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Experimental results and empirical research have shown that atmospheric turbulence can present
the anisotropic property not only at a few meters above the ground but also at high altitudes of up
to several kilometers. This paper investigates beam spreading for a Gaussian wave propagating
along a horizontal path in weak anisotropic non-Kolmogorov turbulence. Mathematical expres-
sions for the long-term beam spreading radius were obtained based on the generalized von Kármán
spectrum for anisotropic turbulence. The final model includes an anisotropic factor, which param-
eterizes the asymmetry of a turbulence cell, the spectral power law for non-Kolmogorov turbulence,
the inner and outer scale of turbulence, and other essential optical parameters of a Gaussian wave.
Numerical simulations indicate that the long-term beam spreading radius decreases with an in-
crease in the anisotropic factor. We also analyze how the geometrical optics approximation may
cause large errors for a small spectral power law value. 

Keywords: anisotropy, Gaussian wave, long-term spreading radius, non-Kolmogorov turbulence, inner
and outer scales of turbulence.

1. Introduction

Propagation of optical beams through the atmosphere has been attracting increasing
attention in the field of wireless communication. The atmosphere is a special type of
inhomogeneous flow, with a large quantity of complicated and rule-less turbulence [1, 2].
Atmospheric turbulence can damage the information carried by an optical beam and
decrease the performance of wireless communication systems. Consequently, active
research has been conducted in the last few decades on the effects of atmospheric turbu-
lence. Beam spreading, one of usual consequences of atmospheric turbulence, causes fi-
nite optical beams to experience random deflections while propagating. The long-term
spreading radius characterizes this phenomenon statistically [3, 4]. 

Many power spectrum models of refractive-index fluctuations have been proposed
to analyze the long-term spreading radius, and satisfy different conditions. Generally
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speaking, these turbulence power spectrum models can be classified into Kolmogorov
and non-Kolmogorov models. The former have a fixed power law value 11/3, while
the latter allow the power law value to vary over 3–4 [5–7]. Most non-Kolmogorov
models can be generalized from their corresponding Kolmogorov models, and thus the
Kolmogorov models can be regarded as specific cases of the non-Kolmogorov models.
In the past few decades, experimental results and empirical research have pointed out
that the atmospheric turbulence can be anisotropic not only at several meters above the
ground but also at high altitudes of up to 25 km [8, 9]. Circularly symmetric and scale
-dependent anisotropic spectra have been proposed to investigate the effects of aniso-
tropic turbulence on irradiance scintillation, angle-of-arrival fluctuation, etc. [10–16]. 

This paper investigates the mathematical expression of the long-term beam spread-
ing radius for a Gaussian wave propagating in anisotropic turbulence along a horizontal
path, without applying the geometrical optics approximation (GOA). GOA is widely
used to reduce the expressions, especially for the classical Kolmogorov cases [17].
However, GOA ignores diffraction effects, and is generally limited to situations where
the Fresnel’s scale lF is much less than the inner scale of turbulence l0 [1]. When lF > l0,
GOA-based models can deviate significantly, and are improper for expression reduc-
tion. The rest of the paper is organized as follows. Section 2 introduces the theoretical
models dealing with the long-term spreading radius for a Gaussian wave and the gen-
eralized von Kármán spectrum for anisotropic turbulence. Section 3 derives the de-
tailed expression reduction, and numerical simulations are presented in Section 4. Our
conclusions are given in Section 5. 

2. Theoretical models

2.1. Generalized von Kármán spectrum for anisotropic turbulence

The generalized von Kármán spectrum for anisotropic turbulence takes the form [11] 

(1)

where  is the scalar spatial wave number related to the size of the
turbulence cell with components κx, κy, and κz in the x-, y-, and z-directions, respec-
tively;  is the general spectral power law value, A(α) is a function related to α

(2)

where Γ denotes the gamma function. Both κH and κL are cut-off wave numbers related
to the turbulence inner scale l0 and outer scale L0 
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(3)

and  in (1) is the generalized atmospheric structure parameter. 
Figure 1 depicts A(α) and C(α) as a function of the spectral power law α. It can

be seen that A(α) increases monotonically from  while C(α) decreases
monotonically. Thus, the cut-off wave number at high κH decreases with an increase
in the spectral power law α. 

For the anisotropic non-Kolmogorov turbulence, suppose that the anisotropy exists
only along the direction of propagation (z-direction) of the beam. Let a dimensionless
quantity ζe be the anisotropic factors. When ζe are equal to 1, the turbulence becomes
isotropic. When ζe increases, the anisotropic property of turbulence becomes apparent. 

Similar to Eq. (1), the generalized von Kármán spectrum for the anisotropic tur-
bulence takes the following form [11]: 

(4)
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Fig. 1. A(α) and C(α) as a function of the spectral power law. 
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For convenience of analysis, this paper assumes that the beam propagates along the
z-axis. Thus, κz can be ignored according to the Markov approximation. The Markov
approximation supposes the atmospheric turbulence to be layered along the propaga-
tion path while the transmission of energy only happens over these planes orthogonal
to the propagation path in the inertial subrange [11, 13]. Under the Markov approxi-
mation, the refractive index is uncorrelated between any pair of points along the direction
of propagation. Hence, κz in Eq. (4) is assigned to zero in the following analyses, and 

(5)

2.2. Long-term spreading radius for a Gaussian beam

Long-term beam spreading is the consequence of turbulence-induced spreading beyond
laser diffraction effects over a long time period, and also contains the effects of beam
wander. The long-term spreading radius for a Gaussian beam at the receiver plane can

be modeled as  [1], where W is the beam radius in a vacuum at the

receiver  and 

(6)

and L is the length along the propagation path, k = 2π/λ is the angular wave number
with the wavelength λ of the Gaussian beam, ξ is the normalized path coordinate, Λ is
the optical parameter of the Gaussian beam at the receiver 

(7)

and Θ0 is the curvature parameter of the Gaussian beam at the transmitter, Λ0 is the
Fresnel ratio of the Gaussian beam at the transmitter 

(8)

and R0 is the phase front radius of the Gaussian beam at the transmitter, and W0 is the
waist size of the Gaussian beam. 
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3. Formula reduction

This section mainly discusses the reduction of Eq. (6). Using the Maclaurin series (or
the Taylor series centered at zero), we get [18] 

(9)

Substituting Eq. (9) into Eq. (6), T is rewritten as 

(10)

If we only keep the first degree with n = 1 of the series and ignore other higher
degrees, GOA is presented. As mentioned above, GOA may lead to potential errors,
so we do not use GOA in this paper. 

Now consider the integral  in Eq. (10). Substituting Eq. (5) into

Eq. (10), it follows that 

(11)

Using the equation for p > –1, a > 0 and b > 0 [19, 20]

(12)

we get 

(13)

where U(a; c; z) is the confluent hypergeometric function of the second kind [18] 
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Substituting Eq. (13) into Eq. (10), T takes the form as 

(15)

In general, it is difficult to obtain the exact close-form expression of Eq. (15).
However, an approximate expression can be obtained by the asymptotic behavior of
U(a; c; z). 

For the real atmospheric turbulence, l0 is in the order of magnitude of millimeter
while L0 is in the order of magnitude of meter. Thus, the following condition is usually
satisfied [1] 

<< 1 (16)

Using the property for |z | << 1 [18] 
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we get 
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Substituting Eq. (18) into the series of Eq. (15), it follows that 
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Equation (19) can be generalized into the hypergeometric type [18] 

(20)

where both P and Q are nonnegative integers and no cq is zero or a negative integer;
(a)n is the Pochhammer symbol defined by 

(21)

and consequently 
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Using the Euler’s reflection formula for ,  [18] we get
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Substituting Eq. (22) and Eq. (23) into the first series of Eq. (19), it follows that 
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Thus, the long-term spreading radius Wlt for Gaussian wave can be computed by afore-
mentioned equations. 

4. Numerical simulations

We analyze the influence of the anisotropic factor ζe on the long-term spreading radius Wlt.
However, the simulations presented here should be regarded as arbitrary examples to in-
dicate the general form of the analyses and subsequent results. Unless specified otherwise,
all numerical simulations were conducted with the default settings: λ = 1.55 × 10–6 m,
k ≈ 4.05 × 106 rad/m, L = 1000 m, = 10–14 m3 – α, W0 = 0.1 m, and Λ0 = 0.0494. 

Figure 2 depicts the long-term spreading radius Wlt for different types of Gaussian
waves as a function of the spectral power law α for several pairs of the inner scale l0
and outer scale L0. The anisotropic factor was assigned ζe = 2 for this example. As
shown in Fig. 2, the long-term spreading radius Wlt presents parabolic shape and be-
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Fig. 2. Long-term spreading radius for different types of Gaussian waves as a function of the spectral
power law with several pairs of the inner and outer scale. Convergent beam Θ0 = 0.5 (a), collimated beam
Θ0 = 1 (b), and divergent beam Θ0 = 1.5 (c). 
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comes maximum near α = 3.2. Mathematically, A(α) increases monotonically from
 and dominates the calculation of the long-term spreading radius Wlt for

3 < α < 3.2, whereas when 3.2 < α < 4 the term  in Eq. (5) takes over,
which can be regarded as a low-pass filter about the scalar spatial wave number κ. As
mentioned above, the cut-off wave number at high κΗ decreases with an increase in
the spectral power law α, i.e., larger α allows less turbulence cells to contribute to beam
spreading. Figure 2 also indicates that the long-term spreading radius Wlt is much more
sensitive to the variation of the inner scale l0 than the outer scale L0, and increases sig-
nificantly with a decrease in the inner scale l0, similar to isotropic turbulence cases.
This can be explained by the Richardson cascade theory: the Gaussian wave meets
more turbulence eddies along its propagation as the inner scale l0 decreases, resulting
in stronger beam spreading. 

For further discussions and analyses, the inner and outer scales of turbulence are
assigned to constant values l0 = 0.01 m and L0 = 10 m, respectively. Figure 3 depicts
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the long-term spreading radius Wlt for different types of Gaussian waves as a function
of the spectral power law α for several pairs of the anisotropic factor ζe and length L.
For the convergent beam (Θ0 = 0.5) in Fig. 3a, as the anisotropic factor ζe increases
with other parameters fixed, the influence of the anisotropic atmospheric turbulence
on the long-term spreading radius Wlt reduces significantly. This is similarly the case
for the collimated beam (Θ0 = 1) in Fig. 3b and the divergent beam (Θ0 = 1.5) in
Fig. 3c. Physically, these phenomena are caused by stochastic fluctuations of curvature
among the anisotropic turbulence cells. Acting as lenses with large radii of curvature,
these anisotropic turbulence cells can significantly modify the focusing properties of
the transmission media. The larger radius of curvature, which means an increasing an-
isotropic factor ζe mathematically, makes the optical beam less deviated from its prop-
agation path. Ultimately, the long-term spreading radius will take smaller value. 

Figure 4 depicts the relative errors of Eq. (6) as a function of the spectral power
law α for our proposed model and the GOA-based model. The exact value of Eq. (6)
for each case was computed by numerical integration. It is clear that our proposed mod-
el is at least two orders of magnitude more accurate than the GOA-based model. This
is particularly the case for the GOA-based model when the spectral power law α ap-
proaches 3. Physically, GOA is limited to the situation lF << l0 for classical Kolmogorov
turbulence with α = 11/3, where the inner scale l0 corresponds to the cut-off wave num-
ber at high κΗ. Thus, we can infer that the GOA-based model should be limited to the
situation where the equivalent wave number κF of Fresnel’s scale lF is much larger than
the cut-off wave number at high κΗ for non-Kolmogorov turbulence. As discussed
above, the cut-off wave number at high κΗ increases with a decrease in the spectral
power law α. Therefore, the condition κF >> κΗ may no longer be satisfied near α = 3,
and errors increase for the GOA-based model. 

5

3

1

250

150

50

0

Θ0 = 0.5, L = 1000 m

3.0 3.2 3.4 3.6 3.8 4.0

R
el

at
iv

e 
er

ro
r [

%
]

α

a
×10–3

4

2

200

100

Θ0 = 0.5, L = 2000 m

Θ0 = 1.0, L = 1000 m

Θ0 = 1.0, L = 2000 m

Θ0 = 1.5, L = 1000 m

Θ0 = 1.5, L = 2000 m

R
el

at
iv

e 
er

ro
r [

%
]

b

3.0 3.2 3.4 3.6 3.8 4.0
α

Θ0 = 0.5, L = 1000 m

Θ0 = 0.5, L = 2000 m

Θ0 = 1.0, L = 1000 m

Θ0 = 1.0, L = 2000 m

Θ0 = 1.5, L = 1000 m

Θ0 = 1.5, L = 2000 m

Fig. 4. Relative errors of Eq. (6) using different models as a function of the spectral power law for different
Gaussian waves with several length. Our model (a), and GOA-based model (b).
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5. Conclusion

Beam spreading for a Gaussian wave propagating through anisotropic non-Kolmogorov
atmospheric turbulence along a horizontal path was investigated. Applying the Markov
approximation, the generalized von Kármán spectrum for anisotropic turbulence was
utilized to analyze the effects of the anisotropic factor on the long-term spreading ra-
dius for different types of Gaussian waves. Approximate expressions were obtained
by the asymptotic behavior of the confluent hypergeometric function, as well as the
universal type of hypergeometric function. Numerical simulations indicate that aniso-
tropic atmospheric turbulence on beam spreading will decrease with increasing aniso-
tropy. The long-term spreading radius increases significantly with a decrease in the
inner scale, which is in accordance with isotropic turbulence cases. We also compared
our proposed model and the GOA-based model, and verified that the GOA-based model
was inaccurate for a small spectral power law value. 

The simulations performed here should only be regarded as examples to illuminate
particular cases, and are mainly useful for theoretical analyses. In practice, the aniso-
tropic factor will not always satisfy linear laws, rather obeying parabolic laws on any
scales of the turbulence eddy. Furthermore, due to the lack of adequate data and prior
information about anisotropic turbulence, the optical parameters used in Section 4 may
fail to describe actual atmospheric propagation. Once novel instruments are capable
of gathering, the degree of anisotropy at various scales, the expressions deduced here
can be generalized to practical whole atmospheric layers. 
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