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Abstract. This article aims to present the applications of Lévy processes for the stochastic 

modeling of storage resources. Two cases were considered. In the first one, the volume of 

supplies to the storehouse is described by a random process (Lévy process), while issuing 

the products is described by a deterministic and linear function. The second case is re-

versed: the delivery to the storehouse is described by a linear function (variable: time), 

while issuing the goods is described by a Lévy process. For both cases the form of the stock 

level process and examples of its trajectories, when the net supply is a Lévy process, are 

given. We investigated the following net supply processes: gamma process, α-stable Lévy 

process with α = 0.5, Cauchy process, Wiener process.  
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1. Introduction 

The inventory is a very important part in logistics systems (see e.g. 

Ghiani, Laporte, Musmanno, 2004; Krawczyk, 2011). Inventory manage-

ment deals with the control and planning of stored resources. The aim of 

inventory management is to determine the stock level to minimize the total 

operating cost and to ensure satisfactory supplies for customers’ demands. 

A good inventory policy should take into account several issues and one of 

them is the control and operating of the stock level. Thus, in practice we 

need to describe supplies (inflow) and demands (outflow) of a storehouse, 

then apply a certain storage model to determine its characteristics, such as 

the probability and mean time of an overflow of the storehouse and many 

others.  
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In this article we present and discuss stochastic models of storage       

resources based on  Lévy processes. The Lévy processes appear in many 

theoretical and practical fields, where they serve as a basic skeleton for 

a description of certain phenomena. They are applied in physics, economics, 

finance, insurance, queueing systems and other branches of knowledge. 

Their features, like independence and stationarity of increments or self-

similarity, in certain cases permit to apply them to model for instance   

returns of stock prices, claims to insurance companies or a flow (outflow) to 

the buffer in queueing (telecommunications) systems. Moreover, the Lévy 

processes serve as a starting point for more complicated models, e.g. based on 

stochastic differential equations. Let us recall the notion of a Lévy process (see 

e.g. Sato, 1999). 

Definition 1. A stochastic process ( ) : 0X t t   with values in d is 

a Lévy process if: 

 0)0( X a.s., 

 X  has independent increments, 

 )()( sXtX  has the same distributions as )( stX  , that is, X  has 

stationary increments,  

 X  is stochastically continuous. 

The sample paths of a Lévy process are cadlag functions, that is, right 

continuous with left limits. The structure of Lévy processes is not very 

complicated. The Lévy-Itô representation shows their stochastic construc-

tion, which is the following: 

   atdxxNdxtQdxNxtBtX
x

t

x

t  
 11

)()()()()( ,  (1) 

where B(t) is Wiener process, N is a point process generated by the jumps of X 

that is 
 

( , ( ))

: ( ) 0

.t X t

t X t

N  

 

   N is a random Poisson measure on 

   0, \ 0d    with the mean )(dxQds , where )(dxQ  is the so-called 

Lévy measure on 0\d , and da  . The abbreviation (tN dx ) means 

)],,0([ dxtN . 
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2. The storage resources models based on Lévy processes 

In this section we investigate a stochastic process describing a store 

level in an inventory system. We will distinguish two cases. The first one 

will assume that the inflow of goods or products (we do not distinguish 

products, i.e. we assume the we store one kind of the product) to a store-

house is random due to a Lévy process and the outflow is deterministic and 

linear. Such a situation can happen when the products peel from a conveyor 

belt or natural resources are mined and after that are stored. We can have 

a similar situation in terminals, dams or telecommunication systems, where 

the flow is random and the outflow is deterministic. This case is particularly 

interesting as we know from the review by Silver (2008) and it appears 

commonly in the research. In the second case, we assume reversely that the 

inflow is deterministic and the outflow is random. Such a situation happens 

when clients buy a certain product, then a storehouse can guarantee deter-

ministic linear supplies and the demands of clients are random. From Silver 

(2008) we know that these assumptions are also quite common in research.  

Let us analyze the first case, that is, we assume that the supplies to 

a storehouse are random and due to a Lévy process X . From the practical 

point of view, it is more natural to assume that the process X is non-negative 

with non-decreasing sample paths, but we consider several examples where 

this assumption will be dropped. Then we can regard a certain uncertainty 

(a noise) is added to the outflow from the storehouse.  

For simplicity, let us assume that the net supply is the following: 

 ttXtY  )()( ,   (2) 

where X is a Lévy process with values in [0, ) , then its trajectories are non-

decreasing. Thus, it is easy to notice that the process )(tZ  describing the stock 

level of products in the storehouse at time t satisfies the following equation:  

  
0

( ) (0) ( ) ( ) 0

t

Z t Z Y t Z s ds    , (3) 

where Z(0) is the stock level at time 0t  (it can be a random or determinis-

tic quantity) and: 

  









0)(0

0)(1
0)(

sZif

sZif
sZ , (4) 

which means that the stock level cannot be less than zero. One can find 

a unique solution  of the integral equation (3) (see e.g. Prabhu, 1998). 
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Proposition 1. The integral equation (3) has a unique solution in the 

following form: 

 )()()0()( tItYZtZ  ,  (5) 

where: 

 


 )]0()(inf[)( ZsYtI

ts
,    (6) 

and: 

 min(0, )X X   .      (7) 

Moreover if 0)0( Z , then: 

 )(sup)]()([sup)( sYsYtYtZ
ts

d

ts 

 .      (8) 

Proof of Proposition 1. Subtracting the sides of the equation (3) for 

times t  and  ( t ) we get: 

 ( ) ( ) ( ) ( ) ( ) 0 ( ) ( )

t

Z t Z Y t Y Z s ds Y t Y


             , 

where ( )Z    is the left-sided limit of Z at  and the last inequality follows 

from the fact that the integral in the equation (3) is non-negative. First, let us 

assume that the storehouse is empty at some moments until time t  (precisely 

on the time interval  t,0 ). Then we can define the last moment when     

the storehouse is empty (until the moment t ) that is 

 0)(,:max0   Ztt . Thus 0t  is the last moment when the store-

house was empty on the time interval  t,0  and: 

)()()( 0 tYtYtZ , 

using the last equation and the fact that  
0

( ) 0 0

t

t

Z s ds   . Hence by the 

last inequality we obtain: 

 )]()([sup)( 





YtYtZ
t

  (9) 

(we put 0)0( Y ). Now let us assume that the storehouse is never empty 

on the time interval  t,0 . Then from the equation (3) it follows that 
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0)()0(  YZ  for all t0 , hence )()()()0()(  YtYtYZtZ . 

Thus by (9) we get: 












)()0()],()([supmax)( tYZYtYtZ
t




 max ( ) inf ( ), (0) ( )
t

Y t Y Z Y t





   , 

where in the last equality we use the stochastic continuity of the process Y 

(check that in the first case the first term of max is greater than the second 

one). Thus using the last equality and (3) we get: 

  )()0()(0)(
0

tYZtZdssZ

t

   max inf ( ) (0),0
t
Y Z





  




 )]0()(inf[ ZY

t



. 

Now let us assume 0)0( Z  and notice that )()(1  YY
d

  for t  (in 

the sense of finite dimensional distributions), where )()()(1   tYtYY . 

Then for a given t  we have: 

)(sup)(sup)]()([sup)(inf)()( 1 sYstYsYtYsYtYtZ
ts

d

tststs 
 , 

where the last equality is the sense of one dimensional distributions. The 

proof is completed. 

Remark 1.1. The equality in (8) is not in the sense of finite dimensional 

distributions but in the sense of one dimensional distributions. 

Remark 1.2. Except  the equation (8), the statements of the above theo-

rem are valid for any process X which starts from zero and has non-

decreasing trajectories and is stochastically continuous, i.e. we can drop the 

assumption that X is a Lévy process. 

Remark 1.3. The process Z  in (5) can be used as a storage level pro-

cess in storage systems even though the process X  has values in   and its 

sample paths are not non-decreasing. Then we add a certain uncertainty to 

the outflow from the storehouse and the process Z is a solution of a little 

different equation than (3). 

Remark 1.4. The complexity of the model lies in the structure of the 

process X (see the equation (2)). In this article we consider X  to be a Lévy 

process. In this natural and quite simple setting the theoretical results are 

very deep and complicated (see Michna, Bombała, Nielsen, 2013, and  
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references therein). Moreover, simulation methods in other cases than Lévy 

processes can be very sophisticated. 

As we mentioned earlier, we will also investigate a model where the sup-

plies are described by a linear function and the clients’ demands (an outflow) is 

random. More precisely, we assume that the net supplies are the following:  

 )()( tXttY  , (10) 

where X  is a Lévy process with values in [0, ) and with non-decreasing 

sample paths. Then, similarly as in the first case, the process )(tZ  describ-

ing the stock level at a moment t satisfies the following equation: 

  
0

( ) (0) ( ) ( ) 0 ( )

t

Z t Z Y t Z s dX s    ,    (11) 

where )0(Z  is the stock level at time 0t  (it can be a random or determi-

nistic quantity). The assumptions on the process X  are the same as in the 

first case.  

Proposition 2. The integral equation (11) has a unique solution in the 

following form: 

 )()()0()( tItYZtZ  ,     (12) 

where: 

 



 )]0()(inf[)( ZsYtI

ts
,     (13) 

and: 

 min(0, )X X   .       (14) 

Moreover if 0)0( Z , then: 

 )(sup)]()([sup)( sYsYtYtZ
ts

d

ts 

 .    (15) 

Proof of Proposition 2. The proof follows a similar way as the proof of 

Proposition 1. 

Remark 1.4. The equality in (15) is not in the sense of finite dimen-

sional distributions but in the sense of one dimensional distributions. 

Remark 1.5. Except  the equation (15), the statements of the above 

theorem are valid for any process X which starts from zero and has non-     

-decreasing trajectories and is stochastically continuous, i.e. we can drop the 

assumption that X is a Lévy process. 
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Remark 1.6. The process Z in (12) can be used as a storage level pro-

cess in inventory systems even though the process X  has values in  and 

its sample paths are not non-decreasing. Then we add a certain uncertainty 

to the inflow to the storehouse and the process Z is a solution of a little 

different equation than (11). 

Remark 1.7. The complexity of the model lies in the structure of the 

process X (see the equation (10)). In this article we consider X to be a Lévy 

process. In this natural and quite simple setting the theoretical results are 

very deep and complicated (see Bombała, Michna, Nielsen, 2013, and refer-

ences therein). Moreover, simulation methods in other cases than the Lévy 

processes can be very sophisticated. 

3. Simulation of storage resources processes  

In the previous section the stochastic stock level process was described 

by an integral equation and its solution. We can simulate this process using 

available pseudorandom simulators. The simulation of the storage resources 

allows to notice the difference between the two approaches in both models: 

the random outflow and the random inflow. Furthermore, simulations allow 

to see the behavior of these models and  they can be used to  find the proba-

bility of an overflow of the storehouse above the level u until the time t.  

The family of Lévy processes is very rich. It includes  gamma process, 

α-stable Lévy processes, inverse Gaussian Lévy process, normal inverse 

Gaussian Lévy process and many others (see e.g. Sato, 1999). We can gene-

rate random variables with α-stable distributions (see Janicki, Weron, 1994 

or Samorodntisky, Taqqu, 1994, for the definition of stable distributions and 

Chambers, Mallows, Stuck, 1976; Weron, 1996, for the methods of their 

simulation), gamma distribution (see e.g. Ahrens, Dieter, 1982), inverse 

Gaussian distribution (see e.g. Michael, Schucany, Haas, 1976). Then it is 

easily to simulate the sample paths of Lévy processes and by the equations 

(5) and (12) the trajectories of the stock level Z. We show trajectories of the 

process Z when the net input Y is  gamma process see Fig. 1. and Fig. 2., 

0.5-stable Lévy process based on the so-called Lévy distribution (α = 0.5, 

the skewness parameter  = 1) see Fig. 3. and Fig. 4., Cauchy process 

(α = 1,  = 1) see Fig. 5 and Fig. 6 and Wiener process (α = 2). Each sample 

path is generated in the time range: [0,10] and the initial volume is: Z(0) = 0 

(it is easily to simulate the stock level process with any positive initial  

value). 
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Fig. 1. Gamma process (model II) 

Source: own elaboration. 

 

Fig. 2. Gamma process (model II) 

Source: own elaboration. 
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Fig. 3. Lévy process with α = 0.5 (model I) 

Source: own elaboration. 

 

Fig. 4. Lévy process with α = 0.5 (model II) 

Source: own elaboration. 
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Fig. 5. Cauchy process (model I) 

Source: own elaboration. 

 

Fig. 6. Cauchy process (model II) 

Source: own elaboration. 
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Fig. 7. Wiener process (model I) 

Source: own elaboration. 

 

Fig. 8. Wiener process (model II) 

Source: own elaboration. 
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