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Notation 

 

RS  active apparent power 

P   active power 

xR   autocorrelation matrix 

SC   compensating capacitance 

S   complex apparent power 

I   complex value of current 

U   complex value of voltage 

[n]x   discrete signal as function of sample number n 

   displacement between voltage and current 

DS   distortion power 

D   distortion power by Budeanu 

 ih x   equality constrain function 

f   frequency 

 ig x   inequality constrain function 

 0P   initial population 

js   input signal vector for DWT of the length 2
j 

 i t   instantaneous current as function of time 

p   instantaneous power 

 u t   instantaneous voltage as function of time 

j

aW   j – scale discrete wavelet transform matrix for analysis 

j

sW   j – scale discrete wavelet transform matrix for synthesis 

   Lagrange multiplier for inequality constrains 

L   length of a chromosome, length of a signal 

( )M n   matting pool 

   multiplier for equality constrains 

 F x   objective function 

,a b   pair of numbers 

PF   power factor 

1jd   prediction vector with differences 

cp   probability of parents selection form the mating pool 

musicP   pseudospectrum obtained with MUSIC method 
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Q  reactive power 

tS   total apparent power 

xS  true reactive apparent power 

0h   unity step 

1js   updated signal vector of the length 2
j-1 

 

  



 

1 Introduction 

1.1 Developments and motivations 

Traditional model of an electrical energy distributions system [1] comprising unidi-

rectional power flow from centralised generation units with considerably big power to 

geographically distributed, relatively small consumers is not more valid. Distributed 

generation or dispersed generation is an inevitable trend in the development of electri-

cal energy distribution systems [2], [3]. Small and medium sized photovoltaic installa-

tions are most popular among prosumers. Further on, the proliferation of decentralised 

generation, along with other factors, triggered the development of smart electrical 

grids. The sophisticated term smart grid covers a wide range of concepts and innova-

tions applied to a power grid. 

One of concepts is called smart city local grids. They consist of local generation 

and consumption and realise a predefined profile (island with zero consumption, con-

stant consumption, constant generation, etc.) toward the overlaid distribution grid in 

urban area. The local grid consist of traditional loads, solar generation, emergency 

energy source, and storage. Electrical vehicles characterised by a charging profile and 

able for immediate discharge to support the gird are an emerging new type of devices. 

Especially from the power profile point of view. 

There are several driving forces substantially influencing the transition from cen-

tralised generation to renewable energy sources, from unidirectional power flow to 

generation at the consumer site. 

 

Reduction of greenhouse gasses emission and other pollutions is one of the most 

important issues regulated by international treaties. The Large Combustion Plant Di-

rective LCPD [4] applies to combustion plants with a thermal output of 50 MW or 

more. The LCPD aims to reduce acidification, ground level ozone and particles 

throughout Europe by controlling emissions of sulphur dioxide (SO2) and nitrogen 

oxides (NOx) and dust (particulate matter (PM)) from large combustion plants (LCPs) 

in power stations. A Europe-wide approach to reducing these pollutants and their im-

pact is therefore required. Combustion plants must meet at least the emission limit 

values (ELVs) given in the LCPD what makes them not the most desired source of 

electricity.  



8 

Carbon dioxide capture and geological storage (CCS) is a bridging technology that 

will contribute to mitigating climate change [5]. It consists of the capture of carbon 

dioxide (CO2) from industrial installations, its transport to a storage site and its injec-

tion into a suitable underground geological formation for the purposes of permanent 

storage. It was assumed in [5] to achieve 20 % reduction in greenhouse gas emissions 

by 2020 and provided that CCS obtains private, national and Community support and 

proves to be an environmentally safe technology. Anyway, this make the production 

from fossil fuels more complicated and cost intensive. 

The control of European energy consumption and the increased use of energy from 

renewable sources, together with energy savings and increased energy efficiency, con-

stitute important parts of the package of measures needed to reduce greenhouse gas 

emissions and comply with the Kyoto Protocol to the United Nations Framework 

Convention on Climate Change, and with further Community and international green-

house gas emission reduction commitments [6]. 

The climate and energy package is a set of binding legislation which aims to ensure 

the European Union meets its ambitious climate and energy targets for 2020 [6]. These 

targets, known as the "20-20-20" targets, set three key objectives for 2020: 

• a 20% reduction in EU greenhouse gas emissions from 1990 levels; 

• raising the share of EU energy consumption produced from renewable re-

sources to 20%; 

• a 20% improvement in the EU's energy efficiency. 

As the deadline approaches, efforts were undertaken to propose an outlook and 

goals beyond the year 2020. 

There is a new settlement proposal for the reduction of 40% of greenhouse gasses 

by 2030 included in the European 2030 framework for climate and energy policies. 

The EU Commission proposes an objective of increasing the share of renewable ener-

gy to at least 27% of the EU's energy consumption by 2030 [7]. An EU-level target is 

necessary to drive continued investment in the sector, thus helping to create growth 

and jobs. Increasing the share of renewables can also improve the EU's energy trade 

balance and security of supply. A roadmap for moving to a low-carbon economy in 

2050 [8] ensures that a steady development of renewable energy generation will be in 

the focus of European policy.  

Improved energy efficiency makes an essential contribution to all EU climate and 

energy policies. Progress towards the 2020 target of improving energy efficiency by 

20% is being delivered by policy measures at the EU and national levels [7]. 

 

Increase in the share of renewables is not only motivated by air pollution reduc-

tion policies as indicated by the above passage. Protection of fossil resources, inde-

pendence of energy sources in third countries, sustainable development, are the most 

important topics. In other words, renewable generation is inevitable for reasons of 

security and diversification of energy supply, of environmental protection and of so-
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cial and economic cohesion. The promotion of electricity production from renewables 

was distinctly formulated in [9] and since then became a constant trend in the Europe-

an energy policy. The need to promote renewable energy sources as a priority measure 

given that their exploitation contributes to environmental protection and sustainable 

development. In addition this can also create local employment, have a positive impact 

on social cohesion, contribute to security of supply and make it possible to meet Kyo-

to targets more quickly. It is therefore necessary to ensure that this potential is better 

exploited within the framework of the internal electricity market. The increased use of 

electricity produced from renewable energy sources constitutes an important part of 

the package of measures needed to comply with the Kyoto Protocol to the United Na-

tions Framework Convention on Climate Change, and of any policy package to meet 

further commitments. 

To ensure increased market penetration of electricity produced from renewable en-

ergy sources in the medium term, all EU Member States should be required to set na-

tional indicative targets for the consumption of electricity produced from renewable 

sources. 

 

Setting rules of the internal European market for electricity. A well-functioning 

internal market in electricity should provide producers with the appropriate incentives 

for investing in new power generation, including in electricity from renewable energy 

sources, paying special attention to the most isolated countries and regions in the 

Community’s energy market. A well-functioning market should also provide consum-

ers with adequate measures to promote the more efficient use of energy for which a 

secure supply of energy is a precondition [10]. Cross-border interconnections should 

be further developed in order to secure the supply of all energy sources at the most 

competitive prices to consumers and industry within the European Community. 

Consumer and producer, i.e. a prosumer, of electricity may be the same natural 

person [10]. Small prosumers’ installations are the most natural way how to increase 

the share of renewables, and reduce energy transportation.  

 

Smart Grids Concepts. The developments in electrical power distribution systems 

leading to a smart gird include many technical solutions and operational aspects of the 

grid [11], [12], [13].  

The most important include the proliferation of smart meters enabling energy read-

ings several time a day, e.g. every 10 minutes or 1 minute. It paves the way for the 

introduction of flexible energy tariffs and exact control over power flow [14]. 

Power electronic devices, i.e. flexible alternated current transmission systems 

FACTS, are a tool for managing and controlling energy transfer between energy 

sources and consumers. 

A significant area of development is substation automation communication proto-

col IEC 61850 implementation [15] and rethinking of SCADA systems [16].  
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Virtual power plants are a concept for bundling small generation units so that they 

can be managed as an entity by the system operator. 

Bidirectional charging of electrical vehicles gives the system operator a chance to 

use storage energy in order to manage a problem in the distribution network. 

The introduction of all this concepts requires a robust and unified system control 

and data acquisition software enabling access to system data, operation of expert sys-

tems and decision centres and finally access to physical devices conducting switching 

operations in the distribution system. 

 

Developments in small PV installation technologies 

A small PV installation mounted on the roof of a single family house is one of the 

most favourite solutions among prosumers. It is relatively simple to install and main-

tain. Some installation rules [17] and standards, i.e. [18]. give a clear guidance for the 

setting of PV installations. Also legal regulations simplify the connection to the public 

grid and the trade with electrical energy from small PV installations in Poland [19] . 

The local utility is obliged to connect a PV installation build by prosumer to the public 

grid. There is no space for refusal if the basic technical prerequisites are fulfilled. 

There is no need for any further certificates or concessions to sell electrical energy. A 

natural person can do it. 

There are many technical solutions available on the market, ranging from PV pan-

els, DC cables, through inverters, to monitoring and supporting systems. The investor 

can easily choose a solution suitable for the anticipated power output and financial 

engagement.  

A new trend in architecture is the use of building integrated photovoltaic. The pan-

els are not more a spate object optimised for energy gain, but their design and layout is 

focused on aesthetic aspects. 

 

Energy efficiency/demand-side management means a global or integrated ap-

proach aimed at influencing the amount and timing of electricity consumption in order 

to reduce primary energy consumption and peak loads by giving precedence to in-

vestments in energy efficiency measures, or other measures, such as interruptible sup-

ply contracts, over investments to increase generation capacity, if the former are the 

most effective and economical option, taking into account the positive environmental 

impact of reduced energy consumption and the security of supply and distribution cost 

aspects related to it [10]. 

In urban environment efficiency/demand-side management can be realised by 

means of a microgrid with traditional and solar generation, battery storage, and elec-

trical car bidirectional charging stations, called smart city local grids. Electrical cars 

can serve as controllable loads and as energy sources as well. The microgrid is seen by 

the overlaid grid as an entity with a predefined production/consumption profile.  
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Energy marked requirements for tariff policy instruments and refinement of 

power quality indices. 

Power quality indicia and all types of control measures for energy flow in the dis-

tribution networks are seen as instruments enabling dynamic settlement of energy 

prices and establishing of flexible tariffs policies by utilities. Originally, power quality 

indices, e.g. defined in [20], were established to enhance power delivery and not pri-

marily to make tariffs more flexible [21], [22]. Modern developments in smart grid 

solutions [3], especially power flow control and smart metering deliver the basic in-

struments for enforcement of flexible energy tariffs. 

1.2 Research objectives and goals 

General trends and developments presented in previous section are helpful in the 

formulation and the right placement of the research objectives concerning this work.  

 

The research was focused on two major areas. First one, is a small photovoltaic 

generation system. Immense proliferation of such systems into distribution grid be-

comes reality. Moreover, PV is seen as a part of fare more complicated systems com-

prising storage units, and wind or conventional energy converters, and loads with so-

phisticated patters, i.e. charging stations for electrical vehicles. PV generation is char-

acterised by short and long term variations (seasonal, daily, instantaneous) which are 

immanent and contradictory to an desired ability to follow a predefined generation 

profile. New methods for the characterisation of power generation profiles, description 

of variations and distortion are needed. These characterisation and corresponding indi-

ces are not only significant form the engineering point of view, but give a tool for 

flexible energy price calculation accordingly to new power quality features. 

 

Irradiation values are often compared with PV installation power output. This 

match indicates failures in the system and lost sun energy when solar generator was 

turned off due to maintenance or a persisting fault in the grid. Establishing this match 

becomes a problem when irradiance can be measured at one point and the geograph-

ical orientation of panels is sophisticated, i.e. panels are covering a complicated façade 

in urban environment. Often architectural aspects and esthetical values are more im-

portant than energy production. This is valid especially for building integrated photo-

voltaic. A new method is needed to provide a robust match between irradiation and 

PV system power output. 

 

The second area of research is application of signal processing and optimisation 

methods. Mathematical tools which have to be appropriately selected, trimmed and 

applied to be useful for the assessment of PV power generation systems. Property 
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analysis of various signal processing methods was the prerequisite to their application 

to signals specific and typical for PV generation. Innovative approach and tools for the 

assessment of a PV system in terms of tariff instruments and power quality are need-

ed.  

 

Finally, an inevitable question regards the power components computation for 

nonsinusoidal waveforms of current and voltage. Those power components are used 

for the characterisation of PV system performance, feature power quality indicia com-

putation. Small PV installations installed working with homely loads – in a typical 

prosumer installation – can’t be equipped with sophisticated active filters for power 

factor improvement and bettering of power quality due to high cost. A simpler and 

cheaper approach is required, even not performing so well as active filter. 

 

Proposed research objectives, prospective ideas, and anticipated solutions present-

ed throughout the book are an aftermath of the following thesis: 

 

Assessment and monitoring of photovoltaic power generation system performance 

is substantially enhanced by the application of innovative methods based on optimisa-

tion techniques and advanced signal processing. 

 

The justification of thesis follows from the subsequent chapters presenting the the-

oretical fundamentals of proposed assessment methods, and results of numerical anal-

ysis, and computations based on real signals measured in existing installations. 

 

Chapter 1 presents an overview of developments and trends in the operation of 

electrical distribution systems triggered by political and technical forces. The over-

view is a basis for the right placement of presented research objective and reached 

results.  

Chapter 2 brings a detailed presentation of most important concepts for wavelet 

transform. Wavelets are approached not form the frequency domain and filters per-

spective, what is typical for the majority of publications but from the time domain 

perspective and the lifting operation. 

Chapter 3. The basic concepts of MUSIC method are presented and considered an 

effective complementary tool in estimation of frequency components in a signal. No 

information about fundamental frequency is required. High noise content or overlaid 

exponential component in the signal are still acceptable and don’t corrupt results. 

Chapter 4 covers the most important aspects of optimisation techniques, including 

the definition of basic terms and classification of problem groups. Each group of prob-

lems is characterised by a specific mathematical approach. Trust region reflective 

algorithm and Evolutionary approach are presented in more details as regarded most 

suitable for issues concerning the monitoring of PV installation. 
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Chapter 5 describes the power theory of sinusoidal signals. Energy delivered by an 

PV system in a period of time is one of the most important characteristics and a pre-

requisite for financial actions. Averaged power values were used in the proposed mon-

itoring procedure of PV systems. Presented theory is also the basis for further consid-

erations dedicated to nonsinusoidal voltages and currents. 

Chapter 6 is a continuation of the previous one and presents active and reactive 

power concepts for nonsinusoidal voltages and currents. There is a group of advanced 

method defining power components for any periodical waveform, but the compensa-

tion of reactive power requires active compensators. Therefore approaches proposing 

only capacitors were included. There is no full compensation, but the approach is very 

simple and cheap, therefore useful for small micro-generation in private households, 

add that’s why it was included into this work. 

Chapter 7. Previous theoretical chapters are followed by the description of the real 

PV installations used in the research. The installation were equipped with measure-

ment systems allowing capturing and storage of data over long period of time in a 

database. Electrical and meteorological quantities from this database were the basis for 

further analysis and studies. Installations at two locations and with significantly differ-

ent power outputs were used. Both of them were equipped with fixed panels and pow-

er electronic convers from the same manufacturer. 

Chapter 8 starts with the notification of high variations of power levels in a PV sys-

tem. This variations are considered as an deterioration of power quality and therefore 

should be quantified, further minimised. The ripple content in the power curve was 

assessed with wavelets. A bell shaped function was correlated to a power curve using 

optimisation techniques. It resulted in a very compact characterisation of the power 

curve and enabled conceptual correlation between real power curve and power output 

line given by the utility. 

Chapter 9 comprises a novel approach to the monitoring of PV system perfor-

mance. The novelty includes spherical measurement of irradiation components by a 

set of PV sells distributed on the surface of a half-pane. The measured irradiation 

components are then weighted and merged together during an optimisation procedure 

in order to follow a daily power production curve of the PV system. 

Chapter 10 is the closing contribution followed only by an outlook and a literature 

list. It summarises research results, includes comments and conclusions. 

Chapter 11 brings an outline for prospective research activities resulting directly 

from previously presented concepts and from reached results. 
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1.3 Contributions 

The main contributions of the presented work are summarised in a consistent man-

ner: 

- selection and adjustment of an appropriate techniques for the characterisation 

of daily power curves in PV installations 

- proposal of a new power quality indexes dedicated to PV generation based on 

the separation of approximations from details in daily power curves 

- selection and adjustment of optimisation techniques for the characterisation of 

daily power curves in reference to a predefined reverence curve 

- proposal of the utilisation of unique spherical irradiance measurements to mon-

itoring of a photovoltaic system 

- selection and adjustment of optimisation techniques for treatment of spherical 

irradiance components 

- application of weighted spherical irradiations for the estimation of lost energy 

during turn off period of the PV installation 

- extensive numerical simulation focused on the selection of suitable wavelet 

based algorithm’s parameters 

- proposal of reduced and simplified reactive power compensation for microsys-

tems with photovoltaic generation 

  



 

 

2 Wavelets transform 

2.1 Means and differences 

The assumption that a digital signal contains some structure and is not a set of ran-

dom numbers is prior to any signal processing routine. Usually, signal processing is 

focused on information extraction from a sequence of sampled values. 

A very basic assumption is that there is some correlation between two successive 

samples. The samples pairs can be processed one after another, so that a mean value 

and a difference between the first element of the pair and the mean are computed [23]. 

Obviously, this procedure can be iteratively repeated. An example taken from [24] 

illustrates this procedure (Table 2.1). 

 
Table 2.1 Pairwise computation of means and differences [2] 

56 40 8 24 48 48 40 16 original signal 

48 16 48 28 8 -8 0 12 s,d 1st iteration 

32 38 16 10 8 -8 0 12 s,d 2nd iteration 

35 -3 16 10 8 -8 0 12 s,d 3rd iteration 

 

The second row in Table 2.1 contains the four means followed by four differences 

(italic bold). They were obtained from raw data in first row. In the next iterative steps 

the differences are unchanged and the mean and difference computation is applied 

only to the first entries representing mean values from previous step. The procedure 

can be repeated until the first entry in the last row represents the mean value of all 

original samples. The other entries represent successively computed differences. 

This type of transformation preserves all information about the signal. The calcula-

tion can be reversed. Moreover, this is an “in place” transform, e.g. there is no need 

for extra memory to do this transformation. 

For a pair of numbers ,a b  the mean value and the difference are obtained in two 

steps: the first step  

  
1

, ,
2

a b a a b s    (2.1) 
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and the second step 

 , ,a s a s d s    (2.2) 

The initial sample values ,a b  are replaced by the computed means and differences 

,s d . The inverse transform enables a return to the initial sample values in two steps: 

the first step 

 , ,d s s d s   (2.3) 

and the second 

 , 2a s s a   (2.4) 

There are various possible modifications to the described procedure. It is possible 

to store mean vales and differences of two samples. Another modification is the stor-

age of a mean value and a difference between the mean and the second element. Both 

variants can be regarded as slight modifications of the details (bold italic entries) in 

Table 2.1. The changes are multiplication by “-2” and “-1”, respectively. The two 

steps for the computations of means and differences of two subsequent samples are 

given as 

 , , ( )a b a b a     (2.5) 

 , ,
2

a a s


     (2.6) 

And the corresponding inversion 

 , ,
2

s
s a


 


   (2.7) 

 , ,a a a b     (2.8) 

If some loss of information can be accepted, a certain level of data compression is 

possible. The details with absolute value below a certain threshold are made equal to 

zero. Consequently, the inverse transformation is featured by error. 
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2.2 Lifting procedure 

The core ideas of mean and difference presented briefly in the previous section are 

fundamental for the lifting technique. Two basic operations have a fundamental mean-

ing in lifting: prediction and update, which are a generalized case of mean and differ-

ence. The time domain representation of a discrete wavelet transform is constructed 

upon the lifting technique and is complementary to the filter bank notation. 

Again, some correlation between samples in a given signal is assumed. A simple 

correlation detection is done using the difference between two successive samples. 

The difference is small if the samples are almost identical, and therefore the prediction 

is good. That means, the first sample may be interpreted as a good prediction of a 

successive one. Usually, the prediction procedure is more sophisticated than just com-

puting the difference between samples. Examples will be given later on. 

As an opposite to the difference calculation, the mean value of two successive 

samples may be seen. Repetitive mean value building of two samples holds some in-

formation about the original signal while reducing the signal length (even, up to one 

sample).In the example above that is the mean value. Mean value building is also a 

method for extracting some useful features of a signal, as a pair-wise mean value 

computation preserves the global structure of the original vector. The term update is 

usually in use for description. Similarly as for prediction, more complicated methods 

exist as the pure mean value computation of two samples. 

The elementary operations of a lifting block scheme element along with the separa-

tion procedure are presented in Fig. 2.1. The input signal js  has the length 2 j and it is 

transformed into two vectors of the length 12 j . The intermittent blocks are character-

ised as follows: 

sj
separation UP

+

-

sj-1

d j-1

even j-1

oddj-1

 
Fig. 2.1 Building block in lifting scheme 

separation:  

The input vector is split into odd and even elements, both of the length 12 j . This is 

only a functional operation, necessary for understanding but not performed in real 

applications. 

 

prediction: 
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The correlation between successive samples is assumed, e.g. the signal yields some 

structure. Knowing the value of the input signal at sample 2n  the value at sample 

2 1n  is assumed to be identical. Then, the value at 2 1n  is replaced with the dif-

ference, quantifying the discrepancy between the prediction and actual sample value 

      1 2 1 2j j jd n s n s n     (2.9) 

The prediction algorithm is in a general case more complicated and can be given as 

  1 1 1j j jodd P even   d  (2.10) 

The difference is constructed using one odd sample and a prediction based upon a 

number of even samples. 

 

update: 

After prediction the even entry is updated. In the most simple case it is replaced by the 

average value, representing the knowledge about signal features 

      1 12 / 2j j js n s n d n    (2.11) 

Generally, the updating operation may be more sophisticated and is expressed as 

  1 1 1j j js even U    d  (2.12) 

The described procedure is a one-step lifting.  

The discrete wavelet transform is a result of a combination of some basic lifting 

steps. The differences 1jd  are kept unchanged and the mean values 1js  are used as 

an input for the next lifting step . 

 
Fig. 2.2 Lifting scheme with two basic blocks 

 

sj
separation UP

+

-

sj-1

d j-1

even j-1

oddj-1

separation UP

+

-

sj-1

d j-1

even j-1

oddj-1
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The prediction procedure presented previously was correct for a constant signal. It 

was assumed that the next sample is the same as the previous one. Further on a predic-

tion of a linear signal is desired. A linear signal is given by the n-dependence of the 

form 

 [ ]js n n    (2.13) 

the samples of the signal constitute a straight line. For a given odd entry  2 1js n the 

prediction is based on two nearest samples, so that the prediction equation is 

    
1

2 2 2
2

j js n s n  . Consequently, the difference is now the discrepancy between 

the actual value of the middle sample and the prediction Fig. 2.3. 

       1

1
[ ] 2 1 2 2 2

2
j j j jd n s n s n s n       (2.14) 

 
Fig. 2.3 Prediction of a linear signal 

 

According to (2.12) and Fig. 2.1 the prediction is now based on two previous dif-

ferences 

         1 1 12 1j j j js n s n A d n d n       (2.15) 

The value of A  must be settled in a way, that the mean value  

    1

1

2
j j

n n

s n s n    (2.16) 

will be preserved in the in the prediction. Substituting (2.14) into (2.15) and finding A

with accordance to (2.16) results in 
1

4
A  . Finally, the transformation par has the 

form 

 2 2js n 

 2js n

 1jd n

 2 1js n 
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       1

1
[ ] 2 1 2 2 2

2
j j j jd n s n s n s n       (2.17) 

         1 1 1

1
2 1

4
j j j js n s n d n d n       (2.18) 

Additionally, the transformation preserves also the first moment [25] of the signal.  

    1

1

2
j j

n n

ns n ns n    (2.19) 

The mean values is regarded as the zeroth moment of the signal. 

2.3 General notation of lifting for DWT 

Using analogue steps as in section 2.2 the lifting procedure may be reversed. The 

direct transform given in (2.10) and (2.12) is reversed through simple sign change 

  1 1 1j j jeven s U    d  (2.20) 

  1 1 1j j jodd P even   d  (2.21) 

Accordingly, the example given in (2.17) and (2.18) 

         1 1 1

1
2 1

4
j j j js n s n d n d n       (2.22) 

         1

1
2 1 2 2 2

2
j j j js n d n s n s n      (2.23) 

Graphical representation of the inverse lifting step is similar to the direct transform in 

Fig. 2.1. The general difference (Fig. 2.4) is the reversal of arrows and change of 

signs. 
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Fig. 2.4 Inverse lifting step 

 

The direct and inverse transform can have several U and P steps included. It is possi-

ble as the direct and reverse operations are done by the same U or P blocks, inde-

pendently. To keep the pairwise notation a “blind” block may be introduced, so that no 

operation will be done in U or P block if a different number of either operation is re-

quired for presentation clarity (Fig. 2.7). 

The lifting blocks for the direct (Fig. 2.1) and inverse (Fig. 2.4) transform can be 

more sophisticated, as shown in the examples in section 2.4. Nonetheless, as a general 

rule the input sequence js  is transformed into two sequences 1js  and 1jd  of half the 

length of the original one. This is the direct transform or analysis. The reverse opera-

tion is called synthesis. The graphical representation uses the blocs aT  for analysis 

(Fig. 2.5) and sT for synthesis .The blocs can be joined in sequence to represent a 

transform of j scales.  

 
Fig. 2.5 Three scales Discrete Wavelet Transform - analysis 

 

The symbol 
j

aW  is used to denote the j-scale DWT, i.e. the three scale transform from 

Fig. 2.5 is 

 
3

3 2 1: , ,a j j j jW   s s d d  (2.24) 

The corresponding inverse transform (synthesis) is  

 
3

3 3 2 1: , , ,s j j j j jW     s d d d s  (2.25) 

sj
mergeU P

-

+

sj-1

d j-1

even j-1

oddj-1

Ta

Ta

Ta

sj

d j-1

d j-2

d j-3

sj-3
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If the transform is applied to a signal of the length 2 j , vectors in (2.24) and (2.25) 

have the lengths 
3 3 2 12 ,2 ,2 ,2j j j j   

. Fig. 2.6 shows the three blocks of the synthesis. 

 
Fig. 2.6 Three scales Discrete Wavelet Transform – synthesis 

 

The matrices describing the direct (2.24) and inverse (2.25) transform can be con-

structed by transforming a vector with only one entry equal to one and the rest equal to 

zero. Taking the transformed signal given in Table 2.1 and substituting the vector  

  , 1 1 0 0 0 0 0 0 0trans bases   (2.26) 

into the bottom row a reconstruction can be executed (Table 2.2). The basic trans-

form, deploying means and differences, was taken as a simple example. 

 
Table 2.2 Reconstruction over three scales  

1 1 1 1 1 1 1 1 reconstructed signal 

1 1 1 1 0 0 0 0 2nd iteration 

1 1 0 0 0 0 0 0 1st iteration 

1 0 0 0 0 0 0 0 transformed signal (start) 

 

Repeating the procedure with a one placed at the position 1 to 8 in (2.26) the re-

construction matrix over three scales (2.25) can be obtained. 

 
 3

1 1 1 0 1 0 0 0

1 1 1 0 1 0 0 0

1 1 1 0 0 1 0 0

1 1 1 0 0 1 0 0

1 1 0 1 0 0 1 0

1 1 0 1 0 0 1 0

1 1 0 1 0 0 0 1

1 1 0 1 0 0 0 1

s

 
 


 
 
 

  
 
 

  
  
 

    

W  (2.27) 

Similarly, the direct transform applied iteratively to a vector in the form (2.26) with 

sliding position of the “one” entry results in the corresponding direct transform matrix.  

For simplicity, only three scales and a vector length 2
3
=8 were selected. 

Ts
Ts

Ts

sj-3

d j-3

d j-1

d j-2

sj



23 

  3

1 1 1 1 1 1 1 1

8 8 8 8 8 8 8 8

1 1 1 1 1 1 1 1

8 8 8 8 8 8 8 8

1 1 1 1
0 0 0 0

4 4 4 4

1 1 1 1
0 0 0 0

4 4 4 4

1 1
0 0 0 0 0 0

2 2

1 1
0 0 0 0 0 0

2 2

1 1
0 0 0 0 0 0

2 2

1 1
0 0 0 0 0 0

2 2

a

 
 
 
    
 
 
  
 
 
  
 
 

 
 
 

 
 
 
 
 
 
  

W  (2.28) 

Multiplication of the matrices results in  

 
       3 3 3 3

s a a s   W W W W I  (2.29) 

 

2.4 Examples of wavelets in lifting notation 

Using the generalized lifting notation some useful wavelets transform can be de-

scribed as they are implemented. The procedure for the direct and inverse transform is 

given. 

An example follows with a three operations U, P and U. The transform is shown 

graphically in Fig. 2.7, where a pairwise scheme is used. In the first P-U pair the P 

operation is omitted.  

      1 2 3j j js n s n s n    (2.30) 

              1 1(1)

1 1 1

1 1
2 1 3 3 2 1

4 4
j j j jd n s n s n s n         (2.31) 
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           2 1 1

1 1 1 1j j js n s n d n      (2.32) 

Finally, the normalisation (rescaling) is performed 

      2

1 1

3 1

2
j js n s n 


  (2.33) 

    1

1 1

3 1

2
j jd n d n 


  (2.34) 

where the scaling factors satisfy 

 
3 1 3 1

1
2 2

 
   (2.35) 

The transformation given in (2.30) to (2.34) describes one iterative step of an im-

portant wavelet Daubechies 4.  

 
Fig. 2.7 Three lifting steps in pairwise notation 

 

In an analogue manner the inverse Daubechies 4 transform can be given 

 
     1

1 1

3 1

2
j jd n d n 


  (2.36) 

 
     2

1 1

3 1

2
j js n s n 


  (2.37) 

 
           1 2 1

1 1 1 1j j js n s n d n      (2.38) 

                1 1 1

1 1 1

1 1
2 1 3 3 2 1

4 4
j j j js n d n s n s n         (2.39) 

sj
separation U1P1

+

-

sj-1

d j-1

even j-1

oddj-1

U2P2

+

-

U3P3

+

-
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        1

12 3 2 1j j js n s n s n    (2.40) 

Starting the computation, e.g. 0n  , the information at  1n   is not known. Zero 

padding is a possible solution to the problem. More sophisticated methods also exist 

[24]. 

In section 2.2 an basic transform was given in (2.9) and (2.11). Adding the normal-

ization step the implementation of the Haar wavelet is obtained. That is the only trans-

formation performed on a signal with the length 2 j  where no zero padding is needed. 

The direct transform is given as 

 
       1

1 2 1 2j j jd n s n s n     (2.41) 

 
         1 1

1 1

1
2

2
j j js n s n d n    (2.42) 

      1

1 12j js n s n   (2.43) 

      1

1 1

1

2
j jd n d n   (2.44) 

 

Corresponding inverse transform is 

 
     1

1 12j jd n d n   (2.45) 

 
     1

1 1

1

2
j js n s n   (2.46) 

        1 1

1 1

1
2

2
j j js n s d n    (2.47) 

        1

12 1 2j j js n s n d n    (2.48) 

The third example is a member of a large family of biorthogonal wavelet trans-

forms. The underlying core idea is given (2.14) and (2.15) which represent the 

CDF(2,2) transform. The acronym CDF is derived from the inventors of the transform: 

A. Cohen, I. Daubechies, J.-C. Feauveau [26]. The first parameter indicates the num-

ber of P-U operations in one step of the operation, the second one the number of sub-
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sequent differences used in the prediction computation. The formulas were published 

in [24] and [27]. 

Firstly, the two steps subfamily is shown. In this group the first step and the final 

normalization is the same.  

 
          1

1

1
2 1 2 2 2

2
j j j jd n s n s n s n       (2.49) 

CDF(2,2) 
        1

1 1 1

1
[ ] 2 1 1

4
j j j js n s n d n d n        (2.50) 

CDF(2,4)    
   

   

1 11

1

1 1

3 2 19 11
[ ] 2

64 19 3 1

j j

j j

j j

d n d n
s n s n

d n d n

 



 

    
   

    

 (2.51) 

CDF(2,6)    
     

     

1 1 11

1

1 1 1

5 3 39 2 162 11
[ ] 2

512 162 39 1 5 2

j j j

j j

j j j

d n d n d n
s n s n

d n d n d n

  



  

      
   

      

 (2.52) 

normalization      1

1 1

1

2
j jd n d n   (2.53) 

      1

1 12j js n s n   (2.54) 

The next subfamily utilizes three P-U groups and it starts with the update, so 

 
       1

1
2 2 1

3

n

j j js n s n s n     (2.55) 

 
              1 1 1

1 1 1

1
2 1 9 3 1

8
j j j jd n s n s n s n        (2.56) 

CDF(3,1) 
           2 1 1

1 1 1

4

9
j j js n s n d n     (2.57) 

CDF(3,3)                 1 1 1 12

1 1 1 1 1

1
3 1 16 3 1

36
j j j j js n s d n d n d n           (2.58) 
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CDF(3,5)        
       

           

1 1

1 12 1

1 1 1 1 1

1 1 1

5 2 34 11

288 128 34 1 5 2

j j

j j

j j j

d n d n
s n s n

d n d n d n

 

 

  

    
  
      

 (2.59) 

normalisation      1

1 1

2

3
j jd n d n   (2.60) 

      2

1 1

3

2
j js n s n   (2.61) 

In all the above examples a normalization step was introduced and an explanation 

for the apparently superfluous computational burden is justified. 

It was assumed that the processed signal belongs to  2
. The signals energy is  

  
22

n

s n


s  (2.62) 

and is the squared value of the L2 norm of the signal vector s . The norms of the sig-

nals in the upper and lowest row in Table 2.2  

   81,1,1,1,1,1,1,1   (2.63) 

   11,0,0,0,0,0,0,0   (2.64) 

If signal length in Table 2.2 is increased to 2N , e.g. it consist of a single one and 

2 1N   zeros than the inverse Haar transform is a vector of the length 2N . It consist 

only of ones and the norm is /22N . The norm grows exponentially with N. When long-

er signals are transformed the exponential norm increase can result in numerical insta-

bility. Normalization of the transform blocks helps to avoid the instability. The conse-

quence of normalization is that for any scale k 

 
 , ,k Haar norm

sW x x  (2.65) 

 
 3 , ,Harr norm

a W x x  (2.66) 

For more complicated transforms than Haar it is not always possible to fulfil (2.65) 

and (2.66). At least, it can be required that the norm of the signal and the norms of is 
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direct and inverse transform indicate similar order of magnitudes. This requirement is 

expressed by the constants , , ,A B A B satisfying  

 aA T B x x x  (2.67) 

 sA T B x x x  (2.68) 

The requirements (2.67) and (2.68) with all constants equal one are fulfilled by the 

Haar and Daubechies 4 transforms. 

Hence the transform matrices 
 N

aW  and 
 N

sW are generated by iterating the basic 

building blocks, similar estimates hold for these transforms, with constants that may 

on the signal length N . 

2.5 Wavelet function and scaling function 

The transform based on means and differences, which is in fact the Harr transform, 

can be given with a scaling function and a wavelet function. Such a notation is gener-

ally suitable for various wavelet transforms. Usually, both functions are derived from 

the filter bank approach to wavelet transform. Keeping the lifting notation here, the 

scaling function and a wavelet functions for the basic Haar transform are given. Some 

prerequisites and preliminary steps are required. 

The entries in columns in (2.27) represent a certain pattern. It was obtained by the 

reconstruction over three scales of vectors related to (2.26) with a one at iteratively 

moved position. To represent the pattern with scaling and wavelet functions it is as-

sumed that all he columns come from sampled continuous functions in the time inter-

val [0,1]. For a signal with the length 2N  the sampled points are  

 1 2 ,2 2 ,3 2 ,...,2 2N N N N N          (2.69) 

The first column in (2.27) is obtained from the sampled function 

    0 1      0,1h t t   (2.70) 

The second column is a result of sampling  
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    1

1
1          0,

2

1
1       ,1

2

t

h t h t

t

  
  

  
  

     

 (2.71) 

and successively the remaining columns can be defined. To formalise the notation a 

specific way of notating integers is used. For 1,2,3,...n   

 2n k j   (2.72) 

where 0j   and 0 2 jk  , so every integer can be given by specific values of ,k j . 

Using this notation the wavelet function is given generally as 

    2 j

nh t h t k   (2.73) 

where  0,1t  and 1,2,3,4,...n  .Both functions are defined as independent from N . 

For a specific value of N the signal length is 2N  and also 2N  vectors defining the 

square transform matrix (2.27) are obtained by sampling 10 1 2
, ,..., Nh h h   at the points 

defined in (2.69). It must be stressed that all matrix columns (2.27) are derived from 

just two functions. The function 0( )h t  (2.70) which is called the scaling function and 

the function  h t  (2.73) which is called the wavelet function. The functions  nh t  are 

obtained from the basic  h t  by scaling according to j  and translation given by k . 

Scaling and wavelet functions given above are called the Haar basis functions. The 

first eight functions (n=0,1,…,7) are given in Fig. 2.8. The sampled values of those 

functions are the columns in (2.27). 
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Fig. 2.8 Haar functions discretised for N=8, not normalized 

 

Other wavelet transforms are also given by the scaling and wavelet transforms. The 

expression (2.73) is usually normalized and has the form 

  22 2
j

norm j

nh h t k   (2.74) 

The direct Haar transform can be interpreted in terms of the basic functions. For 

simplicity and consistence with previous considerations 3N  , so that there are eight 

functions 0 7,...,h h  sampled at 
1 2 8

, ,...,
8 8 8

, resulting in 0 7,...,h h . The direct transforms 

of this functions over three scales are the basis vectors  

0 0.28 0.71 1

-1

0

1

0 0.28 0.71 1

-1

0

1

0 0.28 0.71 1

-1

0

1

0 0.28 0.71 1

-1

0

1

0 0.28 0.71 1

-1

0

1

0 0.28 0.71 1

-1

0

1

0 0.28 0.71 1

-1

0

1

0 0.28 0.71 1

-1

0

1
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 

 

 

0

1

7

1,0,0,0,0,0,0,0

0,1,0,0,0,0,0,0

0,0,0,0,0,0,0,1







e

e

e

 (2.75) 

The direct and inverse transform is given as  

 
   3

' 'a n nW h e  (2.76) 

 
   3

' 's n nW e h  (2.77) 

A general signal x  of length 8 transformed directly gives  

 
   3

ay W x  (2.78) 

Direct and inverse transforms are linear so they can be expressed with the superpo-

sition  

  
7

0

n

n

y n


y e  (2.79) 

 
     

7
3

0

s n

n

y n


 x W y h  (2.80) 

The direct transform 
 3

aW  is used to transform the signal x  into coefficients y . 

The original signal is represented as a weighted summation of elementary functions 

0 7,...,h h . The corresponding weights are the transform coefficients  y n . 

Similar representations can be written to more general transforms. The way to find 

the pattern is unfortunately more complicated than in the case of Haar transform. 

The further example is based on the Daubechies 4 inverse transform. It is assumed 

that the transformed signal of length 2kN   has a single one at sixth position. The k 

values are 3, 5, 9, 12. Comparison of  the approximations to the wavelet function simi-

lar to (2.74)  is given in Fig. 2.9. Different signals lengths have been compressed to 

the unity range to make the comparison possible. The plots approach a limiting curve, 

where 12k   is a satisfactory approximation (Fig. 2.9). Varying the locations of the 

single one would have a scaling and translating effect on the graph with accordance to 
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(2.73). An exception is the one located at the beginning, which defines the correspond-

ing scaling function.  

 
Fig. 2.9 Inverse Daubechies 4 discretized for N=2k  

 

The conclusion is, that there are two functions for the direct transform and corre-

sponding two functions for the inverse transform. Inverse transforms of unit vectors 

with ones placed at the positions 1 to 2N k
 return the translated versions of the scaling 

function. Inverse transform of unit vectors with a one placed at positions form 

2 1N k   to 
12N k 
 gives the translated versions of the wavelet function. The state-

ment is true in a limited sense, whereas the boundary corrections were not considered. 

An important interpretation of those considerations is that the direct transform re-

solves the signal into components given by the waveform of the wavelet and scaling 

functions. In fact it is a superposition of the these components with the weight accord-

ing to the entry in the transform. As the basic waveforms were established with a sin-

gle once as entry value. More rigorous treatment can be found in [28] and [29]. 

2.6 Two Dimensional Transform 

The discrete wavelet transform can be applied to two dimensional signals. The two 

versions of 2D DWT are called separable and non-separable transforms. In both cases 

considerations are restricted to real valued two dimensional functions, e.g. grey scale 

images.  

The two dimensional transform is a natural extension of the 1D case as it is applied 

to a matrix instead of a vector. The simplest approach means concatenating the rows 

of a matrix in order to get a single vector and apply already presented methods. This 
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approach is not favourable. Likely correlations between neighbouring entries in col-

umns are not recognized. Concatenating the rows makes only use of the correlations in 

one dimension, in rows. 

A different approach may be applied to the two dimensional problem. The wavelet 

transform can be represented as a matrix operation in a form similar to the Haar trans-

form presented in (2.28). The matrix aW  computes the one scale wavelet transform  

from the columns of the signal matrix X  

 
c

aY W X   (2.81) 

This operation is just a matrix multiplication. The index “c” underlines that columns 

wise operation was performed. Columns can be seen as separate signals. 

Then, the multiplication (2.81) is performed on the rows of 
c

Y . Firstly 
c

Y  is 

transposed, then multiplied by aW  then the result transposed again. The result is 

   ,
T

T
c r c c T

a a Y W Y Y W   (2.82) 

which can be rewritten in the form 

 
,c r T

a aY W XW   (2.83) 

where the superscripts on the left hand side indicate that firstly the columns have been 

transformed and then the rows. However, the same results will be obtained for inter-

changed order of those operations, as 

    T T

a a a aW X W W XW   (2.84) 

The inverse transform can also be given in the matrix notation  

  1 , 1 ,
T

c r c r T

a a s s

  X W Y W W Y W   (2.85) 

where 
1

s a

W W  is the synthesis matrix.  

Matrix multiplication is numerically not the most efficient method for practical com-

putation. Usually, one dimensional transforms implemented as lifting steps are used. 

The result however, is the same. The coding of the transform is different. 
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The separable 2D transform defined in (2.83) holds the properties of the one di-

mensional transform. One step of the transform applied to a square matrix jS  results 

in four matrices of half the size (Fig. 2.10). The sub-matrix 1jSS  with the dimensions 

1 12 2j j   represents the update step applied to columns and rows. The box 1jSD  

includes the results of the update operation applied to columns and prediction applied 

to rows. Finally, there is the box with prediction operation performed upon columns 

and rows. 

 
Fig. 2.10 Graphical representation of 2D transform 

 

In order to obtain the results of the second step of transformation, similar to Fig. 

2.2, the whole procedure should be applied to the updated block 1jSS . 

The drawback of separable transform is that the horizontal, vertical and diagonal 

structures are processed variously. A negligible rotation of the 2D pattern changes 

significantly the results. 

Therefore, the non-separable transform is more favourable The underlying idea of 

the non-separable transform includes the consideration of the nearest neighbours. The 

signal is given as a matrix  

    2,
,

m n
x m n


X   (2.86) 

where infinite dimensions are assumed to avoid the boundary problems. A selected 

element  ,x m n  has four nearest neighbours  

 

 

 

 

 

1,

1,

, 1

, 1

x m n

x m n

x m n

x m n









  (2.87) 

Such assignment results, with accordance to the integer superscripts m, n into a di-

vision of the matrix elements into two classes. Selecting a starting  ,x m n  point and 

Sj

SSj-1

SDj-1

DSj-1

DDj-1
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denoting it with “x” the nearest neighbours must be marked differently, i.e. with “o”. 

Then, the “o” point must be selected and all the nearest neighbours of it are again 

marked “x”. Whereas one entry has already been marked. This procedures is repeated 

until the whole input space is divided into two classes as symbolically depicted in Fig. 

2.11.  

 
Fig. 2.11 Separation of the lattice into two groups 

 

The simplest proposal of the non-separable algorithm, similar to 1D case in (2.10), 

replaces the original entry of the initial point with the computed difference. In a 2D 

case every “x” point is replaced with the difference between the original value and the 

predicted one. In the second stage all the “o” points are considered and their values 

updated using the fresh values of the “x” points. Complimentary to the 1D case given 

in (2.12). This is the brief description of a one scale transformation unit.  

Establishing a two dimensional transform requires keeping the values at “x” points 

and the use of the lattice of “o” points as a new lattice for which the two computation-

al procedures – prediction and update – are performed. The “o” points in Fig. 2.11 

build a square lattice rotated by 45 degrees to the integer lattice constituting a distance 

of 2  between nearest neighbours.  

The 2D case is an in place operations, because new values are inserted into old ones. 

The reverse transform can be made similarly to the inversion procedure in 1D, chang-

ing the order of operations with reverted signs. 

A proposal of a basic procedure illustrating the concept is given for an “x” point locat-

ed at  ,m n . The predicted value at this point equals to the average of four nearest 

neighbours 

            
1

, , 1, 1, , 1 , 1
4

x m n x m n x m n x m n x m n x m n           (2.88) 

The update procedure in this basic approach should preserve the average value. 

The average computed at “o” points should be half of the average of the initial values. 

The coefficient 0.5 is placed because there are half as many “o” values as in the origi-

nal matrix. This feature can by guaranteed by the update procedure. 
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    
   

   

1, 1,1
, ,

8 , 1 , 1
o

m n x m n
x m n x m n x

x m n x m n





 

    
   

     

  (2.89) 

 

The proposed basic DWT, as simple as it is, has no directional effects as the sepa-

rable transform described previously. 

There exist more sophisticated lattices (e.g. hexagonal lattice) and predic-

tion/update procedures.  

  



 

3 Multiple Signal Classification MUSIC 

The wavelet transform and the S transform are examples of non-parametric meth-

ods of signal analysis. The non-parametric methods are a wide group of methods in-

cluding SFTF, Wigner-Wille transform and many more. Applying them requires no 

explicate knowledge of the signal model itself. 

An opposite group are parametric methods. An parametric approach is substantially 

different as the a priori knowledge of the signal model is required. The Prony algo-

rithm and SVD based methods are useful and commonly applied for PQ problems. 

Waveforms of common distortions have spectral components in narrow bands or at 

discrete frequencies. That are harmonic or interharmonic frequencies.  

A sinusoidal model is most suitable for the characterisation of harmonics and inter-

harmonics with a parametric method like MUSIC. 

3.1 Sinusoidal model of a signal 

A discrete time signal of length L  has a model with K  sinusoidal components 

buried in noise 

      
1

cos
K

k k k

k

x n a n w n 


      (3.1) 

where 0ka   is the amplitude, k  is the initial phase angle, 2k kf   is the har-

monic or interharmonic frequency and K  the total number of sinusoids. In this model 

the amplitude and frequency are assumed to be deterministic and unknown. The initial 

phase angle k  is random and uniformly distributed in  ,  . An equivalent ex-

pression for the signal given in (3.1) is based on complex exponentials buried in noise, 

so called harmonic model 

    
1

k

K
jn

k

k

x n A e w n




    (3.2) 
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where kjn

k kA A e


  is the complex amplitude of the k
th
 harmonic signal component.  

If the voltage or current in a power system contains only odd harmonics beside the 

fundamental, then a signal model of the order K  contains only 1K   odd harmonicas 

beside the fundamental. On the contrary, the same model has 1K  even harmonics 

and the fundamental if there are only even harmonics present in the power system. 

In the signal model (3.2) the range of frequencies 2k kf   is  ,   therefore 

can be located at any nonharmonic frequency. There is no assumption about the fre-

quency being an multiply of the fundamental component. 

The frequency resolution of a method used for model’s parameter estimation is quite 

high. The biggest advantage is the possibility to identify interharmonics. Anyway, the 

number of harmonics determined by the model order K  must be known to avoid erro-

neous results. 

3.2 MUSIC Algorithm 

The MUSIC is a noise subspace method. For a given parametric model (3.1) the 

MUSIC method computes corresponding frequencies and amplitudes of spectral com-

ponents in the signal. Whereas the frequencies are not necessarily harmonics, i.e. the 

integer multiplies of the fundamental. 

The autocorrelation matrix xR  of the signal  x n  is a result of an operation on the 

signal samples 

 
1ˆ H

x
N

R X X   (3.3) 

 

It is assumed that the signal  x n  given in  has the length 1L N M   . The auto-

correlation matrix xR  has the size M M . The matrix X  with the dimensions 

N M  is given as 

 

 

 

 

     

     

     

0 1 10

1 21

1 21

T

T

T

x x x M

x x x M

x N x N x N MN

   
   
    
   
   

        

x

x
X

x

  (3.4) 
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The superscript  
H

 denotes the Hermitian operator.  

Putting (3.2) into (3.4) results in 

 
2ˆ H

x s w w   R R R EPE I   (3.5) 

where  

  1 2 kE e e e   (3.6) 

  2 2 2

1 2 Kdiag A A AP   (3.7) 

The eigenvectors of sR  are  

 
 1

1 ll

T
j Mj

l e e
  

 
e   (3.8) 

and 1,2,...,l K . 

The signal and noise subspace can be introduced. Given is ˆ xR  of full rank M . The 

eigenvalues of ˆ xR  are ordered decreasingly and the corresponding eigenvectors are 

1 2, ,..., Ms s s , therefore 

 ˆ
x i i iR s s   (3.9) 

The eigenvectors represent two groups. K  eigenvectors matching the K  biggest ei-

genvalues belong to the signal subspace. The rest of eigenvectors  M K  belongs 

to the noise subspace. In the MUSIC method the noise subspace is used to determine 

the unknown harmonic frequencies k . For that the pseudospectrum is computed 

   2

1

1j

music M H

ii K

P e 

 



 e s
  (3.10) 

where is  ( 1,...,i K M  ) are eigenvectors associated with the noise subspace and 

orthogonal to the signal eigenvector 
 1

1 ll

T
j Mj

l e e
  

 
e  and 

H
e  denotes 
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the complex-conjugate transpose. As a result the denominator has zeros at the fre-

quencies related to the signal eigenvectors. The plot of (3.10) shows no real spectrum. 

The peaks of the pseudospectrum coincide with frequencies of the outraging frequen-

cy components. Equation (3.10) can also be given in the Z-domain 

    
1

*

*
1

1M

music i i

i K

P z S z S
z



 

  
   

  
   (3.11) 

where    
1

0

M m

i im
S z s m z

 


  and  is m  is the m-th element in the i-th eigenvec-

tor. 

Signal and noise subspace are orthogonal to each other, so the denominator in (3.11) is 

zero at the harmonic frequencies. 

The frequencies k  of the components in the signal model (3.2) are detectable us-

ing the frequency locations corresponding to the K  highest peaks in the pseudospec-

trum  j

musicP e  . An alternative way is the use of the angles of K  roots nearest the 

unit circle in Z-domain in (3.11). 

Additionally to harmonic components the magnitudes and powers of components 

can be obtained. When k  is given, then 
2

k kP A  can be estimated by jointly solv-

ing the K  equations  

 
2

2

1

ˆ
K

H

k k i i w

k

P 


  e s σ   (3.12) 

where 1,2,...,i K  and the noise is estimated by 

 
2

1

1
ˆ

M

w i

i KM K


 




σ   (3.13) 

Due to the fact  

    
1

0

k k

M
j jmH

k i i i

m

S e s m e
 






 e s   (3.14) 

the equation (3.12) can be rewritten in the matrix notation 
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S e S e S e
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 

 

 

 
    
    

         
    

      
  

  (3.15) 

Solving (3.15) returns the harmonic power KP  for 1,2,...,K K  and the amplitudes 

in (3.2) are given as 2 KP .  

3.3 Block based application of MUSIC 

The signal model (3.2) assumes that the signal is stationary or at least statistically 

time invariant. In power systems signals often change over time. For nonstationary 

signals the proposed MUSIC method must be modified using the block-based signal 

modelling. In this approach the data is divided into blocs, within which the signal is 

approximately stationary. The blocs can be overlapped or non-overlapped. The param-

eters can be estimated for each data block separately. Therefore, the parameters will 

vary with time, as the estimations vary with sliding window. 

The samples of a recorded signal  x n  are divided into blocks of fixed length L . 

The size of blocks is determined empirically in order to regard the data within the 

blocks as stationary. The overlap of two adjacent blocks is denoted with K  and 

K L . The m-th sample in the j-th block is 
   j

x m  where 0,1,2,..., 1m L  , 

1,2,...j  Then the data sample 
   j

x m  in the j-th block is related to the original 

sample ordering n  in the original signal  

       1
j

x m x m j L K        (3.16) 

The time index m  is related to the time index n  by 

   1n m j L K      (3.17) 

The modified signal model given in (3.1) and used un the blocked approach is 
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              

1

cos
K

j j j j j

k k k

k

x m a m w m 


     (3.18) 

For different windows the number of spectral components 
 j

K  may be different.  

3.4 Analysis of signals with MUSIC 

Firstly, a signal containing odd and even harmonics has been analysed. The funda-

mental component has been deliberately omitted. The amplitudes of all components 

were equalized to better visualise the performance of the method. Harmonics from 2 to 

8 were included. Each value settled to 10 per cent of the fundamental. Additional 

noise with mean zero and standard deviation 2 was added and then multiplied by 30 

The signal is shown in Fig. 3.1 and Fig. 3.2. Parameters of the original clean signal 

and estimated from the signal with noise are given in Table 3.1.  

 

 
Fig. 3.1 Artificial signal with harmonics 2 to 8: phase angle of harmonics made zero, no noise 
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Fig. 3.2 Artificial signal with harmonics 2 to 8: phase angle of harmonics made zero, noise 

 
Table 3.1 Computation results of spectral components for artificial signal with harmonics 2 to 8.  

Frequencies of spectral components  

theoretical value [Hz] computed, no noise [Hz] computed, noise [Hz] 

100 100 100.27 

150 150 151.76 

200 200 198.22 

250 250 249.81 

300 300 300.26 

350 350 354.22 

400 400 402.80 

 

The method performed satisfactory even for noisy signals Table 3.1. Similar tests 

were conducted for a signal with linearly changing initial phase of spectral compo-

nents. There was no significant influence of the initial phase of harmonics on the accu-

racy of components’ frequency estimation. 

 

Compensation of reactive power with a capacitor bank is a common practice [30] 

and requires frequent switching operations for vast varying loads. A typical waveform 

following switching operation in a small wind generator (160 kW) equipped with an 

induction machine is shown in Fig. 3.3. 
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Fig. 3.3 Capacitor switching in a small wind generator with induction machine, no noise.  

 

 
Fig. 3.4 Capacitor switching in a small wind generator, with induction machine, noise added 

 

The results of spectral component estimation are given in Table 3.2. There are no 

theoretical values hence a real measured signal was analysed. The additional noise 
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with mean zero and standard deviation 2 was added artificially and then multiplied by 

30 to increase the amplitude of distortions. Fig. 3.4 presents the distorted signal.  

As in the case of signal with high harmonic content, the frequency of a decaying 

component was detected adequately, even in the presence of noise. 

 
Table 3.2 Computation results of spectral components for capacitor switching operation 

Frequencies of spectral components  

theoretical value [Hz] computed, no noise [Hz] computed, with noise [Hz] 

-- 48.21 49.11 

-- 456.31 457.67 

 

Another common phenomenon in the public distribution gird is switching of heavy 

loads . Especially in weak networks or in islanded networks it results in rapid increase 

of current amplitude overlaid with and decaying exponential component (Fig. 3.5).  

The additional noise with mean zero and standard deviation 2 was added artificially 

and then multiplied by 30 to increase the amplitude of distortions. Fig. 3.5 presents the 

distorted signal. 

 
Fig. 3.5 Switching on a heavy load 
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Fig. 3.6 Switching on a heavy load, with noise 

 

Frequency estimation results are given in  

 
Table 3.3 Computation results of spectral components for switching of a heavy load 

Frequencies of spectral components  

theoretical value [Hz] computed, no noise [Hz] computed, with noise [Hz] 

-- 50.15 50.22 

-- 49.03 48.53 

 

 

Presented method is an appropriate tool for the estimation of frequencies of spec-

tral components in signals. The method is relatively immune against distortion by 

noise. Decaying exponential component or varying amplitude were also not deteriorat-

ing the computation of frequencies. Spectral components are an important factor for 

the estimation of power quality, i.e. Total Harmonic Distortion THD value, and are 

crucial for the proper computation of active and reactive powers for nonsinusoidal 

voltage and current waveforms. Therefore, the MUSIC method is regarded as an im-

portant verifying tool in the identification of spectral components’ frequencies in dis-

torted signals. 
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4 Optimisation 

A brief characterisation of optimisation problem types and corresponding algo-

rithms is given and followed by more rigorous formulation of an optimisation prob-

lem. Genetic algorithms and trust region reflective algorithm are presented in more 

extend as regarded most suitable for practical problems presented later on. 

4.1 Approaches to optimisation problems 

Optimisation is directly associated with decision making [31]. Obviously, best pos-

sible decision is always desired. Three aspects must be considered and translated into 

mathematical formulation to allow any optimisation algorithm or procedure to be ap-

plied [32], [33], [34]. 

Firstly, decision making is understood as selecting between various possibilities 

[35]. The existing possibilities are referred to as optimisation variables. If there is no 

choice then nothing can be optimised. 

Secondly, an objective function taking one or multiple optimisation variables as its 

input returns an real valued output indicating the correctness or goodness of a particu-

lar choice, i.e. selected optimisation variables. Optimisation is understood as a maxi-

misation or minimisation process regarding the value of an given objective function. 

Optimisation variables are real numbers, integers or binary values corresponding to 

the particular choices. An integer must be used, e.g. for the number of e-cars served at 

a time by a micro-grid and not a real number. 

Finally, there are restrictions or constrains imposed upon optimisation variables. 

The set of constrains includes generally equality constrains, inequality constrains and 

bound type constrains [36]. A relatively small number of problems allows any value of 

input variable. So that, there are constrained optimisation problems and unconstrained 

optimisation problems [37]. Decisions not violating constrains are called feasible deci-

sions and the allowed inputs to the objective function are referred to as feasible points 

[38], [39]. 

Optimisation methods are tailored to seek the best solution in the sense of prede-

fined objective function [40]. Algorithms and methods are grouped around problem 

types they are good for. There is no one universal method suitable for all types of 

problems.  
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From the mathematical point of view real unconstrained problems are the simplest 

to be analysed [41], [42]. A subgroup constitute one dimensional problems for which 

one-directional search methods exist. Most typical are Golden Section Search, Fibo-

nacci Search, Secant Method [40], [31].  

All unconstrained problems are mostly approached by iterative methods where the 

optimum is sought by maximising the decrease of objective function in every individ-

ual step. The direction of search is determined by the value of the gradient of the ob-

jective function in the Gradient Method [40]. The Newton Method uses gradient and 

inverse hessian of the objective function to find the descent direction [43]. Usually it 

performs better than Gradient Method but requires the computation of the inverse 

hessian matrix what is somehow troublesome. Therefore quasi Newton’s methods has 

been proposed such as DFP or BFGS algorithms where no inverse hessian is used. A 

method performing better then Gradient Method but being less computationally inten-

sive then Newton is the Conjugated Gradient Algorithm utilising the information of 

the search direction from previous iterative steps [31].  

Artificial neural networks [44], [45], [46], [47] represent another useful tool for 

solving unconstrained problems. A neural network consist of neurons connected one 

with another. The input to an neuron consist of weighted outputs of neurons in previ-

ous layer. The optimisation is performed in an iterative learning algorithm, so that the 

output of the network and desired output value are convergent.  

Constrained problems are more common. The term linear programming [48] refers 

to linear objective function which is subject to linear constrains. Simplex Method is an 

established method to handle linear programming problems. Other non-simplex meth-

ods are Khachiyan’s Method, Affine Scaling Method, Karmarkar’s Method [31]. 

The most general group of problems is described by an nonlinear objective func-

tion and a set of nonlinear constraints [41], [40], [49]. Equality and inequality con-

straints are possible. Mathematically, those problems are more difficult to define and 

handle. The treatment of equality and inequality constraints is often presented sepa-

rately. Utilising Lagrange function [31], [32] it becomes possible to formulate a co-

herent problem which may be solved in two ways, which are known as primal prob-

lem approach and dual problem approach. It is possible due to the fact, that a solution 

constitutes a saddle point of the Lagrange function which is a minimum of the primal 

problem and a maximum of the dual problem at the same time. Sometimes it is even 

easier to solve the dual problem. Also the formulation of necessary and sufficient con-

ditions for a point being a minimiser is more elaborated and is known as Karush-

Kuhn-Tucker conditions [32]. 

A group of methods dedicated to nonlinear constrained problems exists. Penalty 

methods [50], [51] are a group of methods using techniques from unconstrained opti-

misation to solve a constrained problem. The core idea is to approximate an con-

strained problem with a series of unconstrained problems, consisting of the original 

objective function plus a parameter multiplied by a specific penalty function [52]. The 
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penalty function grows after violating or approaching the borders of the trusted region. 

Its value is zero within the set of feasible points. Then, the unconstrained problem is 

solved and its solution is used as an approximation of the minimizer of the original 

problem. The change of the mentioned parameter enables high convergence between 

the modified and original problem in a limit sense. It is true, that the solution of the 

original problem may not be equal to the solution of the approximated problem. It 

depends mostly on the penalty function and the associated parameter. Usually, the 

greater the value of the multiplying parameter the better the overall approximation. 

Three main groups of penalty functions can be named [50], [52]. Using inner pen-

alty function or border function there is no possibility of violating the region of feasi-

ble points throughout the whole procedure. The optimisation algorithm must start 

within the domain of objective function, which may be a difficulty if constrains are 

quite sophisticated. Outer penalty function enables a free selection of the starting 

point, even outside the trusted region. A drawback of this approach is a possibility of 

fulfilling a stopping criterion if the computed minimiser is located outside the domain 

of the goal function. Mixed penalty function combines the inner and outer penalty 

functions usually at different ends of the trusted region.  

Theoretical considerations and preliminary results indicate the usefulness of trust 

region reflective algorithm and genetic algorithm for nonlinear constrained problems.  

 

4.2 Mathematical Formulation 

In a general way the optimisation problem can be formulated as [31], [36] 

 

   minimize:  F x  

   subject to:   0    1,...,ih i m x  

       0   1,...,jg j p x  

where 
nx , : nF  , : n

ih  , g : n

j  , and m n .  

The above problem can also be given in a matrix notation in so called standard 

form 

   minimize:  F x  

   subject to:   0  h x  

       0g x  

where 
nx , : nF  , : n mh  , g : n p  
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The multidimensional objective function F  can be linear or nonlinear or even 

have only one dimension. The constrains are usually grouped into quality type con-

strains, denoted by h  and inequality type constrains g . 

Any point satisfying the constrains is a feasible point and belongs to the feasible set 

being the domain  of the objective function F . 

     : 0, 0n h g  x x x   (4.1) 

As described in previous section for various types of problem (linear, nonlinear, 

unconstrained, constrained ) different approaches exist.  

Necessary conditions for x  being a minimiser are Karush-Kuhn-Tucker conditions 

[32]. Let x̂  be a regular point and a local minimiser for the problem of minimising 

 F x  subject to constrains. Then, there exist 
mλ  and 

pμ  such that follow-

ing conditions are fulfilled 

      
1 1

ˆ ˆ ˆ 0
pm

i i j j

i j

F g h 
 

     x x x   (4.2) 

    ˆ 0   for   1,...,ig i m x   (4.3) 

    ˆ 0   for   1,...,jh j p x   (4.4) 

  0   for   1,...,i i m     (4.5) 

    0   for   1,...,i ig i m  x   (4.6) 

Point x̂  is regarded regular if at that point exist gradients of all constrains and are 

linearly independent. Every point from   is considered regular if all constrains func-

tions are linear (proposed by Karlin) [31]. 

4.3 Genetic Algorithms 

Genetic algorithms can be characterised as fundamentally different from methods 

described in the previous section. Beginnings can be traced back to J. Holland who 

proposed first ideas in the begin of 1970s [53]. Genetic algorithms are deeply correlat-

ed with genetics therefore there is a similarity in the vocabulary. There is no use of 

any derivative of the objective function – gradient or Hessian – as it is in many other 
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methods. As a consequence, genetic algorithms can be successfully applied to a wide 

range of problems in the fields of artificial intelligence, optimization, computer pro-

gramming, neural network training, etc [54], [55], [56].  

A probabilistic search technique constitutes the underlying idea of this approach 

with many references to principles of genetic [57]. Most generally, the problem to be 

solved is given as an objective function ( )F x  to be maximized, which is subject to 

constrains x . Firstly, an initial set of points from   have to be selected and it is 

called the initial population  0P  [58]. Then, the objective function has to be evalu-

ated at points in  0P  which is the prerequisite for the creation of new set of starting 

points denoted  1P . The new set is obtained through two fundamental operations 

crossover and mutation. The procedure has an repetitive character, so that next popu-

lations    2 , 3 ...P P  are created. As any iterative method this algorithm is terminat-

ed after the stopping criterion was satisfied. 

The crossover and mutation operations should help in the creation of new genera-

tions for which the objective function value is statistically smaller than for the previ-

ous populations [59], [60], [61]. 

A kind of encoding of the points in the domain of objective function is an prerequi-

site for genetic algorithm. The set of feasible points   must be mapped on equally 

long specific strings, named chromosomes. Chromosomes are built-up of string of 

symbols form a set named alphabet. The most simple alphabet is the set {0,1}  allow-

ing the construction of chromosomes in the form of binary strings. Usually, the length 

of a chromosome is denoted with L  and gives the number of elements used. The fit-

ness of a chromosome is given by the value of the objective function. Often the nota-

tion  F x  is used to describe the original objective function and to measure fitness of 

chromosomes in a set. 

The term representation scheme refers to a particular problem for which the encod-

ing mechanism, alphabet and chromosome length were chosen. In order to solve a 

given problem an adequate representation scheme must be identified and selected. 

This is the first step of the algorithm. The next one is dedicated to the initialisation of 

the population  0P  and based on a random selection of a set of chromosomes. After 

the initial population was constructed than the crossover and mutation operations are 

applied on it. In every iterative step k  the fitness measure  kF x for all elements 
k

x  

in the population  P k  has to be computed. Based on this information, a new popula-

tion  1P k   can be formed in a process including two steps. 
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Selection operation is applied in the first step and a set  M k  with exactly the 

same number of elements, called population size N , as in  P k  is constructed. The 

set  M k  named matting pool, being a reshuffle of  P k  is formed using a random 

procedure. The set  M k  consist of points 
k

m  equal to points 
k

x  in  P k  with the 

probability  

 
 
 

k

sum

F

F k

x
  (4.7) 

where 

    k

sum iF k F x   (4.8) 

and the summation is done over the entire population  P k . Chromosomes with 

probabilities proportional to their fitness are taken into the mating pool. For that rea-

son this selection scheme is called roulette wheel scheme. In the imaginative roulette 

wheel each slot is assigned to a chromosome in  P k . The number of slots associated 

with a particular chromosome depends on its fitness. Multiple assignments are com-

mon. For the inclusion in  M k  the roulette will is span and the slot on which the 

ball stopped indicates the chromosome to be selected. This scheme has to be repeated 

N  times to guarantee the same number of chromosomes in the mating pool as in the 

population  P k . 

An alternative selection scheme is called tournament scheme. In this scheme a pair 

of chromosomes has to be selected randomly from the set  P k . Then, the fitness 

values of both chromosomes has to be compared and the chromosome with the higher 

value has to be selected into the mating pool  M k . The procedure has to be stopped 

after N  chromosomes are in the mating pool. 

Evolution is the second stage of the algorithm in which the mutation and crossover 

operations take place. A pair of chromosomes named parents produces a new par 

called offspring chromosomes in the crossover operation. Exchange of substrings in 

the parents’ chromosomes is the underlying idea for crossover operation. Pairs of par-

ents are taken randomly from the mating pool with the probability cp . It is assumed 

that the selection probability of a particular chromosome is independent from the se-

lection of other chromosomes for the crossover procedure. 
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There are several ways how to randomly choose parents’ chromosomes . If exactly 

two chromosomes were selected randomly, then 2 /cp N  where N  is the total 

number of chromosomes. If 2k  chromosomes were taken into the mating pool form-

ing 2k  pairs of parents, then 2 /cp k N . The number of parents’ pairs and the total 

number of chromosomes are fixed, so that cp  depends on that number and / 2k N . 

On the contrary, for a preselected value of cp  a random number of parents’ pairs to 

reach an average number of pairs equal to / 2ck p N .  

After the determination of the parents the crossover operation must be applied on 

them. There are several ways how to realize the crossover operation. The most simple 

one is called one-point crossover (Fig. 4.1). 

Parent chromosomes Offspring chromosomes

Crossing site

 
Fig. 4.1 Crossover operation at one point 

 

In this approach a random number between 1 and 1L have to be chosen with ac-

cordance to an uniform distribution. L  is the chromosome’s length. This random 

number is called crossing site where substrings of the parents are exchanged to the 

right of the crossing site. 

Crossover operation can be performed at multiple crossing sites at one time (Fig. 

4.2). 

Parent chromosomes Offspring chromosomes

Crossing site

 
Fig. 4.2 Crossover operation at two points 
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Two chromosomes 00000000  and 11111111 with the length 8L   can be con-

sidered an example. Two crossing sides are given at 2 and 5. Two offspring chromo-

somes are derived from the parents after the application of crossover operation: 

11000111 and 00111000 .  

The parent’s chromosomes are replaced by the offspring in the mating pool after 

the crossover operation. It can be noticed, that the mating pool, however changed, still 

has the same number of chromosomes. 

In the further step the mutation operation has to be applied (Fig. 4.3). 

Before mutation

mutation site

After mutation

mutation site

 
Fig. 4.3 Illustration of mutation operation 

In the mutation operation each chromosome from the mating pool undergoes an 

random change of each symbol with a given probability mp . When binary alphabet is 

used this operation means the change of the bit value from 0 to 1 and from 1 to 0 with 

the probability mp . If there are more than two symbols used in the alphabet, then a 

symbol is randomly substituted by another element of the alphabet. Usually, the prob-

ability value mp  is very small, e.g. smaller than 0.001. Accordingly, only a few of the 

chromosomes are changed due to mutation and in those affected only a few of the 

symbols are modified. Relatively, the mutation operation has a minor priory in the 

genetic algorithm as the crossover operation.  

The result of crossover and mutation operations on the mating pool  M k  is a 

new population  1P k  . Once again, the procedures of evaluation, selection and 

evolution has to be repeated. A rudimentary flowchart of the algorithm is given in Fig. 

4.4.  

Throughout the whole iterative genetic procedure the best-so-fare chromosome, i.e. 

the chromosome with the best fitness, is regarded as a possible solution to the original 

problem [62]. This chromosome is copied without changes into each new population 

according to a procedure called elitism. This strategy results in the domination of the 

population by the best chromosomes and usually improves the performance of the 

algorithm. 
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k:=0

Construct P(0)

Evaluate P(k) 

stopping 

criterion 

fulfilled

Stop

Selection

Crossover

Selection

pc

pm

Evolution

k:=k+1

yes

no

P(k)

M(k)

P(k+1)

Fitness

 
Fig. 4.4 Genetic algorithm flow chart 

 

There exist various possibilities for the implementation of a stopping criterion. A 

predefined number of iteration is a very simple solution. Another criterion is to stop 

when the fitness for the best-so-fare chromosome changes very little during subse-

quent iterations or to stop when the fitness has trespassed a pre-specified value. 

Genetic algorithm presented above worked with binary strings which represented 

elements of the domain of the objective function.  

For simplification reasons the above description is restricted to binary strings 

which are encoded elements from the original domain  . Binary representation ena-

bles simple analysis of algorithms. Similarly, the objective function  F x  is not the 

original goal function, but a composition of F  and the decoding function g , so that 

the problem can be formulated as 
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maximise:   F g x  

subject to:  { {0,1} : }L g  x y y  

where  : 0,1
L

g   is a decoding function. The modified problem may be more 

complex and may have additional local minimisers making the search for the global 

minimum even more troublesome. 

Therefore, algorithm operating directly on the domain  , in other words on a sub-

set of 
n

, seems more suitable for the applications dedicated to practical problems. 

The procedure is identical with the previous one (Fig. 4.4) with the only difference, 

that the members of the population are taken directly from  . Accordingly, the 

crossover and mutation operations have to be redefined. Various possibilities exist. 

Averaging is an option for crossover [63]. The offspring  

   / 2 d a b   (4.9) 

is an average of the parents’ vectors a  and b . In a modified approach, randomly 

generated vectors iw with a zero mean can be added to the average (4.9). If necessary, 

a procedure called projection can be used [64] to guarantee that the offspring will not 

violate the set of feasible points  . Next possibility for crossover is to take random 

convex combinations of the parents. For a pair of parents’ vectors a  and b  a random 

number  0,1   has to be generated to enable the computation of two offspring 

chromosomes 

  1 11    d a b w   (4.10) 

  2 21     d a b w   (4.11) 

This procedure does not allow the offspring to violate the set of feasible points, there-

fore no checking is needed in subsequent iterative steps. Only assumption for that is 

that   is a convex set. 

Addition of a random vector w  to the chromosome is the simplest implementation 

of mutation. For a given chromosome a  the mutation is given as 

 '  a a w   (4.12) 

and called reel number creep. As ever, mutated chromosome must be located in the 

feasible region. 
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Another method for mutation is a replacement of the given chromosome with a 

randomly generated vector in the domain  . Random number  0,1   and a ran-

dom vector w  are used to express the mutated chromosome  

  ' 1   a a w   (4.13) 

If the domain   is convex, the mutated chromosome will also belong to the feasible 

set. 

The most important features of a genetic algorithm can be summarised as follows : 

- it works with an encoding of the feasible set, rather than the set itself 

- it searches from a set of points rather than a single point at each iteration 

- it does not use derivatives of the objective function 

- it uses operations that are random within each iteration. 

4.4 Trust Region Reflective Algorithm 

Trust region reflective algorithm is dedicated to minimisation of a smooth nonline-

ar function which is subject to bound type of constrains. It is considered suitable for 

the solution of least squared problems [65], [66]. 

An over-determined system of linear equations  

 Ax b   (4.14) 

has no solution. The objective of this least-square linear problem can be altered to find 

a vector x  minimizing  

 
2

min 
x

Ax b   (4.15) 

the vector x̂  is considered the least squares solution of (4.15) and is given as  

  
1

ˆ T T


x A A A b   (4.16) 

In a case of a general nonlinear least squares problem  

   2
min r x   (4.17) 

the solution can be found by an iterative method. An adopted Newton’s method pro-

cedure is given as  
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           
1

1 Tk k r


   x x J x J x S x J x x   (4.18) 

Often modifications of (4.18) called Gauss Newton Method or Levenberg-Marquard 

Algorithm are in use [31]. 

For quadratic programming problems with bound type constrains further modifica-

tions are necessary in the iterative process. The Trust Region Method seems to be well 

suited. According to Tylor’s theorem [67], within a sufficient small neighborhood 

(trust region) of the point x̂  the function  kr x s  can be approximated by  

    k

kr x s   (4.19) 

where  

  
1

2

T T

k k k  s g s s H s   (4.20) 

and the original problem (4.17) is replaced by  

  
1

min  :  
2

T T

k k k k k
 

    
 

s g s s H s D s   (4.21) 

with k ks  D  defining the trust region. Algorithm idea given in [68] needs further 

modifications to incorporate the bound type constrains 

    
1

2

T T

k k k k   s g s s H C s   (4.22) 

where  

   v

k k k k kdiagC D g J D   (4.23) 

is a positive definite matrix with the information of constrains. The minimizer is 

sought in an iterative method solving (4.21).  

 

  



 

5 Power for sinusoidal waveforms 

5.1 Preliminary considerations 

Generally, the presence of a voltage u  results in replacement of an elementary 

charge dq in a conducting element over the elementary time dt . The voltage is under-

stood as electric potential difference between points A  and B  in the presence of elec-

tric field with an intensity E  

 A B

AB

u V V dl    E  (5.1) 

If the conducting element is located in magnetic field, then the induced voltage u  

is proportional to the change of magnetic flux   

 
d

u
dt


  (5.2) 

The elementary work dW , i.e. elementary energy delivered to the load equals 

 dW udq uidt   (5.3) 

The derivative of electrical energy dW  with regard to time is the measure of ener-

gy delivery fastness 

 
dW

p ui
dt

   (5.4) 

In electrical circuits the product of voltage and current is an expression for instan-

taneous power p . Consequently, the energy delivered over a closed time interval is an 

integral of p  
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2

1

t

t

W pdt   (5.5) 

5.2 Circuits with sinusoidal voltages and currents  

These considerations are restricted to linear time invariant systems (LTI) whereas 

the voltages and currents at various circuit elements are purely sinusoidal, i.e. the in-

stantaneous values are defined as 

 
   

   

2 sin

2 sin

U

I

u t U t

i t I t

 

 

 

 
  (5.6) 

In linear circuits with sinusoidal current and voltage waveforms of the same fre-

quency the phase shift between voltage and current is denoted with U I    . As-

suming, that initial phase in the voltage is equal to zero, i.e.  2 sinu U t , the 

instantaneous power is expressed as 

 
        

        

2 2
2 2 sin sin cos cos 2

2

cos cos 2 cos cos 2

U I
p ui U I t t t

UI t UI UI t

     

     

      

     

 (5.7) 

Instantaneous power (5.7) has two components: 

- the constant term cosUI   

- the variable term  cos 2UI t   with two times higher frequency. 

The instantaneous power p  oscillates sinusoidal around the constant term cosUI   

with doubled frequency 2 f . The amplitude of oscillations is UI .The maximum val-

ue of p  in (5.7) is reached when the argument of the variable term is k  

 max cosp UI UI   (5.8) 

The minimum value of p  is reached for the value of variable term equal to zero 

 min cosp UI UI   (5.9) 
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The value of the constant term changes with accordance to the phase shift   defining 

the character of the load (inductive, capacitive). The maximum of the constant term 

equal to UI is reached for 0  (purely resistive load) and the minimum 0 for 

/ 2   . 

In three phase system the instantaneous power is the sum of powers in all three 

phases. 

5.3 Active, reactive and apparent power 

Generally, the energy transport from a source to a load is characterised by terms of 

power. In one phase circuits with sinusoidal currents and voltages that are active pow-

er P , reactive power Q  and apparent power S. Every power has a strict technical 

meaning.  

The energy delivered to a source (5.5) in precisely one cycle is given by 

 

t T

T

t

W pdt



   (5.10)  

The energy in (5.10) divided by time T  gives the average value of instantaneous 

power over one period, defining active power P  given in watts [W]  

   
0 0

1 1
cos cos 2 cos

T T

P pdt UI UI t dt UI
T T

          (5.11) 

Active power is always non negative and reaches its maximum for a purely resistive 

load. The integral of active power over a clearing period gives the amount of energy 

delivered to a consumer, indirectly the sum to be paid to the utility. 

Electrical equipment, i.e. electrical drives, transformers, apparatus, have nominal 

values of voltage and current. The voltage values results from isolation durability and 

current values are restricted by heating and electro-dynamic forces. Therefore, electri-

cal equipment is characterized by the product of voltage and current RMS values, 

called apparent power S  with the unit volt-ampere [VA] 

 2 2

0 0

1 1
T T

S u dt i dt UI
T T

     (5.12) 
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Apparent power gives the maximal possible value of active power for a given volt-

age U and current I . The ratio of active power to apparent power defines the power 

factor PF for sinusoidal waveforms 

 
2 2

cos
cos

P P UI
PF

S UIP S


   


 (5.13) 

The design and dimensioning process of electrical energy distribution system requires 

precise information about apparent power of distribution system elements. 

Reactive power Q with the unit volt-ampere reactive [var] is often regarded as un-

wanted power component accompanying active power if a load causes a phase shift 

between voltage and current 

  
0

1
( ) sin

4

T
T

Q u t i t dt UI
T

    (5.14) 

The presence of reactive power in one phase circuit is a result of reactive elements, 

such as inductances and capacitors. In a serial connected RL or RC branch the voltage 

is expressed as sinU XI  , in a parallel branch sinI BU   , therefore 

 
2 2Q XI BU   (5.15) 

In an inductive circuit the phase shift   between current and voltage is positive 

and in a capacitive circuit it is negative. If 0,  0Q   inductive reactive power is 

positive. If 0,  0Q    capacitive reactive power is negative. 

Rewriting (5.7) the instantaneous power in sinusoidal circuits can be expressed as  

    

cos cos cos2 sin sin 2

cos 1 cos2 sin sin 2 1 cos2 sin 2

a r

p ui UI UI t UI t

UI t UI t P t Q t

p p

    

     

    

      



 (5.16) 

That is as a sum of a non-negative term  1 cos2ap P t   and an oscillatory 

term sin2rp Q t . The reactive power Q  in (5.16) is interpreted as the amplitude 

of the oscillatory term of instantaneous power.  

The current drown form the source has the form 

 2 cos cos 2 sin sin 2 cos 2 sin
P Q

i I t I t t t
U U

          (5.17) 
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and the corresponding RMS value of the current 

 

2 2
P Q

i
U U

   
    

   
 (5.18) 

Reactive power Q  in sinusoidal circuits has an extraordinary significance due to 

three major properties: 

- reactive power has an unambiguous physical interpretation as the amplitude of 

the oscillatory term in instantaneous power. Reactive power equal to zero 

means no energy oscillations between source and load. The energy flaw how-

ever, due to the form of ap  has an pulsative character. 

- reactive power Q  and active power P  along with voltage U  define the RMS 

value of the current (5.18). 

- the compensation of reactive power to zero 0Q  , reduces current RMS value 

to its minimum. The energy oscillations and additional losses are reduced to 

zero. 

Setting together the equations (5.11), (5.12) and (5.14) the apparent power equals 

 2 2S P Q   (5.19) 

and 

 tan
Q

P
   (5.20) 

Equations (5.19) and (5.20) can be illustrated graphically, forming a power triangle 

(Fig. 5.1). 
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Fig. 5.1 Triangle of powers 
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Applying the notation manner used in (5.11) and (5.14) the apparent power may be 

also expressed as 

    2 2

0 0

1 1
T T

S u t dt i t dt UI
T T

    (5.21) 

5.3.1 Apparent power expressed with complex numbers 

Sinusoidal voltage at the clamps of an inductive branch results in a timely shifted 

current (Fig. 5.2).  
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Fig. 5.2 Inductive branch with corresponding vector diagram 

 

Voltage and current can be expressed as complex values 

     U Ij j
U Ue I Ie

 
   (5.22) 

The apparent power is given as 

 cos sin jS P jQ UI jUI UIe        (5.23) 

From Fig. 5.2 it is visible that U I     and (5.23) may be rewritten  

 
 U I U I

j j j
S UIe Ue Ie U I

    
    (5.24) 

Apparent power in complex form is also a product of the RMS value of voltage and 

conjugate complex value of current. The expressions for active and reactive power can 

be directly obtained from (5.24), ‘*’ denotes complex conjugate 

    Re       Q=ImReP UI UI
 

  (5.25) 
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5.4 Powers in sinusoidal three phase systems 

A three phase system with sinusoidal currents and voltages can be characterised in 

terms of power with previously presented concepts. Symmetrical and unsymmetrical 

circuits require different approaches, whereas symmetrical circuit allows fare reaching 

simplifications. Classical treatment of power measurement assumes usage of analogue 

watt meters. However, the same approach is also built into modern PQ analysers. 

5.4.1 Load connections in delta and wye 

The analysis of a sinusoidal three phase system is usually performed via symbolic 

method approach. The voltages and currents are given as complex numbers. A four 

wire, wye connected circuit is shown in Fig. 5.3. 
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Fig. 5.3 Three phase wye connected circuit 

Assuming equal RMS voltage values and symmetrical load the currents are also 

symmetrical  

 1 2 3I I I   (5.26) 

Obviously, the current in the neutral wire is zero 0NI  . 

The active power is 

 
2

1 1 1 13 3 cos 3 3 cosLL LP P U I RI U I      (5.27) 

In case of an unsymmetrical load the powers in every phase must be computed sepa-

rately and added. In a similar way to (5.27) the reactive and apparent power can be 

obtained 

 
2

1 1 13 sin 3 3 sinLL LQ U I XI U I     (5.28) 

 
2

1 1 13 3 3 LL LS U I ZI U I    (5.29) 
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In the case of a load connected in delta (Fig. 5.4) the line to line voltages are equal 

to the respective source voltages. 

I3

I2

I1
E1 

E2 

E3 Z1 
Z2 

Z3 

 
Fig. 5.4 Delta connected three phase circuit 

 1 12E U  (5.30) 

In symmetrical case all he voltages sum up to zero 

 12 23 31 0U U U    (5.31) 

The line to line currents are 3 higher than line currents, therefore the active pow-

er in one phase is 

 
2

1 12 12 12 12 13 3 cos 3 cosP P U I RI U I      (5.32) 

Analogically, the reactive power and apparent power are given as  

 
2

12 12 12 12 13 sin 3 3 sinQ U I XI U I     (5.33) 

 
2

12 12 12 12 13 3 3S U I ZI U I    (5.34) 

A practical consequence from above considerations is a unique to power computa-

tion, regardless the connection of the load. Required are only line to line voltage, line 

current and the sin or cos value of the load phase shift. 

5.4.2 Measurement in circuits with symmetrical load 

The RMS values of voltages are equal and shifted by 120° in every phase. A sym-

metrical three phase circuit with sinusoidal voltages and currents represents the sim-

plest case for power computation. Active power can be measured with only one watt-

meter, as the result is three times the value indicated by the meter, 

 13P P  (5.35) 
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whereas the voltage claps are connected to L1 and N. In circuit without the neutral 

wire N an artificial neutral point must be provided. Usually, three equal, highly resis-

tive elements are used (Fig. 5.5). 
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R R R

 
Fig. 5.5 Active power measurement with artificial neutral point 

 

An alternative method in circuits without neutral is a measurement with two watt-

meters. The apparent power is given by an complex expression 

 1 1 2 2 3 3L L L L L LS U I U I U I      (5.36) 

The sum of three line currents is zero 

 1 2 3 0L L LI I I    (5.37) 

Consequently, the sum of complex conjugated currents is also equal zero, therefore 

    1 3 1 2 3 2 1 3 1 2 3 3L L L L L L L L L L L LS U U I U U I U I U I          (5.38) 

The active power is the real part of apparent power in (5.38) 

 1 3 1 1 2 3 2 2Re cos cosL L L L L LP S U I U I     (5.39) 

whereby the angles 1  and 2  are measured between the line to line voltage and cor-

responding current. The connection of wattmeters is a direct result of the (5.39) rela-

tionship and was named after Herman Aron (Fig. 5.6). 
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Fig. 5.6 Aron connection 

 

Expressing 2LI  or 1LI as a function of the two remaining currents (5.37) results in 

two additional ways how to connect the wattmeters.  

1LU

2LU

3LU

1LI

2LI

3LI


130

2 3L LU

1 3L LU

 
Fig. 5.7 Voltage and current vectors in symmetrical circuit with inductive load 

 

Voltage and currents vectors in Fig. 5.7 correspond with (5.39). The load is sym-

metric, wye-connected and inductive. In a symmetric circuit the phase angels are 

 1 230    30          (5.40) 

moreover 

 1 3 2 3 1 2     L L L L LL L L LU U U I I I     (5.41) 

Inserting (5.40), (5.41) to (5.39) gives 

     1 2cos 30 cos 30 3 cosLL L LL L LL LP U I U I P P U I          (5.42) 

The values indicated by two watt meters are generally unequal (Fig. 5.8). Only 

with symmetrical resistive load the indication are equal. If the phase angle   is in the 
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range 
3


 then both watt meters readings are positive. In the range ,

3 2

  
 
 

 and 

,
3 2

  
  
 

the readings have different signs.  

The  measuring arrangement in Fig. 5.6 can be directly applied for the determina-

tion of reactive power 

    1 2 cos 30 cos 30 sinLL L LL L LL LP P U I U I U I         (5.43) 

therefore the reactive power 

 3 sinLL LQ U I   (5.44) 

Consequently, the phase shift may be determined using only the readings of two 

watt meters. From (5.42) and (5.43) we get the expression  

 1 2

1 2

3
P P

tg
P P







 (5.45) 

 
Fig. 5.8 Wattmeters readings as a function of phase shift φ 

 

An alternative method utilises only one wattmeter to determine the reactive power 

in a symmetrical circuit (Fig. 5.9). 
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Fig. 5.9 Reactive power measurement 

 

The reactive power is given by 

  2 3 13 cos 90 3 sinL L L LL LQ U I U I     (5.46) 

 

5.4.3 Measurements in circuit with unsymmetrical load 

In an unsymmetrical circuit, relation (5.36) is used for the computation of apparent 

power. Active power is the real part of (5.36). Consequently, three watt meters must 

be used 

 1 1 1 2 2 2 3 3 3cos cos cosL L L L L L L L LP U I U I U I      (5.47) 

This method can only be used in the presence of the neutral wire N (Fig. 5.10). 
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Fig. 5.10 Active power measurement with three watt meters 

 

Two meters method – Aron connection – can be used to in unsymmetrical circuits. 

Circuits without neural and withholding (5.37) are suitable for Aron method. The al-

gebraic sum of readings (5.42) is correct for symmetrical and non-symmetrical cir-

cuits. 



 

6 Active and reactive power concepts for non-
sinusoidal circuits 

Experimenting with a mercury arc devices Ch. P. Steinmetz observed in 1892 a 

certain irregularity [69]. Despite of the lack of reactive power Q, the value of apparent 

power S was higher than active power P. This observation started a long discussion 

about power properties of non-sinusoidal circuits [70], [71], [72]. 

The historical approaches along with definitions for sinusoidal currents are inevita-

ble for the contemporary understanding of power concepts. The most crucial ideas and 

approaches are presented in brief form.  

Pioneers, Budeanu and Fryze, proposed two complementary approaches in fre-

quency domain and in time domain respectively [73]. 

6.1 Reactive Power proposal by Budeanu 

The active and reactive power for sinusoidal waveforms are given by (5.11) and by 

(5.14). Moreover, active power for non-sinusoidal but periodic waveforms can be 

expressed as  

 
0

cosn n n

n

P U I 




   (6.1) 

In a natural way Constantin Budeanu proposed in 1927 a definition for reactive 

power of non-sinusoidal voltages and currents [74] 

 
0

sinB n n n

n

Q Q U I 




    (6.2) 

This definition was then widely popularised [75], [76], accepted by CIGRE [77] 

and included into the IEEE standard dictionary of electrical and electronics terms. 

Definition (6.2) was interpreted as a measure of energy oscillation between a source 

and a load.  

Despite similarity of 
BQ  to reactive power in sinusoidal circuits, relation (5.19) is 

not more valid, instead  

 
2 2 2

BP Q S    (6.3) 
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Budeanu reactive power 
BQ  is not more the gap between active and apparent pow-

er. To fill the gap an additional component has been introduced. The new distortion 

power D  component is given as 

 
2 2

BD S P Q     (6.4) 

This component can be interpreted as a measure of apparent power increase caused 

by distortions in the periodical current and voltage waveforms. The power equations is 

given as 

 
2 2 2 2

BS P Q D     (6.5) 

Graphical interpretation of (6.5) is presented in Fig. 6.1 as a cuboid of powers. 

D

Q
P

S

 
Fig. 6.1 Cuboid of powers 

 

Practical computation and utilisation of 
BQ  is restricted by certain obstacles. Pre-

cise Fourier transformation [25] is a necessary prerequisite. Discrete Fourier Trans-

form requires [78] a measurement window length exactly matching an integer multi-

ply of the fundamental component period [79]. Variations of power system frequency 

cause leakage effect [80], introducing fictive spectral components and deteriorating 

BQ  computation accuracy. Usually windowing is used to minimise leakage [81], but it 

introduces unwanted phase shift in spectral components. According to (6.2) exact 

phase computation of voltage and current is needed to guarantee reliable values of 
BQ . 

Despite a proposal [76] to compute 
BQ  in time domain 

     
0

1
T

BQ u t H i t dt
T

    (6.6) 

Fourier series expansion necessity is a considerable drawback of the original (6.2) 

proposal. A considerably sophisticated signal processing is needed. 
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An alternative method of computing reactive power by means of simple watt me-

ters was proposed in [82]. It slightly differs from (6.2) by the term 
1

n
 or n  into the 

definitions 

 
0

sinICap n n nQ nU I 


   (6.7) 

 
0

1
sinIInd n n nQ U I

n




   (6.8) 

Those terms are a result of a capacitive or inductive character of the wattmeter’s volt-

age circuit (Fig. 6.2). 
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Fig. 6.2 Wattmeter based evaluation of reactive power by Illovici 

 

The power component defined by (6.7) or (6.8) can be relatively simply measured, 

but the resulting value do not fulfil (6.5) and it is not suitable for the dimensioning of a 

compensator [70]. Also compensation of 
BQ  is not a straightforward way for achiev-

ing a minimal current in a circuit by the same active power of the load [83].  

Budeanu proposal is considered a fundamental framework in the frequency domain 

[73]. An alternative framework proposed in parallel restricts power components con-

siderations to time domain. 

6.2 Reacive Power by Fryze 

A purely resistive load can be regarded optimal in terms of supply efficiency. This 

assumption motivated S. Fryze to restrict power components considerations solely to 

time domain [84].  

Regarding the active power P , a purely resistive load is an equivalent of a particu-

lar load fed by the same supply voltage if 

 
2

equivG u P   (6.9) 
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i.e. the conductance 
equiv

G  of the purely resistive load is  

 
2equiv

P
G

u
   (6.10) 

where 
equiv

G  is an equivalent conductance and P  stands for the active power of a par-

ticular load. The current over the resistive equivalent load is 

    active equivi t G u t   (6.11) 

 

load

i(t)

u(t) P

iactive(t)

u(t) P G

 
Fig. 6.3 Equivalent circuits in terms of active power by Fryze 

 

The value of the active current 
active
i  is minimal and exactly guaranteeing that the load 

consumes active power P . The rms value of the active current is 

 
2active equiv

P P
i G u u

uu
     (6.12) 

The remnant of the current feeding a particular load  

      react activei t i t i t    (6.13) 

constitutes no contribution to P  and increases the rms value of feeding current what is 

a plain disadvantage. 

Both current components are orthogonal as the scalar product  
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   
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i i

 

 

 

 





 

  (6.14) 

The rms values of current components are related to each other  

 
2 2 2

active reacti i i    (6.15) 

Multiplying (6.15) by the squared rms voltage value 
2

u  results in a power equa-

tions 

 
2 2 2

FryzeS P Q    (6.16) 

where 

 Fryze reactQ u i   (6.17) 

However, there is no straightforward way from the power definition (6.17) to a 

compensation procedure [73]. The compensation problem was still open [70]. An at-

tempt to define power components in time domain is a noticeable achievement made 

by Fryze.  

6.3 Power definition by Shepherd and Zakikhani 

The Authors observed, that applying the Budeanu concept of reactive power to the 

compensation strategy does not result in the maximal power factor PF [83]. Therefore, 

new concepts have been presented, resulting in a higher value of PF. Additionally, a 

linear capacitor has been proposed as a compensating device [71]. However, as the 

Authors stated in [85] ‘a power factor of unity cannot be reached at all in non-

sinusoidal circuit by reactive power compensation of any kind, linear or non-linear’. It 

was intended to achieve the possibly maximal value of PF. The proposed definitions 
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were not intended to reveal a direct physical meaning, rather than to contribute to PF 

maximisation problem.  

The authors propose a new expression called total apparent power tS consisting of 

active apparent power RS , true reactive apparent power XS  and distortion power DS  

[83], [72]. 

 
2 2 2 2

1 1

cos
n n

R n n nS E I P    (6.18) 

 
2 2 2 2

1 1

sin
n n

X n n nS E I    (6.19) 

 
2 2 2 2 2 2

1 1 1 1 1

p pn m n

D n p m n pS E I E I I
 

   
 

      (6.20) 

Summation gives 

 
2 2 2 2

t R X DS S S S     (6.21) 

The total apparent power is a figure of merit and can be sued to characterise the con-

veyance of energy 

    2 2 2 2 2 2 2

1 1 1 10 0

1 1
T T pn m n

t n m n pS e t dt i t dt E E I I
T T

  
     

  
       (6.22) 

Introduced definitions are based on an assumption of non-sinusoidal voltage feed-

ing a non-sinusoidal load [83], 

    
1 1

2 sin 2 sin
n m

n En m Eme E n t E m t         (6.23) 

Therefore the resulting current may be generally expressed as 

      
1 1

2 sin 2 sin
pn

n In p Ipi t I n t I p t         (6.24) 

and the displacement 
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 n En In     (6.25) 

Representing the non-linear load with a hypothetical, equivalent resistive and reac-

tive braches leads to the idea of a purely resistive and purely reactive currents ,R Xi i . 

  
1

2 cos sin
n

R n n ni I n t      (6.26) 

  
1

2 sin cos
n

X n n ni I n t      (6.27) 

An inductive current is lagging in relation to voltage. Those currents are directly 

involved in the definitions (6.18) and (6.19). The powers RS  and XS  may be under-

stood as related to those purely resistive and reactive currents (6.26) and (6.27). 

In circuits with sinusoidal voltages the terms ,  ,  SR X DS S are identical with the Bu-

deanu approach 

     Q=S     D=SR X DP S  (6.28) 

For non-sinusoidal waveforms they are no, especially  

 
2 2 2 2 2

DD S P Q S      (6.29) 

Power factor computation and correction is the most critical issue. The power fac-

tor indicates the value to be multiplied by apparent power to result in active power, i.e. 

mean value of power over one period.  

A compensation in non-sinusoidal circuits should be focused on the minimisation 

of XS  and not Q . However, a full compensation is not achievable when applying 

only passive reactive elements. The minimum value of XS , somehow greater than 

zero can be reached. 

A summary of PF characteristics for various circuit and supply voltage parameters 

is compactly presented in Table 6.1. 
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Table 6.1 Power components and PV values vs. circuit and waveforms features [83] 

 
Sinusoidal voltage Non-sinusoidal voltage 

Linear circuit Non-linear circuit Linear circuit Non-linear circuit 

Apparent power 

components RS ,
XS  

RS ,
XS ,

DS  
RS ,

XS  
RS ,

XS ,
DS  

PF if 
XS  fully 

compensated 
1

R

P

S
  

2 2
1

R D

P

S S



 1

R

P

S
  

2 2
1

R D

P

S S



 

XS  to be com-

pensated by 

reactance 

yes yes no no 

Maximum value 

of power factor 
1

R

P

S
  

2 2
1

R D

P

S S



 

2 2

min

1

R X

P

S S



 

2 2 2

min

1

R X D

P

S S S


 
 

 

In linear sinusoidal circuits the power factor is cos . Generally PF  is given as 

 
1

2 2 2 2

1 1 1 1

cos
n

n n n

pn m n

n m n p

E I
P P

PF
S EI

E E I I



  
  

   
  



   

 (6.30) 

Power factor cannot be maximized by a reduction of Q in Budeanu sense, but by 

the minimization of newly introduced term XS . Moreover, PF  may be deteriorated 

by the compensation of Q only, as has been shown in a numerical example [86]. In the 

presence of non-sinusoidal voltage, the term XS  cannot be compensated to zero using 

linear reactive elements as compensators. A possibly minimal value minXS  can be 

obtained, so that the highest power factor is generally given as 

 
2 2 2

min

1

R X D

P
PF

S S S
 

 
 (6.31) 

Further consideration are restricted to a linear capacitor connected in parallel to a 

load for compensation purposes (Fig. 6.4), [87]. The condition for maximal PF  is 

reached when the value of XS  and therefore S  is minimal with regard to capacitance 

[71], [86]. Therefore, the necessary condition of a minimum is satisfied when the de-

rivative 

 0XdS

dC
  (6.32) 
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non-linear

load

i(t)

iC(t)

Ce(t)

ie(t)

 
Fig. 6.4 Linear capacitor as a compensator 

 

Condition (6.32) may be applied due to the quadratic character of the minimisation 

problem. 

Voltage  e t and current  i t  in Fig. 6.4 are given by the expressions (6.23) and 

(6.24), respectively. The current across capacitor is [87] 

 
1 1

2 sin 2 sin
2 2

n m

C n n m mi t E n C n t E m C m t
 

     
   

        
   

   (6.33) 

The XS  component includes the  ei t  current and is given as  

    
2 22 2 2 2 2

1 1 1 1

sin
n m n m

X X n m n n n mS E I E E E n C I E m C  
  

      
  
     (6.34) 

Total apparent power is 

 2 2 2 2 2 2

R X DS E I S S S     (6.35) 

where 

 2 2 2 2 2 2 2

1 1 1

cos
n m n

R R n m n nS E I E E I 
 

   
 
    (6.36) 

 2 2 2 2 2 2

1 1 1

pn m

D D n m pS E I E E I
 

   
 
    (6.37) 

Substituting (6.34) into the condition for a minimum (6.32) and computing the de-

rivative results in 
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 1

2 2 2 2

1 1

sin
n

n n n

S n m

n m

E I n

C

E n E m






 

 
 



 
 (6.38) 

In a general case, the compensating capacitance SC imposed in (6.34) does not re-

duce the true reactive power to zero. 

The active power P  of the load in Fig. 6.4 is unchanged by the capacitor. 

 
1

cos
n

n n nP E I   (6.39) 

The maximum value of the power factor PF for SC  is  

 1
max

min 2 2 2

min

1 1

cos
n

n n n

n m

n m

E I
P

PF
S

E E I



 
 

 
 



 

 (6.40) 

where 

 2 2 2 2 2 2 2 2 2 2 2

min

1 1 1

2 sin
pn m

n S n n n S In m S pI E n C I E I n C E m C I           (6.41) 

Despite the major drawback of this presented – no full compensation possibility – 

there was a further discussion in the literature . An practical converter has been pro-

posed, indicating a DC current value proportional to the capacitor capacitance. 

The lacking physical interpretation of the introduced method was regarded as one 

of significant drawbacks [88]. 

6.4 Numerical evaluation of compensation for given voltage and 

current 

The following example was adopted from [87] and considers a periodical non-

sinusoidal voltage feeding a load with a corresponding non-linear current 

       2 230sin 30sin 5 30 20sin 7 30e t t t t           (6.42) 
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  
   

   

20sin 45 10sin 5 30 ...
2

10sin 7 30 10sin 9 30

t t
i t

t t

 

 

     
  

       

  (6.43) 

The optimum value of power factor with the help of a compensating capacitor 

should be find. Additionally, the capacitance for 50 Hz operation should be deter-

mined. 

Firstly, the terms in (6.38) were computed 

 
2 2 2 2 2 2 2 2 3 2

1

230 1 30 5 20 7 95 10  V
n

nE n        (6.44) 

 
2 2

1

0
m

mE m    (6.45) 

 
3

1

sin 5,7642 10  VA
n

n n nE I n      (6.46) 

And accordingly the optimal capacitance is 

 

3

3

5.7642 10
 193,14 F

2 50 95 10
C 




 

  
  (6.47) 

The minimal value of current with regard to (6.41) is 

 min 18,7152 AI    (6.48) 

The minimum value of apparent input power is a product of the above current and 

RMS value of feeding voltage 

 
2 2 2 2

1

230 30 20 232,8089 V
n

nE E
 

     
 
   (6.49) 

Therefore 

 
3

min min 4.3571 10  VAS EI     (6.50) 

The value of active power (6.39) is  
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 3502,7 WP    (6.51) 

Further on, the highest value of power factor due to the compensation with a capac-

itor is  

 
max

min

0.8039 inductive
P

PF
S

    (6.52) 

After compensation the RMS current value in load is 

 2 2 2 220 10 10 10 26.4575 AloadI        (6.53) 

The connection of an optimally sized capacitor has improved the power factor by 

ca. 41% in comparison to previous, uncompensated value 

 
4560

0.5687 inductive
6950

P
PF

EI
     (6.54) 

In a fictive case of a full compensation of the true reactive XS  a new formula or PF 

should be used, where 

 3

2 2
0.1828 10

R D

P
PF

S S

  


  (6.55) 

Practical meaning and usefulness of (6.55) in [87] is highly disputable as there is no 

mean for elimination of XS  and comparison to previously computed values. 

A comparison to the Budeanu approach is justified at this point. The reactive power 

value computed accordingly to Budeanu definition is 

 
1

sin 3.6857 kVA
n

n n nQ E I     (6.56) 

Therefore, the maximum power factor with the full compensation of Q   

 
2 2

0.7097
P

PF
S Q

 


  (6.57) 
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Remarkably, using a capacitor corresponding to 3.6857 kVA at 50 Hz leads to 

overcompensation. From this example it is visible that compensation of Q does not 

result in the maximal power factor [89]. 

In general, the discrepancy between 
X

S  and Q  is due to voltage distortion rather 

than load nonlinearity and this discrepancy still occurs even with linear load imped-

ances [87]. 

For sinusoidal voltage 
X

S Q  but it is not recommended to apply the Budeanu 

approach to calculate tariffs for reactive power when high deterioration of voltage 

quality is anticipated.  
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7 Research Installations with PV generation 

Data collected from installations equipped with photovoltaic generation were used 

to work with proposed algorithms and methods. Presentation of existing installations 

used in research should be helpful in establishing a correlation between properties and 

dimensions of an installations and anticipated signal parameters.  

7.1 Research PV installation with 15 kW 

The research installation with maximal power output15 kW consists of three inde-

pendent one phase systems constructed in different technologies. Schematic view is 

shown in Fig. 7.1. The photovoltaic research installation is located at the university 

campus and arranged on the roof of an existing building. The geographical orientation 

of the roof was accepted and do mounting structures used.  

 

Smart Metering

Samples aquisition

Monitoring

Ethernet

Photovoltaic System

 
Fig. 7.1 Overview of the 15 kW PV installation with monitoring  
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Fig. 7.2 Schematic view of the grid connection of PV panels 

 

The details of the three systems can be given in Table 7.1. The installation is con-

nected directly with a substation located in the basement of the same system. The sub-

station is equipped with a 10kV/0.4kV 400 kVA transformer powering nearby build-

ings. 

 
Table 7.1 Parameters of the 15 kW PV installation 

feature: characteristic of PV sub-generator  

phase L1 L2 L3 

cell type mono cigs poly 

azimuth 135° SE 135° SE 225° SW 

transformer no no yes 

no. of modules 27 56 21 

module type SUNTECH 

STP190S-24/Ad+ 

Q.CELLS 

Q.SMART 90 

SOLAR FUTURE 

ENERGY PF-

6:240 

efficiency  14.9% 11.8% 15.5% 

max. power 190 W 90 W 240 W 

max. voltage 36.5 V 60.8 V 30 V 

max. current 5.2 1.48 8 A 

dimensions 1580x808x35mm 1196x636x36mm 1680x1040x35mm 

elevation 40° 40° 40° 

 

7.2 Research PV installation with 110 kW 

A polycrystalline photovoltaic research installation is located at the university 

campus and arranged on the roof and façade of an existing industrial hall. The ar-

rangement of panels was strongly influenced by the orientation of the building and 
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areas available for PV panels. There was no possibility to fully optimise toward max-

imal energy output. 

The access to the installation and related measurement data was a courtesy of the 

BTU university, where the installation is located as a consequence of an extensive 

research cooperation. 

The photovoltaic installation consists of 530 modules with each 220 Wpeak, there-

fore 116.6 kWpeak for the whole generation facility. The modules of the company Al-

gatec have a nominal voltage of 27.22 V, a nominal current of 8.22 A and a modul-

efficiency of 14.9 %. The PV panels are distributed over the main roof, the projecting 

roof and the facade (368 modules with an angle of incidence of 30°, 162 modules with 

an angle of incidence of 70°; the building is oriented 12° to the south-west). The in-

stallation’s currents and voltages are registered every second and can be retrieved 

anytime for evaluation and analysis. The installation consists of 368 panels with an 

inclination of 30 degrees and 162 panels with an inclination of 70 degrees. All of this 

panels are tilled by 12 degrees from the South orientation towards the West. This PV 

system was additionally equipped with spherical irradiation measurement sensor, de-

scribed in more detail in the next section. 
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Fig. 7.3 Schematic view of the grid connection of PV panels 

 

The mentioned PV modules rated 116.6 kWpeak are grouped in 7 strings. Fig. 7.3 

shows the connection of the strings to the SMA SUNNY TRIPOWER inverters (WR1 – 

WR7). The inverters with the max DC power (at cos φ = 1) from 12 250 W to 17 410 

W have a max. input voltage of 1 000 V, a mpp voltage range of 360 V (± 20 V) to 

800 V, a min input voltage of 150 V and a max. iniput cuttent per string of 33 A.  

The rated power at the output is (at voltage 230 V, 50 Hz) 12 000; 15 000; 17000 

W. Respectively, the maximum output current is set to 19.2; 24; 24.6 A. Displacement 

factor can be adjusted in the range between 0.8 (capacitive) and 0.8 (inductive) as well 

as a maximal efficiency of 98.2 %. 
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Instantaneous values of voltage and current are captured in the Sentron PAC 3200 

(Fig. 7.3) Averaging is done over a 200ms period. The values can be readout every 

300ms over the Ethernet connection port. The timestamp is set at the readout time. 

Initially a 1 s average values were used to represent a 24-hours curve. However, 10 

min. or 1 min. averages were more suitable for the computations presented later on. 

7.3 Spherical Irradiation Measurements 

The irradiation was measured with 33 reference cells arranged on the surface of a 

half-sphere. The measuring device is depicted in Fig. 7.4 and Fig. 7.5 showing vertical 

cross-section and horizontal top view respectively. Fig. 7.6 give further details of the 

geometrical arrangement, showing indexing of all measuring cells. 

In the solar radiation sensor (ISET sensor 01274) [90] the solar radiation is con-

verted into a proportional current by an exact defined solar cell. The output voltage 

signal is given through a specific shunt resistance with a thermic coupling to the alu-

minium casing. 

Accurate measurement results are possible due to the geometric construction of the 

reference cell close to PV modules dimensions and specially formed casing enabling a 

link to outside temperature. The sensor is waterproof and can work in temperatures 

between -25°C and 80°C. 

The calibration of every ISET sensor is achieved with a reference element con-

structed in identical fashion by an accredited test laboratory in W/m2 and is docu-

mented on a quality assurance calibrating certificate. The calibration is conform with 

[91]. Relative measurement uncertainty is <±4% for crystalline material. 

For the energetic rating and monitoring of a PV system the same cell technology 

should be applied in sensor and cell production to guarantee same spectral sensitivity. 

Furthermore, using the same cells results in comparable physical characteristics re-

garding temperature reflection and degradation. 
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Fig. 7.4 Vertical cross-section of the measurement sensor 

 

  
Fig. 7.5 Horizontal view of the measurement sensor (from top) 

 

Fig. 7.7 shows the electrical connection of the 33 sensors with the imc SPARTAN-

R-T-16. The measured values are read in a 1-s-intervall and are stored in the same 

system as the values from the PV Modules. 
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Fig. 7.6 Indexing of irradiation sensors, horizontal view 

 

 

imc SPARTAN-R T-16

...

  
Fig. 7.7 Electrical connection of the measurement equipment 

  



 

 

8 Characterisation of the daily power curves in PV 
system 

The daily power output of a PV installation is highly unstable due to seasonal 

changes and weather conditions variations in cloud coverage or temperature. Transi-

ents in solar irradiation are directly determining the shape of the power curve. Fig. 8.1 

shows the active power output from the 110 kW installation described in section 7.2, 

on three subsequent days in July. Not only the days differ significantly from each oth-

er but also the variations during a day are noticeable. The changes correlate well with 

irradiation curves (Fig. 8.2). Both, irradiation and active power values were averaged 

over the period of one second. 

There is an open question for the proper time of averaging. Utilities often propose 

15 min. values for power measurement. However, this time may be 10 min. or less if 

requested and justified [92]. Many power quality indices should be reported every 10 

min. [20]. Smart meters [93] enable measurement and data transfer every one minute 

or even less. Increase in sampling frequency has some disadvantages. Short measure-

ment window reduces the number of smart meters which can be served by one concen-

trator and increases the amount of data to be stored and evaluated. Continuous measur-

ing of active power values averaged over 200 milliseconds window (as for some pow-

er quality analysis) is relatively fare going proposal regarding data amounts and data 

transfer capabilities in public distribution grids. 

Preliminary research results showed that data acquisition every one minute is satis-

factory in the approaches presented later on. On the one hand, the data amount to be 

stored and analysed every day is reasonable and not voluminous. On the other hand, 

computational results are more precise and accurate than for data averaged over longer 

periods, 10 min., or 15 min. Therefore, one minute averaging period was selected and 

used in further analysis. 
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Fig. 8.1 Variations in daily power curves 

 

 
Fig. 8.2  Variations in daily irradiation 

 

Data acquisition intervals used in both PV systems were different. To bring all data 

to the aforementioned one minute interval a procedure called resampling was applied 

0 1 2 3 4 5 6 7 8

x 10
4

-2

0

2

4

6

8

10
x 10

4

24h in seconds [s]

A
c

tt
iv

e
 p

o
w

e
r 

[W
]

 

 
day  1

day  2

day  3

0 1 2 3 4 5 6 7 8

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

24h in seconds [s]

Ir
ra

d
ia

ti
o
n
 [

p
u
]

 

 
day  1

day  2

day  3



93 

[94], [95], [96]. Daily power curve acquired with 1 second averaging period is shown 

in Fig. 8.3 Its counterpart after down-sampling with 1440 samples per 24 hours (one 

minute period) is given in Fig. 8.4 Small dots in Fig. 8.4 indicate exact values. 

 
Fig. 8.3 Daily power curve with one second data acquisition 

 

 
Fig. 8.4 Daily power curve after resampling (down-sampling 1 min. window) 
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Up-sapling was performed to adjust the daily power curve with 10 minutes interval 

between samples to the required one minute period between data. Fig. 8.5 shows the 

original signal form the 15 kW installation described in section 7.2. Fig. 8.6 shows the 

same signal after up-sampling operation resulting in the required 1440 power values 

per day. Small dots in Fig. 8.6 indicate exact power values. 

 
Fig. 8.5 Power curve before resampling (10 min. window) 
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Fig. 8.6 Power curve after resampling (up-sampling, 1 min. window) 

8.1 Approximation of a power curve with predefined shape 

The daily power curve can hardly be described by a simple equation due to sto-

chastic and seasonal variations depending mostly on irradiation conditions. In terms of 

a power quality index or a simplified characterisation requiring less memory space 

than the curve itself it is advisable to use approximated power curve descriptions. 

A possible way to reduce data amount is the aforementioned down-sampling. The 

power curve is then anyway described by a vector of points.  

The mean value describes a curve with only one number (Fig. 8.7). Similarly de-

scriptive is a pair of minimum and maximum values during an hour around noon, 

standard deviation, etc. 

One of the simplest methods giving only two descriptive points a day is a centroid. 

It indicates the mass centre of the area below the plot (Fig. 8.7). Generally, the hori-

zontal and vertical coordinates are [97]  

     
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where the area of the region resulting from 

     
b

a

Area f x g x dx    (8.3) 

In the a equations (8.1) to (8.3) the considered area is bounded by the continuous func-

tions  f x  and  g x  on the interval  , ,   a b a x b  . It is assumed that 

   f x g x . 

The horizontal location other than midday indicates a shift of energy production 

toward morning (left) or afternoon (right). The centroid location in the plot in Fig. 8.7 

is shifted to the right due to the westerly orientation of the PV panels (Table 7.1). The 

vertical location depends on the power values during a day. Fig. 8.7 is an example for 

the 15 kW PV generator and its subsystem with polycrystalline cells. 

This proposed power quality index should have allowed values located in a circle 

with a predefined radius and origin position. Precise formulation of the radius requires 

statistical analysis over loner period of data, e.g. one year. 

Further description possibilities include a similarity to a predefined curve. It is ad-

vantageous, if power production in a PV system is coherent with a predefined func-

tion, e.g.: 

- a constant line (possible with storage) 

- covering a preselected demand curve (possible with storage) 

- bell shape (possible with storage) 

Without storage it is possible to find the parameters of a curve that best suits a pre-

defined shape type given by a parametric equation, e.g. (8.4). 

The aberration from predefined curve  can be seen as parameter for the production 

pattern description and possible fees included in tariff regulations. In a statistical sense 

it can also be used or the sizing of a storage device allowing strict following of that 

curve.  

The parameters of a predefined curve, fitting optimally the daily production are an 

index describing the curve in short and therefor predestined to be a quality factor. 

For the energy production curve approximation an exponential bell function was 

used in this work. The general expression for this bell function is 

 
  

2

2 3

1( )
t

compy t e
 


 

   (8.4) 

where 1 2 3, ,    are descriptive parameters. Those parameters are determined in an 

optimisation process minimising the squared error between real power curve (t)y  and 

the bell shape 



97 

 y(t) y (t)error compy     (8.5) 

Optimisation procedure was performed using a method based on evolutionary ap-

proach and using a classical gradient based iterative approach. 

 

Other description methods, especially strict statistical analysis including variances, 

standard deviations, percentiles etc. was purposely left out as they require much more 

space to be treated accurately and were not in centre of interest in this work. Moreo-

ver, longer periods, i.e. one year, have to be taken into the statistical analysis, not a 

particular daily curve as used therein. 

 

Fig. 8.8 shows the approximating bell shapes resulting from the optimisation pro-

cedures trying to fit the bell into the real power curve in sense of least squared error 

between them. Both bell shapes are very similar and overlap. Detailed parameters of 

those curves and corresponding approximation errors are given in Table 8.1. The dif-

ferences of curve parameters are not excessive and correspond with Fig. 8.8. 

 

 
Fig. 8.7 The centroid of a daily power curve 
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Fig. 8.8 Bell shape function approximating of daily power curve with distortions 

 
Table 8.1 Bell function parameters 

parameter genetic algorithm trust region refl. algorithm 

α1 3214.388 3350.715 

α2 0000.004 0000.004 

α3 0870.956 0868.058 

yerror 297780.626 289902.533 

 

Fig. 8.9 shows a power curve on a bright day in May with little distortions. This 

curve was measured for the polycrystalline subsystem of the 15 kW installation (Table 

7.1). Bell functions overlap, so the differences in corresponding values of alpha pa-

rameters are negligible. Table 8.2 shows those parameters with corresponding approx-

imation errors. The error values are very similar for both optimisation approaches. The 

relatively big discrepancy between bell function and real power curve at the end of a 

day (Fig. 8.8 and Fig. 8.9) can be explained. The main cause for fast decay in power 

values is shadowing of the panels by a nearby office building. the panels do not get the 

direct sun bean when the sun is low over the western horizon.  
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Fig. 8.9 Bell shape function approximating of relatively smooth daily power curve  

 
Table 8.2 Bell function parameters 

parameter genetic algorithm trust region refl. algorithm 

α1 3744.830 3787.555 

α2 0000.004 0000.004 

α3 0872.041 0871.899 

yerror 182571.328 182535.944 

 

Similar studies were done for power signals form the 110 kW installation and some 

examples shown below. Despite the fact, that one min. period is preferred for the 

analysis, the effects of averaging are indicated again. Fig. 8.10 shows a daily power 

curve averaged over 10 min., whereas Fig. 8.11 shows the same curve with one minute 

time interval between power values. Not only the number of variations is higher but 

also their amplitude is distinctively different. For both variants of averaging the bell 

shapes obtained by evolutionary algorithm and trust region reflective approach are 

similar and overlap.  
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Fig. 8.10 Bell shape function approximating of daily power curve with disturbances, 10 min. 

 

 
Fig. 8.11 Bell shape function approximating of daily power curve with disturbances, 1 min. 
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and Fig. 8.11 respectively. The values are similar for both optimisation approaches. It 

0 20 40 60 80 100 120 140
-2

0

2

4

6

8

10
x 10

4

24 hours in 10 min. interv al [10 min.]

P
o
w

e
r 

c
u
rv

e
 v

s
. 

b
e
ll 

fu
n
c

ti
o
n
 a

p
p
ro

x
im

a
ti
o
n
 [

W
]

 

 
Activ e Power

Bell genet

Bell trra

0 200 400 600 800 1000 1200 1400
-2

0

2

4

6

8

10
x 10

4

24 hours in 1 min. interv al [1 min.]

P
o
w

e
r 

c
u
rv

e
 v

s
. 

b
e
ll 

fu
n
c

ti
o
n
 a

p
p
ro

x
im

a
ti
o
n
 [

W
]

 

 
Activ e Power

Bell genet

Bell trra



101 

is noticeable, that 2  and 3  in Table 8.3 have to be multiplied by 0.1 and 10 respec-

tively to obtain the values in Table 8.4. It is due to the time interval between samples 

(1 minute, 10 minutes) differing exactly by factor 10. 

 
Table 8.3 Bell function parameters, 10 min. interval  

parameter genetic algorithm trust region refl. algorithm 

α1 74609.703 74648.626 

α2 0000.040 0000.040 

α3 0081.146 0081.145 

yerror 628457.843 629046.063 

 

 
Table 8.4 Bell function parameters, 1 min. interval 

parameter genetic algorithm trust region refl. algorithm 

α1 73952.668 74612.969 

α2 0000.004 0000.004 

α3 0807.123 0807.057 

yerror 10866426.918 10862173.183 

 

 

 
Fig. 8.12 Bell shape function approximating of daily power curve with notches, 10 min. 
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Fig. 8.13 Bell shape function approximating of daily power curve with notches, 1min. 

 

Fig. 8.12 and Fig. 8.13 shows the effect of averaging for a relatively smooth daily 

power curve with some short duration notches. This notches lost their deepness by 

more than half after averaging. Once again, bell shapes resulting from both optimisa-

tion approaches overlap. Due to the notches the afternoon slope is more flat. Short 

after peak value the approximation curve is below the actual envelope of power plot, 

resulting in overestimated values for the late day hours. 

Detailed bell shape parameter values along with estimation error are given in Table 

8.5 and Table 8.6. Small differences in the values of parameters correspond well with 

overlapping plots in Fig. 8.12 and Fig. 8.13. 

 
Table 8.5 Bell function parameters, 10 min. interval 

parameter genetic algorithm trust region refl. algorithm 

α1 88474.797 88566.751 

α2 0000.038 0000.038 

α3 0081.839 0081.839 

yerror 538274.829 537600.676 
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Table 8.6 Bell function parameters, 1 min. interval 

parameter genetic algorithm trust region refl. algorithm 

α1 73952.668 74612.969 

α2 0000.004 0000.004 

α3 0807.123 0807.057 

yerror 10866426.918 10862173.183 

 

The trust region reflective approach was prone to starting conditions and therefore 

less stable in comparison to the genetic approach. More often it could get stuck in a 

local minimum. There is no systematic and robust method for finding the right starting 

point for the derivative based method. Despite high fidelity of both methods and very 

similar parameters of the daily power curve approximations it seems advantageous to 

suggest evolutionary based algorithm for further practical applications.  

8.2 Assessment of power variations with wavelets 

The power output of a PV power generation unit is highly variable, as indicated in 

the beginning of Chapter 8. Fig. 8.14 to Fig. 8.16 show the daily power curves (left 

vertical axes) and corresponding irradiation values (right vertical axes ) of all three 

subsystems in the 15 kW PV research installation on the same day. The daily irradia-

tion and power curves overlap (ignoring different axes scaling) and correspond to each 

other. Multiplication of the irradiation by an coefficient enables a true match between 

these two quantities. It is possible, because in this particular installation the irradiation 

was measured with a reference cell with the same geographical orientation as the pan-

els. This idea of irradiance vs. power relation is further exploited in Chapter 9 where 

spherical irradiation components are used instead. 

The PV subsystem equipped with polycrystalline cells was selected as an example 

for further analysis as the 110 kW PV system is also fitted with polycrystalline panels. 
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Fig. 8.14 Irradiance and power curve during one day, polycrystalline cells 

 

 
Fig. 8.15 Irradiance and power curve during one day, monocrystalline cells 
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Fig. 8.16 Irradiance and power curve during one day, CIGS cells 

 

During the preliminary research various wavelet functions with varying parameters 

were used.  

Daubechies’ waveltets were represented by the daub function [98]. This function 

returns the coefficients of the orthonormal Daubechies filters with maximum number 

of vanishing moments and minimum phase. The one input of the function, an even 

number, specifies the number of coefficients in the analysis and synthesis filers. 

The function symlets [98] generates the least-asmmetric Daubechies’ filters. This 

function returns the coefficients of the orthogonal finite impulse response filters with 

zeroes of the trigonometrical polynomial selected alternatively inside and outside the 

unit circle. Such a selection results in nearest design to linear phase and least asym-

metric wavelets. As in daub the number of filter coefficients must be even.  

Another function from the packet [98] used in research was maxflat. It returns the 

coefficients of the orthonormal maximally flat filters. The two input arguments are the 

degrees of flatness at 0   and   .  

The quadrature filters proposed by Battle and Lemarie are returned by the function 

lemarie [98]. this function gives coefficients of the orthogonal Battle-Lemarie filters. 

The only input parameter is the length of filter. 

The last considered function was wspline computing the spline biorthogonal filters. 

It returns the analysis and synthesis filters with spline wavelets of compact support. 

Two input parameters specify the number of zeroes at 1z   . The sum of both pa-

rameters must be even. 
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Preliminary considerations and results [99] induced the selection of symlets for fur-

ther use as it guaranties the nearest design to linear phase. 

 

Fig. 8.17 to Fig. 8.21 show the first five details of a daily power curve on the same 

axes scale to enable a visual comparison between details. In every of those figures the 

particular detail was plotted with a bold line. The highest number of a detail corre-

spond to the lowest frequency content, the lowest number, i.e. one, indicates highest 

frequencies. Every higher level imposes the frequency range division of the preceding 

approximation (original signal in the first step) by two. The division results in a new 

approximation and a new detail. The sum of all details (Fig. 8.17 to Fig. 8.21) and the 

approximation (Fig. 8.24) result in the original daily power curve. 

Fig. 8.22 and Fig. 8.23 present the second and first detail with highest frequencies 

on different axes scaling as the values are significantly smaller then higher details 

(detail with higher value of the index). 

 

The proposed description method for variations in a daily power curve is based on 

the computation of details. Parameters as min./max. value of the detail, integral of the 

detail over time, are usefully descriptive and informative. Additionally, the basic ideas 

of descriptive statistics were used [100]. Variance measures how far a set of numbers 

is spread out. Standard deviation measures the amount of variation or dispersion from 

the average. A low standard deviation indicates that the data points tend to be very 

close to the mean. A high standard deviation indicates that the data points are spread 

out over a large range of values. 

 
Fig. 8.17 the fifth detail of the daily power curve 
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Fig. 8.18 the fourth detail of the daily power curve 

 
Fig. 8.19 the third detail of the daily power curve 
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Fig. 8.20 the second detail of the daily power curve 

 

 
Fig. 8.21 the first detail of the daily power curve 
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Fig. 8.22 First and second detail of the daily power curve 

 

 
Fig. 8.23 First detail of the daily power curve 

 

The descriptive parameters of details in Fig. 8.17 to Fig. 8.21 are presented in a 
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and horizontal time axes, i.e. absolute values were taken for the computation, as inte-

gral over original detail curve is approximately zero. 

 
Table 8.7 Descriptive parameters of details 

detail no. min. max. integral variance std. dev.  

d1 -046.311 0049.294 2604.664 0020.579 0004.536 

d2 -075.638 0072.750 8627.303 0162.938 0012.765 

d3 -185.539 0151.170 21589.907 0874.748 0029.576 

d4 -486.890 0528.708 75670.797 10765.547 0103.757 

d5 -817.111 0732.435 165429.156 40324.121 0200.809 

 

The approximation of the daily power curve obtained with symlets is shown in Fig. 

8.24. In wavelet analysis the approximation shows the lowest frequency segment of 

the original signal. The approximation in Fig. 8.24 is a good indication for the 

smoothest shape of the daily power curve. The difference between the original curve 

and the approximation shows the power to be delivered by a storage unit in order to 

eliminate ripples. However, a statistical analysis of long period data, i.e. one year, is 

needed to properly size the storage unit and settle its response time to changes. Analy-

sis of longer period data for a preselected storage unit answers a question of probable 

insufficient elimination of ripple on certain periods during a year. Then, an optimisa-

tion procedure may be applied to find a balance between storage unit size and capabil-

ity and acceptable duration and severity of ripples over a year in statistical sense. 

Detailed statistical analysis of long period data was not in the scope of this work. 

 
Fig. 8.24 Approximation component of the wavelet analysis of the daily power curve 
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Fig. 8.25 shows the coefficients of the analysis and synthesis filters (lowpass and 

highpass) with 32 coefficients obtained with symlets. Corresponding wavelet and scal-

ing functions are depicted in Fig. 8.26. The filters in Fig. 8.25 were used for details 

and approximations computations of all examples in this Chapter. 

 

 
Fig. 8.25 Coefficients of the analysis and reconstruction filters 
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Fig. 8.26 wavelet and scaling function 

 

Similar analysis of daily power curves from the 110 kW installation was made. 

Two fundamentally different days, i.e. diverse daily power curves, are presented as 

examples. Fig. 8.27 shows the five details on a very unsteady day. There are numerous 

very rapid changes during the whole course of a day. Stunning is the number of 

changes and relatively high amplitude of them. Table 8.8 include descriptive data of 

curves in Fig. 8.27. The approximation in Fig. 8.28 shows the possible smooth curve 

of the daily production. Comparison of the smooth curve to measured power values in 

Fig. 8.28 gives the idea of needed compensating storage in order to smooth out rip-

ples. In real installation the compensation can be done only with a predictive filer and 

must be entirely based on past power values. For statistical analysis and sizing purpos-

es the whole daily curve can be taken into considerations.  
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Fig. 8.27 Details for 110 kW installation, day 21 

 

 
Fig. 8.28 Approximation component of the wavelet analysis of the daily power curve, day 21 
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Fig. 8.29 Details for 110 kW installation, d5, day 27 

 

 
Fig. 8.30 Details for 110 kW installation, d4, day 27 
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cloudless so the power plot is relatively smooth. The daily power curve indicates only 

three major notches (Fig. 8.31). Corresponding details computed using filters in Fig. 

8.25 are shown in Fig. 8.29 and Fig. 8.30. Detail d4 in Fig. 8.30 correspond better to 

the mentioned three notches than the lowest detail d5 in Fig. 8.29. There are three 

major swings in d4. This comparison shows, that the level of detail at which the 

changes are the biggest indirectly describes the art of changes taking place in the daily 

power curve, i.e. how often and for how long is there a notch in the curve. If there 

were no rapid changes is the curve the approximation would overlap with the power 

curve, as it does during the most time in Fig. 8.31. Descriptive data of the details fo 

the power curve in Fig. 8.31 are summarized in Table 8.9.  

 

 
Fig. 8.31 Approximation component of the wavelet analysis of the daily power curve, day 27 

 
Table 8.8 Descriptive parameters of details, 110 kW installation, day 21 

detail no. min. max. integral variance std. dev.  
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d5 -16153.335 19545.179 3802947.038 22710068.665 4765.508 
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Table 8.9 Descriptive parameters of details, 110 kW installation, day 27 

detail no. min. max. integral variance std. dev.  

d1 -16758.212 14965.064 248139.597 1010334.365 1005.154 

d2 -21981.243 19302.920 535960.241 2935331.101 1713.281 

d3 -16957.896 22582.856 799661.351 4244896.737 2060.315 

d4 -39312.111 26879.074 1973217.888 21655719.845 4653.571 

d5 -15620.526 15484.513 1668954.175 9122196.409 3020.297 

 

Generally, wavelet transform is regarded to be an appropriate tool for the analysis of 

daily power curves in PV installations. The approximation component describes the 

smooth curve, showing the low frequency block of the signal. It enables considera-

tions about possible compensation with a storage device. The details include infor-

mation about severity of changes happening in the signal. This information is included 

in the shape and index of the detail. Descriptive parameters of particular details are 

regarded as new power quality indicia describing the performance of a PV system. In 

a statistical sense, they give a possibility to moderate infeed tariffs and justify the ned 

to refit an PV installation with a storage device compensating rapid power variations. 

The level of compensation should be correlated to expected statistical improvement of 

performace. 

  



 

9 PV system monitoring using spherical irradiation 
components 

Evolutionary algorithm and trust region reflective algorithm perform completely 

different. The first one is based on a stochastic search whereas the other is an analyti-

cal method based on the gradient and Hessian values of the objective function. Both 

methods were utilized to solve a problem of the type (4.14) given as 

 
33

, ,

1

i n i n n

i

Irr P


    (9.1) 

The weighted sum of all directionally measured irradiations Irr  in (9.1) should be 

equal to the power output of the considered PV power plant. Index i  stands for sensor 

number and n  indicates subsequent time instant, i.e. subsequent minutes in a day. In 

matrix notation the over-determined set of equations is 

  Irr α P   (9.2) 

Solving (9.2) without constrains using (4.16) may result in vector α  with negative 

entries. A negative coefficient has no physical meaning. A positive coefficient is the 

weight of a spherical irradiation component contributing to the overall power output. 

Therefore, a least squares optimisation analysis with bound type constrains, guarantee-

ing values of all coefficients greater or equal zero, must be used. The trust region re-

flective algorithm and evolutionary algorithms approach are considered to be suitable 

for the problem and are delivering comparable results.  

Daily irradiation and power curves were used and it was assumed that the particu-

lar weights in α  do not change over the course of a day. 

An average over 10 minutes was selected for the presentation, despite the one mi-

nute values in the above chapter. 10 min. averaging resulted in a more smooth curve 

with less points over a 24 hours period and was more suitable for this problem mainly 

due to the computational burden characterised by long lasting iterative procedures. As 

the power curve follows the changes in irradiation it was assumed that further averag-

ing of both irradiation and power did not deteriorate general characteristics and fea-

tures of proposed method. Curves obtained for 24 hours were analysed. Longer peri-
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ods (two days, a week or a month) were not used but are possible extension to pro-

posed approach. 

 

Firstly, a simple artificial system was build, consisting of only one cell from the 

spherical measurement devise. Only one geographical adjustment of the reference cell 

was used resulting in one spherical irradiance component. Many different sensors 

were analysed this way. Data from sensor no. 19 was selected as an example for more 

detailed results presentation. Irradiation curve was multiplied by fictive PV panel area 

to obtain power output in [W] from the artificial PV power plant. 

In this case the optimisation procedure should indicate a correct parameter value 

for the particular sensor and zeroes for the rest of sensors. Correct value means a coef-

ficient to be multiplied by the irradiation values and resulting in power corresponding 

to the predefined output. 

Fig. 9.2 shows the normalized power curve [pu] of the artificial PV system (virtual 

PV power plant) and power curves estimated according to (9.1). The curves obtained 

with trust region reflective algorithm for least-square linear problem (TRRA) and evo-

lutionary algorithm (EVOL) are almost identical and the corresponding plots overlap. 

Slightly differences can be seen in the values of estimated daily   parameters in 

Fig. 9.1. The TRRA algorithm selected a second component (sensor 27) to be multi-

plied with a small coefficient. It cannot be regarded as failure or wrong plate selection. 

Sensor 27 has the same azimuth as preselected sensor no. 19 and slightly different 

elevation (only 15 degrees) resulting in similar irradiation curve (Fig. 7.6). 

The mean square error for approximation was 0.083 for TRRA and negligible for 

EVOL. 

Similar results were obtained for artificial PV power plants build upon one measur-

ing sensor selected freely for the set featuring various spherical irradiation compo-

nents. 

Further, a more complicated virtual power plant consisting of three weighed irradi-

ance values from sensors 19, 23, 25 was constructed (Fig. 7.6). The three sensors were 

oriented to the South, West, and North direction. Fig. 9.4 shows the normalized power 

curve of the artificial PV system (Virtual PV) and power curves estimated according 

to (9.1).  

The mean square error for approximation was 0.0853 for TRRA and for EVOL was 

negligible. The sum of absolute values of   coefficients errors of all 33 sensors was 

2.1208 for TRRA and also negligible for EVOL. 
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Fig. 9.1  Coefficients for virtual PV with one plate 
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Fig. 9.3 Coefficients for virtual PV with three plates 

 

 
Fig. 9.4 PV system power output, given and estimated  
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It is noticeable, that the selection of other cells than were used for the construction 

of the virtual PV power plant by the TRRA algorithm (Fig. 9.3) resulted in an insignif-

icantly different estimation of the daily power curve in Fig. 9.4. The very small esti-

mation error is due to the selection of cells with the same azimuth as were used in the 

construction of the virtual PV plant but with slightly different elevation (usually 15 

degrees difference). The irradiation curve of those cells is very similar, but only dif-

ferent in amplitude. The difference in amplitude can be compensated by higher values 

of the   coefficients. The TRRA is prone to local minima, so the selection of cells 

nearby to the original was seen as a good solution in terms of the objective function 

values.  

 

Assessment of real 110 kW PV power system is shown in Fig. 9.6. The real and es-

timated power curves overlap. Coefficients values are shown in Fig. 9.5. Sensors no. 

19 and 2 were correctly selected by EVOL as the real installation has the same SSW 

orientation and panels at two elevations. The additional two components indicated by 

TRRA, cells no. 10 and 11 have SW and S orientation respectively. This orientation 

correspond with the real installation.  

The mean square error for approximation was 0.5293 for TRRA and for 5302 

EVOL. 

 

 
Fig. 9.5 Coefficients for real PV installation 
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Fig. 9.6 PV system power output, real and estimated 
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installation costs of new panels and necessary installations a decision in finical terms 

can be made. 

Parameters selection as shown in Fig. 9.4 was deliberately included to show that 

using cells different from those originally used for the construction of a virtual PV 

power plant can result in a very accurate power curve. It is possible to construct a cor-

rect power curve, i.e. select spherical irradiation components and corresponding coef-

ficients, form data no used for the creation of a virtual PV power plant. A reconstruc-

tion of an building or a group of buildings with already existing PV system may re-

sults in new locations available for PV but also with the loss of existing spaces, e.g. 

through construction of additional windows. Further it is assumed that the power 

curves should remain as they are due to unchanged connection conditions imposed by 

the local utility. The proposed approach gives a tool to compute the necessary coeffi-

cients indicating area needed for new PV panels along with geographical orientation 

of cells enabling the compensation of the lost panels. Electrical output of old and refit-

ted installation should be approximately unchanged.  

 

  



 

  



 

10 Conclusion 

Research presented in this work was motivated by fast developments of small PV 

systems connected to the distribution grid by prosumers. The fact, that there is, or will 

be in the near future, a significant number of distributed PV installations connected to 

the gird is a substantially new circumstance influencing strongly the operation of dis-

tribution grids and safety of energy delivery. PV generation is highly variable and 

weather depending, so it can hardly be compared to traditional small power sources 

such as water generators or gas turbine power plants. This traditional means of genera-

tion are characterised by constant and predictable power output, which can be regulat-

ed by the operator. 

The focus of research activities was centred at the analysis methods of output pow-

er variations in PV systems – their characterisation in relation to solar irradiation. Ad-

equate assessment of the PV system performance is a prerequisite for safe and reliable 

operation of distribution networks. Without such an assessment the connection of new 

PV installations, the decision on implementation of necessary compensating storage 

devises or power quality enhancement tools cannot be taken. 

The complex nature of daily power curve variations requires appropriate assess-

ment tools originating in signal processing and optimization. The aim was to figure 

out reliable approaches. 

Data acquisition is the first step in any signal processing. The sampling of voltage 

and current is usually done with high frequencies, ca. 10 kHz [101], but computed 

RMS values, active, reactive power, etc. are averaged, aggregated and saved over 

longer periods, typically 10 min [20]. Rapid changes in the PV daily power curve re-

quire faster rates. It is possible to store power curves with 1 minute or 1 second resolu-

tion. Even smaller time windows are thinkable. Practically, a limitation is imposed by 

the smart meter technology. Large amount of data need longer transmission time, less 

meters can be served by a concentrator, larger storage capacity is needed. That impos-

es investments not necessarily welcomed by the utilities. Therefore, one minute win-

dow was proposed as a compromise for the analysis with wavelets. For irradiation vs. 

power analysis ten minutes window was considered suitable due to computational 

burden of optimisation algorithms. Moreover the coefficient settled for longer period 

should be valid for shorter one, as the power and irradiation curves correlate. 
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Data transfer in PLC technology was not possible due to high distortion levels in 

the frequency range up to 150 kHz generated by the operation pf PV converters. It was 

possible at night when the converters were not operating.  

Resampling was successfully applied for the harmonisation of data acquisition fre-

quencies. If the data were stored with shorter window, e.g. one second, and then 

resampled to longer window, e.g. one minute, then information was lost. The infor-

mation loss is due to averaging and infects especially short variations with high ampli-

tude as shown in Fig. 8.12 and Fig. 8.13. The up-sampling form ten minutes window 

to one minute window does not bring new information to the signal, but enables better 

frequency resolution and better overall performance of wavelet transform analysis. 

Signal conditioning operation was crucial for the effectiveness of further processing. 

Daily active power curves were the basis for any analysis. Therefore, a longer 

treatment of power component computation was included. The computation of power 

for sinusoidal circuit was presented as a starting point for the considerations including 

nonsinusoidal voltage and current waveforms. Active power is usually computed us-

ing (6.1) in power quality recorders [101]. Accordingly, the Budeanu and Fryze ap-

proaches to power computation were presented. Although new power definitions are 

currently discussed in the literature, the available data from existing metering systems 

are not based on those theories. This is definately subject for further research. The 

computation of power in accordance to (6.1) requires spectral components of current 

and voltage. They are given in a 5 Hz steps after FFT transform in power quality re-

corders [101]. The accuracy of component estimation is important for reliable power 

computation. Therefore MUSIC method was proposed as a complementary tool for the 

identification of spectral components in signals. This method is not restricted to inte-

ger multiplies of fundamental frequency, as FFT is, and performs well in noisy condi-

tions. 

Full compensation of reactive power with a linear capacitor is not possible in case 

of nonsinusoidal voltage and current waveforms. However, the approach proposed by 

Shepherd and Zakikhani sizes the capacitor to achieve best possible compensation. 

This approach, although not guaranteeing full compensation, is suitable for prosumers. 

It is simple, does not require sophisticated and cost intensive active filters. The level 

of reactive power is lower than using a capacitor sized with accordance to the funda-

mental component, as shown in a numerical example. Approach recommended for 

small prosumers installations with variable generation and demand characteristics. 

Real mesurements of active power and irradiance were used during research. The 

power output to be analysed was not supported by any kind of storage. Two installa-

tion with powers in the range representing prosumers installations were studied. How-

ever, they were equipped with measurement devices not used in typical commercial 

PV installations, enabling in-depth analysis. There is no better way of obtaining such 

research data than real measurements. 
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Characterisation of daily power curves was done with the idea of a centroid. This 

approach, along with mean value , maximum value, gives only one point per day as a 

description of the curve. There is huge reduction of data, but also information loss. As 

a quality factor a circle was proposed, in which the centroid have to be located during 

all days. The centre and radius of the allowed circle location can be proposed after  

analysis of data from longer periods, e.g. month or year. 

Wavelet transform is a fare more effective tool for the characterisation of daily 

power curves. Approximations characterise the daily curve excluding variations. De-

tails inform exactly about variations in the daily curve. Every detail represents differ-

ent frequency range, so that detail level and its amplitude at a particular time instant-

characterise the variations. The overall severity of changes during a day is well de-

scribed by the integral of the detail curve over the course of a day. The maximum and 

minimum value characterises daily extremes. Descriptive statistics, variance or stand-

ard deviation, further characterise the details. An open question is the level of ac-

ceptable variations. Specific threshold values should be the outcome of a compromise 

between the producers of PV installation components and operators of the distribution 

grids. 

Approximation of the daily power curve by a predefined shape is another way of its 

characterisation. A bell function (8.4) requires only three parameters to define a daily 

shape, bringing significant data reduction. The most suitable parameters’ values are 

the result of an optimisation process. Trust region reflective algorithm and evolution-

ary algorithm delivered satisfactory results, although both methods operate substan-

tially differently. Maintaining the three parameters within a predefined range is a new 

proposed quality factor for the description of PV installation performance. 

Correlation between daily power curves and spherical irradiation components is a 

new proposal for the characterisation of the PV system performance. The matching 

between power and irradiance according to (9.2) in useful in various aspects. In build-

ing integrated photovoltaic with variously oriented panels it helps to detect a failure in 

the system, if there is a mismatch between power and irradiation. The mismatch indi-

cates also lost sun energy, when solar generator was turned off due to maintenance or 

a persisting fault in the grid. The installation of panels with a given orientation in a 

particular location can be precisely assessed in terms of the power output. Finally, if 

there is a need for removal of some panels due to reconstruction of a building a new 

orientations can be proposed in order to compensate for the lost ones. In this case the 

goal is to keep the power curve unchanged even with differently arranged panels. So 

that, the infeed into the grid is the same. No need for new connection conditions for 

the utility. The coefficients in (9.2) matching power and irradiation were successfully 

figured out with optimisation methods. 

Generally, the work presents some new ideas for the assessment of small or medi-

um PV systems along with new power quality factors based on these new approaches. 

The settlement of specific threshold values is subject to analysis of long term meas-
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urement data. Threshold values proposed by the utilities would require a tariff policy 

forcing necessary investments in the improvement of power generation in PV installa-

tions by prosumers in terms of the new power quality factors. 
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11 Outlook and Future Research 

The proliferation of small PV systems into the distribution grid will continue in the 

future. Reduction of greenhouse gases emission, increasing the share of renewable 

energy sources, subsidies for local energy production and consumption are the main 

driving forces for this development. Widespread use of photovoltaic will have the key 

disruptive influence on the distribution grid in the near future [102]. Further research 

on methods for PV system assessment and its influence on the distribution grid is 

therefore justified. 

Two PV installations, differently power rated but geographically relatively close, 

were analysed in this work. Research data from installations connected to various dis-

tribution networks (urban areas, rural areas, etc.) should be analysed. The data should 

come from PV installations at various geographical locations. In this way not only he 

change in theoretical irradiance value can be captured, but also the influence of local 

climate (clouds, rainfall, temperature) on the energy production curve. 

The varying nature of irradiance and power output from PV installation requires 

statistical analysis of data measured over longer period of time, e.g. one year. Not only 

a particular day have to be analysed, but long term data enabling conclusions in a sta-

tistical sense. Approaches proposed in his work should be applied to at least one year 

data. Especially the severity of power fluctuation and optionally the effectiveness of 

variation compensation by a storage device must be verified statistically. 

The concept of spherical irradiation measurement compared to active power was 

elaborated using artificial PV power plants and one existing PV installation. Research 

on building integrated photovoltaic, where the panels are a part of the façade or gener-

ally the structure of a building should be done. Such an installation on a building is of 

special importance due to various panels orientation and different panels types used to 

suit the aesthetic aspects of architecture. 

The daily power curves analysis should be extended to cover also the reactive 

power component. This is an important subject as fare as the reactive power definition 

for nonsinusoidal waveforms is still a subject for discussion and anyway a base for 

penalty fees imposed by utilities on consumers. Reactive power is an important power 

quality factor. Theoretically converter have a predefined power factor [17], but it is 

not defined at low power output and combines with power factors of other loads of the 

consumer. Further analysis on this field is urgently needed. 
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The disturbances in the range up to 150 kHz caused mainly by PV converters are of 

outmost interest for the data transfer in PLC technology. There is a contradiction be-

tween the use of PLC smart meters to capture power curves and other PQ data in PV 

installations and the use of converters generating disturbances in the voltage at fre-

quencies typical or the communication channel.  
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