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Phase and group velocities of surface waves 
in left-handed material waveguide structures
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We assume a three-layer waveguide structure consisting of a dielectric core layer embedded between
two left-handed material claddings. The phase and group velocities of surface waves supported by
the waveguide structure are investigated. Many interesting features were observed such as normal
dispersion behavior in which the effective index increases with the increase in the propagating wave
frequency. The phase velocity shows a strong dependence on the wave frequency and decreases
with increasing the frequency. It can be enhanced with the increase in the guiding layer thickness.
The group velocity peaks at some value of the normalized frequency and then decays. 
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1. Introduction 
Materials with negative electric permittivity ε and magnetic permeability μ are artifi-
cially fabricated metamaterials having certain peculiar properties which cannot be found
in natural materials. The unusual properties include negative refractive index, reversed
Goos–Hänchen shift, reversed Doppler shift, and reversed Cherenkov radiation. These
materials are known as left-handed materials (LHMs) since the electric field, magnetic
field, and the wavevector form a left-handed set. VESELAGO was the first who investi-
gated the propagation of electromagnetic waves in such media and predicted a number
of unusual properties [1]. Till now, LHMs have been realized successfully in micro-
waves, terahertz waves and optical waves. The slab waveguides comprising LHM layer
have been discussed extensively and many papers have been published [2–34]. PENDRY

et al. proposed a mechanism for depression of the plasma frequency into the far infrared
or even gigahertz band [2] and he also proposed an unconventional lens [3] using LHM.
PENDRY found that a slab of LHM can focus all Fourier components of a 2D image.
The characteristic equation of the surface polaritons of a LHM slab was studied [4].
A theoretical analysis of the radiation from a traveling-wave infinitely-extent sheet of
monochromatic electric current that is placed at the interface between a traditional di-
electric and a LHM is presented [5]. SHELBY et al. investigated experimentally the trans-
mission from a 2D isotropic LHM [6]. A theoretical analysis of a slab of LHM and the
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possibility of acting as a phase compensator/conjugator were investigated [7]. MAHMOUD

and VIITANEN studied the properties of surface wave modes in a grounded LHM slab [8].
It is demonstrated experimentally that a tunable negative permeability metamaterial
can be obtained at microwave frequencies by introducing YIG rods into a periodic array
of split ring resonators [9]. Multilayer LHM slab waveguide was studied and the dis-
persion relation was derived [10, 11]. The influence of negative-index layer on disper-
sion and power flow was investigated. Three normalized parameters (a, b, and V) were
utilized to investigate the dispersion properties of different slab waveguide structures
containing at least one LHM layer [12–14]. A symplectic finite-difference time-do-
main (SFDTD) technique was utilized for the first time to investigate the electromag-
netic properties of LHMs [15]. A wave-absorber model containing air/LHM/RHM/metal
structure was investigated [16]. The properties of wave-absorber were theoretically
analyzed and simulated and the structure parameters were optimized employing a ge-
netic algorithm [16]. Guided modes carried by a three layer metal-clad waveguide
structure having LHM core layer were studied [17]. The dispersion properties of both
transverse electric and transverse magnetic waves were analyzed [17]. The properties of
waves guided in a structure comprising a LHM cladding and an anisotropic core layer
were studied [18]. The dispersion properties showed a crucial dependence on the LHM
parameters for ω > 5.2 GHz. The surface polaritons excited at the interfaces of differ-
ent waveguide structures comprising LHMs were derived, plotted and discussed [19].
It was shown that semiconductor nano-structures made from non-magnetic InAs/GaAs
nano-rings can behave like a LHM in a certain optical frequency range [20]. The gener-
ation of the energy stream loops for the evanescent field around the interfaces of a LHM
slab has been investigated with a finite-difference time -domain technique [21]. Asym-
metric three-layer LHM slab waveguide structure was investigated and the field distri-
bution was analyzed in details [22]. The reflection and transmission through a dielectric
slab surrounded by two LHM media were presented [23]. Lorentz and Drude medium
models for the dispersion of LHM were considered. It was observed that damping fre-
quency has an ignorable effect on the reflectance. A wide band filter based on LHM the-
ory was proposed [24]. The length of the main part is only 1/20 compared to the working
wavelength. It can be used to eliminate the noise in RF interconnect and other fields.
It was shown that a linearly polarized beam can experience either a negative or a pos-
itive Goos–Hänchen shift when totally reflected from a LHM [25]. The dispersion
properties of lossy, dispersive, and anisotropic LHM were investigated and the possible
use of the structure as a refractometric sensor was discussed [26–29]. Among the wide
range of applications, slab waveguide sensing was one of the possible applications of
LHMs [30–34]. 

The aim of this work is to investigate the peculiar features of surface waves that
propagate along the interfaces of a dielectric slab bounded by two LHM layers. To the
best of our knowledge, the structure of LHM/dielectric/LHM has not been investigated
in the literature. 

In this work, we investigate the phase and group velocities of surface waves excited
at the interface of dielectric and LHM.
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2. Phase and group velocities 

The structural setup of interest is a dielectric slab of thickness d sandwiched between
two LHMs as a cladding and substrate. Both cladding and substrate are considered to
be semi-infinite, dispersive, lossless, homogeneous and isotropic LHM. The geometry
of the structure under study is shown in Fig. 1. 

The propagation of an electromagnetic wave is considered along the z-axis. The LHM
is described by a negative permittivity ε (ω) and permeability μ(ω) that given by 

(1)

(2)

where ωp is plasma frequency, ω0 is the characteristic frequency of LHM and sub-
scripts c, s represent cladding and substrate, respectively. The parameters of the LHM
are taken as ωp = 10 GHz, ω0 = 4 GHz and parameter F = 0.56. We first consider
TE modes in which the following field components Ey, Hx, and Hz exist. In the region
of LHM substrate, we have 

(3)

(4)

(5)

where  

Fig. 1. Schematic diagram of a dielectric slab surrounded by left-handed media. 
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In the cladding region (x > d ), the field components can be written as

(6)

(7)

(8)

where E0 is the wave amplitude, and 
In the dielectric core layer, the nonzero field components are given by

(9)

(10)

(11)

where C1 and C2 represent wave field constant, and 
Applying the boundary conditions such that Ey and Hz are continuous at z = 0 and

z = d, we obtain

(12)

If we consider symmetric waveguide in which the cladding and substrate are identical,
μc = μs and εc = εs, Eq. (12) becomes

(13)

Equation (13) represents the dispersion relation for TE surface waves. The numer-
ical solution of Eq. (13) gives the effective refractive index of the TE surface mode
for a given frequency. 

The group velocity for TE electromagnetic surface waves is given by vg = dω/dkx.
Differentiating the dispersion relation given by Eq. (13) with respect to ω, we get after
a tedious derivation and mathematical manipulation
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where, 

For TM polarized light, in the substrate layers, the nonzero field components are
given by,

(15)
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(17)

whereas in the cladding region (x > d ), we can write

(18)

(19)

(20)

where H0 is the wave amplitude.
The magnetic field and nonzero components of the electric field in the core layer

can be written as

(21)

(22)

(23)

For TM mode, the dispersion relation is given by

(24)

Equation (24) gives the dispersion relation for TM surface waves. The numerical
solution of Eq. (24) gives the effective refractive index of the TM surface mode for
a given frequency. 

Similarly, by differentiating Eq. (24) with respect to ω, we get the group velocity
for TM mode as

(25)

where, 
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3. Numerical results

Figure 1 shows a schematic diagram of the waveguide consisting of a dielectric core
layer and two identical LHM claddings. The LHM parameters are commonly taken with
the aid of experimentally obtained values: ω0 = 4 GHz, ωp = 10 GHz, and F = 0.56.
The dielectric core layer has the parameters: εf = 2.25 and μf = 1. Surface waves are
obtained in the narrow band of 4.67 ≤ ω ≤ 4.717 for TE waves and a wider band of
4.82 ≤ ω ≤ 5.48 for TM waves. In these bands, kf  is found to be pure imaginary. Using
the above parameters, the dispersion relation was solved numerically for the effective
refractive index of the guided mode. The dispersion properties can be investigated from
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Fig. 2. Effective refractive index vs. ω/ω0 for different values of core layer thickness (TE).
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the dispersion curves which show the dependence of the longitudinal propagation con-
stant kz or the modal index of refraction on the guided wave frequency. The dispersion
curves of surface waves are illustrated in Fig. 2 for different values of the core layer
thickness. The figure reveals a normal dispersion property in which the effective index
increases with the increase in the propagating wave frequency. The figure reflects a set
of interesting features. First, as the core layer decreases, the dispersion curves move
up showing an enhancement in the effective refractive index. Second, the operating
frequency range becomes wider as the thickness of the core layer decreases. For
d = 0.9 cm, the operating frequency range is 1.169 GHz ≤ ω/ω0 ≤ 1.17925 GHz, where-
as for d = 1 cm, the range is 1.17275 GHz ≤ ω/ω0 ≤ 1.17975 GHz. For d = 1.1 cm, the
range becomes 1.17675 GHz ≤ ω/ω0 ≤ 1.18025 GHz. This is an important feature
which means that the core layer thickness can be adjusted to broaden or narrow the
operating bands and modify the effective index to a desirable value. Figure 3 shows
the dispersion curves for TM modes. The operating frequency band for TM surface
waves is much wider than that of TE surface waves. Moreover, this band is crucially
dependent on the core layer thickness. As the core layer thickness decreases, the dis-
persion curves move up showing an increase in the effective index. 

We now turn our attention to the phase and group velocities of surface waves in
the proposed structure. The phase velocity is given by vph = ω/kz for the surface TE
and TM waves. 

When the dispersion relations are solved numerically for the effective refractive
index N, the longitudinal component of the wave number kz is calculated as kz = k0N,
where k0 = ω/c is the free space wave number. The phase velocity can be calculated
as vph = ω/kz. 

The dependence of the normalized phase velocity vph/c (where c is the speed of
light in free space) on the normalized frequency ω/ω0 for different core layer thickness
is shown in Fig. 4. The figure reveals that the phase velocity of surface TE wave is
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slow and it shows strong dependence on the wave frequency, especially for a large value
of d. The phase velocity decreases with increasing the frequency. When the thickness
of the core layer is enhanced, the phase velocity is also enhanced. The phase velocity
of surface TM waves vs. the normalized frequency is shown in Fig. 5. The curves show
a less dependence on the frequency than TE. With the increase in the core thickness,
the phase velocity reveals an enhancement. The group velocity of the wave is given by
vg = ∂ω/∂kz. The dependence of group velocity on normalized frequency is shown in
Fig. 6 for different values of the core thickness. Group velocity increases as the nor-
malized frequency increases, peaks at some value of the normalized frequency and then
decays. The normalized frequency that corresponds to the maximum group velocity
shifts toward lower values as the core layer thickness increases. For d = 0.9 cm, the group
velocity increases until it reaches 0.00506c at ω/ω0 = 1.17225 GHz. For d = 1.0 cm,
the group velocity reaches a maximum of 0.00409c at ω/ω0 = 1.171 GHz. Finally, for
d = 1.1 cm it reaches 0.00306c at ω/ω0 = 1.16925 GHz. The group velocity shows
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an almost linear dependence on wave frequency in some frequency bands. The group
velocity of TM surface waves is shown in Fig. 7 for different core layer thickness.
The same features observed in Fig. 6 are still available in Fig. 7. The group velocity in-
creases with increasing ω/ω0, peaks at optimum ω/ω0 and then it decays. For d = 0.9 cm,
vg = 0.1881 at ω/ω0 = 1.31 GHz. For thicknesses greater than 0.9 cm, the optimum
ω/ω0 at which the group velocity maximizes shows a shift towards smaller values. 

4. Conclusion
Phase and group velocities of surface electromagnetic waves that propagate along the
interface between the dielectric film and the left-handed material were investigated.
The study reveals a normal dispersion property in which the effective index increases
with the increase in the propagating wave frequency. As the core layer decreases, the
dispersion curves move up showing an enhancement in the effective refractive index.
It is found that the core layer thickness can be adjusted to broaden or narrow the operating

Fig. 6. Group velocity of surface waves vs. ω/ω0 (TE) for different values of thickness of the guiding layer. 
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bands and modify the effective index to a desirable value. The operating frequency
band for TM surface waves is much wider than that of TE surface waves. The phase
velocity of surface TE wave shows a strong dependence on the wave frequency, espe-
cially for a large value of d. It decreases with increasing the frequency for both TE and
TM surface waves. The phase velocity can be enhanced with the increase in the guiding
layer thickness. The group velocity increases as the normalized frequency increases,
peaks at some value of the normalized frequency and then decays. The normalized fre-
quency that corresponds to the maximum group velocity shifts toward lower values as
the core layer thickness increases.
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