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This article concerns a key topic in the field of visual object recognition – the use of features.
Object recognition algorithms typically rely on a fixed vector of pre-selected features extracted
from 2D or 3D scenes, which are then analyzed with various classification techniques. On the other
hand, the activation of particular features in biological vision systems is hierarchical and data-
driven. To achieve a deeper understanding of the subject, we have introduced several mathematical
tools to estimate multiple RGB-D features’ relevance for different object recognition tasks and
conducted statistical experiments involving our database of high quality 3D point clouds. From
the thorough analysis of the obtained results we draw conclusions that may be useful to design
better, more adaptive object recognition algorithms.
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1. Introduction

The entirety of operations performed by any real-life visual object recognition method
can be regarded as the extreme reduction of a vast amount of input data, typically com-
prising up to several megabytes into a very limited number of values, which represent
object positions or identities. The aim of such algorithms is, of course, to obtain accu-
rate and useful information concerning the objects whose image is entangled in the ana-
lyzed data. We can differentiate roughly at least two steps in most recognition
algorithms: feature extraction and object classification. This work focuses mostly on
the former, analyzing various kinds of features, methods to measure their usefulness
and the process of feature choice by a vision system designer.

Feature extraction usually consists of more than one stage. After low-level features
are calculated over the input data, we face the difficult task of effective representation
of regions (i.e., point clouds, point clusters or image segments) which possibly contain
known objects as vectors of limited, preferably low dimensionality. Such representa-
tion is necessary in order to classify objects with known methods. However, several



560 B. HARASYMOWICZ-BOGGIO et al.

difficulties arise: an object view captured by a 2D or 3D camera, apart from often being
very difficult to automatically extract from the environment, as stated before, com-
prises a vast amount of data, consisting of possibly thousands of points. For these points
we may calculate many kinds of local or inter-point features regarded as simple feature
vectors. Several methods can be used to simplify these clusters of features – the most
common approach is to extract fixed-length vectors of features that, ideally, are af-
fected primarily by the object’s identity (or semantic class) and are invariant to the
possible changes of irrelevant properties, such as the object’s position on the scene. Mul-
tiple methods of this kind have been developed in 2D and 3D computer vision [1–7].
A more sophisticated, recent technique to simplify an image or point cloud region is
to apply functions that describe its features without quantization [8–10].

An alternative, worth mentioning approach to object recognition (more commonly
used in point cloud registration) is to use algorithms that try to geometrically match
a relatively unsimplified object view to a model of a known object class [11–13] and
measure the quality of matching in order to identify the object. However, this approach
is significantly less popular than feature-based recognition, as registration is effective
only for rigid, almost identical object instances and is computationally very demand-
ing. Therefore, in this paper we focus on feature-based methods.

The common approach in computer recognition systems consists in extracting such
features from the selected image or point cloud regions (segments) and reducing them
to a single point in the chosen multi-dimensional feature space. However, it is intui-
tively understandable that different features can be better than others. In this paper we
discuss and verify methods of estimating the usefulness of particular features and sim-
ilarity metrics applied for tasks of 3D recognition of different object classes. Our focus
lies on indoor objects common to the human environment, which could have a practical
meaning in indoor robotics and intelligent building systems.

2. Features
For the presented research a set of easily interpretable local and global object features
has been selected. Let us first describe the five chosen local features, which can be
calculated at each point of the object surface. The first used feature is the angular sur-
face inclination, which represents the magnitude of the angle between the surface nor-
mal vector and a global downwards-pointing vector (the gravitational acceleration
which was measured using the built-in Kinect’s accelerometer). This is described in
the following equation: 

(1)

where  is the surface normal vector at point p and  is the normalized gravitational
acceleration vector. This feature is invariant to translation of the object and to rotation
around any vertical axis. Despite not being invariant in the general case (i.e., for rota-
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tions around non-vertical axes), this simple feature proves highly useful for recognition
in indoor environments, as many objects have a well-defined base.

The next described geometric feature is surface convexity, which is a measure of
outward surface curvature at a given point. If the surface is locally flat, the value of
surface convexity is zero and if it is concave, the convexity is negative. In order to
mathematically define this feature, let us consider the local coordinate system attached
to p (in which p = [0, 0, 0]T and where = [0, 0, 1]T is the surface normal vector at p.
Using this coordinate system, we introduce the auxiliary quantity of surface convexity
at p relative to point pi defined with the following equation: 

(2)

where:   and ^ is the vector normalization operator and

 is the surface normal vector at point pi. Using this quantity, we can define surface

convexity at p as:

(3)

where Np(r1, r2) = Np(r1)/Np(r2), r1 > r2, is the set-theoretic difference of two neigh-
bourhoods of point p having radii of magnitude r1 and r2. The experimentally chosen
values of these radii are correspondingly 10 and 8 mm; K is the cardinality of Np(r1, r2).

Surface convexity informs us only about the mean positive curvature of a surface
nearby the given point. In order to capture more information about the shape of this
curvature, we can use the concept of anisotropy of convexity, which measures the max-
imum spread of relative surface convexity in the proximity of the point of interest. We
have defined this quantity with the following equation:

(4)

Therefore anisotropy is sensitive to the directionality of convexity – its value will
be minimal both for a flat and a spherical surface, but higher for cylindrical, conical
or angular surfaces. The information captured in the values of surface convexity and
anisotropy is similar to the principal curvatures k1, k2. However, in our opinion,
the interpretation of the proposed features is more intuitive. For convenience we have
implemented modified versions of the previously described surface convexity and
anisotropy features, which significantly enhance the differentiability for slightly
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curved surfaces. In the following sections the terms surface convexity and anisotropy
of convexity will refer to these practically modified versions of the original formulas.
The transformed features present as follows:

(5)

(6)

Color features are widely used in 2D object recognition. In this work we decided
to consider the color hue H and saturation S extracted from the HSV color representa-
tion, as these features are known to be less sensitive to changing lighting conditions
than common RGB colors. As the used Kinect sensor has separate optical systems for
color and depth images, color registration inaccuracy is quite common, which could
affect the experimental results. However, we consider the H and S, features in the same
manner as the geometric features.

In order to apply classic methods of comparison for any feature contained within
different object clusters, we need to reduce the list of this feature’s values given at each
point to a limited, classifiable vector. To do this, we discretize the feature space and
build histograms. Beside a simple 1D histogram for each of the 5 presented features,
we decided also to consider histograms of pairs of these features, which can be regarded
as 2D feature vectors calculated at each point. Accordingly, for these vectors we build
2D histograms. We do not consider higher dimensionality features, as our aim is to
keep our experimental results easy to interpret. From all the 10 possible 2D feature
combinations, we consider only 4, which we believe to be the most meaningful: incli-
nation–convexity, inclination–anisotropy, convexity–anisotropy, and hue–saturation.

In addition to features obtained for each point of the scene, we decided to use shape
descriptors calculated for whole object clusters (thus, global), based on Ref. [14].
These features are based on random sample vectors of points and are defined as fol-
lows: D2 is a histogram of distances between two random points belonging to the clus-
ter of interest, D3 is a histogram of fields of triangles built on three random points and
D4 is a histogram of volume of tetrahedrons built on four random cluster points.
An important advantage of these descriptors is, besides capturing global shape prop-
erties, their tolerance to noise. Inaccurate, undulated surface measurement highly dis-
torts such features as surface convexity or its anisotropy, but not the global shape
descriptors.

3. Similarity and uniqueness
Since we have reduced the information given in each object view to a set of histogram
features, we can explore several methods to measure similarity between these views.

c
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For each histogram feature, we can define the similarity between histograms x and y
corresponding to different object views using, among others, the following metrics:

– Manhattan similarity

(7)

where  means the L1 norm of the vector M;
– Euclidean similarity:

(8)

where  means the L2 norm of the vector M;
– Pearson’s correlation:

(9)

– Bhattacharyya’s similarity [15]:

(10)

We also introduce our own custom similarity metric, which is an attempt to correct
the inconvenient properties of Pearson’s correlation. We learned that some visible, but
subtle patterns present in a histogram may carry important information which is ig-
nored by Pearson’s correlation. The proposed similarity is based on Pearson’s corre-
lation but additionally considers outliers in relative values of corresponding bins, so
it is affected by details disregarded by Pearson correlation. We named this similarity
detail susceptible correlation (DSC). To calculate the proposed correlation, we first
perform a Gaussian blur and shift the input histograms, which improves robustness to
noise. We have chosen to set the Gaussian blur value to σ = 0.7 in each dimension and
the shift constant to Cshift = 0.1: 

(11a)

(11b)

Then we calculate the relative altitude of bins:

(12)
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where min and max denote element-wise operations on corresponding vectors’ values.
Next we calculate the number of outliers and huge outliers:

(13)

(14)

where the function NT (x, T ) returns the number of elements of x below threshold T.
The threshold values are set to Thigh = 0.7 and Tlow = 0.4.

Then we define the Pearson-based factor of DSC as

(15)

Finally we define DSC similarity as:

(16)

The similarity measures presented in this section do not show directly the useful-
ness of the analyzed histogram features to tell different objects classes and their in-
stances apart. In order to measure these qualities, we have proposed several relative
“uniqueness” magnitudes, comprising similarities of multiple object views. In order
to calculate these quantities from a database of object views, let us organize the list of
all the feature histograms as a 2D array V, consisting of N class vectors Ci ,  i = 1, ..., N,
each having Mi views:

(17)

We first define the mean class similarity matrix for a given measure of similarity S
for each histogram feature f as

(18)

We then calculate the single-column class uniqueness matrix by applying a Mahalanobis
-like distance function

(19)

where σi is the standard deviation of similarity calculated for all the available view
pairs which belong to class i. This equation gives us a measure of the capacity of
the analyzed feature to tell each object class apart from other classes. If this capacity
is high, we expect the internal mean class similarity to be significantly higher than
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the mean similarity to other classes. The choice to apply variance normalization is
motivated by the fact that different features and similarity metrics may present different
scales and internal class variances.

If the analyzed database contains many object classes, it would be also convenient
to have a single value to measure each feature’s overall usefulness (e.g., for applica-
tions of limited computational resources). Instead of just taking the mean values of
the uniqueness matrices, we introduce the class uniqueness score χ defined with the
following equation:

(20)

The purpose of using this function is to avoid overestimation of a feature’s utility
resulting from individual high uniqueness values. If we hypothesized a Gaussian dis-
tribution of similarity values, even large differences in high uniqueness are negligible,
as high uniqueness indicates that all the views could be correctly classified using a giv-
en feature. The derivative of the averaged functions in the χ scores is 1 at ui = 0 and
remains approximately linear for small uniqueness values. Therefore, the proposed
scores can be regarded as mean “useful” uniqueness.

Finally, we propose a tool for detecting correlations between similarities of features
themselves, which would be helpful to avoid using redundant features (Table 1). Con-
sider having two features with high uniqueness scores, but for which we suspect that
both carry similar information. To check this, we can calculate Pearson’s correlation

χ 2
ui

2
--------- 
 atan=

T a b l e 1. Class uniqueness scores χ overall uniqueness of class histograms for all features and
similarity metrics combinations.

I – inclination, C – surface convexity, A – anisotropy of convexity, H – hue, S – saturation, I-C –
inclination-convexity, I-A – inclination-anisotropy, C-A – convexity-anisotropy, H-S – hue-saturation.

Pearson Bhattacharyya DSC L1 L2

I 2.18 1.96 1.99 2.01 1.95

C 2.37 2.02 2.22 2.09 2.02

A 2.09 1.74 1.81 1.77 1.76

H 1.33 1.12 1.12 1.15 1.15

S 1.37 1.30 1.23 1.29 1.20

I-C 2.13 1.97 2.24 2.00 1.89

I-A 2.10 1.97 2.20 2.00 1.85

C-A 2.26 2.01 2.33 2.00 1.96

H-S 1.33 1.25 1.40 1.27 1.21

D2 2.42 1.99 2.52 2.04 1.97

D3 2.35 1.77 2.38 1.83 1.86

D4 2.14 1.66 2.62 1.71 1.68
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of similarity values (i.e., Pearson correlation, DSC, etc.) of all histogram pairs – which
we called hypercorrelation. Let’s denote the vector of similarities of all histogram pairs
calculated for one feature as ϕ1 and the corresponding vector calculated for another
feature as ϕ2. We define hypercorrelation as

(21)

We can obtain additional information by drawing a 2D plot of ϕ2(ϕ1) points. On
such plot we can observe some dependences between features which are difficult to
measure, such as nonlinear functional dependences.

4. Experiments

In the carried experiment we captured 136 scenes containing 160 manually segmented
object views. The objects are organized in 14 semantic classes. For the majority of the
classes we included 4 different physical instances, each captured in several views. The
scenes of the database have been taken using a Kinect sensor. The proposed database
contains objects assigned to the following classes: apple, book, bottle, box, cornflakes,
cup, deodorant, ironer, ketchup bottle, mouse, saucer, shoe, stamp, stapler. The sample
objects are presented in Fig. 1.

Using this database we have calculated the feature histograms: inclination, surface
convexity, anisotropy of convexity, hue, saturation, inclination-convexity, inclination
-anisotropy, convexity-anisotropy, hue-saturation, D2, D3, D4. To check which fea-
tures and similarity measures can be useful in general, we calculated the mean instance
self-similarity across the available scenes (a complete table of results is not presented

ζ SP ϕ1 ϕ2,( )=

Fig. 1. Sample objects used in the experiments.
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in this paper, but we draw conclusions using the full data). For some classes, such as
ketchup bottle or ironer, the mean instance similarity shows the influence of object po-
sition (a ketchup bottle often stands upside down, an ironer has hot and cool bases).
Shape distribution descriptors have the highest self-similarity values because they cap-
ture global shape properties and thus are more robust to cluttering on the object surface.
Low self-similarity values for hue and saturation are the result of sensibility of these
features to lighting variations and of the imperfect color registration of the Kinect sen-
sor. Mean instance self-similarity for inclination is lower than for intrinsic features,
as several objects included in the database have multiple bases.

DSC and Pearson’s correlation achieved the best scores for different classes.
However, for object recognition applications, obviously, it is not required to use
the same similarity measure for all features. Note that Pearson’s correlation achieves
the best results for the first 5 features (all the simple 1D feature histograms), while
DSC is the most suitable for the last 9 (2D histograms and shape distributions). Other
similarity measures reached significantly lower results. We can see that the similarity
metrics that perform best at particular features have also high corresponding instance
self-similarities. Color-based features have significantly lower scores than the rest of
the features, from which we can conclude that hue, saturation and their 2D combination
are less reliable in 3D object recognition than geometric features. The rest of the fea-
tures achieve relatively good scores between 2 and 2.7 (where D4 had the highest val-
ue). Having only overall scores we are not able to draw detailed conclusions.

Based on these results, in Table 1 we present the class uniqueness U defined in
Eq. (19) calculated for each object class using the best similarity metrics. As motivated
above, we chose Pearson’s correlation for the first 5 features and DSC for the last 9.

The results corroborate the main thesis of this article – some features are better than
others for particular objects, but there is no clear constant space of features that is best
for every object class. Looking at the uniqueness of D4, which had the highest overall
uniqueness score, we can see that even though for many object classes this feature per-
forms unquestionably best, there are several classes where its uniqueness is very low.
The reasons for this are case-specific: for example, slight curvatures of the almost flat
saucers had a high impact on the volume enclosed by their surfaces, but little impact
on the surfaces themselves, thus, D3 uniqueness was very high, but D4 uniqueness was
almost insignificant. Both of these features, however, were ineffective for staplers, as
the flat part of the used staplers was often imperfectly segmented from the flat table
surface.

Despite a moderate overall score, surface convexity was the feature which most
consistently detected class similarities for all semantic classes. None of the global
geometric features (D2, D3, D4) was useful for measuring similarities of boxes, as
the position of the cover strongly changed their global shape properties. The distribu-
tion of local convexity was also affected, but was stable enough to maintain signifi-
cantly higher similarities between boxes than between boxes and other objects. As
expected, inclination performed well for all rigid objects with a well-defined shape and
base. Color features were mostly useful for detecting apples (of the same kind), ketchup
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bottles (as they were all red) and cornflakes (as there was only one instance of this
class used in the experiment). 2D histograms in some cases performed better than both
of their 1D components, but more often inherited their disadvantages and had an in-
creased sensibility to noise (as confirmed by Table 2). Therefore there is no clear ad-
vantage of using 2D over 1D histograms.

In the same manner we analyze the values of instance uniqueness. The values are
omitted in this paper but it can be stated that they tend to be lower than for class unique-
ness, which suggests that the differences between semantic classes are easier to detect
than differences between instances of the same class. The shape distribution descrip-
tors D2, D3, D4 performed well for instances, but were insufficient for differentiation
in all cases. The features with high class uniqueness are not necessarily the same that
have high instance uniqueness – these sets of features can be almost disjunctive. This
is intuitively understandable, as some features may be irrelevant for a given class, but
stable for a given instance (e.g., color hue for cups and shoes or D4 for saucers).

Finally, we measured hypercorrelation ζ  described in Eq. (21) and plotted the
corresponding 2D scopes of similarity points with Person’s correlation and DSC used
as similarity metrics. The results are presented in Table 3. These scores for specific
pairs of features are not significantly different for the considered similarity measures.
The highest results are in line with our expectations: there is a strong dependence
between 2D histograms and their 1D components and between 2D histograms which
have a common feature.

More interesting conclusions can be drawn from hypercorrelation values between
all D2, D3, D4 shape distribution features. D2 seems to be more independent from D3
and D4 than these last two features between themselves. Low hypercorrelation values
can be found between local and global features, and also between color features and
any other features. Two features (inclination-convexity and inclination-anisotropy) are
strongly correlated and there seems to be no need to use both in an object recognition
system. Comparing this finding with the uniqueness results shown before, we can con-
clude that it is advisable to use inclination-convexity over inclination-anisotropy, as
it is less cluttered and gives consistently higher uniqueness.

5. Conclusions

In this paper we have considered several known similarity metrics to compare the fea-
ture histograms extracted from point clouds and also introduced our own metric detail
susceptible correlation (DSC). DSC turned out to achieve the highest overall differen-
tiation capacity (i.e., uniqueness scores) both for semantic classes and instances. How-
ever, for specific features different metrics performed best. Furthermore, we proposed
a method to detect correlations of the information carried by different features by meas-
uring the correlation between values of feature histograms similarity (or correlation),
which we called hypercorrelation. This quantity can be used to predict if the inclusion
of specific features in an object recognition system will add new information (and pos-
sibly improve performance). As a final conclusion we would like to emphasize the po-
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tential great benefits of developing more adaptive, nature-inspired computer vision
methods, which, instead of relying on a fixed feature space and applying sophisticated
classifiers, are able to choose (even autonomously) the most convenient features for
a specific task.
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