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An analytical formula for the multi-Gaussian Schell model is derived for the beam propagating in
a uniaxial crystal orthogonal to the optical axis. The propagation properties of multi-Gaussian
Schell model beams in a uniaxial crystal orthogonal to the optical axis is investigated by using the
analytical formula. Some results are illustrated by numerical examples related to the propagation
properties of multi-Gaussian Schell model beams. It is found that the propagation properties of
the multi-Gaussian Schell model beams are very different from the propagation properties in the
free space. They are closely related to the initial coherence and the ratio of the extraordinary and
ordinary refractive indices. The results provide a way for studying the propagation properties of
the multi-Gaussian Schell model beams in the uniaxial crystal orthogonal to the optical axis.
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1. Introduction

In recent years, the optical beams with flat intensity, called flat-topped beams, attracted
much attention because of their wide applications in free-space optical communica-
tions, inertial confinement fusion, material thermal processing, nonlinear optics and
electron acceleration [1–8]. At the same time, the super-Gaussian beam, flattened
Gaussian beam, flat-topped beam and flat-topped multi-Gaussian beam have been used
as theoretical models to describe the flat-topped beam [9–12]. The propagation prop-
erties of various flat-topped beams in different optical systems, such as free-space, parax-
ial optical system and turbulent atmosphere have been studied in detail [1, 4, 9–20].
The flat-topped beams were extended to the partially coherent case due to wide appli-
cation of the partially coherent beams. BORGHI and SANTARSIERO studied the model de-
composition of partially coherent flat-topped beams [21]. YAN ZHANG et al. investigated
the spectrum properties of a partially coherent flat-topped beam in dispersive and gain
media [22]. ALAVINEJAD studied the intensity and spectral properties of partially coherent
flat-topped beams in turbulent atmosphere [23, 24]. BAYKAL and EYYUBOĞLU studied
the scintillations of an incoherent flat-topped Gaussian beam in turbulence [25]. 
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Due to wide application in various fields of the flatted-topped beam, there are many
methods which can be used to generate the flatted-topped beam. In 1999, XU GUANG

HUANG et al. used a flat-top beam shaper which was fabricated by laser-assisted
chemical etching to obtain the flat-top beam [26]. In 2003, MILER et al. introduced
a method of using the holographic Gaussian gratings to transform the Gaussian beams
into super-Gaussian beams of the fourth degree [27]. In 2007, TARALLO et al. tested
the Fabry–Pérot resonator to achieve the flat top beam shape [28]. In 2009, LITVIN and
FORBES used two resonator systems of intra-cavity for generating flat-top-like beams [29].
The spatial light modulator was also used to generate the flat-top beam by HAOTONG

MA et al. in 2010 [30]. More recently, FEI WANG and YANGJIAN CAI reported the exper-
imental generation of a partially coherent flat-topped beam [31]. SAHIN and KOROTKOVA

introduced a beam model named the multi-Gaussian Schell model (MGSM) beam [32];
it can generate the flat beams at far field through propagating in free space and in some
linear random media [33]. Furthermore JI CANG et al. introduced the propagation
properties of the MGSM beams passing through the atmospheric turbulence [34].

On the other hand, in 1990 SIEGMAN introduced the propagation factor (also known
as M 2-factor) which is a particularly important property of an optical laser beam, and
is regarded as a beam quality factor in many practical applications [35]. In 1991, GORI

et al. extended the definition of M 2-factor from the coherent beam to the partially
coherent beam [36]. Since then, the M 2-factor of the partially coherent beam has been
widely studied [37–39]. The results show that the M 2-factor of a partially coherent
beam depends on its beam profile and initial spatial coherence. Therefore, we can con-
trol the M 2-factor of a partially coherent beam by choosing a suitable beam profile and
initial spatial coherence. In this paper, we investigate the behavior of the MGSM sourc-
es during the propagation through a uniaxial crystal orthogonal to the optical axis.
Based on the Huygens–Fresnel integral and the Winger distribution function (WDF),
the analytical expression for the spectral density, the degree of coherence, the propa-
gation factor, the effective radius of curvature and the Rayleigh range of MGSM beams
in uniaxial crystals are derived.

2. Theory

The geometry of the propagation of a laser beam in a uniaxial crystal orthogonal to
the optical axis is shown in Fig. 1. We assume that a MGSM beam, which is polarized
in the x-direction, is incident on a uniaxial crystal at the plane z = 0. The optical axis
of the crystal coincides with the x-axis, and the dielectric tensor of the crystal can be
expressed as 

(1)

where no and ne are the ordinary and extraordinary refractive indices, respectively. 
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The most general form for any Schell-type cross-spectral density (CSD) of a ran-
dom field at the planar source surface is 

(2)

(3)

(4)

where r1 and r2 are two-dimensional position vectors, w is the angular frequency,
S (0) is the spectral density, σ  is the rms width of the source, and μ (0) is the spectral

degree of coherence of the source,  is the normalization

factor,  stand for binomial coefficients, and δ  is the rms correlation width. One

can get the CSD by using the Eqs. (2)–(4) as follows:

(5)

In this paper, we consider the MGSM beam propagating through a uniaxial crystal
orthogonal to the optical axis. Within the framework of paraxial propagation, the re-
lationship between the input and output transverse electric fields in the uniaxial crystal
are as follows:

(6)

Fig. 1. Geometry of the MGSM beam propagates in a uniaxial crystal orthogonal to the optical axis x.
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(7)

(8)

Substituting Eq. (5) into Eqs. (6)–(8), one can obtain

(9)

After the integral we get the CSD of the MGSM in the uniaxial crystal.

(10)

The m-th term in the sum (5) can be evaluated in the same manner, we treat  as
δm, δm = , and with  and 
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3. Evolution properties of MGSM beams in a uniaxial crystal 

In this section, the evolution properties of multi-Gaussian Schell model beams prop-
agating in a uniaxial crystal orthogonal to the optical axis are studied based on the
cross-spectral density formulae derived above. 

Figure 2 shows the contours and the corresponding cross-line of a MGSM beam prop-
agating in free space at several propagation distances and several values of index M.
The other parameters are k = 2π/λ, σ = 10 mm, δ = 1 mm, λ = 632 nm and zR =
= 2πσ 2/λ. One can find that in free space the intensity distribution of the MGSM keeps
the Gaussian distribution at a small propagation distance from Fig. 2. When the prop-

Fig. 2. The intensity distribution of a MGSM beam in free space at several propagation distances z and
several values of the index M.
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agation distance increases, the intensity distribution becomes flat-topped, and the beam
spot becomes flatter with the increase in the index M.

For the convenience of comparison, the corresponding results of the MGSM in uni-
axial crystals are shown in Fig. 3. Figure 3 shows the CSD of the MGSM beam at
the ratio of ne /no = 1.5 in uniaxial crystals. One finds that in the near fields the CSD
are similar to those in free space, but these properties become increasingly obvious as
the propagation distance increases due to the anisotropic affection of the crystals.
When the MGSM beams pass through the crystal, the beam spot of a MGSM beam

Fig. 3. The intensity distribution of a MGSM beam in a uniaxial crystal with ne /no = 1.5 at several
propagation distances z and several values of the index M.
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becomes a quasi-elliptical Gaussian beam. Furthermore as the value of M increases,
the spot becomes more elliptical. Therefore, one can get the elliptically flat-topped
beam at far fields.

The normalized intensity contour graph of a MGSM beam in uniaxial crystals
orthogonal to the optical axis at z = zR for different ratios of ne /no and M is shown in
Fig. 4. It is clear that the ratio of ne /no affects the far field intensity distribution strong-
ly. The beam spots in y-direction of the MGSM become more elliptical as increases
the value of M and decreases the ratio ne /no with ne /no < 1. At the same time, the beam
spots in x-direction of the MGSM become more elliptical as increases the value of M
and the ratio ne /no with ne /no > 1. Therefore, from Figs. 3 and 4, one can get that the
uniaxial crystals can affect the propagation properties of the MGSM beams passing

Fig. 4. The distribution of a MGSM beam in a uniaxial crystal at the propagation distance z = zR, for
different values of the uniaxial crystal parameters ne /no and the index M.
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through them. Therefore, one can modulate the intensity distribution of the MGSM
beams by using different ratios of ne /no of uniaxial crystals.

The degree of coherence of the MGSM beam at a pair of transverse points is defined
by the formulae [40]. The spectral degree of coherence is directly related to the source’s
parameters, if we set ρ = 2ρ1 = –2ρ2 then we can get the formula of the degree of co-
herence

(12)

where

(13)

Figure 5 explores the behavior of μ of the MGSM passing through a uniaxial crys-
tals. One can find that at near fields, the profiles of μ resemble those in the source plane
which can be found in [32]. With increasing propagation distance, the shape of curve
becomes Gaussian-like (Figs. 5d–5i), and the dependence on M gradually disappears.
Moreover, one can observe that the value of coherence width increases with increasing
the value of ne /no.

Within the validity of the paraxial approximation, the WDF of the MGSM beams
in a uniaxial crystal can be expressed in terms of the CSD by the formula [41, 42]

(14)

where θ = (θx, θy) denotes the angle between the vector of interest and the z-direction,
kθx and kθy are the wave vector components along the x- and y-axis, respectively. 
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In this paper we set   
 Substituting Eq. (10) into Eq. (14), one can obtain (after tedious in-

tegration) the expression

(15)

Fig. 5. The behavior of μ of the MGSM passing through a uniaxial crystal as a function of transverse
difference variable |ρ| for several values of z and the ratio of ne /no.
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Based on the second-order moments of the WDF [43–46], one can get the second
-order moments of the MGSM beams which propagate in the uniaxial crystal as follows: 
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(23)

(24)

(25)

The M2-factor of a MGSM beam in a uniaxial crystal can be defined as follows
[47–49]. After a tedious operation we can get

(26)

Figure 6 shows the M2-factor distribution of a MGSM beam in a uniaxial crystal
at several values of the uniaxial crystal parameters ne /no and the index of M. In Fig. 6,
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Fig. 6. M2-factor distribution of a MGSM beam propagating in a uniaxial crystal with z = 0.1zR with
different ne /no and M.
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one can see that the M2-factor distribution of a MGSM beam in a uniaxial crystal de-
creases with an increase in the beam order M, while it increases with an increase of
the ratio ne /no.

Under the condition of ne = no = 1 and M = 1, Eq. (26) can be reduced to 

(27)

Equation (27) shows that M 2-factor is independent of the propagation distance z; this
result is in agreement with the conclusion derived for the case of a scalar GSM beam [49].

The Rayleigh range is an important beam parameter for characterizing the distance
within which the laser beam can be considered effectively non-spreading. The Rayleigh
range is defined as the distance zR along the propagation direction of a beam from
the beam waist to the place where the area of the cross-section is doubled [46, 50].
The range of the minimum effective radius of curvature is defined as the distance zm
along the propagation direction of a beam from the beam waist to the place where the
effective radius of curvature (ERC) of the beam takes the minimum value, 

(28)

(29)

Substituting Eq. (23) into Eqs. (28) and (29), we can get the Rayleigh range of the
MGSM beams in a uniaxial crystal as 

(30)

We can find that the Rayleigh range zR equals the range of the minimum effective
radius of curvature zm.
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Figure 7 illustrates the Rayleigh range of a MGSM beam in uniaxial crystals for
different initial coherence width σ. From Fig. 7a, one can conclude that with an in-
crease in the initial coherence width σ and the beam order M, the Rayleigh range also
increases. The initial parameters of the uniaxial crystal such as ratio of ne /no also can
affect the Rayleigh range greatly, as we can see from Fig. 7b the Rayleigh range de-
creases with an increase of ne /no.

According to [46, 50], the effective radius of curvature (ERC) of a MGSM beam
at z can be defined in terms of the ratio of  to  It is clear that the effective
radius of curvature defined by 

(31)

obeys the propagation equation as does the wave front curvature of an ideal Gaussian
beam.

Figure 8 shows the ERC of a MGSM beam in uniaxial crystal versus the propaga-
tion distance z for different values of ne /no and M. One finds from Fig. 8 that with
increasing of the ratio of ne/no, the ERC decreases, and it increases with the value of M.

Fig. 8. ERC of a MGSM beam in uniaxial crystal versus the propagation distance z for different values
of ne /no.
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It is the fact that the initial parameters of the uniaxial crystal and the beam order M
affect the ERC greatly.

4. Conclusion

We have investigated the evolution properties a MGSM beam in a uniaxial crystal with
help of the extended Huygens–Fresnel integral and the WDF. We have derived the
analytic formulas for the CSD, the degree of coherence, the propagation factor, the
Rayleigh range, and the ERC of the MGSM in uniaxial crystals. From the results one
can find that the ratio of ne /no and the index M have great influence on the propagation
properties. The results show that one can modulate the intensity distribution of
a MGSM beam by changing the parameters of the uniaxial crystal. It will be useful in
some applications, such as optical trapping and nonlinear optics.
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