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REMARKS ON WIGNER’S
SEMICIRCLE LAW

Wiktor Ejsmont

Abstract. Ejsmont [2014] has shown that families of free Meixner distributions can be
characterized by the conditional moments of polynomial functions of degree 3. In this
paper, we will give other characterizations of the free normal distribution which are
formulated in a similar spirit.

Keywords: Wigner’s semicircle law, conditional expectation, free cumulants, Laha-Lukacs
theorem, noncommutative regression.

JEL Classification: C10.
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1. Free probability, free cumulants, conditional expectation

We assume that our probability space is a von Neumann algebra A with
a normal faithful tracial state z: A— C i.e., z(-) is linear, continuous in

weak* topology, 7(XY)=7(YX), z(1)=1, 7(XX")>0 and 7(XX")=0
implies X =0 forall X,Y € A. A (honcommutative) random variable V is

a self-adjoint (i.e. X = X”) element of A. The *-distribution p of a self-adjoint
element X € A is a probabilistic measure on R such that for all n>0
(X" = ij"dﬂ(x).

Let C(X,,...,X,) denote the non-commutative ring of polynomials in
variables  X,,...,X,. The free cumulants are the k-linear maps
R, :C(X,,...,X,)— C defined by the recursive formula (connecting them
with mixed moments)

(X X, X)) = D0 R(X, X, X)), (1)

veNC(n)
where
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R, (X, Xy, X)) =TT Rg (X, i € B) (2)
and NC(n) is the set of all non-crossing partitions of {1,2,...,n} (see: [Nica,

Speicher  2006; Speicher 1997]). Sometimes we will write
R.(X) =R (X,..., X).

Definition 1. X is a free normal (Wigner’s semicircle law) distribution
if R, (X)=0 for k >2. The Wigner semicircle distribution, is named after

the physicist Eugene Wigner. The standardized, i.e. with mean zero and
variance one, has density

4-x°
Tl[—z,z] (X)

If B< A is avon Neumann subalgebra and A has a trace 7, then there
exists a unigque conditional expectation from A to B with respect to 7, which
we denote by z(-|B). This map is weakly continuous, completely positive,
identity preserving, contraction and it is characterized by the property that,
for any X € A, z(XY)=z(z(X |B)Y) for any Y € B (see: [Biane 1998;
Takesaki 1972]). For fixed X € A by z(-| X) we denote the conditional
expectation corresponding to the von Neumann algebra B generated by X
and 1. The following lemma has been proven in [Bozejko, Bryc 2006].

Lemma 1. Let W be a (self-adjoint) element of the von Neumann
algebra A, generated by a self-adjoint V € A. If for all n>1 we have
r(UV") =z(WV"), then

(U |V)=W. 3)

We introduce the notation

* NC(n) is the set of all non-crossing partitions of {1,2,...,n},

« NC¥(m) is the set of all non-crossing partitions of {1,2,...,m} (where

m >k >1) which have first k elements in the same block (see more: [Ejsmont
2014)).

Let Z be the self-adjoint element of the von Neumann algebra A from
the above lemma. We define ¢y =c¢i(Z)=), R (Z) and the

veNcK (nsk) v
following functions (power series):
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C*(z)=Dclz*", where k>1 4)
n=0
for sufficiently small |z |< & and z € C. The following lemma can be found
in [Ejsmont 2014].

Lemma 2. Let Z be a (self-adjoint) element of the von Neumann
algebra A, then

Cc®(2)=M @)™ (2) + R (2)Z*M (2), (5)
where k >1.

Example 1. For k =1, we get:
CP(2)=M(z2)-1=M(2)C?(2) + R (Z)zM (2). (6)
In particular, we have the coefficients of the power series 1/ M(z)
(Maclaurin series):
1
—— =1-C92)-R(2)z 7
M (2) (z2)-R(2) (7)
for sufficiently small |z|.
Similarly, by putting k = 2, we obtain:
CP(2) =M (2)C?(2) +R,(Z)Z°M (2). (8)

Finally, we introduce moment generating function My of a random
variable X by

M, (2) =Y z(X")z". (9)
n=0
Now we present Lemma 4.1 of Bozejko and Bryc [2006], which will be

used in the proof of the main theorem.

Lemma 3. Suppose that X, Y are free, self-adjoint then X, Y have
Wigner’s semicircle law if and only if the moment generating function
M (z) for X +Y satisfies the following quadratic equation

27*°M?(z)-M(z)+1=0. (10)
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2. Characterization theorem
The main result of this paper is the following characterization of
Wigner’s semicircle law.

Theorem 1. Suppose that X, Y are free, self-adjoint, non-degenerate,
centered (7(X)=7(Y)=0) and 7(X?)=7(Y?)=1 which have the same
distribution. Additionally, we assume that R,(X)=R,(Y)=0. Then Xand Y
have Wigner’s semicircle law if and only if

T((X=Y)(X+Y) (X =Y)[(X +Y))=4I. (11)

Proof. «<: Let us suppose now that the equality (11) holds. Multiplying
(11) by (Y +Y)" for n >0 and applying z(-) we obtain

(X =Y)(X +Y )2 (X =Y )X +Y)") =

3R (X =Y, XY, X 4Y, X =Y, X 4Y, X +Y,.., X +Y) =

veNC (n+4) n—times

Ar((X +Y)").

This follows from the folowing consideration. Let us look more closely
at the second sum from the last equation. We have that either the first and
the fourth elements are in different blocks, or they are in the same block. In
the first case, the second sum (from the last equation) vanishes because we
have

R(X-=Y,X+Y,X+Y,....X+Y)=R(X)-R,(Y)=0. (12)
On the other hand, if they are in the same block, the sum disappears if

the first or third element are in the same block separately because we have
that (X +Y) =0. So, we have

(X =Y)(X+Y (X =Y)(X +Y)")=
Y OR(X+Y)+2 D R(X+Y)=4r((X+Y)"). (13)
veNc4(n+4) veNC2(n+2)
This equation is equivalent to
47°M (z) = C*(2) +22°C*(2) . (14)
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Using Lemma 2 for k =1,2,3 we obtain equation
R,(X +Y)2’°M3(2) = (M (2) -1-22"M?(2))(1+ 22°M?(2)).  (15)
Thus, if R,(X +Y) =0, then we have found two solutions
1+22°M?(2) =0 (16)
or
M(z)-1-22°M?%(z) =0 (17)

but the first solution does not correspond to the probability measure. Part
M (z)-1-2z*M?(z) corresponds to the moment generating function of

Wigner’s semicircle law, which by Lemma 3 implies statement. —=:
Suppose that X and Y have Wigner’s semicircle law. Then we have

> R(X+Y)=0.

veNC*(n+4)

So, from R,(X +Y) =2 we see

(X =Y)(X+Y ) (X =Y)(X +Y)")=
2 > R(X+Y)=4 > R(X+Y)=4r((X+Y)").

veNC2(n+2) veNC(n)

(18)

Now Lemma 1 implies equation (11).
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