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Abstract
Time analysis is a common approach for testing and detecting methods for the performance analysis
of computer systems. In the article it is shown, that measuring and identifying performances based
on a benchmark is not sufficient for the proper analysis of the computer systems behavior. The
response time of the process is often composed of the execution of many subprocesses or many
paths of execution. Under this assumption, it is presented, that both convolution and deconvolution
methods can be helpful in obtaining time distributions and modeling of complex processes. In such
a modeling the analysis of measurement errors is very important and was taken into consideration.
The example of using the methods in buffering process is also discussed.

1. Introduction

Performance analysis and diagnostics of system
software is a difficult problem even for simple
computer systems. In working systems many
processes run simultaneously and influence each
other, so time analysis is a complex task. The
time analysis includes a number of different
approaches. The most important ones are the
worst-case time analysis, the performance anal-
ysis, and benchmark tests. Each of the meth-
ods has its specific features, advantages, and
disadvantages. However, in the time analysis, a
convolution operation, as a mathematical tool
for analyzing the composition of processes, could
be helpful.

1.1. Worst-case time analysis

The worst-case time analysis usually concerns
industrial systems with strong time constraints
(hard real-time system) [1]. Such systems require
time determinism. The determinism is specified

by values of the response time due to process
requirements. From the perspective of the pro-
cess, exceeding the maximum response time is
unacceptable. Therefore, the primary parame-
ter of evaluation of the system is the maximum
response time. Time analysis is performed on
the basis of pessimistic execution time of specific
tasks in the system. These times are based on the
maximum allowable time specification (time-out)
for hardware and software and algorithms that
determine the performance of a given system
component.

This approach is sufficient to answer the ques-
tion whether the system during the design phase
meets time requirements imposed by the indus-
trial process. However, it does not provide the
information about a typical operation, in partic-
ular, about average processing time of the tasks.
A statistical approach, which provides additional
information on characteristics of a real working
system, is taking into account time distributions
of the tasks.
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In the time analysis, the response times of
the system are measured. As a result of a contin-
uous observation of response times that occur at
specific points of time, a discrete function of re-
sponse times is obtained. By measuring the time
for analysis, the area of analysis can be extended
to analyze other values after recording the data
containing the system response times. It can take
into account not only the maximum values but
also other values. The probability mass function
of response times may be its representation. In
this way the phenomena observed in the mea-
surements can be interpreted statistically using
the probability mass function.

However, the analysis and statistical interpre-
tation of measurement results of the computer
system response time turns out to be far more
complex than the time analysis based on the
expected time limits that result from time deter-
minism.

1.2. Performance analysis

The performance analysis is a good method for
finding errors in the process of creating and run-
ning the software, especially for systems oper-
ating in a continuous mode. The performance
analysis usually involves the measurement of av-
erage values, whilst the time analysis is based
on the analysis of maximum values. The follow-
ing applications of the performance analysis of
computer systems [2] can be distinguished:
– comparison of alternative solutions;
– checking the influence of new functionality

on the system;
– tuning the system;
– monitoring the relative changes in system

performance (acceleration, deceleration);
– detection of errors in creation and develop-

ment of software;
– performance planning for solutions that do

not exist yet.
Monitoring and the performance analysis is a
fundamental detection test used by departments
of quality control in the companies producing
systems operating in a continuous mode. An im-
portant advance in these applications would be
a possibility of transforming the methods of per-

formance measuring of computer systems from a
test of simple detection to the methods of diagno-
sis. The diagnostic tests can detect performance
degradation. However, it is important not only
to detect the degradation, but also to identify
the component (subsystem), which caused the
performance degradation. Diagnostic methods
are intended to identify this element, such as
locating the bottleneck in the system. Note also,
that without the measurement process, it is not
possible to enter any phase of validation or ver-
ification process in the performance evaluation
study, presented in [3].

The performance analysis and time analy-
sis are distinct areas of computing research. In
the performance analysis the essential impor-
tance is attached to the probabilistic analysis
and statistical models. In the time analysis of
real-time systems the main problem is to identify
time determinism in operation of the system.
An open question is whether these areas have
a common part. The method proposed in this
article can be a common part of these two areas,
with particular emphasis on the possibility of
using measurements to diagnose the system. It
may be an extension of measurement methods
towards a diagnosis, in terms of determining the
cause of changes in performance and searching
for items that should be corrected.

1.3. Benchmarks

As mentioned before, in the time analysis of
computer systems the worst-case analysis and
analysis based on average values are normally
used. Benchmarks are widely applied for compar-
ing various properties of systems. On the other
hand, the performance analysis usually measures
average values. Such measurements are insuffi-
cient to identify many important characteristics
of the system, for example the worst-case analy-
sis, and do not provide much information which
measurement data should provide. If there is
degradation of performance, then benchmarks
do not provide the answer to the question about
the reason.

Based on the assumption that correct imple-
mentation works better and more efficiently than
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implementation with functional errors, the proto-
type of the new system can be quickly diagnosed.
Using the performance tests [4] for detecting
errors and verifying the correctness of implemen-
tation requires:
– development of criterion for quantitative eval-

uation of system performance;
– development of measurement methods and

measurements on referencing systems;
– development of model of the system;
– determination of asymptotic limits;
– searching for states of system performance

and methods of identification;
– searching for measures of performance, based

on parameters easily accessible by measure-
ment;

– studying the statistical features of real sys-
tems;

– development of measurement methods for
non-stationary systems.
One of the common approaches [5] applicable

to the testing and debugging of prototype appli-
cations is measuring the performance [6]. Instead
of decomposition of the system and verification
of the particular components, subsystems, or
functions, the performance of the whole system
is examined.

2. Benchmark-type tests

Benchmarks usually measure performance for a
particular workload. Let us analyze how the sys-
tem behaves for such particular load. Symbols in
the description of benchmarks presented here are
used in the descriptions of queuing systems [7].
Let systems x, y, z have the same structure and
consist of the following resources: processor cpu,
disk hdd and network card net. Suppose that for
the systems tests, workload references η1, η2, η3
have been developed for the maximum workload
of the individual elements of the system, i. e.
cpu, hdd and net respectively. The measurement
results indicate a measure of performance, which
is assigned to the system by a benchmark test.
During benchmark testing, when testing a single
element of the system, other elements are also in-
volved. For example, during the test of the drive

hdd, the CPU, DMA and memory operations
also take part.

Workloads η1, η2 and η3 have the following
properties. For fractional ε we choose the work-
load η1, for maximum use of the resource cpu

η1 → U (cpu) = 1− ε (1)
where U (cpu) is resource utilization. Level of re-
source utilization is in the range [0-1]. Then the
following relationship holds between the response
time R of the system and the response timeR(cpu)

of the cpu.
R ≥ R(cpu) (2)

In the test η1 the resource with the maximum
workload is the cpu. The resource cpu is the
bottleneck then, so the system cannot have a
better response time R than the response time
of the most loaded resource. So similarly for the
test η2, where the most loaded resource is hdd.

η2 → U (hdd) = 1− ε (3)
then

R ≥ R(hdd) (4)
For η3 test

η3 → U (net) = 1− ε (5)
and then

R ≥ R(net) (6)
Using a model of the system in which tasks per-
formed by the system are served by resources,
the average system response time R̄, according
to the Little law [8], [9], [10], [11], is

R̄ = N̄

X
− Z̄ (7)

where N̄ is the average number of clients in the
system, X is the throughput, that is the number
of tasks performed per time unit, Z is the average
time (interval) between tasks generated for the
system. Throughput is understood as defined in
queuing theory and is the ratio of processed tasks
during the observation time T . Using operational
research approach we can determine the current
value of X by counting the number of processed
tasks in the system during the observation time
T . Assuming that tasks are executed in series
(not in parallel) and D(i) is working time of the
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resource i, working time D of all resources is
D =

∑
i

(D(i)) (8)

It is typically assumed for the benchmark tests
that realization runs for one client only and there
is no interval between tasks. So Z = 0 and N = 1.
Thus, if there is only one task, this task does not
wait, so the time of execution of the task in all
resources is the response time of the system. So,
if N = 1 then R = D. For each of the systems x,
y and z the same rule applies, so

N = 1→ R(i) = D(i) = B(i)V (i) (9)
where B(i) is the execution time of the task in the
resource i, V (i) is the number of visits (execution)
of the task in the resource i. The working time
of the resource consists of several visits of the
task. In benchmark tests the value B(i) is usually
large because typical tasks are long. Thus the
number of visits V (i) in the resource is reduced.

Assume, that for the workload η1 and the
same number of visits Vη1 in the systems x, y
and z, the system x has the shortest working
time of the cpu resource. Thus the system x has
the best cpu unit.

min (D(cpu)
x , D(cpu)

y , D(cpu)
z ) = D(cpu)

x (10)
Similarly, assume that for the workload η2 and
the same number of visits Vη2

min (D(hdd)
x , D(hdd)

y , D(hdd)
z ) = D(hdd)

y (11)
For the workload η3 and the same number of
visits Vη3

min (D(net)
x , D(net)

y , D(net)
z ) = D(net)

z (12)
Little law [12] and assumptions Z = 0 i N = 1,
usually adopted for benchmarks, show that

R̄ = 1
X

(13)

The following conclusions may be drawn from
the above considerations. For the workload η1
the system x has always the shortest response
time R of all systems x, y and z.

Rx = min (Ri), i ∈ {x, y, z} (14)

The throughput Xx of the system x is
Xx = max(Xi), i ∈ {x, y, z} (15)

For the workload η2:

Ry = min(Ri), i ∈ {x, y, z} and
Xy = max(Xi), i ∈ {x, y, z} (16)

Similarly, for the workload η3:

Rz = min(Ri), i ∈ {x, y, z} and
Xz = max(Xi), i ∈ {x, y, z} (17)

The system with the best cpu always is the best
in the test η1, in which cpu is the most loaded
resource.

The obtained results of the benchmark allow
to determine the arrangement and relationship
between systems x, y and z. For various bench-
marks the measurements as response time R and
throughput X are obtained. If the benchmark is
based on R, then the system is better if it receives
lesser value of the test result. If the benchmark is
based on X, then the system is better if a greater
value follows from the test.

Though the results obtained in this analy-
sis are simple, they show that benchmark tests
reflect only simple dependencies occurring in
the system. In order to stimulate the system in
real-world conditions, for example in test ηj , the
number of clients must be more than one. We
can also expect that the interval between tasks
will be non-zero. Then the relations between V (i)

and B(i) are changed, so
N > 1, Z > 0, V (i)

x,y,z 6= V (η)
x,y,z, B

(i)
x,y,z 6= B(η)

x,y,z

(18)
In such case the formula (9) does not apply and
the formula (7) is valid instead of (13). The con-
clusion is that benchmark tests do not reflect
the complexity of executing tasks in the real
system. They also cannot be used as a measure-
ment method in the validation and projection
phase [3].

More information on the system operation
can be achieved from the deeper analysis of re-
sponse times of the processes. The response time
of the process is the composition of the response
times of its subprocesses. For such an analysis
the operations of convolution and deconvolution
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Figure 1. Histogram z calculated on base histograms of processes x and y for three ranges of values:
minimum, mean, and maximum

performed on histograms of response times are
helpful.

3. The convolution method in the
time analysis of systems

Though convolution is well known method, its
application in analyzing response time character-
istics of particular components of complex system
is a relatively novel approach [13], [14], [15], [16].

In the article it is particularly shown, that the
convolution is relatively easy method to use, but
the deconvolution is very sensitive when using for
time characteristics measured in different times
in independent components.

The presented method of time analysis of a
compound computer system is based on convolu-
tion of two functions representing time-specific
behavior of two subsystems that are parts of that
system [17]. Convolution is considered one of the
most important operations in the field of digital
signal processing. Assume the existence of two
independent subsystems x and y. A composition
of both is a system z, so

z = x+ y (19)
The equation (19) represents also time depen-
dences. It means that response time of system z
is the sum of response times of subsystems x and
y. Under this assumption it can be consequently
stated, that the probability mass function pz of
the response time of system z is equal to the

convolution of probability mass function px and
py of response times of subsystems x and y.

While executing the measurements for time
analysis purposes, it is possible to record the
average and minimum values, beside the max-
imum ones. The simplest case for introducing
the method is when three ranges of values exist:
minimum, mean, and maximum. The maximum
value is collected during the worst-case analysis
of a real-time system. The average and minimum
values can be used in performance analysis. In
addition to evaluation of the ranges, there is a
need to know how often each value occurs. In
the following discussion it is assumed that x and
y are independent random variables, such as:
x ∈ {xmin, x̄, xmax}; y ∈ {ymin, ȳ, ymax} (20)

For each value of the random variable, the prob-
ability of taking a given value can be determined.
Thus, the probabilities that a variable represents
the minimum, mean, and maximum value are
known. The division of x and y into three values
with the same intervals is used to derive the
equations (21 - 23). The example of the con-
volution of two histograms is presented in Fig.
1. The consecutive probabilities of the resulting
histogram pz for convolution shown in Fig. 1
could be calculated by simple formulas:

pzmin = pxminpymin;
pz2 = pxminpy2 + pyminpx2

(21)
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pz3 = pxminpymax + px2py2

+ pxmaxpymin;
pz4 = px2pymax + py2pxmax

(22)

pzmax = pxmaxpymax (23)
The convolution method can be the useful

tool for calculating time probability distributions.
Thus, more information could be obtained than
only minimum, average and maximum values.
Referring to the definition of convolution, e.g.,
in [18], pz is a convolution of px and py.

pz = px ∗ py =
∫ ∞

0
px(τ)py(t− τ)dτ (24)

The generalization of probability distribution pz
for discrete values takes the following form:

pzi =
i∑

j=0
pxjpyi−j (25)

In the following considerations, the discrete coun-
terparts of the continuous functions of probability
distribution are used.

4. A case of compound process

Let us show an example of application of convo-
lution for analyzing a simple process of writing
data. Suppose the system uses the data buffering
mechanism shown in Fig. 2. Buffering is imple-
mented using two possible paths x(1) and x(2).
The first one writes data to the buffer. This path
is realized with probability p1. The second path
writes data to the buffer with t0 delay, due to
waiting for the access to the buffer. This path
is realized with probability 1− p1. These paths
are modeled by two statistical processes with
the exponential response time, shifted relative to
each other at t0 and probabilities: p1 and 1− p1
(Fig. 3a and Fig. 3b).

The two events are complementary. The dis-
tribution of the sum of these events (26) is shown
in Fig. 3c. The write operation y is represented
by the distribution py of response times, shown
in Fig. 4b. It could be written as:

px = p1px
(1) + (1− p1)px(2) (26)

where: px(1) – probability mass function of exe-
cution time x(1) of buffering with delay, px(2) –
probability mass function of execution time x(2)

of buffering without delay, px – probability mass
function as result of compound execution time
x(1) and x(2).

Thus
pz = px ∗ py (27)

where: py – probability mass function of time
execution of write operation, pz – probability
mass function of write operation with buffering.

The distribution of the sum of events (Fig.
4a) in convolution with the py distribution (Fig.
4b) gives the resulting distribution (Fig. 4c). The
resulting distribution can be observed by mea-
suring the system z response time for write oper-
ations. Such a specific characteristic (dual peek)
can be detected in practice [19]. So, the observed
distribution can be analyzed in a better way than
while obtaining only minimum, average and max-
imum values. The characteristics is explained as
a convolution of component processes [20].

Changing the time of waiting for the access to
the buffer represented by parameter t0 and chang-
ing the probability p1 of this waiting, change the
shape of the resulting distribution. Resulting
distributions for p1 = 0.5 and various t0 are
presented in Fig. 5.

Depending on the parameters of the model,
different characteristics of system response time
distributions can be obtained. The distributions
can be in the form of one peek or even separated
dual peeks in some cases. So the measured practi-
cal results can vary depending on the behavior of
the process. Distributions for t0 = 55 and various
p1 are presented in Fig. 6.

The advantage of the method based on convo-
lution over other methods is the opportunity to
observe the entire time probability distribution
instead of selected values. Another advantage
is the ability of simulation of behavior of the
system for the case when some component or
its time characteristic has to be changed. Then,
by substituting the time distribution only for
this component and then making the convolu-
tion with distributions of other components, the
time distribution for the whole system can be
calculated.
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Figure 2. The example of system for writing with buffering

    

 

a) b) c) 

Figure 3. Distributions of response time for an example of a write system. t0 = 55, p1 = 0.25

   

 

a) b) c) 

Figure 4. Resulting distribution pz as convolution of distribution px (’if’ of events x(1) and x(2)) with the
distribution py

5. Analysis of measurement errors

In order to produce a good method of system
analysis there is a necessity to consider that
errors may occur in measurements. It may be
caused by either inaccuracy of measurement or
impossibility to measure all subsystems in the
same time, so the measurements may be col-
lected in different times. The result is the time
inconsistency errors of consecutive measurement

processes. Analysis of influence of measurement
errors is important particularly in the opera-
tion of deconvolution. This process is not simple
and clear because of sensitivity of deconvolution
method. Convolution has the features as sep-
aration, commutativity, and associativity. The
proofs are in [17].

The goal of deconvolution is to calculate time
probability distribution for component y knowing
time probability distributions of system z and
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Figure 5. Distribution pz for p1 = 0, 5 a) t0 = 40 b) t0 = 60 c) t0 = 80 d) t0 = 140
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Figure 6. Distribution of pz for t0 = 0.5 a) p1 = 0.1 b) p1 = 0.25 c) p1 = 0.5 d) p1 = 0.6
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component x. If the form of an error in mea-
surements zm and xm is known, then the result
of equation (29) is identical to the solution of
equation (28), under the condition that x and y
are not distorted.

y = z − x (28)
y = zm − xm (29)

While measuring, a real response time, the zm
value is measured instead of z. It contains mea-
surement errors ex and ey both for x and y, so

zm = x+ ex + y + ey (30)
The total measurements error e consists of errors
related to constituent processes (31).

e = ex + ey (31)
Based on (30) and considering commutativity
feature, the measured value zm is:

zm = x+ y + e (32)
To determine the value of y the two separated
measurements have to be performed. During the
one measurement the value xm is collected (33):

xm = x+ ex (33)
During another measurement the value zm is
collected (34):

z(error)
m = x(error) + y (34)

There are errors acquired during the measure-
ment of zm. The x(error) is a response time from
sub-system x during zm measurement. These
errors are immeasurable so instead of xm the
measured value is marked as x(error) in the case.
It is also assumed that the values are similar
(35).

x(error) ≈ xm (35)
The differences in the above values result from
the facts that in the measurement of xm the error
ey does not exist and also consecutive measure-
ments of x are taken in different times. Thus,
the assumption of the method while obtaining
y is using xm instead of x(error) in (34). From
(34) the two mechanisms are considered. The
first mechanism of occurring errors and the error
analysis is done below in the form of (36).

y(error)
zm = z(error)

m − x (36)
Formula (36) describes a situation in which the
measurement error is introduced, because during

the real system observation (z) the subsystem
x behaves like xm. Some environmental distur-
bances interact with the system x which do not
exist during the observation of the isolated sub-
system x. This disturbed subsystem is denoted
as xm. Unfortunately, the disturbances are not
directly measurable. For the mean value the equa-
tions (37-40) represent the error introduced dur-
ing the measurement.

ȳ(error)
zm = z̄(error)

m − x̄ (37)

ȳ(error)
zm = x̄m + ȳ − x̄ (38)

ȳ(error)
zm = x̄+ e+ ȳ − x̄ (39)

ȳ(error)
zm = ȳ + e (40)

The result from (40) shows that measured mean
value from y is charged with error e. If the cal-
culations are not executed for the mean but for
the probability mass functions pzm and px, then
the result is as below:

py(error)
zm = pz(error)

m
/

deconv px (41)

py(error)
zm = (pxm ∗ py) /

deconv px (42)

py(error)
zm = (px ∗ pe ∗ py) /

deconv px (43)
The equation (41) shows how the wanted py
distribution can be obtained. The distribution
found in such a way is laden by error pe convolved
with the true distribution py (44):

py(error)
zm = py ∗ pe (44)

The second mechanism of occurring errors during
the measurements, other than shown in equation
(37), is considered below:

y(error)
xm = z − xm (45)

For the above formula (45) and during observa-
tion of the real system z the data is not affected
by measurement errors derived from the sub-
system x. Unfortunately, the interferences occur
during the observation of the subsystem x and
produce xm. For the mean value the equations
(46-48) represent error (45), introduced during
the measurement.

ȳ(error)
xm = z̄ − x̄m (46)

ȳ(error)
xm = x̄+ ȳ − x̄− e (47)
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Figure 7. Example of the error influence: px, py, and pz on the left, pz, px(error) and deconvolved py on the
right

ȳ(error)
xm = ȳ − e (48)

The equations (45) and (36) differ only in arith-
metic operation in the equations (40) and (48).
From the arithmetic point of view the mean value
calculations (37-40, 46-48) are fully feasible for
the any set of measurement data. Unfortunately,
the situation changes radically for the applica-
tion of deconvolution. The usage of inconsistent
data i.e., collected from the consecutive mea-
surement series taken at different times is not
possible in a mathematically obvious way. The
reason is high error sensitivity of the deconvolu-
tion operation. In order to perform the system
decomposition (28), the data collected during
the different ranges in the time of system activ-
ity can be used only with full awareness of the
influence of the described error. Fig. 7 illustrates
the phenomenon of deconvolution sensitivity. The
example is based on the convolution of signals px
and py and then the deconvolution of received pz
and disturbed px marked as px(error). px(error) is
slightly changed (near the value 2) in comparison
to the original px. It can be seen, that small dis-
turbance (error) of time probability distribution
of component x causes very large disturbance in

resulting probability distribution after deconvo-
lution. For a probability mass functions pz and
pxm, while using deconvolution, it is impossible
to take into account the type of error (45), as
shown in equations (49, 50).

py(error)
xm = pz

/
deconv pxm (49)

py(error)
xm = (px ∗ py) /

deconv (px?+?pe) (50)
Equation (50) by the usage of the operator ’?+?’
presents the mathematical problem which results
in non-resistance of the methods of deconvolu-
tion to the error type (45). If pe is not convolved
with px, then deconvolution made on the basis
of the polynomial division method produces a
large computational instability.

The presented considerations (37-50) show
two different phenomena of errors. For the mean
value the equations (37-40) compared to (46-48)
differ only in the value of the error sign. Consider-
ing only the average values, the distinction of the
mechanisms of error generation is unnecessary.
However, it differs in the case of deconvolution of
probability mass function. In the case (43-44) the
considerations are fully mathematically correct.
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The error values are added (convolved) (44) to

the value of probability mass function py(error)
zm .

More precisely: added errors are the values of
probability mass function pe. Unfortunately, us-
ing the deconvolution method is mathematically
incorrect for the case (49-50). This is because
the correctness of the physical implementation
of measurement is not met. In the measuring
method assumes that the measurements of the
systems x and z are taken at different times.
Thus the circumstances where the time signals
are measured in physical conditions, in which the
convolution of probability mass functions of sig-
nals exist, do not occur. It can be only supposed
that for the separated measurements z1..zl and
x1..xk, and for the stable running conditions, the
probability mass function px was the same in
both measurements. Unfortunately, if px is chang-
ing during the measurement z1..zl in relation to
the measurement x1..xk, then the assumptions
are not met and deconvolution method fails. In
the calculation of the mean value (46-48) this
problem does not occur.

6. Conclusions

While collecting measurement data, i.e., the re-
sponse times, one does not receive only one state
of the system, but a composition. Complex sys-
tems are non-linear, their analysis cannot be
based on the simple method of measurement
and analysis. The considerations conducted here
show that measurements of the execution time
of processes have much more complex statistical
description than for example a simple description
coming from benchmark tests. A statistical de-
scription delivers a dynamic character in contrary
to a fixed value obtained in a given moment of
system activity. The model of a queuing system,
with appropriately selected assumptions, and ig-
noring insignificant details may, but may not,
simulate basic rules of the system to be modeled.

The system usually works as many processes
executed through many paths. The convolution
method could be a useful tool for the analysis
of behavior of complex processes and their time

analysis, in a statistical meaning. Response times
of the system, for many operations, sometimes
give characteristic forms of probability mass func-
tions that can be explained as the convolution
of response times of subprocesses. Using the pre-
sented method, the entire time probability dis-
tributions of the system can be obtained. The
method could also be used to simulate changes in
any component of the system by simply modify-
ing its probability mass function and then calcu-
lating the convolution. However, using modeling
and convolution for diagnostics of a system re-
quires experience. The analysis method depends
heavily on the recorded measurement values. In
such a modeling also measurement errors must
be considered, particularly in deconvolution pro-
cess. The deconvolution method may be also
considered as a tool for such an analysis i.e., for
obtaining time distribution of the component of
the system for which the measurement cannot
be collected. However, as shown above, deconvo-
lution is a sensitive method and difficult for a
practical application.
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