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Abstract. Żądło (2012) proposed a certain unit-level longitudinal model which was a 

special case of the General Linear Mixed Model. Two vectors of random components 

included in the model obey assumptions of simultaneous spatial autoregressive process 

(SAR) and temporal first-order autoregressive process (AR(1)) respectively. Moreover, it is 

assumed that the population can change in time and the population elements can change its 

domains’ (subpopulations’) affiliation in time. Under the proposed model, Żądło (2012) 

derived the Empirical Best Linear Unbiased Predictor (EBLUP) of the domain total. What 

is more (based on the theorem proved by Żądło (2009)), the approximate equation of the 

mean squared error (MSE) was derived and its estimator based on the Taylor approxima-

tion was proposed. The proposed MSE estimator was derived under some assumptions 

including that the variance-covariance matrix can be decomposed into linear combination 

of variance components. The assumption was not met under the proposed model. In the 

paper the jackknife MSE estimator for the derived EBLUP will be proposed based on the 

results presented by Jiang, Lahiri, Wan (2002). The bias of the jackknife MSE estimator 

will be compared in the simulation study with the bias of the MSE estimator based on the 

Taylor approximation. 
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1. Superpopulation model 

Let us introduce the notation presented earlier by Żądło (2012). We   

assume that longitudinal data from t = 1, ..., M periods are studied. In the 

period t the population is denoted by t  ( t tN  ). Let 
1

M

t

t

   and 

N  . The population in the period t is divided into D disjoint subpopula-
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tions (domains) 
dt  ( dt dtN  ), where d = 1, ..., D.  Let 

1

M

dt d

t

   and 

d dN  . Let the set of population elements for which observations are 

available in the period t be denoted by st  ( t ts n ). Let 
1

M

t

t

s s


  and s n . 

Moreover, let 
dt t dts s   , 

dt dts n  and 
1

M

dt d

t

s s


 , d ds n . Let: 

rdt dt dts   ,  rdt dt dtN N n  . The d*-th domain of interest in the period 

of interest t
*
 will be denoted by 

* *d t  and 
* *

1

M

d t d

t

  . Let 
idM  be the 

number of periods when element i is in the domain d, and idm  be the num-

ber of periods when element i is observed in the domain d. Let idjY   idY , 

where 1,..., idj M , be the vector of size 1idM   of random variables idjY  

for the i-th population element which belongs to the d-th domain. Let 

'idjY   s idY , where j’ = 1, ..., mid, be a subvector of 
idY  for mid  observed in 

the sample realizations of random variables idjY . 

Let us assume that population longitudinal data obey the following 

model (proposed by Żądło (2012)): 

   d d d d d dY X β Z v e , (1) 

where 
1

( )
di N

col
 

d idY Y , where 
idY

 
is a random vector, called profile, of 

size 1idM  , and 
dY  (d = 1, ..., D) are assumed to be independent, 

1
( )

di N
col

 
d idX X , where 

idX  is the known matrix of size idM p , 

1
( )

di N
diag

 
d idZ Z , where idZ  is the known vector of size 1idM  , vectors 

of random components 
dv  and 

de  are assumed to be independent. 

Let 
1

( )
d

idi N
col v

 
dv , where idv  is a profile-specific random compo-

nent and dv  (d = 1, 2, ..., D) are assumed to be independent and that they 

obey the assumptions of the simultaneously spatial autoregressive (SAR)  

process: 
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 ( )sp d d d dv W v u ,     (2) 

where 
dW

 
is the spatial weight matrix for profiles 

idY , 
2~ ( , )

d
u N

du 0 I . 

Usually it is defined as row-standardized matrix of values of some distance 

function between population elements or between subpopulations (in this 

case between profiles). Hence,   

  ~ ,d dv 0 R ,     (3) 

where  2

u
-1

d dR C
 
and   ( ) ( )

d
sp spN

   
d

T

d d dN
C I W I W . 

Moreover, 
1

( )
di N

col
 

d ide e , where 
ide  is a random component vector 

of size  1idM   and
 ide

 
(i = 1, ..., N; d = 1, ..., D) are assumed to be inde-

pendent and their elements obey assumptions of autoregressive process 

AR(1): 

 ( ) 1idj t idj idje e   .     (4) 

Hence,  

  ~ ,eid id0 Σ ,      (5) 

where elements of 
idΣ  are given by  

1
2 2

( ) ( )1
k l

t t  


 .
 

2. Predictor 

Under the model (1), based on the theorem presented by Royall (1976), 

the best linear unbiased predictor is given by (as derived by Żądło (2012)): 

 

   
* *

*

* * * *

2 1

* * * * * * *1

ˆ ˆ

ˆ( )

d t

rd

BLU

d t id t

i s

u i N

Y

diag









 

 

  

 rd*t* d*

T -1 T

rd* rd d sd rs id ss d sd sd d*

x β

γ Z C Z Σ V Y X β

, (6) 

where rd*t*x  is a 1 p  vector of totals of auxiliary variables in * *rd t ,  

 
1

* * * * * *
ˆ 

 T -1 T -1

d* sd ss d sd sd ss d sdβ X V X X V Y , 

 
*

1
1 2

* * * * *1
( )

d

T

u i n
diag




 
 -1

ss d sd d sd ss idV Z C Z Σ , 
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*sdX  is known 
*

*

1

dn

id

i

m p


 matrix of auxiliary variables, *sdY  is a 
*

*

1

1
dn

id

i

m


  

vector of random variables idjY , 
rd*γ  is a 

*

*

1

1
dn

rid

i

M


  vector of one’s for 

observations in period *t  (in * *rd t ) and zero otherwise, 
sdZ  and 

rdZ  are 

submatrices of 
dZ  obtained by deleting  rows for unsampled and sampled 

elements respectively, ss idΣ  is a submatrix obtained from 
idΣ  by deleting 

rows and columns for unsampled observations, where rs idΣ  is a submatrix 

obtained from 
idΣ  by deleting rows for sampled observations and columns 

for unsampled observations. 

Let the unknown variance parameters in (6) be replaced by restricted 

maximum likelihood (REML) estimates under normality. Hence, the two-

stage predictor (denoted by ˆ ˆ( )EBLU δ ) called EBLUP is obtained. It remains 

unbiased under some weak assumptions (inter alia symmetric but not neces-

sarily normal distribution of random components for the model assumed for 

the whole population). The proof is presented by Żądło (2004). Using the 

theorem presented by Żądło (2009) the MSE estimator of the EBLUP based 

on Taylor’s expansion is given by (the result was obtained by Żądło 

(2012)): 

   *

1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( )Taylor

EBLUMSE g g g    δ δ δ δ    (7) 

where 

 
*

2

1 * * * *1
( ) ( )

rd
u i N

g diag
 

  T -1 T

rd* rd d rd rr id rd*
δ γ Z C Z Σ γ

 

  
*

2

* * * *1
( )

rd
u i N

diag
 

 T -1 T

rd* rd d sd rs id
γ Z C Z Σ  (8)  

 
*

1 2

* * * * *1
( )

rd

T

u i N
diag

 
-1 T

ss d rd d sd rs id rd*
V Z C Z Σ γ  

 
  

    
*

*

2 1

2 * * * * * *1

1
1 2 1

* * * * * * * * *1

( ) ( )

( )

rd

rd

u i N

u i N

g diag

diag







 


 

 

  

  

T -1 T

rd* rd* rd d sd rs id ss d sd

T
T -1 T

sd ss d sd rd* rd d sd rs id ss d sd rd*

δ γ X Z C Z Σ V X

X V X X Z C Z Σ V X γ

 (9) 
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 * 1* *
3 *( )

T

g tr 


   
       

T T

d d
ss d

c c
δ V I

δ δ
, (10) 

where   

 
* * ** *

1 1k q k q

k k

col col
 

   

 
 

  

T -1T T
rd rs d ss dd d
γ V Vc c

δ
, (11) 

 
 

 
*

*

2

* * * * * * * *1

1
2

* * * *1

( )

( )

rd

d

u i N

T

u i n

diag

diag





 



 

  



T T -1 T -1 T

d rd rs d ss d rd* rd d sd rs id

-1

sd d sd ss id

c γ V V γ Z C Z Σ

Z C Z Σ

 (12) 

Elements of (11) are given by 

  
*

2 1 1*
* * * * * * * * * *2 1

( )
rd

T

u i N
u

diag


 

 

    

T
T -1 T -1d
rd* rd rd d sd rs id ss d sd d sd ss d

c
γ Z Z C Z Σ V Z C Z V , (13) 

 
*

2 1*
* *2 1

( )
rdi N

diag






 

 






T
Td
rd* rs id ss d

c
γ Σ V  

 

 
*

2 1

* * * * *1
( )

rd
u i N

diag 

 
  T -1 T

rd* rd d sd rs id ss d
γ Z C Z Σ V  (14) 

 
*

2 1

* *1
( )

di n
diag

 

 
 ss id ss dΣ V ,  

 2 1*
* * * *

( )

u

sp









T
T Td
rd* rd d sd ss d

c
γ Z A Z V  

 

 
*

2 1

* * * * *1
( )

rd
u i N

diag 

 
  T -1 T

rd* rd d sd rs id ss d
γ Z C Z Σ V   (15) 

  2 1

* * * *

T

u
 sd d sd ss dZ A Z V ,  

 
*

1*
* *1

( )

( )
rdi N

t

diag




 


 



T
Td
rd* rs id ss d

c
γ B V  

 

 
*

2 1

* * * * *1
( )

rd
u i N

diag 

 
T -1 T

rd* rd d sd rs id ss d
γ Z C Z Σ V

 

 (16) 

 
*

1

* *1
( )

di n
diag 

 
 ss id ss dB V .   
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The kl-th element of I  is given by: 

 
1 11

( )
2

kl

k l

Ι tr
 

   
  

  

ss ss

ss ss

V V
δ V V    (17) 

where  

 12

T

d D

u

diag


 






-1ss

sd d sd

V
Z C Z ,  2

12 1
( )

d
d D i n

diag diag








   






ss

ss id

V
Σ , 

 1 1
( )

( )
d

d D i n
t

diag diag


   






ss

ss id

V
B ,  2

1

( )

T

d D u

sp

diag 


 






ss

sd d sd

V
Z A Z . 

What is important, if the assumptions presented by Żądło (2009) are 

met, that the order of the bias of the estimator (7) is 1( )o D . Żądło (2009) 

assumed inter alia that variance-covariance matrix may be decomposed into 

linear combination of variance parameters (similarly to the regularity condi-

tion e) presented by Datta and Lahiri (2000)). In the case of the proposed 

model (1) this assumption is not met. This means that the MSE estimator (7) 

is not proved to be approximately unbiased for the considered model. In the 

simulation study Żądło (2012) showed that although the performance of the 

estimator (7) is quite good, in some cases it can significantly overestimate 

the MSE (see results presented in Table 1). This is the reason, that new 

MSE estimator should be studied. 

3. Jackknife MSE estimator 

In this section we propose the Jiang, Lahiri, Wan (2002) type MSE es-

timator of the proposed EBLUP. This is given by: 

   

* *

2

* * * * * * * * * *

1 1

ˆˆ ( )

1 1 ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

jack EBLU

d t

D D
EBLU EBLU

d t d t d d t d t d d t

d d

MSE

D D
b b b

D D

 

  

 

 
     δ δ δ δ δ

 (18) 

where ˆ
dδ  is the estimator given by the same formula as δ̂  but based on 

data without the  d-th domain, 

 * * 1 2
ˆ ˆ ˆ( ) ( ) ( )d tb g g δ δ δ , (19) 
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1 2
ˆ ˆ( ), ( )g gδ δ are given by (8) and (9) respectively, where δ  is replaced by 

δ̂ , * *
ˆ( )d t db δ  is given by (19), where δ̂  is replaced by ˆ

dδ , * *
ˆ ˆ( )EBLU

d t d δ  is 

given by (6) where δ̂  is replaced by ˆ
dδ . 

Importantly, Jiang, Lahiri, Wan (2002) do not assume that the variance-

covariance matrix may be decomposed into linear combination  of variance 

parameters, as is assumed in the case of estimator (7). The properties of MSE 

estimators (7) and (18) will be studied in the simulation study.  

4. Simulation study 

We conduct a limited model-based simulation study prepared using R 

(R Development Core Team, 2012) similarly to Żądło (2012). It is based on  

artificial data. A population of size N = 200 elements is divided into D = 10 

domains of sizes {15, 15, 15, 20, 20, 20, 20, 25, 25, 25}. Number of periods 

M = 3 is assumed and a balanced panel sample is studied – in each period 

the same 5dn   elements from each domain are observed in the sample 

(overall sample size in each period is n = 50). The purpose of the study is to 

predict D = 10 domain totals for the last period. 

Data are generated based on the model (1) where 1idj idjx  , 

1idj idjz  , d d    and for arbitrary chosen values of parameters 

100  , 2 1  , 2 1u  . Matrix dW  is row-standardized neighborhood 

matrix (each element has two neighbours). In the simulation the following 

values of ( )sp  and ( )t  are considered: 0.8; 0.3; – 0.3 and – 0.8 which gives 

sixteen pairs of these correlation coefficients (as presented in Table 1). 

Realizations of random components are generated using multivariate normal 

distribution. 

Żądło (2012) received values of relative biases of the MSE estimator 

based on the Taylor expansion which are summarized in Table 1. 

Although the assumptions of the approximate unbiasedness of the esti-

mator (7) are not met for the studied superpopulation model, the estimator 

performs quite well in the simulation (as presented in Table 1). On average 

it overestimates the unknown MSE, which is preferable to an underestima-

tion. In most of the cases (out of the studied 16) the overestimation is not 

high, but there are two cases where the means over domains of relative 

biases of the MSE estimator based on the Taylor expansion are higher than 

10%  (i.e. 26.49% and 18.78%).  
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Table 1. Values of means over domains of relative biases of the MSE estimator 

based on the Taylor expansion (in %)   

sp  
t  

Values of means over domains 

of relative biases of the MSE estimator 

based on the Taylor expansion (in %) 

0.8 0.8 7.17 

0.8 0.3 1.88 

0.8 –0.3 3.86 

0.8 –0.8 1.26 

0.3 0.8 26.49 

0.3 0.3 9.75 

0.3 –0.3 3.31 

0.3 –0.8 1.11 

–0.3 0.8 18.78 

–0.3 0.3 5.37 

–0.3 –0.3 2.79 

–0.3 –0.8 –0.33 

–0.8 0.8 1.37 

–0.8 0.3 4.10 

–0.8 –0.3 1.58 

–0.8 –0.8 0.60 

Source: own computations based on results presented by Żądło (2012). 

Three of the cases in Table 1 are presented in bold, where the following 

values of mean relative biases of the MSE estimator based on the Taylor 

expansion were obtained: 

– the maximum value (for ( )t  0.3 and ( )sp 0.8), 

– the minimum value (for ( )t  –0.3 and ( )sp –0.8), 

– the mean value (for ( )t  –0.8 and ( )sp –0.3). 

In this paper we compare values of the biases of the MSE estimator 

based on the Taylor expansion (presented in Table 1) with values of biases 

of jackknife MSE estimator. Because in each iteration the parameters of the 

assumed model must be estimated D-times (residual maximum likelihood 

method is used) due to the jackknife procedure, the Monte Carlo simulation 

analysis is very time consuming. In the studied cases which are described 

below, the time needed for 5000 iterations of one Monte Carlo simulation 

study was between c.a. 40-80 hours for different assumed values of model 
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parameters. This is the reason that only 3 out of 16 cases (3 out of 16 pairs 

of values of ( )sp  and ( )t ) where chosen for further analysis – the 3 cases 

presented in bold in Table 1 will be studied below. 

Fig. 1. Values of the jackknife and the Taylor expansion based MSE estimators 

for 10 domains (d = 1, ..., 10) for ( ) 0.8t    and ( ) 0.3sp   (the mean case) 

Fig. 2. Values of the jackknife and the Taylor based MSE estimators for 10 domains 

(d = 1. .... 10) for ( ) 0.3t  and ( ) 0.8sp   (the maximum case) 
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Fig. 3. Values of the jackknife and the Taylor based MSE estimators for 10 domains 

(d = 1, ..., 10) for ( ) 0.3t    and ( )sp  –0.8 (the minimum case) 

In Figures 1-3, symbol “◦“ denotes the value of the MSE estimator 

based on the Taylor expansion and symbol “∆“ denotes the value of the 

jackknife MSE estimator. On y-axis, the values of relative (or relative abso-

lute) biases of the estimators are presented. On x-axis, the number of the 

domain under study is presented (d = 1, …,10). 

In the studied three cases in the simulation the relative biases of the 

jackknife MSE estimator are smaller for all of the domains than the relative 

biases of the MSE estimator based on the Taylor expansion. This is not true 

for relative absolute biases, but if the absolute relative biases of the jack-

knife MSE estimator is higher in the simulation than the absolute relative 

biases of the MSE estimator based on the Taylor expansion, the difference is 

small. The values of the relative biases of the MSE estimator based on the 

Taylor expansion presented in Figure 2 are quite high, but using the jack-

knife MSE estimator in some cases allows to reduce the bias significantly. 

The advantage of the jackknife MSE estimator over the MSE estimator 

based on the Taylor expansion is especially visible for cases of the highest 

bias of the MSE estimator based on the Taylor expansion (see the results in 

Figure 2 for the domains 7, 8, 9 and 10).  Summarizing, the jackknife MSE 

estimator has a simpler form than the MSE estimator based on the Taylor 

expansion, which is very important in survey sampling practice, and its 

absolute biases – for different cases – are similar or smaller than absolute 

biases of the MSE estimator based on the Taylor expansion. 
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5. Summary 

In the paper, two MSE estimators of some EBLUP of the domain total 

are compared in the simulation study. The first MSE estimator was derived 

by Żądło (2012) based on the Taylor expansion. The second MSE estimator 

is proposed based on the results of Jiang, Lahiri, Wan (2002). In the simula-

tion study it is shown that the jackknife MSE estimator may be preferred to 

the MSE estimator based on the Taylor expansion. 
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