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Abstract. The appropriate selection of portfolio components and determining their weights 

have a significant influence on the later performance of the investor. The classical method 

of calculating the weights of individual components in mean variance portfolios is based on 

sample mean and sample covariance matrix, which are optimal when the data come from 

multivariate normal distribution. In practice, the distribution of stock returns is not a normal 

distribution and frequently (albeit to a small extent) is contaminated by outliers; therefore, 

theoretically, a better approach to determine optimal weights in a portfolio would be to 

apply robust estimation methods. The main contribution of this paper is to present the 

possibilities of applying robust statistics methods in the Markowitz portfolio theory. This 

article contains an overview of the most important robust estimators applied in the portfolio 

theory. All the methods have been grouped according to the method of determining the 

outliers and to the accepted disorder models. Moreover, it presents the relevant 

achievements to date and the results of empirical research in this field. It also shows the potential 

problems resulting from the practical application of the robust estimation in the rolling horizon. 
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1. Introduction 

The portfolio theory proposed by Markowitz is based, among other    

elements, on an assumption that decisions are made solely on the basis of 

the expected return and risk (measured with variance or standard deviation), 

yet the major problem in practice is their estimation. In the case of assessing 

both parameters at the same time, classic estimators are encumbered with 

significant estimation error, which makes the portfolios burdened with 
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an even higher risk, and, as a consequence, makes them have low out of 

sample performance (Jagannathan, Ma, 2003, p. 1652).  

Michaud (1989), Black, Litterman (1992), Chopra, Ziemba (1993) 

demonstrated that outside the sample, classic portfolios do not have good 

properties, which influence both sensitivity and portfolio estimation error. 

This makes portfolios  which are efficient in the case of long-term invest-

ments for multiple periods  fail to grant good investment effects. In their 

works, Jagannathan, Ma (2003) as well as DeMiguel, Nogales (2009) pre-

sented research concerning the comparison of alternative and classic estima-

tion methods; nonetheless, they did not compared mean-variance portfolios 

with a target mean return, only portfolios with minimum variance. The 

reason is the high instability of the sample mean, which would impair the 

quality of the obtained results. The problems related to the determination of 

mean-variance portfolios and estimation errors while applying classic cova-

riance methods are also described in other works (including: Jorion, 1986; 

Best, Grauer, 1991; Wang, 2005; Jobson, Korkie, 1980). 

The aforementioned research causes an on-going analysis of alternative 

portfolio construction methods, which will enable a more precise estimation 

of portfolio weights and will contribute significantly to improving invest-

ment effects in practice. One of the concepts proposed in the literature is to 

apply robust statistics methods, which allows decreasing the impact of the 

outliers on the estimators’ values.  

The further part of this paper focuses on applications of the robust sta-

tistics methods in the portfolio theory and is organized as follows: Section 2 

presents classic portfolio optimization issues and demonstrates differences 

between classic and robust estimation, which lead to two different ap-

proaches to portfolio estimation: the one-step approach and the two-step 

approach. It also presents the most important properties of robust estimators, 

which are then interpreted in the context of applications in the portfolio 

theory. Section 3 describes the one-step approach to portfolio estimation; 

Section 4 features classification and description of robust methods applied 

in a two-step approach to portfolio estimation. The last part contributes 

possible practical problems regarding the application of robust estimation in 

portfolio theory. 

2. Robust estimation of portfolios 

In this paper we consider random vector of returns of n  assets 

)( n1 R,...,RR  with mean vector μ  and covariance matrixΣ . Efficient 
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portfolio with a target mean return 0  is a solution to the following optimi-

zation problem: 

,'min Σww
w

 

subject to: 

0' ,w μ  

' =1.w 1  

Disregarding the 0' μw  constraint, the resulting portfolio is a minimum-

-variance portfolio. 

In the aforementioned case, the expression Σww'  can be equally noted 

as 

 
,'=2 Σwwport
 

(1) 

where 
2
port  is a portfolio variance of the sum n1 R...R nww 1 . Analogi-

cally, one can notice a similar equality for the portfolio return: μw'=port . 

As, in practice, distribution of stock returns is unknown, efficient portfolios 

are determined using sample mean of portfolio returns μ̂  and sample cova-

riance matrix Σ̂ .  

The discussion in the previous section shows that robust estimators 

should be more appropriate to the portfolio optimization problem. Thus, 

portfolio variance or covariance matrix in (1) can be estimated by means of 

robust estimators, which decrease the influence of extreme returns. It should 

be emphasized that when 2ˆ port  is a robust estimate of portfolio variance 

and Σ̂  is a robust estimate of covariance matrix, the following inequality 

occurs: 

 
wΣw ˆ'minˆmin 2

w
port

w
 . (2) 

Thus, we can distinguish two different approaches to portfolio optimi-

zation: the one-step approach (described in Section 3) consists in solving the 

optimization problem without prior estimation of location and scale parame-

ters, and the two-step approach (described in Section 4) consists in the 

estimation of the covariance matrix (step one), followed by solving the 

optimization problem (step two). 

The next part of the article elaborates on the most important terms rela-

ted to robust statistics and their interpretation in the portfolio theory. Except 

for the definitions listed, there are also others which enable a comparison of 
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various robust estimators. Some robust properties are asymptotical and 

sample properties. While the asymptotic properties present qualities of 

robust estimators in the entire sample, the sample properties are much more 

useful in practice, as they allow to compare estimators on a bounded sample 

size  just as happens in practice. 

Breakdown point  

A measure of the global estimator robustness is the breakdown point, 

proposed by Hampel (1968, 1971), which can be interpreted as the smallest 

fraction of “bad” data for which the estimator can take arbitrary large   

values. Formally, the breakdown point of an estimator T at a distribution F, 

denoted by 
*

,FT , is the highest )1,0(*  such that: 

*
((1 ) ) is bounded.

G
T F G

 
 


     

For practical applications, the finite sample breakdown point,
1
 intro-

duced by Donoho and Huber (1983), is more useful; it can be interpreted as 

the lowest share of observations in a sample, for which the estimator can 

take arbitrary large values. Formally, for sample )'x,…,x,(x= n21nx , the 

size of which is n, the finite sample breakdown point for estimator Tn deno-

ted by *
n  is defined as follows:  

n

m
nn FT *

, , 

where m is the lowest amount of observations for which estimator Tn from 

sample xn, in which m observations will be replaced with arbitrary large 

observations y1, y2, …, ym, is bounded. 

It should be noticed that classic estimators have a breakdown point of 

0%, while robust estimators have a breakdown point greater than 0%. By 

adjusting the control constants of robust estimators, the specific breakdown 

point of robust estimators can be achieved. 

                                                 
1
 Researchers specify various types of sample breakdown point, depending on the 

method of contaminating data in the sample. If in a sample sized n, m observations are 

contaminated, we deal with: finite sample replacement breakdown point (Tyler, 1994) or   

-replacement breakdown point (Huber, Ronchetti, 2009). If, on the other hand, m contami-

nating observations are added to an n-sized sample, we deal with: finite sample addition 

breakdown point (Zuo, 2000) or -contamination breakdown point. From the perspective of 

application, the most frequently discussed and practical one is the finite sample replacement 

breakdown point. 
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In the context of the portfolio theory, the selection of a breakdown point 

can be specified on the basis of sensitivity of the selected portfolio compo-

nents, in that if the portfolio contains companies which are more susceptible 

to the outliers (e.g. companies with low capitalization), then the breakdown 

point of the applied estimators should be higher than in the case of compa-

nies among which the outliers occur more seldom.  

Influence function 

The influence function shows the behavior of an estimator when the 

sample is contaminated by an infinitesimally small fraction of outliers. The 

influence function (IF) of an estimator T at a distribution F, in the point x  

is defined as (Hampel (1974):
2
  

,
0

((1 ) ) ( )
IF ( ) lim ,x

T F

T F T F
x



 



  
  

where x is a point-mass at the point x . When an estimator has the bounded 

influence functions for all x , then it is called a robust estimator. After sub-

stituting empirical distribution function F̂ to F in IF definition, one shall 

obtain an empirical influence function, described in detail in Section 5. If 

the estimator influence function is bounded, the asymptotic variance of this 

estimator is limited as well.  

In the context of the portfolio theory, the influence function for the vec-

tor of weights in the portfolio can be analyzed. If the influence function of 

portfolio weights is bounded, the given portfolio is less sensitive to outliers; 

therefore, for those observations, robust portfolios are more stable than 

classic portfolios, for which the influence functions are unbounded. Addi-

tionally, it has been demonstrated (see Perret-Gentil, Victoria-Feser, 2004) 

that portfolios calculated by means of robust estimators of the location and 

scale parameters are robust portfolios, as the influence function of the effi-

cient portfolio weights estimator depends only on the influence function of 

the location and scale estimator.  

Based on the influence function, it is possible to analyze other proper-

ties of estimators, such as gross-error sensitivity and rejection point. The 

former is defined as |)(IF|sup , xFTx  and it can be used to identify outliers 

(Perret-Gentil, Victoria-Feser, 2004). A rejection point is defined as the 

                                                 
2
 The influence function described in this part was considered by Hampel as an influ-

ence curve (IC). 
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smallest distance for which all observations exceeding the same have no 

influence on the estimator.  

Mahalanobis distance 

The Mahalanobis distance is used to specify how distant the given ob-

servation is from the data center. The Mahalanobis distances are defined as 

follows:  

1ˆ ˆˆ ˆ ˆ( , , ) ( ) ' ( ).i i i id d x x   x μ Σ μ Σ μ  

The outliers are identified, among other methods, by a comparison to 

critical values of chi-square
3
 distribution, with n  degrees of freedom. Ro-

bust distances are modified Mahalanobis distances in which the sample 

covariance matrix is replaced with robust covariance matrix.  

Affine equivariance 

Affine equivariance is related to the estimation of multidimensional   

estimators of location and scale. Estimators μ̂  and Σ̂ are affine equivariant 

if for each non-singular matrix A  and vector b , the following proceeds:  

ˆ ˆˆ ˆ( ) ( ) ,      ( ) ( ) '.    μ AX b Aμ X b Σ AX b AΣ X A  

Classic estimators for a normal distribution sample have such a proper-

ty. Although affine equivariance is a desirable characteristic among robust 

estimators, most affine equivariant estimators could be time-consuming 

compared to classical estimators. For most of these methods, there is no 

exact algorithm; therefore, the affine equivariance is often abandoned in 

favor of pairwise robust covariance estimators (described in Section 4), 

which can be calculated much faster. 

In the context of the portfolio theory, for a problem Σww'min w , de-

termination of covariance matrix from data set )'(= n21 x,…,x,xX , for an 

affine equivariant estimator is equivalent to determination of covariance 

matrix from data set AX , where matrix pjiija ,...,1,)ˆ( A , and 1iia , 

0ija , for ji  . As matrix A is non-singular, the aforementioned state-

ment is false, as at least one component’s weight in the portfolio amounts to 0 

(at least one 0iia ).  

                                                 
3
 If the assumed distribution F is normal. This is caused by the fact that if 

)(~ Σμ,xi N , then 
2 2ˆˆ( , , ) ~i pd x μ Σ . 
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The affine equivariance is also desirable when analyzing excess returns 

or portfolio with foreign assets. In the first case, excess return is defined as  
e

t t fr r r  , where rt is return in period t, rf is a risk-free rate; hence, when the 

estimator is not affine equivariant, then ˆ ˆ( ) ( )f fr r  μ X μ X , which is unac-

ceptable in practice. 

In the second case, we can assume that the Polish investor portfolio 

consists of two assets: US stock and Polish stock. Therefore, it is convenient 

to express foreign returns in Polish currency by means of the following 

simplified model: USxUSxPLN rrrrr  , where xr is the exchange return 

and USr  is a return on US investment. Thus, in this case, we have the fol-

lowing matrix A and vector b : xra 111 , 122 a , 02112  aa , )'0,( xrb 
 

and affine equivariance of an estimator is required by investors. 

3. One-step approach 

If we assume ,ˆ port  to be a sample standard deviation, we obtain the 

following optimization problem:  

 

2

1

1
ˆmin ( ) ,

n

port
w W

tn





 twr  (3) 

where w is a vector of portfolio weights, W is a set of constraints (e.g. 

}1=':{ 1wwW ), tr  is a vector of asset returns in period t , port̂  is 

a sample mean of portfolio returns. 

Similarly to the case of linear regression or classic estimation of loca-

tion and scale parameters, such a problem is sensitive to outliers, thus in 

order to decrease the influence of outliers, function 
2)(  is substituted with 

function )( , which allows to decrease the influence of outliers. 

The next section presents estimators of robust portfolios which have 

been introduced in the literature to date, together with additional proposals 

of LTS and LMS portfolios, corresponding to LTS and LMS estimators in 

linear regression. 

Least absolute deviations portfolio (LAD) 

The LAD portfolio is a classic example of a modification to an optimi-

zation problem (3). A LAD portfolio is determined by minimizing the least 

absolute deviations, as follows:  
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, 1

.
1

min | |
n

w W m R t

m
n  

 twr  

For LAD portfolios, the m parameter which minimizes the objective func-

tion is the median.  

Least trimmed squares portfolio (LTS) 

The principle of LTS portfolios, which employs the least trimmed 

squares method, consists in the determination of a set of h  observations for 

which the portfolio variance is the lowest. LTS portfolios are determined by 

solving the following problem:  

2

( ) :
, 1

1
min (| ' | ) ,

h

i i n
w W m R i

m
h


  

 w r  

where nh   defines the number of rejected observations ( nh   observa-

tions are rejected) and )(ir  is such observation for which |'| )( mi rw  is  

i-th order statistics. The LTS method was first proposed by Rousseeuw 

(1984) in the context of regression. In the case of covariance matrix estima-

tion, this method is equivalent to the MCD method described in Section 4.1.  

The aforementioned case is a good illustration of the differences and simi-

larities between the robust estimation of covariance matrix and the estima-

tion of portfolios’ risk. In this case, the fundamental difference is the method 

of rejecting outliers: in MCD, Mahalanobis distances are used to identify the 

outliers, whereas in the case of LTS portfolios, distances in the Euclidean 

norm are applied. Therefore, the selected observation can be classified as an 

outlier using the MCD method, whereas it will not be rejected when apply-

ing LTS.  

Least median of squares portfolio (LMS) 

The LMS portfolios, which apply the least median of squares method, 

are determined by solving the following problem:  

:
,

min ( ) ,h n
w W m R

m
 


t

wr  

where nh   defines the number of rejected observations ( nh  observa-

tions are rejected). The LMS method was first proposed by Rousseeuw 

(1984) in the context of regression. For 2/nh  , the described portfolio is 

an LMS portfolio, whereas for 2/nh  , we obtain an -quantile portfolio 
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(where nh / ). Just like in the case of LTS portfolios, which correspond 

to the MCD method, an LMS portfolio has its counterpart in a covariance 

matrix determined using the MVE method.  

M-portfolio 

M-portfolios (also known as Huber portfolios) were proposed by 

Lauprete (2001) and later investigated by DeMiguel, Nogales (2009). Just 

like in the case of M-estimators, they consist in substituting   function for 

the square function in problem (3). In this case, an M-portfolio is deter-

mined by solving the following problem:  

,
1

1
min ( ),

n

w W m R
t

m
n


 



 twr  

where   denotes a convex symmetric function with a unique minimum at 

zero. Lauprete suggested using the Huber function in which the k  constant 

is determined in two stages using the LAD portfolio.  

S-portfolios 

S-portfolios were proposed by DeMiguel, Nogales (2009). Similarly to 

S-estimators, the S-portfolios with minimum variance are determined as 

follows:  

: ,
min

w W m s R
s

 
, 

where s complies with:  

1

1
( ) ,

n

t

m
K

n s





 twr

 

where K  is tuning constant.
4
 In the aforementioned case, the   function 

should meet the requirement for the M-portfolios, and additionally it should 

be strictly increasing on ),0[ c , and constant on ),[ c for certain 0c . 

DeMiguel, Nogales proposed using the bisquare function. 

If we assume the   function to be )()( )1,1( xx 1  and 5.0K , the 

resulting S-portfolio will be an LMS portfolio. 

 

                                                 
4
 Selected analogically to S-estimators: ( ( ))FK E x , where F – assumed underlying 

distribution. 
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4. Two-step approach 

The two-step approach consists in the estimation of the covariance ma-

trix (step one), followed by solving the optimization problem to determine 

the efficient portfolio (step two). The literature presents many different 

robust methods, categorized into various groups based on the method of 

determining them or on their properties.  

There are two main types of robust estimators, set apart by the method 

of rejecting outliers. The first model (Tukey-Huber Model) assumes that the 

given multi-dimensional observation comes either from distribution F or 

from contaminating distribution H. So if stock returns are analyzed, it is 

assumed that either all or no returns from the given period are outliers. The 

second model (FICM model) is more general; it was proposed by Alqallaf et al. 

(2009), and, in the case of daily rates of return, it assumes than only selected 

returns from a given day can be outliers. Therefore, the first model is more 

adequate, for example, for companies from a given sector, whereas the 

second one can be used to analyze companies coming from different sectors, 

which are less correlated.  

The Tukey-Huber model, known also as -contaminated model or  

Fully Dependent Contamination Model (FDCM), is defined as follows: 

(1 ) ,B B  X Y Z  

where ZYX ,,  are p-dimensional vectors, 0~ FZ  is some outlier genera-

ting distribution, whereas H~Y  is some elliptical distribution, 

 ),,1(B~ B where ),1(B  is a binomial distribution with probability of 

success  . 

Fully independent contamination model (FICM) is defined as follows:  

ZYBX B )1(  

where ),...,( 1 pBBdiagB  is diagonal matrix, ),1(B~ iiB   and  iB are 

independent. If  iB are fully correlated, then the FICM model becomes 

a classic Tukey-Huber model. 

Alqallaf et al. (2009) demonstrate that the former of these models is ad-

equate for affine equivariant estimators, while the latter one is appropriate 

for methods based on pairwise robust correlation or covariance estimates, 

thus robust portfolios generated by means of robust covariance matrices can 

be categorized into the following groups: 
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1. Efficient portfolios assuming FDCM (FDCM portfolios): it is as-

sumed that the occurrence of outliers can be usually observed on the same 

day for all companies included in the portfolio. Such portfolios should be 

the most effective for the analysis of companies from the same sector or 

trade. 

2. Efficient portfolios assuming FICM (FICM portfolios): it is assumed 

that outliers occur independently for each company in the portfolio, whereas 

the occurrence of an outlier for each company from the portfolio on the 

same day is very rare. Such portfolios should be the most effective for ana-

lyzing companies from various sectors with different characteristics. 

4.1. FDCM Portfolios 

The FDCM portfolio group encompasses all portfolios based on affine 

equivariant estimators of covariance matrix. In this group, two main methods, 

depending on the method of determining the matrix, can be distinguished: 

 Methods based on covariance matrix estimation for elliptic distributions. 

 Methods based on projection pursuit. 

The first group includes for example: M-estimators, S-estimators, MVE 

or MCD, whereas the most popular estimator belonging to the second group 

is the Stahel-Donoho estimator. 

M-estimators, introduced by Maronna (1976), the main disadvantage 

of which is that for a great number of dimensions they have a very low 

breakdown point.  

Constrained M-estimators (CM – estimators), proposed by Kent and 

Tayler (1996), combine properties of good local robustness of M-estimators, 

and good global robustness of S-estimators. Thanks to tuning constants, 

CM-estimators enable the appropriate selection of the influence function 

and the estimator efficiency. Moreover, modification of estimator efficiency 

has no influence on the breakdown point (Kent, Tyler, 2001).  

S-estimators were first introduced (in the context of regression) by 

Rousseeuw, Yohai (1984), whereas in the context of estimating covariance 

matrix, they were introduced by Davies (1987) as well as described and 

compared to M-estimators by Lopuhaa (1989). Rocke (1996) demonstrated 

that when the number of dimensions is large, even with a breakdown point 

close to 50%, the M-estimators are sensitive to outliers; therefore, he pro-

posed to apply translated biweight function, or biflat function, depending on 

the tuning constants which allow the specified point to be reached. Portfo-
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lios based on S-estimators with abiweight function were examined by 

Perret-Gentil, Victoria-Feser (2004). 

MVE and MCD estimators (Minimum Volume Ellipsoid, Minimum 

Covariance Determinant) were introduced by Rousseeuw (1984, p. 877), 

and described in detail in another publication by the same author (see 

Rousseeuw, 1985). The MVE estimator is a generalization of the least me-

dian of squares (LMS) estimator. The MVE estimator is used as an initial 

estimator to calculate S-estimators, which is influenced by its low maximum 

bias. The MCD estimator is a generalization of the Least Trimmed of 

Squares (LTS) estimator. The breakdown point of the MCD estimator is the 

same as the breakdown point of the MVE estimator, yet the MCD has more 

advantages than the MVE (Butler, Davies, Jhun, 1993; Davies 1992). Port-

folios based on MCD estimators were investigated by Zhou (2006) and 

Welsch, Zhou, (2007), and, in a modified version, by Mendes, Leal (2005). 

Stahel-Donoho Estimator (SDE) was defined independently by Stahel 

(1981) and Donoho (1982); it was the first equivariant estimator of 

the location and scale parameter for multidimensional observations to be 

characterized by a high breakdown point, regardless of the number of   

dimensions. The SDE estimator employs projection pursuit methodology; 

the method of determining this estimator is described, for example, by 

Maronna, Martin, Yohai (2006). Maronna, Yohai (1995) demonstrated the 

high efficiency of the SDE estimator, both for multidimensional normal 

distribution, and for Cauchy distribution. Maronna, Zamar (2002) showed 

good properties of the SDE estimator for simulation data, yet in the case of 

real data, the SDE estimator required large amounts of data to maintain 

a high breakdown point. Maronna, Yohai (1995) also demonstrated that    

the SDE estimator has better qualities than comparable S-estimators and   

M-estimators. 

Other robust estimators of covariance matrix 

There also exist research studies done on other robust estimators, less 

frequently applied in practice, which include: MM-estimators, described 

initially by Yohai (1987) in the context of regression and examined further 

by Lopuhaa (1992) as well as by Tatsuoka, Tyler (2000). A detailed descrip-

tion can be found in Salibian-Barrera, Van Aelst, Willems (2006). Minimum 

weighted covariance determinant, described by Roelant, Van Aelst, Willems 

(2009), has the same breakdown point as the MCD estimator, whereas its 

efficiency in multidimensional distributions of t-Student is higher (yet still 
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remains at a rather low level). Other estimators, for instance: Nearest-

Neighbor Variance Estimator (Wang, Raftery, 2002), -estimator of location 

and scale (Lopuhaa, 1991); estimators based on projection pursuit method, 

e.g. affin-equivariant location estimator of Donoho-Gasko (Donoho, Gasko, 

1992), P-estimator of covariance matrix (Maronna, Stahel, Yohai, 1992).  

4.2. FICM Portfolios 

The FICM portfolios group includes portfolios which apply methods 

based on pairwise robust correlation or covariance estimates. In terms of the 

estimation method, the following three method groups can be distinguished 

(e.g. Chilson et al., 2004 or Alqallaf et al., 2002): 

 Methods based on classical rank estimators – these methods apply 

classical rank estimators, such as Spearman’s  or Kendall’s  . 

 Methods consisting in the rejection of outliers for each random  variable, 

followed by a calculation of covariance for two variables  one example of 

such an estimator can be the QC estimator (Huber, 1981, pp. 203-204). 

 Two-dimensional methods of rejecting outliers, such as 

Gnanadesikan-Kettenring Estimator (Gnanadesikan, Kettenring, 1972),   

2D-Winsorization method (proposed by Khan, Van Aelst, Zamar, 2007), or 

2D-Huber (proposed by Chilson et al., 2004). The last two were used by 

Welsch, Zhou (2007) in order to construct robust portfolios. 

For the aforementioned methods, the obtained matrix is neither affine 

equivariant nor positive-definite. For this purpose, the method of 

orthogonalization is used, proposed by Maronna, Zamar (2002), which 

allows to obtain a positive-definite matrix and an “approximately” affine 

equivariant matrix. 

Algorithms of estimating robust covariance matrices were described by 

Maronna, Martin, Yohai (2006) and implemented in the rrcov package of 

the R program (Todorov, Filzmoser, 2009) for the following estimators of 

covariance matrices: CM-estimators, S-estimators, orthogonalized 

Gnanadesikan-Kettenring estimator, MVE, MCD, MM and Stahel-Donoho 

estimator. 

5. Rolling portfolios and stability of weights 

This section presents the undesirable effects of applying robust estima-

tors, such as an increase in transaction costs. From the point of view of an 
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investor, the stability of weights in a portfolio constructed by them through-

out the entire duration of the investment is a significant element.  

In most cases, the researchers analyze out of sample portfolios beha-

vior. For this purpose, rolling portfolios were compared, which are deter-

mined in the following manner: at period t , weights of optimal portfolio 

were determined on the basis of NT   last observations (estimation win-

dow), where N  is the total number of observations. Next, the time series of 

the obtained portfolio returns were analyzed at period 1t , and weights 

determined at period 1t with weights determined at period t . 

Assuming that the investor constructs rolling portfolios in accordance 

with the above described methodology, it is important for the difference 

between weights determined at period t  (on the basis of the last n  observa-

tions) and weights determined at period 1t  (also on the basis of the last    

n observations) to be as low as possible throughout the entire duration of the 

investment; therefore, it is important that a change in one observation does 

not significantly influence the weights on the portfolios. To simplify, one 

can investigate the difference between weights determined at period t  (on 

the basis of the last n  observations), and weights determined at period 1t  

(on the basis of the last 1n  observations), which results in an empirical 

influence function (also known as sensitivity curve), defined as follows 

(Croux, 1998): 

 
)),,...,(),,...,()(1()(EIF 11111, ttttttFT xxTxxxTnx

n
   

 (4) 

where Tt = T(Ft) is an estimator of portfolio weights and Ft is an empirical 

distribution function from a sample of size t. 

Using the Taylor expansion, it is possible to approximate the empirical 

influence function (Rousseeuw, Leroy, 1987, p. 186): 

, ,EIF ( ) IF ( ).
tT F T Fx x  

Thus, the influence function in a suitably large sample approximates the 

empirical influence function well. Knowing the shape of the influence func-

tion of robust portfolio weights, one can calculate the approximate maxi-

mum change for the given observation. 

In the case of M-portfolios, the influence function of the M-portfolio 

and S-portfolio weights (DeMiguel, Nogales, 2009, pp. 567-568) is propor-

tional to the   function, thus portfolios with the Huber function or LAD
5
 

                                                 
5
 LAD portfolios are M-portfolios with function ( ) | |x x  .  
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portfolios have a bounded influence function, which for the classic portfo-

lios
6
 is unbounded. 

Similarly, for portfolios constructed by means the two-step approach, it 

is possible to demonstrate that their influence function is bounded, provided 

that the influence functions of the location and scale estimators applied    

in determination of optimal weights are bounded as well (Perret-Gentil, 

Victoria-Feser, 2004). 

Unfortunately, decreasing sensitivity to outliers increases sensitivity to 

lesser observations (especially in a small sample). In practice, the share of 

outliers is minor, thus for a rolling portfolio, most observations cause grea-

ter changes in weights for robust portfolios than for classic ones, whereas 

only for a small number of observations (outlying ones), robust portfolios 

are less sensitive than classic portfolios. Hence, as the breakdown point for 

the given estimator increases, its sensitivity for lesser observations grows, 

while its sensitivity to observations which are more distant from the bulk of 

data decreases. Such an effect can be observed, for instance, in the results of 

research conducted by DeMiguel, Nogales (2009), where for portfolios with 

minimum variance and short-selling constraints, S-portfolios had almost 8% 

higher transaction costs. Yet, in the same research, M-portfolios had much 

lower transaction costs than classic portfolios, but their risk was statistically 

significantly higher. The same occurred in research by Welsch, Zhou 

(2007), where some robust estimators (MCD) achieved higher transaction 

cost, while others (I2D-Winsor, F2D-Winsor) – lower, in comparison to 

classic portfolios. 

The following empirical example confirms the aforementioned discus-

sion. In this example we constructed the rolling minimum variance portfo-

lios with no short-selling constraints. We used an empirical data set with 

5 assets from the DAX index: Adidas, Allianz, Bayer, Beiersdorf, BMW. 

We used daily logarithmic returns from the period between 3.01.2003 and 

22.02.2012 and an estimation window length of 120 days. To determine the 

robust portfolio we used the Minimum Covariance Determinant estimator 

with 5% breakdown point, while to determine the classic portfolio we used 

sample covariance matrix. For both estimators we determined the 

)(EIF 1tx as in (4), so we calculated the differences between weights deter-

mined at period t  (on the basis of the last 120 observations), and weights 

determined at period 1t  (on the basis of the last 121 observations). For 

                                                 
6
 Classic portfolios are M-portfolios with function 2( ) ( )x x  . 
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each )(EIF 1tx  we calculated the robust distance of observation 1tx  from 

the sample )',,( 119 ttt xxX  , so we determined )ˆ,ˆ,( 1 Σμx td , where 

)(ˆ tXμ and )(ˆ
tXΣ are robust MCD estimators. Next, we divided )(EIF 1tx  

into two groups: extreme returns – this group contains those )(EIF 1tx  for 

which robust distance )ˆ,ˆ,( 1 Σμx td  is in a set of 5% greatest distances, the 

bulk of data – contains the remaining EIF’s. 

Fig. 1 presents box-plots of EIF’s of MCD portfolios and classic portfo-

lios within two subsets: extreme returns and the bulk of data. It can be seen 

that classic portfolios are more sensitive to extreme returns than robust 

portfolios and, moreover, for robust portfolios we observe no influence of 

the majority of extreme returns. Unfortunately, in the bulk of data we ob-

serve the opposite behavior: robust portfolios are more sensitive to non-

extreme returns than classic portfolios. 

Fig. 1. Boxplots of EIF’s of robust portfolios and classic portfolios 

Source: own elaboration. 

This analysis illustrates the most desirable property of robust portfolios: 

extreme returns have a significantly less influence on robust portfolio 

weights than on classic portfolios. It also illustrates the most undesirable 

property of robust portfolios  non-extreme returns cause greater changes in 

weights for robust portfolios than for classic ones. 
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6. Summary 

This paper presents a review of robust statistics methods applied in the 

portfolio theory and the results of research in this field obtained to date.      

It also covers the most important definitions specifying the properties of 

robust estimators together with their interpretation in the portfolio theory. 

The article presents possible approaches to the construction of robust portfo-

lios by applying the current research results in the field of robust statistics. It 

also describes the method of constructing robust portfolios, where the first 

stage is the selection of the optimization method (one-step or two-step 

approach), which also influences the method of rejecting (decreasing the 

influence) of outliers. The next stage is to choose the method, whereas for 

two-step methods, one can distinguish two groups of methods, differing in 

the properties of selected companies (contamination model), while in each 

group one can find various methods of robust estimation, which also influ-

ence the method of rejecting (decreasing influence of) outliers. Thus, 

the selection of robust estimators results in a different way of identifying 

outlying observations as well as different course of the optimization process. 

This article also presents the undesirable effects of applying robust estima-

tors, such as the increase in transaction costs which can arise from the im-

proper application of estimators to the examined sample, for example by 

choosing an excessively robust estimator with a high breakdown point. 
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