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1. INTRODUCTION 

In the traditional model of neoclassical economics, convergence is 
defined as the dynamic process of achieving a long-term balance. The idea 
of convergence is based on the assumption of decreasing returns on capital. 
The process of reducing the level of economic growth inequalities and the 
development gap between the regions results from a declining willingness to 
invest in richer regions in favour of regions with lower levels of economic 
growth, where a rate of return on investments is higher (Geodecki, 2006, 
p. 76). Hence the dynamics of the growth rate in richer regions decreases, 
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which in turn leads to the equalization of the development level between the 
regions. 

According to Williamson (1965), the processes of divergence and 
convergence are typical for the stages of the countries development. In 
countries at an early stage of development there are large disparities of 
development level between its regions. While in countries with a higher 
level of development, the differences between the metropolitan areas and the 
peripheral regions decline with the decrease in the concentration of 
economic growth. Moreover, in highly developed countries the metropolitan 
areas may record a lower dynamics of economic growth in comparison to 
other regions. This phenomenon is connected with the increasing availability 
of agglomeration benefits (the better availability of the surrounding business 
institutions, communication, transport infrastructure, education and highly 
skilled workforce) outside the metropolitan areas (Dijkstra, 2009). 

It seems that the rate of convergence for metros and non-metros will not 
be the same. On the one hand, economic growth will favour metros in less 
developed countries, while in areas with a higher level of development the 
non-metros will achieve larger growth. On the other hand metropolitan areas 
differ from non-metropolitan in terms of the existence of specific functions, 
the scope of spatial interactions, character, position in the network of 
economic relations, or even the level of education and the catch-up potential 
as a result. 

The article refers to the issue of heterogeneity of the β-convergence 
process and spatial dependence in the area of Europe. The main aim of this 
study is to verify the difference between the metro and non-metro subregions 
of 31 European countries in the occurrence and speed of the conditional β-
convergence for the period 2000–2010. Contrary to the previous papers we 
concentrate on the consequences of using the country-specific effects and 
spatial regimes in the evaluation of the convergence process. The additional 
aim of the research is to verify whether the spatial interaction parameter 
varies for the metros and non-metros. We proposed a two-regime spatial 
autoregressive panel model with spatial and time fixed effects estimated 
using the Bayesian MCMC method for both purposes. Moreover the 
evaluation of the model using a Monte Carlo simulation is added. 

The rest of the paper is as follows. Section 2 is a brief literature review 
focused on those studies in which the β-convergence processes are explored 
using the NUTS3 (subregional) level. In Section 3, the two-regime spatial 
autoregressive panel model, the method of estimation, as well as the 
database were described. The results from the Monte Carlo simulation are 
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discussed in Section 4, while Section 5 submits the empirical results for the 
β-convergence and spatial dependence evaluation. Further discussion about 
the heterogeneity of the β-convergence and instability of the spatial relations 
are in Section 6. Finally, the main conclusions follow. 

2. LITERATURE REVIEW 

The vast majority of the empirical studies were devoted to convergence, 
analyses the catch-up effects only at the regional (NUTS 2) level. Among the 
studies dealing with the issues of equalizing the development levels of 
subregions (NUTS 3), one can indicate, among others, the work by 
Pukeliene and Butkus (2012). They evaluated the β convergence processes 
for the sample of 1190 EU27 territorial units in 1995–2008. The obtained 
results showed a small rate of convergence, which in the case of the analysis 
of the entire sample amounted to only 0.6% per year. What is important is 
that the rate of the absolute (unconditional) convergence differed in the 
analyses of national sub-samples and in the case of some countries 
demonstrated a statistically significant divergence. 

Also, Paas et al. (2007) proved the existence of a small rate of unconditional 
β-convergence for the sample of 1214 EU25 subregions (for the period 
1995–2002). They also noted that the speed of catching up with regions 
characterized by a high level of GDP by the economically backward regions 
was higher in the EU15 countries in comparison to the new member states. 
The authors took into account the effect of affiliation of a region to a given 
country (as the country dummies) which had a significant impact on the 
obtained results and drew conclusions concerning the regional convergence 
process. The rate of the conditional β-convergence was lower than the rate of 
the unconditional convergence, and in the case of selected countries one 
could even observe a divergence of the developmental processes, proving the 
existence of the polarization of areas and their division into centres and 
peripheries. 

The mentioned studies suggest that the convergence processes observed 
at regional level are rather the result of the equalization of the development 
levels between the countries, and do not apply directly to the elimination of 
regional differences. The differences seem to be deepening, which is 
equivalent to the increase of heterogeneity inside the country. The existence 
of divergence tendencies within the country is also confirmed by studies 
which analysed a sample of territorial units for one country, e.g. those 
relating to Polish provinces (Dańska-Borsiak, 2011), regions of Portugal  
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and Spain (Viegas, Antunes 2013) and regions of Russia (Akhmedjonov  
et al., 2012). 

The studies carried out for NUTS3 spatial aggregation level have rarely 
taken into account the diversity of convergence processes within the sub-
groups of territorial units. Among the studies one should mention the work 
by Frenken and Hoekman (2006), who from the sample of 1088 EU25 
subregions selected areas which could be defined as network cities. The 
results obtained by them showed a significantly higher rate of growth of 
network cities, compared to the remaining areas. Moreover, they noted that 
conclusions regarding the convergence or divergence depended on the level 
of spatial aggregation of data and differed between the EU15 countries 
(regional convergence) and the new members of the EU (divergence). 

Chapman et al. (2012) also noted that the spatial heterogeneity of the 
development processes, is leading to the creation of the so-called clubs (club 
convergence). As far as the capital cities and urban regions are concerned, 
the researchers confirmed that they stood out from the periphery in terms of 
the growth level, but they were not given much attention. They were only 
taken into account as additional binary explanatory variables in spatial 
models. 

A few examples of analyses emphasizing the division of regions into 
metropolitan and non-metropolitan ones for Europe (to be precise, for the 
EU) are complemented by studies on the U.S.. In particular, Hammond 
(2006) proved the existence of divergence for the non-metropolitan areas in 
1969–2001, while the metropolitan areas recorded a diversity in convergence 
processes, which depended on their geographical location and size. The 
fastest speed of convergence could be observed in the case of medium-sized 
metropolis, while the strongest divergence tendencies were characteristic for 
non-metropolitan areas within which large urban centres and small towns 
were located. 

In accordance with the studies presented in the literature, both 
interregional interactions (spatial effects) and location in a given country 
(spatial heterogeneity) may play an important role in the analysis of regional 
convergence processes. In particular, these factors affect the inference of the 
existence of economic convergence. In addition, one can note that the 
convergence processes may differ in the case of a division between 
development centres and peripheral areas. 
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3. METHOD AND DATA 

3.1. Two-regime spatial autoregressive panel model with fixed effects 

The traditional fixed and random effects panel models are able to capture 
the unobserved heterogeneity of the regional economies. Such individual 
effects are most often identified as the initial level of technology in the 
convergence analysis (Badinger et al., 2002). The common practice is also 
adding time effects which are responsible for the common time tendency of 
regional growth (business cycle). As the lack of information about the time 
volatility and individual characteristics of spatial unit leads to increasing the 
value of residuals and their correlation with the explanatory variables, and 
also to inconsistency and biasness of the estimates (Caselli et al., 1996), the 
panel data model seems to be the obvious starting point in the convergence 
analysis. 

In recent years spatial (and spatial dynamic) panel models have started to 
play a major role (see Yu and Lee, 2012; Bouayad-Agha and Védrine, 2010, 
among others). One of their advantages is the possibility of assuming the 
existence of relationships between economies. This is because of the fact 
that necessary conditions for the economic convergence are, for example, 
mobility of production factors, trade ties, and diffusion of knowledge and 
technology. As the direct measurement of the above determinants is difficult 
or even impossible, such interactions are included in an indirect manner 
using a priori specified spatial weight matrix. 

Following the highlighted problems, we proposed an alternative way of 
the convergence analysis which is based on the assumption about the 
heterogeneity of the convergence process. This is because of the club 
convergence which was found in the previous studies (e.g. Fischer and 
Stirböck, 2006; Jabłoński, 2012; Pietrzak, 2012). Such club convergence 
means the difference between groups of regions (or countries) in the speed 
of the convergence or even in the convergence versus divergence existence. 
In our model all spatial units which belong to the same homogenous club 
(spatial regime) are going to the same long-term balance which differs 
between clubs. In this study we classified all subregions into two groups, 
metro and non-metro, which we expected to find as the two clubs with a 
different speed of convergence process.  

Moreover, we assumed the heterogeneity of the spatial dependence 
among those groups and we supposed that spatial spillover differs between 
metro and non-metro areas because the impact of neighbours on metro and 
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non-metro regions is not the same. That results in the instability of the 
spatial effect parameter, or in other words the spatial heterogeneity in the 
form of spatial regimes.  

Due to the above, the diversity between metro and non-metro areas was 
incorporated as two spatial regimes, existing in both the convergence and 
spatial interaction parameter. We used the Barro and Sala-i-Martin (1992) 
approach to specify the two-regime spatial autoregressive panel data model 
with both spatial and time fixed effects. This can be expressed as: 
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where: ij – cross-sectional dimension (subregions and countries), with  
i = 1,…, N subregions and j = 1,…, J countries, t – time dimension, with  
t = 1,…, T, tijy , – GDP per inhabitant, tτ  – time-period fixed effect, jυ  – 

country-specific fixed effect, iµ  – random subregional effect, ijd – binary 
variable for the spatial regimes which takes the value of 1 if subregion i was 
classified as metropolitan area, and 0 otherwise (the same in each t), 1β , 2β  
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elements of the row-standardized spatial weight matrix W. 

The elements wij were calculated using the inverse-square function of a 
geographical distance (dij) between the centroids of subregions: 
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The critical cut-off distance h=200 km was set to achieve a more semi-
local structure of the spatial relations. We used the results from the 
variogram to obtain the cut-off distance. As a result we achieved the spatial 
structure with the mean number of neighbours per subregion equal to 63 
(4.6% of the whole sample). The semi-local structure means that for most of 
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the subregions (70%), the neighbours are not only from the same country but 
also from neighbouring foreign countries. 

Based on the estimated 1β , 2β  parameters (Equation 1), the rate of the 
convergence (annual rate of achieving the long-term balance) was calculated 
for both regimes. Additionally, the half-time rate (Barro, Sala-i-Martin, 
1995) was used to compare the period during which the distance between the 
metro (non-metro) economies and the common long-term balance level will 
be reduced by a half. The difference between 1β and 2β  was calculated to 
check if the metro and non-metro subregions vary in the convergence rate. 
We compared them using the credible interval (CI) of the β parameters for 
which the coverage was checked. By analogy, we tested the difference of the 
spatial interaction parameters for the metro and non-metro subregions. 

In Equations 3 and 4 the unexplained changes in the level of dependent 
variable due to the specificity of the following years was captured by time 
fixed effects. Additionally, subregional units interactions in the geographical 
space might more or less depend on the metropolitan or non-metropolitan 
status of the unit. In contrast to the multiparametric spatiotemporal 
autoregressive model (Hays et al., 2009), for each subregion the same 
structure of spatial dependence was assumed. Hence the source of the 
metropolitan and non-metropolitan area spatial effect difference is not the 
way they interact in the space but sensitivity for the economic development 
in the neighbourhood. Our approach is different from the traditional spatially 
switching regression (Anselin, 1988, pp. 132–133), where 2

εσ  varies 
between subgroups. We assumed like Elhorst and Fréret (2009) that 2

εσ  
does not differ between the regimes. Also 2

µσ  is the same in the metro and 
non-metro subgroups. 

3.2. Bayesian Markov Chain Monte Carlo estimation 

As opposed to Elhorst and Fréret (2009) who estimated a two-regime 
Durbin model with fixed effects via maximum likelihood (MLE), the 
Bayesian Markov Chain Monte Carlo (MCMC) method was applied to 
estimate Equation 1, as more flexible and preferred for the complex model 
(see LeSage and Pace, 2009). Typically for the Bayesian perspective we 
assumed that the joint probability distribution of the all parameters θ* and 
observed data D* consist of two parts: the prior distributions P(θ*) and a 
likelihood P(D*|θ*), which can be written as: 

 * * * * *( , ) ( | ) ( ),P P P=D θ D θ θ  (3) 
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where: θ*= {β, ρ, σε
2, σμ

2}, D* = {y, X, W}. Then, we specified the prior 
distribution and derived the conditional posterior distribution for each 
parameters. 

We used Harris and Dong’s (2014) detailed description of the Bayesian 
implementation for the hierarchical spatial autoregressive model (HSAR) 
because we found it is similar to our model (Equation 1). The spatiotemporal 
structure might be considered as a two-level in the multilevel framework. 
Hence, it is possible to treat Equation 1 as the multiple spatial weights 
extension of the HSAR model. The main difference between both is the lack 
of the time (the synonym of individual) level spatial interactions in Equation 
1 and the separation of the spatial effect for the two regimes (metropolitan 
and non-metro) at the second (subregional) level. Despite this, the specification 
of the prior and posterior distributions of parameters in the two-regime 
spatial autoregressive panel model are like in the HSAR model. 

Accordingly, we set up the prior distribution of fixed and random effect 
parameters as: 
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where: ]',...,,,...,,,[ 111121 −−= JT υυττβββ  – K×1 vector of fixed effect 
parameters, M0 – K×1 vector of means, T0 – K×K variance-covariance 
matrix, υmin – the minimum eigenvalue of the weight matrix W, K – total 
number of fixed effect parameters in the model, ]',[ 21 ρρ=ρ  – 2×1 vector 
of spatial effect parameter for both spatial regimes, IG – the inverse gamma 
distribution with the shape parameter a0 or c0 and scale parameter b0 or d0, N 
– the normal distribution, U – the uniform distribution. The fairly non-
informative priors with the distributions as in Equation 4 were used to draw 
the initial values in the MCMC.  

To derive the conditional posterior distribution from fixed and random 
parameters, full posterior distribution for the estimated parameters was 
taken. Consistent with Equation 3 it can be expressed as: 
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with the likelihood function that indicates P(D| θ*): 
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where: ]'[ ,tijy=y  – NT×1 vector of dependent variables, 1 – N×1 vector of 

one’s, IN – identity matrix, [ ]'iµ=μ  – N×1 vector of spatial random effects, 
Δ – NT×N block-diagonal design matrix, ,1 ,[ ,..., ]'ij ij Td d=D  – NT×1 vector 
for identifying the spatial regimes.  

Due to the above, the posterior distribution of parameters were as follows 
(compare with Harris and Dong, 2014): 
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where: B = IN – ρ1DW – ρ2(l–D)W.  
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Gibbs sampling was employed to draw the samples for parameters. This 
means that in each iteration the new values of parameters were drawn from 
their conditional distribution using the current values of all other parameters 
(Nielsen, 2006, p. 49). The lack of the standard recognizable density 
distributions for ρ1 and ρ2 resulted in that we decided to apply the inverse 
sampling method to update both spatial interaction parameters. In each 
iteration the numerical integration of Log f(ρ1) over (1/ υρ1min,1) and 
Log f(ρ2) over (1/ υρ2min,1) was computed. After that the cumulative 
distribution of ρ1 and ρ2 were calculated and the inverse sampling approach 
was employed to draw values of parameters. The Log f(ρ1) and Log f(ρ2) are 
as follows: 
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where: B1 = IN – ρ1DW, B2 = IN – ρ2(l–D)W, θ1 = (IN – ρ1DW)–1μ, θ2 = 
(IN – ρ2(l–D)W)–1μ. 

The MCMC sampler was coded using the R language. The convergence 
of the MCMC sampler was diagnosed using the CODA package in R Cran 
(Plummer et al., 2006). The inferences were based on one MCMC chain, 
each consisting of 10,000 iterations with a burn-in period of 5,000. 

3.3. Data 

We used data for the years 2000–2010 at the NUTS3 level for 28 
European Union countries, and also Switzerland, Norway and Macedonia. 
These data came from Eurostat, the BADAC Database of Swiss Cantons and 
Towns (for Switzerland), the Republic of Macedonia State Statistical Office 
(price index for Macedonia) and the OECD database (Norway for the period 
2000–2007). Changes in the NUTS classification (e.g. in the case of 
Germany, Italy, the Netherlands and Croatia), and in particular changes in 
the boundaries, the merger and separation of new subregions were taken into 
account by the recalculation of the variable values according to the NUTS 
classification from 2010. The only one exception was the Province of 
Barletta-Andria-Trani (Italy), which was omitted in the analysis due to the 
fact that it was sectioned off as a new territorial unit in 2008, which 
prevented the calculation of subregional gross domestic product per 
inhabitant for the period 2000–2008. 
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The economic growth was expressed as the level of subregional gross 
domestic product (GDP) per inhabitant in PPS million, in fixed prices from 
the year 2000. In the calculations, the mid-year number of inhabitants was 
used as a proxy of subregional population and the price index as a deflator. 
Figure 1 and 2 present the basic descriptive statistics and values of GDP per 
inhabitant. 

 

 

Figure 1. NUTS3 gross domestic product (average annual growth rate in %). 

Source: author’s calculations based on data from Eurostat. 

The division of the NUTS3 units into metropolitan and non-metropolitan 
subregions was based on a delimitation consistent with LUZ (Urban Audit's 
Larger Urban Zones), prepared under the Urban Audit Programme 
implemented by Eurostat. According to the method of classification of the 
NUTS3 units accepted by Eurostat, the status of metropolitan subregions 
was granted to those where at least 50% of the population live in the LUZ 
metropolitan areas. The latter are defined as agglomerations of at least 250 
000 inhabitants (cf. Dijkstra, 2009). That gives 258 metros in the EU27, 
classified  into  three  types:  capital  metros  (the  equivalent  of  the national 
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Figure 2. NUTS3 real gross domestic product in 2010 (PPS per inhabitant) 

Source: author’s calculations based on data from Eurostat. 

 
Figure 3. Metro subregions delimitation according to LUZ with the smaller metros treated 

as non-metros 

Source: author's elaboration based on data from Eurostat. 
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capitals), second tier metros (the group of the largest cities in a country, 
except the capital) and smaller metros. In the two first classes the most 
important cities for the particular country are grouped. As the fixed 
population threshold could not be used to separate the second tier metros for 
all the countries, the category of smaller metros was set up (Eurostat, 2013, 
p. 219). In our study, smaller metros were treated as non-metros (non-
metropolitan subregions), while the capital and the second tier units were 
classified to the common group called metros (metropolitan subregions). 
Figure 3 presents the delimitation of the metro and non-metro subregions 
based on the NUTS3 units. 

The database (balanced panel) consists of NT=14,993 observations 
coming from N=1,363 NUTS3 units called subregions. According to the 
LUZ classification, 238 NUTS3 units were recognized as metropolitan 
subregions. Due to the fact that the selected metropolitan subregions consist 
of more than one NUTS3 territorial unit (e.g. the Zürich metropolitan area 
consists of Aargau and Zürich), the total number of different metros 
amounted to 92. 

4. THE EVALUATION OF THE TWO-REGIME SPATIAL 
AUTOREGRESSIVE PANEL MODEL  

IN THE MONTE CARLO SIMULATION 

We started from the evaluation of our model using the Monte Carlo 
simulation to check for the potential biasness of the estimated parameters. 
Two simulation experiments were conducted with the same target value of 
parameters and similar number of iterations (R=80 and 100) but different in 
the data generating processes. In the first experiment (model 1) we assumed 
there is no spatial and time fixed effects, while in the second one (model 2) 
we extended the data generating process using those effects. In both 
experiments we took the values of independent variables from our database 
and the spatial weight matrix as in Equation 2. The random effects μi and 
error term εij,t were drawn from the normal distribution with zero mean and 
the variance equal one. To evaluate the models’ results, the relative bias and 
coverage of the 95% credible interval were calculated for each estimated 
parameter. 

The simulation results are provided in Table 1. In both experiments all 
the parameters were found unbiased. The relative biases for all the 
parameters are less than those commonly used in the simulation studies 
threshold value equal to 5% (see Hoogland and Boomsma, 1998). In model 1 
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the relative biases for the estimates are lower than 1%, except the estimates 
for the spatial interaction parameters (1.6% and 1.8%). The coverage rates of 
the 95% credible interval (CI) are also satisfactory. Both the fixed and 
random parameter estimates are characterized by the higher than 90% 
coverage rate of the 95% CI. Such results suggest that the credible intervals 
are unbiased in model 1.  

Table 1 

The evaluation of the two-regime spatial random effect model using Monte Carlo simulation 

Parameter Target value Relative bias  
(in %) 

Coverage rate  
(in %) 

Model 1 (R=80) 
β1 –0.020 –0.007 92.500 
β2 –0.030 0.002 92.500 
ρ1 0.400 1.568 96.250 
ρ2 0.200 1.771 95.000 
    
Spatial FE No   
Time FE No   
σµ

2 0.001 0.001 95.000 
σɛ2 0.003 0.001 91.250 

Model 2 (R=100) 
β1 –0.020 0.191 85.000 
β2 –0.030 0.301 83.000 
ρ1 0.400 –2.392 82.000 
ρ2 0.200 –0.201 78.000 
Two–regime*:    
Spatial FE 1.000 0.209 95.814 
Time FE 1.000 –0.173 94.944 
σµ

2 0.001 –0.009 82.000 
σɛ2 0.003 –0.030 80.000 

* The relative bias and coverage rate calculated as a mean for all spatial (time) effects. 

Source: author’s calculations. 

In the second experiment (model 2), we added both spatial and time fixed 
effects with metro and non-metro regimes. Again, we found the relative bias 
for the estimated parameters lower than 5%. For each estimated parameter 
the relative bias is less than 1%. The only exception is the estimated 
parameter for the spatial interaction (ρ1) which is underestimated by more 
than 2%. Although the accuracy of the estimates was proved for model 2, the 
relative biases are higher than in model 1. Also the coverage rate of the 95% 
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CI is much lower for model 2 estimates than in the previous one. This might 
be the result of the correlation with the spatial and time fixed effects. Despite 
this, as long as the estimates are unbiased, we can use our model to test the 
heterogeneity of the convergence and instability of the spatial interaction 
parameter. 

5. EMPIRICAL RESULTS 

The empirical results were presented in three subsections. The first two 
with the models which were obtained by adding the restrictions on the two-
regime spatial autoregressive panel model parameters (random effect models 
and spatial random effect models) and the third with the two-regime spatial 
autoregressive panel model. 

5.1. Random effect models 

Firstly, we estimated the random effect models using the Bayesian 
MCMC method. We achieved them as the restricted two-regime spatial 
autoregressive panel model in which there is no spatial dependence 

1 2 0ρ ρ= = . Two versions of the random effect model were estimates: with 
one-regime spatial and time fixed effects (1) and with two-regime fixed 
effects (2). Despite this, in both models we separated the β-convergence 
parameter into metro and non-metro subregions. Table 2 contains the results 
corresponding to these subsections. 

The estimated parameters β1 and β2 are lower than zero and significant in 
both models. This means we observed the conditional convergence among 
metro and non-metro subregions in 2000–2010. Crucial to verify our 
hypothesis about the heterogeneity of the convergence process is the 
difference between the parameters β1 (for the metros) and β2 (for the non-
metros). Such a difference was found as significant only for the model with 
two-regime spatial and time fixed effects (2). When we assume that all 
subregions are similar in the time fluctuation and the country-specific effects 
(1), the difference between the conditional β-convergence is insignificant. 

The estimated variance of random effects was found as significant in the 
both random effect models. Its value is the same for the model with one-
regime and two-regime fixed effects. The variability of the subregional GDP 
per inhabitant growth is only 3.2% of the total variance. Despite this, random 
effects let us take into account the individual characteristics of subregions 
and  allow  us  to  avoid  the  misspecification  connected  with  the  omitted 
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Table 2 

Estimation results for the conditional β-convergence and spatial effects using random effect 
and spatial random effect models 

Parameter 
Random 

effect 
model (1) 

Random 
effect 

model (2) 

Spatial 
random effect 

model 
(1) 

Spatial random 
effect model 

(2) 

Spatial 
random effect 

model 
(3) 

β1 
-0.022 
(0.002) 

-0.016 
(0.004) 

-0.022 
(0.004) 

-0.017 
(0.004) 

-0.019 
(0.002) 

β2 
-0.024 
(0.002) 

-0.030 
(0.002) 

-0.024 
(0.003) 

-0.030 
(0.003) 

-0.021 
(0.002) 

ρ   0.234 
(0.120) 

0.205 
(0.122) 

0.870 
(0.017) 

Spatial FE Yes (1) Yes (2) Yes (1) Yes (2) No 
Time FE Yes (1) Yes (2) Yes (1) Yes (2) Yes (2) 

σµ
2 0.0001 

(0.000) 
0.0001 
(0.000) 

0.0001 
(0.000) 

0.0001 
(0.000) 

0.0001 
(0.000) 

σɛ2 0.003 
(0.000) 

0.003 
(0.000) 

0.003 
(0.000) 

0.003 
(0.000) 

0.003 
(0.000) 

Moran’s I      

iµ̂  0.062 
(0.000) 

0.085 
(0.000)    

Metros:      
conv. speed 2.225% 1.613% 2.225% 1.715% 1.918% 
half-time 31.159 42.974 31.159 40.426 36.134 
Non-
metros:      

conv. speed 2.429% 3.046% 2.429% 3.046% 2.122% 
half-time 28.533 22.757 28.533 22.757 32.659 

Posterior mean, posterior standard deviation in parentheses. (1) one-regime effects, (2) two-
regime effects 

Source: author’s calculations. 

variables and heterogeneity. Hence, even if the proportion of the total 
variance being the result of the difference between subregions is small but 
significant, we are not allowed to ignore it. 

Finally, we tested estimated random effects for the presence of spatial 
dependence using Moran’s I test. Significant spatial autocorrelation was 
found in both models which proves that the random effect models suffer 
from a misspecification due to omitted spatial dependence. As in the 
traditional random effect model, the independency of the random effects is 
assumed, we are obliged to use an alternative specification. 
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5.2. Spatial random effect models 

Next, we estimated the spatial random effect models with one-regime (1) 
and two-regime fixed effects (2). The spatial dependence of the random effects 
was incorporated as the spatial lag term. In both models, spatial interaction 
parameter ρ was found as insignificant because zero lies in the 95% CI for the 
spatial parameter (see Bolstad, 2011). This might be because of the wrong way 
of incorporating the spatial dependence – not as the spatial lag of the 
dependent variable but as the spatially lagged error term. Another explanation 
is that spatial dependence is not observed for all subregions but only for a 
subsample (e.g. metros). Hence, when most of the spatial units in the sample 
are non-metros, the estimated spatial parameter would equal zero. This 
strategy of the interpretation was tested in the next subsection by diversifying 
the ρ parameter. Finally, we might have obtained the insignificant parameter ρ 
because of the correlation between spatial fixed effects and the spatially 
lagged term. Let us now consider the last explanation. 

By assuming the semi-local form of the spatial relationships we obtained 
the spatial structure where the neighbours are only or mostly from the same 
country. For 30% of all spatial units in the W matrix the subregional GDP 
per inhabitant depends on the weighted average of the GDP per inhabitant 
for a group of units localized in the same country. This might be the source 
of similarities between the spatially lagged term and the spatial fixed effects. 
To check this, we estimated the spatial random effect model without the 
spatial fixed effects (3). As we expected, when the specific country effects 
were excluded, the estimated spatial interaction parameter was higher 
(almost 0.9) and significant. This proves the omitted country variability 
affects the spatial interaction parameter and results in its overestimation. 
Although our suspicion regarding the connections between the subregional 
interactions (captured by the ρ parameter) and the cross-country differences 
(captured by the spatial FE) seems to be right, it is still hard to conclude 
whether the country-specific effects ( models 1 and 2) could misleadingly 
capture the effect of the spatial interactions.  

Surprisingly, the estimated variance of the random effects does not 
change when we allow for the spatial dependence in model 3. Such a result 
is uncommon as the overestimation of the random effect variance due to 
ignoring spatial autocorrelation was proved in the previous studies. It 
additionally shows the spatial fixed effect parameters are more susceptible 
for the omitted spatial dependence than the random effect variance. 

As is known from the literature (see Arbia et al., 2005), the inclusion of 
the spatial lag term to the model might decrease the estimated parameter of 
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the β-convergence. Such change is interpreted as the indirect influence of the 
trade relations, factor mobility and knowledge spillover in the convergence. 
In our models we do not observe any difference in the estimated parameters 
β1 and β2 after taking into account the spatial dependence. While in models 1 
and 2 such a result is obvious as the spatial interaction parameters are 
insignificant, no change of the β-convergence parameters in model 3 might 
suggest that the conditional β-convergence that we observe in the metros and 
non-metros was not supported by the existence of the spatial interactions 
among subregions in the period 2000–2010. 

5.3. Two-regime spatial autoregressive panel models 

Finally, we estimated models with the two-regime spatial dependence and 
four different combinations of the spatial and time fixed effects. The 
estimation results are presented in Table 3. Let us now concentrate only on 
the results from models 1–3. 

Table 3 
Estimation results for conditional β-convergence and spatial regimes using  

two-regime spatial autoregressive panel models. 

Parameter Model 1 Model 2 Model 3 Model 4 

β1 
-0.023 
(0.002) 

-0.017 
(0.004) 

-0.026 
(0.003) 

-0.014 
(0.003) 

β2 
-0.025 
(0.002) 

-0.030 
(0.003) 

-0.021 
(0.002) 

-0.032 
(0.003) 

ρ1 
0.402 

(0.200) 
0.272 

(0.234) 
0.886 

(0.032) 
0.407 

(0.183) 

ρ2 
0.310 

(0.140) 
0.281 

(0.146) 
0.901 

(0.019) 
0.532 

(0.108) 
Spatial FE Yes (1) Yes (2) No Yes (3) 
Time FE Yes (1) Yes (2) Yes (2) Yes (2) 
Metros dummy No No No Yes 

σµ
2 0.0001 

(0.000) 
0.0001 
(0.000) 

0.0001 
(0.000) 

0.0001 
(0.000) 

σɛ2 
0.003 

(0.000) 
0.003 

(0.000) 
0.003 

(0.003) 
0.003 

(0.000) 
Metro:     
conv. speed 2.327% 1.715% 2.634% 1.410% 
half-time 29.789 40.426 26.311 49.163 
Non-metro:     
conv. speed 2.532% 3.046% 2.122% 3.252% 
half-time 27.378 22.757 32.659 21.312 

Posterior means, posterior standard deviations in parentheses. (1) one-regime effects, (2) two-
regime effects,(3) only for the non-metros 

Source: author’s calculations. 
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Incorporating the two-regime spatial dependence does not affect the 
estimated random effect variance as well as the error term variance. Also the 
estimated β coefficients in models 1, 2 and 3 are the same as in the previous 
models (compare with Table 2), which suggests no impact of the 
diversification of the spatial interactions parameter on the convergence 
process. Hence, the significant difference in the conditional β-convergence 
between metros and non-metros is found only when the two-regime spatial 
fixed effects are applied.  

The separation of the spatial interaction parameter into: 1) connected with 
the interactions with metros, 2) representing the impact of neighbours on the 
non-metros, results in the significant diversification of the estimated coefficients 
value in the model with one-regime spatial fixed effects (denoted by 1 in 
Table 3). It seems that the insignificance of a parameter for the spatial 
dependence in the spatial random effect model (denoted by 1 in Table 2) is 
connected with the lack of the spatial interactions in the metros subsample. 
For the non-metros the spatial interactions exist because the ρ2 parameter is 
significant. 

Despite this, a significant difference between the value of the estimated ρ1 
and ρ2 coefficients was not found when the two-regime spatial fixed effects are 
applied. In such model (denoted by 2 in Table 3) both for the metros and non-
metros there are no spatial interactions. This result is consistent with those from 
the model with one-regime spatial dependence (denoted by 2 in Table 2). The 
results from the models without the spatial fixed effects are also the same. When 
we assumed there are no country-specific effects, the one-regime as well as the 
two-regime spatial interaction parameters are significant. In the model with two-
regime spatial dependence both c1 and ρ2 parameters are significant but there is 
no significant difference between their values. 

Again, we can observe that the significance of the spatial interaction 
parameters depends on how we applied the country-specific effects. The 
form in which the spatial fixed effects occur in the models affects also the 
estimated parameters of the β-convergence. The diversification of the 
country-specific effects into one or two spatial regimes seems to play a 
crucial role. When the country effects are separated for the metros and non-
metros, the parameters for the conditional β-convergence vary but the 
parameters for the spatial interactions are equal and insignificant. In contrast, 
when we allow for the common country-specific effects there is no 
significant difference in the conditional β-convergence between metros and 
non-metros, but the parameters for the spatial interactions are unequal and 
significant for the non-metros (ρ2). 
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Due to the above, we estimated an additional model with the country-
specific effects for non-metros and additional dummy variable with the value 
1 if the subregion is the metro and 0 otherwise. Hence, we captured the 
difference between metros and non-metros in the economic growth, as well 
as allowed for its variation among the non-metros localized in different 
countries. In contrast to the models with the two-regime spatial fixed effects, 
we assumed the effect of being localized in the same country does not occur 
for the metros. Despite this, as long as the random effects are in the model, 
we allowed for the individual treatment of each subregion, for example in 
the initial level of technology. This model is denoted by 4 in Table 3. 

The results suggest the estimated parameter for the spatial interactions is 
significant for the non-metros and insignificant for the metros. Also we 
found the estimated parameter for the conditional β-convergence is 
significantly higher for the metros (β1 = –0.014) than for the non-metros 
(β2 = –0.032). The β coefficient estimates are equal to those achieved by 
using the model with two-regime spatial fixed effects, while the values of the 
ρ coefficient estimates are the same as in the model with one-regime spatial 
fixed effects. Hence we can argue that in model 4 we obtain such a structure 
of the spatial fixed effects which has some features of the one and two-
regime approaches. Finally, it seems that the assumptions about the 
differences between metros and non-metros as well as between countries in 
the specific effects play a crucial role in the verification of our hypothesis. 

6. DISCUSSION 

This section provides additional discussion about the heterogeneity of the 
convergence speed and spatial dependence expressed by the specific spatial 
effects. Moreover, we would like to compare our results with those obtained 
in similar studies by other authors. 

6.1. Heterogeneity of the convergence process 

According to the last model (Table 3) the estimated speed of the 
convergence to the individual steady state was found to be lower for the 
metros (1.4%) and higher for the non-metros (3.3%). Our results are within 
the range found by Barro and Sala-i-Martin (1995). As the number of metros 
and their importance differs strongly between the EU–15 and newcomers, 
some of the basic comparisons with the convergence process among old and 
new members of the EU might be done. Most similar within the results are 
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Chapman et al. (2012), who achieved a convergence speed of over 2% for 
the newcomers and only 1.59% for the EU-15 regions during 1995–2004. 

In all of the models the estimates for the conditional β-convergence 
parameters seem to be unaffected by the omitted spatial dependence. 
However, we found a strong relationship between the β1 and β2 parameters 
and the country specific effects. This suggests that when the national factors 
are included, the catch-up of some subregions might slow down or speed up. 
Similarly to us, Paas et al. (2007) showed that taking countries’ structural 
characteristics into account might change the speed of the convergence, 
which means the catching up process is driven mostly by country-specific 
factors. 

An additional conclusion from our research is that the change in the 
catching up process after controlling for the national effects is different for 
the metros and non-metros. When we allow for the two-regime country-
specific effects, the speed of the convergence for the metros decreased 
significantly, while for the non-metros we noticed its significant increase 
(model 2, Table 3). The same results were achieved when the country-
specific characteristics for the metros were removed (model 4, Table 3). The 
convergence of metros seems to be more independent from the country-
specific factors. This is because there is no significant difference between 
models 2 and 4 in the speed of the convergence for the metros. In contrast, 
the country-specific effects seem to be the powerful modifiers for the 
catching up process among the non-metros. When we allowed for the 
national effects, the speed of the convergence for the non-metros increased 
from 2.1% to 3.3% (compare the results from model 3 and 4). 

6.2. Difference in spatial dependence between metros and non-metros 

For model 4 with the metro dummy variable and the national effects for 
the non-metros, as well as for model 1 with the one-regime spatial fixed 
effects, we found a significant difference in the parameter of spatial 
interaction. In both models the significant spatial interactions parameter was 
proved only for the non-metros. This proves the heterogeneity of spatial 
dependence between metros and non-metros, however we achieved it only 
for the two particular specification of the spatial fixed effects. The 
differentiation of the spatial dependence into regimes seems to be 
unnecessary due to the results from models 2 and 3. 

In model 2, spatial autocorrelation of the non-metro units seems to be 
sufficiently captured by the country dummies because the estimated ρ2 
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parameter is insignificant. Lack of significance for the spatial interaction 
parameter after allowing for the unidentified national macroeconomic factors 
was found also by Paas et al. (2007). Like them, we noticed the country-
specific effects are more important for subregional convergence than spatial 
interaction. An additional argument for this conclusion is that there is no 
significant change of the β-convergence parameters after incorporating the 
spatial lag term. 

Our results differ from Baumont et al. (2006), who proved the existence 
of the spatial regimes as the club-convergence but denied the need of 
differentiating spatial effects for the North and South European regimes 
(separated by using the NUTS2 level data for the period 1980–1995). Still 
we are quite consistent with Mur et al. (2010), who proved the instability (as 
the Centre-Periphery dichotomy) of the parameters of β-convergence as well 
as parameters of spatial dependence.  

Although spatial interactions for the metros were not proved, it is hard to 
expect no spillover of knowledge and impact of trade links or factors 
mobility for those units. The insignificance of the ρ1 parameter might be the 
result of the low cut-off distance in the W matrix specification. While the 
semi-local structure of spatial interactions for the non-metros might be 
enough to capture relationships with those units, it is possible that for the 
metros the geographical distance plays a minor role and the global structure 
of spatial interactions would be more appropriate. 

CONCLUSIONS 

In this paper we focused our attention on the heterogeneity of the  
β-convergence process and the instability of spatial dependence between 
metropolitan and non-metropolitan areas of Europe. We proposed the two-
regime spatial autoregressive panel data model estimated in the Bayesian 
framework to examine the difference between metros and non-metros.  
A small Monte Carlo study was conducted to evaluate the unbiasedness of 
its parameters. Our research was based on a sample of 1,363 European 
subregions (for the period 2000–2010), classified as metro or non-metro 
according to the LUZ delimitation. 

The findings suggest a significant catching up process for both metros 
and non-metros during 2000–2010. After controlling the country-specific 
effects for non-metros and separating the metro/non-metro by using the 
dummy variable, we observe a significant difference between metropolitan 
and non-metropolitan areas in the speed of the convergence. According to 
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our results the half-time rate is 49 years for the metros and 21 for the non-
metros. Additionally, we noticed the predominant role of the country-
specific characteristics (e.g. technology, political environment) for the 
conditional β-convergence, especially among the non-metros. 

The effect of spillover was found only for the non-metros, while for the 
metros the spatial interaction parameter was insignificant. Again, the 
different way of specifying the spatial fixed effects results in the difference 
between the estimated ρ1 and ρ2 parameter. For those models in which spatial 
interactions parameters were found as insignificant, we can conclude that the 
existing spatial autocorrelation has been captured by the country dummies. 
Hence we need to be careful when drawing more general conclusions about 
the instability of spatial dependence between metros and non-metros. 
Finally, we did not find any proof suggesting that the spatial spillover 
supports the convergence process. 
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