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Digital volume correlation is an image-based technique for internal 3D displacement and strain
fields measurement or analysis widely used in the field of experimental mechanics. A widely used
correlation function (criterion) of digital volume correlation is Pearson correlation function, which
suffers from the problem of the acquired data being contaminated by salt-and-pepper noise and
monotonic nonlinear distortion of the light intensity. In this work, a 3D correlation function called
the Spearman correlation function is used to deal with those interferences. A numerical experiment
shows that the performance of Spearman correlation function using integer-pixel registration in
an environment with 10% salt-and-pepper noise is better than that of Spearman and Pearson cor-
relation functions using sub-pixel registration in an environment with 1% salt-and-pepper noise.
As the light intensity distortion is significant, the error of Pearson correlation function is consid-
erable; meanwhile, the error of Spearman correlation function is small. In conclusion, Spearman
correlation function is, in particular, practical and useful in digital volume correlation.
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1. Introduction

Digital volume correlation (DVC) is a technique that analyzes the 3D displacement
field inside a structure. DVC has been widely used in experimental mechanics [1, 2, 3].
Since BAY introduced the DVC technique for volumetric strain measurement in 1999 [4],
this measurement method has experienced a growth in technique and application [5].
SMITH et al. introduced the addition of rotational degrees of freedom into the minimi-
zation problem for DVC in order to improve the overall performance of the strain meas-
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urement [6]. GATES et al. improved the DVC’s accuracy using smoothing splines to
address noisy image data [7]. In the same time, the computing speed of DVC algorithm
has been improved a lot. In 2014, a 3D inverse compositional Gauss–Newton algorithm
was introduced to replace the existing forward additive algorithms [8]. The experiment
showed that the presented DVC algorithm produces a slightly higher accuracy at a sub-
stantially reduced computational cost. With the rapid development of parallel comput-
ing technology, GPU-based or CPU and GPU-based DVC method was proposed,
which makes significant improvement in computation speed on common desktop com-
puter [9, 10]. In 2015, a fast iterative digital volume correlation (FIDVC) method was
presented, which can be run on a personal computer with computation times on the
order of 1–2 min [11]. As much as application is concerned, DVC is useful to analyze
complex materials, for example, bone [12, 13], rock [14], wood [15], sugar [16] and
sand grains [17]. Furthermore, DVC can be used to analyze complicated mechanical
properties of materials, such as material fatigue after repeated loading cycles [18, 19].
However, there is almost no literature about the improvement of DVC robustness in
an environment with interference.

In 1D signal there is a typical additive interference called impulse noise, which
exhibits a spiky pattern on rare occasions. The impulsive noise is often modeled with
the so-called contaminated Gaussian model (CGM), whose probability density func-
tion (PDF) is expressed as a linear combination of two normal distributions. This type
of noise can be caused by various factors such as electromagnetic interference (light-
ening), failures and/or faults in the system, and state changes of electrical components
in the circuits. Similarly, in a digital speckle image, impulse noise is also present be-
cause of a quantum effect that is often called salt-and-pepper noise, which occurs
sparsely in white and black pixels. In addition, salt-and-pepper (impulsive) noise is
not rigidly defined. A lot of cases can be regarded as salt-and-pepper noise in broader
terms, such as: dead pixel/voxel (bad point), and white pixel/voxel introduced by over-
exposure. Salt-and-pepper noise is so harmful to the digital imaging system that there
are about seven hundred papers listed on Web of Science since 2000. Using a median
filter is an effective noise reduction method. However, one of its disadvantages is that
it significantly reduces the spatial resolution of the image. In a digital speckle image,
in order to enhance the signal-to-noise ratio, local overexposure frequently exists. This
results in a strong monotonic nonlinear effect on the intensity of the image, which is
another fatal problem in digital correlation.

In the literature, many methods have been proposed and applied to quantify the in-
tensity of correlation between two random variables. Among these methods, Pearson’s
product moment correlation coefficient (PPMCC) [20] and Spearman’s rho (SR) [21]
are the most widely used [22]. PPMCC is mainly used to characterize linear correla-
tions, while SR is invariant under increasing monotone transformations. Thus, these
methods are often considered as robust counterparts to the PPMCC [23, 24]. As shown
in many theoretical and experimental results [25], the popular PPMCC, although op-
timal when the noise is Gaussian, is notoriously sensitive to impulsive noise that fol-
lows non-Gaussian distribution with a tail heavier than that of normal distribution [25].
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On the other hand, SR has proven to be more robust for data corrupted by impulsive
noise [25]. Motivated by the anti-nonlinearity and anti-impulsive noise features pos-
sessed by SR, we develop a novel DVC method based on SR in this work.

In the paper, a correlation study of the time-series signal system is extended into the
digital volume imaging correlation for deformation evaluation, in an environment with
a huge amount of salt-and-pepper noise and intensity change. The paper is organized as
follows: Section 2 presents the definitions of DVC and SR and an analysis of SR’s sta-
tistical properties, Section 3 discusses the numerical experiments, and Section 4 con-
tains a discussion and conclusion.

2. Theory

2.1. Principle of DVC

DVC is a method that employs tracking and image registration techniques for the
3D evaluation of displacement, deformation, strain, etc., between the reference volumet-
ric image and the deformed volumetric image, before and after an applied load. The sub-
volume f (x, y, z) in the reference volumetric image, centered at the point (x0, y0, z0),
contains (2M + 1) × (2M + 1) × (2M + 1) voxels (M is a positive integer). It is mapped
to the optimal target subvolume g (x', y', z' ) in the deformed volumetric image, centered
at another point  and contains (2M + 1) × (2M + 1) × (2M + 1) voxels using
DVC algorithm. The displacement components at (x0, y0, z0) before and after displace-
ment are u(x0, y0, z0) =  v(x0, y0, z0) =  and w(x0, y0, z0) =  in
the directions of x, y, and z, respectively.

Let  denote n independent and identically distributed (i.i.d.) data
pairs drawn from a bivariate population with continuous joint distribution. Let  and

 be the mean of Xi and Yi, respectively. The well-known Pearson’s product moment
correlation coefficient (PPMCC) is defined by

(1)

The correlation function, denoted by the Pearson correlation function (PCF), is
essentially equal to zero-mean normalized cross-correlation (ZNCC) criterion in the
sequel, which can be expressed as [1]

(2)

where fi, gi indicate the i-th pixels in f or g;  and  are the average values of the
reference and target subvolumes, respectively, and   It is
well known that the PPMCC (and thus the PCF) is very sensitive to nonlinearity and
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impulsive of salt-and-pepper noise. To address this problem, we employ a different
correlation function that is robust against these kinds of interference.

2.2. Spearman correlation function and Gaussian model

2.2.1. Definition of Spearman correlation function

Let  denote n data pairs drawn from a bivariate population with contin-
uous joint distribution. Sorting the X-variate in ascending order, we can get a new se-
quence X (1) < X (2) < … < X (n). Assume that the element Xi is at k-th position in the
sorted sequence. The number k is termed the rank of Xi and denoted by Pi. In a similar
manner, we can also obtain the rank of Yi which is denoted by Qi. Then the rank-based
correlation coefficient, Spearman’s rho (SR), can be defined as [25]

(3)

From its definition above, it follows that SR depends only on the ranks, which are
invariant under monotonic nonlinear transformations. Therefore, SR is robust against
monotonic nonlinearities that might exist in the system.

Since a 3D image can be mapped to a 1D sequence, then f(x, y, z) and g(x + u, y + v,
z + w) can be formulated as (2M + 1)3 data pairs,  Let  and  be
the ranks of Ξi and Ζi, respectively. Then the correlation function, named the Spearman
correlation function (SCF), is

(4)

Since the SCF is based on SR, it is also robust against monotonic nonlinearities.
Moreover, as seen in Section 2.2.4, SCF is also robust against impulsive noise from
the theoretical results [25].

2.2.2. Bivariate Gaussian model

In this work, the data pairs constructed from the original reference and deformed vol-
umetric images are assumed to follow a bivariate Gaussian distribution with a proba-
bility density function (PDF):

(5)
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and ρ is the parent correlation coefficient between Ξ and Z, μ is the mean value of the
image, and σ 2 is the variances. For notational convenience, the bivariate Gaussian
model of Eqs. (5) and (6) is abbreviated as 

(7)

2.2.3. Contaminated Gaussian model (CGM)

When the two original volumetric images are contaminated by salt-and-pepper noise
with a large variance, we can employ the following contaminated Gaussian model to
simulate this situation. Specifically, the PDF of the CGM can be expressed as

(8)

where 0 ≤ ε ≤ 1, Δμ >> μΞ, Δμ >> μZ, σΞ1
<< σΞ, σΞ2

<< σΞ, σZ1
<< σZ, σZ2

<< σZ, –1 ≤ ρ ≤ 1;
ρ1 and ρ2 are the population correlation coefficients with respect to the salt-and-pepper
noise in the two volumetric images. The parameter ε, which is usually set to be small,
represents the fraction of the salt-and-pepper noise contained in the images. Therefore,
the first term in Eq. (8) corresponds to the joint distribution of the majority data pairs
from the two images. With regard to the other two terms in Eq. (8), each one is a bivariate
normal distribution tightly concentrated around locations far away from the center of
majority, standing respectively for the joint distributions of the salt-and-pepper noise
corrupting the two images.

2.2.4 Mean of PPMCC and SR under CGM

The mean of PPMCC under CGM (8) is

(9)

and when  

(10)

Regardless of the dissimilarity between two uncontaminated subvolumes in an en-
vironment with salt-and-pepper noise, PPMCC always shows they are high correlated,
as shown in Fig. 1. It suggests PPMCC cannot obtain a reliable value to evaluate the
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which, compared with the Eq. (10), suggests that there is a positive correlation between
SR and ρ, as ε is relatively small, as shown in Fig. 1. This verifies the robustness of
the proposed method against the salt-and-pepper noise in the DVC.

3. Numerical experiment

3.1. Generation of the volumetric image

In this work, there are two volumetric images, the reference and the deformed, each
with a size of 200 × 200 × 200 voxels. In each volumetric image, there are 8000 speck-
le granules whose Gaussian distribution grayscales are of ellipsoid shapes. The radii
of speckle granules are ranged between [2, 10]. The granule is rotated with angles be-
tween [–π/4, π/4]. The peak intensity is in the range [0.4, 1]. Volumetric images are
generated by the superposition of all granules. The deformed volumetric image is of
a linear compression of the reference volumetric image in the directions z, and linear
compression rate is 0.95. 

In the end, both original reference Fo(x, y, z) and target image Go(x, y, z) are nor-
malized to the range [0, 0.7].

In order to verify the robustness of the SCF in an environment with salt-and-pepper
noise and monotonic light intensity distortion, the contaminated volumetric images
F(x, y, z) and G(x, y, z) are defined as

(12a)

Fig. 1. Mean of PPMCC (dashed line) and SR (solid lines) under CGM. Blue, green, red, azure, and purple
indicate the density of salt-and-pepper noise ε = 0.1%, 1%, 10%, 20%, 30%, respectively. 
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Fig. 2. Volumetric images and their histograms. Original reference volumetric image (a), reference
volumetric image contaminated by ε = 20% salt-and-pepper noise only (b), deformed volumetric image
with concave distortion of light intensity Φ[Go(x, y, z)] = 0.6[Go(x, y, z)]1/5 only (c), deformed volumetric
image with convex distortion of light intensity Φ[Go(x, y, z)] = 3.5[Go(x, y, z)]5 only (d). 
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(12b)

where n1(x, y, z) and n2(x, y, z) are Gaussian noise with mean μG and variance  in
the reference and deformed volumetric images, respectively; Φ(·) is the function of
monotonic light intensity distortion. Figures 2a and 2b show the original reference vol-
umetric image without interference and contaminated by ε = 20% salt-and-pepper noise
only, respectively. Figures 2c and 2d show the deformed volumetric images with con-
cave and convex distortions of the light intensity Φ[Go(x, y, z)] = 0.6[Go(x, y, z)]1/5

and Φ[Go(x, y, z)] = 3.5[Go(x, y, z)]5 without noise, respectively.

3.2 Numerical experiment and results

3.2.1. Searching scheme

In this work, m = (10 × 10 × 10) regularly distributed points in the volumetric images
are chosen as the centers of the subvolumes, respectively. The size of each subvolume
is (15 × 15 × 15) voxels. The central distance between neighboring subvolumes is
20 voxels. Each subvolume in the reference volumetric image is processed to map the
most optimal subvolume in the deformed volumetric image at a range of 20 voxels in
the directions x, y, and z, respectively, using simple integer voxel displacement search-
ing. In the end, the displacement of the center of the i-th subvolume  is achieved
in one direction, respectively, where the subscript c represents the results of the correla-
tion searching. If the displacement of the i-th subvolume is presented as  the
mean absolute error  and standard deviation error σx, y, z, are defined as

(13)

3.2.2. PCF and SCF with Gaussian noise

Suppose that there is Gaussian noise [μG, σG] = (0, 0.008) only in the volumetric im-
ages. Table 1 shows the mean absolute and standard deviation errors of PCF and SCF
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using simple integer voxel displacement searching, respectively. PCF is more robust
than SCF in an environment with Gaussian noise. This conforms to the theory in [21].
However, it is noted that there are no significant differences in their application, because
these computing errors between SCF and PCF are within the range of 0.05 pixels.

3.2.3. PCF and SCF in an environment with salt-and-pepper noise

The robustness of PCF and SCF in an environment with salt-and-pepper noise and
Gaussian noise [μG, σG] = (0, 0.008) is investigated first. If F(x, y, z) and G(x, y, z) are
contaminated with salt-and-pepper noise ε = 1%, the displacement fields evaluated
by PCF are shown in Fig. 3a in the directions x, y, and z, respectively. Those displace-
ment fields produce irregular distributed errors, which are more than 10 voxels in some
places. Therefore, it is concluded that PCF is invalid as ε > 1%. Meanwhile, the displace-
ment error of SCF is so small that it is ignored in the text for simplicity. As F(x, y, z)
and G(x, y, z) are contaminated by the salt-and-pepper noise with a density of 1% and
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Fig. 3. Continued on the next page.
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from 10% to 40%, the displacement field distributions using SCF are shown in Figs. 3b
to 3e, respectively. The robustness of SCF is so good that its errors, even though ε = 40%,
[μG, σG] = (0, 0.008), are less than those of PCF as ε = 1%, [μG, σG] = (0, 0.008).
Figure 3f shows the reference displacement field without salt-and-pepper noise. Its mean
absolute and standard deviation errors are still smaller than those of PCF as ε = 1%,
and [μG, σG] = (0, 0.008), as shown in Fig. 4. Therefore, it is concluded that the errors
of DVC are mainly a result of the salt-and-pepper noise rather than the Gaussian noise.
In this case, SCF is the best solution.

Figure 4 shows the mean absolute and standard deviation errors of the displacement
field using PCF and SCF with ε = 1%, 10%, 20%, 30%, and 40%, respectively. Those

Fig. 3. Distributions of displacement field using simple integer voxel displacement searching in directions
x, y, and z, respectively. PCF, ε = 1%, [μG, σG] = (0, 0.008) (a), SCF, ε = 10%, 20%, 30%, and 40%,
respectively, as [μG, σG] = (0, 0.008) (b–e), and reference displacement field (f). 
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errors in all directions x, y, and z are approximately equal to each other. When ε = 1%,
the mean absolute and standard deviation errors in the directions x, y, and z using
PCF are more than 3 and 5.5 voxels, respectively. When ε = 40%, the mean absolute
and standard deviation errors in the directions x, y, and z using SCF are less than 2 and
4 voxels, respectively. The errors of PCF when ε = 1% are larger than those of SCF
when ε = 40%.

3.2.4. PCF and SCF in an environment with monotonic nonlinear distortion of light intensity

To verify the robustness of SCF in an environment with nonlinear distortion of light
intensity with Φ[Go(x, y, z)] = 3.5[Go(x, y, z)]5 and Φ[Go(x, y, z)] = 0.6[Go(x, y, z)]1/5,
respectively, the density of the salt-and-pepper noise ε is set to be 0 and the Gaussian
noise is set to be [μG, σG] = (0, 0.008). Table 2 shows the mean absolute and standard
deviation errors using PCF and SCF, respectively. PCF is not as robust as SCF when
a significant nonlinear distortion of the light intensity exists. It is noted that the per-

Fig. 4. Errors of displacement field in environment with salt-and-pepper noise. Mean absolute error (a),
and standard deviation error (b) (red, green, and blue represent the directions x, y, and z, respectively).

 – PCF using simple integer voxel displacement searching, [μG, σG] = (0, 0.008),  – SCF using simple
integer voxel displacement searching, [μG, σG] = (0, 0.008), and  – SCF using curve-fitting, [μG, σG] =
(0, 0.008). 
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unit: voxel. 

Light intensity distortion σx σy σz

PCF
Φ[Go(x, y, z)] = 3.5[Go(x, y, z)]5 2.677 2.676 2.701 5.623 5.672 5.758

Φ[Go(x, y, z)] = 0.6[Go(x, y, z)]1/5 0.269 0.280 0.473 1.299 1.222 1.603

SCF
Φ[Go(x, y, z)] = 3.5[Go(x, y, z)]5 0.097 0.116 0.499 0.380 0.626 0.567

Φ[Go(x, y, z)] = 0.6[Go(x, y, z)]1/5 0.089 0.111 0.506 0.411 0.620 0.578

dx dy dz
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formances of both PCF and SCF are acceptable in the case where the light intensity
distortion is not severe.

3.2.5. Sub-voxel registration using PCF and SCF

In general, higher accuracy can be obtained by a using sub-voxel registration algorithm.
To verify the robustness of SCF and morbidity of PCF, two kinds of sub-voxel registra-
tion algorithms, in an environment with salt-and-pepper noise and nonlinear distortion,
are employed [26] with manually set initial guess: i) PCF using Newton–Raphson
method; ii) SCF using correlation coefficient curve-fitting method.

Environment with salt-and-pepper noise. Though initial guess is accurate, PCF using
sub-voxel registration is easily affected by salt-and-pepper noise. Its errors (ε = 0.2%,
σz = 0.235) increase rapidly as ε < 0.2%. As ε ≥ 0.2%, the errors do not increase with ε
anymore, because the results are totally uncorrelated with the intensity information of
the reference and target images, according to Eq. (8). Meanwhile, the errors of  SCF
(ε = 1%, σz = 0.169) increase slowly as ε < 1%. As ε > 1%, they increase rapidly due
to miscalculations of curve-fitting. In a word, as ε > 1%, both PCF and SCF are invalid.
As shown in Fig. 4, the error of SCF using sub-pixel registration is larger than that using
simple integer voxel displacement searching, ε > 1%. Therefore, it is concluded that SCF
using integer-pixel registration algorithm is the only efficacious algorithm when there
is salt-and-pepper noise in the volume image.

Environment with nonlinear light intensity distortion. Different from PCF, SCF is
less affected by nonlinear light intensity distortion, shown in Table 3. The mean ab-
solute error and standard deviation of PCF increase a lot as nonlinear light intensity
distortion exists.

4. Conclusions and discussion 

Recently, DVC has experienced rapid development in 3D mechanical strain analysis.
However, the algorithm based on PCF is sensitive to salt-and-pepper noise and nonlinear
distortion of light intensity. In terms of research on the statistical characteristics of the
correlation coefficients for the time signal process, this work proposes a DVC algo-
rithm based on SCF that utilizes the robustness of SR in an environment with impulsive
noise and monotonic nonlinear distortion to process the 3D data.

T a b l e 3. Mean absolute and standard deviation errors using sub-voxel registration in environment
with nonlinear distortion of light intensity with Gaussian noise of [μG, σG] = (0, 0.008); unit: voxel. 

Light intensity distortion σx σy σz

PCF
Φ[Go(x, y, z)] = 3.5[Go(x, y, z)]5 0.361 0.395 0.405 0.498 0.445 0.545

Φ[Go(x, y, z)] = 0.6[Go(x, y, z)]1/5 0.063 0.079 0.093 0.081 0.104 0.075

SCF
Φ[Go(x, y, z)] = 3.5[Go(x, y, z)]5 0.031 0.029 0.016 0.038 0.037 0.043

Φ[Go(x, y, z)] = 0.6[Go(x, y, z)]1/5 0.033 0.032 0.028 0.049 0.044 0.044

dx dy dz
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The performance of SCF using a simple integer voxel displacement searching as
ε = 40% is better than that of PCF as ε = 1%. PCF using sub-voxel registration as
ε > 0.2%, and SCF using sub-voxel registration as ε > 1% leads to large errors. In gen-
eral, sub-voxel registration is invalid as there is salt-and-pepper noise in the volumetric
images, while integer-pixel registration is still robust as the concentration of salt-and
-pepper noise is about 10%–20%. In an environment with nonlinear light intensity dis-
tortion, SCF using integer-pixel registration and sub-voxel registration are relatively ro-
bust, while PCF using integer-pixel registration is morbid.

It is noted that there are several other correlation criteria [27]; 1) the zero-mean
normalized sum of absolute difference (ZNSAD), 2) the zero-mean normalized sum
of squared difference (ZNSSD), and 3) the parametric sum of the squared difference
(PSSD). BING PAN et al. have proved that the performances of CPSSDab and CZNSSD are
approximately equivalent to CZNCC [27], which is PCF in essence. These four corre-
lation criteria are to evaluate the similarity between the reference and target subsets,
in terms of the information of gray level. In environment with Gaussian noise, the ro-
bustness of CZNCC is the best. However, they are not robust in an environment with
either salt -and-pepper noise or nonlinearity intensity distortion.

In this paper, Newton–Raphson method is employed as the sub-voxel registration
algorithm based on PCF, which has been widely used [26]. Due to the discontinuity
of SCF, it cannot be optimized by Newton–Raphson. Therefore, curve-fitting method
is used as a sub-voxel registration algorithm for SCF in this paper. A new sub-voxel
registration is desirable for SCF, which should be able to enhance the accuracy in an en-
vironment with high concentrations of salt-and-pepper noise.

Although SCF is a promising criterion for DVC/DIC, there are many problems
which should be addressed in the future. First of all, SCF is better served as a correlation
criterion of DVC in an environment with salt-and-pepper noise or nonlinear light in-
tensity distortion. However, its computation efficiency is low. The usage of parallel
computing technology can improve its efficiency. Furthermore, new algorithms com-
bining SCF and warp functions should be developed in the future.

Because salt-and-pepper noise and the nonlinear monotonic effect of light intensity
are common interferences in confocal microscopy, μCT, etc., it is concluded that the
application of SCF in DVC is very helpful and practical in mechanical analysis.
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