictly
impossible. A programme revival depends upon transmitting the theory which
requires passing on both explicit and tacit knowledge. In next sections we briefly
describe and compare waterfall model to agile methodology to present the difference
in the way they impact knowledge assets in a programming team.

5. Software process methods

“Software process” is described as a process of producing software. Software has
been produced for a relatively short time, because the manufacturing processes of
software change quickly over time, often changing the opinion on “who is the best”.
There are a lot of schools talking about how to make software – they provide the most
variations of the two major (waterfall and agile) – and extremely different in relation
to each process:

Rational Unified Process–– (called the RUP): the process of software developed by
Rational Software; the process is adapted to carry out major and very big
projects;
Agile –– (Scrum): the software is created in the specified intervals, so-called
“sprints”, during which a team is to perform pre-defined job requirements.
Formalisation is low.
In Figure 1 there is an example project structure regarding waterfall methodolo-

gies. We can see that there are three levels (groups) of knowledge: project manage-

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 158 2012-09-18 13:30:18

Knowledge management in programming teams…	 159

ment, team leaders, and software engineers. People at each level cooperate with one
another but not between levels. This is not a really good approach. Agile methodolo-
gies try to find a panacea for such a situation.

6. Comparison of agile and waterfall methodologies

In the case of waterfall methodology, agile methodology and the difference in the
approach to the process of software development is significant. Cascade model is
dedicated to a work plan (called a plan-driven), which means that at the outset of
a project we know exactly the scope of our work; it only affects time and cost. In the
case of agile, methodology is the opposite, having a predetermined budget and time
frame, so manoeuvring the scope of work to best meet the needs of a client (called
value/vision-driven), as illustrated in Figure 2. One of the key issues was client
involvement in a project so that it becomes an integral part of a team. Thus, we have
a chance to create software which 100% satisfies customer expectations.

Figure 1. The structure of the technical management, decision-making, and knowledge flow
in a large project

Source: authors’ own study.

Project manager

Team leader Team leader Team leader

Software
engineers

Software
engineers

Software
engineers

The structure of the technical management in a large project

Decision-making in a large project. Knowledge flow

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 159 2012-09-18 13:30:18

160	 Radosław Zatoka, Cezary Hołub

Figure 2. The differences between agile methodology and the waterfall

Source: authors’ own study.

Another distinct feature is the division of work. In the waterfall methodology the
tasks are completed in a cascade. We collect customer requirements, make their
analysis, and on this basis we can design the whole program; therefore, coding,
testing, and finally commissioning a project to a client. A negative side of the model
is that the accelerated coding phase threatens the pace of work at the end (nervous
atmosphere and time pressure). Deadline is often at the expense of testing the effect
of what a customer gets is not always fully tested programme. Agile as a methodology
to promote the TDD technique (called Test Driven Development), does not leave
testing to the very end of work. A kind of innovation is that tests are first prepared
before developers proceed to a proper coding. The whole project is divided into
various iterations and for each of these steps a separate testing unit is provided.

7. Knowledge flow in programming teams

Among factors which influence the success of software development projects
researchers list: new technologies, methods of software engineering, and people
performance [Rus, Lindvall 2002]. To improve the quality and lower the costs of
software development, knowledge management systems affect the latter.

Due to Nonaka and Takeuchi [1995], knowledge is converted from tacit to
explicit and vice versa as it flows through an organisation in the processes of
socialisation, externalisation, internalisation, and combination. In the software
development context, Nonaka and Takeuchi’s model can be adapted and extended
to present knowledge cycle in the programming team. It is shown in Figure 3.

As stated earlier, agile software engineering is mainly tacit-knowledge oriented.
Therefore, managing human factors is the key to a success in creating efficient
knowledge managements systems at the level of a programming team using agile

Waterfall Agile

cost time

cost time

scope of work

Limiting values

Variable values scope of work

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 160 2012-09-18 13:30:19

Knowledge management in programming teams…	 161

methodologies. Explicit assets are not directly relevant and have an auxiliary role in
this process.

Among methods and techniques deriving from agile methodologies, we suggest
using those listed further in the process of creating and managing programming
teams. These methods of transforming tacit assets into tacit knowledge involve
creating:

experts networks–– in a company that try to indicate who knows what, connect
programmers with particular knowledge and encourage them to exchange views
even if they currently work on different projects [Schneider 2009];
osmotic communication–– in a programming team, which is ensured a shared
office, where programmers can interact and find seating arrangements, where
one or more business experts can sit close to two or more programmers; osmotic

Figure 3. Knowledge flow in a programming team

Source: authors’ own study.

new technologies

KNOWLEDGE FLOW IN THE PROGRAMMING TEAM

tuning people performance
tuning methods of software

engineering

SOCIALISATION EXTERNALISATION

INTERNALISATION COMBINATION

Managing tacit assets Managing explicit assets

• Pair programming
• Osmotic

communication
• Information radiators
• Code inspections
• Experts networks

• Use cases
• Glossaries
• Domain models
• Design patterns
• Frameworks

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 161 2012-09-18 13:30:19

162	 Radosław Zatoka, Cezary Hołub

communication will significantly lower the cost of ideas transfer [Cockburn
2008];
information radiators –– that display information in a freely available place, where
passing team members can be exposed to their effects [Cockburn 2008];
code inspection phase–– , in which members of an inspection team can revise the
code written by their colleagues, inform them about their mistakes and lapses,
and give them an instant feedback [Martin, Micah 2008];
pair programming:–– extreme programming or side-by-side programming.
Pair programming is a technique introduced by agile methods in which two

programmers work on the same task simultaneously. In extreme programming
variant, programmers are equipped with one computer. While the first one is writing
a code, the second gives instant advice, reviews the code, and asks questions. Extreme
programming allows transferring information in the real time. The side-by-side
variant assumes that programmers have their own computers, but the pair works
close to each other, consulting the whole task and dividing it together into subtasks.

According to the research conducted at Poznań University of Technology
[Nawrocki et al.], however, the effort overhead for side-by-side programming is 20%
and for XP programming about 50%, in comparison to the classic style. Moreover,
the verification phase of the experiment did not confirm that persons programming
in pairs had better code familiarity than individuals. In the light of those results, pair
programming may seem as a controversial and risky technique.

Although agile development processes concentrate on tacit assets, explicit assets
are required for further maintenance of a project. To support the process of managing
explicit assets, software engineering developed many structures that enclose
knowledge in reusable, codified forms. They include [Schneider 2009]:

use cases–– , sets of functional requirements that occur in an interaction between
users and a computer system;
glossaries–– , dictionaries of terminology belonging to the modelled domain;
domain models–– that capture key concepts of the domain logic and present how
objects distinguished within are related;
design patterns–– , programmers experience, codified as a combination of a problem,
solution, and context; software development patterns can be applied at both
architectural and implementation levels.
These artefacts of software process can be used to transform tacit knowledge

into explicit and, by placing them in document repositories, lift knowledge assets
from the individual to the organisational level.

8. Conclusions

Agile methods, which are still growing in popularity, introduce a number of innovative
solutions, such as pair programming or parallel programming, which can improve
the knowledge cycle in a programming team. Even if these methods are not used in
a project as a whole, project managers should consider their partial utilisation.

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 162 2012-09-18 13:30:19

Knowledge management in programming teams…	 163

Knowledge management system for teams of developers should concentrate on
managing human factor: encouraging the integration of individuals and creating the
environment for sharing ideas and skills. Managing explicit assets can be facilitated
by a subsequent use of the artefacts, which represent the theory of the system – a
codification of knowledge, created at all the stages of software development process.
Further research may focus on empirical model verification tests.

It is worth noting that a threat to knowledge management systems in software
development industry can be programmers themsleves. Project managers should not
only motivate employees to share knowledge but also reward knowledge by keeping
key people in an organisation. On the contrary, it cannot lead to a situation in which
a programmer feels confident that he or she is in the possession of a unique knowledge
and a company is dependent on him or her. We must promote an approach stating
that sharing knowledge does not carry risks but profits.

References

Bjørnson F.O. (2007), Knowledge Management in Software Process Improvement, Doctoral Thesis,
Norwegian University of Science and Technology.

Bjørnson F.O., Dingsøyr T. (2008), Knowledge management in software engineering: A systematic re-
view of studied concepts, findings and research methods used, Information and Software Technol-
ogy, Vol. 50.

Cockburn A. (2008), Agile Software Development. Gra zespołowa, Wydanie II, Helion.
Davenport T.H. (2010), Knowledge Management Case Study, Knowledge Management at Microsoft,

http://www.itmweb.com/essay536.htm (date of access: 29.04.2010).
Lindvall M., Rus I., Jammalamadaka R., Thakker R. (2001), Software Tools for Knowledge Manage-

ment. A DACS State-of-the-Art Report, The University of Maryland.
Liu Ch.-H., Wong R., Chen Y.-T., Huang H.-W. (2006), Managing critical knowledge management is-

sues in global software development project, Issues in Information Systems, Vol. VII, No. 2.
Martin R.C., Micah M. (2008), Agile. Programowanie zwinne: zasady, wzorce i praktyki zwinnego

wytwarzania oprogramowania w C#, Helion.
Merta A. (2008), Była sobie inspekcja. Określenie, przygotowanie i definicja procesu inspekcji, Soft-

ware Developer’s Journal, nr 9.
Naur P. (1992), Programming as Theory Building, Computing: A Human Activity, ACM Press,

pp. 37-48.
Nawrocki J.R., Jasiński M., Olek Ł., Lange B. (2005), Pair Programming vs. Side-by-Side Program-

ming, EuroSPI 2005, Budapest, November 2005.
Nonaka and Takeuchi Knowledge Management Cycle (2010), http://hubpages.com/hub/Nonaka-and-

Takeuchi-knowledge-management-cycle (date of access: 29.04.2010).
Nonaka I., Takeuchi H. (1995), The Knowledge-Creating Company, Oxford University Press, New

York.
Object Manegement Group (OMG), http://www.omg.org.
Rus I., Lindvall M. (2002), Knowledge Management in Software Engineering, Fraunhofer Center for

Experimental Software Engineering, Maryland.
Schneider K. (2009), Knowledge Management in Software Engineering, Springer-Verlag, Berlin/Hei-

delberg.

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 163 2012-09-18 13:30:19

164	 Radosław Zatoka, Cezary Hołub

Shore J., Warden S. (2008), Agile Development. Filozofia programowania zwinnego, Helion.
Pair Programming vs. Side-by-Side Programming, http://xprince.net/xprince_folder/artyku142y (date

of access: 29.04.2010).

Zarządzanie wiedzą
w zespołach programistycznych
przy użyciu metodyk zwinnych

Streszczenie: Artykuł omawia ideę zarządzania wiedzą w organizacjach tworzących oprogra-
mowanie na poziomie zespołów programistycznych. Autorzy używają podejścia modelowa-
nia konceptualnego, aby zaadaptować klasyczny przepływ wiedzy na potrzeby zespołów pro-
gramistycznych realizujących projekty przy użyciu metodyk zwinnych. W naszej pracy
wybieramy techniki pochodzące z metodyk zwinnych oraz artefakty procesu rozwoju opro-
gramowania i integrujemy je z koncepcją Nonaki i Takeuchiego w celu uzyskania bardziej
spójnego modelu. Zaproponowane rozszerzenie modelu Nonaki i Takeuchiego dostosowuje
się do dyscypliny związanej z rozwojem oprogramowania oraz do charakteru projektów reali-
zowanych w inżynierii oprogramowania oraz w metodykach zwinnych.

Słowa kluczowe: zarządzanie wiedzą, zwinne metodyki rozwoju oprogramowania, inżynie-
ria oprogramowania, zespoły programistyczne.

PN-232_Knowledge Acquisition...-Nych, Owoc.indb 164 2012-09-18 13:30:19

